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We present a novel method that appropriately handles both dynamical and static electron correlations
in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave func-
tion reference. While EHF is a suitable candidate for degenerate systems where static correlation is
ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we de-
rive a perturbative correction to a fully spin-projected self-consistent wave function based on second-
order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability
of EHF to describe static correlation in degeneracy, combined with MP2’s ability to treat dynamical
correlation effects. We demonstrate drastic improvements on molecular ground state and excited state
potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar
computational effort to the latter. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898804]

I. INTRODUCTION

An efficient and accurate treatment of both dynamical
and static electron correlation effects has been elusive in
electronic structure theory. Single reference methods such as
second-order Møller-Plesset perturbation theory (MP2) and
coupled-cluster singles and doubles (CCSD) achieve high ac-
curacy in computed observables for non-degenerate systems,1

but it is well known that they cannot describe static correlation
in degenerate systems. This failure is undoubtedly attributed
to the reference wave function: Hartree-Fock (HF). A HF ref-
erence is qualitatively inadequate for (nearly-) degenerate sys-
tems where the true wave function is multi-determinantal in
nature. Complete active space self-consistent field (CASSCF)
resolves this problem by treating all the configurations in
an active space, yielding a multi-reference state, and usually
represents a good starting point when an appropriate active
space is chosen. When the residual dynamical correlation is
included through a perturbative correction2, 3 or configuration
interaction (CI), CASSCF can achieve very accurate results
both for the ground state and excited states. However, none
of these are black-box, and their computational cost is very
expensive.

Yet another approach to tackling static correlation may be
spin-extended HF (EHF),4, 5 which is also equivalently called
SUHF in Ref. 6. The idea behind it is to optimize orbitals of a
broken symmetry Slater determinant |�0〉, called a deformed
state, projected by a spin-projection operator P̂ so that the
total energy of the projected state,

EEHF = 〈�0|P̂ †Ĥ P̂ |�0〉
〈�0|P̂ †P̂ |�0〉

= 〈�0|Ĥ P̂ |�0〉
〈�0|P̂ |�0〉

, (1)

is variationally minimized. This approach in particular is
called variation-after-projection (VAP), not to be confused

a)Electronic mail: tsuchimochi@mit.edu

with projection-after-variation (PAV), which has been widely
used in quantum chemistry. P̂ |�0〉 spans a large part of the
Hilbert space, and thus is expected to capture most of static
correlation in a black-box manner, i.e., no active space is re-
quired. At the same time, for this reason, it has long been
thought in quantum chemistry that the full spin-projection is
computationally demanding and horribly complicated when
the famous Löwdin projector is used, even for PAV.4, 5 Re-
cently, Jiménez-Hoyos et al.,6 however, have shown a feasible
and clear way to accomplish VAP by using the spin-projection
operator of the general integral form,

P̂ s
mk = |s; m〉〈s; k| = 2s + 1

8π2

∫
Ds∗

mk(�)R̂(�)d�. (2)

Here s is the total spin, m and k are the spin angular mo-
mentum, Ds

mk(�) = 〈s; m|R̂(�)|s; k〉 is the Wigner matrix,

and R̂(α, β, γ ) = eiαŜ
z e

iβŜ
y eiγ Ŝ

z is a unitary rotation opera-
tor. With this formalism, the computational effort for EHF
(SUHF) is known to be similar to that of mean-field methods.

Although EHF efficiently describes static correlation, it
neglects a vast amount of dynamical correlation, which is nec-
essary for chemical accuracy. In order to remedy this, there
have been recently extensive work attempting to incorporate
the residual dynamical correlation into EHF, in the context
of density functional correlation7 as well as small CI,8 with
promising results. In this work, we propose a perturbative
approach based on MP2, which we shall hereby term ex-
tended MP2 (EMP2). Since MP2 correlation is almost ex-
clusively of dynamical character, EMP2 should provide a
seamless description of both static and dynamical correlation
effects.

