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I. SCHRÖDINGER EQUATION AND OPERATOR ALGEBRA

A. The Schrödinger Equation

For an N -particle system the many-fermion time-independent Schrödinger equation, may

be written in the general form

HΨ(x1, · · ·xN ) = EΨ(x1, · · · ,xN) (1.1)

The wavefunction Ψ(x1, · · · ,xN) is a function of the spatial and spin (or other) coordinates

of theN particles, with the combined coordinates of Particle i being represented by the single

symbol xi. The wavefunction is required to be continuous and single-valued everywhere in

the N -particle configuration space. The present discussion will be restricted to systems

in which the particles are identical fermions, which by definition have the property that

the many-particle wavefunction is antisymmetric under interchange of any two xi. The

wavefunction must also be differentiable everywhere except where the potential becomes

singular. In these places, if Ψ is nonzero it will exhibit discontinuities in its first spatial

derivatives (cusps) to compensate the singularities then occurring in the potential energy.

The wavefunction must also be normalizable, i.e., satisfying

∫

Ψ∗(x1, · · · ,xN)Ψ(x1, · · · ,xN) dx1 · · ·dxN < ∞ (1.2)

This integration, and those in subsequent equations, are over the entire range of both spa-

tial and other coordinates of all particles; for example, if there is a spin coordinate, then its

integration will in practice involve a summation over the discrete set of spin states. If nor-

malized to unity, |Ψ|2 may be directly identified with probability, but other normalizations

are found useful for some discussions.

A solution to the Schrödinger equation consists of a Ψ satisfying the previously identified

conditions, together with the corresponding value of E, which is the energy of the system.

The solutions will normally include a discrete set of negative E values, with one (or a few) Ψ

for a given E. When there is more than one Ψ for a particular E, the solutions are termed

degenerate; a unique Ψ is referred to as nondegenerate. In addition to the discrete set of E,

there will be solutions for a continuous range of positive E. We restrict attention here to

the discrete solutions and mostly to that of the lowest E, which is that of the ground state.

It will also be assumed that this state is nondegenerate.
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We will deal with a particular class of fermions, namely electrons. We therefore specialize

from now on to a system containing, in addition to N electrons, S fixed atomic nuclei. In

atomic units, the Hamiltonian operator H then assumes the form (ignoring magnetic and

relativistic effects, and nuclear kinetic energy)

H =
N
∑

µ=1

(

−
1

2
∇2

µ −
S
∑

k=1

Zk

|Rk − rµ|

)

+
∑

1≤µ<ν≤N

1

|rµ − rν|
+

∑

1≤K<l≤S

ZkZl

|Rk − Rl|
(1.3)

Here Rk is the position of Nucleus k, whose nuclear charge is Zk, and rµ is the spatial

part of xµ. When we are concerned with the fact that H consists of one- and two-electron

contributions but do no require their specific form, we alternatively write

H = U + V (1.4)

where

U =
∑

µ

u(xµ) (1.5)

V =
∑

µ<ν

v(xµ,xν) (1.6)

with v symmetric under interchange of xµ and xν. For atomic and molecular systems it is

frequently convenient to define H so that it excludes the nuclear-nuclear repulsion. Then U

will describe the electronic kinetic energy plus the electron-nuclear electrostatic interaction,

while V will consist of the electron-repulsion contributions.

B. Density Matrices

Physical quantities representable as averages over the particle distribution may be calcu-

lated as expectation values of corresponding operators. If Ψ is normalizable to unity, then

the expectation value < B > of the quantity corresponding to the operator B is given by

< B >=
∫

Ψ∗ BΨ dx1 · · ·dxN (1.7)

If we take into account the fact that B will normally depend upon the particle coordinates

one, or at most two at a time, then we may rewrite Eq. (1.7) in terms of reduced density

matrices. The first-order density matrix of a unit-normalized N -particle wavefunction Ψ,
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denoted

γ(x1,x
′
1), is

γ(x1,x
′
1) = N

∫

dx2 · · ·dxN Ψ(x1,x2, · · · ,xN)Ψ∗(x′
1,x2, · · · ,xN ) (1.8)

