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The Boltzmann entropy as traditionally presented in statistical mechanics textbooks is only a special
case and not Boltzmann’s fundamental definition. The difference becomes important when the
traditional expression for the entropy is applied to colloids, for which it makes incorrect predictions.
Boltzmann’s original definition of the entropy in terms of the probabilities of states of composite
systems leads to consistent and correct statistical mechanics and thermodynamics. © 2006 American
Association of Physics Teachers.
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I. INTRODUCTION

Colloids represent a problem for traditional statistical me-
chanics. They should be well represented by the results of
classical statistical mechanics for distinguishable particles.
Unfortunately, the usual expressions make nonsensical pre-
dictions.

In this paper I will discuss the problem with the traditional
textbook definition of entropy, trace it to a misunderstanding
of Boltzmann’s work, and show how the direct application of
Boltzmann’s fundamental definition of the entropy elimi-
nates the difficulties.

Colloids consist of a large number of small particles of
one material distributed uniformly in a different material.1

There are many different kinds of colloids, including paint,
ink, foam, glue, blood, and homogenized milk, and they are
of great commercial importance. The size of the suspended
particles varies from about a nanometer to several microns.
Colloidal particles are usually sufficiently large to be well
described by classical mechanics. They also differ from one
another significantly because they usually contain different
numbers of atoms in different arrangements with different
impurities. These properties makes them distinguishable in
the usual sense that the exchange of two particles produces a
different microscopic state. For these reasons colloids should
be well described by the classical statistical mechanics of
distinguishable particles.

II. THE TRADITIONAL CALCULATION OF THE
ENTROPY

Traditional statistical mechanics defines the “Boltzmann”
entropy of a classical system of distinguishable particles in
terms of the logarithm of a volume in phase space.2 For an
ideal gas this definition leads to the equation3,4

Strad,dist = kN�ln V +
3

2
ln

E

N
+ X� , �1�

where k is Boltzmann’s constant, N is the number of par-
ticles, V is the volume, E is the energy, and X is a universal
constant.

As pointed out by Gibbs, Eq. �1� for the entropy is not
extensive5 and hence he argued that Eq. �1� is incorrect.
However, many textbooks take the view that the entropy of a
system of distinguishable particles is not extensive.3,4 It does
not seem to be generally known that this lack leads to strange

predictions for the properties of colloids.
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III. THE PROBLEM WITH THE TRADITIONAL
DEFINITION OF ENTROPY

Consider homogenized milk as an example. Homogeniza-
tion reduces the size of the suspended globules of butterfat in
milk to about 0.5 microns, which is small enough to prevent
them from rapidly separating out. There are roughly 1012

globules of butterfat per liter of whole milk, which is suffi-
cient for the application of statistical mechanics. To simplify
the discussion without losing the essential features, we ap-
proximate milk as a dilute system, neglect the interactions
between the globules of fat, and treat them as an ideal gas.
The traditional form for the entropy would then be given by
Eq. �1�.

Imagine a container with a removable wall dividing it into
two subvolumes, V1 and V2, such that V1+V2=V. Let the
total volume V be 1 liter. Take a liter of milk and fill both
subvolumes. Let N1 and N2 be the numbers of fat globules in
each subvolume, with N=N1+N2. Clearly, the densities of fat
globules are the same in each subvolume, so that N1 /V1
=N2 /V2=N /V. Now remove the wall. The change in the total
traditional entropy

Strad,dist,total = Strad,dist,1 + Strad,dist,2 �2�

is

�Strad,dist,total = kN ln V − kN1 ln V1 − kN2 ln V2 �3a�

=kN1 ln V + kN2 ln V − kN1 ln V1

− kN2 ln V2 �3b�

=kN1 ln
V

V1
+ kN2 ln

V

V2
. �3c�

The change of the entropy in Eq. �3c� is clearly greater than
zero, so the entropy has increased, suggesting an irreversible
process. However, if we now replace the wall, the system
will return to the original macroscopic state and the original
entropy. Because the final macroscopic state is the same as
the initial one, replacing the wall requires a decrease in en-
tropy in direct violation of the second law of thermodynam-
ics.

