
J. Chem. Phys. 154, 114105 (2021); https://doi.org/10.1063/5.0029536 154, 114105

© 2021 Author(s).

Quantum HF/DFT-embedding algorithms
for electronic structure calculations: Scaling
up to complex molecular systems
Cite as: J. Chem. Phys. 154, 114105 (2021); https://doi.org/10.1063/5.0029536
Submitted: 14 September 2020 . Accepted: 11 February 2021 . Published Online: 15 March 2021

 Max Rossmannek,  Panagiotis Kl. Barkoutsos,  Pauline J. Ollitrault, and  Ivano Tavernelli

ARTICLES YOU MAY BE INTERESTED IN

Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated
regime: Can quantum algorithms outperform their classical equivalents?
The Journal of Chemical Physics 152, 124107 (2020); https://doi.org/10.1063/1.5141835

Electronic structure software
The Journal of Chemical Physics 153, 070401 (2020); https://doi.org/10.1063/5.0023185

Classical molecular dynamics
The Journal of Chemical Physics 154, 100401 (2021); https://doi.org/10.1063/5.0045455

https://images.scitation.org/redirect.spark?MID=176720&plid=1401534&setID=378408&channelID=0&CID=496958&banID=520310234&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ed5dd4029e63a2f75704dfd96619305ac85f9c8d&location=
https://doi.org/10.1063/5.0029536
https://doi.org/10.1063/5.0029536
http://orcid.org/0000-0003-1725-9345
https://aip.scitation.org/author/Rossmannek%2C+Max
http://orcid.org/0000-0001-9428-913X
https://aip.scitation.org/author/Barkoutsos%2C+Panagiotis+Kl
http://orcid.org/0000-0003-1351-7546
https://aip.scitation.org/author/Ollitrault%2C+Pauline+J
http://orcid.org/0000-0001-5690-1981
https://aip.scitation.org/author/Tavernelli%2C+Ivano
https://doi.org/10.1063/5.0029536
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0029536
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0029536&domain=aip.scitation.org&date_stamp=2021-03-15
https://aip.scitation.org/doi/10.1063/1.5141835
https://aip.scitation.org/doi/10.1063/1.5141835
https://doi.org/10.1063/1.5141835
https://aip.scitation.org/doi/10.1063/5.0023185
https://doi.org/10.1063/5.0023185
https://aip.scitation.org/doi/10.1063/5.0045455
https://doi.org/10.1063/5.0045455


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Quantum HF/DFT-embedding algorithms
for electronic structure calculations:
Scaling up to complex molecular systems

Cite as: J. Chem. Phys. 154, 114105 (2021); doi: 10.1063/5.0029536
Submitted: 14 September 2020 • Accepted: 11 February 2021 •
Published Online: 15 March 2021

Max Rossmannek,1,2 Panagiotis Kl. Barkoutsos,1 Pauline J. Ollitrault,1,3 and Ivano Tavernelli1,a)

AFFILIATIONS
1 IBM Quantum, IBM Research – Zurich, 8803 Rüschlikon, Switzerland
2Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
3Laboratory of Physical Chemistry, ETH Zurich, 8093 Zürich, Switzerland

a)Author to whom correspondence should be addressed: ita@zurich.ibm.com

ABSTRACT
In the near future, material and drug design may be aided by quantum computer assisted simulations. These have the potential to target
chemical systems intractable by the most powerful classical computers. However, the resources offered by contemporary quantum com-
puters are still limited, restricting the simulations to very simple molecules. In order to rapidly scale up to more interesting molecular
systems, we propose the embedding of the quantum electronic structure calculation into a classically computed environment obtained at
the Hartree–Fock (HF) or density functional theory (DFT) level of theory. This result is achieved by constructing an effective Hamilto-
nian that incorporates a mean field potential describing the action of the inactive electrons on a selected Active Space (AS). The ground
state of the AS Hamiltonian is then determined by means of the variational quantum eigensolver algorithm. We show that with the pro-
posed HF and DFT embedding schemes, we can obtain significant energy corrections to the reference HF and DFT calculations for a
number of simple molecules in their strongly correlated limit (the dissociation regime) as well as for systems of the size of the oxirane
molecule.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0029536., s

I. INTRODUCTION

Quantum chemistry simulations allow for the prediction of
important chemical processes throughout, for instance, the elu-
cidation of reaction mechanisms by means of the calculation of
ground or excited state electronic structure properties.1 A variety
of research and industrial applications such as chemical catalysis,
material design, drug discovery, and photo-chemical processes for
solar energy conversion, just to name a few,2,3 could take advantage
of these methods. Since the development of the first computers, the
research on quantum chemistry has blossomed and a large variety
of algorithms have been developed aspiring to achieve more accu-
rate solutions of the Schrödinger equation. However, despite many
theoretical and algorithmic advances, the solutions of many inter-
esting and relevant problems in chemistry and physics remain out

of reach due to the inherent exponential scaling of the Hilbert space
associated with the electronic structure calculations. While several
approximate methods have been developed in the past to circum-
vent this issue, these often break down when considering strongly
correlated systems such as transition metal complexes4 and compli-
cated catalytic processes.5 In the past decades, quantum comput-
ing has emerged as a new potential computational paradigm for
the solution of many problems in chemistry and physics for which
classical algorithms have an unfavorable scaling. In particular, quan-
tum computing has been shown to be a useful resource in a vari-
ety of research areas such as chemistry,4,6 drug discovery,7 strongly
correlated systems,8,9 field theory,10,11 material science,12 and many
others.

Despite these recent advances and the possibility to execute
calculations on quantum devices (e.g., Ref. 13), the application of
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quantum algorithms is still in its infancy. In fact, most of the research
in chemistry relies on hybrid quantum–classical algorithms,14 which
use highly optimized classical (number crunching) functionalities
together with quantum algorithms for the representation and opti-
mization of the system wavefunction. The most well known quan-
tum chemistry algorithm that provides the means to leverage state-
of-the-art quantum hardware is the Variational Quantum Eigen-
solver (VQE).15

For the representation of the many-body wavefunction in
quantum circuits, some of the approaches derived in quantum
chemistry can be mapped directly to quantum algorithms. In par-
ticular, the Hartree–Fock (HF) method has proven to pose a use-
ful starting point for the mapping of electronic structure problems
in the qubit space using the so-called second quantization formal-
ism. Among the most commonly used post-HF expansions of the
many-electron wavefunction in quantum computing is the Coupled
Cluster (CC) Ansatz,16–18 which allows for a systematic and con-
trolled inclusion of higher order configurations starting from the
uncorrelated HF Slater determinant. Several quantum implemen-
tations of CC have already been introduced in the literature,15,19–25