The second-order denstiy matrix of such an N -particle wavefunction, denoted

Γ(x1,x2;x
′
1,x

′
2), is

Γ(x1,x2;x
′
1,x

′
2)

=
N(N − 1)

2

∫

dx3 · · ·dxN Ψ(x1,x2,x3, · · · ,xN)Ψ∗(x′
1,x

′
2,x3 · · · ,xN) (1.9)

Density matrices of higher order, through N , may be defined analogously. Comparison

of Eqs. (1.8) and (1.9) indicates that the first-order density matrix may be obtained by

integrating one set of coordinates in the second-order matrix:

γ(x1;x
′
1) =

2

N − 1

∫

dx2 Γ(x1,x2;x
′
1,x2) (1.10)

If B is a one-particle operator i.e., is of the form

B =
∑

i

b(xi) (1.11)

its expectation value can be expressed in terms of the first-order matrix:

< B >=
∫

dx1 dx
′
1 δ(x1 − x′

1) b(x1) γ(x1,x
′
1) (1.12)

Here δ(x) is the Dirac delta-function, with the property that for an arbitrary nonsingular

function f(x),
∫

dx δ(x− x0) f(x) = f(x0) (1.13)

if x0 is within the region of integration; otherwise, the integral vanishes. Equation (1.12)

becomes obvious if we insert the explicit formula for γ and recognize that the delta-function

and x′
1 integration simply cause b(x1) to operate on Ψ but not on Ψ∗. We have

< B >= N
∫

dx1 · · ·dxN Ψ∗(x1, · · · ,xN ) b(x1)Ψ(x1, · · · ,xN) (1.14)

Because Ψ is antisymmetric in the xi, b(x1) can be replaced by B/N , leading directly to

Eq. (1.7).

In a similar fashion it can be seen that a two-particle operator of the form

B =
∑

µ<ν

b(xµ,xν) (1.15)
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has an expectation value expressible using the second-order density matrix

< B >=
∫

dx1 dx2 dx
′
1 dx

′
2 δ(x1 − x′

1) δ(x2 − x′
2) b(x1,x2) Γ(x1,x2;x

′
1,x

′
2) (1.16)

Equation (1.16) shows that the Hamiltonian, a two-particle operator, has an expectation

value that can be expressed in terms of the two-particle density matrix. Since this density

matrix is a far less complicated object than the N -electron wavefunction Ψ, it is nataural

to ask whether it might be possible to reduce the full Scchrödinger equation to a two-

particle to a two-particle equation that could then be solved directly for Γ. The thus-far

insurmountable flaw in this proposal is that a Γ that solves the reduced Schrödinger equation

cannot be guaranteed to be derivable from an N -fermion wavefunction. The search for

tractable necessary and sufficient conditions that Γ correspond to a Ψ is known as the

N -Representability Problem. This problem has not been satisfactorily resolved.

C. The Virial Theorem for a Many-Particle System

Consider a stationary state ψ satisfying the Schrödinger equation Hψ = Eψ. Let F be

any arbitrary Hermitian operator depending only on the coordinates and momenta of the

system. It then turns out that the commutator of H and F has a zero expectation value in

the state ψ, namely,

d < F >

dt
=

i

h̄
< [H, F] >= 0 (1.17)

In fact, expanding < [H, F] > and using Hψ = Eψ we get

< [H, F] >=< ψ |H F − F H |ψ >=< ψ |H F |ψ > − < ψ | F H |ψ >

=< Hψ | F |ψ > − < ψ | F H |ψ >= E < ψ | F |ψ > −E < ψ | F |ψ >= 0

This relationship is known as the hypervirial theorem. It states that the expectation

values of time-independent operators do not vary with time in stationary states.

