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The interaction of a molecule with a weak external electromagnetic field, or the
interactions within a molecule involving internal electromagnetic moments such as
a nuclear magnetic dipole moment or a nuclear electric quadrupole moment, are all
described in terms of so-called ”molecular properties”. These are intrinsic properties
of an electronic state of a molecule and are independent of the strength of the external
field or internal moments.

Molecular properties include the electric dipole moment, the electric field gra-
dient tensor, the frequency dependent polarizability tensor, the nuclear magnetic
shielding tensor, the indirect nuclear spin-spin coupling tensor among many others.
They play an important role in the interpretation of numerous phenomena includ-
ing the refractive index, the Stark effect, the Kerr effect, nuclear magnetic resonance
spectra. Long-range interactions between molecules can also be understood in terms
of molecular electric moments.

In the following the properties will be defined in a classical context in chapter
1. These definitions will then be used in chapter 2 to derive quantum mechani-
cal expressions for the properties. The approach used is semi-classical since only
the electrons are treated quantum mechanically (and non-relativistically), whereas
fields and nuclei are treated classically. Approximate methods which can be used to
calculate molecular electromagnetic properties are described in chapter 3. The ex-
position is restricted to a discussion of ab initio methods and the Born-Oppenheimer
approximation is assumed throughout.

These notes grew out of lecture notes which I have prepared for the First Mer-
cosur Summerschool on Molecular Physics held in Corrientes, Argentina, 14. - 23.
February 1999. A shortened version of the notes, to which Martin J. Packer, Uni-
versity of Sheffield, also contributed, is published as chapter 7 entitled The Ab Initio
Calculation of Molecular Properties other than the Potential Energy Surface in the
book Computational Molecular Spectroscopy edited by P. R. Bunker and P. Jensen,
John Wiley and Sons, London (2000). During the fall of 1999 the original notes
were largely extended and consequently used as textbook for the course Ab Initio
Calculation of Electromagnetic Properties at the University of Copenhagen and dur-
ing the Second Mercosur Summerschool on Molecular Physics held in Corrientes,
Argentina, 7. - 22. February 2000.
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Chapter 1

Definition of Molecular Properties

The classical definition of the molecular properties is discussed in this chapter. For
that purpose a molecule is represented by a continuous static or dynamic distribu-
tion of positive and negative charges with charge density p(7) and current density
;(F) Although in the classical context it is unnecessary to assume a continuous
distribution of charges, this is convenient in the light of the quantum mechanical
treatment which follows.

1.1 Electric Multipole Expansion

Electric charges in a molecule give rise to an electric field and an electrostatic po-
tential. Other molecules in the neighbourhood experience this field. Knowledge of
the electrostatic potential around a molecule is, therefore, important for the study
of long-range intermolecular interactions.

For a distribution of charges with charge density p(7) the electrostatic potential

—

¢*(R) is given as superposition of the potentials due to the individual charges [1, 2]

(_FI) dr', (1.1)

—»,‘

- 1 P
P(R) =
' (R) 47ey /T, | R

where d7’ stands for dz'dy'dz' throughout chapter 1 and [, denotes a triple integral
J [ [ over the appropriate volume. This expression is exact but often it is not
particularly useful because an integration has to be performed for each observation
point R and because complete knowledge of the charge distribution p(7) is required.

For an observation point R far from the charge distribution it is possible to

expand 7 L 7 in a Taylor series around an origin 7, within the charge distribution
—-Tr




LAl AL L AJAU L. ASALAL LA VAL L ALY UJUAdL IVAJSAJAJ\J UV AdilAAUL 4 10UV AL dJavvL LA

1 1 0 1
= = — + ———— | (T, — Toq 1.2
- %:(ar;m_m)( ) (12)

1 / !
_Z ((97" 8,,,6 | R Y |) (Ta _TO,OL)(rﬂ To,ﬂ) +.oooy

where the derivatives have to be evaluated at the point 7/ = 7,. The Greek subscripts
a, (3, etc. denote vector or tensor components in the molecule fixed cartesian co-
ordinate system. A summation over a Greek subscript will here and in the following
denote summation over all three Cartesian components. Insertion in the expression
for the electrostatic potential, equation (1.1), yields

]‘ !
= 7') dr’
\R—Fo\/rfp( )
=1/ I_ !
*Z(aw 4,|)/p<r><fra Fow) d

1

i Z<3T %\R—*'O/ pF") (1l = o) (s — o) dr’
ro ] "

¢*(R) =

4eq

By evaluating the derivatives and defining the electric moments of the charge dis-
tribution as

0= [ o ar, (14)
palfe) = [ (1= o) p(F) (15)

Qus(72) = [ (1= 7o) (15 = 10s) 97" (16)
we obtain a multipole expansion of the electrostatic potential
4meg | R— ‘ R -7 |3
1 n a—Toa) (Rs = To,8) — bas(B — 7,)?
+ = Qoz T : = ’ +
Z ’ |7, [?

The zeroth order electric moment q is the total charge, u, are components of the first
order electric moment, called the electric dipole moment, and ()5 are components of
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the second order electric moment tensor. The contribution from the higher moments
in the series will become negligible as the distance from the origin increases and the
potential will then be accurately described by only the charge and dipole moment
terms. Convergence of the multipole series for a particular value of R depends on
the precise form of the charge distribution.

An important feature of the electric multipole moments is that the first nonva-
nishing moment of a charge distribution is independent of the choice of origin 7.
However, all the higher moments depend on the origin. Thus the charge of an ion
and the dipole moment of a neutral molecule are both independent of the origin
7, whereas the dipole molecule of an ion or the quadrupole moment of a neutral
molecule with nonvanishing dipole moment is not.

Frequently a traceless quadrupole moment tensor ©,s with only five independent
elements is defined as

Ouslii) = [ [30% = oa) (5 = rag) = bup (7' = ] o) dr'. (19

It essentially measures the deviation from spherical symmetry. To avoid confusion
it is customary to take equation (1.6) as defining the second electric moment and
equation (1.8) as defining the electric quadrupole moment.

Having obtained the electric multipole moments of a distribution of charges, we
can calculate the electrostatic potential for any point R from the simple formula
in equation (1.8) instead of evaluating the more complicated expression in equation
(1.1) for each R. This explains the importance of the electric multipole moments
for the description of intermolecular forces [7].

1.2 Potential Energy in an Electric Field

Electric multipole moments also play an important role in the description of inter-
actions between molecules and external electric fields. The potential energy W of a
distribution of charges immersed in an external static electric field E is given as [8]

W = / ) 65 dr (19)

where ¢Z(7 ') is the scalar potential associated with the electric field. This is an
exact expression for the potential energy, but evaluation of equation (1.9) requires
that the charge density p(7 ') and the electric potential ¢Z(7 ') are known for all
values of 7'. A more useful expression can be obtained, if we expand the scalar

potential in a Taylor series around 7, [3, 9, 6]

(9 E(=1
O = )+ 0 o) g
1 82 E(=1
+ §Z(r;—ro,a)(rg—ro,ﬁ)(;f,7g,ﬁ)+ (1.10)
af a
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where the derivatives have to evaluated again at 7' = 7,. The derivatives of the
scalar potential ¢¥ define the electric field E,

Eo(T,) = | (1.11)
the electric field gradient tensor E,g
82¢E(F /)
Eop(To) = —— 77 , (1.12)
or,0ry I

etc. On insertion of equations (1.10) - (1.12) in equation (1.9) one obtains for the
potential energy

W = ¢"(,) / (7 ) dr' = Eo(f,) / I(r; — Toa) p(F) dT’
- %%ﬂ: Eop(75) /T,(?“L — Toq) (Th—Tog) p(F') dr' +....  (1.13)

The integrals over p(7') are again the electric moments defined in equations (1.4) -
(1.6). The energy W of the interaction between a charge distribution and a static
but not homogeneous electric field can therefore be expressed in terms of the electric
moments of the charge distribution

W =gq d)E(Fo) - ZMG(FO)EQ(FO) - % ZQaﬁ(Fo)Eaﬁ(Fo) +... (1'14)
a ap

similar to the multipole expansion of the electrostatic potential of a charge distribu-
tion in equation 1.8. Alternatively using the quadrupole moment tensor © we can
write for the interaction energy

W= q 65() — 3 1af) Bali) - % N Oup (7)) Bas(Fo) + - - (1.15)
a of

From this equation we can see that dipole moment and the quadrupole moment
can also be defined as derivatives of the potential energy with respect to the field
strength F, or field gradient F,g

oW

ta(To) = AL (1.16)
L oW

@aﬂ(’ro) = —3m . (117)

These definitions will be used in the derivation of quantum mechanical expressions
for the moments in chapter 2.
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1.3 Induced Electric Moments and Polarizabili-
ties

So far it has been assumed that the distribution of charges is fixed and is not influ-
enced by the external electric field apart from a change in its energy. However, if the
charge distribution can be polarized in the presence of the electric field, it will redis-
tribute itself such that the total energy is minimized. As a result, the moments of
the charge distribution will change. The field dependent moments ,umd( ), OvHE )
are induced by the external field in addition to the field independent, so called per-
manent, moments u5°", ©75. Traditionally [7] the moments of a charge distribution
in the presence of an external field E, and field gradient E,3 are expanded in the
following way

to(E,E) = & + pirY(E, E)
Ko (E E) = peT+ZaaBEﬂ+ ZBQB’YEBE + = Z’)’QB,YJEBE E;
675
T3 ZA vy + 3 ZBaﬂ,'yJEBEyJ"F cee (1.18)
ﬁ"r ﬂ75
Ous(E,B) = O +O(E, E)
Ou(E,E) = @P"JrZA,,, sB, + = ZByaaﬂE E;
~¥é
+ ZCQWEW; + . (1.19)
Y4

where here and in the rest of this section the origin dependence ”(7,)” of the moments
is not written out explicitly, for the sake of readability, as well as E, and E,z are
meant as abbreviations for E,(7,) and E,z(7,), respectively.

This equation defines the dipole polarizability tensor a,g, the first (3,3, and
second Yag4s dipole hyperpolarizability tensors, the dipole-quadrupole polarizability
tensor A, g, the quadrupole-quadrupole polarizability tensor Cyg,,6 and the dipole-
quadrupole hyperpolarizability tensor B,g,s; as derivatives of the field dependent
moments, as shown in Table 1.1.

Since we are concerned with a polarizable charge distribution, it is not possible
to obtain an expression for the energy W of the charge distribution in the presence
of the external field and field gradient by s1mp1y inserting the field and field grad1ent
dependent moments, pq(E, E) and @"‘d(E E) from equations (1.18) and (1.19), in
the multipole expansion of the energy in equation (1.15). Instead, we first want to
expand the field and field gradient dependent energy W in a Taylor series in the

(© 2001 by Stephan P. A. Sauer 7 V 3.1 Corrientes July 2001
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field and field gradient

W(E,E) = WO +Y" (%) o+ Zﬁ: (;EW ) Eap
+ 5 (ag?ﬂ ) Baa 3 <8E852VE6) Hasls
afyd
2
i % <8£<¥567> Fallan
3 3

+ %%} (sm0m205, ) FoFutc 4 %aﬁzﬁ (eramaEs) =505
* 2%% <8E08222VE78E5> Paliphnbis + oo (120

where the derivatives are to be evaluated at zero electric field and field gradient.
The first derivatives of the energy with respect to the field and field gradient are
the electric dipole moment and electric quadrupole moment, as shown in equations
(1.16) and (1.17). Evaluating them at at zero electric field and field gradient yields
the permanent moments. The higher derivatives of the energy can then be obtained
by taking the appropriate derivatives of the expansions of the field and field gradient
dependent dipole and quadrupole moment in equations (1.18) and (1.19). As shown
in the last column of Table 1.1, they turn out to be the various polarizabilities and
hyperpolarizabilities. These alternative definitions of the (hyper)polarizabilities as
derivatives of the energy will be employed in the latter chapters in order to obtain
quantum mechanical expressions for these properties.

Substituting for the derivatives we finally obtain the well known expression [7]
for the energy

W(E) =q ¢" — Zu””E - —Z@ZE’EQB

aB
1 1
—3 Z Qap okl — ¢ Y CaprysBapErs — 3 Y AasrBaEg,
ap aﬂ’ﬁ afy
1
% Y BapyBaBsE, — Z BopnsBaEpEys
afy aﬂ’yé
1
- ﬂ Z ’Vaﬁ'yéEaEﬂE'yEé .. . (121)

aByd

where again the origin dependence ”(7,)” of the permanent moments and of the
potential ¢¥ was dropped and E, and E.p are used as abbreviations for E,(7,) and
E.(7,), respectively. The importance of equation (1.21) is that knowing the various
(hyper)polarizabilities one can calculate from this expression the change in energy

(© 2001 by Stephan P. A. Sauer 8 V 3.1 Corrientes July 2001
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of a charge distribution due to an external electric field or field gradient of arbitrary
strength.

Table 1.1 Definitions of tensor components of the electric polarizabilities and hyper-
polarizabilities as derivatives® of components of the field dependent electric dipole
ta(E) and quadrupole ©,5(E) moments or of the energy W(E)

Ha(E) ©,5(E) W(E)
]
Mo ~3E
)
per _
or 335
9 _ __
Yap 9, 0E0E,
0 0°
Bty 0E,0E, o  OE,0Ez0E,
0° 0"
Yobrd 0E;0E. 0, . T 9E;0E,0E;0E,
0 ] 0°
Aaas 95, E, ~33E,,0F.,
2 32 83
Bagns 3 67 Y 37
! 0E,;0E5 0E;0E, 0E,;0E50E,
] 0?
Crias - Bl T3 9E.30B0

@) All derivatives have to be evaluated at zero field and field gradient.

In the same way as the charge distribution in a molecule is influenced by an exter-
nal electric field it is also modified by the electric field due to other molecules in the
neighbourhood. Permanent electric moments of the surrounding molecules induce
moments in the molecule leading to a contribution to the intermolecular interaction
energy. Since this so-called induction energy is determined by the polarizabilities
of the molecules, detailed knowledge of the polarizabilities is also important for the
description of intermolecular forces [7].

(© 2001 by Stephan P. A. Sauer 9 V 3.1 Corrientes July 2001
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1.4 Magnetic Multipole Expansion

A dynamic system of charges with charge density p(7) gives rise to a current density
7 13, 10 )
3(7) = p(7) 9(7) (1.22)

where #(7) is the velocity distribution. The vector potential A’(R) due to this
current density is given as [11]

A(R) = /|R =y dr' . (1.23)

around an origin 7, within the charge distri-

Using the Taylor expansion of IR =

bution, equation (1.2), we can write a component of the vector potential [3, 11]
as

i D Ho 1 Y ’
AR = — —— o d
W = e [ e

Ho Rﬂ To,8 / . = ’ '
= JalT rg —Top) dT + ... . 1.24
4 ‘ R— 'Fo |3 T! ( ) ( g B) ( )

This can be simplified by using the following relation for an arbitrary function f(7')
[ (956) -3y ar = 0 (1.25)

valid [11] for a steady current distribution (V - j = 0). Chosing f = 7/, showes that
the first (monopole) term in Eq. (1.24) vanishes and we will not consider higher
terms than the second (dipole) term in accordance with the electric quadrupole
approximation. The remaining (dipole) term

Al (R) Z | R_ rO,Tg/( B_TO’B ]a( )dT +. (1.26)

can also be written in terms of a symmetric and antisymmetric part

i (D R To / . o / . = !
Al = LT [ (5 = 1) dal )+ 02 = o) 7))
# [ (0= 7o) ) = (= 7o) i) 7

+ ... (1.27)

(© 2001 by Stephan P. A. Sauer 10 V 3.1 Corrientes July 2001
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Using Eq. (1.25) with f = (r;, — 70a)(r5 — 70,8) shows that the first term vanishes
and one obtains

— /_,LO 1/ [ o = 2o (R' 7_.') !
AN(R)="— = — 7o) X J(')| X —————d7 + ... 1.28
B =g 5 [ [ =r <o) < T (1.28)
or .
o o o ., (R F)
AR =L ey x ~——To 1.29
O (1.29)
where the first order magnetic moment 7(7,), the magnetic dipole moment, is de-

fined as

m(r,) = ;/me—apdwq

7-/

1 N N X
- §/d7p&)@ _ Y X (7 (1.30)

i
The absence of a zeroth order moment in equation (1.29) reflects that magnetic
monopole moments do not exist. Higher magnetic moments are seldomly encoun-
tered [12] and are therefore not considered here. Neither do magnetic dipole moments
play such an important role as their electric counterparts since most molecules do
not posse a permanent magnetic moment. However, nuclei with non zero spin have
a magnetic moment and equation (1.29) for their vector potential will be used in
the following chapters.