including schemes for the optimization of the one-electron molecu-
lar basis functions.9,26 It should also be noted that, in the quantum
implementation of CC, the Trotterization leads to a dependence of
the results on the ordering of the cluster operators.25,27 In addition
to the classically inspired expansions, pure native quantum repre-
sentations of the many-electron wavefunctions that can be better
optimized for the available quantum hardware platforms have been
proposed.21,28,29 However, some of these wavefunction Ansätze can
exhibit vanishing small energy gradients, leading to difficulties in
the optimization process (i.e., Barren plateaus). To overcome this
problem, other CC techniques have been developed, which con-
struct the operators directly in the qubit representation.30,31 These
techniques generally result in significantly shorter circuit depths.
The combination of the VQE algorithm with the different wave-
function Ansätze showed already interesting results in the calcula-
tion of ground19,28,32–34 and excited state properties15,35–44 of simple
molecules (up to a few atoms). However, this protocol does not allow
us to scale to larger systems using the currently available classical
simulators of quantum circuits (limited to a maximum of about 50
qubits) or the available quantum computers (also limited to a few
tens of qubits). Therefore, in order to leverage the potential advan-
tage of the available quantum algorithm, we explore the possibility
of an embedding scheme in which only a portion of the full system is
represented by the high-level quantum computing approach, while
the rest is treated with an efficient but (necessarily) approximated
classical representation of the electronic structure, such as HF or
Density Functional Theory (DFT). This embedding approach is of
particular relevance when the complex, highly correlated, subsystem
can be localized in a well defined subspace of the complete set of
one-electron orbitals used to represent the many-electron wavefunc-
tion. In this case, an accurate description of the electronic structure
is obtained at lower cost in terms of the number of orbitals, namely,
O(N4

qc) for the quantum subsystem (where Nqc is the number of
orbitals encoded in the quantum circuit) and O(N2

env) to O(N3
env)

for the environment (where Nenv is the number of orbitals assigned
to the classical processor and Ntot = Nqc + Nenv); this is to be com-
pared with the O(N4

tot) scaling when no embedding is used and

the total set of orbitals (Ntot) is considered for the wavefunction
Ansatz.

In this work, we propose HF and DFT-based quantum embed-
ding schemes based on the well known notion of an Active Space
(AS),45,46 which defines the set of active orbitals described by the
quantum algorithm. To this end, we construct an effective Hamil-
tonian, which incorporates a mean field potential of the inactive
electrons and, thus, fully replaces the explicit mapping of the corre-
sponding orbitals in the quantum register. The quantum algorithm
is therefore restricted to a subset of active orbitals, which, however,
feel the presence of the environment through the action of the mean
field potential generated by the inactive electrons of the environ-
ment. Similar approaches of the HF embedding have been proposed
in the literature47,48 mainly based on Dynamical Mean Field The-
ory (DMFT)49 and Density Matrix Embedding Theory (DMET)50

for the high-level description of the subsystem. The latter aims at
a similar HF embedding scheme. However, while the focus of its
authors was on the development of a self-consistent HF embed-
ding approach,51 in this work, we only consider iterative embedding
within the framework of DFT. Concerning the DMFT approach,
this is based on Green’s function techniques and therefore it is not
particularly suited for the kind of molecular application of inter-
est to this work. Additionally, during the preparation of this paper,
another related approach appeared in the literature.52 In this case,
the authors propose a DFT embedding scheme similar to ours, which
however uses a different Ansatz to resolve the double counting prob-
lem of the correlation terms. Furthermore, they do not update the
embedding potential in a self-consistent manner as we do in this
work.

This paper is organized as follows: In Sec. II, we outline the the-
ory and the implementation of the proposed AS schemes for quan-
tum electronic structure calculations embedded in HF and DFT.
We split the derivation into two parts: one for the HF embedding
scheme and the other for the DFT embedding scheme. Section III
lists the technical details of our numerical methods. In Sec. IV, we
present and discuss results on the dissociation of simple molecular
systems, such as water, molecular nitrogen, molecular oxygen, and
oxirane obtained with both types of embedding schemes. Section V
summarizes and concludes.

II. THEORY
In this work, we propose two embedding schemes for quantum

electronic structure algorithms based on HF and Kohn–Sham (KS)
DFT Molecular Orbitals (MOs). The subsystem solved by means of
the quantum approach [such as quantum Unitary Coupled Cluster
Singles and Doubles (q-UCCSD)1,15,21] is embedded in the poten-
tial generated by the environment (i.e., the remaining electrons),
which is computed within the HF or DFT framework. Our solu-
tions are based on the Range-Separation (RS) technique for the
two-electron integrals,53 which allows for a rigorous partitioning of
the problem into a subsystem (i.e., the AS) and its environment.
If this partitioning is done wisely, we can achieve a good level of
accuracy for many properties of interest while significantly reduc-
ing the costs of the calculation. Furthermore, in the case of the DFT
embedding scheme (which is the main target of this work), we will
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extend the algorithm to include the self-consistent optimization of
the embedding potential, leading to more accurate energies and den-
sities. In the following, we will call active electrons the electrons that
are part of the AS, while the remaining ones will be referred to as
inactive.

A. Hartree–Fock embedding
In this section, we derive the so-called inactive Fock operator.

The goal of this operator is to embed the quantum computation into
a classically computed environment treated at the HF level of theory,
through the notion of an AS. While this method is not new and dif-
ferent variants of it have been implemented before in other software
packages,52,54,55 in the following, we summarize the key concepts that
are needed for its implementation within the framework of quantum
computing in QISKIT.56 This section also lays down the fundamentals
for the implementation of the DFT embedding scheme presented in
Sec. II B.

The benefit of this embedding scheme lies in outsourcing
the calculation of the inactive electrons to the classical HF driver,
while the quantum computation is restricted to the AS. In this
way, less qubit resources are necessary to investigate the electronic
energy of a molecular system, making the entire calculation much
more efficient while keeping a good level of accuracy. Figure 1
depicts the separation of the orbitals into the active and inactive
spaces.

The total electronic energy, E, is defined by the expectation
value of the system Hamiltonian, Ĥ,

E = ⟨Ψ∣Ĥ∣Ψ⟩ =∑
pq

hpqDpq +
1
2 ∑pqrs

gpqrsdpqrs, (1)

where Ψ is the wavefunction, hpq and gpqrs are the one- and two-
electron integrals, respectively, and D and d are the one- and two-
particle density matrices.

To achieve the implementation of the HF embedding, we split
the one-electron density into an active and inactive part, D = DA

+ DI . In the MO basis, the latter simplifies to DI
iq = 2δiq, where we

use Helgaker’s index notation46 in which i, j, k, l denote inactive, u,
v, x, y denote active, and p, q, r, s denote general MOs. As shown in
Appendix A 1, inserting this into Eq. (1) leads to

E = EI +∑
uv

FI
uvD

A
uv +

1
2 ∑uvxy

guvxydAuvxy, (2)

where we define the inactive Fock operator,

FI
pq = hpq +∑

i
(2giipq − giqpi), (3)

and the inactive energy,

EI
=∑

j
hjj + FI

jj =
1
2∑ij
(hij + FI

ij)D
I
ij. (4)

Comparing Eqs. (1) and (2), we observe the following differences.
In Eq. (2), the inactive Fock operator, FI , replaces the one-electron

FIG. 1. Separation of the MOs into active and inactive components. The active
orbitals (blue box) are mapped onto the qubit space and treated with the q-UCCSD
approach, while the inactive ones (orange box) are part of the HF/DFT embedding
and are evaluated classically. Effective Core Potentials (ECPs) can be used in
replacement of all inactive core electrons (white box) with the aim of reducing the
computational cost.

integrals, hpq; the active one- and two-electron density matrices,
DA and dA, replace D and d; and the constant energy offset, EI , is
added.

Therefore, the Hamiltonian that we evaluate on the quantum
computer (qc) takes the form

Ĥqc =∑
uv

FI
uv â

†
uâv + ∑

uvxy
guvxyâ†

uâ
†
v âxây, (5)

where â†
u and âu are the creation and annihilation Fermionic oper-

ators (later mapped to the qubit space using the parity transforma-
tion57). Note that all indices are restricted to the AS, significantly
reducing the required quantum resources.