Let us now consider the special case where the operators F and H are given by

F = r.p H = −
h̄2

2m
∇2 + V(r) (1.18)

where r and p are the coordinate and momentum operators in the Schrödinger representation

and may be constructed from

r = ix + jy + kz p =
h̄

i
∇
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The operator F then becomes

F =
h̄

i

(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)

(1.19)

The commutator of H and F turns out to be

[H, F] =
h̄

i

[

−
h̄2

m
∇2 − r.∇V

]

=
h̄

i

(

2 T − r.∇V

)

(1.20)

The expectation value of this commutator then is

h̄

i

(

2 < T > − < r.∇V >

)

= 0

which may be written

2 < T >=< r.∇V > (1.21)

Equation (1.21) is an important relationship known as the quantum-mechanical virial theo-

rem. An analogous relationship holds in classical mechanics and can be discussed with the

Bohr theory of the one-electron atom. If the potential energy is given by a relationship of

the form

V(r) = k rn (1.22)

where k is a constant, then Eq. (1.21) becomes

2 < T >= n < V > (1.23)

It is the form of the virial which is most useful for discussiing the electronic energies of

atoms and molecules. In this case V represents electrostatic interactions among charged

particles and n = −1. In general, we say that a potential energy defined by Eq. (1.22) is

homogeneous in r of degree n.

For a system of N particles having position vectors r1, r2, · · · , rN and momenta

p1,p2, · · · ,pN , the virial theorem (1.21) becomes

2 < T >=
∑

i

< ri.∇iV > (1.24)

The virial theorem is of great importance in classical mechanics. It can be used, for example,

to derive the well-known virial equation of state often discussed in connection with nonideal

gases. The theorem is also useful in connection with the construction of approximate solu-

tions to Schrödinger’s equation.
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D. Matrix Representations

An arbitrary function ϕ can be expanded in terms of a complete orthonormal set of

functions {φµ}; the expansion can be written

ϕ =
∑

µ

cµ φµ (1.25)

with

cµ =< φµ |ϕ > (1.26)

This relationship can be written in the Dirac bra-ket notation

|ϕ >=
∑

µ

|φµ >< φµ |ϕ >=

(

∑

µ

|φµ >< φµ|

)

|ϕ > (1.27)

where |φ > corresponds to φ, < φ| corresponds to φ∗, and complete brackets < φ| |χ > are

to be interpreted as scalar products, and are therefore usually written < φ|χ >. Equation

(1.27) shows that
∑

µ |φµ >< φµ| can be thought of as an operator whose |φµ >< φµ| term

converts ϕ into < φµ|ϕ > φµ (i.e., into cµφµ). Since Eq. (1.27) must be valid for arbitrary

ϕ, it is equivalent to the operator equation

F =
∑

µ

|φµ >< φµ| (1.28)

Equation (1.28) is sometimes described as a resolution of the identity defined by the or-

thonormal functions φµ; its use decomposes ϕ into components, with cµ the amplitude of

the component of ϕ associated with φµ.

If we apply Eq. (1.25) to the expansion of the function Bϕ, where B is an operator, we

have

Bϕ =
∑

ν

dν φν (1.29)

with

dν =< φν |Bϕ >=< φν |B |ϕ > (1.30)

Alternatively, we could have first used Eq. (1.25) to expand ϕ, then expanding the resulting

quantities Bϕ according to

Bφµ =
∑

ν

Bνµ φν (1.31)
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with

Bνµ =< φν |B |φµ > (1.32)

The result is

Bϕ =
∑

µ

cµ Bφµ =
∑

µν

cµBνµ φν (1.33)

or, comparing with Eq. (1.29),

dν =
∑

µ

Bνµ cµ (1.34)

Equations (1.29) and (1.34) correspond in Dirac notation to

Bϕ =
∑

µν

|φν >< φν |B |φµ >< φµ |ϕ > (1.35)

indicating that a representation of the operator B is provided by

B =
∑

µν

|φν >< φν |B |φµ >< φµ | =
∑

µν

|φν > Bνµ < φµ| (1.36)

Equation (1.36) becomes obvious if we recognize that both summations are resolutions of

the identity. We see that Bνµ can be thought of as the amplitude of a component of B

associated with φν and φµ in the manner shown. We also note that Eq. (1.34) shows that

the amplitudes of Bϕ can be produced by a matrix multiplication of the amplitudes of B

and those of ϕ.