A similar idea was pursued for PAV in the late 1980s
in order to remove spin-contamination in broken-symmetry
MPn by adopting the Löwdin projector;9–11 it was al-
ready known that spin-contamination in unrestricted methods
can cause slow convergence in the perturbation series and
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 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.192.114.19 On: Thu, 18 Dec 2014 09:53:22

http://dx.doi.org/10.1063/1.4898804
http://dx.doi.org/10.1063/1.4898804
http://dx.doi.org/10.1063/1.4898804
mailto: tsuchimochi@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4898804&domain=pdf&date_stamp=2014-10-28


164117-2 T. Tsuchimochi and T. Van Voorhis J. Chem. Phys. 141, 164117 (2014)

considerably distorted potential energy surfaces. Spin-
projection on unrestricted MPn proved useful to remedy these
problems, but the proposed schemes were found to be com-
putationally costly even for approximate projection and have
undesired features such as pronounced derivative discontinu-
ities in potential energy surfaces. Below we show that, with
the present VAP scheme, all of these obstacles can be thor-
oughly resolved with full spin-projection.

II. THEORY

Throughout this work, we restrict ourselves to the cases
where |�0〉 is an eigenstate of Ŝz but not of Ŝ2, i.e., an un-
restricted HF type determinant, and thus P̂ = P̂ s

mm. We will
also adopt the conventional notations of orbital indices: i, j,
k, l for occupied, a, b, c, d for virtual, and p, q, r, s for all
orbitals.

Perturbation approaches for projected wave functions
have been proposed by many others.10, 12, 13 Here we will de-
rive our own scheme. We start by partitioning the Hamiltonian
into Ĥ = Ĥ0 + λV̂ , such that

Ĥ0|�0〉 = E0|�0〉. (3)

We remind the reader that |�0〉 is the broken symmetry de-
formed state. Given the Schrödinger equation,

Ĥ |	〉 = E |	〉, (4)

E and |	〉 are expanded around E0 and |�0〉 to find nth order
energies and wave functions, En and |�n〉. The MP2 energy
expression then becomes

E
(0)
MP2 = 〈�0|Ĥ |�0 + �1〉 = E

(0)
HF + E

(0)
2 , (5)

where E
(0)
HF and E

(0)
2 are the HF energy and the second or-

der perturbation correlation energy of the deformed state, and
|�1〉 is the first order wave function, which we will define
later for our case. Note that we have not yet defined Ĥ0.
Nevertheless, it is an independent particle symmetry broken
Hamiltonian, and |�1〉 consists of up to doubly excited deter-
minants from |�0〉.

Here our goal is to derive a perturbation theory that be-
gins with |	EHF〉 ≡ P̂ |�0〉 and accomplishes the exact energy
at the infinite order limit. Because |	EHF〉 has no well-defined
independent particle Hamiltonian, however, one faces the dif-
ficulty of defining an appropriate zeroth order Hamiltonian.
It should be clear that Ĥ0 defined in Eq. (3) is not suitable,
as |	EHF〉 is not its eigenstate. Hence, we consider the expan-
sion of E and |	〉 in the projected space around |	EHF〉. In the
present scheme, our expansion for the wave function is based
on the MP partitioning, given by

|	〉 = P̂ |�0〉 + λP̂ |�1〉 + · · · . (6)

This is possible because the exact wave function can al-
ways be chosen as an eigenstate of P̂ , i.e., P̂ |	〉 = 
|	〉.
Note that the spaces spanned by P̂ |�n〉 are not orthogonal
one another, and are necessarily overcomplete.12, 13 Equation
(6) allows us to write the exact energy in the intermediate

normalization,

E(λ) = 〈	EHF|Ĥ P̂ |�0 + λ�1 + · · · 〉
〈	EHF|P̂ |�0 + λ�1 + · · · 〉 (7)

= EEHF + λE2 + λ2E3 + · · · , (8)

which achieves our goal, i.e., E(0) = EEHF and E(1) = E . All
the perturbative information is then carried in Eq. (6) and one
is free from defining a zeroth order Hamiltonian. E2 paral-
lels second order Rayleigh-Schrödinger perturbation theory.
Thus, we refer to it as the second order energy. Expanding
E(λ) around λ0 = 0 and setting λ = 1, we find

EEMP2 = EEHF + E2, (9)

E2 = 〈�0|(Ĥ − EEHF)P̂ |�1〉
〈�0|P̂ |�0〉

. (10)

This formalism has various desired features. First, each term
is rigorously defined by the magnitude of order parameter λ.
Second, there is no singles contribution from |�1〉 due to the
generalized Brillouin theorem,

