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For molecules in high intensity oscillating electric fields, the time-dependent Hartree–Fock (TDHF) method is
used to simulate the behavior of the electronic density prior to ionization. Since a perturbative approach is no
longer valid at these intensities, the full TDHF equations are used to propagate the electronic density. A unitary
transform approach is combined with the modified midpoint method to provide a stable and efficient algorithm
to integrate these equations. The behavior of H2

1 in an intense oscillating field computed using the TDHF
method with a STO-3G basis set reproduces the analytic solution for the two-state coherent excitation model.
For H2 with a 6-311þþG(d,p) basis set, the TDHF results are nearly indistinguishable from calculations using
the full time-dependent Schrödinger equation. In an oscillating field of 3.17 � 1013 W cm�2 and 456 nm, the
molecular orbital energies, electron populations, and atomic charges of H2 follow the field adiabatically. As the
field intensity is increased, the response becomes more complicated as a result of contributions from excited
states. Simulations of N2 show even greater complexity, yet the average charge still follows the field adiabatically.

I. Introduction

Intense femtosecond and picosecond lasers produce electric
fields comparable with those sampled by valence electrons in a
molecule. A number of non-perturbative phenomena have been
observed and are typically called strong-field effects. Some of
these phenomena, such as field tunneling and barrier-suppres-
sion ionization,1–4 above-threshold ionization (ATI),5,6 genera-
tion of higher-order harmonic emissions,7–11 field-induced
resonant enhancement of electronic absorption,12–14 nonadia-
batic multi-electron excitation,15–18 require an understanding of
the electronic wavefunction response to strong fields. Phenom-
ena that involve nuclear motion, such as above-threshold dis-
sociation,19,20 bond softening and hardening,19–21 charge-
resonance-enhanced ionization,22,23 Coulomb explosion of
small24,25 and large26,27 molecules, cannot be understood with-
out modeling of the complete electron-nuclear dynamics. Cal-
culating the response of the electronic and nuclear
wavefunctions to strong fields is essential for understanding,
predicting and controlling these phenomena.

In a high intensity laser field, perturbative calculations are
no longer valid to describe the electronic dynamics.28–30 Ad-
vances in computer technology and numerical method have
made it possible to perform numerical integrations of the full
time-dependent Schrödinger equation (TDSE) for one- and
two-electron systems for a length of time appropriate for
strong-field experiments. For example, recent calculations of
the electron dynamics of helium and argon by Muller et al.
using TDSE demonstrate that the single-active electron ap-
proximation may accurately describe some aspects of strong-
field atomic ionization.31–33 For molecules, Thachuk, Ivanov
and Wardlaw have employed the TDSE to propagate the
electrons and classical dynamics for the nuclei to simulate
ATI and dissociation in H2

1 and HCl1.34,35 Bandrauk et al.
used accurate numerical integrations of wavepackets to study
the full quantum dynamics of H2

1 and H2 in intense laser

fields.36–47 These simulations provide insight into the laser-
induced ionization and dissociation process, and explain multi-
photon phenomena such as ATI and high-order harmonic
generation.
Ivanov et al. have used an analytical semi-classical approach

with two counter-propagating plane waves to describe the
interaction of a model quantum system with strong oscillating
fields.48 This approach was successfully applied in theoretical
studies of strong-field ionization dynamics of Rydberg atoms.
There are, however, many aspects of strong field laser-molecule
interaction that are definitely beyond the scope of the single-
active electron approach. For example, Ivanov and co-workers
have shown that non-adiabatic multi-electron (NME) dy-
namics is necessary to describe the ionization and dissociation
of larger molecules in strong laser fields.15–18 The computa-
tional simulation of such strong field phenomena require
various levels of approximations to account for the multi-
electron dynamics. Among the many formalisms for treating
the interaction of a molecule and light, the time-dependent
Hartree–Fock (TDHF) method is most widely used for inves-
tigations of laser-induced ionization,40,49,50 computations of
nonlinear susceptibilities,51–57 and locating excited electronic
states.58,59 Though not as accurate, this method is much
less demanding computationally than multiple configuration
self-consistent field (MCSCF) based algorithms, because it
avoids the explicit computations of the excited states by
following the dynamics of a superposition state. The TDHF
approach can be formulated in terms of either the wave
function or the density matrix within a single Slater determi-
nant framework. However, this type of formalism is still
computationally expensive because electron dynamics have to
be integrated using a small step size, and because large basis
sets have to be employed to obtain good descriptions of the
electronic response.
The computational cost can be reduced by using an effective

