
Quantum-Mechanical Force Balance Between Multipolar Dispersion and
Pauli Repulsion in Atomic van der Waals Dimers

Ornella Vaccarelli,∗ Dmitry V. Fedorov, Martin Stöhr, and Alexandre Tkatchenko†
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The structure and stability of atomic and molecular systems with van der Waals (vdW) bond-
ing are often determined by the interplay between attractive dispersion interactions and repulsive
interactions caused by electron confinement. Arising due to different mechanisms — electron corre-
lation for dispersion and the Pauli exclusion principle for exchange-repulsion — these interactions
do not appear to have a straightforward connection. In this work, we use a coarse-grained approach
for evaluating the exchange energy for two coupled quantum Drude oscillators and investigate the
mutual compensation of the attractive and repulsive forces at the equilibrium distance within the
multipole expansion of the Coulomb potential. This compensation yields a compact formula relat-

ing the vdW radius of an atom to its multipole polarizabilities, RvdW = Al α
2/7(l+1)

l , where l is the
multipole rank and Al is a conversion factor. Such a relation is compelling because it connects an
electronic property of an isolated atom (atomic polarizability) with an equilibrium distance in a
dimer composed of two closed-shell atoms. We assess the accuracy of the derived formula for noble
gases, alkaline earth and alkali atoms and show that the Al can be assumed to be universal constants
for each l after considering the uncertainties in the measured values of RvdW. Our results enable
a practical definition of atomic vdW radii from calculated or measured polarizabilities, an accurate
estimation of multipole polarizabilities from the dipole one, and the construction of efficient and
minimally empirical interatomic potential models.

I. INTRODUCTION

Noncovalent interatomic and intermolecular interac-
tions represent one of the key factors that determine
the physicochemical properties of molecules and mate-
rials across chemistry, biology and materials science [1–
4]. Noncovalent interactions are traditionally classified
in a perturbative formalism, from which electrostatics,
induction, Pauli (exchange) repulsion and van der Waals
(vdW) dispersion arise as the leading contributions from
the first two orders of perturbation theory. From the per-
spective of computational modeling, the individual terms
are usually treated with different effective approaches.
Especially the methods used to describe Pauli repulsion
and vdW dispersion typically rely on fundamentally dif-
ferent physical models. The vdW dispersion represents a
major part of long-range electron correlation forces aris-
ing from Coulomb-coupled instantaneous quantum fluc-
tuations of the electronic charge distribution [5–7]. Com-
mon (semi-)local approximations to density-functional
theory (DFT), representing one of the main workhorse
methods in atomistic modeling, neglect long-range cor-
relation forces and thus do not account for vdW inter-
actions. In recent years, an intense effort has been de-
voted to develop robust approaches to address this chal-
lenge [8–13]. Although a unified vdW functional valid for
all kinds of systems is still under construction [14], sig-
nificant progress has been achieved to include dispersion
interactions in the form of non-local (vdW) density func-
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tionals [15–18]. Furthermore, coarse-grained vdW mod-
els have shown great success in describing dispersion in-
teractions at lower computational costs [19–23]. Among
them, the quantum Drude oscillator (QDO) model [24–
30] has been firmly established as an efficient and ac-
curate approach for modeling and understanding vdW
interactions [29–35]. Within this approach, each QDO
models an atom or a molecule, representing the effec-
tive, localized response and polarization fluctuation of its
valence electrons. The success of the coupled-oscillator
model is exemplified by its excellent description of the
electronic response properties of atoms and molecules. In
a continuous formalism, with one oscillator at every point
in space, coupled oscillators can describe any response
allowed by quantum field theory and thus model the re-
sponse of arbitrary molecules or materials [36, 37]. In the
common practical coarse-grained formalism, with each
oscillator representing one atom, the QDO framework
reproduces the leading-order behavior of the electronic
polarizability of atoms [38], providing an accurate and
reliable description of polarization effects in molecules
and materials [39, 40]. Moreover, the QDO model al-
lows to describe excess electrons in matter [25] and to
reproduce dispersion-polarized electron densities [35] as
well as Coulomb interactions between dipolar quantum
fluctuations [41].

Extending the applicability of the QDO framework to-
wards a more complete and systematic description of
noncovalent interactions necessitates the incorporation of
the exchange-induced repulsion [42]. Recently, we made
a first step in this direction by evaluating the exchange
energy between two QDOs within the dipole approxima-
tion of the Coulomb potential [43]. Here, we take the next
natural step by constructing a common coarse-grained
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approach for the multipolar dispersion and exchange in-
teractions in vdW-bonded atomic or molecular dimers.

It is important to embed our developments of coarse-
grained models into the broader context given by the the-
ory of intermolecular interactions for systems composed
of nuclei and electrons [1], which states that the equilib-
rium geometry of two vdW-bonded atoms or molecules
is governed by an interplay of several interactions. The
generalized Heitler-London (GHL) theory [44] offers one
of the most compact schemes for the interatomic energy
decomposition. In the GHL approach, isotropic closed-
shell atoms only experience mutual exchange-repulsion
and dispersion forces. Another very successful scheme
to describe intermolecular interactions and analyze their
complex interplay is based on the symmetry-adapted per-
turbation theory (SAPT) decomposition [45–47]. The
higher-level SAPT methods, while being computation-
ally expensive, approach a “gold standard” accuracy [48]
comparable to the coupled-cluster method with single,
double and perturbative triple excitations [CCSD(T)] for
small molecules. Within second-order SAPT, which is
the most practical approach, one obtains six contribu-

tions [1, 42]: (i) electrostatics, E
(1)
elst; (ii) exchange, E

(1)
ex ;

(iii) induction, E
(2)
ind; (iv) exchange-induction, E

(2)
ex9ind;

(v) dispersion, E
(2)
disp; (vi) exchange-dispersion, E

(2)
ex9disp.

Here, the superscripts (1) and (2) denote the order of the
perturbation theory required to derive the corresponding
term. In the case of neutral and isotropic fragments,

the two induction contributions, E
(2)
ind and E

(2)
ex9ind , prac-

tically compensate each other [49]. Then, the problem
reduces to four remaining terms, which still yield signif-
icant contributions to the interaction energy for noble
gas dimers [50]. On the other hand, the Tang-Toennies
(TT) model [51], relying just on the exchange-repulsion
and dispersion-attraction interactions, is known to repro-
duce the binding energy curves of closed-shell dimers with
high accuracy and efficiency [52]. Recently, an exten-
sion (TT2) of this model was proposed [53] to accurately
describe noble gas dimers also at relatively short inter-
nuclear distances. Based on the concepts of the GHL
theory for interatomic interactions [44], the TT model
can be considered as one of the most compact yet ac-
curate models for closed-shell vdW dimers. According
to the discussion in Ref. [44], the simplicity of the TT
potential arises due to the used analytical asymptotic
form of the exchange energy obtained by the surface in-
tegral method [54, 55]. Since this method is known to
deliver the same asymptotic result [56] as the approach
based on the multipole expansion of the perturbing po-
tential [57], the latter can be used as an alternative way
to construct compact TT-like potentials. This idea is
supported by our recent study [43], which established
a quantum-mechanical scaling law, α1 ∝ R7

vdW, between
the atomic dipole polarizability and the vdW radius from
the force balance between exchange-repulsion and disper-
sion attraction at the equilibrium distance. The corre-
sponding analysis in Ref. [43] was based on the consid-

eration of these two forces stemming from the dipolar
term in the multipole expansion [2, 3] of the interatomic
Coulomb potential. Subsequently, we have derived [58]
the proportionality coefficient, which finally led to the re-

lation α1 = (4πε0/a
4
0)α

4/3
f R7

vdW, as expressed in terms of
the vacuum permittivity ε0, the Bohr radius a0 and the
fine-structure constant αf . Such a relation is not triv-
ial because it connects an electronic polarizability of an
atom with an equilibrium distance in a dimer composed
of two closed-shell atoms.