The component amplitudes of functions ϕ and operators B will of course depend upon

the set of functions that has been used for the expansions involved. However, since a

different choice of expansion set only corresponds to a different component resolution of

the same quantities, we would expect all operator equations and physical conclusions to

be independent of the set of functions selected as an expansion basis. However, different

expansion sets may differ greatly in the convenience of their use, and we therefore wish to

analyze the effect of changing from one expansion set, {φµ}, to another, which we denote

{φ′
µ}. Let U be the operator converting the successive functions φµ of the first expansion set

into the respective functions φ′
µ of the second set. Since both sets are assumed orthonormal,

U must be unitary.

The equality of φ′
µ and Uφµ may be trivially expressed by the equation

φ′
µ = Uφµ (1.37)
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Regarding φ′
µ as expanded in terms of the original set of φµ, we have

φ′
µ =

∑

ν

Uνµ φµ (1.38)

with

Uνµ =< φν |φ
′
µ > (1.39)

that is,

Uνµ =< φν |U |φµ > (1.40)

The fact that U is unitary means that the inverse of Eq. (1.37)

φµ = U−1 φ′
µ (1.41)

leads to the expansion

φµ =
∑

ν

U∗
µν φ

′
ν (1.42)

Consider now the expansion of an operator B and a function ϕ in terms of the expansion

set {φ′
µ}. Analogously to Eqs. (1.27) and (1.36),

|ϕ >=
∑

µ

|φ′
µ >< φ′

µ |ϕ > (1.43)

B =
∑

µν

|φ′
µ >< φ′

ν |B |φ′
µ >< φ′

µ| (1.44)

Inserting the identity operator in the form given by Eq. (1.28) (in terms of the original

expansion set {φµ}), Eqs. (1.43) and (1.44) can be written

|ϕ >=
∑

µ

|φ′
µ >< φ′

µ|

(

∑

ν

|φν >< φν|

)

|ϕ >

=
∑

µν

|φ′
µ >< φ′

µ |φν >< φν |ϕ >=
∑

µν

|φ′
µ > U∗

νµ cν (1.45)

B =
∑

µν

|φ′
ν >< φ′

ν|

(

∑

λ

φλ >< φλ|

)

B

(

∑

σ

|φσ >< φσ|

)

|φ′
µ >< φ′

µ|

=
∑

µνλσ

|φ′
ν >< φ′

ν| |φλ >< φλ |B |φσ >< φσ |φ
′
µ >< φ′

µ|

=
∑

µνλσ

|φ′
ν > U∗

λν Bλσ Uσµ < φ′
µ| (1.46)
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If we let c′ and B′ stand for the component amplitudes of ϕ and B in the {φ′
µ} expansion

set, so that

ϕ =
∑

µ

c′µ φ
′
µ (1.47)

B =
∑

µν

|φ′
ν > B′

νµ < φ′
µ| (1.48)

Eqs. (1.45) and (1.46) show that

c′µ =
∑

ν

U∗
νµ cν (1.49)

B′
νµ =

∑

λσ

U∗
λν Bλσ Uσµ (1.50)

which in matrix form are

c′ = U† c (1.51)

B′ = U† BU (1.52)

Eqs. (1.51) and (1.52) indicate that a unitary transformation between expansion sets is

equivalent to the corresponding matrix transformation for all operators and functions in-

volved. Since matrix equations are unaffected by unitary matrix transformations, we have

now verified that operator equations will have solutions that are independent of the expan-

sions introduced to obtain matrix equations.

Finally, consider the case that B is a Hermitian operator and that U has been chosen

in such a way that B′ = U†BU is a diagonal matrix. This means that B ′
νµ =< φ′

ν|B|φ
′
µ >

vanishes unless µ = ν, which in turn means that the set {φ′
µ} are the eigenfunctions of B.

That is, an operator has a diagonal matrix if and only if its eigenfunctions are used as the

expansion set.

