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Abstract

We study the influence of third order spherical aberration on the Group Velocity

Dispersion (GVD) and on the Propagation Time Delay (PTD) of a plane pulse that

focalizes by a thin lens.

Applications in refractive/difractive PTD compensation systems and in gaussian

temporal-shaped pulses are analized.

1. Introduction

It is well known that the temporal and spatial profile of a femtosecond laser pulse is

strongly affected by the dispersion properties of the optical media.

The pioneering work of Z. Bor1-3 showed, in the framework of geometrical optics, that two

kind of effects occur in propagation of optical laser pulses through lenses: PTD (propagation

time delay) and GVD (group velocity dispersion).

Travelling in dispersive medium causes a temporal delay of the pulse front, which is

definded as the surface that coincides with the peak of the pulse, with respect to the phase

front. This effect (PTD) is responsabile for a first contribution to pulse broadening in time.

The dependence of the group velocity on wavelength (GVD), in dispersive optical systems,
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causes a second contribution to the broadening of the pulse.

Later, Kempe et al4 investigated the transmission of ultrashort light pulses by singlet

lens and achromatic lens doublet taking into account diffraction effects. In terms of Fourier

optics, he derived the basic equation for the transformation taking into account the disper-

sion in first and second order. Also, Kempe showed that the spatial size of a femtosecond

pulse in a focal plane is considerably larger compared with that of a focused monochromatic

wave. In two subsequents papers, Kempe and Rudolph5-6 presented a theoretical and exper-

imental study of the interplay of spherical and chromatic aberration of focusing femtosecond

light pulses by single lenses.

Reflective optics was proposed as a solution to these kind of pulse front distortion because

the light does not travel through any dispersive media but the problem with this approach

is experimental (path of the beam propagation and coating for high power).

Another solution is to use achromatic doublets since the delay between the phase front

and the pulse front is constant over the lens cross-section1. Also, the group-velocity disper-

sion is uniform across the beam so it can be compensated with grating or prism compressors.

As the propagation time is still dependent on wavelength, the construction of achromats

could be very complicated, depending on the working frequency range. All-glass achromats

fabrication involve exotic glasses, large apertures and extreme curvatures of the refractive

surfaces.

To avoid these problems and to achieve PTD compensation, the combination of lens and

zone plate was studied7 from a geometrical point of view. It was shown that partial compen-

sation is possible only if the two elements are separated at a certain distance. Later, based

in the paraxial approximation of the diffraction theory, it was demonstrated8 that com-

plete compensation is possible, even when the distance between the difractive and refractive

elements is zero.

However the former bibliography does not take into account the frequency dependence of

the spherical aberration of the lens. In this paper we describe how the third order spherical

aberration of a thin lens influences the GVD and PTD effects of a plane pulse that focalizes
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in the gaussian plane. We applied these results to the cases of a refractive/diffractive lens

system and to a gaussian temporal profile.

2. Amplitude field behind a thin lens of an incident plane pulse

A. The transforming lens

Let a monchromatic plane wave with amplitude A(ω) be incident to a thin lens whose

generalized pupil function is P (x1, y1). Fig. 1 shows the coordinate system, notation, and

lens parameters.

In the framework of Fourier optics, the amplitude field at distance z behind a lens is9:

U(x2, y2, z, ω) ∝
∫ ∞
−∞

∫ ∞
−∞
dx1dy1P (x1, y1)A(ω)t(x1, y1)

exp[
ka
2z
[(x2 − x1)

2 + (y2 − y1)
2]] (1)

where t(x1, y1) is the phase transformation factor that describes the operation of the lens:

t(x1, y1) = exp[kld]×

exp[−(kl − ka)
x21 + y

2
1

2
(
1

R1
−
1

R2
)] (2)

with kl and ka the wave-numbers vectors inside the lens and in air, respectively. R1 and R2

are the radii of curvature of the lens surfaces and d is the thickness of the lens along the

optical axis.

B. Spherical aberration

Considering axial incidence on the lens with object in infinity, we can restrict our analysis

of primary aberrations to the case of spherical aberration in the gaussian image plane (i.e.;

z corresponds to the paraxial focus of the lens). This situation can be described with the

following generalized pupil function:
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P (x1, y1) = exp[kaφ(x1, y1)],if x
2
1 + y

2
1 ≤ r

2
1 (3)

0,else (4)

with:

φ(x1, y1) : spherical aberration function.