In this work, we build on our previous study by go-
ing beyond the dipole approximation and considering fur-
ther terms in the multipole expansion of the interatomic
Coulomb potential. This is performed for both exchange
and dispersion interactions between closed-shell systems
described within the QDO model. To this end, we in-
vestigate the balance between the two types of forces,
which yield the dominant contributions in vdW-bonded
systems. For atomic dimers at the vdW equilibrium dis-
tance, this allows us to study a term-by-term compen-
sation of the attractive (dispersion) and repulsive (ex-
change) forces for each contribution in the multipole
expansion of the full Coulomb interaction between the
QDOs. This mutual compensation yields a relation be-
tween atomic multipole polarizabilities and the vdW ra-
dius as first empirically obtained in Ref. [43]. Altogether,
our results deliver deeper insights into the connection be-
tween Pauli repulsion and dispersion attraction — two
forces which appear at different orders of SAPT. The
existence of a quantum-mechanical relation between the
two main contributions to the vdW interaction energy at
the equilibrium distance reveals a strong connection be-
tween exchange and correlation effects and should have
implications for achieving an improved understanding of
the stability of vdW-bonded matter.

II. METHOD: QUANTUM DRUDE
OSCILLATORS

Let us consider two vdW-bonded atoms, A and B, sep-
arated by a distance R and describe them within the
QDO model, as illustrated in Fig. 1. Each of the two
QDOs representing atoms has three effective parameters
— mass µ, charge q and characteristic frequency ω —
which are parametrized to reproduce three atomic ob-
servables {α1,C6,C8} [30]:

ω =
4 C6

3 ~α2
1

, µ =
5 ~C6

ωC8
, q =

√
µω2α1 , (1)

where the Drude (quasi-)particle and the related nucleus
have charges (−q) and q, respectively. The conditions of
Eq. (1) use the dipole polarizabilty α1 and the dominant
dispersion coefficients C6 (induced-dipole–induced-dipole
interaction) and C8 (induced-dipole–induced-quadrupole
interactions) in order to parametrize this powerful model,
able to efficiently reproduce long-range forces and elec-
tronic response properties of atoms and molecules.
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FIG. 1: Schematic representation of two QDOs separated by
the distance R = |R|. The black and white spheres represent
the two Drude particles and fixed nuclei, respectively. The
Coulomb interactions between the two QDOs (grey arrows)
and the harmonic intra-QDO potentials (blue arrows) are ex-
plicitly highlighted with their connection to Eqs. (2) and (4).

The Hamiltonian of the interacting QDOs is given by
H = H0+V , where V is the interaction andH0 = hA+hB
consists of the unperturbed QDO Hamiltonians

hA(r) = −(~2/2µA)∇2
r + (µAω

2
A/2)r2 ,

hB(r) = −(~2/2µB)∇2
r + (µBω

2
B/2)(r−R)2 .

(2)

The corresponding wave functions are given by

ψA(r) = (µAωA/π~)
3/4 e−

µAωA
2~ r2 ,

ψB(r) = (µBωB/π~)
3/4 e−

µBωB
2~ (r−R)2 .

(3)

The full Coulomb interaction between the two QDOs is

V = qAqB
4πε0

{
1
R + 1

|R−r1+r2| −
1

|R−r1| −
1

|R+r2|

}
, (4)

where r1 and r2 are the coordinates of the Drude parti-
cles measured from the corresponding fixed nuclei. The
Coulomb interaction can be written as a multipole ex-
pansion in power series of R = |R| as [59]

V =
∑

n=1,2,...
Vn = V1 + V2 + V3 + V4 + V5 + ... , (5)

where Vn ∝ R−(n+2). Futher, n = lA + lB − 1, where
lA and lB refer to the rank of the multipole moments
of the two interacting QDOs. Here, we restrict our con-
sideration to the first five terms in the multipole expan-
sion of Eq. (5). The first term, V1 ∝ R−3, corresponds
to the dipole approximation of the Coulomb potential,

V1 ≡ Vdip = qAqB
4πε0

(
(r1·r2)
R3 − 3(r1·R)(r2·R)

R5

)
, describing the

dipole-dipole (d-d) electrostatic interaction (lA = lB =
1). The higher terms arise from the dipole-quadrupole
(d-q) for V2 ∝ R−4, dipole-octupole (d-o) + quadrupole-
quadrupole (q-q) for V3 ∝ R−5, dipole-hexadecapole (d-
h) + quadrupole-octupole (q-o) for V4 ∝ R−6 and dipole-
triakontadipole (d-t) + quadrupole-hexadecapole (q-h) +
octupole-octupole (o-o) interactions for V5 ∝ R−7 . The

formulas for Vn , with n = 2, 3, 4 and 5, are given in
Appendix A. Within the next section, we consider the
multipolar contributions to the dispersion and exchange
interaction between two QDOs. The analytical formu-
las are derived in the most general form valid in any
system of units, whereas we employ atomic units (with
4πε0 = ~ = 1), to present our numerical results in Section
III D.

III. RESULTS

A. Dispersion interaction

The multipole expansion has been the starting point
for quantum-mechanical perturbation calculations of the
vdW dispersion interactions of Coulomb-coupled Drude
oscillators [12, 25]. Owing to this approach, the vdW dis-
persion energies can be expressed in terms of the atomic
multipole polarizabilities (with l = 1, 2, ...)

αl ≡ αl,QDO =
(
q2

µω2

)
(2l−1)!!

l

(
~

2µω

)l−1
(6)

by using the series expansion [30]

EAB,disp =−
∑
lAlB

∣∣TABlA, lB ∣∣2 αAlAαBlB(4πε0)2

[
~
4

lAlBωAωB
(lAωA+lBωB)

]
, (7)

where TABlA, lB represents the multipole–multipole
interaction-tensor. In the Supplemental Material of
Ref. [30], the following spherical components of this
tensor were given

|T1,1|2 = 6R−6 , |T1,2|2 = 15R−8 ,

|T1,3|2 = 28R−10 , |T2,2|2 = 70R−10 .
(8)

For our derivations here, we further introduce the higher-
order coupling components via a generalized expression
of the multipolar interaction tensor,

∣∣TABlA, lB ∣∣2 ≡ lA∑
mA=−lA

lB∑
mB=−lB

|TlAmA, lBmB (R)|2 . (9)

This tensor is derived based on the approach of Ref. [60]
used by some of us in Ref. [61] as well. Popelier et al. [60]
employed the relation

T lAmA, lBmB (R) = (−1)lA
√

(2lA+2lB+1)!
(2lA)!(2lB)! ×(

lA lB lA + lB
mA mB −(mA +mB)

)
IlA+lB ,−(mA+mB)(R) ,

(10)

where the expression in the large parentheses is a Wigner
3j-symbol and the irregular normalized spherical har-
monics are

Il,m(r) =
√

4π
2l+1 r

−l−1 Yl,m(θ, φ) . (11)



4

The spherical harmonics are defined as [62]

Yl,m(θ, φ) =
√

2l+1
4π

√
(l−m)!
(l+m)! P

m
l (cos θ) eimφ , (12)

where Pml (cos θ) are the associated Legendre polynomi-
als. If we assume now that the distance between two
atoms is along the z axis, R = (0, 0, R), then cos θ = 1.
Due to Pml (1) = δm,0 , one can then easily obtain

Y ∗l,m(0, φ)Yl,m(0, φ) = 2l+1
4π

(l−m)!
(l+m)!δm,0 . (13)

Consequently, we have

∣∣TABlA, lB ∣∣2 =
(2lA+2lB+1)!

m=+l<∑
m=−l<

(
lA lB lA + lB
m −m 0

)2

(2lA)! (2lB)!R2(lA+lB+1) , (14)

where l< = {lA , if lA ≤ lB ; lB , if lB ≤ lA}. Now we
use the following property of the Wigner 3j-symbols [62]

(
j1 j2 j1 + j2
m1 m2 −(m1 +m2)

)
= (−1)j1−j2+m1+m2√

(2j1)!(2j2)!(j1+j2+m1+m2)!(j1+j2−m1−m2)!
(2j1+2j2+1)!(j1+m1)!(j1−m1)!(j2+m2)!(j2−m2)!

,

(15)

which gives us

∣∣TABlA, lB ∣∣2 =

m=+l<∑
m=−l<

(lA+lB)!(lA+lB)!

(lA+m)!(lA−m)!(lB+m)!(lB−m)!