E. Normal Operators

Since the Hermitian operators of quantum mechanics do not, in general, commute, it is

evident that the product of two Hermitian operators is not necessarily Hermitian. Thus if

A and B are two Hermitian operators, then

(A B)† = B A 6= A B (1.53)
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However, if we form the symmetrized sum of the product by

A B + B A (1.54)

then the result is easily verified to be Hermitian. This method provides a way of constructing

Hermitian operators from products of Hermitian operators and thus enables one to compute

expectation values of products of dynamical variables. In practice, a factor of 1
2

is included

in the expression (1.54).

Since the commutator of two Hermitian operators is an antihermitian operator, one may

consider the commutator as an antisymmetrized sum of the product of two Hermitian oper-

ators.

A general property of operators is that it is always possible to resolve them into a Her-

mitian part and an antihermitian part. Consider now the arbitrary operator

Λ = A + iB (1.55)

where both A and B are Hermitian operators. One can easily show that multiplication of

an antihermitian operator by i (also an antihermitian operator) produces a Hermitian op-

erator. In fact, the product of two commuting antihermitian operators is always Hermitian.

One then sees that A is the Hermitian component of Λ and that iB is the antihermitian

component. Taking the adjoint of Λ, adding it to Eq. (1.55), and solving for A leads to

A =
1

2
(Λ + Λ†) (1.56)

Similarly, we get

B =
1

2 i
(Λ − Λ†) (1.57)

The operator Λ may then be written as

Λ =
1

2
(Λ + Λ†) +

1

2
(Λ − Λ†) (1.58)

From Eq. (1.58) we see that if Λ is Hermitian, its antihermitian component is the zero

operator (or null operator).

It is instructive to note that if one regards Hermitian operators as analogous to real

numbers and antihermitian operators as analogous to imaginary numbers, Eq. (1.55) may

be interpreted in terms of an analogy between operators space and complex-number space.
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A normal operator is now defined as any operator which commutes with its adjoint op-

erator; i.e., if [Λ,Λ†] = 0, we say Λ is a normal operator. Obviously this definition is a

generalization of Hermitian operators, since every Hermitian operator is self-commuting

and therefore normal. We shall now show that the converse is not true; i.e., the class of

normal operators contains Hermitian operators as a subclass and includes other operators

as well. The proof follows from the commutator of the operators Λ and Λ† in terms of the

Hermitian and antihermitian components as in Eq. (1.55), namely,

Λ Λ† = (A + iB) (A − iB) = A2 + B2 + i [B,A]

Λ† Λ = (A − iB) (A + iB = A2 + B2 − i [B,A]

Substracting the second expression from the first, we get

[Λ,Λ†] = 2 i [B,A] (1.59)

which is zero only if A and B themselves commute. Only for the special case B = 0 is Λ also

Hermitian. It is apparent from Eq. (1.59) that any pair of commuting Hermitian operators

may be combined as in Eq. (1.55) to form a normal operator.

The concept of a normal operator is useful in the discussion of certain types of quantum-

mechanical variables which have no classical analogs. Furthermore, certain properties of

Hermitian operators are rather easily deducted by investigating the properties of the more

general normal operators. Some of these properties are made evident in the following five

theorems.

Theorem 1. If a normal operator Λ has an eigenfunction ψk with the eigenvalue λk, the

adjoint operator Λ† has an eigenvalue λ∗
k for the same eigenfunction ψk.

Let Λψk = λkψk and consider the integral

< (Λ† − λ∗k)ψk | (Λ
† − λ∗k)ψk > (1.60)

which can be rewritten as

< ψk | (Λ − λk) (Λ† − λ∗k) |ψk > (1.61)

Since [Λ,Λ†] = 0, the central factors may be interchanged, and one obtains

< ψk | (Λ
† − λ∗k) (Λ − λk) |ψk >= 0 (1.62)
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Then the integral (1.60) also vanishes, which implies

Λ† ψk = λ∗k ψk (1.63)

Theorem 2. The eigenvalues of Hermitian operators are real.