〈�0|(Ĥ − EEHF)P̂ a
†
aai |�0〉 = 0, (11)

when the EHF state is stationary, similar to the property in
the conventional MPn theory. Last, and perhaps most impor-
tantly, the perturbation series are spin-projected at all orders,
including |�1〉. In fact, it can be shown that Eq. (10) may be
seen as the fully spin-projected MP2 if |�0〉 is the stationary
unrestricted HF state. That is, by defining a projector onto the
complementary space orthogonal to |	EHF〉,

Ô = 1 − P̂ |�0〉〈�0|P̂
〈�0|P̂ |�0〉

= 1 − |	EHF〉〈	EHF|
〈	EHF|	EHF〉

, (12)

Eqs. (9) and (10) are elegantly rewritten as

EEMP2 = 〈�0|Ĥ P̂ |�0 + Ô�1〉
〈�0|P̂ |�0〉

. (13)

This clearly indicates that the last term in the numerator of
Eq. (13) lives in the space orthogonal to |	EHF〉 to elimi-
nate double-counting of correlation effects, and is subject to
spin-projection. We also note that the occurrence of double-
counting is a natural consequence because, again, the basis in
Eq. (6) is over complete.

Now we shall move our attention to the definition of Ĥ0
and thus |�1〉 for EMP2. The performance of a perturbation
theory critically depends on Ĥ0. Since we rely on the MP ex-
pansion of the deformed state, i.e., Eq. (6), a physical choice
for Ĥ0 is given by HF-like orbital energies evaluated from
|�0〉. They are indeed an appropriate candidate in view of
Eq. (13): EMP2 may be regarded as the full spin-projection
of broken-symmetry MP2 for some special case. Also, this
scheme is guaranteed to reduce to the regular MP2 when |�0〉
is already a spin-eigenstate or P̂ = 1, providing a seamless
connection.

At the stationary state, |�0〉 is not an eigenfunction of a
sum of Fock operators, which is Ĥ0 of the conventional MP2.
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However, |�0〉 is still a Slater determinant, and |	EHF〉 is in-
variant with respect to a unitary rotation among |�0〉. Hence,
we diagonalize the occupied-occupied (oo) block and virtual-
virtual (vv) block of the deformed Fock matrix, defined as

F
(0)
pq = h

(0)
pq +

∑
rs

P
(0)
rs 〈pr||qs〉, (14)

with the deformed density matrix P
(0)
rs = 〈�0|a†

s ar |�0〉, and
choose Ĥ0 = ∑

p εpa
†
pap with εp = F

(0)
pp . The orbital basis of

this particular choice has been referred to as semi-canonical
orbitals in literature. Consequently, we will have not only dou-
bles but also, potentially, singles contributions in |�1〉,

|�1〉 =
∑
ia

∣∣�a
i

〉 F
(0)
ia

εi − εa

+ 1

4

∑
ijab

∣∣�ab
ij

〉 〈ij ||ab〉
εi + εj − εa − εb

=
∑
ia

tai
∣∣�a

i

〉 + 1

4

∑
ijab

tab
ij

∣∣�ab
ij

〉
, (15)

because F
(0)
ia are nonzero in general. As mentioned above,

however, all the singles contributions strictly vanish through
P̂ due to the generalized Brillouin theorem, Eq. (11). Thus we
only require the second term.

Finally, we discuss how one evaluates the projected cou-
pling terms 〈�0|Ĥ P̂ |�ab

ij 〉 and 〈�0|P̂ |�ab
ij 〉 that appear in

Eq. (10). In practice, each term can be decomposed to a dis-
cretized grid integration as

〈�0|Ĥ P̂
∣∣�ab

ij

〉 =
Ngrid∑

g

wg〈�0|Ĥ R̂g

∣∣�ab
ij

〉
, (16)

where wg are the grid weights and R̂g is the rotation opera-
tor defined earlier but for each grid point g.6 The brute-force
calculation of this term with the generalized Wick theorem14

would require O(N4) for each matrix element and therefore
it gives rise to a total complexity of O(N8Ngrid) for all the
double substitutions, which is intractable. To ameliorate the
computational effort, we will take a couple of steps.