R2(lA+lB+1) . (16)

Obviously, |TABlA, lB |2 = |TABlB , lA |2. Therefore, it is enough
to derive the components with lA ≤ lB . This means

∣∣TABlA, lB ∣∣2 =

m=+lA∑
m=0

(2− δm,0)
(
lA + lB
lA −m

)(
lA + lB
lB −m

)
R2(lA+lB+1)

, (17)

where the factorials have been rewritten in terms of the
binomial coefficients

(
n
k

)
= n!

(n−k)! k! . Then, we obtain

|T1,4|2 = 45R−12 , |T1,5|2 = 66R−14 ,

|T2,3|2 = 210R−12 , |T2,4|2 = 495R−14 ,

|T3,3|2 = 924R−14 ,

(18)

in addition to the results of Eq. (8). With the above
expressions, the first few multipolar contributions to the

dispersion energy between two oscillators become

EAB,disp
1(d9d) = − 3k2e

2R6 α
A
1 α

B
1

~ωAωB
ωA+ωB

,

EAB,disp
2(d9q) = − 15k2e

2R8

[
αA1 α

B
2

~ωAωB
ωA+2ωB

+ αA2 α
B
1

~ωAωB
2ωA+ωB

]
,

EAB,disp
3(d9o) = − 21k2e

R10

[
αA1 α

B
3

~ωAωB
ωA+3ωB

+ αA3 α
B
1

~ωAωB
3ωA+ωB

]
,

EAB,disp
3(q9q) = − 35k2e

R10 α
A
2 α

B
2

~ωAωB
ωA+ωB

,

EAB,disp
4(d9h) = − 45k2e

R12

[
αA1 α

B
4

~ωAωB
ωA+4ωB

+ αA4 α
B
1

~ωAωB
4ωA+ωB

]
,

EAB,disp
4(q9o) = − 315k2e

R12

[
αA2 α

B
3

~ωAωB
2ωA+3ωB

+ αA3 α
B
2

~ωAωB
3ωA+2ωB

]
,

EAB,disp
5(d9t) = − 165k2e

2R14

[
αA1 α

B
5

~ωAωB
ωA+5ωB

+ αA5 α
B
1

~ωAωB
5ωA+ωB

]
,

EAB,disp
5(q9h) = − 495k2e

R14

[
αA2 α

B
4

~ωAωB
ωA+2ωB

+ αA4 α
B
2

~ωAωB
2ωA+ωB

]
,

EAB,disp
5(o9o) = − 693k2e

R14 αA3 α
B
3

~ωAωB
ωA+ωB

, (19)

where ke = (4πε0)−1 is the Coulomb constant.
Based on the above formulas, we can now rewrite the

dispersion energy in its conventional expansion [1, 30]

EAB,disp =
∑

n=1,2,...
EAB,disp
n =

∑
n=1,2,...

−CAB
(2n+4)

R(2n+4) , (20)

where CAB
(2n+4) are the dispersion coefficients and all the

contributions to EAB,disp
n , with n up to 5, are given

by Eq. (19). Equation (20) arises from second-order
perturbation theory with the multipole expansion of
the Coulomb potential, as an interaction potential be-
tween spherically symmetric atoms. The leading term

is the dipole-dipole (d-d) interaction, EAB,disp
1 ∝ R−6,

stemming from the dipolar potential, Vdip ∝ R−3.
The higher-order terms in the multipole expansion of
the Coulomb interaction yield the dispersion energies

EAB,disp
2 ∝ R−8, EAB,disp

3 ∝ R−10, EAB,disp
4 ∝ R−12 and

EAB,disp
5 ∝ R−14 coming, respectively, from the instan-

taneous dipole-quadrupole (d-q), dipole-octupole (d-o)
and quadrupole-quadrupole (q-q), dipole-hexadecapole
(d-h) and quadrupole-octupole (q-o) interactions, and
dipole-triakontadipole (d-t), quadrupole-hexadecapole
(q-h) and octupole-octupole (o-o) interactions. For non-
centrosymmetric molecules, Eq. (20) would have terms
with odd powers in R starting with ∝ R−7 [1]. How-
ever, here we restrict our consideration to vdW-bonded
atoms assumed to possess closed valence-electron shells
with a spherically-symmetric charge density, for which
the dispersion terms proportional to R2i+1, with i ∈ N,
vanish.

B. Exchange-repulsion interaction

The above derivation of the dispersion energy was per-
formed for the general case of two QDOs with arbitrary
parameters, however the description of the exchange-
repulsion between two QDOs is more subtle. The ex-
change interaction should obviously be present for two
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different QDOs, as caused by the Pauli repulsion between
electrons constituting the two Drude particles. Nonethe-
less, in order to construct the exchange interaction, one
needs to deal with indistinguishable particles, a concept
that requires generalization for two Drude particles pos-
sessing different parameters. Our starting assumption
is that the exchange energy should be proportional to
the overlap integral S between the wave functions of
two different QDOs, similar to the case of two identical
Drude particles [43]. This assumption was recently em-
ployed [63] for a simplified generalization of the coarse-
grained dipole-dipole exchange energy of a homonuclear
dimer, Eex

(d9d) ≈ keq
2S/2R, derived in Ref. [43]. The au-

thors of Ref. [63] have simply replaced the overlap inte-
gral S of two identical QDOs by its counterpart obtained
for different QDOs and shown that already such a sim-
plified treatment improves their computational scheme
for vdW dispersion interactions. However, due to the
coarse-grained treatment of valence electrons within the
QDO model, care needs to be taken for the most general
definition of the exchange energy between QDOs. This
is subject of our ongoing studies. Here, we follow the
approach of Ref. [43] and derive multipole contributions
to the exchange energy of two identical QDOs.

Formally, we consider two indistinguishable Drude par-
ticles (µ = µA = µB , ω = ωA = ωB and q = qA = qB) as
bosons assuming that they represent closed valence shells
with vanishing total spin. Therefore, the total wave func-
tion of a dimer should be written as a permanent

Ψ(r1, r2) = 1√
2

(
ψA(r1)ψB(r2) + ψA(r2)ψB(r1)

)
. (21)

By employing the Heitler-London perturbation the-
ory [64, 65], the exchange energy for two identical vdW-
bonded QDOs at their equilibrium distance becomes well
approximated with its exact asymptotic result given by
the exchange integral [43]

Jex = 〈ψA(r1)ψB(r2)|V |ψA(r2)ψB(r1)〉 . (22)

The evaluation of Eq. (22) with the expansion of Eq. (5)
results in multipole contributions to the exchange energy,
where each of them is directly proportional to the overlap
integral defined as

S = |〈ψA|ψB〉|2 = e−
µω
2~ R

2

. (23)

For the dipole-dipole contribution, V1 ∝ R−3, we obtain

Jex
1(d9d) = keq

2S
2R , (24)

which reproduces the result of Ref. [43]. Now, we eval-
uate further contributions going beyond the dipole ap-
proximation. For the dipole-quadrupole interaction, de-
scribed by the second term, V2 ∝ R−4, in the multipole
expansion of the Coulomb potential, we derive

Jex
2(d9q) = 3keq

2S
4R . (25)

Then, the next term, V3 ∝ R−5, has two contributions,
V3(d9o) and V3(q9q) , related to the dipole-octupole and
the quadrupole-quadrupole interaction [3, 66], respec-
tively. The corresponding exchange integrals are ob-
tained as

Jex
3(d9o)=

keq
2S

2R , Jex
3(q9q)=

3keq
2S

8R

(
1− ~

R2µω− ~2

R4µ2ω2

)
.

(26)

Further on, we have two contributions from V4 ∝ R−6,
the dipole-hexadecapole (d-h) and the octupole-octupole
(q-o) interaction. The related exchange integrals are

Jex
4(d9h)=

5keq
2S

16R

(
1− 3~

R2µω− 9~2

R4µ2ω2

)
, Jex

4(q9o)=
5keq

2S
8R .