1.5 Potential Energy in an Magnetic Induction

The potential energy of a distribution of charges immersed in an external magnetic
induction B can be expressed in terms of the magnetic moments analogously to the
electric field case in section 1.2. In general, the potential energy W of a current
distribution in the presence of an external magnetic induction is given by [13]

W:—/ﬂwyﬁwqmg (1.31)

where AB(7') is the vector potential associated with the magnetic induction B,
B(F) =V x A(7) . (1.32)

A simpler expression for the potential energy can be obtained by expanding a com-
ponent of the vector potential AZ(7’) in a Taylor series around an origin 7, [14]

HAB(7/
AB(7! Z — T05) (%) + .. (1.33)
B 7 l=

—

To
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which leads to

W= =Y A5(7,) / jal") dr'—zﬂ: ((9145775?’)) /Tl(r;, —Tog)ali’’) dT’

T (1.34)

However, the integral in the first term was shown to vanish in section 1.4 and the
second term can again be rewritten (Eq. (1.25)), such that

DAB (7 1 o (7
W = = Z (%) 5 \/TI I:(,rlﬁ - T.O,ﬁ) ]a(,r I) - (,r:l - TO,O&) ]B(Ir I)i| dT’

B
+ .. (1.35)

or in vector notation

W:—%/TI (7 -7 x i) - (9 < A2) | ar'+ ... (136)

7 =i,

Using the definition of the magnetic dipole moment given in equation (1.30) and
the definition of the vector potential given in equation (1.32) the expansion of the
energy can be written as

W == mq(7%)Ba(F,) (1.37)

From this equation it can be seen that as an alternative to equation (1.30) the
magnetic dipole moment can be defined as the derivative of the potential energy
with respect to the field induction B,,

o ow
ma(ro) = _m . (138)

1.6 Induced Magnetic Moments and Magnetiz-
abilies

In the presence of a magnetic induction B the energy of the distribution of moving
charges changes according to equation (1.37). A polarizable distribution of charges
will adjust itself in order to minimize the energy. This leads to a change in the
current density and in the moments of the current density, such that an additional
current density j"¢(7) and magnetic moment 7 are induced. An important source
of magnetic induction, apart from an external magnetic field, is a neighbouring
magnetic moment: in particular the magnetic dipole moment Mm% of some nucleus

K. The magnetic dipole moment 77 (B, ) in the presence of an external magnetic

(© 2001 by Stephan P. A. Sauer 12 V 3.1 Corrientes July 2001
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induction and a nuclear magnetic moment can again be expanded in a Taylor series
as [14]

’mK) — mger+m:'xnd(§’mK)

() = mBT 4+ &apBs— Y opmE + ..., (1.39)
5 5

Ma

o T

M

where &,3 and affa are components of the dipole magnetizability and nuclear mag-
netic shielding tensor, respectively. The latter is closely related to the chemical shift
measured in nuclear magnetic resonance spectroscopy and will be discussed in more
detail in section 1.8.

Like in the electric case an expression for the energy can be obtained by first
expanding it in a Taylor series

- oW 1 W
- K — (0) - _ - B
W(B,m%) = W +Za:(aBa)Ba+2%;<aBaaBﬂ>Ba 5

+ ;(W) mﬂBa + ... y (140)

where again the derivatives have to be evaluated at zero magnetic field and zero
nuclear magnetic moment. The first derivative of the energy is the magnetic dipole
moment, equation (1.38). The permanent magnetic dipole moment 177" is obtained,
if the derivative is evaluated at zero magnetic field. The second derivatives, given
in the last column of Table 1.2, can then be calculated as first derivatives of the
magnetic dipole moment in the presence of an external magnetic induction or a nu-
clear magnetic moment, equation (1.39). The magnetizability as well as the nuclear
magnetic shielding tensor can therefore also be defined as derivatives of the energy,
as was the case for the polarizability and hyperpolarizability tensors.

Substituting for the derivatives in equation (1.40) yields then an expression for
the energy of a polarizable charge and current distribution

- 1
SK\ _ 1ir(0) 1 K, K
W(B,m*)=W Ea Mo By 5 Eﬂ ¢apBaBs + Eﬂ OgaMmg Ba+ ... . (141)

1.7 Molecular Electric and Magnetic Fields

In addition to the moments and polarizabilities which have been considered up
to now, the electric and magnetic fields arising from a distribution of charges are
important for describing various molecular properties.

Knowledge of the electrostatic potential d)”(ﬁ) due to a distribution of charges,
which was given in equation (1.1), is important for the study of intermolecular
interactions and reactivity.

(© 2001 by Stephan P. A. Sauer 13 V 3.1 Corrientes July 2001
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Table 1.2 Definitions of various magnetic properties as derivatives® of the
perturbed energy W (B, mX m’) or as derivatives? of components of the per-
turbed magnetic dipole moment mq(B, M%) and molecular magnetic induction
Bg(ﬁ;é,mL)

ma(B,mX)  BY(R;B,mY) B}(Rg;B,mb) W (B, m", mL)
9
per —
Ma aB,
o 9
BJaPET -
a (R ) Bmf
¢ 9 _ _ _ 672
o dB; 9B30B,
B} )
) * 9 0?
K —_— _ _ —_—
%pa omk 9B, omK B,
, ]
L
Kﬂa(R) T - oOmL T T
: 9 o
KL - - _ -
Ko omt omj Omk

@) All derivatives are evaluated at zero magnetic field and zero nuclear magnetic moment. ¢ap
- magnetizability; aga(ﬁ) - magnetic shielding field; Ué{a - nuclear magnetic shielding; K ga (R) -
reduced spin-spin coupling field; K éff - reduced spin-spin coupling.

The derivatives of the molecular electrostatic potential are according to equations
(1.11) and (1.12) the molecular electric field EX, and field gradient E};

5 1 R, — !
P _ =/ (43 o !
BUR) = oo [ o) e ar (142
L 1 ) (Ra —14)(Rg — 7p)
0 _ 5 of _ o B !
El5(R) = e p(7") B 3 B dr' . (1.43)

The molecular electric field gives rise to a force F acting on the charges in the charge
distribution, where the contribution to the electric field from the charge in question
has to be excluded, of course. For example the force acting on a nucleus K would
then be

Fy = ZgeE*(Rx) . (1.44)
For a charge distribution in equilibrium this force should obviously be zero. The
implications of this is that actual calculations of the forces on the nuclei in molecules
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will only give zero if the geometry of the molecule was optimized with the same
method.

Although the fields and field gradients within a charge distribution are well de-
fined, it is not possible to measure them at an arbitrary point. Only via an inter-
action with the nuclei in a molecule it is possible to get information about some of
these field quantities. Fields can be probed by dipole moments. However, nuclei
do not have electric dipole moments and the molecular electric field can thus not
be investigated in this way. However, some nuclei possess an electric quadrupole
moment Ox and via the interaction with the nuclear electric quadrupole moment
one can study the molecular electric field gradient at the positions of the nuclei.

The molecular magnetic induction Bi (ﬁ) is obtained by application of equation
(1.32) to the expression (1.23) for the vector potential A7(R) of a current distribution

s 2=
B’](R’) _ _ﬂ (R _’f"))(](’l“ )dT,
4 7! |R—FI|3

—

po [ B=F) X
= —— — dr’ . 14
o e e (1.45)

Like the molecular electric field it is of course defined everywhere, but only the
value at the position of the nuclei can be probed experimentally. The interaction of
a nuclear magnetic dipole moment Mm% with the molecular magnetic induction gives
rise to a change in the energy of the distribution of charges

W ==Y mEBi(Rx) . (1.46)

Consequently the molecular magnetic induction at the position of some nucleus K
can be defined as derivative of the energy of the distribution of charges,
—— ow
Bi(Fx) = (L47)

T OmK
om¥k

with respect to its nuclear magnetic moment % (see Table 1.2).

1.8 Induced Magnetic Fields and NMR Parame-
ters

In section 1.6 the interaction of a charge distribution with an external magnetic
induction, ﬁ, or with a nuclear magnetic moment, m’, was shown to lead to an
induced current density ji*4(7). According to equation (1.45) this also gives rise to
an induced molecular magnetic induction B7nd(R)

BI(R,B,m") = BIP" 4+ BY"(R, B, m")
BI(R,B,m") = BIP" = 0.(R) Bg— > KL(R)mj+ ... (148)
B B
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where 04s(R) is the magnetic shielding tensor field [15] and K, ﬁﬂ(ﬁ) could be called a
reduced spin-spin coupling tensor field. The precise definitions of both as derivatives
of the molecular magnetic induction are also shown in table 1.2.

The value of the magnetic shielding tensor field o,s (ﬁ) at the position By of a
nuclear magnetic dipole moment m¥ is the well known nuclear magnetic shielding
tensor o5s = 045(Rx). The nuclear magnetic shielding constant oX = 52 a8 Tag 18
closely related to the chemical shift § of nuclear magnetic resonance (NMR) spec-
troscopy via [16]

O.K,ref _ O'K

6 K,re K 6
b= Ty X100~ (o f— o) x10°, (1.49)

where o%7¢f is the nuclear magnetic shielding of the same type of nucleus in a
reference substance added to the experimental sample. In order to distinguish the
nuclear magnetic shielding o¥ from the chemical shift § it is often also called the
absolute nuclear magnetic shielding.

The reduced indirect nuclear spin-spin coupling tensor, K5 = K iﬁ(ﬁK ), is
related to the indirect nuclear spin-spin coupling tensor JfﬂL of NMR spectroscopy
by [17]

i s

where yx and g are the gyromagnetic ratios of the two nuclei.
In the absence of permanent molecular magnetic fields, the local magnetic in-

duction BX = B(RK ) at the position of some nucleus K in an NMR experiment is
then

(1.50)

BE = B,(R¥,B,m*) = B,+ B (RX B,mF)

a

. 2r 271
BEX = B,(R¥,B,m") = Sap )Bs—» ———J8'mg+..., (151
( ) = Xl 5= Y00 (151

where 4,5 is the Kronecker 4.

The interaction of the permanent and induced molecular magnetic induction,
equation (1.48), with the magnetic moment m% of the nuclei gives according to
equation (1.46) additional contributions to the potential energy of a charge distri-
bution in equation (1.41). Following the same procedure as in sections 1.3 and 1.6
one obtains

W(é, mE mE) =wO — Z mk BIrer 4 Z oaBmKBg + Z I;Lmeg
(1.52)

The nuclear magnetic shielding ao{{ﬂ and reduced indirect nuclear spin-spin coupling
tensors K fﬁL can thus also be defined as the energy derivatives shown in table 1.2.
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1.9 Molecular Rotation as Source for Magnetic
Fields

In sections 1.6 and 1.8 it was discussed that an external magnetic induction B or
the nuclear magnetic moment Mm% of some nucleus K will lead to an induced current
density ji"d(f') and thereby to an induced the magnetic moment 7%¢ and molecular
magnetic induction Biind  Another source for the magnetic induction can be that
the charge distribution rotates. A rigidly rotating charge distribution with angular
velocity @ = I"' J will according to equations (1.30) and (1.45) produce a magnetic

moment and a molecular magnetic induction

m,:-[fwmw—awp{wh4mnxuljﬂdﬂ (1.53)

i) = 0 [ ey B[ o) x (a7 )
= - r -
! P | R—71 3

dr'  (1.54)

However, Lamor’s theorem states that rotating charges give rise to an magnetic
induction B’

Bl =t J (1.55)
e
with the associated vector potential
/TJ = —%I_l jX (’F— ECM) (156)

This magnetic induction then leads to an induced magnetic moment ¢ and in-
duced molecular magnetic field BJ*

molecular magnetic induction Bj of the rotating rigid charge distribution

in addition to the magnetic moment m; and

mJ,a(j) = mJ,a+mf}}g

mya(f) = %VQJ,aBJﬂ (1.57)
Bj.(R,J) = BJE(R)+ Bia(R, J)
B} (R,J) = uiZKMJ,aﬂ(R)Jﬂ (1.58)

—

where gj,s and M;,g(R) are components of the rotational g tensor and the spin-
rotation tensor field, respectively. The value of M ,z(R) at the position of a nuclear
magnetic moment 7 is called the spin-rotation tensor M7, ;.

The energy of this rotational magnetic moment 77;(J) in an external magnetic
induction or of a nuclear magnetic moment in the molecular magnetic induction
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W(B,J) = WO -EXN" g, 5B.Js (1.59)
R4
= 2T
wmk, J) = wo - ME .mXJ 1.60
( ) P gﬂ: T,08Ma JB (1.60)

The components of the rotational g tensor and spin-rotation tensor can therefore
be defined as derivatives of the rotational moment and the rotational magnetic
induction or as derivatives of the corresponding interaction energies (Table 1.3).

Table 1.3 Definitions of the rotational g tensor g;,s and spin rotation tensor M faﬂ

as derivatives® of the perturbed energy W(ﬁ, mk, J ) or as derivatives® of com-
ponents of the perturbed magnetic dipole moment m,(J) and molecular magnetic
induction B;(R; J)

ma(J)  Bi(RJ)  Bi(Rk;J) W (B, ", J)
9 _ _ _h &
97,08 LN 8Jﬁ MN 6Ba6¢]ﬂ
S Ungx O
Mjap(R) — gﬂK@ - -
VK - o pngx O _pngr P
Jap 2 0Js 2 OmEOJs

) All derivatives have to be evaluated for zero perturbation.

1.10 Time Dependent Fields

The discussion to this point has been limited to static electric and magnetic fields.
However, molecules are often exposed to time-dependent fields, as for example in
the interaction with electromagnetic radiation. The incluence of a time-dependent
magnetic induction vector B (7, t) and its associated molecular properties have little
physical significance and are therefore usually ignored.

The electric field for a general polychromatic electromagnetic wave with wave
vector k is given by

— o0 — - 1 o0 — o= =
E(7,t) = / dwE® cos(k - 7 — wt) = 5/ dwE® (ez(k'rf“’t) + eil(k'““’t)) (1.61)

o0 —0

The expansion of the perturbation dependent electric dipole moment in equation
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(1.18) generalizes then to [7]

Ha(E()) = pa + uir*(E(2))
a(E(t)) = pa + Z/ dwy aap(—wi;wi)Eg cos(k - 7, — wit) (1.62)
ﬁ —00

1 o °°
+ 52/ dwl/ dwy Papy(—w1 — wa; Wy, ws)
By

oy cos(k - 7, — wit) By cos(k - 7, — wat)
+

where anp(—wi;wi) and Bagy(—wi — wa;wi, ws) are components of the frequency
dependent electric dipole polarizability and first hyperpolarizability tensors, respec-
tively.
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1.11 Exercises

1) Derive the two derivatives

0 1
orl,|R—7"|
0? 1

ortory | R — 7" |
used in the derivation of equation (1.8).

2) Show that the dipole moment of an ion and the quadrupole moment of a
neutral but polar molecule depend on the origin 7,.

3) Show that the contribution of the second-order electric moment 3 Y- 5 Qus (7o) Eap ()
to the interaction energy in equation (1.14) is unchanged if an arbitrary con-
stant C' is added to the diagonal elements @),, of the second-order electric
moment.

4) Show that equations (1.14) and (1.15) are equivalent.

5) Derive equation (1.25) from the divergence theorem for a bounding surface .S’
that completely encloses the current distribution

/T,v <f(F')f(F')) dr' = j{f(F’)j(F').dgl ~ 0

6) Prove that
[ aatiy ar' =0

and
[ (5= r0s) dal )+ (1t = 7o) Ga()) dr' =0

7) Derive the expression (1.43) for the electric field gradient.

8) Derive the expression (1.45) for the molecular magnetic induction.
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Chapter 2

Exact Quantum Mechanical
Expressions

Molecular properties were defined in the previous chapter as derivatives of the clas-
sical interaction energy of a system with respect to electric and magnetic fields and
nuclear moments. Quantum mechanical expression for these properties will now be
derived. Since the properties are defined as energy derivatives, it is necessary to find
a quantum mechanical expression for the energy of the system in the presence of a
perturbing field.

A complete quantum mechanical treatment would involve quantum electrody-
namics and so a number of initial simplifications are required. First, only the molec-
ular electronic structure is treated quantum mechanically. The perturbing fields
and nuclear moments are considered to be unaffected by the molecular environment,
the so-called minimal coupling approximation. Secondly, the exposition will be re-
stricted to non-relativistic quantum mechanics, i.e. to the Schrodinger equation.
However, electron spin perturbations, which can only be derived from a relativistic
standpoint, can also be treated by including ad hoc spin operators, derived from the
Dirac equation, in the Schrodinger Hamiltonian. Finally, the Born-Oppenheimer
approximation is applied, yielding a field free electronic Schrodinger equation

131(0)11;%0) — W0 g(0) (2.1)

n n

where U is the many-electron wavefunction for state n with electronic energy W

and the molecular field free electronic Hamiltonian is defined as

(O S ¢ 3 Z > ! (2.2)
2m. i Y 4rme ‘ﬁ_R'K‘ 4meq = ‘77;_7:’]‘ .

1K

Only the electronic contributions to the molecular properties will be obtained from
this treatment. Contributions of the fixed nuclei have to be added afterwards ac-
cording to the classical expressions given in the chapter 1.

21
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2.1 Minimal Coupling - Non Relativistically

The usual way to treat the interaction between electromagnetic fields or nuclear
electromagnetic moments and molecules is a semi-classical way, where the fields or
nuclear moments are treated classically and the electrons are treated by quantum
mechanics. The fields or nuclear moments are thus not part of the system, which
is treated quantum mechanically, but they are merely considered to be perturba-
tions which do not respond to the presence of the molecule. They enter therefore
the molecular Hamiltonian in terms of external potentials similar to the coloumb
potential due to the charges of the nuclei.

The common approach [18] to the derivation of the additional terms in the molec-
ular Hamiltonian is to find the classical Lagrangian [19, 20| for the motion of a
charged particle in the presence of electromagnetic fields. From this Lagrangian one
can then define a classical Hamiltonian, which converted to operator form yields the
desired Hamiltonian operator. We start therefore from the classical expression for
the force F of an electromagnetic field on a particle with charge ¢ and mass m, i.e.
the Lorentz force [21]

Bty =m0 =g (B0 +7x BE) | (2.3)

where U = ‘é—’: is the velocity of the particle. Since we want to derive an Hamiltonian
operator for the motion of an electron in external fields, we will in the following set
m = m, and ¢ = —e, where m, is the mass of the electron and e is the elementary
charge.

Generalizing the definitions of the scalar, ¢Z(7,t), and the vector potential,
AB(F,t), in equations (1.11) and (1.32) to the time dependent case [22]

R

Brt) = ~Vef(rn - 200

B(ft) = V x AB(7t), (2.5)

(2.4)

the Lorentz force can alternatively be expressed in terms of the potentials as

QAB(F )

F=—e (-WE(?, ) S X (ﬁ x AB(7, t))) . (2.6)

We now have to find a Lagrangian L [19, 20]
L(F,u,t) =T -U (2.7)

where T' = ﬁ(meﬁ)2 is the kinetic energy and U 1is a generalized potential. The

latter has to be chosen in such a way that on application of Langrange’s equations
of motion

d [ 0L oL
== - == = 2.
dt [BUJ Orq 0 (28)
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the equation (2.6) for the Lorentz force is recovered. Chosing the generalized poten-
tial U as .
U(7,0,t) = —e ¢P(7,t) + e 7- AB(7,1) (2.9)

yields a Lagrangian L
(mv)?