From Theorem 1 we have

Λψk = λk ψk Λ† ψk = λ∗k ψk (1.64)

Multiplying each expression on the right by ψ∗
k, integrating, and substracting the second

expression from the first, we get

< ψk |Λ − Λ† |ψk >= (λk − λ∗k) < ψk |ψk > (1.65)

If Λ = Λ†, that is, Λ is Hermitian, and ψk is normalized to unity, we obtain

λk = λ∗k = real (1.66)

Theorem 3. If two Hermitian operators A and B commute, there exists a simultaneous

set of eigenfunctions {ψk} of A and B such that, for all k

Aψk = ak ψk

Bψk = bk ψk

In fact, since by hypothesis [A,B] = 0, the operators Λ = A+ iB and Λ† = A− iB are normal.

Thus

Λψk = (A + iB)ψk = (ak + i bk)ψk = λk ψk

Λ† ψk = (A − iB)ψk = (ak − i bk)ψk = λ∗k ψk

Adding the above two equations yields

Aψk = ak ψk

Substracting the same equations gives

Bψk = bk ψk

A converse of Theorem 3 is also true; viz, if there exists a complete set of eigenfunctions

common to both B and A, then [A,B] = 0. Theorem 3 should not be mistakenly interpreted
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as implying that since two operators commute, any eigenfunctions of one operator are au-

tomatically eigenfunctions of the other. The theorem merely states the conditions under

which simultaneous eigenfunctions of two operators exist.

Theorem 4. If ψk and ψl are two different eigenfunctions of a normal operator Λ such

that Λψk = λkψk and Λψl = λlψl with λk 6= λl, then ψk and ψl are orthogonal.

In fact

λ∗k < ψk |ψl >=< λk ψk |ψl >=< Λψk |ψl >=< ψk |Λ
† |ψl >= λ∗l < ψk |ψl >

Substracting the first and last terms from each other, we get

(λ∗k − λ∗l ) < ψk |ψl >= 0

By hypothesis λk 6= λl; hence λ∗k 6= λ∗l , and it follows that

< ψk |ψl >= 0

Theorem 5. If Λ is a normal operator which commutes with the operator A and ψk and

ψl are two different eigenfunctions of Λ with different eigenvalues, then

< ψk |A |ψl >= Akl = 0

According to the hypothesis of the theorem we have

λl < ψk |A |ψl >=< ψk |A |λl ψl >=< ψk |A Λ |ψl >=< ψk |Λ A |ψl >

=< Λ† ψk |A |ψl >= λk < ψk |A |ψl >

Substracting the first and last terms from each other, we obtain

(λk − λl)Akl = 0

Since, by hypothesis, λk 6= .λl, it follows that

Akl = 0

F. Expectation Values

Let us now look at the expressions obtained for expectation values when an operator and

wavefunction are expanded in an orthonormal set. Anticipating a discussion involving both
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many-particle and one-particle functions, let Ψ be an N -arbitrary wavefunction and B be

an N -particle operator, and let {Φµ} be an orthonormal set of N -electron functions. Then,

writing

B =
∑

µν

|Φν > Bνµ < Φµ | (1.67)

|Ψ >=
∑

µ

cµ |Φµ > (1.68)

with Bνµ =< Φν |B|Φµ > and cµ =< Φµ|Ψ > we find

< B >=< Ψ |B |Ψ >=
∑

νµ

< cν Φν |B | cµ Φµ >

=
∑

νµ

c∗ν Bνµ cµ = c† B c (1.69)

If we introduce the notion that B is a one- or two-particle operator, we can alternatively

examine the expansion of < B > in terms of the reduced density matrices. Starting with a

one-particle operator, for which

< B >=
∫

dx1 dx
′
1 δ(x1 − x′

1) b(x1) γ(x1,x
′
1) (1.70)

we expand b and γ. The expansion of b in an orthonormal set of one-particle functions {φµ}

is

b(x1) =
∑

λµ

|φλ(x1) > bλµ < φµ(x1)| (1.71)

For γ(x1,x
′
1), we expand the x1 dependence in terms of the {φµ} and the x′

1 dependence in

terms of the complex conjugate set {φ∗
µ}. This choice is natural because γ contains x1 as an

argument of Ψ and x′
1 is an argument of Ψ∗. The expansion is therefore of the form

γ(x1,x
′
1) =

∑

µν

|φµ(x1) > γµν < φν(x
′
1)| (1.72)

with

γµν =
∫

dx1 dx
′
1 φ

∗
µ(x1) γ(x1,x

′
1)φν(x

′
1) (1.73)