(27)
Finally, for the dipole-triakontadipole (d-t), quadrupole-
hexadecapole (q-h) and octupole-octupole (o-o) interac-
tions, from V5 ∝ R−7, we obtain

Jex
5(d9t)=

3keq
2S

16R

(
1− 15~

R2µω− 105~2

R4µ2ω2

)
, Jex

5(o9o)=
5keq

2S
16R ,

Jex
5(q9h)=

15keq
2S

32R

(
1− 7~

4R2µω− 35~2

4R4µ2ω2− 21~3

2R6µ3ω3

)
. (28)

According to Eqs. (24) and (25), Jex
2(d9q) is larger than

Jex
1(d9d) for all interatomic distances. This is in contrast to

the dispersion contributions, where Edisp
1(d9d) clearly dom-

inates at large distances. Such a nonmonotonic behavior
of the multipole contributions, as we obtain here for the
exchange energy, was also found in Ref. [67] for the mul-
tipole expansion of the exchange-dispersion energy.

Now, we will use the derived dominant multipole con-
tributions to the dispersion and exchange energies, in
order to study the balance of the corresponding forces at
the equilibrium distance in homonuclear dimers.

C. Force balance between multipolar dispersion
and exchange contributions

The equilibrium geometry of atomic or molecular sys-
tems is dictated by the condition that the net forces act-
ing on each atom vanish. Therefore, for two atoms or
molecules separated by a distance R, this condition is de-
termined by Fnet(Req) = −∇REtot(R)|R=Req = 0, where
Req represents the equilibrium distance and Etot is the
total interaction energy. The structure, stability and dy-
namics of vdW-bonded atomic dimers are governed by
the interplay between the dispersion and exchange inter-
actions [44]. This means that at R = Req the two respec-
tive forces have to mutually compensate each other. In
what follows, we consider such a compensation by going
beyond the dipole approximation for the interaction, in
order to obtain higher-order multipole contributions to
the attractive and repulsive forces.

At the equilibrium distance, Req = 2RvdW, in homonu-
clear dimers composed of two identical Drude particles
(µ = µA = µB , ω = ωA = ωB and q = qA = qB),
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the exchange force can be well approximated by the ex-
pression F ex ≈ −∇R Jex, according to Ref. [43] and our
discussion above. In addition, at the internuclear dis-
tances comparable to or larger than the equilibrium one,
R �

√
~/µω [43]. Then, the corresponding multipole

contributions to the exchange force are obtained as

F ex
1(d9d) ≈ α1~ωS

2(4πε0)

(
µω
~
)2

, F ex
2(d9q) ≈ 3α1~ωS

4(4πε0)

(
µω
~
)2

,

F ex
3(d9o) ≈ α1~ωS

2(4πε0)

(
µω
~
)2

, F ex
3(q9q) ≈ 3α1~ωS

8(4πε0)

(
µω
~
)2

,

F ex
4(d9h) ≈ 5α1~ωS

16(4πε0)

(
µω
~
)2
, F ex

4(q9o) ≈ 5α1~ωS
8(4πε0)

(
µω
~
)2

,

F ex
5(d9t) ≈ 3α1~ωS

16(4πε0)

(
µω
~
)2
, F ex

5(q9h) ≈ 15α1~ωS
32(4πε0)

(
µω
~
)2
,

F ex
5(o9o) ≈ 5α1~ωS

16(4πε0)

(
µω
~
)2
. (29)

From Eq. (19) we calculate the multipole contributions
to the dispersion force (for homonuclear dimers)

F disp
1(d9d) = − 9α1α1~ω

2R7(4πε0)2
, F disp

2(d9q) = − 40α1α2~ω
R9(4πε0)2

,

F disp
3(d9o) = − 105α1α3~ω

R11(4πε0)2
, F disp

3(q9q) = − 175α2α2~ω
R11(4πε0)2

,

F disp
4(d9h) = − 216α1α4~ω

R13(4πε0)2
, F disp

4(q9o) = − 1512α2α3~ω
R13(4πε0)2

,

F disp
5(d9t) = − 385α1α5~ω

R15(4πε0)2
, F disp

5(q9h) = − 4620α2α4~ω
R15(4πε0)2

,

F disp
5(o9o) = − 4851α3α3~ω

R15(4πε0)2
. (30)

At R = Req, the attractive and repulsive forces should
cancel each other. Within the dipole approximation,

from the force balance, F disp
1(d9d) + F ex

1(d9d) = 0, one ob-

tains

9α1

(4πε0)R7
eq

=
(µω

~

)2
e−

µω
2~ R

2
eq . (31)

This formula expresses a relation between α1 and
RvdW = Req/2, but also contains the QDO parameters µ
and ω, which are not uniquely defined for atoms. To ob-
tain a formula connecting atomic parameters RvdW and
α1, we rewrite Eq. (31) as

9α1

25(4πε0)R7
vdW

=
e−(RvdW/σQDO)2

σ4
QDO

, (32)

where σQDO =
√

~/2µω is the spatial variance or spread
of a QDO. Within the QDO model, σQDO describes an
effective atomic length, which corresponds to the Bohr
radius in case of the hydrogen atom [68]. According to
Ref. [43], the ratio RvdW/σQDO decreases with increas-

ing σQDO and the factors σ4
QDO and e−(RvdW/σQDO)2 in

Eq. (32) compensate each other. This compensation al-
lows the QDO model to approximately capture the con-
stant behavior of the ratio α1/R

7
vdW confirmed empiri-

cally for many atoms [43]. Therefore, within the QDO
model, the relation between the vdW radius and the
dipole polarizability can be expressed as

RvdW = A1(µω,RvdW)α
1/7
1 , (33)

where the proportionality coefficient, as a function of the
product µω and the vdW radius, is given by

Aµω1 ≡ A1(µω,RvdW) =
32/7

2(4πε0)1/7

(
~
µω

e
µωR2

vdW
~

)2/7

.

(34)
As was discussed in Ref. [43], this coefficient can be also
written in terms of the radial volume

Vr =

∫
r3 n0(r) dr =

4√
π

(
~
µω

)3/2

(35)

occupied by the ground-state charge density of the QDO,

n0(r) ≡ |Ψ0(r)|2 = (µωπ~ )3/2e−
µω
~ r2 , and its value at the

vdW radius, n0(RvdW), as

Aµω1 =
32/7

2(4πε0)1/7

[(
4

π5

)1/3
1

n0(RvdW)V
1/3
r

]2/7

. (36)

Taking into account that A1 was found to be essentially a
constant for 72 atoms in the periodic table [43], Eq. (36)
suggests a relation between an atomic volume and the
electron charge density at the vdW radius.

The results of Eqs. (34) and (36) are based on taking
into account only the first term, V1 ∝ R−3, in the expan-
sion of Eq. (5) for the Coulomb potential. However, it is
well-known that at least two further terms, V2 ∝ R−4 and
V3 ∝ R−5, are important to properly describe the bind-
ing curves of vdW-bonded atomic dimers [52]. Therefore,
here we consider an extension of Eq. (33) by including the
higher-order multipole terms from the expansion of the
Coulomb potential. To this end, we evaluate the indi-
vidual multipole contributions to the dispersion and ex-
change forces given by Eqs. (29) and (30), respectively, at
the equilibrium distance of vdW-bonded dimers. Based
on the empirical findings of Ref. [43], the mutual com-
pensation of multipolar dispersion and exchange forces
can ultimately be represented by the general expression

RvdW = Aµωl α
2/7(l+1)

l , (37)

which extends Eq. (33) to the multipole polarizabilities,
αl. One can also rewrite Eq. (37) in the following way

αl = (RvdW/A
µω
l )

7(l+1)/2 , (38)

where each multipole polarizability is expressed in terms
of the vdW radius. This allows one to obtain αl either
from RvdW or α1, for an arbitrary l. Since first-principles
calculations of higher-order polarizabilities are computa-
tionally demanding [69], our finding provides an alterna-
tive way to approximate multipole polarizabilities.

Based on the expressions for the multipolar dispersion
and exchange forces, we can now also explicitly calculate
the proportionality coefficients Aµωl ≡ Al(µω,RvdW).
As a particularly helpful example, we can consider the
force balance condition for the dipole-multipole interac-
tion, i.e., the Fl(d9z(l))-terms of Eqs. (29) and (30) with
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z(1) = d, z(2) = q, z(3) = o, z(4) = h and z(5) = t. The
resulting proportionality coefficients of this series can be
cast into a compact generalized formula

Aµωl =
(
Dl
4πε0

) 2
7(l+1)

R
3(l−1)
7(l+1)

vdW

(
~
µω

e
µωR2

vdW
~

) 4
7(l+1)

, (39)

with the l-dependent rational constants Dl = l(l+2)(2l+1)
2l+5(l+1)

.