Inserting the identity operator, 1 = |�0〉 + ∑
kc |�c

k〉
+ · · · , between Ĥ and R̂g in Eq. (16), we arrive at

〈�0|Ĥ R̂g

∣∣�ab
ij

〉 = E
(0)
HF〈�0|R̂g

∣∣�ab
ij

〉 + ∑
kc

F
(0)
kc

〈
�c

k

∣∣R̂g

∣∣�ab
ij

〉

+ 1

4

∑
klcd

〈kl||cd〉〈�cd
kl

∣∣R̂g

∣∣�ab
ij

〉
. (17)

In this way, only the rotation couplings 〈�cd
kl |R̂g

∣∣�ab
ij

〉
, etc, are

to be evaluated.
Here, the important realization is that R̂g will not mix or-

bitals with one another, but instead independently rotate each
spin orbital to give general spin orbitals (i.e., α and β spins
are mixed). Therefore, the R̂g rotation on an excited determi-

nant |�ab
ij 〉 = a

†
aa

†
bajai |�0〉 is identical to the corresponding

excitation of the rotated determinant |g�〉 ≡ R̂g|�0〉,
R̂g

∣∣�ab
ij

〉 = c
†
ac

†
bcj ci |g�〉 = ∣∣g�ab

ij

〉
, (18)

where c
†
p and cp are the rotated creation and annihila-

tion operators, c
†
p = R̂ga

†
pR̂

†
g , etc, and |g�〉 = ∏

i c
†
i |−〉 with

|−〉 being the bare vacuum. Then, the rotation couplings in
Eq. (17) are realized as just the overlaps between excited non-
orthogonal general HF (GHF) determinants.

This fact is particularly useful for our purpose, because
all the simplicities in HF determinants are still available for
|g�〉. Among the most important ones is the corresponding
pair theorem.15 One can biorthogonalize the orbitals of |�0〉
and |g�〉, |p〉 and |gq〉, by performing a singular value decom-
position of the oo and vv blocks of the overlap matrix gSpq
= 〈p|gq〉. By the aforementioned theorem, which of course
holds for GHF determinants, the resulting gS matrix in the
corresponding orbital basis is banded: not only the oo and vv

blocks but also the ov and vo blocks can be chosen to be di-
agonal. This greatly simplifies the overlap evaluation16 and
makes it possible to retain only O(N4) cost for the contrac-
tion of Eq. (17), using the significant sparsity of 〈�cd

kl |g�ab
ij 〉

with a very simple algorithm. The limiting step of EMP2 is
thus the computation and transformation of t amplitudes as
well as two electron integrals as in the regular MP2, which
scales as O(N5). Note that the final energy is invariant with
respect to these orbital rotations.

Last, we note that incorporating other symmetry pro-
jections other than Ŝ2 into our scheme may require careful
elaboration.

III. RESULTS

We have implemented Eq. (10) in our in-house quantum
chemistry program with the proposed contraction scheme. All
the calculations were done with a 6-31G basis to enable the
direct comparison with the exact full CI (FCI) results, except
the hydrogen molecule. In the top panel of Figure 1, we de-
pict the potential energy curve of H2 with cc-pV5Z. As is
well known, the MP2 energy is accurate in the short range
where a tremendous amount of dynamical correlation is re-
quired, but it completely fails when a bond is stretched, due

−1.15

−1.10

−1.05

−1.00

 0.5 1  1.5 2  2.5

E
 (

a.
u.

)

RH−H (Å)

FCI
HF
EHF
MP2
EMP2 
PAV−EMP2 

0

 0.02

 0.04

 0.06

 0.08

0.1

1  1.5 2  2.5 3

ΔE
 (

a.
u.

)

RF-H

EHF

MP2

CCSD EMP2

FIG. 1. (Top) Potential energy curves of the H2 molecule. (Bottom) Devia-
tions from the FCI energy for HF.
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TABLE I. Non-parallelity error against FCI in kcal/mol.

EHF EMP2 MP2 CCSD

H2
a 4.5 0.7 13.3 0.0

HF 2.8 0.8 10.2 2.4
H2O 10.0 2.2 36.8 7.3
N2

b 24.6 6.3 439.7 23.3

acc-pV5Z.
b1s orbitals are frozen in FCI.

to its inability to describe static correlation. It is evident that
the almost opposite event is observed in EHF. It dissociates
H2 exactly, being less accurate in the vicinity of the equilib-
rium bond length, Re. As one would expect, EMP2 eliminates
these disadvantages. It gives even slightly better energies than
MP2 near Re where static correlation is considered negligi-
ble, while it starts to gain static correlation seamlessly toward
the dissociation limit. Overall, the potential curve of EMP2
is in excellent agreement with FCI; the mean absolute error
(MAE) is only 1.1 kcal/mol. Note that if PAV instead of VAP
(PAV-EMP2) is used, the curve exhibits a derivative disconti-
nuity at the point before which they are merely MP2 and no
improvement is gained.