Hamiltonian with a restricted basis and/or by considering a
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limited number of two-electron matrix elements. Such effective
Hamiltonians are exemplified by the Hückel and the Su–
Schrieffer–Heeger (SSH) Hamiltonians, the Pariser–Parr–
Pople (PPP) model, valence effective Hamiltonians (VEH),
complete neglect of differential overlap (CNDO), and inter-
mediate neglect of differential overlap (INDO) models. In
particular, the PPP Hamiltonian includes the Coulomb inter-
action among p electrons. It captures the essential electronic
properties of the p systems, and has been employed in many
studies of conjugated molecules.54–56,60–63

These approximate approaches are suitable for qualitative
understanding of many essential features of electron dynamics.
However, in the strong-field regime, they may be inadequate
to describe the real electron (let alone electron-nuclear)
dynamics of a complex multi-electron system. Our aim in
this paper is to follow the electron dynamics in a molecule in
intense laser fields prior to ionization, and not to simulate
the ionization process itself. For larger molecules, we feel there
is much to be learned in this regime that cannot be studied with
current models. Although it would be highly desirable to
model ionization as well, the accurate calculation of ionization
rates is very demanding and is beyond the scope of the
present paper. We present an efficient procedure for direct
numerical integration of the time-dependent Hartree–Fock
(TDHF) equations using the density matrix and atom-
centered basis functions. Using diatomic molecules H2

1,
H2 and N2 we test the procedure by examining the time
evolution of the molecular orbital energies, orbital popula-
tions, and the atomic charges. In a subsequent paper, the
method will be used to study a series of larger molecules in
intense fields.

II. Methodology

The time dependent Schrödinger equation (TDSE) is

i�h
@cðtÞ
@t
¼ ĤðtÞcðtÞ: ð1Þ

The time dependent wavefunction can be expanded in terms of
the eigenfunctions of the time independent, field free Hamilto-
nian, Ĥ0ji ¼ oiji, and time dependent coefficients,

c(t) ¼
P

iCi(t)ji. (2)

The time dependent Schrödinger equation then reduces to a set
of coupled differential equations for the coefficients,

i�h
@CiðtÞ
@t

¼
X
j

HijðtÞCjðtÞ: ð3Þ

where Hij(t) ¼ hji |Ĥ |jji. Except for very simple systems, such
as H2, this approach is not very practical, since the full
expansion involves all excited states (i.e. full configuration
interaction).

The time-dependent Hartree–Fock (TDHF) method starts
with the time dependent Schrödinger equation, and restricts
the wavefunction to a single Slater determinant but allows the
one electron orbitals to be a function of time,

c(t) ¼ Â[f1(t)f2(t)� � �fi(t)]. (4)

The equations for the molecular orbitals fi(t) can be written in
terms of the Fock operator,

i�h
@fiðtÞ
@t

¼ F̂ðtÞfiðtÞ: ð5Þ

Correspondingly, for the one-particle density operator, C(t) ¼Pocc
i f*

i (t)fi(t), one obtains

i�h
dC

dt
¼ F̂ðtÞCðtÞ � CðtÞF̂ðtÞ ¼ F̂ðtÞ;CðtÞ

� �
: ð6Þ

The molecular orbitals can be expanded in terms of basis
functions wm,

fiðtÞ ¼
X
m

cm;iðtÞwm: ð7Þ

The density matrix can be constructed from the product of the
molecular orbital coefficients

P0mnðtÞ ¼
X
i

c�m;iðtÞcn;iðtÞ: ð8Þ

The corresponding Fock matrix is given by

F 0mn(t) ¼ hwm |F(t) |wni. (9)