The extension for the unrestricted formalism is obtained in a
similar manner and is outlined in Appendix A 2.

B. Density functional theory embedding
In order to extend the embedding to work with DFT, we need

to introduce a RS of the two-electron integrals, gpqrs.53 To this end,
we split the two-electron operator, ĝpq, into a Long-Range (LR) and
a Short-Range (SR) part,

ĝpq =
1

∣r̂p − r̂q∣
= ĝμ,LR

pq + ĝμ,SR
pq , (6)

where μ is the RS parameter of unit a.u.−1. This is necessary in
order to avoid a double counting of the correlation terms, which are
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present in both DFT and Wave Function Theory (WFT). Since DFT
is known to be accurate for SR interactions,53 we can use it to treat
the SR part, while the LR interactions are calculated with WFT.

Our derivation of the following equations follows that of
Hedegård et al.58 closely. Additionally, we provide our detailed
derivations in Appendix B.

With the RS of the two-electron integrals in place, we can split
the total electronic energy into two terms,

E = Eμ,LR
WFT + Eμ,SR

coul+xc,DFT. (7)

Note that Eq. (7) provides an adiabatic connection between the pure
DFT and the pure WFT solutions through the coupling parameter, μ.
However, in order to simplify the notation, we drop the superscript
μ since it is anyways implied by the separation into LR and SR.

Analogous to Sec. II A, we can introduce an AS in the WFT
part,

E = EI,LR
WFT + EA,LR

WFT + ESR
coul+xc,DFT. (8)

Note that the difference between Eqs. (2) and (8) is that WFT
only treats the LR part. Thus, the inactive Fock operator, defined in
Eq. (3), becomes

FI,LR
pq = hpq +∑

i
(2gLR

iipq − g
LR
iqpi). (9)

In order to properly combine the SR-DFT and LR-WFT calcu-
lations, we need to handle the non-linearity of ESR

coul+xc,DFT = E
SR
coul+xc

with respect to the electronic density, ρ,

ESR
coul+xc[ρ + Δρ] ≠ ESR

coul+xc[ρ] + ESR
coul+xc[Δρ], (10)

where Δρ is the correction to the density obtained from the WFT
calculation. However, a linear approximation can be obtained with
the following replacement:

ESR
coul+xc[ρ + Δρ] − ESR

coul+xc[ρ] ≈ ∫
δESR

coul+xc

δρ(r⃗)
[ρ]Δρ(r⃗)dr⃗. (11)

The right-hand side of Eq. (11) can then be expressed in terms of the
Coulomb integrals,

jSR
pq = ⟨ϕp∣

δESR
coul

δρ(r⃗)
[ρ]∣ϕq⟩ =∑

rs
gSR
pqrsDrs, (12a)

and the exchange integrals,

νSR
xc,pq = ⟨ϕp∣

δESR
xc

δρ(r⃗)
[ρ]∣ϕq⟩ = νSR

xc,pq[ρ], (12b)

as

∫

δESR
coul+xc

δρ(r⃗)
[ρ]Δρ(r⃗)dr⃗ =∑

pq
(jSR

pq + νSR
xc,pq)ΔDpq. (13)

Because of the non-linearity of Eq. (12b), the density needs to be
updated in an iterative, self-consistent manner. Therefore, we define
the density and the density matrix at the iteration step i as

ρ(i+1)
= ρ(i) + Δρ(i), (14a)

D(i+1)
pq = D(i)pq + ΔD(i)pq . (14b)

This leads to the final form of the total electronic energy,

E =
1
2∑ij
(hij + FI,LR

ij )D
I
ij

+ ESR
xc [ρ

(i)
] +

1
2∑ij

jI,SR
ij DI

ij

−∑

uv
[(

1
2
jA,(i),SR
uv + νSR

xc,uv[ρ
(i)
])DA,(i)

uv

− (FI,LR
uv + jI,SR

uv + jA,(i),SR
uv + νSR

xc,uv[ρ
(i)
])DA,(i+1)

uv ]

+
1
2 ∑uvxy

gLR
uvxyd

A,(i+1)
uvxy , (15)

FIG. 2. Illustration of the DFT embedding scheme. During initialization (0), a DFT
calculation of the full system is performed using a classical code, providing the
initial density, ρ(0), and the one- and two-electron integrals, hpq and gpqrs. The den-
sity is then split into inactive, I, and active parts, A; and the two-electron integrals
are separated into long-range, LR, and short-range, SR, components. In step (1),
the inactive SR energy contribution is calculated at the DFT level of theory. The
resulting “active” density component (a) is used in step (2) to initialize the VQE
optimization. This returns the active LR energy contribution and the updated elec-
tronic density, which is used as a new input for the DFT calculation, (b). Steps (1)
and (2) are repeated until convergence.
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where we have ordered the terms such that the top line contains all
contributions, which remain constant for the duration of the whole
iterative procedure, the second and third lines correspond to the SR-
DFT, and the remaining lines correspond to the LR-WFT energy
terms, respectively.

Figure 2 summarizes the implementation of this DFT embed-
ding scheme. The initialization step includes all the pre-calculations
and the computation of the constant inactive LR energy contribution
[first line of Eq. (15)]. The resulting energy terms of steps (1) and
(2) in Fig. 2 correspond to lines two and three, and four and five of
Eq. (15), respectively. These two calculations iterate, upon exchang-
ing the active electronic density, ρA, until the total electronic energy
reaches convergence.

III. NUMERICAL METHODS
The HF and DFT embedding schemes have been implemented

in the development version 0.8 of QISKIT Aqua Chemistry. The source
code will be made available in the Github repository.59 For the clas-
sical computing backend, we choose PySCF60 since it allows quick
prototyping within Python, the same programming language used
for QISKIT.

All the results presented hereafter are obtained by means of
diagonalizing the Hamiltonian with the NumPyEigensolver algo-
rithm, as implemented in QISKIT. In the case of the non-iterative
HF embedding scheme, we also run VQE simulations with the
statevector backend.59 This backend implements an exact, i.e.,
noiseless, simulation of the quantum circuit and, thus, is expected
to converge to the same result as the NumPyEigensolver approach
when a suitable wavefunction Ansatz is chosen.

A. Hartree–Fock embedding
In all simulations using the HF embedding, we use the parity

fermion-to-qubit mapping57 and the q-UCCSD Ansatz21 for the rep-
resentation of the electronic wavefunction. In QISKIT, the q-UCCSD
Ansatz is implemented in a well-defined manner whose details are
outlined in Ref. 21 and Appendix C. Furthermore, qubits are tapered
off61 in order to maximally reduce the computational costs. The clas-
sical optimizer L-BFGS-B62 is used for the optimization of the VQE
parameters.

B. Density functional theory embedding
In all DFT embedding applications, we use the RS-XCF (Range-

Separated Exchange-Correlation Functional) ldaerf scheme,63,64 as
implemented in the xcfun library65 for the separation of the LDA
(Local Density Approximation) functional into its short and long
range components (see Sec. II B). This approach achieves the split-
ting of the two-electron integrals by means of the error function,
which is a common approach in RS-DFT.53,66,67 The use of the LDA
functional is solely motivated by the current technical limitations
of the PySCF code. Future extensions to allow the use of arbitrary
DFT functionals are under investigation. Nonetheless, the proposed
scheme is fully independent from the nature of the selected func-
tional and all applications presented in the following should be con-
sidered as proof-of-principle demonstrations extendable to any type
of DFT functional.