φ(x1, y1) = −
1

4
B(x21 + y

2
1)
2 (5)

Geometrical theory of aberrations10 shows that the coefficient B can be expressed as:

B =
1

2
β +

n(ω)2

8(n(ω)− 1)2
℘3 −

n(ω)

2(n(ω) + 2)
ℵ2℘

+
1

2n(ω)(n(ω) + 2)
℘[
n(ω) + 2

2(n(ω)− 1)
σ + 2(n(ω) + 1)ℵ]2 (6)

with:

n(ω) : frequency-dependent refractive index of the lens material

℘ : power of the lens

℘ =
1

f
= (n(ω)− 1)(

1

R1
−
1

R2
)

σ = (n(ω)− 1)(
1

R1
+
1

R2
)

ℵ : Abbe invariant of the lens

ℵ = −
℘

2

β : deformation coefficient of the lens

β = (n(ω)− 1)(
C1

R31
−
C2

R32
)

Ci : deformation coefficients of the lens surfaces

C. The incident pulse

To specify the frequency dependence of the wave numbers, we expand them about the

center frequency ω0 of the incident pulse up to second order in ∆ω = ω − ω0:
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kl =
ω

c
n(ω) = k0n0[1 + a1∆ω + a2(∆ω)

2] (7)

kl − ka =
ω

c
[n(ω)− 1] = k0(n0 − 1)[1 + b1∆ω + b2(∆ω)

2] (8)

with:

a1 =
1

ω0
+
1

n0
D

a2 =
1

ω0n0
D +

1

2n0
D′

D ≡ (
dn

dω
)ω=ω0

D′ ≡ (
d2n

dω2
)ω=ω0

ka =
ω

c

c : speed of light in vacuo.

ka = k0(1 +
∆ω

ω0
) (9)

k0 ≡ ka(ω0)

n0 ≡ n(ω0)

bi → ai, changing n0 by (n0 − 1)

We also need to specify the frequency dependence of the aberration function:

B = B0 + B1∆ω + B2(∆ω)
2 (10)

The expressions that relate B0, B1, and B2 with the lens parameters n0, R1, R2, C1, C2,

D, D
′
, and the focal length of the thin lens for the central frequency, 1/f0 ≡ (n0−1)(1/R1−

1/R2), can be seen in Appendix.

D. Pulse evolution

We have used polar coordinates both in the pupil and in the image gaussian plane because

of the axial simmetry:

x21 + y
2
1 = r

2
1 = (a · r)

2 (11)
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x22 + y
2
2 = r

2
2 (12)

v ≡
ak0r2
f0

(13)

Then, replacing Eqs. (9-12) in (3-4), the generalized pupil function in polar coordinates

will be:

P (r) = exp[−k0
a4B0
4
r4]× exp[−k0(

a4

4
[B1 +B0/ω0])r

4∆ω]

×exp[−k0(
a4

4
[B2 +B1/ω0])r

4(∆ω)2]× circ(r) (14)

The first factor represents the ordinary monochromatic contribution to the spherical

aberration due to the center frequency ω0. The other factors will influence the PTD and

the GVD phenomena respectively.

In these coordinates and considering the former definitions, we can integrate Eq. (1)

over the azimutal coordinate to obtain:

U(v,∆ω) ∝ A(∆ω)exp[−k0n0d∆ω(a1 + a2∆ω)]exp[−
v2

4N
(1 +

∆ω

ω0
)]

×
∫ 1
0
rdrJ0{rv[1 +

∆ω

ω0
]}

×exp[−
k0

2f0
(ar)2∆ω(b1 −

1

ω0
+ b2∆ω)]

×exp[−k0
B0
4
(ar)4]

×exp[−k0
1

4
(B1 +B0/ω0)(ar)

4∆ω]

×exp[−k0
1

4
(B2 +B1/ω0)(ar)

4(∆ω)2] (15)

where J0 denotes the Bessel function of the first kind of order zero and N ≡ a2k0/2f0 is

the Fresnel Number. In general the relation N � v2/4 is valid, and we can neglect the

corresponding phase factor in Eq. (15).