Inserting Eqs. (1.71) and (1.72) into Eq. (1.70)

< B >=
∫

dx1 dx
′
1 δ(x1 − x′

1)

×

[

∑

λσ

|φλ(x1) > bλσ < φσ(x1)|

] [

∑

µν

|φµ(x1) > γµν < φν(x
′
1)|

]

=
∫

dx1 dx
′
1 δ(x1,x

′
1)
∑

λµν

φλ(x1) bλµγµν φ
∗
ν(x

′
1)

=
∑

µν

bνµ γµν (1.74)
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The last two lines in Eq. (1.74) are reached by invoking the orthonormality of the φµ.

We conclude that the γµν form a matrix representation of γ(x1,x
′
1) that can be combined

according to the usual rules with that of b. To make the situation more explicit, we write

< B >=
∑

ν

(b γ)νν = Tr(b γ) (1.75)

where ”Tr” denotes the trace (sum of the diagonal elements) of its argument matrix. The

fact that γ has a matrix representation similar to that of an operator gives new significance

to the name ”density matrix” and also explains why these quantities are sometimes called

reduced density operators. If B is a two-particle operator, then the development analogous

to that of the two preceding paragraphs leads to the following equations

b(x1,x2) =
∑

ρτµν

|φρ(x1)φτ(x2) > bρτ,µν < φµ(x1)φν(x2)| (1.76)

bρτ,µν =< φρ(x1)φτ(x2) | b(x1,x2) |φµ(x1)φν(x2) > (1.77)

Γ(x1,x2;x
′
1,x

′
2) =

∑

µνλσ

|φµ(x1)φν(x2) > Γµν,λσ < φλ(x
′
1)φσ(x

′
2)| (1.78)

Γµν,λσ =
∫

dx1 dx2 dx
′
1 dx

′
2 φ

∗
µ(x1)φ

∗
ν(x2) Γ(x1,x2;x

′
1,x

′
2)φλ(x

′
1)φσ(x

′
2) (1.79)

< B >=
∑

µνλσ

bλσ,µν Γµν,λσ

=
∑

λσ

(bΓ)λσ,λσ (1.80)

Regarding the pair λσ as a single composite index, the last line of Eq. (1.80) is seen to

be the trace of bΓ.

G. Projection Operators

A projection operator can be thought of as an operator that retains only certain of the

components resulting when a function to which it is applied is subjected to a specified

orthonormal expansion. The number of components to be retained may be finite (example:

retain the first three components) or infinite (example: retain alternate components); the

retained components may have certain symmetry properties (example: retain only even

functions), or they may not.
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One of the key properties of a projection operator is that its second consecutive appli-

cation to the same function will not produce further change. This must be so because the

first application removes all components of the function that are not to be retained; all

reamining components will survive a second screening. The requirement we have identified

is equivalent to the operator equation

P2 = P (1.81)

Projection operators are therefore idempotent.

A second requirement on a projection operator is that it gives the same result whether it

is applied to the first, or to the second factor of a scalar product, so for arbitrary φ and χ,

< φ | P χ >=< P φ |χ > (1.82)

To see that this must be so, consider φ and χ both to be expanded in the orthonormal set

with respect to which P is defined. Both of the preceding scalar products will consist only of

contributions from the components retained by P. We conclude that P must be self-adjoint:

P† = P (1.83)

Equations (1.81) and (1.83) may be taken as the formal conditions defining a projection

operator.

Every projection operator P has an orthogonal complement Q whose effect is to retain

only the components removed by P. For any function Φ, Φ = PΦ + QΦ; this is equivalent

to the operator equation

P + Q = F (1.84)

where F may be viewed as the limiting case of a projection operator which retains all com-

ponents. The orthogonal complement of F is the null vector 0. The orthogonal complement

of a projection operator is itself a projection operator. We show this formally:

Q† = (F − P)† = F − P = Q (1.85)

Q2 = (F − P) (F − P) = F − 2P + P2 = F − P = Q (1.86)

The term orthogonal complement is aptly chosen, as

QP = (F − P)P = P − P2 = P − P = 0 (1.87)
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Since P is the orthogonal complement of Q as well as Q being that of P, we also have

PQ = 0.