2

L(F,7,t) = +e ¢P(Ft) —e v AB(7,t) (2.10)

which fulfills this condition.
The classical Hamiltonian [19, 20] is then defined as

H=p-v-L (2.11)
where the canonical momentum p, the canonical conjugate to 7, is given as
o = %’:’t) . (2.12)
For the Lagrangian in equation (2.10) this definition yields
F=me 7—eA® (2.13)
and the classical Hamiltonian reads then
H=Te V0 gmy (2.14)
However, in order to use the usual substitution rule
F— p= —ihV (2.15)

for the transition to quantum mechanics, the classical Hamiltonian has to be ex-
pressed in terms of the canonical momentum g, equation (2.13), instead of in terms
of the so-called kinematical or mechanical momentum 7

T=m.¥ =p+eAl (2.16)
leading to
H=

— (ﬁ+ eA’B)2 —e " (2.17)

Applying the substitution rule, equation (2.15), the classical Hamiltonian can now
be translated to a quantum mechanical Hamiltonian operator H for a single particle

R 1 [~ =<8 R
H= (ﬁ+ e /f) —e . (2.18)
2me

In Coulomb gauge,ﬁ CAB = 0, this can then be written as
1 - 1 ~B - 1 - N
P4 — e ,f-ﬁ+2 (A2 — e gF (2.19)

2me e €
This is a non-relativistic, Schrodinger, Hamiltonian for a single, spin-less particle. In
section 2.4 it will be generalized to the case of many particles, electrons and nuclei.

H=
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2.2 Minimal Coupling - Relativistically

Electrons have spin and one should use a Hamiltonian operator fulfilling the require-
ments of special relativity. This so called Dirac Hamiltonian operator for a single
particle in the presence of an electromagnetic field can be derived in the same ways
as the non-relativistic analog in the previous section [18].

The Lorentz force in equation (2.6) is unchanged, but Newton’s second law

L4,
F = %(mev) (2.20)

is changed due to the velocity dependence of the relativistic mass m/

mh = ———— (2.21)

where m, is the rest mass.
The corresponding Lagrangian can be shown to be

2 -
L(7,5,t) = —mg ¢*/1 - Z_z Ve dP(Fit) —ed- AP(F L), (2.22)

and we obtain oL )
7, U, t Me U

_ b €2 _ e AB 2.23
- e A (223)

Po

2

v
1-2

for the canonical momentum. The classical Hamiltonian reads then

2

H=-"225 ¢ 4PF1), (2.24)
2
-3
or in terms of the canonical momentum
H = \/mgc‘1 + (F+e AB)2c2 — e ¢P(7)1) . (2.25)

Because of the square root, it is not possible to make the transition to quantum
mechanics. Instead of, we can square and rearrange the equation

1 -
E(H—Fe ") —m2c® — (F+e A% =0 (2.26)

which can also be written as
3
T —mic® — Zwi =0, (2.27)
p=1
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if we make use of the definition of the 4-vector analog of the mechanical momentum

1
T = E(H +e ¢F) (2.28)
T, = pu+e Af , (2.29)

where u can be 1(= z), 2(=y), 3(= z). The Dirac equation can now be obtained by
"factorizing” equation (2.27)

3 3
(wo + Zaﬂﬂ'ﬂ + B8 m, c) (71'0 — Zalﬂrﬂ - B m, c) =0, (2.30)
p=1

p=1
applying the substitution rule

N 5,
H — H =1h— 2.31
— zhat (2.31)

in addition to equation (2.15) and using the second term in an eigenvalue equation
for the wavefunction

3
(7?0 - Zalﬁr# — B m, c) P=0. (2.32)
p=1

The Dirac equation can be rearranged in order to facilitate the comparison with the
non-relativistic Schrédinger Hamiltonian operator in equation (2.19)

3
R - - 0
(cZau(pu—FeAf)—eqSE—i—ﬂ Me c2>¢=zha¢. (2.33)
pu=1
The o's have to fulfill the conditions
al =1, (2.34)
a0+, = 0 forpu#v (2.35)

(with aiy = ) in order for equations (2.27) and (2.30) to be identically. It turns out
that the simplest solution to these equations are a set of 4 x 4 matrices defined as

ay=p= (é _OI> L au= (;’u ‘Bu) , (2.36)

where I is a 2 X 2 unit matrix and the o, are the Pauli spin matrices

o B () B (R B
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The wavefunction 1 consists therefore of four components

(e

_ (v _ | ¥
Y

called a four-component spinor and the Dirac equation is actually a set of four
coupled differential equations that couple the four components of the wavefunction.
Substituting equation (2.36) for the o matrices and (2.38) for four-component wave-
function, the Dirac equation can be written as two coupled two-component equations

3
c (Z o,.(p,+e flf)) s + (—e o + me cz) Y = zh% v (2.39)
p=1
3
c (Z o.(py+e Af)) v + <—e QASE — M, 02) g = zh% vs . (2.40)
p=1

2.3 Elimination of the Small Component

We could continue now with the Dirac equation and derive expressions for the molec-
ular properties using standard perturbation theory. However, as stated earlier, the
exposition in these notes is restricted basically to a non-relativistic treatment with
the exception that we want to include also interactions with the spin of the electrons.
The appropriate operator can be found be a reduction of the Dirac equation to a
non-relativistic two-component form, which can be achieved by several approaches
[23]. Here we want to discuss only the simplest approach, the so-called elimination
of the small component [24].

We assume that A, is time independent and collect the time dependence of the
wavefunction in a phase factor

Y = Y(F) e P (2.41)
which implies that ¢ is an eigenfunction of zh% with eigenvalue E. Inserting this
wavefunction in equations (2.39) and (2.40) and rearranging we obtain

3
c (Za”(ﬁ”—l—eﬁf)) vs = (E+eg5E — Me c2) U1 (2.42)
pu=1
3
c (Z o,.(p,+e flf)) Y = (E +e P +m. c2) Vs . (2.43)
pu=1

From equation (2.43) we can see that the small component of the wavefunction g
can be expressed in terms of the large component as

bs ¢ (Z o.(bu+e Af)) VL . (2.44)

E+e¢?+mec® \i
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Inserting this expression in equation (2.42) we obtain a single two component equa-
tion for the large component

(Z o.(bute Af)) ¢ (Z o.(Dut+e Af)) UL

— E + e ¢f +m, 2 —

= (E+eg[3E—me 02) Uy, (2.45)

This equation together with the expression for the small component in (2.44) is still
the Dirac equation. In order to reduce it to a non-relativistic expression we have to
2

eXpand m as
c? 1 1
E +e¢? +mec? 2me \ 1+ 7}31;172‘25’}3
1 ENE L ¢ QBE
= 1—-— -+ ... |, 2.46
2me ( 2m, 2 ( )

where we have introduce ENE = E — m, ¢ and assumed that E ~ m, ¢ as well
as that | — e ¢¥| < m, 2. Using only the first term, the equation for the large
component reads

3 3
2; (Z o.(p,+e Af)) (Z o.(b,+e Af)) U = (ENR +e quSE) U . (2.47)
e l,l:].

pu=1

Using a relation valid for the Pauli spin matrices and two general vector operators

_Qand _Q

3 3 3 3 ~ ~
(Z auAﬂ> (Z JHBM> =Y ABu+1Y o (Ax B) (2.48)
p=1 p=1 p=1 p=1

"

we finally obtain the non-relativistic Schrédinger-Pauli equation

. 3 .
( ! (P+e 7624— eh Za’u <6>< _;f) —engSE) ¥ = ENRp . (2.49)
pu=1 M

2m, 2m,

On comparision with the Schrédinger Hamiltonian in equation (2.18) we can identify
the additional term due to the interaction of the electron spin with a magnetic field,
a so-called Zeeman term

3 R N
fzeeman _ €T Y o, (6 x */f) (2.50)
¢ u=1 7

2m
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The electron spin operator §in units of Js is related to the Pauli spin matrices
g by

~ h
§=—¢ 2.51
§=50, (2.51)
and the electron spin Zeeman operator becomes therefore
frzeeman — 2° & (T x 2.52
2 me ( > ( )

However, from quantum electrodynamics we know that this should be written as
N ge € 2, jaN =
HZeeman — =€~ g, [V x , 2.53
el 5 (9 ) (2.53)

where g. ~ 2.002 is the electron g-factor.

2.4 The Molecular Electronic Hamiltonian

In the last three sections it was shown that in the minimal coupling approximation
the vector potential enters the mechanical momentum of electron i

met; = pi + eA(7) (2.54)

and a scalar potential, —ed(7;), is added to the electronic Hamiltonian, yielding

~ 1 ~ 5 2 e2 o
H= %" (fi+edR) - E | E: =D ed(7) .
2m, < Pi+ eA(r) dmeg < |F; —RK| 477‘50 |7'z—7'j| o)

e i

(2.55)
In addition, electron spin is introduced via the Zeeman term of the Pauli Hamilto-
nian, equation (2.53),

A=S"2%. (% X ,ZT(F,-)) . (2.56)

In the Coulomb gauge, .e. V-A= 0, the Hamiltonian operator can thus be
written as

A A A A

H = HO +H(1) _|_H(2)

- Z AOG) + a5+ (iz“)(i) +h® (i))

e e S e D (257
= p —_ = - - _ )
2me S0 Ameg |7 — Rye| - Ameo {7 |75 — 7]
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H is the full electronic Hamiltonian operator for a molecule in an electromagnetic
field, subject to the approximations outlined earlier. HO jg the unperturbed Hamil-
tonian from equation (2.2), H®O includes all operators linear in the perturbing field
(first order) and H® all quadratic terms (second order).

In the following we will derive explicit forms for the perturbing operators by
expressing the scalar and vector potentials in terms of the electric and magnetic
fields. The scalar potential of a electric field with non-zero gradient is, Eq. (1.8),

¢F(7) = — (7 — Ro) - E(7;) (2.58)

1 1 . —» .
o 5 gﬂ: ((Ti,a - RO,a)(Ti,ﬁ — Ro,ﬁ) — §5a5(r,- — Ro)2> Eaﬁ('ri) ,

where the scalar potential at the origin of the coordinate system, ¢% (RO) is set to
zero. For the vector potential we want to consider a uniform magnetic induction

~

_'I‘F(F%) = %é x (7; — Reo) (2.59)

where ﬁgo is the arbitrary gauge origin; the magnetic induction due to the rotation
of a molecule, Eq. (1.56),

) = ~Z2 (171 J) x (75 = Row) ; (2.60)

and the magnetic dipole moment of nucleus K, equation (1.29),
—IA _" - R
A = Bomk x T K (2.61)

whose magnetic induction is

By = o [ (7 (7= Re)) (i = Ba)  r
ir 7= By P 7~ R P
Ho 8 =~ D - K
20 2T 5(7 — . 2.62
+ 22780 — Ry (262)

After some manipulation, we obtain the following expressions for the first and
second-order Hamiltonians :

HY = = 3 (OQB + OZB) Bo + ) (Ofx‘] + OZJ) (I Ja (2.63)
= S (O O ) mE — 3 0F Ba — YO Eup
K «a o o

(© 2001 by Stephan P. A. Sauer 29 V 3.1 Corrientes July 2001



ALl AL L AJAVU 4. AALAL AN L \%Uﬂi‘ L UAVAL AVALZ VALl AL NAL AL Add A4l AVAAINJANS L YIS

ZO B,Bs + ZO oI )p + ) ) 0m ™ mEmf (2.64)

KL of

+ Zo (17 Jﬁ + 3> 0m P mEBs + ZZO’"KJ * J)s

K ap

The interaction operators O are thereby defined as

Z e ( 2me > ((Fi — Rao) X ﬁ) (2.65)

0 = 3 686) =~ > fia (2.66)

1 2’)’)’Le 1

a 2m. A
OlJ — ATy — Z°e OlB 2.67
=A== (2.67)

a 2m. =~
oy =) o)(i)=—=0F 2.68
=Yl ==+ 0 (2.68)

ImX Alm% € o s — RK 5
O =2 0 )= 2 (m " pi) (2.69)

Ti —
~smE asmK  _ Ge€ Ho &
o™ = ;% (1) = “om.dr 3 Z5 (2.70)
ge€ o (5; : (Tz’ - RK)) (Tz‘,a - RK,a) §i7a
2me dr 4 7 B 7~ R P

OF = Zéf(i) = —eZ(rm — Roa) (2.71)
OyF = oy (0)

e 1. . =
= 73 zz: ((Ti,a — Ro,o)(rig — Rog) — 55,15(7"1' — Ro)2> (2.72)

= Z ((Fz — R60)%0ap — (Tia — Reo,a)(rig — RGO,B)) (2.73)
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AJJ AJJ
Oaﬂ - Zoaﬁ

me -
= ¢ (7 = Rom)ag = (ria = Roma)(rig — Romg))  (274)

i

KD €2 /o2 (7; — Ry) (7 — Rg)
=Y a0 =g () r s e w
: Me \ 4T |7 — Ry [* |7 — Rg |

(i — Rua) (rip — RK,[») (2.75)

|7~ Ry [ |7 — Ry |2

OAfg = ZéBJ = —= Z ( RCM (7i — RGO)daﬂ

_(Ti,a - RCM,a)(Ti,B - RGO,B)) (2.76)

2.5 Rayleigh-Schrodinger Perturbation Theory

In chapter 1 we defined electronic contributions to molecular properties as derivatives
of the electronic energy. In order to take derivatives we need to determine the energy
of a system described by the Hamiltonian given in equation (2.57). In general,
however, it is not possible to find exact solutions for this Hamiltonian, 7.e. to solve
the Schrodinger equation

HUy =Wy, . (2.79)

Instead, perturbation or variational methods must be applied to approximate wave-
functions.

In non-degenerate Rayleigh-Schrodinger perturbation theory one assumes that
exact energies and wavefunctions of the unperturbed Hamiltonian H(©® are known,
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i.e. that equation (2.1) has been solved exactly, and that the energies and wavefunc-
tions of the total Hamiltonian, equation (2.57), can be expanded in a series using
the exact solutions of the unperturbed Hamiltonian, W,£°) and 1115?’

energies and wavefunctions

, as zeroth order

Wo = WO +w® +w® + ... (2.80)
Uy = vV ol 0@ 4. (2.81)

First and second-order corrections to the energy are then given as

w = (w970 \\11> (2.82)
W = (B HO ey + (v A0 ey . (2.83)

Expanding the first-order wavefunction in the complete set of unperturbed wave-
functions {\I! }

\Il( \H(l 1)

(1 0

o)y =" ) o (2.84)
n#0 -W n

the second-order correction to the energy becomes

(0)
@ _ a0 7@ 10O S AR 2N T AD QIR 7))
We = (g [EP | 9”) + T . (2.85)
n#0 0 n

The second order energy correction consists thus of two terms : a ground state
expectation value over the second order Hamiltonian H® and a so-called sum-over-
states term, which involves a summation over all excited states of the system and
transition moments between the ground state and these excited states with the first
order Hamiltonian A®.

Substituting for the first and second-order Hamiltonians, equations (2.63) and
(2.64), in the first and second-order energy corrections, equations (2.82) and (2.85),
we are ready to obtain expressions for the molecular properties. Either we take the
derivatives of W, given in equations (1.16), (1.17), (1.38), (1.47) and tables 1.1 - 1.3,
or we compare the expressions for the first and second-order energy corrections with
the classical expressions for the interaction energies as given in equations (1.21),
(1.41), (1.52), (1.59) and (1.60).

Using both approaches, the first-order molecular properties are then given as

p(Ro) = (B |OF o) (2.86)
0% (Ro) = <w‘°\o w8 (2.87)
m&(Rgo) = (I |0 + OF | 0" (2.88)
By (Bx) = (07|05 + 0" | ¥¢”) (2:89)
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and the second order molecular properties are given as

0 A 0 0 A 0
(B [0, | TV (D |05 | B D)

PO = £ (10, 9) + £

o Wy — Wi
(T 05| T) (T |0, | T)
+hY oo (290
n#0 Wy " — Wn

where the operators Ol, 02 and 03 and the factors f; and f, are collected in table
2.1.

Table 2.1 Operators and factors for the exact second-order Rayleigh-Schrodinger
perturbation theory expressions for molecular properties. See equation (2.90).

P(2) fl Ol f2 02 03

agl -1 oFf oF

agl -1 OF OF

Al (Ro) -3 OF oyr

Cels r5(Ro) -3 0% 037
;’ﬂ(ﬁao) -2 OA{fBB -1 O'B OgB

oas” (Rao) 1 ) B 1 Om* 4 Osm™ OF

KX 2 om s m* 1 Ot 4+ oMt O 4+ O

ss(foo) | —- (O M | - o (V1Y)
Mg | I o, | B g op (I,

From Table 2.1 we can see that the second order magnetic properties, i.e. the
magnetizability tensor &, nuclear magnetic shielding tensor o, reduced nuclear
spin-spin coupling tensor K KL rotational g tensor g™ and spin rotation tensor
M f’md, consist of a sum-over-states term and a contribution from the second order
Hamiltonian operator H® in equation (2.64). The latter is in general called the
diamagnetic contribution to the properties, with the exception of the spin-spin cou-
pling constants, where it is called the orbital diamagnetic or diamagnetic spin-orbit
term. On the other hand, the sum-over-states terms are called the paramagnetic
terms.

Since non-degenerate perturbation theory is used, the ground state \Ilgo) was
assumed to be a singlet state and to have no orbital degeneracies. This implies that

(5" 1027 19") = (" |05 | wg”) = (25" | 037 | ¥) = 0 (2:91)
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and
0 A 0 0 AlmE 0
@V 10 19y = (¥ |0 1oy =0 . (2.92)

The corresponding terms are therefore not included in table 2.1 and the perma-
nent magnetic dipole moment, equation (2.88), as well as the permanent molecular
magnetic induction, equation (2.89), are zero. The expressions for the molecular
magnetic properties are thus only valid for the case of closed shell molecules.