The contradictions are just as unfortunate for other experi-
ments we could envision. Suppose that V1�V2, and we have
poured whole milk into V1 and skim milk �no suspended fat
particles� into V2. Initially, N1=N and N2=0. The initial tra-

ditional entropy would be
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Strad,dist,initial = kN�ln V1 +
3

2
ln

E

N
+ X� . �4�

Make a hole in the wall to let the whole milk and the skim
milk mix for a short time, but close the hole before the milk
in the two subvolumes has completely mixed. The densities
in the subvolumes now satisfy the inequalities

N1

V1
�

N

V
�

N2

V2
. �5�

The change in the traditional entropy for this experiment is

�Strad,dist,total = kN1 ln V1 + kN2 ln V2 − kN ln V1 �6a�

=− kN2 ln V1 + kN2 ln V2 �6b�

=− kN2 ln
V1

V2
. �6c�

Because I specified that V1�V2, Eq. �6c� implies that the
traditional entropy will decrease, �Strad,dist,total�0, even
though the process is clearly irreversible and the entropy
should increase.

IV. HOW DID BOLTZMANN REALLY DEFINE THE
ENTROPY?

We can see from these examples as well as others given in
Ref. 6 that the traditional expression for the entropy is un-
tenable. Oddly enough, Boltzmann would not have encoun-
tered these problems, because he would not have used Eq.
�1�. He wrote the entropy �in modern notation� as7

Sdist = kN�ln
V

N
+

3

2
ln

E

N
+ X + 1� . �7�

If we use Eq. �7�, the entropy remains constant in the first
experiment when the wall between the two subvolumes of
milk is either removed or reinserted, as is appropriate for a
reversible process. For the second experiment, it is easy to
show that �Sdist,total is always positive; the entropy increases
as it must for an irreversible process.

How did we arrive at a situation in which traditional
sources give an entropy that is both incorrect and different
from what Boltzmann had written? I believe that the devel-
opment of quantum mechanics led people to interpret Boltz-
mann’s classical papers differently than he had intended. The
quantum concept of indistinguishable particles presented
such a wonderful excuse to divide by N! that it was assumed
that Boltzmann would have used it. I disagree with this as-
sumption and the disagreement becomes important for col-
loids.

This issue is also closely connected with the incorrect but
widespread belief that Boltzmann defined the entropy as the
logarithm of a volume in phase space. In his 1877 paper
Boltzmann gave his interpretation of the second law and the
entropy.

“Der Anfangszustand wird in den meisten Fällen
ein sehr unwahrscheinlicher sein, von ihm wird
das System immer wahrscheinlicheren Zuständen
zueilen, bis es endlich den wahrscheinlichesten,
d.h. den des Wärmegleichgewichtes, erreicht hat.

Wenden wir dies auf den zweiten Hauptsatz an, so
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können wir diejenige Größe, welche man
gewöhnlich als die Entropie zu bezeichnen pflegt,
mit der Wahrscheinlichkeit des betreffenden
Zustandes identifizieren.”8

The initial state will usually be a very improbable
one. The system will run from this state to ever
more probable states until it reaches the most prob-
able one, which is the state of thermal equilibrium.
If we apply this to the second law, we can identify
the quantity that is usually called the entropy with
the probability of that state.9

Boltzmann also stressed the importance of analyzing a
composite system in defining the entropy.10 Following the
previous quote, Boltzmann continued:

“Denken wir uns ein System von Körpern, welche
für sich isoliert und nicht mit anderen Körpern in
Wechselwirkung sind, z.B. einen Körper von
höherer und einen von niedererer Temperatur oder
Spannung, und einen sogenannten Zwis-
chenkörper, welcher die Wärmeübertragung zwis-
chen beides vermittelt, oder um ein anderes
Beispiel zu wählen, ein Gefäß mit absolut glatten
und starren Wänden, dessen eine Hälfte mit Luft
von geringerer Temperatur oder Spannung, dessen
anderer Hälfte mit Luft von höherer Temperatur
oder Spannung erfüllt ist. Das System von
Körpern, welches wir uns gedacht haben, habe zu
Anfang der Zeit irgend einen Zustand; durch die
Wechselwirkung der Körper verändert sich dieser
Zustand; gemäß dem zweiten Hauptsatze muß
diese Veränderung immer so geschehen, daß die
gesamte Entropie aller Körper zunimmt; nach un-
serer gegenwärtigen Interpretation heißt dies
nichts anderes, als die Wahrscheinlichkeit des Ge-
samtzustandes aller dieser Körper wird immer
größer; das System von Körpern geht stets von
einem unwahrscheinlicheren zu einem wahrschein-
licheren Zustande über.”8