These behaviors of correlation effects can be seen generi-
cally. The bottom panel of Figure 1 shows the deviation of the
total energy from FCI in the hydrogen fluoride molecule dis-
sociation. Again, the conventional MP2 becomes notoriously
worse after RF-H = 1.5 Å due to the degeneracy appearing.
While the EHF error is mostly flat and goes to the correct dis-
sociation limit (although not size-consistent6), it vastly under-
estimates the dynamical correlation. CCSD, which almost su-
perposes on FCI near Re, loses its accuracy significantly and
is usually difficult to converge as the bond is stretched. EMP2
yields the most accurate results over the entire region. The er-
ror observed throughout the dissociation coordinate is almost
constant for this case. In Table I, we list the non-parallelity
errors (NPE), defined as the error deviation from its MAE,
i.e., NPE = avg(|�E − MAE|), a measure of how parallel
the potential energy curve is to FCI. We also performed the
same analysis for the H2O (symmetric dissociation) and N2
molecules, all listed in Table I, showing the good performance
of EMP2.

We also report singlet-triplet splitting energies, �EST, of
small diatomic molecules. The experimental geometries are
used,17 and 1s orbitals are frozen in the FCI calculations for
O2 and NF. For triplet states, we have used unrestricted meth-
ods for MP2 and CCSD. �EST is only accurate if a method

TABLE II. Singlet-triplet splitting energies for diatomic molecules in
kcal/mol (�EST = E(1�) − E(3)).

EHF EMP2 MP2 CCSD FCI

NH 49.60 45.47 58.06 50.85 45.51
OH+ 62.58 58.06 74.83 64.46 58.34
O2

a 35.99 28.80 30.75 32.71 25.54
NFa 47.87 40.21 50.69 48.48 40.87

MAE 6.44 1.06 11.02 6.56

a1s orbitals are frozen in FCI.

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

 0.5 1  1.5 2  2.5 3

E
 (

a.
u.

)

RH−H (Å)

EHF

EMP2

ΔMP2 (purified)

ΔSCF (purified)

ΔMP2
ΔSCF

FIG. 2. Errors in potential energy curves of the B1
+
u state in H2.

offers a balanced description of dynamical and static corre-
lations. As tabulated in Table II, we found EHF and CCSD
share a similar quality with MAEs of 6.44 and 6.56 kcal/mol,
respectively. Although CCSD includes the required (double)
excitations, singlet states are not treated as accurately as are
triplet states because the reference closed-shell HF orbitals
are inadequate. This causes the consistent overestimation of
�EST. On the other hand, EMP2 outperforms other methods,
achieving an impressive improvement over EHF with a MAE
of 1.06 kcal/mol. For PAV-EMP2, we obtained a MAE of
1.45 kcal/mol.

Finally, we investigate the excited state of H2 by �SCF
where an excited configuration is achieved by occupying elec-
trons in virtual orbitals.18 This state-specific non-aufbau ap-
proach is also applicable to EHF and allows us to compute
low-lying excited states as a spin-pure state. Therefore, as
opposed to the conventional �SCF using HF, which suf-
fers from significant spin-contamination, the spin-purification
procedure is not needed in EHF. Furthermore, since such EHF
state is stationary, one can directly perform EMP2. Figure 2
presents the error in potential energy curve of the first ex-
cited B1+

u state of H2 against the FCI result, using 6-31G**.
While �SCF (i.e., HF) gives a qualitatively reasonable po-
tential when purified, MP2 correction to �SCF (denoted as
�MP2) miserably diverges. This is due to the degeneracy
appearing in the dissociation limit with the second excited
state. EMP2, however, has no such issue. It improves the
EHF energy by adding dynamical correlation on top of it, and
yields almost the exact potential curve. This encouraging re-
sult demonstrates the applicability of EMP2 to excited states.

IV. CONCLUSION

We close our discussions by stressing once again that the
method presented here achieves a black-box treatment of ac-
curate dynamical and static correlations with a moderate com-
putational effort similar to the conventional MP2.
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