In all applications, we selected the STO-3G basis set, which
enabled the calculation of the exact reference curves with full
CI (FCI). Furthermore, the optimal value of the range-separation
parameter, μ, was selected case-by-case by scanning the interval
0.01–500 and finally picking the value that gives the lowest energy
(see the supplementary material for more details).

IV. RESULTS AND DISCUSSION
In this section, we present results on the dissociation of simple

molecular systems of increasing size, namely, molecular nitrogen,
molecular oxygen, water, and oxirane using the proposed HF and
DFT embedding schemes (see Secs. II A and II B, respectively).
To enable the comparison with exact results obtained with FCI,
we limited our calculations to the relatively small basis set STO-
3G. The results obtained with both embedding schemes are com-
pared with standard HF and DFT calculations as well as with other
commonly used, correlated, post-HF solutions such as Coupled
Cluster Singles and Doubles (CCSD) and Complete Active Space
Self-Consistent Field (CASSCF). In particular, we demonstrate that
even within the embedding approximation, the quantum CC algo-
rithm can solve some pathologies of classical CCSD in the strongly
correlated regime, such as the dissociation of N2 and O2. Finally,
with the study of oxirane, we show how the proposed embedding
schemes can extend the use of quantum algorithms to molecular
sizes that would exceed the capabilities of state-of-the-art quantum
computers.

A. A benchmark system: Water

We start with the investigation of the AS of water, analyzing
the dependence of the energy on the number of molecular orbitals
and electrons included in the quantum description. Standard post-
HF methods such as Complete Active Space Configuration Interac-
tion (CASCI) and CASSCF as implemented in PySCF60 are used to
benchmark the HF embedding scheme. A study on the effect of the
size of the basis set from STO-3G68 to 6-31G∗69 and cc-pVTZ70 is
given in the supplementary material (Figs. S1 and S2). In the fol-
lowing, we restrict our calculations to the STO-3G basis. Finally,
we apply both HF and DFT embedding approaches to the study of
the symmetric double-proton dissociation, focusing our attention
on the dissociation limit, where strong correlation effects become
important.

1. General properties of active-space embedding
techniques

Figure 3 summarizes the main results obtained for water in the
STO-3G basis. In general, the ground state energies obtained with
HF embedding (blue triangles in Fig. 3) are in qualitatively good
agreement with the classical CASCI results60 (orange crosses). The
CASSCF60 energy values (green circles) are consistently lower (or
equal) than the CASCI ones since the former also includes the opti-
mization of the orbital coefficients, which are kept fixed in CASCI.
More interestingly, all statevector-based VQE calculations using the
q-UCCSD Ansatz (brown pentagons in Fig. 3) also converge to the
exact solutions.
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FIG. 3. Electronic structure energies (in Hartree) of a water molecule obtained with
the HF embedding scheme for different choices of the AS, which are reported in
the upper panel. We report absolute (right axis) and relative energies with respect
to HF (left axis). The coloring follows the same scheme used in Figs. 1 and 2:
orange for the inactive HF orbitals that define the embedding, blue for the orbitals
belonging to the AS, and black for the remaining virtual ones. The classical HF
reference (black, solid) is obtained with RHF in the STO-3G basis. As a reference,
we also show the results obtained with FCI, CASCI, and CASSCF.

It is worth mentioning that the choice of the AS has a strong,
and not always predictable, effect on the outcome. In particular, it
is hard to predict a priori the optimal AS that maximizes the per-
formance of the embedding calculation.71,72 In the absence of a sys-
tematic procedure, we can explore all possible AS configurations,
as shown in Fig. 3, for the case of water in the STO-3G basis set.
However, this procedure is only possible for relatively small sys-
tems, while it becomes impractical in the most general cases (see,
for instance, the additional results in the supplementary material,
Figs. S3–S5), leading to a large degree of uncertainty in the appli-
cation of the embedding approach. On the other hand, recently, we
witnessed the development of new numerical techniques, which aim
at automatizing the selection of the optimal AS in molecular sys-
tems.33,72–75 The combination of these approaches with our embed-
ding scheme goes however beyond the scope of this work and will
become the subject of future investigations.

2. The double-dissociation of water
In this section, we present the symmetric dissociation profile of

a water molecule at fixed H–O–H angle of α = 105.4○ in the STO-
3G basis set using different approaches. For the DFT embedding
scheme outlined in Sec. III B, we swept over the range-separation
parameter, μ, and found the optimal value for this system to be μopt
= 7.0. These results are reported in Fig. S6 of the supplementary
material together with a sketch of the KS-MOs (see Fig. S10).

FIG. 4. Energy diagram of the KS-MOs of H2O in the STO-3G basis. The solid
lines correspond to occupied MOs, while the dotted lines represent virtual ones.

Figure 4 depicts these orbitals in an energy diagram. Note that we do
not display properly the HF-MOs, but their difference to the shown
KS-MOs is minor.

Figure 5 depicts the dissociation curves from d = 0.5 Å up to
d = 2.0 Å, as computed by the proposed DFT- and HF embedding
schemes for a selection of ASs. As a comparison, we also show the
corresponding profiles computed with CCSD and FCI (computed
with PySCF). In general, increasingly larger ASs provide results
in closer agreement with the exact solution, as given by FCI even
though, as mentioned in Subsection IV A 1, the optimal choice of
AS cannot be determined a priori.71,72 This becomes more evident
looking at the lower panels of Fig. 5 where we plot the energy dif-
ferences with respect to the exact value. In addition, note that the
DFT embedding scheme is not variational in contrast to HF-based
embedding methods.

FIG. 5. (Upper panels) Symmetric dissociation profiles of a water molecule at a
fixed H–O–H angle (α = 105.4○) in the STO-3G basis set. The left panel reports the
energies obtained with the DFT embedding scheme at μ = 7.0, while the right panel
shows the same curves obtained with the HF embedding scheme, respectively.
The size of the ASs is reported in the legend with the format: (number of electrons,
number of orbitals). The HF (gray, dotted), DFT (gray, dashed-dotted) (LDA/VWN
XCF), CCSD (blue, dashed), and FCI (red, solid) references were computed with
PySCF. (Lower panels) Energy differences with respect to the exact FCI reference.
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Table I reports dissociation energies and non-parallelity errors
(NPEs) for the different methods. The NPE is defined as the dif-
ference between the maximum and minimum error over the entire
energy profile evaluated with respect to the exact calculation.76 For
brevity, we only report a selection of ASs, while the complete set of
calculations can be found in Table S1 of the supplementary mate-
rial. While all HF embedding calculations lead to better dissocia-
tion energies than standard HF (ΔEHF = 559.7 mHa), DFT embed-
ding with CAS(2, 3) and CAS(4, 4) performs worse than standard
DFT (ΔEDFT = 361.7 mHa). With the exclusion of these last two
cases, we observe a systematic and significant improvement of all
results as the size of the AS increases. In particular, the HF embed-
ding can provide nearly exact results (ΔEFCI = 247.1 mHa) with
CAS(8, 6) and CAS(10, 7), which is not a surprise as the latter cor-
responds to the FCI calculation. On the other hand, we observe
that the DFT embedding cannot reach the same accuracy even with
the larger AS. This is due to the nature of the LDA-DFT-orbitals,
which, by definition, cannot reproduce the FCI result based on
HF orbitals. However, in the case of large molecular systems with
hundreds of electrons, the DFT embedding will become the only
viable option for a correct description of a molecular embedding
potential.