In general, the basis functions are not orthonormal, hence the
overlap matrix

Smn ¼ hwm |wni. (10)

is not the identity. However, this basis can always be ortho-
normalized by means of Löwdin or Cholesky transformation
methods. The density matrix and the Fock matrix are trans-
formed from the AO basis (P0 and F 0) into an orthonormal
basis (P and F) by a transformation matrix V:

P ¼ VP0VT and F ¼ V�TF 0V�1. (11)

In the Löwdin orthonormalization method, V ¼ S1/2; in the
Cholesky method, the upper triangular V is obtained by the
decomposition S ¼ VTV.
In an orthonormal basis, the TDHF equation for the density

matrix is

i
dPðtiÞ
dt

¼ ½FðtiÞ;PðtiÞ�: ð12Þ

For the sake of simplicity, we will use atomic units from this
point on.
In our simulations, we will use a linearly polarized and

spatially homogeneous external field,

e(r,t) E E(t)sin(ot þ j). (13)

This is a good approximation for the laser field, because
typical wavelengths are much larger than molecular dimen-
sions.
The matrix elements of the field-dependent Hamiltonian in

eqn. (3) can be expressed in terms of the field-free energies, oi,
and transition dipole moments, Dij ¼ hji |r |jji:

Hij(t)¼ hji |Ĥ |jji ¼ hji |Ĥ0 |jji þ hji | r̂|jjiE(t)sin(otþj)
¼ oidij þ Dijexp(t). (14)

In a similar way, the field-dependent Fock matrix of eqn. (9)
can be written in terms of the field-free Fock matrix F0(t) and
the dipole moment integrals in the AO basis, d 0mn ¼ hwm |r |wni:

F0(t) ¼ F00(t) þ d 0e(t) (15)

Note, that the field-free Fock matrix also depends on time; this
is due to the time dependence of the density matrix P.
The time-dependent Hartree–Fock equation, eqn. (12), is an

ordinary differential equation that can be solved numerically
with a number of standard methods. However, low order
methods such as Verlet and Runge–Kutta require a rather
small step size to maintain the idempotency constraint on the
density matrix, PP ¼ P. Symplectic integrators64–76 are able to
preserve the total phase space volume of the Hamiltonian
system, but they also require small step sizes. Consequently,
to integrate the TDHF equations efficiently, Micha has devel-
oped the ‘‘relax and drive’’ method.77,78

For the relax step, a new density matrix is obtained by a
unitary transformation,

P(ti þ Dt) ¼ UP(ti)U
w ¼ exp(iDtF(ti))P(ti)exp(iDtF(ti)). (16)
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If the Fock matrix is expressed in its eigenspace,

Cw(ti)F(ti)C(ti) ¼ e(ti), (17)

the unitary transformation matrix, U, can be written in terms
of the eigenvectors C and eigenvalues e:

U ¼ exp(iDtF(ti)) ¼ C(ti)exp(iDte(ti))C
w(ti). (18)

Since the matrix U is unitary, the idempotency constraint is
preserved automatically for any size of time step. However, the
Fock matrix changes during the time step, primarily due to
interaction with the external field. The corresponding correction
to the density matrix, DP, is calculated in the ‘‘drive’’ step as77,78

DP ¼ UD0Uw where D0 ¼
R
[(F(t0)�F(ti)), UP(ti)U

w]dt0. (19)

Note that most of the approaches operating with model
Hamiltonians usually restrict themselves to an analogy of the
relax step (for example, the quantum propagation toolkit
approach79,80).

In order to develop a computationally efficient algorithm, we
have tested some simple alternatives to the drive correction. If
the external field is assumed to vary linearly during the time
step and we use the field at the mid-point of the step to
compute the Fock matrix and the transformation in eqn.
(16), the drive correction in eqn. (19) should then be zero to
first order in t.