Consider a composite system that is isolated and
does not interact with other objects. For example,
consider an object at higher temperature or pres-
sure and another at a lower temperature or pres-
sure, with another object that transmits heat be-
tween them. Or, to take another example, consider
a container with absolutely smooth and rigid walls.
One half is filled with air at a lower temperature or
pressure and the other half is filled with air at a
higher temperature or pressure. This composite
system begins in an arbitrary state and by its inter-
actions changes its state. According to the second
law, these changes must always increase the total
entropy of the entire system. According to our
present interpretation, this means nothing other

than that the probability of the complete state of all
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the objects constantly increases. The composite
system goes steadily from a more improbable state
to a more probable state.9

Boltzmann identified the entropy with the probability of
the macroscopic state of a composite system. Although he
did not say here that the entropy is the logarithm of the
probability, this association appears later in the same paper
when he defined a quantity that he calls the “Permutabilitäts-
maß” �measure of permutations�.8 Because Boltzmann calcu-
lated probabilities by discretizing the relevant variables and
counting permutations, this quantity is essentially the loga-
rithm of the probability of the macroscopic state. He identi-
fies the Permutabilitätsmaß with the entropy for a special
case �to within additive and multiplicative constants�.

I believe that this identification is the point in Boltzmann’s
argument that has led people to believe that he defined en-
tropy in terms of the logarithm of a volume in phase space.
The Permutabilitätsmaß would be proportional to such a
quantity, and using it as a definition leads to the expression
for entropy given in Eq. �1�. This identification left systems
of distinguishable particles without the factor of 1 /N! that
Boltzmann �and Gibbs5� had included.

V. RESOLUTION OF THE PROBLEM

Once it is recognized that the entropy should be defined as
the logarithm of a probability, it is easy to see why earlier
workers had difficulty in explaining the factor of 1 /N!. It
looks as if the number of states has been overcounted, when
it has really been undercounted. Expressing the probability in
Boltzmann’s language of permutations, when a system of
distinguishable particles is allowed to exchange particles
with the rest of the world, we must include the permutations
of all possible combinations of particles that might enter or
leave the system. This number is enormous, so the traditional
expression seriously undercounts the permutations. Fortu-
nately, correct counting leads to physically sensible results,
including the factor of 1 /N! for both distinguishable and
indistinguishable classical particles.6

We can understand the basic idea by neglecting the energy
dependence and considering the probability distribution of
distinguishable ideal gas particles between two subvolumes.
We have

P�N1,N2� =
N!

N1!N2!
�V1

V
�N1�V2

V
�N2

, �8�

where P�N1 ,N2� is the probability of N1 particles in volume
V1 and N2 particles in volume V2. In Eq. �8�, N1+N2=N is
the fixed total number of particles and V1+V2=V is the total
volume. Following Boltzmann, we define the entropy of this
composite system by

Sdist�N1,V1,N2,V2� = k ln P�N1,N2� + C , �9�

where the constant C may depend on the constants N and V
but not on the variables N1, N2, V1, and V2.

We want the composite entropy to equal the sum of the
entropies of each subsystem in the thermodynamic limit.
Thus, the constant C should cancel out the N and V depen-
dence of k ln P�N1 ,N2� so that the composite entropy has no

explicit dependence on N and V and depends only on the
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subvolume variables. Because the N and V dependence of
k ln P�N1 ,N2� is given by −k ln�VN /N!�, we let C
=k ln�VN /N!�. In this way we find

Sdist�N1,V1,N2,V2� = k ln P�N1,N2� + k ln
VN

N!
= k ln

V1
N1

N1!

+ k ln
V2

N2

N2!
. �10�

We introduce the entropy function S�N ,V�=k ln�VN /N!� and
write �10� as

Sdist�N1,V1,N2,V2� = S�N1,V1� + S�N2,V2� . �11�

The composite entropy in Eq. �11� is the sum of the entropies
of the subsystems.

For a large system in equilibrium, N1=NV1 /V and N2
=NV2 /V, so that ln P is of order ln N, but the constant C is of
order N ln N, which is much larger. Thus, neglecting terms of
order 1 /N, we find that in equilibrium

Sdist�N1,V1,N2,V2� = S�N1,V1� + S�N2,V2� → S�N,V� .

�12�

The functional form of the entropy for the composite system
when the constraints are removed is the same as that for each
subsystem. This physically desirable feature follows from the
identification of the entropy with the logarithm of the prob-
ability in Eq. �9� plus a constant.