For all the operators O, and 03, which do not contain the electron spin operator
§;~, the exited states \II%O) in equation (2.90) have the same spin state as the ground
state \Il((,o), t.e. they are singlet states, whereas for the operator O;mK the exited

states U\¥ have to be triplet states. This implies that the operator O, = Ong
does not contribute to the nuclear magnetic shielding tensor aoffﬂ and to the spin

rotation tensor Mfc"?d. Furthermore only two of the possible four sum-over-states
contributions to the spin-spin coupling tensor K 23" exist. The term with 0, = OIm*™
and O3 = OAg"K is called the orbital paramagnetic or paramagnetic spin-orbit term.

As O_'ng, equation (2.70), consists of two operators we obtain three more sum-
over-states contributions to the spin-spin coupling tensor from 0, = OAflmK and
05 = Of{”K The are called the Fermi contact, spin-dipolar and Fermi contact -
spin-dipolar cross terms. However, the trace of the latter is zero and it will therefore
not contribute to the spin-spin coupling constant.

2.6 Static Response Theory

It was shown in chapter 1 that molecular properties like the polarizability can also
be defined as derivatives of the corresponding perturbation dependent multipole mo-
ments. One therefore needs to find quantum mechanical operators for the perturba-
tion dependent electric and magnetic multipole moments and the molecular magnetic
induction. These can be obtained by application of the Hellmann-Feynman theorem,
which states, that for a hermitian operator H (M) depending on a real parameter \
with normalized eigenfunctions ¥, (1)),

<\Iln()‘) | \I’n()‘» =1, (293)
and eigenvalue W, (),
HO)¥n(A) = Wa(N)¥() (2.99)
the derivative of the eigenvalue W,,(\) with respect to A is given as

9 9
W) = (Ba() | 5 HO) [ 8,() (2.95)
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In the derivation of the Hellmann-Feynman theorem it is used that

9
o
= w {t

9
)

(N) | H) [ 20(0)) + (% (0) | ) | -0, ()

( g,
%(A»} (2.96)

0 0
a0 [ TalV) + (V) | 5

which is a consequence of the normalization of the eigenfunctions ¥, () for all values
of A.

Expressions for perturbation dependent operators [12, 14] of the electronic con-
tribution to the electric dipole and quadrupole moment, the magnetic dipole moment
and the molecular magnetic induction can therefore be obtained by taking the ap-
propriate derivatives, as given in equations (1.16), (1.17), (1.38) and (1.47), of the
Hamiltonian in equation (2.57). This leads to

pg = 0F (2.97)
0d; = 30YF (2.98)
me = O + 08 —2 OBFBy — OBJ(I'" J)p — 3 O Bmks (2.99)

K
Bi(Rk) = O™ + O™ — O ®By — O /(I J)p = Y Op™m}b . (2.100)
L

Having thus defined operators which are valid in the presence of external and internal
perturbations, one can proceed by evaluating expectation values of these operators
with the perturbed wavefunctions in equation (2.81)

(To|0[To) = (5”0 2g") + (¥ [O%5") + (¥ [0 %)) +--- . (2.101)

The molecular properties are obtained by taking derivatives of the expectation value,
as given in tables 1.1, 1.2 and 1.3, or by comparison with the classical expression for
the perturbation dependent moments and fields in equations (1.18), 1.19, (1.39) and
(1.48). One should note that molecular properties like the polarizability, which were
called second order properties in the context of the Rayleigh-Schrodinger perturba-
tion theory described in section 2.5, are named linear response functions here and
in the following section. For exact states the expressions obtained in the previous
section for the molecular properties, equation (2.90) and table 2.1, can be recovered
from equation (2.101) by insertion of the first order correction to the wavefunction,
equation (2.84).

This so-called response theory approach can be generalized to the case of time
and thus frequency dependent perturbations which will be discussed in the following
section.
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2.7 Time Dependent Response Theory

When dealing with time dependent fields one has to find solutions to the time
dependent Schrodinger equation

zh%\Ilo(t) - (ﬁ<°> +1§r<1>(t)) To(t) | (2.102)

where the time dependent Hamiltonian H!)(¢) can be written as

~ A~

HY#) =V, F(t)q.. , (2.103)

or can be expressed in terms of its Fourier components

HO(t) = / dw HO(w) = / dw V¥ F(w)g. e . (2.104)

—0o0 o0

The operator V.. may depend on coordinates and moment of the electrons but is
independent of time, whereas the time dependent field F(t),... does not depend on
the electrons. The subscript o--- denotes components of a tensor of appropriate
rank.

In time dependent response theory, as described by Zubarev [25], properties
are evaluated as expectation values. The time dependent expectation value of an
operator O is thus formally expanded in a series

(To(t) |01 Ta(t)) = (¥5” |01 5”) +/ dt' (04 Vo)) F(t)a. (2.105)
L ~ * A S A gl
+ 5/00 dt /Oo dt" <<Ot, V;,VE>>F({;I)Q F(t”)ﬂ +oee

where Ot = ¢ @t/ Oe=H /R denotes the interaction representation [26] of opera-

tor O. The kernels of the integrals are the linear ((O%; V¥ )) and quadratic response
function ((O%; V¥ Vg")) in the time domain. The linear response function is also
called the polarization propagator. Alternatively, by Fourier transforming the re-
sponse functions to the frequency or energy domain, the expansion can be written
as

(To(t)| O To(t)) = (¥ |0 TS + / " dy € (0, VY yon Fen o (2.106)

1 [ 00 o .
+ 1 / duy et / dus €5 (O3 V2 Vi) o o F (6 ) F(w2)p +

2 o0 —00

In order to obtain expressions for the response functions in equation (2.105) we
have to insert an expansion of the time dependent wavefunction Wy(¢) in terms
of the eigenfunctions of the unperturbed Hamiltonian H(® in the time dependent
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expectation value (¥o(t) | O | Wo(t)). There exist many different but equivalent
approaches [25, 27, 28, 29, 30] for the derivation of the time dependent wavefunction.

Here we want to make use of the interaction representation [26] of the time
dependent wavefunction

Ui (t) = ey () (2.107)
We begin by taking the time derivative 1A 2 of Wh(t)
9 4 2(0) O ¢/n A0 o O
zha\Ilo(t) =—H%e Uy(t) +e zha\Ilo(t) (2.108)

and inserting the time dependent Schrédinger equation, (2.102), in the second term.
This leads to an equation of motion for W§(t)

m%\pg (t) = AWt ) B (2) . (2.109)

The time dependent wavefunction ¥}(t) in the interaction picture is then obtained
by integration

1 t A ! !
\Ilﬁ(t)—\lfﬁ(—oo):ﬁ/ AW (Y wE (¢ dt' (2.110)

where U} (—o0) = \I!(()O) is the eigenfunction of the unperturbed Hamiltonian and the
time dependent wavefunction ¥y(t) in the normal Schrédinger picture is given as

1 ¢ 3 ! -~
= / e HOUCOMEO) ) Wy (¢') dt! (2.111)
? —0Q

Uo(t) = e TPy 1
However, this equation has to be solved iteratively. In the first Aiterations we set
Uy(t') in the integral equal to the time dependent solution e"H(O)t'/h‘I!(()O of the
unperturbed Hamiltonian and obtain thereby an perturbation expansion of the time
dependent wavefunction

() = ¥ @) + P (t) + - -- (2.112)

with
0@t = e H g0 (2.113)
v = sl [ ey e ar (2114)

We can now insert the expansion of the time dependent wavefunction, equation

(© 2001 by Stephan P. A. Sauer 37 V 3.1 Corrientes July 2001



ALl AL L AJAVU 4. AALAL AN L \Q‘Uﬂi‘ L UAVAL AVALZ VALl AL NAL AL Add A4l AVAAINJANS L YIS

(2.112), in the time dependent expectation value

(To(t) | O | Ty (t))
= (10190 + (TP (1) |01 TP (1)) + (T () | O ¥ (t)) + - -

A 1 [t N 1)
— @109+ o [ ar (@) 0T EO 2) | 9

¢ —00
1 [t 0) | Ar(1).¢! JHO R A 0
—Z—h/_oodt’ (O | EOL () TR0 w0 (1)) + - -

. 1 [t Ap A1)
= <\pg°>\0|wg°>>+_h / dt’ <\If§,°)|[ot,H<1%t @) ey +--. . (2.115)
? —0o0

The integration limit can be extended to oo, if we introduce the Heaviside step
function ©(t) , which is equal to 1 for ¢ > 0 and zero for ¢ < 0, yielding

(To(t) |0 To(t)) = (T |0 T) (2.116)
1 o0 Ny oA p
+ oo [ dre(—1) (¥ [02 AW <t’>] 1wy 4.

Comparison of this equation with the formal expansion in equation (2.105) shows
that the linear response function or polarization propagator in the time domain is
given as

ny 1 Ny A
(04 Vi) =t — ) (¥ | [02 v;...] oy (2.117)

By Fourier transformation to the frequency domain (exercise 2.10) one obtains a
spectral representation of the linear response function or polarization propagator

(05T = 3

{ (@10 [T (w0 | Ve | w0y
n#0

huor + WO — Wi

0) [ rw 0 0) | A 0
(Ve | ) (|01 97)

o + WO — W

(2.118)

In order to derive expressions for the quadratic response function we have to
iterate once more on equation (2.111). Setting Wy(¢') in the integral in equation

(2.111) equal to \Il(()o) () + \1181)(15’) we obtain

3 1 2 ¢ ¢ - ! ~ "
lII(()z)(t) — e—zH(O)t/h <_h) / dt'/ dt" H(l),t (t') H(l),t (t") \I/(()O) ‘ (2‘119)
¢ —00 —00

for the second order correction to the the time dependent wavefunction, equation
(2.112). The next, i.e. quadratic, term in the expansion of the time dependent
expectation value, equation (2.115), becomes then

1 2 t ¢ X ) I ) )
(E) / dt'/ dt" <\1;80)| [[Ot,H(l),t (t’)] 0K (t//)} |‘I’80)> (2.120)
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or

1 2 © o ay ol ! ol I
(_h> / dt' @(t B t')/ dt" @(tl o t”) <\I/(()0) | [[Ot, 2Ok (tl)} ,H(l)’t (t")} |lII(()0)>
¢ —00 —00
(2.121)
using the Heaviside step function and extending the integration limits. Comparison

with the formal expansion in equation (2.105) shows that the quadratic response
function is thus given as

A ~_ 4l ~_g 1
(O VEVE D)) =0t —t)e(t —t") (-

Zh) 2 (g | [[Ot, V,ﬁ..] , ngf} ey (2.122)

in the time domain and as

{O; VI, VE™)
A Trwi Crw 0
- (2" |01 (U | Vet | W) (W) | V32 | 25”)

n#0,m+£0 (WTEO) — WO(O) — h(wy + wé)) (WTES) — WO(O) — hwg)

(T 101wV (TP | Vez [ (Wl | Ve | o)
(Wi = W — At + wh)) (W) — W — )

w7 | 00) (00 | O] ) (w12 | Ver | w0
0 1V o 70
(= < ) (W30 Wi~ )

(2.123)

(W |V | w0 (00w (| Vg | w)
(Wi = Wi + ) (WD) — W = )

0) | Vrw 0 0) | Trw1 0 0) | A 0
(O | Ve [0y w1 (o |08
(Wi = Wi + ) (WD = WO + (] + o))

(ol Ve o) (e vz | o) (vl |0 )
(Wi = W+ ht ) (WD = W3O + (et + )

in the frequency domain, where (\11%0) |0 | \Ilg,% denotes (\Ilg)) 10— (\Il(()o) 10| \I!go)> |
11152)), i.e. the matrix element of a fluctuation operator.

An alternative expression for the polarization propagator can be obtained by
taking the time derivative of equation (2.117). Before doing so we should note that
the linear response function only depends on the time difference t — t', i.e.

N o1 Ay oy
(O5VEY) = ot —t) —(u ][0, VL ] |ef)

= o(t—t) (|0, VL] 9l = (0 VL), (2.129)

1
1h
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which follows from the fact that \I!(()O) is an eigenfunction of H(®. We can therefore
change the variable, i.e. and set s =t' — ¢t. The derivative with respect to this new
time variable s is thus given as

d

ZFLE((OA; VL))
_ md%;s) ~ ([0, 7z.] 1wy
+0(—s) (w0 |[0,72.] 12
= —3(=5) (2| [0,72.] | #) - 0(=s) (w0, [H®, V2] ] o)
= —3(s)(W ([0, V| 19) = ((O; [, V2.])) (2.125)
where it was used that i . )
7 Vo = = Vo 7O (2.126)

that the Heaviside step function ©(t) is the integral of the Dirac é function
t
o) = / 5(t') dt (2.127)

and that due to the Dirac delta function §(s) the operator V¢ _in the first term can
be replaced by V=0 =V,....
The equation-of-motion transformed to the frequency domain (exercise 2.9) is

hw((0;VE Nw = (P[0, Ve 1| T) + (O; [HO, VE ) (2.128)

Iterating on this equation leads to a so-called moment expansion of the polarization
propagator

A A 1 A oA
(0720 = (75 ) 10,7219
1)’ A Tao) +
il (0) 0) Yrw (0)
() @[ [ae 7z ) 1w

< (ns) wofo.fmo w0 vz |1 e

which can be expressed in a more compact form by using the so-called superoperator
formalism [31]. The operators O, V¥ belong then to an infinite dimensional vector
space of operators with a binary product defined as

(O |Ve) =@ |0 Ve ) . (2.130)
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Operators in this vector space of operators are called superoperators. Commonly
only the superoperator Hamiltonian H(® and the superoperator identity operator I
are used, which are defined as

HOV® = [HO Ve ] (2.131)
and L X
Ve =ve . (2.132)

The moment expansion of the polarization propagator becomes then

. Trw 1 AN T Yrw
(0720 = (5) (1077219
1\* 0 [A 507 0
+ (7)o [o. A0 ] )
1)° NP
+ (%) <\Ifg°>|[o, (H<°>)2v,;f.]|\1;g°)> + oo (2.133)
or
1 1)?
599 = (LY ot | T 1Y (of gope
(072 = (55) ©'1T72) + (5] ©'1BOT)

i (i) (OF | (HOPTL.) + - (2134)

Finally, defining the superoperator resolvent by the expansion

(nof-29) " = (1) {f+§°°j(%) } ,
n=1

the moment expansion of the polarization propagator can be written as

—

2.135)

(05 Ve = (O | (ol — HO) 1) (2.136)

Instead of using the superoperator resolvent, which is an inverse operator, it is
advantageous to work with a matrix representation. Using the inner projection with
a complete set of excitation and de-excitation operators {h,}, arranged as column
vector h or as row vector FL, an exact matrix representation of the polarization
propagator is obtained [32] (exercise 2.11)

{O; VL))
~ ~ ~ ~ ~\ 1 ~
- (Of\h) (h | (th—H(O))|h) (h | V;) (2.137)
= (P[0, ATV (TP|[R!, hwh — [HO, REP) " H(TP[[R, Ve Ju))
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Completeness of the set of operators {h,} means that all possible excited states
| \II£LO)> of the system must be generated by operating on | lI!80)>, i.e. hy | lIISO)) =] ‘11510))
This more general expression for the polarization propagator reduces to equation
(2.118) if one chooses the operators {h,} to be {\ \II%O))OII(()O) |, | \Il(()o)>(\11£10) |} (exer-
cise 2.12).

The most important application of time dependent perturbation theory or re-
sponse theory in the context of molecular properties is to evaluate the time de-
pendent expectation value of the electric dipole operator (¥y(t) | i | ¥o(t)) in the
presence of a monochromatic electromagnetic wave of frequency wy. Employmg the
dipole approximation, which implies setting k-7 =0 in equation (1.61), the pertur-
bation Hamilton operator for the periodic and spatially uniform electric field of the
electromagnetic wave is

- Z OPE,(t) = - Z 05% (e7H0t  ot) (2.138)

Comparison with equation (2.104) shows that the Fourier components of the operator
and the field are

Ve, = -0F (2.139)
Fw)a. = E;° (6(w — wo) + 8(w + wo)) . (2.140)

Insertion of these operators in equation (2.106) yields

(To(t) | 28 | o (t)) = (T |OF | B) (2.141)
. . E“o
# 32 ((OF—0F e ™!+ (05 ~OR)-wwe) -+

From the definition of the linear response function in the frequency domain, equation
(2.118), it can be seen that for the hermitian and real operators OF and OF the two

response functions ((OF; —OF))., and ((OF; —O[?)}_wo become equal. Thus

(Wo(t) | | o (t)) = (TP |OF [ w() Z o B0 cos(wot) + -+,

(2.142)
which can be compared with the classical expansion of a time dependent dipole
moment in equation (1.62). The frequency dependent polarizability tensor is then
identified as

ta (—w030) = —((OF; OF )y - (2.143)

For wg = 0 this reduces to the expression obtained by static response theory or
Rayleigh-Schrodinger perturbation theory.
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2.8 Vibrational Averaging

The expressions for the molecular properties given in chapters 2.5 - 2.7 were derived
for a fixed set of nuclear coordinates. However, this is not a realistic description of a
molecule, since even at 0 K a molecule vibrates. In order to obtain agreement with
experimental data it is therefore necessary to take account of the effects of nuclear
motion. The contribution that these corrections make is not negligible especially
for higher polarizabilities, to the extent that calculated first and second hyperpolar-
izabilities which do not include any vibrational correction [33] are of questionable
relevance to experiment, even though they may be of value for benchmarking pur-
poses. In addition, experimentally observable effects like temperature dependence
and isotope shifts of e.g. NMR parameters are solely due to differences in these
nuclear motion corrections.

The static polarizability will be used to illustrate how these vibrational correc-
tions can be incorporated [34, 35]. A detailed description of vibrational corrections
to hyperpolarizabilities can be found in the reviews by Bishop [33, 36].