Additional insights on the accuracy of the different embedding
schemes can also be gained from the analysis of the NPE results.
The values that show an improvement compared to the standard
HF and DFT calculations are highlighted in bold. In agreement
with the observations based on the dissociation energies and on the
profiles shown in Fig. 5, we observe a systematic improvement of
the quality of the results by increasing the AS [from CAS(6, 5) to
CAS(10, 7)]. Even though the above results were obtained with μ
values selected through energy minimization, other techniques exist
for this purpose,67 which could lead to a further improvement of our
results.

It is worth mentioning that this behavior cannot be general-
ized to all situations. In fact, as it will also become evident for the
other systems, increasing the number of electrons while keeping the
number of orbitals constant implies a reduction of the number of
virtual orbitals available for the excitations. In addition, the order-
ing of the molecular orbitals may change upon stretching, shifting
in and out new orbitals from the selected AS, and leading to sud-
den changes in the energy profiles. Once more, we observe that the

TABLE I. Dissociation energies, ΔE, and NPE values for the symmetric double-
stretch of water. ΔE are computed as the difference between the energies at equilib-
rium, d = 0.948 Å, and at d = 2.0 Å. The NPE values are given within parentheses.
The results for HF, DFT, FCI, and CCSD are ΔEHF = 559.7 (347.3) mHa, ΔEDFT
= 361.7 (122.8) mHa, ΔEFCI = 247.1 (0.0) mHa, and ΔECCSD = 236.0 (12.0) mHa,
respectively. Situations that show an improvement of the NPE compared to standard
HF and DFT are highlighted in bold.

CAS μ = 7.0 (NPE) HF-Emb. (NPE) CASSCF (NPE)

(2, 3) 557.0 (347.2) 452.5 (239.7) 368.6 (165.0)
(4, 4) 393.4 (181.1) 210.5 (118.3) 244.0 (117.4)
(6, 5) 239.6 (20.3) 235.5 (11.6) 245.0 (2.1)
(8, 6) 253.7 (11.7) 247.1 (0.1) 247.1 (0.1)
(10, 7) 254.1 (12.2) 247.1 (0.0) 247.1 (0.0)

HF embedding in general produces better estimates than the DFT
embedding due to the fact that we use HF orbitals for the refer-
ence FCI calculation. In addition, in general, the HF embedding
improves upon the initial HF-estimate more than the DFT embed-
ding does. Finally, the quality of the CASSCF results suggests that
future extensions to incorporate an iterative optimization of the
orbitals could yield further improvements, especially in the case of
small ASs.

B. The dissociation of molecular nitrogen
and oxygen

As a second example, we investigate the dissociation of molec-
ular nitrogen and oxygen, which show strong correlation character
at large distances. In fact, it is well known in the literature that for
both systems CCSD fails to produce the correct dissociation profile
(cf. Ref. 9 and the references therein).

For the determination of the range-separation parameter μ,
we follow the procedure outlined in Sec. III B. The optimal val-
ues were found to be μopt[N2] = 7.0 and μopt[O2] = 8.0, respec-
tively (see Figs. S7 and S8 of the supplementary material). A sketch
of the KS molecular orbitals is also given in the supplementary
material (Figs. S11 and S12). Figures 6 and 7 depict energy dia-
grams for the KS-MOs of nitrogen and oxygen, respectively, and
provide a useful indication of the relative energies of the orbitals
involved in our choices of AS. In Figs. 8 and 9, we report the dis-
sociation profiles between d = 1.0 Å and d = 3.0 Å computed with
the different AS sizes together with the standard HF, DFT, and
CCSD results and the reference FCI calculation. In the case of N2,
the curve produced with CCSD is qualitatively wrong, showing an
unphysical drop in energy as the distance increases beyond about
d = 2 Å. This result is in agreement with the results reported in
Ref. 9. The CCSD situation of O2 is slightly better, even though the
deviation from the exact FCI curve is sizable along the entire disso-
ciation profile. Concerning the standard HF and DFT calculations,
we also observe large discrepancies compared to the exact curve in
both systems, with the first one showing large overestimation of the
dissociation energies due to the complete neglect of the correlation
energy.

FIG. 6. Energy diagram of the KS-MOs of N2 in the STO-3G basis. The solid lines
correspond to occupied MOs, while the dotted lines represent virtual ones. In red
are the orbitals involved in at least one of the ASs considered.
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FIG. 7. Energy diagram of the KS-α-SOs of O2 in the STO-3G basis. The solid
lines correspond to energy levels for which both α and β SO are occupied, the
dashed lines are singly occupied, and the dotted lines represent virtual orbitals. In
red are the orbitals involved in at least one of the ASs considered.

As for the case of water, increasing the size of the AS in the HF
embedding scheme, we observe a gradual increase in the accuracy of
the calculations, reaching for the larger AS [CAS(6, 6) and CAS(8,
7) in the case of N2 and CAS(8, 6) and CAS(10, 7) in the case of O2]
results within a few mHa from the reference curve. We also observe
for O2 some discontinuities in the dissociation profiles at about d = 2
Å in both CAS(2, 3) and CAS(4, 4) calculations. This effect is due to
a swap in the ordering of the KS orbitals induced by the stretching of
the bond, which causes an abrupt change in the composition of the
AS. This has a particular impact on the energy in the case of small
AS composed of only a few KS orbitals around the Fermi level.

FIG. 8. (Upper panels) Dissociation profiles of a nitrogen molecule in the STO-3G
basis set. The left panel reports the energies obtained with the DFT embedding
scheme at μ = 7.0, while the right panel shows the same curves obtained with the
HF embedding scheme, respectively. The size of the ASs is reported in the legend
with the format: (number of electrons, number of orbitals). The HF (gray, dotted),
DFT (gray, dashed-dotted) (LDA/VWN XCF), CCSD (blue, dashed), and FCI (red,
solid) references were computed with PySCF. (Lower panels) Energy differences
with respect to the exact FCI reference.

FIG. 9. (Upper panels) Dissociation profiles of an oxygen molecule in the STO-3G
basis set. The left panel reports the energies obtained with the DFT embedding
scheme at μ = 8.0, while the right panel shows the same curves obtained with the
HF embedding scheme, respectively. The size of the ASs is reported in the legend
with the format: (number of electrons, number of orbitals). The HF (gray, dotted),
DFT (gray, dashed-dotted) (LDA/VWN XCF), CCSD (blue, dashed), and FCI (red,
solid) references were computed with PySCF. (Lower panels) Energy differences
with respect to the exact FCI reference.

In Tables II and III, we summarize the results of the N2 and
O2 calculations reporting the values of the dissociation energies
and NPEs for the different AS sizes, together with the CASSCF
results. These results confirm our previous observations, which
point toward a systematic increase in the quality of the results with
the increase in the AS size. However, we need to stress once more
that due to the small size of the basis set, the different number of vir-
tual orbitals in CAS(n, m) when the number of electrons n increases
at fixed value of m, and the issue with the orbital crossing men-
tioned above, we cannot always expect a monotonic decrease in the
error as a function of parameters n and m. As already mentioned
above, in many cases, a careful analysis of the orbitals included in the
AS and their occupancy is required in order to achieve the desired
accuracy.

TABLE II. Dissociation energies, ΔE, and NPE values for the dissociation of the
nitrogen molecule. ΔE are computed as the difference between the energies at equi-
librium, d = 1.078 Å, and at d = 3.0 Å. The NPE values are given within parentheses.
The results for HF, DFT, FCI, and CCSD are ΔEHF = 1009.0 (828.9) mHa, ΔEDFT =
542.5 (342.3) mHa, ΔEFCI = 201.4 (0.0) mHa, and ΔECCSD = −10.2 (221.8) mHa,
respectively. Situations that show an improvement of ΔE and the NPE compared to
standard HF and DFT are highlighted in bold.