Equation (39) generalizes Eq. (34) and shows that the

additional factor of R
3(l−1)/7(l+1)
vdW is required within the

QDO model, in order to reflect the constant behavior of
the empirical Al [43] with l > 1. Moreover, in terms of
the quantities related to l = 1, the above expression can
be simplified even further

Aµωl =
(
Dl
D1

) 2
7(l+1)

R
3(l−1)
7(l+1)

vdW (Aµω1 )
2
l+1 . (40)

The general formula given by Eq. (39) allows us to obtain
the proportionality coefficients Aµωl for every order in
the dipole-multipole interactions, even without deriving
further multipolar contributions to the dispersion and
exchange forces.

The presented findings based on the dipole-multipole
interaction can be generalized via the force balance at
each order of the multipole expansion as we highlight
for the quadrupole-quadrupole and octupole-octupole in-
teractions in Appendix B. Alternatively, one can use
the general expression for the QDO multipole polariz-

abilities given by Eq. (6), in order to derive AQDO
l =

RvdW/α
2/7(l+1)
l,QDO by means of Eq. (37). The comparison

between the two approaches to the proportionality coef-
ficients Al is given in the following section.

D. Assessment of our formalism for atoms

In the previous sections, we have presented a coarse-
grained approach to describe dispersion and exchange
interactions between two closed-shell atoms within the
QDO model. Here, we examine the applicability of the
presented formulas and apply them to analyze the ratio
between the vdW radius and multipole polarizabilities for
atoms, thus demonstrating the validity of the scaling law
of Eq. (37) derived from the QDO model. Our analysis
will be focused on hydrogen, noble gases from He to Xe,
alkali atoms from Li to Cs, and alkaline-earth elements
from Be to Ba. To this end, the atomic multipole polar-
izabilities, αl, are either taken from high-level ab initio
calculations in the literature [70–72], αref

l , or calculated

by means of Eq. (6), αQDO
l . We determine q, µ and ω for

each atom by means of Eq. (1), using accurate reference
data for the set {αref

1 ,C6,C8} [43, 70–73], as explained
in Section II. Here, due to the fact that the QDO pa-
rameters are set to reproduce the dipole polarizability,

we have αQDO
1 ≡ αref

1 , for all considered atoms.
While eventually it would be interesting and impor-

tant to extend our analysis to a broader set of atoms

and small molecules, we are not aware of a comprehen-
sive set of accurate data for atomic and molecular multi-
pole polarizabilities. Accurate ab initio reference calcu-
lations of αl in general require demanding computational
approaches with sophisticated treatment of electron cor-
relation effects and, especially with increasing order l,
large and diffuse basis sets [69, 77, 78]. As a result, cal-
culating converged multipolar polarizabilities is difficult,
a problem which is further enhanced by the numerical as-
pects associated with finite-field derivative techniques as
used in such calculations. Experimental determination,
on the other side, is subject to origin and orientational
dependencies as well as a strong influence of thermal ef-
fects [69, 79, 80], which can introduce considerable un-
certainties — in particular with increasing system size or
multipole order.

To apply the derived formulas, a set of reference vdW
radii, Rref

vdW, is required. In the case of alkali as well as
alkaline-earth elements, these radii are taken from the
recent database of Batsanov [74]. For noble-gas atoms,
missing in Ref. [74], we use the database of Bondi [75],
which provides often used values of vdW radii for Group
18 of the periodic table. In addition, for hydrogen, we
use Rref

vdW = 3.1 a.u. from Ref. [21], where it was theo-
retically estimated based on the atomic charge density.
This value was shown to work well for the relation be-
tween the atomic dipole polarizability and vdW radius
in Ref. [43].

Both, the vdW radii of Batsanov and Bondi, are
extracted from experimental crystallographic structural
data. However, it is important to mention that a straight-
forward definition of the vdW radius is only possible for
noble-gas atoms as inert elements with closed valence
shells. For other atoms, RvdW is evaluated by consid-
ering a variety of different molecular crystal structures
and extracting neighboring atom–atom distances, where
each atom belongs to a different closed-shell molecule.
This definition is especially subtle for chemical elements
with spin-polarized valence shells, such as alkali atoms,
which can form bonds with different spin states. There-
fore, one has to keep in mind that existing vdW radii are
just statistical quantities for most chemical elements.

First, we analyze the empirical proportionality con-
stants

Aref
l = Rref

vdW/α
2/7(l+1)

l,ref (41)

based on the reference data of RvdW and the atomic
dipole (αref

1 ), quadrupole (αref
2 ) and octupole (αref

3 ) po-
larizabilities [43, 70–73]. The results are shown in Table I,
for the chosen test set of 16 chemical elements.

For noble gases, Aref
l is essentially constant. In line

with Ref. [43], we find 〈Aref
1 〉 = 2.54 a.u., which was fur-

ther specified in form of the unified formula, RvdW(α1) =

(4πε0/a
4
0)α

4/3
f α

1/7
1 with a0 and αf denoting the Bohr

radius and the fine-structure constant, respectively [58].
For the higher-order multipoles, we obtain 〈Aref

2 〉 =
2.45 a.u. and 〈Aref

3 〉 = 2.27 a.u.. The resulting values for
Aref
l remain close to the average values determined for
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TABLE I: Comparison between the reference ratios Aref
l = Rref

vdW/α
2/7(l+1)
l,ref for l = {1, 2, 3} and their QDO counterparts

AQDO
l = Rref

vdW/α
2/7(l+1)
l,QDO for l = {1, 2, 3, 4, 5} versus the proportionality coefficients Aµωl for l = {1, 2, 3, 4, 5} given by Eq. (39).

For alkali and alkaline-earth elements, we use Rref
vdW from the recent database of Batsanov [74]. For noble gas atoms and

hydrogen, missing in Ref. [74], the reference vdW radii are taken from Refs. [75] and [21], respectively. The QDO parameters
{q, µ, ω} are set according to Eq. (1), to reproduce αref

1 as well as the homoatomic dispersion coefficients C6 and C8. The three
fitted quantities together with the reference quadrupole (αref

2 ) and octupole (αref
3 ) polarizabilities are taken from Refs. [43, 73]

for the noble gases (He, Ne, Ar, Kr, Xe), from Refs. [70, 71] for the elements in Group I (H, Li, Na, K, Rb, Cs), and from
Ref. [72] for the elements in Group II (Be, Mg, Ca, Sr, Ba). The QDO multipole polarizabilities are obtained from Eq. (6),

where αQDO
1 ≡ αref

1 due to the QDO fitting procedure [30] leading to AQDO
1 ≡ Aref

1 . The average values 〈Al〉 are calculated
based on the results of the noble gas atoms. The standard deviation σ =

√
1/N

∑
X(Al[X]− 〈Al〉)2 and its mean absolute

relative deviation (MARD), 1/N
∑
X |Al[X]− 〈Al〉|/〈Al〉, are also reported. All quantities are in atomic units (MARD in %).