In order to incorporate the effects of nuclear motion one requires a Hamiltonian,
which includes kinetic energy operators for the nuclei. The corresponding eigen-
functions are the so-called vibronic wavefunctions ®,, with energy W,, and are
characterized by the electronic, n, and vibrational, v, quantum numbers, where v
stands throughout the chapter collectively for the vibrational quantum numbers of
all vibrational modes of the molecule. The proper approach for the treatment of
the nuclear motion effects would be to use the unperturbed vibronic wavefunctions
@522 instead of the unperturbed electronic wavefunctions \I/S)) in the derivation of
expression for the molecular properties in sections 2.5 - 2.7. However, we still want
to make use of the Born-Oppenheimer approximation and have therefore the choice
of applying it before or after the effect of the external perturbation is introduced in
Hamiltonian.

In the first approach, the so-called sum-over-states treatment of the corrections
due to molecular vibration, the effects of the perturbation on the electronic and
vibrational part of the wavefunction are treated simultaneously. The vibronic wave-
function for, e.g., the electronic ground state n = 0 and an arbitrary vibrational
state v is thus in the presence of a perturbation, Eg, given through first order as

w | =325 OF Es| 20,)
(I> (ID(()(I))) +(I)O'u - Ov + Z ‘ @nv’ m’ B 0
nv' £0v WO’U - W( )

nv'

(2.144)

Using perturbation theory, section 2.5, one obtains then for a static polarizability

(4 \0E|<I>W><<I>SL, |OF|80))

> WO 0 (2.145)

nv
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The summation can be broken in two parts

e Ov | OE | q)nv’><@nv’ | OE | (I)Ov >
ats = —2 Z o a (2.146)
n#0,v' WO’U - an’
() |OF |23 (35 | OF | 85)
aZﬂ _ _22< Qv | a‘ Ov>< Ov | ﬁ' 0v> : (2147)

(0) (0)
v'£v WO - WOv’

v

where the first contribution is called the electronic polarizability and the second is
the vibrational polarizability, sometimes also called atomic polarizability.

Applying now the Born-Oppenheimer approimation, i.e. making the following
ansatz for the zeroth order vibronic wavefunctions

3% = w00 (2.148)
one obtains for the two contributions

1021wy 100 (w05 |wi)) |6l

iy - 2y > )00 o119
v n#£0 W()(v Wrgv’
o | (w0500 ©0 | (w07 v | el
= Loy (O 110219 0002 (0 W) 0F)

(0) (0)
v'£v WO’U - WOv’

where, using equation (2.86), the vibrational polarizability can also be written as

(0)
S N CIT 109)(09 | ug |0) o

0
v #v WOv - WO(’U’)

In order to evaluate the electronic polarzability, equation (2.149), one needs to know
not only all excited electronic states, \II%O) but also all the vibrational states, @ff,)),
of these excited states. This makes this approach rather difficult to apply in actual
calculations.

In the second approach, the so-called clamped-nucleus treatment, the effect of the
perturbation on the electronic and nuclear motion is treated sequentially. Firstly, the
Born-Oppenheimer approximation is applied to the vibronic wavefunction ®,,, which
is therefore expressed a product of an electronic wavefunction ¥, and a vibrational
wavefunction ©,. Secondly, in the presence of a perturbation, Fg, the perturbation
enters the electronic Hamiltonian (see section 2.4) and the electronic wavefunction
for the electronic ground state n = 0 is expanded in a perturbation series (see section
2.5). To first order the electronic wavefunction is then given as

0) 8 g g0
T =0 + ) =0 + 5 | v Wn |- 2,05 Bs| %o )

= , 2.152
! W“’ ({B}) - WO ({RY) (2152)
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where Wéo)({ﬁ}) indicates that the electronic energies are for a given set of nu-
clear coordinates { R}. The nuclear Schrédinger equation in the Born-Oppenheimer
approximation reads then

L o e? A4 = B
{; 2MKpK + deg Z 5 i + WO({R})} 1©,) =W, |06,) , (2.153)

KL ‘RK— L‘

where Wo({R}) is the electronic energy in the presence of the perturbation, which
to first order is given as

Wo({R}) = W ({R}) + (v |- Y OF Es| 9y’ . (2.154)

B

The perturbation, Eg, enters the nuclear Hamiltonian thus as an expectation value
with the electronic wavefunction. The vibrational wavefunction for an arbitrary vi-
brational state v of the given electronic state is then also expanded in a perturbation
series and is to first order given as

oW (¥ |- 3=, 0F By |y |0
@U:@g°>+@gl>:@g°>+z\@g9>>< v ¥ %{’ ’ (0f| o)1)
n#v' WO’U _WOv’

(2.155)
An expression for the polarizability can finally be obtained by static response theory
as described in Section 2.6,

0
Qo = 8E <@OU|OE|¢)011> (2156)
0 A
= 55 1OV 107196 + (0P |07 ¥e(?)

= HePE0F el + (ePw |0F ¥ e()] (2157

yielding two contributions: the electronic polarizability

\0E|w<° ><\If‘° \0E|w‘°>
~2 (0| s
; Y({R}) - WO ({R})

10{) = (8 |aas({R}) |©)

(2.158)
and the vibrational polarizability,, given in equation (2.150) or (2.151). Although
the expression for the vibrational polarizability is thus the same as the one obtained
with the sum-over-states treatment, the expression for the electronic contribution
differs from equation (2.149). The electronic contribution in equation (2.158) is
simply the polarizability as given in table 2.1 or equation (2.143) averaged with the

vibrational wavefunction ©. However, making the approximations
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1) that in equation (2.149) the differences between the vibrational energies are
much smaller than the differences between the electronic energies, i.e.

W w0 ~wld -w (2.159)

n

2) that closure is carried out over the vibrational wavefunctions @1()(,)) in equation
(2.149), i.e

1= [eel| | (2.160)

one obtains from equation (2.149) an expression

0 0 A 0 0 A 0 0
@2 |OF e (wY | 0F | ) |6)

alg=-2) . - : (2.161)
o Wao' = Wio

which is similar to equation (2.158).
For linear molecules the vibrational wavefunctions can be obtained numerically
as solution of the one-dimensional Schrodinger equation

{ 3 (dall; N J(i%—; 1)> + V(R)} | ©v,5) = Wi | ©4) (2.162)

where J is the rotational quantum number and V(R) is the sum of the electronic
energy and the nuclear repulsion term. The vibrational averaging in the clamped-
nucleus treatment in equation (2.158) can then be carried out numerically, if one
calculates the polarizability as given in table 2.1 or equation (2.143) as a function
of the internuclear distance R.

For polyatomic molecules the electronic polarizability in the clamped-nucleus
treatment is frequently expressed as the polarizability evaluated at an equilibrium
geometry {R,} plus a so-called zero point vibrational correction (ZPVC)

ags = (00 |aas({R}) |00) = aus({Re}) + Aals¥ . (2.163)

The latter is usually obtained by perturbation theory. The polarizability is thereby
expanded in a power series in the normal coordinates {Q,}

sl ) = s (BN + 3 (62 ) @55 (5t ) @@+ (2160

and the vibrational wavefunctions O are found by solving the vibrational Schrodinger
equation with the anharmonic potential

V({R}) = V({R}) + ZwQ + 2 ZKachaQch o, (2.165)

abc
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where w, and K. are the harmonic vibrational frequencies and cubic force con-
stants, respectively. The potential is normally terminated after the cubic term and
the vibrational wavefunctions @,(,0) are then expressed as perturbed harmonic oscil-
lator functions, i.e. they are expanded in a basis set {6, }, where each 6, consists of
a product of harmonic oscillator wavefunctions (one for each normal mode),

‘ @(0) Z ‘ 9 01 | : Zabc KachaQch ‘ 6 >

( o — ) (2.166)

v'#v

Inserting equations (2.166) and (2.164) into equation (2.163) and using the proper-
ties of the harmonic oscillator functions, one obtains for the zero-point-vibrational
correction in first order (exercise 2.13)

h 1 [ 0a K h 1 [0«
A ZPVC’_ _h - opB abb i — af 2.1
o7 45}0@(6@&) (Z ) AY (Ga) e

where the first term arises because of the anharmonic term in the potential, equation
(2.165), and the second term comes from the non-linear term in the expansion of the
polarizability, equation (2.164). Equivalent expressions for higher vibrational levels
have also been derived [37].

For the evaluation of the vibrational polarizability, equation (2.151), one needs to

calculate the vibrational energies, WO(S), as well as vibrational transition moments,

(@1(,0) | et | @ff,”), of the electronic contribution to the electric dipole moment. Both
can be obtained by a perturbation theory treatment similar to the one used in the
evaluation of the ZPVC [38].

The effect of temperature, 7', can finally be included by Boltzmann averaging
the polarizability over several vibrational states of energy F,

aus(T) = == (2.168)

Table 2.2 Calculated zero-point-vibrational corrections (ZPVC) to the static dipole
polarizability o (in units of e2a2E; ') and static dipole second hyperpolarizability 7
(in units of e*afE; %)

Molecule Property result at R, 7ZPVC % Ref.
HF o} 5.48 0.10 1.8 [39]
CcO o 13.86 0.05 0.4 [39]
N, « 11.73 0.05 0.4 [39]
CHy4 ~ 2152 285 13.2 [40]

In Tables 2.3 - 2.2 some illustrative examples for the zero point vibrational correc-
tions to nuclear magnetic shielding constants, o, indirect nuclear spin-spin coupling
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Table 2.3 Calculated zero-point-vibrational corrections (ZPVC) to the nuclear mag-
netic shielding constant (in ppm)

Molecule Property result at R, 7ZPVC % Ref.
HF o' F 419.68 -10.01 2.4 [41]
HF o' 29.01 -0.32 1.1 [41]
H,0 o0 343.94 -9.86 2.9 [42]
H,0 o H 30.97 -0.48 1.6 [42]
F, o’ F -187.84 30.90 16.5 [43]
C,H, o’°C 128.89 -3.78 2.9 [44]
CyH, o' 30.45 -0.80 2.6 [44]
CO o¢ 5.29 -1.82 34.5 [43]
CO o0 -53.5 4.8 9.0 [43]
N, 0N -58.7 -3.5 5.9 [43]

Table 2.4 Calculated zero point vibrational corrections (ZPVC) to the indirect
nuclear spin-spin coupling constant (in Hz)

Molecule Property result at R, 7ZPVC % Ref.
HF 1y H-F 526.4 -26.9 5.1 [41]
H,0 1y H-10 -81.555 3.963 4.9 [45]
H,0 2y H-TH -8.581 0.653 7.6 [45]
CH, 1t H-1C 123.846 5.030 4.1 [46]
CH, 2 H-H -14.450 -0.686 4.7 [46]
CoH, 1yc-t*c 189.995 4.861 1.9 [47]
C,H, 1t 254.906 -9.212 4.9 [47]
CoH, 2J'H-*C 51.727 -3.237 6.3 [47]
C,H, 3JHH-IH 11.311 -1.184 10.5 [47]

constants, J, dipole polarizabilities, o and dipole second hyperpolarizabilities, 7 are
collected (See also exercise 2.14). The results are taken from the recent literature
and were all obtained using correlated ab initio methods as described in Section 3.

A few general conclusions can be drawn from these examples. Zero point vi-
brational corrections are usually larger for properties which describe an interaction
with nuclear magnetic moments, like the nuclear magnetic shielding constant and
the spin-spin coupling constant, than for other properties like dipole polarizabili-
ties. Higher order properties, like hyperpolarizabilities, also have larger zero point
vibrational corrections than linear response properties. The large zero point vibra-
tional corrections to the nuclear magnetic shielding constants of F» and CO are two
extreme cases, well known in the literature.
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2.9 The Gauge Origin Problem

In section 2.1 the relations [22]

Lo I OAB(7, t
E(’ri)t) = —VQ&E(’I’“t)— 8(t )

B(7,t) = V x AB(7,1) (2.170)

(2.169)

between the time dependent electric field, E(7;, t), and the time dependent magnetic
induction g(ﬁ, t) on one side and the scalar, ¢ (7;, t), and vector potential, AB (73, 1),
on the other side were used in the derivation of the molecular Hamiltonian. However,
the potentials are not uniquely defined by these equations. Given an arbitrary scalar
function x(7;,t), the transformations of the vector potential

AB (7, t) — AP (7, t) = AP (7, t) + V(7 1) (2.171)
and simultaneously of the scalar potential

6 (7 1) > 67 (7 1) = 6°(7, 1) — 20000 2.172)
will leave the fields, E(7;,t) and B(7;, t), unchanged [22] (exercise 2.15). The trans-
formations in equations (2.171) and (2.172) are so-called gauge transformation and
x(7;,t) is a gauge function.

The fact that the observable fields (E(7,t) and B(7;,t)) do not change under a
gauge transformation implies that all equations describing the physics of a system
must be form invariant under a gauge transformation. This applies in particular to
the time dependent Schrodinger equation

zh%‘l!(t) =HY(t) , (2.173)
with the Hamiltonian H given in equation (2.55). Replacing the potentials ¢Z (7, t)
and EB(ﬂ, t) in the Hamiltonian H by ¢¥ (7,t) and AP (7;,t), according to equa-
tions (2.171) and (2.172), yields a new Hamiltonian H’. This gauge transformed
Hamiltonian can also be obtained (see exercises 2.16) by the following transforma-
tion
H - zhg = et Ziwx(fit) (I:I - zhﬁ> et i mix(Tut) (2.174)
ot ot
where the summation is over all electrons i. Form invariance of the time depen-
dent Schrodinger equation under the gauge transformations in equations (2.171)
and (2.172) or in equation (2.174) is therefore obtained if also the wavefunction ¥(¢)
is simultaneously transformed according to

T(t) — V' (t) = e ZiaX) §(f) (2.175)
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Form invariance of the time independent Schrodinger equation under a gauge
transformation is guaranteed by the simultaneous transformation of the total Hamil-
tonian

H = et 2 X7 [T 22 7x(7) , (2.176)

or the vector potential in the Hamiltonian
AB(ry) — A%(75) = AP(7) + V() (2.177)
together with the transformation of the time independent wavefunction
U U = ZimX() g (2.178)

The form invariance of the Schrodinger equation will then lead to gauge invariant
expectation values. However, it turns out that expectation values of the canonical
momentum operator, given in equation (2.15), are not gauge invariant, whereas
expectation values of the mechanical or kinematical momentum operator, given in
equation (2.54), are gauge invariant (exercise 2.17)

WA = (|3 A| ) (2.179)

The latter operator is therefore sometimes also called the gauge invariant momentum
operator.

An important gauge transformation in the context of the calculation of molecular
properties is given by the following gauge function

1 - —
x(F) = -5 Bx By (2.180)

where R, is the arbitrary gauge origin. This gauge function implies that

=

Vx(7) = —= B x R, (2.181)

DN | =

and that the vector potential for a uniform magnetic induction

AP (7)) =SB x (7 — R,) (2.182)
previously given in equation (2.59), becomes a linear function of the arbitrary gauge
origin R, under this gauge transformation.

As a consequence the diamagnetic and paramagnetic contribution to the mag-
netizability tensor & and to the nuclear magnetic shielding tensor ¥ in table 2.1
depend on the gauge origin éGO- However, the sum of the dia- and paramagnetic
contribution is for exact states independent of the gauge origin (exercise 2.18).
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2.10 Exercises

1.

Show that the vector potential AB can be chosen to be divergence free, i.e.
V-AB =0.

Show that the Lagrangians in equation (2.10) and (2.22) fulfill the Lagrange
equations (2.8).

Derive the expressions for the classical relativistic Hamiltonian in equations
(2.24) and (2.25).

Show that the o matrices in equation (2.36) fulfill the conditions (2.34) and
(2.35).

Prove relation (2.48).
Derive equation (2.49) from equation (2.47).

Derive the expression for the third order energy correction in Rayleigh-Schro
dinger perturbation theory.

Show that the diamagnetic contributions to the magnetizability §§lﬁ(ﬁgo),

nuclear magnetic shielding aféel(ﬁco) and reduced indirect nuclear spin-spin

coupling tensors KX can also be written in the following way as a sum-

over-states [48, 49, 50, 51]

pia _ 3 Uy |0s| U ) (¥ | 05| 0g”)
W(O W(O)
n#0 n
(W |05 ¥ (WY |0, | 9)
+ fZZ 0 3 n n 2 0
w@ _
n#0 0 n
where
P f2 02 03

62

filﬂ(RGO) T2 Z ((ﬁ — Rgo) x
2

Kel/ 3 € Mo T — E
) R v —
o) |l z( Ak

(17
<
wi | e Z(\r—szﬁ <|

a

1 L

i — Rao) x ﬁ))a D big
%
— Rgo) sz)) > bis
%
Ti — 2, R
X Pi Di,
i )) 2.0
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Hint :
e Try to derive the usual ground state average value expression from the
sum-over-states expression above.
e Recall the commutator relation
1h A,
—p

7B =
me

e Recall that the set of excited states ¥ is complete, i.e.

D EONEY =1

9. Derive the expression for the polarization propagator in the frequency domain,
equation (2.118), from the expression in the time domain, equation (2.117).
Hint :

e The Fourier transform is defined as

(5B = [ asByear
e Insert the resolution of the identity ) | \II%O)M\I!,(?) |= 1 between O and
i
e Use that
1 [ . * 6(a — 1 1
- / e o@)dt = lim [ 29—y — lim ==
1 J n—=0t J_o T+ n—o0ta+m a

10. Derive the equation of motion for the polarization propagator, equation (2.128),
from equation (2.125).

e The Fourier transform of polarization propagator is defined as
1 [ ;
(s BY) = o= [ (B
2 J_
e The Dirac delta function can be represented as
1 [ _.
o(t) = oy /oo e “ldw

11. Derive the inner projection of the superoperator resolvent
-1

(hwf . Er(O)) = |R)(h| (hwl — HO) | R)"(h|

Hint :
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e The set of operators h is complete i.e.

12. Derive equation (2.118) from equation (2.137) using that the operators {h,}
0 0 0 0
are { | 90) (@ |, oy (@ |}.

13. Derive the expression for the zero point vibrational correction (ZPVC) in equa-
tion (2.167). Hint :

e Use that the multiple harmonic oscillator wavefunctions | 6,) are products
of single harmonic oscillator wavefunctions | v;) for each mode ¢ and the
following expectation values of the normal coordinates

W|Qqlv) = 0 if v #v+1
h

©lQulv+1) = /(G(o+1
(41Qu@ulv) = Z-(v+3)

14. In this exercise we want to investigate the effect of nuclear motion on the
results for the static polarizability, nuclear magnetic shielding constant and
indirect nuclear spin-spin coupling constants of HoO at the SCF level.