If we perform an inverse Fourier transform the pulse field will be:

U(v, t) ∝
∫ ∞
−∞
d(∆ω)A(∆ω)

∫ 1
0
rdrJ0{rv[1 +

∆ω

ω0
]}

×exp[−k0
B0

4
(ar)4]
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×exp[−(∆ω)2{δ′ − δr2 − δ”r4}]

×exp[−(∆ω){t− τ ′ + τr2 + τ ”r4}] (16)

with:

δ ≡
a2k0
2f0
b2 (17)

δ′ ≡ k0n0da2 (18)

δ
′′
≡
a4k0

4
(B2 +

B1

ω0
) (19)

τ ≡
a2k0

2f0(n0 − 1)
D (20)

τ ′ ≡ k0n0da1 (21)

τ
′′
≡
a4k0

4
(B1 +

B0

ω0
) (22)

The third and fourth exponetial factors represents the GVD and PTD effects, respec-

tively, with the corrections owing to the contribution of the spherical aberration in the first

and second order of the expansion.

Not only the spherical aberration distorts the radius-dependent chirp due to the focusing

properties of the lens, (∆ω)2δr2, but the radius-dependent delay in the focal plane (time

delay between the pulse front and the phase front or PTD), τr2, as well.

We can conclude, for example, that the design of a system capable of compensating PTD

should take into account the remanent PTD due to spherical aberration (τ
′′
r4).

E. Relative wheight of the spherical aberration

We can estimate the contribution of the spherical aberration to GVD and PTD, by consid-

ering the ratio of their corresponding phase terms:

WGVD ≡
δ
′′
r4

δr2
)MAX = f0a

2 (B2 +B1/ω0)

(3/2)(D/ω0(n0 − 1))
(23)

WPTD ≡
τ
′′
r4

τr2
)MAX = f0a

2 (B1 +B0/ω0)

2D/(n0 − 1)
(24)

As the coefficients B0, B1, and B2 are complicated functions of the lens parameters (see

Appendix I) we reduce their degrees of freedom chosing the lens glass type. In this case
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we consider fused sillica so n(λ), and its derivatives, turn out to be known functions11. As

we fixed the central wavelength of the incident pulse radiation at 620nm, we were able to

determine univocally the values of n(0), D and D′.

Considering usual ultrafast microscopy parameters, we analized the case of focal length

f0 = 19.0mm and half aperture a = 6.3mm. Hence we can express R2 as a function of R1

and choose it as the first degree of freedom. Allowing the deformation parameters of the

lens surfaces to be equal (C1 = C2 ≡ C) we obtained the second degree of freedom.

In this way, WGVD and WPTD are functions of only two variables: R1 and C.

Another useful relation is the aberration expressed in terms of the wavelength as a

function of R1 and C. Considering that the first exponential factor in Eq. (14) represents

the monchromatic contribution of the spherical aberration we can define:

Nλ0 ≡
a4

4λ0
B0 (25)

as a measure of the amount of spherical aberration present in the lens.

Fig. 2, 3 and 4 shows maps of Nλ0 , WGVD and WPTD as functions of R1 and C. These

figures describe the global influence of the spherical aberration over the main features of a

pulse transforming lens.

3. Applications

I. The refractive/difractive lens system

Once we know the effect of spherical aberration over pulse transformation, we will apply

the former results to the case of PTD compensation (assuming as usual that GVD effects

are neglible) using a difractive lens.

Due to aberrations, the use of a refractive/difractive lens system could not be fully effec-

tive to compensate PTD effects (i.e.; spherical aberration could be an important remanent

contribution to PTD).
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To place a difractive lens rigth after the refractive lens imply to insert the following

transmission function in Eq. (1):

F (r) = cos{(
k(ω)

2r0
)r21}, (26)

being r0 the primary focus. In our notation, this function can be expressed as:

F (r) =
1

2
{exp[(

k0a
2

2r0
)(1 + ∆ω/ω0)r

2] + exp[−(
k0a

2

2r0
)(1 + ∆ω/ω0)r

2]} (27)

Eq. (27) shows that the difractive lens will influence the PTD effect by its exponential

factors in ∆ω.

Applying the criteria of reference8 to the amplitude field of the composed system (i.e.; Eq.