U¼ exp(iDt(F0(ti)þ de(tiþ Dt/2)) and P(ti11)¼UP(ti)U
w(20)

Alternatively, we can take into account linear changes in both
the density and the external field during the time step by
computing the entire Fock matrix at the mid-point of the step,
not just the field contribution. This corresponds to using a
modified mid-point algorithm:

U ¼ exp(2iDtF(ti)) and P(ti11) ¼ UP(ti�1)U
w. (21)

An alternative involves integration of the density in the interval
from ti�1/2 to ti11/2 using the Fock matrix at ti, and extrapolat-
ing the density to ti11 for the computation of the Fock matrix
for the next step:

U ¼ exp(iDtF(ti)) and P(ti11/2) ¼ UP(ti�1/2)U
w (22)

U0 ¼ exp(iDtF(ti)/2) and P(ti11) ¼ U0P(ti11/2)U
0w

This is similar to the approach used by Sun and Ruedenberg to
integrate the equations for the steepest descent reaction
paths.81

To characterize the behavior of a molecule in an intense
field, we examine the evolution of the following specific
molecular properties related to charge redistribution:

(i) the instantaneous dipole,

lðtiÞ ¼
X
a

ZaRa � d 0 � P0ðtiÞ; ð23Þ

(ii) the effective charge on atom a; for an atom centered basis
set, this can be estimated by the Löwdin population analysis,

qa ¼ Za �
X
i�a

PiiðtÞ; ð24Þ

where Za is the nuclear charge of the atom a, and the sumP
iCaPii(t) runs over the basis functions on this atom (Pii is the

ith diagonal element of the density matrix in the orthonormal
basis);

(iii) the orbital occupation numbers, determined by project-
ing the time-dependent density matrix onto the initial orbitals,

nk(ti) ¼ Ck
w(0)P(ti)Ck(0), (25)

where Ck(0) is the k-th eigenvector of the initial, field-free Fock
matrix.

III. Results and discussion

Electronic dynamics in a strong time-varying electric field is
simulated using the development version of GAUSSIAN series
of program82 with the addition of the algorithm presented here
for evaluating the time-dependent Hartree–Fock equations
using atom-centered basis functions and a modified mid-point,
unitary transformation integration scheme (MMUT-TDHF).
The initial conditions are the equilibrium bond lengths and the
converged ground electronic state. The molecular axis is
aligned with the direction of polarization of the electric field
and the phase j in eqn. (13) is chosen to be zero.

III.1. Two-state coherent excitation

Coherent excitation of a two-state system in a linearly polar-
ized oscillating field is a classical example in the literature and
in textbooks.83–89 In particular, near the resonance this system
exhibits a characteristic sinusoidal flow of complete population
inversion (Rabi oscillation). The ground state of H2

1 with a
minimal basis set provides an ideal two-state problem. With
the STO-3G basis set, the excitation energy (D0 - D1), also
referred to as Bohr frequency o0,

85 is 0.4764 au for H2
1 at its

minimum energy geometry (Re ¼ 1.0603 Å). The field-free
Fock matrix of this one-electron system is time-independent.
The applied field, shown in Fig. 1(a), has a constant envelope,
|E(t) | ¼ |Emax | ¼ 0.05 au, corresponding to an intensity of
8.75 � 1013 W cm�2. Fig. 1(b) illustrates time evolution of
electron population in orbitals 1 and 2, integrated using a step
size of 0.2 au (4.838 � 10�3 fs) at the resonance frequency, o0.
Our simulations yield sinusoidal oscillations of the electron
population with the frequency ~O ¼ 0.0567 au. This result is in

Fig. 1 TDHF simulation of H2
1 in an oscillating electric field (Emax ¼

0.05 au (8.75 � 1013 W cm�2) and o ¼ 0.4764 au.) using the STO-3G
basis set: (a) electric field profile, (b) electron populations of orbitals
and (c) Löwdin atomic charge analysis.
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excellent agreement with the analytic solution85

~O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 þ ðo� o0Þ2

q
; ð26Þ

where the Rabi oscillation frequency O ¼ |d | |Emax |/�h is 0.056
82 au for the H2

1 with STO-3G basis set. Fig. 1(c) shows the
evolution of the effective atomic charges obtained from the
Löwdin population analysis. As can be seen from the Figure,
the H2

1 molecule oscillates between complete covalent and
ionic bond configurations.