The effect of nuclear motion is approximated by only considering the contri-
bution of the symmetric stretch mode 5;.

1

V2

In this approximation the zero point vibrational correction (ZPVC) to a prop-
erty P of H5O is obtained as

S (ARom, + ARom,)

oP %P
APZPVC —0.023842 [ — 0.002305 [ ——
0-0258 (asl>+ (85%)

where S, is assumed to be in Angstrgm.
s}

the symmetric stretch mode is calculated numerically with a simple three point
formula

The first (g—g) and second derivative (32P ) of the property with respect to

( oP ) P(+8;) — P(=S))

a5, 25,
8°P\  P(+51) + P(=S1) — 2P(eq)
9sz) 52
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The equilibrium geometry of H,O is Rpy = 0.95843 A, /yon = 104.45°. For
the symmetric stretch mode S; we use one pair of values from {4 0.025 A, +
0.05 A, +£0.075 A, + 0.1 A}

As basis set we use the aug-cc-pVDZ basis set from the basis set library of
Dalton. The DALTON manual can be found on
http://www.kjemi.uio.no/software/dalton /Master/Master.html

15. Show that the electric field and the magnetic induction in equations (2.169)
and (2.170) are invariant to the gauge transformations in equations (2.172)
and (2.171). Hint :

e Recall that V x V(7 ¢) =0
16. Prove equation (2.174).
17. Prove equation (2.179).

18. The expressions for the diamagnetic and paramagnetic contributions to the
magnetizability and nuclear magnetic shielding tensor in table 2.1 depend on
the gauge origin Rgo of the vector potential A(7;), equation (2.59), for the
magnetic induction.

Show that the sum of the diamagnetic and paramagnetic contributions, how-
ever, is independent of Rgo.

Hint :
e Move the gauge origin from ﬁgo to ﬁgo + D and show that the terms
depending on D cancel.

e Recall the commutator relation

A h o~
" A0 = p

€

e Recall that the set of excited states \I!,(zo) is complete, i.e.

D EONED =1
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Chapter 3

Ab Initio Methods for the
Calculation of Molecular
Properties

Ab initio methods for the calculation of molecular electromagnetic properties can be
categorized according to several criteria.

e Expressions for the molecular properties can be derived either as derivatives of
the electronic energy or as derivatives of molecular electromagnetic moments
and fields. This distinction is important for some approximate wavefunctions
which do not obey the Hellmann-Feynman theorem, equation (2.95). This
means that first-order properties obtained as a derivative of the energy for
truncated CI or perturbation theory wavefunctions, do not agree with the ex-
pectation value of the corresponding operator. It also follows that second and
higher order properties will also depend on the use of either energy derivatives
or derivatives of the expectation value.

In general, for an approximate wavefunction ®({C;())}), which typically de-
pends on a set of parameters {C;(\)} consisting of molecular orbital and con-
figuration coefficients, the derivative of the electronic energy W ({C;(A)}, A)
with respect to a real parameter \ in the Hamiltonian H()) is

dW({GiN}A) - IWHGNEA) T (8(W({Ci()‘)}a)‘)> (3@(/\))
dA oA - aC;(N) oA '

(3.1)
If the wavefunction is variationally optimized with respect to all parameters,
i.e. OW({Ci(N)},A)/0C;(N) = 0, as is the case for a self-consistent field
(SCF) and multiconfigurational self-consistent field (MCSCF) wavefunction,
the Hellmann-Feynman theorem is satisfied. Truncated configuration inter-
action (CI) wavefunctions, by contrast, are not variationally optimized with
respect to the molecular orbital coefficients. The Hellmann-Feynman theo-
rem is therefore satisfied only in the limit of a full CI wavefunction, when
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the molecular orbital coefficients are redundant. Similar problems arise for
non-variational approaches such as Mgller-Plesset perturbation theory (MP)
and coupled-cluster (CC). It is however possible to redefine the expectation
value for coupled-cluster wavefunctions to remove this discrepancy. Arponen
[62] defined an energy functional which consists of a transition expectation
value between the coupled-cluster state and a dual bra state, equations (3.76)
- (3.80), which is stationary with respect to the wavefunction parameters and
which therefore satisfies the Hellmann-Feynman theorem.

e A distinction can be made between methods which evaluate properties based
on perturbation theory, with a partitioning of the Hamiltonian and a series
expansion of the wavefunction (Sections 3.1-3.2) and those which use deriva-
tives of the energy or first-order expectation values (see Section 3.3). The
former methods can be further classified according to whether approximate
wavefunctions are substituted for the exact wavefunction in the expressions
obtained in Sections 2.5 — 2.7 or whether perturbation theory is applied di-
rectly to approximate wavefunctions. In the case of a variational wavefunction
these two alternatives yield identical results - for example, RPA and coupled
Hartree-Fock are formally equivalent [53]. Non-variational wavefunctions, on
the other hand, give entirely different formulations and results.

e Finally, not all methods are capable of treating time-dependent perturba-
tions to yield frequency-dependent properties. Even though most ab initio
approaches have now been generalized to the time-dependent case, the pole
structure (i.e. values of the perturbing frequency, w, for which the denomi-
nator in Eq. (2.118) goes to zero) of MP-based properties can differ (Section
3.3.2), giving very different behaviour in the region of resonances.

The following notational conventions will be adopted. The one-electron spatial
functions which are solutions to the closed shell Hartree-Fock (HF) equations

A

F(@)dp(7) = €,0,(7) (3.2)

are denoted {¢,} with Latin indices and are called molecular orbitals. Occupied
and unoccupied spatial molecular orbitals are denoted with the indices i, j,k, ...
and a,b,c,..., respectively, while the indices of general spatial molecular orbitals
are denoted by p, q,r,... The Fock operator is defined as

P = Z f6) = Z (iz@) (i) + @HF(z')) , (3.3)

where %% (4) is an effective one-electron potential, called the Hartree-Fock potential.
€, is the molecular orbital energy. In the Roothaan-Hartree-Fock approach [54] the
molecular orbitals are expanded in a basis of one-electron functions, {x,}, denoted
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by Greek indices, called atomic orbitals (although there is no restriction on their
position within the molecule)
S =) XuCup» (3.4)
"

where {c,,} are the molecular orbital coefficients. One of the most widely-used meth-
ods for treating the electron correlation missing in the Hartree-Fock wavefunction is
Mgller-Plesset (MP) perturbation theory [55, 56]. The field free Hamiltonian HO
is partitioned to give the Fock operator F and the so-called fluctuation potential 1%

HO =F 4V (3.5)
and the wavefunction is expanded in a perturbation series in 1%
| 9) = N (| Dscr)+ | M)+ [ 2P) ), (3.6)

where N is a normalization constant and the zeroth-order wavefunction is the single
determinant SCF wavefunction, | ®scr), i.e. the antisymmetrized product of the
occupied molecular orbitals {¢;}. The first order MP correction to the wavefunction
| W),

30 |V |®
:Z ‘ (I)gzo)> A( | | SC](F(')>) o (3'7)
nz0 (®scr | F|®scr) — (@ | F[®n)

consists of determinants which are double excited with respect to | ®scr)
1 1 a a
(") =| DEW) = 2> k| 2Y) (38)

ai
bj

where the first order doubles correlation coeflicients are given as

| bi
K2 = (ai ] b)) (3.9)
€ + € — €, — €
The second order MP correction to the energy is then
1
2 ab ab
w® = 3 Z (ia | jb) {4k} — 257} . (3.10)

ab
ij

The second order MP correction to the wavefunction
0) | 1 1
32) =3 | 30) (@ |V |25”)
n#0 (Bsor | F|®scr) — (Y |F|2Y)
(@ | 2")
— = _ (3.11)
(Bscr|F|®scr) — (@Y | F |0

—(Bs0r |V | Bser)
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contains single, double, triple and quadruple excited determinants

|8y =| SE@)+ | DE®)+ | TE®)+ | QE®) (3.12)
with e.g.
| SE@) =3 w9 | (3.13)

where the second order singles correlation coefficients are given as

1 1 y C C . . a a
= N (Z(ab | je) {4/43% — 2/{?1.} — Z(kz | 3b) {4/{2’-,c — QKZJ. ) . (3.14)

Jjbe jkb

3.1 Approximations to exact Perturbation The-
ory Expressions

In the current context, exact refers to the ground state wavefunction used in Rayleigh-
Schrodinger perturbation theory in Section 2.5 or response theory in Sections 2.6
- 2.7. Computational development from these theories requires approximate wave-
functions to be substituted for the exact wavefunctions.

3.1.1 Ground State Expectation Values

According to equations (2.82) or (2.101) first-order properties can be evaluated as
ground state expectation values. An alternative expression can be obtained by
introducing the reduced one electron density matrix [57]

v(Z1, Z,) :N/diz'z---d:EN O (@, 2y, @) U@, &, -, Ey) 5, (3.15)

where Z; = 7;s; with the spin variable s; and N is the total number of electrons.
By integration over the spin of electron 1 the spinless reduced one electron density
matrix is obtained

(7,7 1) = / dsy (70, ) - (3.16)
si=s1

The latter can be expanded in the basis of the molecular {¢,} or atomic orbitals

{Xu}

p(7,71) = Z%(ﬁ) Dpq ¢;(FI1) (3.17)
rq

= > () D X3(71) - (3.18)
pv
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The coefficients in this expansion, which are also called density matrices, are given
as

Dy = [ dfy d} 63(72) p(Fi, 1) 64(71) (3.19)
Du = [ dri dr} xG(7) pl73,71) () (320)

The expectation value of an operator O = >;0(i) can thus be written as

w9109 = [[dz - dmn U S wf

= N/ dzy - dZy 6(1) OO(&), By, -+, &x) VON(Z,, Zo, -+, Bn)
& =5

=

1=T1

= D Duq (#]6]¢p) =Y D (x0[6lxu) (3.21)

pv

_ / 4z, 6(1) (@1, 7)) = / a7, 6(1) p(71, 7Y
5:"1:5:'1 e

where the distinction between 7; and 7} becomes important for a differential operator
(1), which otherwise would act on both wavefunctions.

For a closed-shell self-consistent wavefunction | ®scr), for example, the density
matrix in the atomic orbital and molecular orbital basis are given as

DiCF = 2) chicu (3.22)
DifF = 26 . (3.23)

Using the MP wavefunction, equation (3.6), in equation (3.15) and keeping all terms
which are second order in the fluctuation potential a so-called unrelazed second order

Table 3.1 Electric dipole moment (in a.u. ~ 8.478358 x 10 %0 C m) of the hy-
drogenhalides, HX, and methylhalides, CH3X, calculated with an SCF as well as an
unrelaxed and relaxed MP2 density matrix ¢

Molecule SCF unrelaxed MP2 relaxed MP2 Exp.

HF 0.7570 0.6994 0.7100 0.7094
HCI 0.4725 0.4455 0.4419 0.4305
HBr 0.3777 0.3375 0.3417 0.3219
CH3F 0.8443 0.7521 0.7380 0.7312
CH;Cl 0.8095 0.7271 0.7589 0.7461
CH;3Br 0.8456 0.7524 0.7462 0.7162

@ Ab initio results taken from Ref. [58], experimental equilibrium geometry data for HX from Ref.
[59] and for CH3X from Ref. [60].
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(MP2) correction D to the density matrix in the molecular orbital basis is obtained
[61]

2 a;
Dz(j) = —Z/@ 4&12—2/{ ) (3.24)
abk
DY) = > kg (4rls — 2x%) (3.25)
cij
D& = DO =2k . (3.26)

Table 3.2 The orbital diamagnetic contribution to the indirect nuclear spin-spin
coupling constants (in Hz) calculated with an SCF and an unrelaxed second order
(MP2) density matrix ®

SCF unrelaxed MP2
HF Lyt H-1F -0.03 0.04
H,O 1JtH-1"0 -0.04 -0.05
2y H-'H -7.23 7.13
CH, 1jtH-12C 0.24 0.25
2J'H-H -3.54 -3.55
N, 1jeN-HN 0.10 0.10
¢]0) 1yi#c="0 0.03 0.03
C,H, L i 0.01 0.01
1jtH-1%C 0.27 0.26
2J H-2C -1.35 -1.35
3J'H—H -3.60 -3.60

@ Results taken from Ref. [62].

In Tables 3.1 and 3.2 some results for the electric dipole moment [58] of the
hydrogenhalides, HX, and methylhalides, CH3X, and for the the orbital diamag-
netic contribution to the indirect nuclear spin-spin coupling constants of some small
molecules [62] are shown. They are calculated with the SCF density matrix, equa-
tion (3.23) and with the unrelaxed second order (MP2) density matrix in equations
(3.24) - (3.26). The results for the dipole moments, in Table 3.1, are clearly im-
proved by the unrelaxed MP2 correction to the density matrix. Correlation at this
level reduces the dipole moments on average by 9 %. The root-mean-square per-
centage deviation of the unrelaxed MP2 results from the experimental equilibrium
geometry values is 3.6 % with a maximum and minimum deviation of 5.0 % and
-1.4 %, respectively. Experimental values for the orbital diamagnetic term are not
available since the orbital diamagnetic term is only one of four contributions to the
indirect nuclear spin-spin coupling constants. Nevertheless one can see that in most
cases the correlations corrections to the orbital diamagnetic term are unimportant.
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3.1.2 Sum-over-States Methods

The Sum-over-States method for the calculation of second or higher order properties
is based on equations (2.90) and (2.118). The main task is thus to obtain a set of
excitation energies W,\” — WO(O) and transition moments (\Il((,o) 1 O | ) with the

appropriate operator O or alternatively a ground state wavefunction | \II(()O)> and a

set of excited state wavefunctions | 111,(10)> from which the excitation energies and
transition moments can be calculated.

Approximating the excitation energies W — WO(O) by molecular orbital energy
differences €, — ¢; and the transition moments (\If(()o) | O | ¥) by matrix elements
of O in the molecular orbital basis (¢; | 6 | ¢,) gives the uncoupled Hartree-Fock
approximation [63], which played an important role in the early days of calculations
of molecular properties.

Nowadays the Sum-over-States method is mostly used in three cases. The first is
benchmark studies of two electron systems using explicitly correlated wavefunctions
(see e.g. [64]). The second is the study of hyperpolarizabilities of larger systems
using semi-empirical methods. Finally it is used in the analysis of contributions
to a molecular property from excitations between individual, typically localized,
molecular orbitals (see e.g. [65, 66]). The latter is normally done at the level of the
random phase approximation (RPA), for which excitation energies and transition
moments can easily be obtained.

3.1.3 Polarization Propagator Methods

Under polarization propagator methods one can understand methods in which ap-
proximations are made to the exact matrix representation of the linear response
function or polarization propagator given in equation (2.137). This equation is ex-
act as long as a complete set of excitation and de-excitation operators {h,} is used
and the reference state | \Il(()0)> is an eigenfunction of the unperturbed Hamiltonian.
Approximate polarization propagator methods are obtained by truncating the set of
operators and by using an approximate reference state | 11,(()"))_ Multiconfigurational
self-consistent field (MCSCF) and Mgller-Plesset (MP) perturbation theory wave-
functions are commonly employed as approximate reference states in polarization
propagator approximations.

Mgller-Plesset Perturbation Theory Polarization Propagator Methods

In polarization propagator approximations based on MP perturbation theory the ref-
erence state is approximated by the wavefunction in equation (3.6) and the complete
set of operators h was shown [67] to consist of all possible single excitation and de-
excitation operators, hy = {qf, q}, all possible double excitation and de-excitation
operators, hy = {q'q', qq}, up to all possible N-tuple excitation and de-excitation
operators with respect to the N-electron Hartree-Fock state | ®scp). The matrix
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form of the polarization propagator, (2.137), can thus be written as

(05 Vo = (U110, o) (B (W ([0, Ra] [Ty - )
[ (S8 osh B2 B2 ...\
x b | S Si - | B Ei - (3.27)
( (2[R, V]| wy)
< | (Rl Ve ey |
where
S% = (W |[hl, k]| 9) (3.28)
ER = (W |[p] [F+V R |2 (3.29)

A series of approx1mat10ns of i 1ncreas1ng order nis obtalned by requiring that all the
matrix elements S’” , E[ ! as well as ( Y \ [0, hy] |\I! )> are evaluated through order
n in the fluctuation potential.

For a first order polarization propagator approximation (FOPPA) it is only nec-
essary to keep hs in the set of operators and the reference state is the Hartree-Fock
state | ®scr). This approximation is better known as time dependent Hartree-
Fock approximation (TDHF) [68], see section 3.2.1, or random phase approximation
(RPA) [69] and can also be derived as linear response of an SCF wavefunction, as
described in section 3.2.2. The polarization propagator in the RPA is then given as

(01720 = ({Bscr 0,1 Bscr) (Bscr|(0,8)Bscr) ) (3] ) (330

FeN -5 2)-(3 )] (Perlialfen) . oo

where the A1 and BM matrices are defined as

AOY = (Bgop|lq, [F+V,q']| ®scr) (3.32)
BY = (®s0r|(q,[F+V,q]|®sor) - (3.33)

Based on a partitioned form of the propagator

(0578 D)o =
(¢ 110, o] [9") = (97 ([0, hs] | 987 (S E] — B *(hw ST - E))
< (S~ BE) — (hws — BE) (oS - BY)twsE - BY] T (33)

x (0 |[n, V) | 98) — (hwSE] - B (hwSE - BE) (| B, V2] | 90))
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the second order polarization propagator approximation (SOPPA) [70] was histor-
ically defined to be second order in the single excitation dominated part, ¢.e in
matrix elements which contain only h, operators. This implies that E[222], 5[222],
<\I/(()0) 0, fzz]\\Il(()O)> and <\IISO) [}, V¥ ] |\Il§,0)> are evaluated through second order,
EY, 8%, EY, S, (8 [[0,hd)| ¥y and (¥ |[hl, V2 ]| ¥Y) are evaluated
through first order and E£124] and Sﬁ only through zeroth order [71]. An analy-
sis of the matrix elements shows that besides the first order MP wavefunction | ®())
only | SE®) is required from the second order MP wavefunction, equation (3.13).