The general relation between a composite system of dis-
tinguishable classical particles and a corresponding system
with the same interactions but indistinguishable classical par-
ticles turns out to be quite simple. Let the probability distri-
bution for the number of indistinguishable particles in a gen-
eral composite system be written as

Pindist�E1,N1,V1,E2,N2,V2� =
�1�E1,N1,V1��2�E2,N2,V2�

��E,N,V�
,

�13�

where I have used the fact that the probability can be ex-
pressed by two factors that depend on the variables in each
subsystem �denoted as �1 and �2� and a normalization fac-
tor that depends only on the total variables �denoted as ��.6
The entropy is then given by

Sindist�E1,N1,V1,E2,N2,V2� = k ln Pindist�E1,N1,V1,E2,N2,V2�

+ k ln ��E,N,V� �14a�

=k ln �1�E1,N1,V1�

+ k ln �2�E2,N2,V2� , �14b�

where I have added a constant, k ln ��E ,N ,V� that depends
only on E, N, and V. If we make a similar identification as
before, we have

Sindist�E1,N1,V1,E2,N2,V2� = k ln Pindist�E1,N1,V1,E2,N2,V2�

+ S�E,N,V� �15a�

=S1�E1,N1,V1� + S1�E2,N2,V2� ,

�15b�

where Sj�Ej ,Nj ,Vj�	k ln � j�Ej ,Nj ,Vj�.

The number of states for a system of N distinguishable
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particles is equal to N! times the number of states in an
equivalent system of N indistinguishable particles. Thus,
to obtain the probability distribution for distinguishable
particles, we must modify Eq. �13� by letting � �N �
j j

colloids, which have too long been neglected.
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→� j�Nj�Nj! and ��N�→��N�N!. In addition we must mul-
tiply the expression in Eq. �13� by N! /N1!N2! to account for
permutations of the distinguishable particles between the
subsystems. This reasoning gives
Pdist�E1,N1,V,E2,N2,V2� =
�1�E1,N1,V1�N1!�2�E2,N2,V2�N2!

��E,N,V�N!

N!

N1!N2!
�16a�

=
�1�E1,N1,V1��2�E2,N2,V2�

��E,N,V�
�16b�

=Pindist�E1,N1,V1,E2,N2,V2� . �16c�
If we take the logarithm of Eq. �16c�, we see that
Sdist�E ,N ,V�=Sindist�E ,N ,V� for classical systems.

VI. CONCLUSIONS

Boltzmann’s genius was seen early in his career. Even
those of his contemporaries who argued against his ideas
recognized his brilliance. Unfortunately, his ideas were not
always completely understood and therefore not always com-
pletely appreciated.

In the preface to his book on Boltzmann’s life and work,
Cercignani commented that:

“It is remarkable that, with a few exceptions, Bolt-
zmann’s scientific papers have not been translated
into English, whereas this task has been accom-
plished for other scientists of equal or lesser impor-
tance. Because of this, much of Boltzmann’s work
is known through somebody else’s presentation,
not always faithful.”11

Secondary sources have dominated Boltzmann’s legacy to
such an extent that even the famous equation inscribed on his
tombstone, S=k log W, is written in a form due to Max
Planck.12,13 Planck did correctly choose the notation W to
indicate “Wahrscheinlichkeit” �probability�.

I was not aware of Boltzmann’s 1877 identification of the
entropy with the probability of macroscopic states of a com-
posite system until quite recently. In a previous paper,6 I
followed secondary sources in making the error of attributing
the shortcomings of Eq. �1� to Boltzmann. Although the
identification of the entropy with the logarithm of a volume
in phase space did originate with Boltzmann, it was only a
special case. Boltzmann’s fundamental definition of the en-
tropy in his 1877 paper has none of the shortcomings result-
ing from applying an equation for a special case beyond its
range of validity.

By returning to Boltzmann’s fundamental definition, I be-
lieve that we gain a deeper insight into the meaning of the
entropy. Gibbs’ paradox disappears. The equations for both
distinguishable and indistinguishable particles take on
clearer interpretations. Finally, we are led to a consistent sta-
tistical mechanics and thermodynamics for the description of
As we approach the 100th anniversary of Boltzmann’s sad
death by his own hand on 5 September 1906, it is fitting to
recognize that his insights into the foundations of statistical
physics even exceeded those for which he is already justly
famous.
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