III.2. H2 in intense laser fields

The electron optical responses of the H2 and its ions have been
studied extensively for decades,36–47,90–96 because they are
computationally simple and can be solved analytically at some
levels of approximation. Since there is such a wealth of
information on H2 from the work by Bandrauk et al. and
other groups using wave packet dynamics,36–41 we examined
hydrogen molecule in a strong oscillating field as a test of our
method.

For the optical response of H2 in intense laser fields,
perturbative calculations are not valid because the canonical
molecular orbitals no longer differ from the ground state
configuration by only a small amount. In a non-perturbative
approach, the field-free Fock matrix F is constructed using the
time-dependent density matrix P, and therefore is also time-
dependent. For a better description of the electronic excitation
levels of H2, we have used larger basis sets than for the two-
state coherent excitation (Section III.1). In the first series of
tests, molecular orbitals are expanded in 14 Gaussian type
functions using the 6-311þþG(d,p) split-valence basis set with
diffuse and polarization functions. This corresponds to four
s-type functions and one set of p-type functions on each
hydrogen. The field envelope |E(t) | is linearly increased with
time to a maximum value of |Emax | at the end of the first cycle
and remains at |Emax | for one cycle and then decreases to zero
by the end of the next cycle, as shown in Fig. 2(a).

EðtÞ ¼ ðot=2p ÞEmax for 0 � t � 2p =o
EðtÞ ¼ Emax for 2p =o � t � 4p =o

EðtÞ ¼ ð3� ot=2p ÞEmax for 4p =o � t � 6p =o
EðtÞ ¼ 0 for to0 and t46p =o

ð27Þ

This envelope will be used for the remainder of the paper.
Fig. 2 shows the electron optical response of the H2 at the

equilibrium geometry (Re ¼ 0.7354 Å at HF/6-311þþG(d,p))
in a 456 nm (o ¼ 0.10 au) laser field. The maximum field
intensity is 3.17 � 1013 W cm�2 (Emax ¼ 0.03 au). Fig. 2(b)
shows the orbital energy profiles of the lowest four orbitals,
1sg, 1su, 2sg and 2su. The bonding orbital (1sg) of H2 is
relatively insensitive to the applied field, while the energies of
1su and 2sg orbitals oscillate significantly, crossing several
times during the simulation.

Fig. 2(c) shows the electron population in the lowest four
molecular orbitals. In this simulation, we do not see any
significant population in orbitals higher than 2sg. While the
field is on, the depopulation of the ground state barely reaches
0.16%, while the population of 2sg is less than 0.01%. This
particular population dynamics is due to the characteristics of
dipole transitions in the system. The lowest dipole-allowed
singlet excitations of H2 are S0 - S1 and S0 - S3. Since these
excitations are combinations of the 1sg - 1su and 1sg - 2su

transitions, this results in some population of the 1su and 2su

orbitals. The S0 - S2 excitation corresponds to the 1sg to 2sg

transition that is not allowed in the dipole approximation.
Hence, there is almost no population in 2sg orbital. When the
field falls back to zero, the populations return to their ground
state values, as expected for an adiabatic response to the field.

The fluctuation of the effective atomic charge caused by the
oscillation of the molecular orbital populations is shown in

Fig. 2(d). Compared to the case of H2
1, where the effective

atomic charge oscillates between þ1 and –1 (see Fig. 1(c)), the
charge fluctuations in this off-resonnance case for H2 are much
smaller, only �0.08. This degree of polarization of H2 is in
good agreement with the charge shift calculated with a static
field of the same magnitude.
As can be seen in Fig. 2 with Emax ¼ 0.03 au., the electron

response follows the external field adiabatically: when the field
passes through zero and after the field is turned off, the
electrons populate only the ground state orbital and the
effective charge on each hydrogen atom is close to zero. Similar
adiabatic behavior of H2 at near-equilibrium internuclear
distances was obtained in numerical simulations by Bandrauk
et al.36