A complete third order polarization propagator approximation has been derived
but only parts have been implemented [72]. However, two other SOPPA-like methods
have been used widely. Both methods are based on the assumption that replace-
ment of the first order MP doubles correlation coefficients in equation (3.8) and of
the second order MP singles correlation coefficient in equation (3.13) by coupled
cluster singles and doubles amplitudes will give improved results. In the second
order polarization propagator with coupled cluster singles and doubles amplitudes
- SOPPA(CCSD) - method [73] this is done in all matrix elements, whereas in its
precursor, the coupled cluster singles and doubles polarization propagator approxi-
mation (CCSDPPA) [72], this was not the case.

Multiconfigurational Polarization Propagator Methods

In the multiconfigurational polarization propagator approximation [74], normally
called multiconfigurational random phase approximation (MCRPA), the set of op-
erators contains state transfer operators { R', R} in addition to the non-redundant
single excitation g' and de-excitation q operators. The state transfer operators are
defined as

Rl =| 9,)(¥uescr | (3.35)

where | ¥,,) = > . | ®;)C;y, are the orthogonal complement states of the MCSCF
state | Yyeser) = Y, | i)Cio and {| ®;)} is the set of configuration state functions.
The expression for the polarization propagator in MCRPA can be obtained from
equation (3.27) if one identifies k4 with {R', R} and | ¥{”) with | ¥pcscr). Since
this is a variational wavefunction, MCRPA can also be obtained by application of

linear response theory, section 3.2.2, or of the quasienergy derivative method, section
3.3.3, for an MCSCF state.

Ilustrative Polarization Propagator Calculations

In the following we want to compare the performance of the four polarization prop-
agator methods : RPA, SOPPA, SOPPA(CCSD) and MCRPA. In Tables 3.3 - 3.6
results from the recent literature [45, 62, 75, 76, 77, 41, 78] for static dipole polar-
izabilties o (Table 3.3) and indirect nuclear spin-spin coupling constants J (Tables
3.4, 3.5 and 3.6) are shown.
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Table 3.3 Comparison of different polarization propagator methods for the calcula-
tion of static dipole polarizabilities o (in units of e2a2E; *)? using the daug-cc-pVTZ
basis sets®

RPA SOPPA SOPPA Exp.¢
(CCSD)
HF 4913 5.052 5.731 5.60
HCI 16.728 17.651 17.368 17.39
H,0 8.538 10.089 9.782 9.64
H,S 23.681 24.756 24.243 24.71
NH, 12.960 14.441 14.161 14.56
PH, 29.829 30.881 30.076 30.93
CH, 16.217 16.754 16.510 17.27
SiH, 29.776 31.153 30.606 31.90
F, 8.597 8.760 8.456 8.38
Cl, 29.939 31.411 30.651 30.417
C,H, 28.493 28.145 27.537 27.70
CO, 15.920 19.238 18.611 17.51
SO, 23.608 28.235 27.116 25.61

@ Results taken from [75]. ® [79, 80]. ¢ References for the experimental values are given in [75].

Table 3.4 Comparison of different polarization propagator methods for the calcu-
lation of indirect nuclear spin-spin coupling constants J (in Hz)®

RPA MCRPA SOPPA SOPPA Exp.
(CCSD)
N, LJPN=MN | 149 0.8 2.7 2.1 1.4+ 06°
co  1y¥c-to 5.7 16.1 20.4 18.6 15.6 £ 0.1 ¢

C,H, 1J¥C-"C | 409.5 181.2 189.3 188.7 184.52 ¢
HF 1J'H-F | 666.9 543.7 539.5 529.4 540 ©

H,0 J'E-Y0 | 1034 -83.9 -82.4 -80.6 -83.04 + 0.02 ©
CH, J'E-"C | 156.9 135.7 126.9 122.3 |  120.87 + 0.05 ©
C,H, J'H-ZC | 4111 232.1 262.9 253.6 | 242.40 ¢

H,0 2JH'H -22.4 -9.6 9.1 8.8 78+ 0.7 ¢
CH, 2J'H'H -27.0 -20.8 -15.3 -14.0 -11.878 + 0.00 4¢
C,H, 2J'H-7C | 499 50.1 52.6 51.7 53.76 ¢

C,H, 3JH'H 84.9 10.8 12.2 11.3 10.11 ©

@ RPA, SOPPA, SOPPA(CCSD) results taken from [62], MCRPA results with CAS wavefunctions
are taken from [76, 77, 41, 45, 78]. ® References for the experimental values are given in [62, 47].
¢ Experimental data for the equilibrium geometry, i.e. corrected with calculated ro-vibrational
corrections.
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Table 3.5 Comparison of different polarization propagator methods for the calcu-
lation of the orbital paramagnetic contribution JF to the indirect nuclear spin-spin
coupling constants (in Hz)*

JoF RPA MCRPA SOPPA

(CCSD)

N, 1y NN 0.43 2.69 3.00
6]0) 1y#c-1"0 11.81 12.89 14.11
C,H, 1j¥c-to 15.05 — 6.34
HF 1y H-TF 195.05 182.0 189.82
H,O 1J'E-0 12.27 “11.45 11.51
CH, 1JiH-¥C 1.47 1.48 1.50
C,H, 1y H-1C -3.60 — -0.85
H,O 2y HH 9.09 9.23 9.31
CH, 2y H-1H 3.73 3.59 3.72
C,H, 2JtH-12C 8.28 — 5.60
C,H, 3 H-TH 5.54 — 4.81

¢ RPA, SOPPA(CCSD) results taken from [62], MCRPA results with CAS wavefunctions are taken
from [76, 41, 45, 78].

Table 3.6 Comparison of different polarization propagator methods for the calcu-
lation of the spin-dipolar, JP, and Fermi contact J¥¢ contributions to the indirect

nuclear spin-spin coupling constants (in Hz)®

JSD JFC’

RPA MCRPA SOPPA| RPA MCRPA SOPPA

(CCSD) (CCSD)

N, 1JPN-HN | 784 -1.95 -1.76 | -7.49 -0.53 0.79
co  1J¥c-Yo | 907 4.77 4.37| -853 3.90 8.76
C,H, 1J7C¢-"C | 2906 — 8.46 | 365.35 —  173.92
HF L H=F [ 1173 -1.41 -0.94 | 483.62 363.2  340.50
H,0 lJH-"O -0.01 -0.41 0.47 | -91.12 -72.08 -68.56
CH, lJH-"C -0.21 0.02 0.03 | 155.42 123.53  120.58
C,H, 1JHC 3.04 — 0.43 | 411.41 —  253.73
H,O0 2JHE'H 1.25 1.03 0.89 | -25.50 -12.70 -11.87
CH, 2JH'H 0.46 0.35 0.36 | -27.68 -15.73 -14.53
C,H, 2JH-"?C -1.52 — 0.98 | -55.25 — 46.47
C,H, 3JHH 3.02 — 059 | 79.93 — 9.49

@ RPA, SOPPA(CCSD) results taken from [62], MCRPA results with CAS wavefunctions are taken
from [76, 41, 45, 78].
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The root-mean-square (rms) of the deviation of the SOPPA(CCSD) results for
the static dipole polarizability (Table 3.3) from the experimental values is 0.73 a.u.
with a maximum deviation of 1.5 a.u. for SO,. In terms of percentage deviations
the rms value is 3.3 %. At the RPA level the rms deviation is 1.23 a.u. (7.3%) with
maximum deviation of -2.12 a.u. for SiH4, which shows that inclusion of electron
correlation at the SOPPA(CCSD) level clearly improves the agreement with experi-
ment. The correlation corrections are for most molecules smaller than 4 % with the
exception of NH; (9 %), H,O (15 %), HF (17 %), CO2 (17 %) and SO, (14 %).

The agreement of the SOPPA(CCSD) results for some indirect nuclear spin-
spin coupling constants with the experimental values is also very good. For most
molecules in Table 3.4 the deviations are less than 4 Hz with a rms value of 2.3
Hz, apart from HF and 1J'#-"°C in C,H,, where the deviations are about 10 Hz.
Including also those couplings increase the rms to 5.1 Hz. The rms value of the
percentage deviations is for all molecules 18% (10 % without HF and 1J'#~"°C in
C,H,). Based on these statistical data one can conclude that spin-spin coupling
constants are more difficult to calculate than dipole polarizabilities. This can also
be seen if one compares the correlation corrections to both properties as calculated at
the SOPPA(CCSD) level. The correlation corrections for the molecules in Table 3.4
vary between 20 % for HF and 426 % for CO. The calculation of a spin-spin coupling
constants is also complicated because it consists of four terms (see section 2.5), of
which the three linear response function contributions are shown in Tables 3.5 and
3.6. In section 2.5, it was discussed that two of them, the spin-dipolar and the Fermi
contact contribution, consist of excited triplet states, which uncorrelated methods
like RPA are often not able to describe properly. The large correlation effects in the
spin-spin coupling constants are thus normally due to the Fermi contact term.

Reduced Linear Equations

A feature common to all propagator mgthgds is that the response is given as the
product of a “property gradient” vector T'(O) with an inverse “Hessian” or principal
propagator matrix (AwS — E) and another “property gradient” vector T'(V?)

A

(O; V&), = T(0)(hwS — E)™'T(V¥.) (3.36)
= T(O)N(VZ) . (3.37)

In actual calculations, however the inverse of the principal propagator is never
evaluated. A set of coupled linear equations for the response vector IN (V)

A

(hwS — E) N(V®) =T(V®) (3.38)

o+

is instead solved iteratively by expanding the response vector in a basis of orthogonal
trial vectors {b;} [81]

N =) b . (3.39)
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In a given iteration n the linear equations transformed to the basis of the trialvectors
{by-- - b,}, to the so-called reduced space,

(hwS® — E®) NR(V ) = TRWVY) (3.40)

are solved by standard techniques. The elements of the solution vector, N R(Va‘*f_, n
the reduced space are the optimal coefficients {c;} in equation (3.39) for the trial
vector N (V) in iteration n. The elements of the other matrices in the reduced
space are defined as

SE = b; S b (3.41)
Ell = b, Eb; (3.42)
TEWVY) = b; T(VY) . (3.43)

The iterations are converged if the residual vector, defined as,

A

R, = (hwS — E) N, (V¥

o+

) = T(V2) (3.44)

is smaller than a given threshold. A new trial vector for the next iteration, n + 1,
can be generated by a generalization of the conjugate gradient method

bn+1 — (hwsdiag _ Ediag)—l Rn ’ (345)

where S%% and E%% are diagonal matrices consisting of the diagonal elements of
S and E.

In each iteration one has then to calculate the linear transformation of the new
trial vector (AiwS — E)b; which can be done directly without ever calculating the
(hwS — E) matrix explicit [29, 82]. For the RPA and SOPPA polarization propa-
gators this can also be done directly from the two electron integrals in the basis of
the atomic orbitals [83, 84, 85].

3.1.4 Perturbed Electron Propagator Method

The definition of a propagator in equation (2.117) can also be generalized to other
types of operators [86]. The electron propagator matrix G(w) in the frequency
domain, e.g., is defined as

Gpq(w) = ((al; ag))w (3.46)
where a;’,, a, are second quantization creation and annihilation operators. An im-
portant property of the electron propagator is that the ground state one electron
density matrix can be obtained from it by complex integration over the Coulson

contour C .

Dy = 5 fi dw Gpy(w) . (3.47)

™

First order properties can then be calculated with this one density matrix via equa-
tion (3.21).
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In addition it is also possible to calculate second and higher order properties
using the perturbed electron propagator approach by Pickup [87]. In the presence
of a perturbation the electron propagator matrix is changed and can be expanded
in powers of the perturbation

Gw)=GOw)+GM(w) +--- . (3.48)

Contour integration of this higher order electron propagators yields corresponding
higher order density matrices.

1
1) — 1
Dy = Q—Mfédw Gl (W) (3.49)
and second order properties, like a static polarizability, can then be calculated as
~ 1
aas = ) (94105 165) Djpy - (3.50)
bq

The exact electron propagator matrix can be written as [88]

-1

Gw) = (w1l - F(D"F) - B(w)) = (wl-FD“") -Mw)) " , (3.51)

where F' and ¥(w) are the Fock and self-energy matrices, respectively. Expressions

for GO (w), GM(w),--- can be obtained via an expansion of the inverse
-1
GO(w) = (w1 - FO(D") - MO(w)) (3.52)
GW(w) = GO(w) (F(l)(D(l)’c"”) - M(l)(w)) GO (w) . (3.53)

However, the Fock matrix depends on the one electron density matrix and one has
to iterate on equations (3.49) and (3.53).

Approximations to the electron propagator can obtained using several methods,
see e.g. [89]. Setting M@ (w) = M®(w) = 0 and approximating F® (D) by
orbital energies yields the coupled Hartree-Fock approximation, described in the
following section 3.2.1. Correlation corrections can be obtained using a MP pertur-
bation theory expansion of the self-energy [87, 90].

3.2 Perturbation Theory with Approximate Wave-
functions

3.2.1 Coupled Hartree-Fock and Time Dependent Coupled
Hartree-Fock Theory

In the coupled Hartree-Fock method (CHF), probably derived the first time by Peng
[91], second and higher order static properties are obtained by solving the Hartree-
Fock equations self-consistently in the presence of the perturbation. The molecular
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orbitals {¢s,} in the presence of the perturbation, e.g. an electric field Eg, can be
expanded in the set of unperturbed molecular orbitals {¢§,0)}

Psp = ZQSISO) Usap - (3.54)
q
Inserting these in the Hartree-Fock equations, (3.2), gives
Z ‘15 Usap = €,p Z ¢ Usap > (3.55)
or in matrix form
Z Frq Usgp = €8 Z org Upgp - (3.56)

q

The perturbed Fock matrix in the basis of the molecular orbitals Fj 4, the per-
turbed orbital energies €3, and the coeflicients Ug 4, are then expanded in orders of
the perturbation

Fppg=FQ +FY Eg+--- | (3.57)
€op =€) +e5) Bg+--- (3.58)
Upap = U(O + Uﬂ,qp Eg+--- (3.59)

where Uég) = 04 and F,Sf; = e,()o) dpq- Inserting these expansion in the perturbed

Hartree-Fock equations, (3.56), and separating orders, one obtains the first order
Hartree-Fock equations

0) rr(1) (1) 0 0) (1) (1) 0
Z(F( UB qp FB rq ( Z 5“1 UB qp + €8,p Z 5’”‘1 Utgp)) ) (3'60)
q q

which after evaluation of the zeroth order terms are given as

1
(e — ey Ul =€) 5, — F (3.61)
For p # r one finally obtains
F)
1 _ B.rp
Usep =~y (@ ° (3.62)
67' - €p

an equation which must be solved iteratively since the first order Fock matrix, Fé Zp,
depends on U[gﬁp.

For the calculation of molecular properties only the virtual-occupied block Uélgz
of the coefficient matrix is necessary, since the total wavefunction is not changed by
mixing of the occupied orbitals among themselves. Evaluation of Félgz leads to

Z (Afu bj) + Baz b]) Uélb] = <¢a |}A7’£-31) |¢Z> ) (363)

bj
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for real (—) and purely imaginary (+) perturbation operators with matrices A®Y
and BWY given in equations (3.32) and (3.33). Comparison with equation (3.31)
shows that

U = (X(0)FY(0) . (3.64)
The first order correction to the density matrix is then
(1),SCF o\ _ (1)* (1)
Do =2 Z (chicus + cachls) =2 (VS + US2,) (3.65)

and a static polarizability can be calculated from equation (3.50).
Time-dependent Hartree-Fock theory (TDHF) [28] introduces time dependent
molecular orbitals which are also expanded in the unperturbed orbitals

— 60 + ZEﬁ (Ufn@)et + USD(-w)e ™) 60 +--- . (3.66)
From the time dependent version of the Hartree-Fock equation,

(760 = 157 ) 8 = et (3.67

which can be derived from Frenkel’s variational principle [92], equations for the
coefficients U, [gll)n( ) and Ul 5 pz( w) can be obtained

UP(-w) \ (X
(_{}g)(w))—(Y) ’ (309

where X and Y are defined in equation (3.31).

As has already been mentioned, the variational nature of the Hartree-Fock wave-
function means that the CHF /TDHF equations are equivalent to the RPA equations.
Unlike RPA and its correlated coevals, however, an atomic-orbital based solution of
the iterative CHF equations cannot give excitation energies and transition moments.
Historically, CHF, was favoured over RPA since it could be solved in the atomic or-
bital basis [93], rather than requiring a transformation to the molecular orbital basis.
The need for an inverse Hessian in RPA/SOPPA also restricted the size of system
which could be studied. However, the use of direct atomic orbital driven methods for
RPA response properties [83] and for SOPPA [84, 85], coupled with iterative meth-
ods for solving the inverse Hessian, mean that they can now be applied as widely as
CHF /TDHF and provide far more information about excited states and properties.

3.2.2 Response Theory
Multiconfigurational Response Functions
In the application of response theory to an SCF wavefuntion | ¥) =| ®scp), or to

an MCSCF wavefunction | ¥) =| ¥ycscr), first described by Olsen and Jgrgensen
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[29], the time dependent state | Uy(t)) is usually expressed as

| Uy(t)) = et(t) gS(t) | ¥) (3.69)

where
k(1) = D (ku(t)g] + k(1)) (3.70)
St) = > (Sa(®)R}+ Si(H)R,) (3.71)

n

and S, (t) = Sk(t) = 0 for the SCF case. The time dependent parameters, collected
in a vector y(t) = (ku(t), &} (t), Sn(t), Si(t))", are then expanded in orders of the

perturbation H®(t)
=> A0 . (3.72)

Equations for the coefficients in each order are obtained from a particular form of
the time dependent Schrodinger equation, called the generalized Ehrenfest theorem,
d
i
Inserting equation (3.69) for | ¥y(¢)) and seperating orders one finds for the the first
order equation

Uo(t) |0 | Wo(t)) + 1{To(t) | [0, HO + HO ()] [ To(t)) =0 . (3.73)

(1[0, S (1)) + L S(00]| W) — (o] [0, O, w(1)® + S()] | o)
= —(T, | [0, HO(8)] | ) . (3.74)

Using the set of operators {qL,qM,RL,Rn} for O one obtains a linear system of
ordinary differential equations

O(t) - By () = T(HV () . (3.75)
which Fourier transformed to the frequency domain yields again the set of coupled
linear equations given in equation (3.38) [94].