Atom Aref
1 Aref

2 Aref
3 AQDO

1 AQDO
2 AQDO

3 AQDO
4 AQDO

5 Aµω1 Aµω2 Aµω3 Aµω4 Aµω5

He 2.53 2.43 2.24 2.53 2.48 2.32 2.17 2.05 2.33 2.10 1.93 1.82 1.74
Ne 2.53 2.44 2.26 2.53 2.53 2.38 2.24 2.12 2.57 2.27 2.07 1.94 1.85
Ar 2.52 2.44 2.27 2.52 2.51 2.37 2.23 2.11 2.33 2.18 2.06 1.96 1.89
Kr 2.55 2.47 2.29 2.55 2.55 2.40 2.26 2.14 2.35 2.22 2.10 2.01 1.94
Xe 2.54 2.45 2.27 2.54 2.52 2.37 2.23 2.10 2.28 2.20 2.10 2.02 1.96
H 2.50 2.40 2.19 2.50 2.43 2.26 2.11 2.09 2.06 1.97 1.88 1.80 1.75
Li 2.40 2.49 2.33 2.40 2.48 2.38 2.26 1.99 2.50 2.41 2.29 2.20 2.14
Na 2.53 2.55 2.40 2.53 2.56 2.43 2.30 2.17 2.50 2.42 2.32 2.23 2.17
K 2.54 2.54 2.41 2.54 2.55 2.42 2.28 2.20 2.53 2.47 2.38 2.29 2.23
Rb 2.61 2.58 2.46 2.61 2.60 2.46 2.31 2.22 2.58 2.57 2.42 2.34 2.27
Cs 2.65 2.58 2.48 2.65 2.62 2.46 2.31 2.22 2.62 2.56 2.46 2.38 2.31
Be 2.51 2.45 2.34 2.51 2.47 2.32 2.17 2.05 2.22 2.17 2.08 2.01 1.96
Mg 2.49 2.42 2.32 2.49 2.45 2.29 2.15 2.03 2.25 2.21 2.13 2.07 2.01
Ca 2.55 2.44 2.39 2.55 2.50 2.33 2.18 2.06 2.38 2.34 2.26 2.19 2.13
Sr 2.61 2.49 2.43 2.61 2.55 2.37 2.22 2.09 2.45 2.41 2.32 2.25 2.19
Ba 2.59 2.42 2.41 2.59 2.51 2.34 2.18 2.05 2.48 2.44 2.36 2.28 2.22

〈Al〉 2.54 2.45 2.27 2.54 2.52 2.37 2.23 2.10 2.37 2.19 2.05 1.95 1.88
σ 0.05 0.06 0.08 0.05 0.05 0.05 0.06 0.06 0.15 0.16 0.17 0.17 0.18

MARD [%] 1.60 1.80 3.90 1.60 1.61 1.87 2.20 2.47 5.41 7.13 8.88 10.14 11.05

noble-gas atoms for all the atoms shown in Table I, with
the minor exception of the alkali-metals Li and Cs. The
alkali atoms possess a relatively weakly bound and, there-
fore, highly polarizable single valence electron. This fea-
ture and the different possible spin states of alkali atoms
in molecular solid-state systems arguably allow the vdW
radii observed for alkalis to change widely, causing the
largest deviation for the empirical constants Aref

l from
their average values, as also illustrated in Fig. 2.

Despite the two exceptions (Li and Cs), the coefficients
Aref
l can be seen as universal constants for the stud-

ied atoms, with a minuscule standard deviation (below
0.1 a.u.). Taking the average values Al = 〈Aref

l 〉 for the
noble-gas atoms we can thus write the unified relations
between the vdW radius and the dipole, quadrupole and
octupole polarizabilities,

RvdW(α1) = A1 α
1/7
1 , A1 = 2.54 a.u.

RvdW(α2) = A2 α
2/21
2 , A2 = 2.45 a.u.

RvdW(α3) = A3 α
1/14
3 , A3 = 2.27 a.u.

(42)

which are equivalent to the empirical relations reported
in Ref. [43]. The relations obtained above can be used for
at least three different purposes. First, the vdW radius of
atoms can now be calculated given any single multipolar

atomic polarizability. This polarizability can correspond
to a free atom or an atom in a molecule or material [21].
The vdW radius can then be used for a conceptual under-
standing of an atom in its environment or for practical
calculations of the vdW energy [14, 21]. Second, given
the dipole polarizability, one can accurately determine
multipole polarizabilities (at least up to octupole) from
Eq. (42). In fact, this approach is substantially more
reliable for atoms than using the QDO model for mul-
tipole polarizabilities. A third application would be the
possibility to determine atomic multipole polarizabilities
from calculated or measured atomic vdW radii. A poten-
tial downside of this application is that a small error in
the vdW radius would result in a large error for multipole
polarizabilities, according to Eq. (42).

The quantity RvdW(αl) defined in Eq. (42) represents
an effective vdW radius expressed in terms of the multi-
polar polarizability. To demonstrate the validity of this
new definition for the vdW radius, Fig. 3(a) compares

the results for RvdW(αl) = Al α
2/7(l+1)
l with l = {1, 2, 3}

to the reference values, Rref
vdW. There is an excellent cor-

relation between RvdW(α1) and its reference value for
all considered elements, with a maximum relative error
R.E. =

∣∣RvdW(α1)−Rref
vdW

∣∣/Rref
vdW of 0.91 % for the no-

ble gases, 2.74 % for alkaline-earth (Group II) elements
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FIG. 2: The ratios RvdW/α
2/7(l+1)
l,ref listed in Table I are

shown (filled symbols) with respect to the “universal” val-
ues A1 = 2.54 a.u., A2 = 2.45 a.u. and A3 = 2.27 a.u.,
represented respectively with blue, red and green solid lines.

By contrast, the ratios RvdW/α
2/7(l+1)
l,QDO (opened symbols) are

plotted with respect to the constant values obtained from the
QDO polarizabilites, AQDO

2 = 2.52 a.u., AQDO
3 = 2.37 a.u.,

AQDO
4 = 2.23 a.u. and AQDO

5 = 2.10 a.u., shown in red,
green, fuchsia and light blue dashed lines, respectively. The
noble gases are shown in the yellow box, the elements of the
Group I in the light blue box and the elements of the Group II
in the light green box. The error bars represent the relative
errors R.E. = |Al[X]−Al|/Al of each species X, where Al
are the “universal” values expressed in Eqs. (42) for the ra-

tios RvdW/α
2/7(l+1)
l,ref and in Eqs. (43) for RvdW/α

2/7(l+1)
l,QDO .

and 5.90 % for hydrogen and alkali metals (Group I). The
increasing errors when going from alkaline-earth to al-
kali metals are related to the increase in the statistical
errors of Rref

vdW stemming from the increasingly compli-
cated evaluation of the vdW radii based on experimental
crystal-structure data. Indeed, this evaluation becomes
less accurate for elements with more pronounced metal-
lic properties [74, 76]. Comparing Groups I and II of
the periodic table, the statistical errors in Rref

vdW of the
alkaline-earth elements are smaller since they have closed
s-electron shell, which makes them behave closer to the
noble gases with completely closed valence shells.

Although the dipole polarizability α1,ref is known with
high accuracy for many chemical elements in the peri-
odic table, the accurate determination of higher-order
multipolar polarizabilities is more involved. Indeed, Fig-
ure 3(a) shows an increase in the maximum R.E. for
RvdW(α2) (within 0.99 % for noble gases, 1.48 % for
Group I and 5.14 % for Group II) and, subsequently,
for RvdW(α3) (within 1.39 % for noble gases, 6.60 % for
Group I and 8.62 % for Group II). This analysis is val-
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FIG. 3: The vdW radius as a function of the multipole polar-

izabilities, RvdW(αl) = Al α
2/7(l+1)

l , obtained by means of (a)
Eqs. (42) and (b) Eqs. (43) is presented, taking into account

that RQDO
vdW (α1,QDO) ≡ RvdW(α1,ref), in comparison to the

reference values Rref
vdW [21, 74, 75] for three classes of species:

noble gases (in yellow), H + alkali-metal atoms (Group I, in
blue) and alakine-earth atoms (Group II, in green). The vdW
radii are shown (a) for the reference [30, 70–72] multipole
polarizabilities α1,ref , α2,ref and α3,ref (blue, red and green
filled symbols) and (b) for the QDO multipole polarizabilities
α2,QDO, α3,QDO, α4,QDO and α5,QDO given by Eq. (6) (red,
green, fuchsia and light blue open symbols). The insets show
the relative errors, R.E. =

∣∣RvdW(α1)−Rref
vdW

∣∣/Rref
vdW, for the

noble gases (yellow box), the alkali-metals + hydrogen (light
blue box) and the alkaline-earth elements (light green box).
In addition, the mean values of the relative errors, 〈R.E.〉, are
reported in the legens, for each considered multipole order.

idated in Fig. 2 as well, where we compare the average
values A1 = 2.54 a.u., A2 = 2.45 a.u. and A3 = 2.27 a.u.

with the relative ratios RvdW/α
2/7(l+1)
l , for l = {1, 2, 3}.