(1) with F (r)), we found the conditions of PTD compensation (and hence to compensate first

order chromatic aberration of the refractive lens by the opposite dispersion in the difractive

lens). In other words, we found the value of zc of z and the relationship between the focii

of both lenses that make exponents up to ∆ω equal zero:

1

r0
=
1

2

Dω0

f0(n0 − 1)
+
a2

4
B1r

2 (28)

1

zc
= −

1

f1
±
1

r0
−
a2

2
B0r

2 (29)

We can see that the former Eqs. are spatial-aberration dependent through coefficients

B0 and B1. According to the magnitude of a, the deviations from the ideal situation could

be important.

II. Gaussian pulses

For a temporal gaussian-shaped plane pulse that is transformed by a singlet, we find the

temporal and spatial distribution of the field.

In this case, the following functions are Fourier pairs:

a(t) = exp[−(t/T )2] ←→ A(∆ω) = exp[−T 2(∆ω)2] (30)

where T is the temporal width of the pulse.
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We will take into acount pulses as short as 100fs, so we can assume that (∆ω/ω0)� 1

in the argument of J0 with considerable accuracy for most cases of experimental relevance
4.

Solving the integral of Eq. (16) on ∆ω we find that:

U(v, t) ∝
∫ 1
0
rdrJ0(rv)exp[−k0

B0

4
(ar)4]

×{
1 + [δ′ − δr2 − δ

′′
r4]/T 2

1 + ([δ′ − δr2 − δ′′r4]/T 2)2
}
1
2

×exp[−
[t− τ ′ + τr2 + τ

′′
r4]2

T 2(1 + ([δ′ − δr2 − δ′′r4]/T 2)2)
·

·(1 + ([δ′ − δr2 − δ
′′
r4]/T 2)] (31)

Assuming that GVD does not affect the intensity ditribution essentially (i.e.; aberrations

do not contribute to increase second order effects relative to first order effects) we can

consider only the features that lead to the generalized PTD:

U(v, t) ∝
∫ 1
0
rdrJ0(rv)exp[−k0

B0
4
(ar)4] (32)

×exp[−(
t − τ ′

T
+
τr2

T
+
τ
′′
r4

T
)2]

We depicted the normalized intensity distribution I(v, t) ∝| U(v, t) |2 as a function of

(t − τ ′)/T for a pulse temporal width of 30fs . Fig. 5 shows the case free from spherical

aberration (in agree with reference4) and Fig. 6 corresponds to a λ0-spherical aberration

(Nλ0 ∼ 1). It is possible to see how the spherical aberration modifies the temporal scale by

moving the peak of the intensity distribution.

4. Conclusions

In the general frame of deviations from ideal plane pulse transformation by lens systems,

we have studied the contribution of the spherical aberration to the GVD and PTD effects

of a pulse that is focalized in the gaussian plane by a thin lens. Even though, in the case

of a thin singlet, spherical aberration can be diminished by defocusing, the deviations from

the ideal situation on those effects are still present.

10



Hence, to describe those deviations from ideality, we chose the radius of curvature and

the surface deformation coefficient of the lens as degrees of freedom. This fact allowed us to

quantify the additional chirp and time delay due to spherical aberration and its dependence

on those parameters, as Fig. 2, 3, and 4 showed.

We applied the former results to two special situations which deviations from ideality

were expected.

First, considering PTD compensation by refractive/difractive systems, we calculated the

corrections due to spherical aberration in the focci relation and in the focalization condition.

Second, for gaussian pulses in temporal profile, we showed that even a λ0-spherical aber-

ration is capable to modify the space and temporal structure of the intensity distribution.

Additionally, as a tool for calculation we presented a compact form of the expansion of

the spherical aberration up to second order in the frequency shift.

Finally, we considered that these studies can be generalized to more complex lens systems

commonly used in ultrashort pulse phenomena.

The authors aknowledge the comments made by one of the reviewers that allowed them

to improve the presentation of the paper. This research was supported by Universidad

de Buenos Aires. M. Gil is a member of Carrera del Investigador Cientifico (CONICET),

Argentina.

Appendix A

Eq. 6 shows the spherical coefficient B as a function of n(ω) and the lens parameters. The

task is to expand each of its terms up to second order in ∆ω, to perform all the operations,

11



and to arrange the final exppresion by the corresponding order. In other words, to calculate

the explicit expressions of B0, B1, and B2.