Coupled Cluster Response Functions

Coupled Cluster response functions were derived by Koch and Jgrgensen [95] starting
from the time dependent transition expectation value of Arponen [52]

(®A(t)| O] ®oc(t)) (3.76)

where the time dependent coupled cluster state | ®cc(t)) and dual or “lambda”
state (P, (t) | are defined as

| ®ce(t)) = "0 @scr) (3.77)
(@a(t)| = (®scr | (1+At)e ™ (3.78)
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The time dependent cluster operator and A operator consist of n-tuple excitation,
7'/]:, and de-excitation operators, 7,, respectively

T(t) = ) tu(t) 7] (3.79)
Alt) = Z)‘N(t) T s (3.80)

where {7}, 7,} is a shorthand notation for single {g},q,}, double {qlq},q.q,}, etc.
excitation and de-excitation operators. t,(t) and A,(t) are the corresponding time
dependent amplitudes.

The time-dependent amplitudes, ¢,(t) and A,(t), are then determined from the
coupled-cluster time-dependent Schrodinger equations

G_T(t)Z% | ‘I)CC(t» = G_T(t)f[ | q’cc(t» (381)
(%(@A(t) \) T = 4(®,(t) | He™® (3.82)

by projecting them on (®scr | 7, and 7'/1 | ®scr), respectively, yielding systems of
ordinary linear differential equations

dt (1

a ! (@scr|Tue "I H [®0c(t)) (3.83)
%t(t) = (@A) |[H, 7] Bec(t)) - (3.84)

In the presence of an time-dependent perturbation H (1)(¢), equation (2.103), the
amplitudes ¢,(t) and A,(¢) are expanded in a perturbation series ¢,(t) = t0 ) +
t @) + -+ and A(t) = AP (¢) + AL (¢) + - - - yielding a series of equations. In first

order they read

dty) (¢ : ;

20 o @sorl e THO (1) | @cch (Bscr e HO, TOW] [ cc) (385)
dAP (¢ - -

20 @y (1O, 7], TOW] + HO®), 7)) | @ec) +1 3 A (1) (3:56)

where | ®c¢) and (P, | are the time independent, unperturbed coupled cluster
and “lambda” state, respectively, T is the time independent, unperturbed cluster
operator and the A matrix is here defined as

A= <(I)SC’F ‘ TeiT[IA{(O), %T] ‘ q)cc> y (387)

with {7]} arranged as row vector #1 and {r,} arranged as column vector 7.
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Equations (3.85) and (3.86) are solved by Fourier transformation of tLl)(t) and
)\Ll)(t) to the frequency domain, X ,El) (w) and Yy(l)(w), which gives two sets of coupled

linear equations
XO(w) = (~A+hw 1) ((@sor| Fe TV | @cc) ) (3.88)
YO () = — (<<1>A|[V;f__,+1|<1>cc> + FX(l)(w)) (—A+hw1) !, (3.89)
where the F' matrix is here defined as
F = (@, [[H, 7", 71| 2cc) - (3.90)

After insertion of these results for the amplitudes in a perturbation expansion of
the time dependent transition expectation value, (®4(¢) | O | ®cc(t)), the response
functions can be identified by comparison with equation (2.106). The coupled cluster
linear response functions is thus given as

o

0; V% Mo = YO () (<<1>SCF|TO\<1>CC>) + (<<1>A|[O, +’f]\<1>cc>) XW(w) . (3.91)

3.3 Derivative Methods

3.3.1 The Finite Field Method

The finite field method of Cohen and Roothaan [96] and Pople, McIver and Ostlund
[97] involves numerical evaluation of derivatives of the electronic energy, of first or
higher order properties, in general of a property, P, in the presence of a perturbation
operator, 05 F,. Calculations of P are performed for various values of field strength
F,. The desired derivative, at zero field strength, can then be obtained either by
finite differences or by fitting the calculated values of P to a Taylor expansion in the
field strength Fj,.

In a finite field calculation of the static dipole polarizability «, for example,
the perturbation operator, — OF E,, is added to the Hamiltonian, H®, and the
electronic energy or the electronic contribution to the dipole moment is calculated
for various finite values of the electric field strength E,. The dipole polarizability
is then obtained as the numerical first derivative of the electric field dependent
dipole moment or as the numerical second derivative of the electric field dependent
electronic energy.

The property P for which derivatives are taken need not to be a static prop-
erty, but could also be a frequency dependent polarizability a(—w;w), as done
by Jaszuiniski [98]. Finite field calculations on a—w;w) facilitate calculation of
ﬂ(_w; w, O)’ ’7(—(4); W, 0’ O)

The finite field method is by far the easiest method to implement as long as the
perturbations are real. Any program for the calculation of the property P can be
used, as long as it allows for the inclusion of additional one-electron operators in the
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Hamiltonian can be used. The finite field method can thus be applied at any level of
approximation or correlation and even to approximations for which a wavefunction
or a ground state energy is not defined.

Imaginary perturbation operators, like O'2, OsB 0" and O*™" | require the use
of complex arithmetic, which prevented a routine usage of the finite field method
for the calculation of magnetic properties. Nevertheless finite field approaches to
the calculation of nuclear magnetic shielding constants [99] and nuclear spin-spin
coupling constants [100] have been presented. In this method the sum-over-states
contribution to afﬂ, for example, is evaluated as numerical derivative of the expecta-

tion value of OZ"K with respect to Bg, the expectation value having been calculated
to second order in electron correlation and in the presence of the magnetic induction
Bg. The sum-over-states contributions to the coupling constants J5" are obtained
as numerical derivatives with respect to mX of an expression for the energy, which is

second order in electron correlation and first order in — (OAg”L + OgmL) and is cal-

culated in the presence of the perturbation — <OAZ”K + OAflmK) mX. Mixed electric

magnetic properties, on the other hand, like nuclear magnetic shielding polarizabil-
ities can be evaluated as numerical derivatives of electric field dependent nuclear
magnetic shielding tensors without complex arithmetic.

A disadvantage of the finite field method lies in the nature of numerical differ-
entiation. Care is required in setting the field strength, in our example E,, which
must not be too high and in the number of evaluations of property P which are used.
For higher order properties or multiple perturbations the method becomes cumber-
some since the number of calculations to be performed increases rapidly. Finally the
method can obviously not be used for time dependent perturbations and therefore
for frequency dependent properties.

A variation of this method is the finite point charge method, used by Maroulis
and Thakkar [101], in which the external electric field or field gradient is simulated
by an appropriate arrangement of point charges. This method is even more simple
to implement, since it only requires the option to include centres with a charge but
no basis functions, rather than a modified one-electron Hamiltonian.

The finite field method has been widely used but is becoming increasingly obso-
lete because of the advances in the analytical derivative methods: most properties
of interest can now be calculated analytically, obviating the need for a finite field
calculation.

3.3.2 The Analytical Derivative Method

In the analytic derivative method for the calculation of molecular properties, ap-
proximate expressions for P within a given method are differentiated analytically
with respect to the perturbation. It is equally general as the finite field method
and does not suffer from the numerical problems of the latter method. However,
it is much more difficult to apply to a new type of wavefunction, since expressions
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for the analytical derivatives have to be derived and implemented. Nevertheless,
expressions for first and second order properties have been implemented for most
ab initto methods following the derivation of analytical derivatives with respect to
changes in the nuclear coordinates. Explicit expressions can be found in several
reviews [102, 103, 104].

The first derivative of the energy of a system described by the Hamiltonian
HO 4+ O+ H® given in equations (2.57), (2.63) and (2.64) with respect to one of
the perturbations E,, B, and m¥ or in general F, can be written for most methods
as

A (;
dzéfa) . Z D] ° ()\¢>q> ; <Xu|6h67};£)|)(u> . (3.92)

The atomic orbitals x, are here assumed to be independent of the perturbation. For
variational wavefunctions, ¢.e. methods which fulfill the Hellmann-Feynman theo-
rem, this is equivalent to equation (3.21). However, for non-variational wavefunc-
tions, as for example in the case of MP perturbation theory and the CC methods, the
density matrix is not consistent with the definition in equation (3.19) and was there-
fore also called relaxed or response density matrix [105]. The Hellmann-Feynman
theorem can be fulfilled in coupled cluster theory, however, when the energy and
first order properties are evaluated as transition expectation values, defined in sec-
tion 3.2.2 (see e.g. [106])

CC|HO® + AW |CcC — §HW
d{CC] T '|co) = (CC| °F cc) . (3.93)

Foa=0

The relaxed density matrix can be decomposed in an SCF and correlation part
D = D%YF 4 perr . (3.94)

The SCF density is given in equation (3.23) and the correlation part consists of two
parts
Dcorr — Damp + Dorb ’ (395)

where D™ contains amplitudes or correlation coefficients and D°™, obtained as
a solution of the so-called Z-vector equations [107], arises because of the relaxation
of the orbitals for non-variational wavefunctions. Only the occupied-virtual and
virtual-occupied blocks are non-zero in D°"®, which is again a result of the Brillouin
condition for the SCF ground state.

At the level of second order MP perturbation theory (MP2), e.g., straigthforward
differentiation of the MP2 energy, equation (3.10), would give

= 5o T+ S 0

Fo=0 gp

aw A (F,)
dF,

Z Laz

(3.96)
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where Lg) is the so-called Lagrangian and Uézl ) are the solutions of the coupled
Hartree-Fock in equation (3.63). Instead of solving the coupled Hartree-Fock equa-
tions for all components of the perturbation, one can solve one set of coupled Hartree-
Fock equations for the so-called Z-vector [107], with the Lagrangian as right hand

side
> (A% - BY) 2 =8 (3.97)
bj

The last term in equation (3.96) can then be written as

ZLaz Uc(vlaz ZZaz ¢a ( ) ‘¢z> - Z ai <¢a ( ) |¢1> , (398)

ai

identifying the occupied-virtual and virtual-orbital blocks D;, and D,; of the relaxed
density matrix as the Z vector. It is also these occupied-virtual and virtual-orbital
blocks which differ between a density matrix consistent through second order [61],
equations (3.24) - (3.26), and the MP2 relaxed density matrix [104, 108].

The second derivative of the energy can be written as

d®W (F3, F,)

0 (xul hu (9) | x) Xu|h1()|Xu>
=Y D D
dF,dFs Z ad Z ’

OF0F, F,

Fa=F3=0

(3.99)
where hy (i) stands for 2 (i) + A1 (¢) + h(3) (1) and the atomic orbitals could depend
on the perturbation. The derivative of the relaxed density matrix, so called first
order relaxed density matrix, in the atomic orbital basis is given as

n _ 0D, _ 0Dy, . Ocyg
Dﬁ:l“/ - aFﬂ - % up 6F Cuq + Z 6F qu + C“”@Fﬁ . (3100)

The derivatives of the molecular orbital coefficients {c,,} are obtained by solving
the coupled-perturbed Hartree-Fock equations, which are described in section 3.2.2.
The first order density matrix at the SCF level was given in equation (3.65). The
occupied-occupied and virtual-virtual blocks of the correlated first order density
matrix contain derivatives of the amplitudes or correlation coefficients, which can be
obtained by straightforward differentiation of the equations defining the amplitudes.
The occupied-virtual and virtual-occupied part requires the solution of the first order
Z-vector equations, i.e. the derivative of the Z-vector equations. Explicit expressions
for the relaxed density matrices and first order relaxed density matrices for many
methods can also be found in e.g. [102, 103, 104, 109].

INustrative Calculations

In the following we want to illustrate the performance of different analytical deriva-
tive methods with results from the recent literature [75, 110, 111, 112, 113, 109, 114|
for the static dipole polarizabilties a (Table 3.7) and the nuclear magnetic shielding
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constants o (Table 3.8). The results are obtained using second, third and fourth
order Mgller-Plesset perturbation theory as well as Coupled Cluster methods.

It is interesting to note that the differences between the MP3, CCSD and CCSD(T)
results for the nuclear magnetic shielding constants, Table 3.8, of the XH,, molecules
are rather small, whereas large changes are observed for XY molecules. It is there-
fore not clear whether in the case of the XY molecules the results at the CCSD(T)
level are converged.

In case of the polarizabilities, Table 3.7, it is more difficult to draw general
conclusion, which is probably due to the missing ro-vibrational corrections.

Table 3.7 Comparison of different analytical derivative methods for the calcula-
tion of static dipole polarizabilities o (in units of e?a2E; ") using the medium size
polarized basis sets °

SCF MP2 MP4 CCSD Exp.©
HF 4.874 5.674 5.770 5.724 5.60
HCl 16.664 17.368 17.433 17.499 17.39
H,O 8.492 9.792 9.866 9.824 9.64
H,S 23.614 24.570 24.542 24.604 24.71
NH; 12.926 14.432 14.411 14.411 14.56
PH; 29.915 30.689 30.510 30.674 30.93
CH, 16.120 16.754 16.704 16.709 17.27
SiH4 29.960 31.035 31.216 31.467 31.90
Fo 8.593 8.219 8.662 8.550 8.38
Cly 29.886 30.556 30.707 30.905 30.417
CyoHy 28.303 27.793 27.635 27.534 27.70
CO, 15.841 17.884 17.846 18.013 17.51
SO, 23.653 26.174 26.343 26.444 25.61

@ Results taken from [75, 110]. ® [115, 116, 117]. ¢ References for the experimental values are given

in [75].
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Table 3.8 Comparison of different analytical derivative methods for the calculation
of nuclear magnetic shielding constants o (in ppm)®

SCF  MP2 MP3 CCSD CCSD(T) Exp.?
HF o F | 4136 4242 4178  418.1 418.6 | 419.7+6°
H,O o¢°| 3281 3461 3367  336.9 3379 337+2°¢
NH; o M| 2623 2765 2701  269.7 270.7| 273.3+0.1°¢
CH, o¢°¢| 1948 201.0 198.8  198.7 198.9 | 1984 +0.9 ¢
F, o' F | -167.9 -170.0 -176.9 -171.1 -186.5 | -192.8 ¢
N, o N | -1124 416  -72.2  -63.9 581 | -59.6+15°¢
CO ¢7°¢| -255 20.6 4.2 0.8 5.6 2.8+ 0.9°¢

c'©| 877 -465  -68.3  -56.0 529 | -367+17.2°¢

@ Results taken from [111, 112, 113, 109, 114]. ® References for the experimental values can be
found in the articles given in footnote a. ¢ Experimental data for the equilibrium geometry, i.e.
corrected with calculated ro-vibrational corrections.

3.3.3 Time Dependent Analytical Derivatives

The analytical energy derivative method has be extended to the case of time-
dependent perturbations using the pseudo-energy derivative method of Rice and
Handy [118] and the quasi-energy derivative method of Sasagane, Aiga and Itoh
[119]. Both methods define the frequency-dependent properties as derivatives of the
quasi-energy, as defined by Lowdin and Mukherjee [120] or Kutzelnigg [121]

W(t) = (B(t)| HO + AW (¢) —2%|\Il(t)> , (3.101)

but in the pseudo-energy derivative method (PED) the frequency dependent polar-
izability is defined as

*W (1) *W (1)
@os(~Wiw) = = SFuaRs| T T oE0aEy| (3.102)
BT p=o ™8 |p=0
where as in the quasi-energy derivative method (QED) it is defined as
O*W (¢
Qap(—wiw) = — ®) |lE—0 - (3.103)

o0E—v sbaaEg

PED [118, 122] and QED [123] expressions for the frequency dependent polarizability
and first hyperpolarizability at the SCF and MP2 level have been derived, whereas

QED expressions have also been presented at the coupled cluster level [124] and

for second and third hyperpolarizabilities in SCF, MCSCF, full and truncated CI
wavefunctions [119]. At the SCF level both methods lead to the time dependent
Hartree-Fock approximation (TDHF). The quasienergy derivative method for an
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MCSCF energy was also shown to yield the same expressions as obtained from
response theory . However, at the MP2 level the PED and QED methods differ
despite the fact that they give the correct static perturbation limit. In both methods
the Hamiltonian is partitioned in the following way
HO + AW(®) - LA AN (3.104)
ot ot
The PED method starts then from the usual expression for the MP2 closed shell
energy, in which the expansion, equation (3.66), of the molecular orbitals in the time
dependent fields is inserted. In addition the condition

ey D0, (3.105)

has to be fulfilled for the first order MP wavefunction
| (1)) = @scr(t))+ | @D (1)) . (3.106)

In the QED method, by contrast, the derivatives of an MP2 quasienergy Lagrangian
are taken, which is variational in the TDHF coefficients, equation (3.68), first order
MP2 amplitudes as well as in Lagrangian multipliers for the TDHF coefficients and
first order MP2 amplitudes. A constraint like equation (3.105) is not necessary in
the QED method as a result of the fact that the second derivative is with respect to
E_“. The TDHF coefficients have to be obtained by solving the TDHF equations,
equation (3.68), as in the PED method, the first order MP2 amplitudes as well as the
Lagrangian multipliers for the TDHF coeflicients and first order MP2 amplitudes
are obtained by solving appropriate response equations. Two further differences
between the PED and QED method at the MP2 level are that the PED polarizability
tensor is not symmetric and that the PED expression contains Hartree-Fock orbital
energy differences as poles (excitation energies) whereas the QED method has the
TDHF poles and in the latest version, called QED-MP2 [125] also MP2 poles. This
difference is potentially very important for low-lying excitation energies, where the
error in the Hartree-Fock values is likely to be appreciable.
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