It is also noteworthy that reference values for higher-
order polarizabilities are rather limited in literature, with
the exception of hydrogen, the only element in the peri-
odic table for which the multipole polarizability αH

l is
known analytically [81]. Therefore, we employ the mul-
tipole polarizabilities obtained within the QDO model
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by means of Eq. (6). Notably, the QDO coefficients

AQDO
l = RvdW/α

2/7(l+1)
l,QDO , for l = {1, 2, 3, 4, 5}, are prac-

tically constant for all noble-gases atoms, which leads to
the QDO set of relations

RQDO
vdW (α1) = 〈AQDO

1 〉α1/7
1 , 〈AQDO

1 〉 = 2.54 a.u.

RQDO
vdW (α2) = 〈AQDO

2 〉α2/21
2 , 〈AQDO

2 〉 = 2.52 a.u.

RQDO
vdW (α3) = 〈AQDO

3 〉α1/14
3 , 〈AQDO

3 〉 = 2.37 a.u.

RQDO
vdW (α4) = 〈AQDO

4 〉α2/35
4 , 〈AQDO

4 〉 = 2.23 a.u.

RQDO
vdW (α5) = 〈AQDO

5 〉α1/21
5 , 〈AQDO

5 〉 = 2.10 a.u.

(43)

These results are shown in Fig. 3(b), where a good

agreement between RQDO
vdW (αl) and Rref

vdW is observed for
l = {2, 3, 4, 5}, in addition to the case of l = 1 for which

we have RQDO
vdW (α1,QDO) ≡ RvdW(α1,ref). We note that

the QDO model is constructed, by definition, on the dis-
persion coefficients and the QDO polarizabilities (with
l > 1) are underestimated for the noble-gases atoms
with respect to the reference data [30]. Consequently,

the QDO proportionality coefficients 〈AQDO
2 〉 = 2.52 a.u.

and 〈AQDO
3 〉 = 2.37 a.u. are overestimated with respect

to the determined “universal” values A2 = 2.45 a.u. and
A3 = 2.27 a.u., as also shown in Fig. 2. Therefore,
one can expect that the higher-order QDO coefficients,

〈AQDO
4 〉 = 2.23 a.u. and 〈AQDO

5 〉 = 2.10 a.u., are also
overestimated.

To further assess the scaling law of Eq. (37), we com-
pare the resulting empirical constants to the proportion-
ality coefficients Aµωl , obtained by means of Eq. (39).
Table I summarizes the results for Aµωl compared with

Aref
l and AQDO

l . Considering the noble-gas atoms only,
we find the following averaged values

〈Aµω1 〉 = 2.37 a.u., 〈Aµω2 〉 = 2.19 a.u., 〈Aµω3 〉 = 2.05 a.u.

〈Aµω4 〉 = 1.95 a.u., 〈Aµω5 〉 = 1.88 a.u. , (44)

which shall serve as the suggested values of Aµωl . The
mean absolute relative deviations from this reference
across all considered elements are 0.15 a.u. (5.41 %)
for the dipole-dipole term, 0.16 a.u. (7.13 %) for the
dipole-quadrupole term, 0.17 a.u. (8.88 %) for the dipole-
octupole term, 0.17 a.u. (10.14 %) for the dipole-
hexadecapole term and 0.18 a.u. (11.05 %) for the dipole-
triakontadipole term in the multipole expansion. Hence,
Aµωl do not remain constant among all considered ele-
ments, in contrast to the respective atomic proportion-
ality constants Aref

l . The deviations between the two
sets of coefficients amount to 0.17 a.u. (6.6 %) for A1,
0.25 a.u. (10.3 %) for A2, and 0.21 a.u. (9.4 %) for A3,
where the derived Aµωl are always lower than the em-

pirical reference values Aref
l . In both cases, we consis-

tently observe a decrease of the average values and an
increase in the standard deviations with increasing multi-
pole order. Interestingly, the standard deviations among

Aref
l and AQDO

l are comparable to each other but con-
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FIG. 4: The coefficients Al = RvdW/α
2/7(l+1)
l for hydrogen:

the analytical solution AH
l , from the multipole polarizabilities

αH
l = (4πε0)a2l+1

0 (2l + 1)!(l + 2)/22ll [81], where a0 is the
Bohr radius, is shown (blue filled circles) in comparison to the

results of the QDO model, AQDO
l (blue open circles), which

are obtained from αQDO
l calculated by means of Eq. (6).

siderably smaller than σ shown in Table I for the corre-
sponding Aµωl . Hence, the simplifications in the coarse-
grained description of valence electrons within the QDO
model and its parametrization lead to a less accurate
determination of the proportionality coefficients, based
on Eq. (39), than their indirect evaluation based on the
QDO multipole polarizabilities calculated by means of

Eq. (6). However, even AQDO
l obtained for noble gases

still show noticeable deviations from a constant behavior.
It is unclear yet what aspect of atoms makes Aref

l behave
as “universal” constants for different chemical elements.
Nevertheless, we expect the clarification of this question
to be crucial for the eventual improvement of the QDO
model.

Finally, we calculate the ratio RvdW/α
2/7(l+1)
l for the

hydrogen atom, taking into account the known analyt-
ical expression of its multipole polarizabilities given in
Ref. [81] as αH

l = (4πε0) a2l+1
0 (2l + 1)!(l + 2)/22ll, and

compare it with the proportionality coefficients AQDO
l ,

which are obtained from αl,QDO provided by Eq. (6).
As shown in Fig. 4, the current QDO parametrization
yields quite accurate results for dipole, quadrupole and
octupole orders, but then exhibits an increasing overes-
timation of the proportionality constant with increasing
multipole rank l. Given that the vdW radius is fixed at
its reference value [21], this reflects the fact that the QDO
model predicts underestimated multipolar polarizabili-
ties [30]. In order to improve the model, a possible future
step is to use highly accurate theoretical or experimen-
tal reference data for the quadrupole polarizability in-
stead of the dispersion coefficient C8 in the parametriza-
tion scheme, which would increase the accuracy of the
higher-order αl,QDO values. Consequently, such new
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parametrization would yield smaller values of AQDO
l , pro-

viding better agreement with the reference data and
improving the relations between multipole polarizabili-
ties and the equilibrium distance in vdW-bonded atomic

dimers. Figure 4 also shows that the AQDO
l curve cor-

rectly reproduces the kink present at l = 2 in the refer-
ence proportionality coefficients. This kink stems from
the nonmonotonic behavior of the multipole contribu-
tions to the exchange energy, where Jex

2(d9q) is larger than

Jex
1(d9d) (see our discussion at the end of the subsection

B).
One possible explanation for the difference between the

polarizabilities of the QDO model and the hydrogen atom
are the contribution of excitations to continuum states
in the latter case. The QDO model has no continuum
states and can only effectively describe such excitations.
Despite the observed deviations in the higher-order mul-
tipole polarizabilities and the corresponding proportion-
ality coefficients, the QDO approach allowed us to derive

the scaling relation RvdW ∝ α
2/7(l+1)
l , which is remark-

ably valid for atoms.

IV. DISCUSSION AND SUMMARY

We have presented a coarse-grained description of the
repulsive force due to the Pauli principle and attractive
force due to dispersive fluctuations between two closed-
shell atoms or molecules. Our formalism is based on two
interacting quantum Drude oscillators, for which the dis-
persion and exchange-repulsion energies up to an arbi-
trary order in the multipole expansion of the Coulomb
potential were derived. The obtained formulas can be
employed for constructing and rationalizing effective in-
teraction potential models, as well as for finding new scal-
ing laws between electronic and geometric properties of
atoms and molecules.

As a practical illustration of our theory, we investi-
gated a mutual compensation between the repulsive ex-
change and attractive dispersion forces for each term in
the multipole expansion. The results confirm and extend
the recently proposed relations [43] between atomic mul-
tipole polarizabilities, αl, and the van der Waals radius,

RvdW. The derived scaling law, RvdW = Al α
2/7(l+1)
l ,

is compelling because it connects an electronic response
property of a single atom (atomic multipole polariz-
ability) with the equilibrium distance in a homonuclear
dimer.