When the field intensity is increased to 1.72 � 1014 W cm�2

( |Emax | ¼ 0.07 au), electronic response of H2 is more complex,
as shown in Fig. 3, and there is a potential for some ionization.
The Keldysh parameter1 (g) can be used to determine the
ionization mechanism for a given electric field strength and
laser frequency: g c 1 corresponds to the multi-photon
ionization regime including above threshold ionization (ATI),
g D 1 corresponds to the tunneling regime, and g { 1
corresponds to the over the barrier ionization. The Keldysh
parameter is calculated by

g ¼

ffiffiffiffiffiffiffiffiffi
Ip
�� ��
2Up

s
and Up ¼

F0

2o

� �
ð28Þ

where Ip is the ionization potential, Up is the ponderomotive
potential or quiver energy of the electron and F0 and o are the
amplitude and angular frequency of the laser field all in atomic
units. A maximum field intensity of 1.72 � 1014 W cm�2 yields
a Keldysh parameter of g ¼ 1.52 indicating that we are not in

Fig. 2 TDHF simulation for H2 in an oscillating electric field (Emax ¼
0.03 au (3.17 � 1013 W cm�2) and o ¼ 0.10 au (456 nm)) using the
6-311þþG(d,p) basis set: (a) electric field profile, (b) energies of the
lowest four orbitals, (c) electron populations of the lowest four orbitals
and (d) Löwdin atomic charge analysis.
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the over the barrier regime. The experimental ionization rate of
H2 is estimated to be ca. 0.03 fs�1 at this field strength. Thus,
ionization should not be significant for the short duration of
the pulse. Fig. 3(b) shows that the field causes crossings
between the energies of the 1su and 2sg orbitals and avoided
crossings between the 1su and 2su orbitals. The orbital
populations, Fig. 3(c), vary appreciably: the depopulation of
the ground state reaches 4% and the population of 2sg

approaches 0.5%. However, as in the case of weaker fields
(Fig. 2), only the 1sg, 1su, 2sg and 2su orbitals are involved in
electronic transitions and no significant population is seen in
higher orbitals. The population of 2sg cannot result directly
from the forbidden S0 - S2 transition. This suggests that the
dipole-allowed transitions from 1su to 2sg and from 2su to
2sg are responsible for the population in the 2sg orbital. When
the field returns to zero, small oscillations of the charge
continue. These oscillation results from the superposition of
excited states that are populated during the pulse. These states
remain populated after the pulse and cause the charge oscilla-
tions in observed in Fig. 3(d) and the fluctuations in the dipole
moment shown in Fig. 4.

To confirm the results of the TDHF calculations on the
hydrogen molecule, we compared them with a direct numerical
integration of the full time-dependent Schrödinger equation
(TDSE) using an expansion in terms of excited states (hydro-
gen molecule is small enough for such a simulation). Fig. 4(b)
shows the evolution of the instantaneous dipole for H2 with the
time-dependent Schrödinger equation, obtained by integrating
eqn. (3) for H2 using the ground state and the six lowest excited
states. The necessary energies and transition dipoles were
calculated using singles and doubles configuration interaction
and the 6-311þþG(d,p) basis set. The same results are ob-

tained using only the four lowest excited states (but not with
fewer than four states). It is clear from comparing Fig. 4(a) and
4(b) that the results of TDHF simulation are almost indis-
tinguishable from the TDSE results. This directly validates our
approach and implicitly supports the interpretation of its
results given in the preceding paragraph.
In the second series of tests on H2, we have used a much

larger basis set. The augmented, correlation consistent, polar-
ized valence triple zeta (aug-ccpVTZ) basis set of Dunning and
co-workers97,98 was supplemented with three sets of diffuse sp
shells per atom. With this basis set each hydrogen atom has
four contracted s functions with Gaussian exponents ranging
from 33.87 to 0.02526, three sets of uncontracted p functions
with exponents 1.407, 0.388 and 0.102, two sets of d functions
with exponent 1.057 and 0.247, and three sets of diffuse sp
shells with exponents 0.0100, 0.0050 and 0.0025, for a total of
70 functions for H2. The results of the TDHF simulations for
H2 with Emax ¼ 0.07 au are shown in Fig. 5 (the TDSE results
simulated with 68 excited states are comparable). While the
populations and instantaneous dipole show some additional,
higher frequency oscillations, the overall features are similar to
TDHF/6-311þþG(d,p) calculations with the same field
strength. This suggests that the smaller basis set may be
adequate to qualitatively model the response of H2 to the
present pulse shape and intensity.