CAS μ = 7.0 (NPE) HF-Emb. (NPE) CASSCF (NPE)

(2, 4) 597.8 (417.8) 597.4 (416.5) 597.4 (416.9)
(4, 5) 431.8 (243.4) 432.8 (249.7) 441.9 (250.9)
(6, 6) 180.8 (66.6) 172.5 (29.0) 186.7 (15.4)
(8, 7) 189.7 (16.4) 180.4 (21.1) 194.6 (6.8)
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TABLE III. Dissociation energies, ΔE, and NPE values for the dissociation of the
oxygen molecule. ΔE are computed as the difference between the energies at equi-
librium, d = 1.218 Å, and at d = 3.0 Å. The NPE values are given within parentheses.
The results for HF, DFT, FCI, and CCSD are ΔEHF = 687.9 (598.5) mHa, ΔEDFT =
340.6 (202.8) mHa, ΔEFCI = 138.3 (0.0) mHa, and ΔECCSD = 384.8 (248.2) mHa,
respectively. Situations that show an improvement of ΔE and the NPE compared to
standard HF and DFT are highlighted in bold.

CAS μ = 8.0 (NPE) HF-Emb. (NPE) CASSCF (NPE)

(2, 3) 367.3 (338.0) 687.9 (598.5) 687.9 (598.5)
(4, 4) 93.1 (147.7) 365.5 (260.7) 54.8 (274.0)
(6, 5) 135.2 (50.4) 138.9 (37.1) 143.5 (41.0)
(8, 6) 119.7 (18.6) 120.5 (17.9) 133.6 (4.8)
(10, 7) 124.8 (13.6) 125.3 (14.2) 136.8 (1.6)

C. The dissociation of oxirane
As a final example, we consider the oxirane molecule, C2H4O, a

system that is not possible to simulate with a brute force all-electron
calculation with state-of-the-art quantum computers. In fact, the
number of qubits and the required circuit depth for the representa-
tion of the system wavefunction would by far exceed the possibility
of current hardware. On the other hand, we can show that by using
DFT embedding with a suitable choice of the active space, we can
achieve a sizable improvement of the energetics associated with the
cleavage of the C–C bond in oxirane compared to standard DFT.
Once more, due to the current limitation of our embedding schemes
and the requirements for the calculation of the FCI reference, we
limit the DFT calculation to the LDA functional and the basis set
to STO-3G. The KS-MOs obtained under these conditions are pre-
sented in Fig. S13 of the supplementary material, and as previously
encountered, Fig. 10 illustrates an energy diagram of this system.

Figure 11 depicts the dissociation profiles of oxirane between
d = 1.0 Å and d = 3.0 Å for a selection of ASs. For the DFT embed-
ding scheme, the analysis performed in the supplementary material
(see Fig. S9) suggests an optimal range-separation parameter of μopt
= 6.0. The overall behavior is similar to the one observed for the pre-
vious systems, suggesting that the scheme can be safely extended to

FIG. 10. Energy diagram of the KS-MOs of oxirane in the STO-3G basis. The solid
lines correspond to occupied MOs, while the dotted lines represent virtual ones. In
red are the orbitals involved in at least one of the ASs considered.

FIG. 11. (Upper panels) Dissociation profiles of an oxirane molecule in the STO-
3G basis set. The left panel reports the energies obtained with the DFT embedding
scheme at μ = 6.0, while the right panel shows the same curves obtained with the
HF embedding scheme, respectively. The size of the ASs is reported in the legend
with the format: (number of electrons, number of orbitals). The HF (gray, dotted),
DFT (gray, dashed-dotted) (LDA/VWN XCF), CCSD (blue, dashed), and FCI (red,
solid) references were computed with PySCF. The DFT reference line has been
shifted by −0.3Ha to improve the scaling of the figure. (Lower panels) Energy
differences with respect to the exact FCI reference.

larger systems. However, we expect that in order to achieve chem-
ically accurate results, the use of better DFT functionals (beyond
the simple LDA used here) for the description of the embedding
potential will become of increasing importance. In addition, in this
case, the accuracy of the dissociation profile increases smoothly with
the size of the AS. Similarly, as for O2, we also notice discontinu-
ities between d = 2.75 Å and d = 3.0 Å for the DFT embedding
CAS(2, 6) and the HF embedding CAS(6, 6) calculations due to the
crossing of molecular orbital levels and the consequent changes in
the composition of the AS.

Table IV summarizes the dissociation energies and NPEs for
the profiles reported in Fig. 11. The values highlighted in bold cor-
responds to the best results achievable with the current implementa-
tion of the embedding schemes. As expected, due to the dimension

TABLE IV. Dissociation energies, ΔE, and NPE values for the dissociation of the
oxirane molecule. ΔE are computed as the difference between the energies at equi-
librium, d = 1.482 Å, and at d = 3.0 Å. The NPE values are given within parentheses.
The results for HF, DFT, FCI, and CCSD are ΔEHF = 562.0 (308.8) mHa, ΔEDFT =
343.9 (97.9) mHa, ΔEFCI = 268.9 (0.0) mHa, and ΔECCSD = 267.4 (5.4) mHa, respec-
tively. Situations that show an improvement of ΔE and the NPE compared to standard
HF and DFT are highlighted in bold.

CAS μ = 6.0 (NPE) HF-Emb. (NPE) CASSCF (NPE)

(2, 6) 343.1 (256.8) 352.9 (99.8) 345.9 (92.8)
(4, 6) 351.3 (97.8) 318.3 (82.8) 238.7 (112.5)
(6, 6) 328.9 (75.5) 229.1 (93.0) 233.8 (35.1)
(8, 6) 316.2 (61.8) 330.1 (64.6) 263.2 (83.3)
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of the system (with 18 valence electrons) and the size of the larger
active space [CAS(8, 6)], we cannot expect to achieve results com-
parable with FCI for both embedding schemes. However, we notice
a sizable improvement of the HF embedding dissociation energies
[from the HF value of 562.0 mHa to 229.1 mHa in CAS(6, 6)] and a
smaller, but still significant, correction of about 60% in the DFT case.
Further studies with more accurate DFT functionals will be needed
to assess the potential of the DFT embedding in more complex
systems.

V. CONCLUSIONS
In this work, we introduced an embedding scheme that enables

the partitioning of electronic structure calculations into an Active
Space (AS) subsystem treated with a high level quantum algorithm
and an environment described at the HF or DFT level of theory.
In this way, we can restrict the quantum calculations to a critical
subset of molecular orbitals that can fit on state-of-the-art quan-
tum computers, while the remaining electrons provide the embed-
ding potential computed using a classical algorithm. Since for most
chemical processes the quality of the electronic structure predictions
depends on a small set of frontier orbitals, this scheme will allow
the solution of interesting quantum chemistry problems where the
AS can be described with a quantum algorithm presenting a favor-
able scaling in the number of active electrons. We demonstrate the
performance of the embedding schemes in the case of the dissoci-
ation of a few test molecular systems, namely, molecular nitrogen,
molecular oxygen, water, and oxirane, highlighting the benefits of
the recursive update of the embedding potential to enhance the
convergence of the ground state calculations. The improvements in
accuracy obtained in the strongly correlated bond-breaking regime
are significant in all tested systems and for both embedding schemes,
demonstrating the potential of this approach. It is important to
mention that the use of the iterative range-separated DFT embed-
ding requires the tuning of an extra parameter, which cannot be set
a priori. Further investigation is needed to automatize this technique
for general use in larger molecular systems. Of particular relevance
are the results obtained for oxirane, which demonstrate the appli-
cability of the proposed quantum embedding scheme to complex
organic molecules.