We present a compact form of the final result for numerical applications.

Defining:

K0 ≡ (
1

R1
−
1

R2
) (A1)

K1 ≡ (
1

R1
+
1

R2
) (A2)

K2 ≡ (
C1

R31
−
C2

R32
) (A3)

We can express B0 as:

B0 =
6∑
i=1

B0i (A4)

with:

B01 =
1

8
(n0 − 1)n

2
0K
3
0 (A5)

B02 = −
1

8

(n0 − 1)3n0
(n0 + 2)

K30 (A6)

B03 =
1

2
(n0 − 1)K

3
2 (A7)

B04 =
1

8

(n0 − 1)(n0 + 2)

n0

2

K0K
2
1 (A8)

B05 = −
1

2

(n0 + 1)(n0 − 1)2

n0
K1K

2
0 (A9)

B06 =
1

2

(n0 − 1)3(n0 + 1)2

n0(n0 + 2)
K30 (A10)

As we will see later, it is convinient to associate the above six quantities to the compo-

nents of a vector B0i. Assuming the double index summation convention, we can write:

B0 = B0iU
i, (A11)

if we define U i as the unit vector (i.e.; the six components equal 1).

The expansion up to second order makes us to define the following quantities:
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g10 ≡
1

n0
D (A12)

g20 ≡
1

2n0

D

ω0
(A13)

g11 ≡
1

(n0 − 1)
D (A14)

g21 ≡
1

2(n0 − 1)

D

ω0
(A15)

g12 ≡
1

(n0 + 1)
D (A16)

g22 ≡
1

2(n0 + 1)

D

ω0
(A17)

g13 ≡
1

(n0 + 2)
D (A18)

g23 ≡
1

2(n0 + 2)

D

ω0
(A19)

If we construct two new vectors Gi1 and G
i
2 with the following components:

G11 ≡ g11 + 2g10 (A20)

G21 ≡ 3g11 + g10 − g13 (A21)

G31 ≡ g11 (A22)

G41 ≡ g11 + g13 − g10 (A23)

G51 ≡ g12 + 2g11 − g10 (A24)

G61 ≡ 3g11 + 2g12 − g10 − g13 (A25)

and:

G12 ≡ g21 + g
2
10 + 2g20 + 2g11g10 (A26)

G22 ≡ g
2
11 + g21 + g20 + g

2
13 − g23 − g10g13 + 3g11g10 − 3g11g13 (A27)

G32 ≡ g21 (A28)

G42 ≡ g21 + g23 + g11g13 + g
2
10 − g20 + g11g10 − g13g10 (A29)

G52 ≡ g22 + g
2
11 + 2g12g11 + g

2
10 − g20 − g12g10 − 2g11g10 (A30)

G62 ≡ 3g
2
11 + 3g21 + g

2
12 + 2g22 + 6g11g12 + g

2
10 − g20 + g

2
13 − g23 + g10g13

−[3g11 + 2g12][g10 + g13], (A31)
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it is possible to demonstrate that:

B1 = B0iG
i
1 (A32)

B2 = B0iG
i
2 (A33)

In brief, Eq. (A4), (A32), and (A33) describes the coefficients B0, B1, and B2 as a

function of the lens parameters.
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Figure captions

Fig. 1: (a) Coordinate system and (b) lens parameters.

Fig. 2: Spherical aberration as a function of the radius of curvature R1 and the deformation

coefficient of one surface of the lens C. The arrow points in the direction of increasing

C which takes equidistant values from -0.74 to -0.44 for each curve.

Fig. 3: Relative weigth between the lineal chirp and the spherical aberration GVD-contri-

bution as a function of the radius of curvature R1 and the deformation coefficient of

one surface of the lens C. The arrow points in the direction of increasing C which

takes equidistant values from -0.74 to -0.44 for each curve.

Fig. 4: Relative weigth between the time delay between and spherical aberration PTD-contri-

bution as a function of the radius of curvature R1 and the deformation coefficient of

one surface of the lens C. The arrow points in the direction of increasing C which

takes equidistant values from -0.74 to -0.44 for each curve.

Fig. 5: Intensity distribution I(v,t) in the focal plane. Free from aberrations.

Fig. 6: Intensity distribution I(v,t) in the focal plane. Spherical aberration of λ0.
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