Let us enumerate some of the potential applications of
the formulas presented in this work and possible future
research directions:

• First and foremost, the relation between atomic
vdW radius and atomic polarizabilities, RvdW =

Al α
2/7(l+1)
l , dispenses with the need to indi-

rectly measure vdW radii. Once the polarizabil-
ity is calculated for a free atom or an atom in a

molecule/material, the vdW radius can be com-
puted from the formula above. Subsequently, the
vdW radius can be used as a proxy for an atomic
size, as an effective radius in interatomic vdW po-
tentials or in damping functions for vdW-inclusive
electronic-structure calculations. We remark that
in quantum mechanics, many possible definitions
can be made for an effective atomic size. Our
derivations provide a novel definition of the atomic
vdW radius in terms of observable quantities —
atomic multipole polarizabilities. Obviously, a
more detailed comparison of calculated vdW radii
to experiment would be welcome by measuring ef-
fective vdW radii in a wide set of systems and com-
paring the measured radii to first-principles calcu-
lations and our formulas.

• Our formula allows a straightforward and accurate
calculation of atomic multipole polarizabilities from
the dipole polarizability. Given α1 and the uni-
versal values of Aref

l obtained in this work, any
multipole polarizability can now be calculated as
a function of these two parameters. This is espe-
cially important given the high computational cost
of calculating multipole polarizabilities from first
principles of quantum mechanics. Going further, it
would be interesting to assess different recursive re-
lations between αl and αl+1 polarizabilities based
on the QDO model and the definition of the vdW
radius.

• Our analytical results allow calculating multipole
polarizabilities αl for an arbitrary value of l. Such
data becomes increasingly important in coarse-
grained models, which describe molecular response
by increasingly larger fragments. For example, one
might want to describe the response of a protein,
where one QDO models the response of each amino
acid. Similar to electrostatics, where higher multi-
poles become of growing importance when increas-
ing the fragment size, polarization response follows
the same trend. Hence, we expect our formulas to
play a key role in the development of coarse-grained
models for chemical and biological matter.

• While most of the results in this paper were pre-
sented for homonuclear dimers, an accurate combi-
nation rule is already known for computing equilib-
rium distances, RAB

eq , in heteronuclear dimers [43]

RAB
eq = 2×Al[(αA + αB)/2]

2/7(l+1) . (45)

This formula allows the calculation of equilibrium
distances in heteronuclear closed-shell dimers solely
based on the knowledge of atomic polarizabilities
of each atom. The derivation of such combination
rules from first principles requires generalizing the
Pauli principle to QDOs with different parameters
and will be a subject of future work.
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• The determination of RAB
eq for two atoms A and

B from their dipole polarizabilities provides a way
to construct generalized Tang-Toennies-type po-
tentials [44, 51–53] that require only one adjustable
parameter: the equilibrium interaction energy Eeq.
It remains to be investigated whether the asymp-
totic dispersion coefficients could be connected to
Eeq, allowing to construct parameter-free Tang-
Toennies-type interatomic potentials for closed-
shell systems.

• Last but not least, the relation between RvdW

and the polarizability could be used to develop
a more general and more accurate parametriza-
tion of the QDO model. Namely, the universal-
ity of Aref

l coefficients holds for atoms but it is
not such a good approximation within the QDO
model itself. One could enforce the obtained rela-
tion, RvdW = Al α

2/7(l+1)
l using “universal” values

Al, to hold on average for the QDO model during
the parametrization procedure. This is a direction
of our current study.

Ultimately, the close connection between vdW at-
traction and Pauli repulsion unveiled in our work paves
the way for the construction of efficient coarse-grained
models for the description of the exchange-repulsion
interaction in atomic and molecular systems. Together
with the well established success of the QDO model in
describing vdW dispersion, our results also provide the
basis for constructing consistent and minimally-empirical
models for interatomic and intermolecular forces.
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Appendix A: Multipole Expansion of Coulomb
Potential

Here, we present the contributions Vn to the multipole
expansion of the Coulomb potential given by Eq. (5).
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Appendix B: Force balance for the
quadrupole-quadrupole and octupole-octupole

interactions

In order to demonstrate that the force balance
is valid for each terms in the multipole expansion,
we calculate the proportionality coefficients A2(q9q) ≡
A2(q9q)(µω,RvdW) and A3(o9o) ≡ A3(o9o)(µω,RvdW) for
the quadrupole-quadrupole and octupole-octupole inter-

actions, which correspond to the ratios RvdW/α
2/21
2 and

RvdW/α
1/14
3 , respectively. According to Eq. (6), one has

α2 = (3/4)(~/µω)α1 and α3 = (5/4)(~/µω)2α1. By em-
ploying the aforementioned two relations and considering
the quadrupole-quadrupole and octupole-octupole terms
in Eqs. (29) and (30), we derive

Aµω2(q9q) =
(

175
1024

)2/21
R
−1/21
vdW

(
~
µω

)2/7

e
4µωR2

vdW
21~ (B1)

and

Aµω3(o9o) =
(
4851
8192

)1/14
R
−1/14
vdW

(
~
µω

)2/7

e
µωR2

vdW
7~ . (B2)

These two expressions can be compared to the coeffi-
cients Aµω2 and Aµω3 , expressed by Eq. (39). The results
are shown in Table II, where we compare the results ob-
tained from Eq. (39) to those obtained from quadrupole-
quadrupole and octupole-octupole interactions, expresses
respectively by Eq. (B1) and Eq. (B2). Remarkably,
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TABLE II: The proportionality coefficients Aµω2 , Aµω2(q−q) and

Aµω3 , Aµω3(o−o) in comparison to the empirical reference values

Aref
l = Rref

vdW/α
2/7(l+1)
l,ref . The used values of Rref

vdW, {µ, ω} and

{α2,ref , α3,ref} are the same as in Table I. The MARD is given
in %, whereas all the other quantities are in atomic units.

Atom Aµω2 Aµω2(q−q) Aref
2 Aµω3 Aµω3(o−o) Aref

3

He 2.10 1.95 2.43 1.93 1.82 2.24
Ne 2.27 2.09 2.44 2.07 1.94 2.26
Ar 2.18 2.08 2.44 2.06 2.01 2.27
Kr 2.22 2.13 2.47 2.10 2.08 2.29
Xe 2.20 2.14 2.45 2.10 2.13 2.27
H 1.97 1.89 2.40 1.88 1.87 2.19
Li 2.41 2.36 2.49 2.29 2.34 2.33
Na 2.42 2.40 2.55 2.32 2.41 2.40
K 2.47 2.49 2.54 2.38 2.54 2.41
Rb 2.57 2.55 2.58 2.42 2.60 2.46
Cs 2.56 2.62 2.58 2.46 2.69 2.48
Ba 2.17 2.14 2.45 2.08 2.16 2.34
Mg 2.21 2.22 2.42 2.13 2.27 2.32
Ca 2.34 2.39 2.44 2.26 2.46 2.39
Sr 2.41 2.47 2.49 2.32 2.54 2.43
Ba 2.44 2.54 2.42 2.36 2.63 2.41

〈Al〉 2.19 2.08 2.45 2.05 2.00 2.27
σ 0.16 0.22 0.06 0.17 0.40 0.08

MARD 7.13 11.49 1.80 8.88 13.74 3.90

we found a good agreement between the proportion-
ality coefficients Aµω2 and Aµω2(q9q) with respect to the

ratio of the vdW radius over the quadrupole polariz-
ability; and between Aµω3 and Aµω3(o9o) with respect to

Rref
vdW/α

1/14
3,ref . For the noble gases, the mean values are

〈Aµω2(q9q)〉 = 2.08 a.u. and 〈Aµω3(o9o)〉 = 2.00 a.u. with

a deviation of 6.3% for the quadrupole-quadrupole in-
teraction and 8.7% for the octupole-octupole interac-
tion. In both cases, the mean values obtained form
the high multipole terms (quadrupole-quadrupole and
octupole-octupole) differ most from the “universal” val-
ues A2 = 2.45 a.u. and A3 = 2.27 a.u. with respect
to the ones obtained from dipole-quadupole and dipole-
octupole interactions. Moreover, the error for 〈Aµω3(o9o)〉
is bigger than the one of 〈Aµω2(q9q)〉. This means that, as

expected, the lower-order contributions in the multipole
expansion are more accurate with respect to the higher-
order terms.
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