Improvements of the proposed embedding scheme can be
obtained through the combination of the iterative update of the
embedding potential with the simultaneous optimization of the
active orbitals, as done, for instance, in the multiconfigurational
self-consistent field (MCSCF) approach. We believe that the pro-
posed HF and DFT embedding schemes will provide a fundamen-
tal framework for the scaling up of quantum electronic structure
calculations to large molecular systems with an arbitrary number
of electrons (i.e., as many as HF or DFT calculations can deal
with).

The possibility of partitioning the solution of the electronic
structure problem into an active component (defined by the AS)
treated by means of a quantum computing algorithm and an inert
environment component solved at the HF or DFT level of theory (as
presented here and in other previous studies) will make it possible
to use quantum computers in the solution of important problems in
physics, chemistry, biology, and medicine.

SUPPLEMENTARY MATERIAL

The supplementary material reports on additional HF-
embedding calculations obtained for larger basis sets as well as
additional results obtained with different choices of the AS. Also
provided are detailed plots for the selection of the range-separation
parameters μ employed in our calculations and sketches of the MOs
for all investigated systems, as well as, the atomic coordinates used
in the calculations.

ACKNOWLEDGMENTS
The authors thank Valery Weber and Jürg Hutter for useful

discussions as well as Manfred Sigrist who advised M.R. during a
significant part of this work.

I.T., P.J.O., and M.R. acknowledge financial support from
the Swiss National Science Foundation (SNF) through Grant No.
200021-179312.

APPENDIX A: HARTREE–FOCK EMBEDDING
In this section, we provide more detailed derivations of the HF

embedding. First, we derive the restricted spin case and generalize
the equations for unrestricted spins in the second part of this section.

1. Restricted spins
We introduce the splitting of the one-electron density matrix,

D = DA + DI , into Eq. (1), one term at a time. The simplest case is
the one of the one-electron contribution, which becomes

∑

pq
hpqDpq =∑

vq
hvqDA

vq +∑
jq
hjqDI

jq

=∑

uv
huvDA

uv + 2∑
j
hjj, (A1)

where we use the fact that a density matrix element vanishes when
any of its indices correspond to a virtual orbital. We can proceed
analogously with the two-electron terms as in

1
2 ∑pqrs

gpqrsdpqrs =
1
2∑pqjs

gpqjsdpqjs +
1
2∑jqus

gjqusdjqus +
1
2 ∑vqus

gvqusdvqus.

(A2)

We can now express the two-electron density matrices in terms of
one-electron ones,

dpqjs = DpqDjs − δqjDps

= 2δjsDpq − δqjδsqDpq

= (2δjs − δqjδsq)Dpq (A3a)

and

djqus = dusjq = DusDjq − δsjDuq

= 2δjqDus − δsjDuq

= 2δqjδsqDuq − δsjDuq

= (2δqjδsq − δsj)Duq, (A3b)
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where we omit the superscripts I and A for brevity. These expres-
sions can then be inserted into Eq. (A2) to obtain

1
2 ∑pqrs

gpqrsdpqrs =∑
pqj

gpqjjDpq −
1
2∑pqj

gpjjqDpq +∑
jqu

gjjuqDA
uq

−
1
2∑jqu

gjqujDA
uq +

1
2 ∑uvxy

guvxydAuvxy. (A4)

Upon inspection, it becomes clear that the first two sums only yield
non-zero contributions when p = q = k or when p = u and q = v. In the
latter case, this causes the sums to coincide with the third and fourth
terms. These observations allow us to simplify Eq. (A4) to become

1
2 ∑pqrs

gpqrsdpqrs = 2∑
kj
(gkkjj −

1
2
gkjjk) + 2∑

jvu
(gjjuv −

1
2
gjvuj)DA

uv

+
1
2 ∑uvxy

guvxydAuvxy. (A5)

Finally, we can substitute Eqs. (A1) and (A5) into Eq. (1), yielding

E =∑
j
[2hjj +∑

k
(2gkkjj − gkjjk)] +∑

uv

⎡
⎢
⎢
⎢
⎢
⎣

huv +∑
j
(2gjjuv − gjvuj)

⎤
⎥
⎥
⎥
⎥
⎦

DA
uv

+
1
2 ∑uvxy

guvxydAuvxy. (A6)

This equation simplifies to Eq. (2) with the use of the inactive Fock
operator, Eq. (3), and the inactive energy, Eq. (4).

2. Unrestricted spins
For unrestricted spins, we have to remove the implicit sum-

mation over the spin state, σ, and calculate with the one- and
two-electron density matrices for each spin separately,

Dσ
pq = ⟨Ψ∣Ê

σ
pq∣Ψ⟩ ∀σ ∈ {α,β}, (A7a)

dστpqrs = ⟨Ψ∣ê
στ
pqrs∣Ψ⟩ ∀σ, τ ∈ {α,β}, (A7b)

Êσ
pq = â

†
pσ âqσ ∀σ ∈ {α,β}, (A7c)

êστpqrs = {
Êσ
pqÊσ

rs − δqrÊσ
ps, σ = τ

Êσ
pqÊτ

rs, σ ≠ τ
∀σ, τ ∈ {α,β}.

(A7d)

Thus, in contrast to the closed shell description with restricted spins
in Appendix A 1, we now have to keep track of the spin state where
each index iterates over. This is indicated by the additional super-
scripts, σ and τ, and summation labels, nσ and nτ . For brevity, we
refrain from explicitly denoting that σ, τ ∈ {α, β} for the remainder
of this derivation.

Analogous to Eq. (A1), the one-electron contribution can be
written per spin state as

nσ
∑

pq
hpqDσ

pq =
nσ
∑

uv
huvDA,σ

uv +
nσ
∑

j
hjj. (A8)

For the two-electron contributions, we have to differentiate between
two cases. In the first case, the spins of both electrons are aligned,
σ = τ, and the resulting equation can be derived in full analogy to
Eq. (A5),

1
2

nσ
∑

pq

nσ
∑

rs
gpqrsdσσpqrs =

1
2

nσ
∑

k

nσ
∑

j
(gkkjj − gkjjk) +

nσ
∑

j

nσ
∑

uv
(gjjuv − gjvuj)DA,σ

uv

+
1
2

nσ
∑

uv

nσ
∑

xy
guvxydA,σσ

uvxy . (A9)

The second case of opposite spins, σ ≠ τ, behaves slightly differ-
ent due to the differing two-electron excitation operator, Eq. (A7d).
Thus, the expression of the two-electron density matrices in terms
of one-electron ones analogous to Eq. (A1) becomes

dστpqjs = D
σ
pqD

τ
js = δjsD

σ
pq (A10a)

and
dστjqus = D

σ
jqD

τ
us = δjqD

τ
us, (A10b)

which leads to the first expression of the two-electron contribution
of opposite spins,

1
2

nσ
∑

pq

nτ
∑

rs
gpqrsdστpqrs =

1
2

nσ
∑

pq

nτ
∑

j
gpqjjDσ

pq +
1
2

nσ
∑

j

nτ
∑

us
gjjusDA,τ

us

+
1
2

nσ
∑

vq

nτ
∑

us
gvqusdA,στ

vqus . (A11)