III.3 N2 in intense laser fields

The results of a TDHF simulation of the electronic response
of a heavier molecule, N2, interacting with a 456 nm (o ¼ 0.10
au.) laser field are shown in Fig. 6. Here, we use
6-311þþG(d,p) basis set; the N2 molecule is taken in its
equilibrium geometry, with Re ¼ 1.0706 Å. The maximum
field intensity is 1.72 � 1014 W cm�2 (Emax ¼ 0.07 au), yielding
a Keldysh parameter of g ¼ 1.53. The adiabatic response of the
electrons to the time-dependent electric field is complicated by
the onset of a higher-period oscillation pattern, similar to the
case of the H2 molecule seen in Figs. 3–5.
With the simple relaxation method, eqn. (16), the results of

integration with the step size of 0.01 au are identical to those

Fig. 3 TDHF simulation for H2 in an oscillating electric field (Emax ¼
0.07 au (1.72 � 1014 W cm�2) and o ¼ 0.10 au (456 nm)) using the
6-311þþG(d,p) basis set: (a) electric field profile, (b) energies of the
lowest four orbitals, (c) electron populations of the lowest four orbitals
and (d) Löwdin atomic charge analysis.

Fig. 4 Instantaneous dipole for H2 in an oscillating electric field
(Emax ¼ 0.07 au (1.72 � 1014 W cm�2) and o ¼ 0.10 au (456 nm))
using the 6-311þþG(d,p) basis set: (a) TDHF simulation, eqn. (12) and
(b) TDSE simulation, eqn. (3).
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with a step size of 0.001 au, indicating excellent control of
integration errors and numerical noise. The improved method
of eqn. (20) takes into account the change in the external field
during the time step and yields the same results as obtained
from eqn. (16). However, this method does not allow one to use
significantly larger time steps. Employing the modified mid-

point approach, eqn. (21), enables the step size to be increased
by a factor of 10 and improves the stability of the integration.
In particular, for N2, the modified midpoint approach using a
step size of 0.1 au yields results identical to those obtained with
simple relaxation method using step sizes of 0.01 and 0.001 au.
Although the Sun–Ruedenberg approach, eqn. (22), also al-
lows a Bten-fold increase in the step size over simple relaxa-
tion method, we prefer the modified midpoint approach,
because eqn. (21) requires only one propagation step. For
smoothly varying external fields, this approach serves as an
attractive alternative to the ‘‘relax and drive’’ method, and
performs with comparable efficiency.

IV. Conclusion

In the current study, we have examined a few diatomic
molecules subjected to strong oscillating fields and calculated
the response of the electron density prior to ionization. We
employed a direct integration of the time-dependent Hartree–
Fock equation using atom-centered basis functions and a
unitary transformation approach with a modified midpoint
algorithm (MMUT-TDHF). Compared to the simple unitary
transform method, the presented algorithm can be used with a
larger step size, while still maintaining very good control of
numerical noise and integration errors.
For the simple two-state system of H2

1 in a minimal basis,
the TDHF calculations yield the same Rabi oscillations of the
state population as the analytic solution. When TDHF is used
to simulate H2 in a field of 3.17� 1013 W cm�2 and 456 nm, the
molecular orbital energies, electron populations and atomic
charges follow the field adiabatically. For more intense fields,
the orbital energies, populations and charges show a more
complicated pattern on top of the adiabatic response. To
validate the TDHF approach, the calculations were compared
to integrations using the time dependent Schrödinger equation.
Simulations of N2 in the field of the same intensity and
frequency also show a complex pattern evolving on top of
adiabatic oscillations. The MMUT-TDHF method is compu-
tationally efficient enough to be applied to larger systems which
will be studied in forthcoming papers.
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