Using the same arguments as before, we can once again simplify this
equation to become

1
2

nσ
∑

pq

nτ
∑

rs
gpqrsdστpqrs =

1
2

nσ
∑

k

nτ
∑

j
gkkjj +

1
2

nσ
∑

uv

nτ
∑

j
guvjjDA,σ

uv

+
1
2

nσ
∑

j

nτ
∑

uv
gjjuvDA,τ

uv +
1
2

nσ
∑

uv

nτ
∑

xy
guvxydA,στ

uvxy. (A12)

Finally, we can obtain the two-electron contributions for unre-
stricted spins by combining Eqs. (A9) and (A12) into

1
2 ∑pqrs

gpqrsdpqrs =
1
2

nα
∑

j
[

nα
∑

k
(gkkjj − gkjjk) +

nβ

∑

k
gkkjj]

+
1
2

nβ

∑

j
[

nβ

∑

k
(gkkjj − gkjjk) +

nα
∑

k
gkkjj]

+
nα
∑

uv

⎡
⎢
⎢
⎢
⎢
⎣

nα
∑

j
(guvjj − gujjv) +

nβ

∑

j
guvjj
⎤
⎥
⎥
⎥
⎥
⎦

DA,α
uv

+
nβ

∑

uv

⎡
⎢
⎢
⎢
⎢
⎣

nβ

∑

j
(guvjj − gujjv) +

nα
∑

j
guvjj
⎤
⎥
⎥
⎥
⎥
⎦

DA,β
uv

+
1
2 ∑uvxy

guvxydAuvxy. (A13)

In full analogy to the restricted spin case, this allows us to define
the inactive Fock operator and energy as

FI,σ
pq = hpq +

nσ
∑

i
(giipq − giqpi) +

nτ
∑

i
giipq (A14)

and

EI
=

1
2

β

∑

σ=α
∑

j
hjj + FI,σ

jj

=
1
2

β

∑

σ=α
∑

ij
(hij + FI,σ

ij )D
I,σ
ij . (A15)
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APPENDIX B: DENSITY FUNCTIONAL THEORY
EMBEDDING

In this appendix, we provide more detailed steps deriving the
embedding equations of the iterative DFT embedding scheme. In
doing so, we follow the work of Hedegård et al.58 rather closely. We
focus on the steps necessary to arrive at the final form of the total
electronic energy, Eq. (15), after the introduction of the linear model,
Eq. (13).

We start by noting that ΔD(i)pq = ΔDA,(i)
uv since the inactive

part of the density matrix, DI
ij, is constant by definition. Thus, we

can express the total electronic energy after exploiting inherent
properties of the one-electron density matrices as

E =EI,LR + EA,(i+1),LR + ESR
coul+xc[ρ

(i)
]

+∑
uv
(j(i),SR

uv + νSR
xc,uv[ρ

(i)
])ΔDA,(i)

uv . (B1)

To ease the implementation of Eq. (B1), we can rewrite the equation
and group its terms into active and inactive ones. To do so, we start
by rewriting the Coulomb part of the third term by expanding D(i)

= DI + DA ,(i) twice,

JSR
[ρ(i)] =

1
2 ∑pqrs

D(i)pq g
SR
pqrsD

(i)
rs

=
1
2∑pq

D(i)pq
⎛

⎝
∑

ij
gSR
pqijD

I
ij +∑

uv
gSR
pquvD

A,(i)
uv
⎞

⎠

=
1
2
⎛

⎝
∑

klij
DI

klg
SR
klijD

I
ij +∑

xyij
DA,(i)

xy gSR
xyijD

I
ij

+∑
kluv

DI
klg

SR
kluvD

A,(i)
uv + ∑

xyuv
DA,(i)

xy gSR
xyuvD

A,(i)
uv
⎞

⎠

. (B2)

We can proceed analogously with the Coulomb part of the fourth
term,

∑

uv
j(i),SR
uv ΔDA,(i)

uv = ∑

pquv
D(i)pq g

SR
pquv(D

A,(i+1)
uv −DA,(i)

uv )

=∑

ijuv
DI

ijg
SR
ijuvD

A,(i+1)
uv −DI

ijg
SR
ijuvD

A,(i)
uv

+ ∑
xyuv

DA,(i)
xy gSR

xyuvD
A,(i+1)
uv −DA,(i)

xy gSR
xyuvD

A,(i)
uv .

(B3)

By gathering and canceling matching terms of Eqs. (B2) and (B3)
through the use of the symmetry, gpqrs = grspq, we arrive at the final
expression of the SR Coulomb contributions,

JSR
[ρ(i)] +∑

uv
j(i),SR
uv ΔDA,(i)

uv =
1
2∑ij

jI,SR
ij DI

ij −
1
2∑uv

jA,(i),SR
uv DA,(i)

uv

+∑
uv

jI,SR
uv DA,(i+1)

uv +∑
uv

jA,(i),SR
uv DA,(i+1)

uv .

(B4)

Inserting Eq. (B4) into Eq. (B1) finally leads to

E =EI,LR + ESR
xc [ρ

(i)
] +

1
2∑ij

jI,SR
ij DI

ij

−
1
2∑uv

jA,(i),SR
uv DA,(i)

uv −∑

uv
νSR

xc,uv[ρ
(i)
]DA,(i)

uv

+ EA,LR +∑
uv

jI,SR
uv DA,(i+1)

uv +∑
uv

jA,(i),SR
uv DA,(i+1)

uv

+∑
uv

νSR
xc,uv[ρ

(i)
]DA,(i+1)

uv , (B5)

where we have re-ordered the terms such that the upper two lines
contain all the inactive terms and the lower lines contain all the
active ones. After insertion of the expressions for the LR energy
contributions, EI and EA, according to Eqs. (4) and (2), respec-
tively, we arrive at the final expression of the total electronic energy,
Eq. (15).

The extension of these equations to unrestricted spins is
similarly straight forward as in the case of the HF embedding
(cf. Appendix A 2).

APPENDIX C: QISKIT’S EXCITATION OPERATOR
ORDER IN THE q-UCCSD ANSATZ

In QISKIT, the order of the excitation operators of the q-UCCSD
Ansatz is always constructed in a reproducible manner. For the pur-
poses of this discussion, we assume that the number of electrons is
stored as a pair in nelec = (nalpha, nbeta) and the number of
spin orbitals accordingly in the pair norbs. Furthermore, we assume
a block-ordering of the spin orbitals in the qubit register, meaning
that the first half of the qubits maps to α-spin orbitals and the second
half maps to β-spin orbitals.

With these assumptions in place, we can express QISKIT’s order
of excitation operators, as presented in Fig. 12. First, all α-spin

FIG. 12. A Python code outlining the order of the excitation operators of the
q-UCCSD Ansatz as constructed in QISKIT.
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FIG. 13. Illustration of the ordering of the q-UCCSD excitations in QISKIT. (Top)
Model system composed of four electrons in six orbitals [nelec = (2, 2) and norbs
= (3, 3)]. (Bottom) Corresponding ordered list of excitations, as produced by the
code in Fig. 12.

single-excitations are applied, followed by all β-spin ones. Then,
all double-excitations are applied where the nested for loops are
ordered such that the β-spin orbitals are iterated on the inner levels.
To make this implementation more concrete, we present the out-
put of the described code for the example of nelec = (2, 2) and
norbs = (3, 3) in Fig. 13.
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