If a projection operator P has been specified in terms of the particular orthonormal

functions it retains, it may be written in bra-ket notation as

P =
∑

µ;(φµ∈GP )

|φµ >< φµ| (1.88)

where GP is the space containing the functions retained by P. The orthogonal complement

of P, denoted Q, consists in bra-ket notation of the terms omitted from the P sum:

Q =
∑

µ;(φµ⊥GP )

|φµ >< φµ| (1.89)

where the restriction is to φµ orthogonal to every function in GP . It can be shown that

the same P results if we transform from the {φµ} ∈ GP to any other orthonormal set of

functions within the same space, so that the projection operator P is determined by the

space onto which it projects, rather than upon the individual functions used in Eq. (1.88).

Similar remaks apply to Q. Equations (1.88) and (1.89) show that a projection operator

and its orthogonal complement can be interpreted as generating a partial resolution of the

identity defined by the subspace GP .

It is sometimes inconvenient to specify the particular functions needed to express a pro-

jection operator in the form given by Eq. (1.88). It may instead be possible to devise an

operator that can be shown to accomplish the desired projection on formal grounds. This

approach is ordinarily practical when the projection subspace is defined by the symmetry of

the functions it contains. In particular, we shall now concentrate on one type of symmetry

that is always present in many-fermion systems, that with respect to permutation of the

particle numbering. For an N -particle system, there are N ! permutation operators (includ-

ing the identity operator); these operators form a group known as the symmetry group. A

requirement of the Fermi-Dirac statistics is that many-particle wavefunctions be antisym-

metric under permutationns of the particle numbering; this is equivalent to requiring that

the wavefunction belong to the fully antisymmetric representation of the symmetry group,

for which the representative of each permutation is its parity. The partity of a permutation

is +1 if an even number of pairwise interchanges is needed to carry it out, and −1 if an

odd number of such interchanges is required. We shall write (−)P to denote the parity of a

permutation P.
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An antisymmetric function Φ can be generated from a suitable Φ0 by the application of

the operator

A =
1

N !

∑

P

(−)P P (1.90)

where the sum is over all N ! permutations. The operator A is called the antisymmetrizer.

The factor 1/N ! has been inserted to give A what will prove to be a convenient scaling.

As is well known, the construction of Φ from Φ0 will fail if Φ0 is symmetric under any

permutational interchange.

It is instructive to verify that the antisymmetrizer indeed constructs a totally antisym-

metric function. Consider application of a permutation Q to a function Φ = AΦ0:

Q Φ = Q
1

N !

∑

P

(−)P P Φ0 = (−)Q 1

N !

∑

P

(−)Q(−)P Q P Φ0 (1.91)

where a factor of unity has been inserted into the last member of Eq. (1.91) in the form

(−)Q(−)Q. This has been done so as to obtain the product (−)Q(−)P , which is the parity

of the product QP. We next use the group-theoretical result that different operators P must

yield different products when multiplied by Q. This means that a summation over P is

equivalent to a summation over (QP), or setting QP = P′,

1

N !

∑

P

(−)Q (−)P Q P =
1

N !

∑

P′

(−)P ′

P′ (1.92)

Eq. (1.91) thus reduces to QΦ = (−)QAΦ0 = (−)QΦ, as required. In conclusion, the anti-

symmetrizer can be considered as the projection operator that retains the permutationally

totally antisymmetric component of a many-particle wavefunction. We now verify that A is

indeed a projection operator. First

A2 =
1

N !

∑

Q

(−)Q Q
1

N !

∑

P

(−)P P =
1

N !

∑

Q

1

N !

∑

P

(−)Q (−)P Q P (1.93)

As before, we identify QP as P′, (−)Q(−)P as (−)P ′

, and the summation over P as equivalent

to one over P′. We thus have

A2 =
1

N !

∑

Q

A = A (1.94)

the last equality resulting because the Q summation accumulates N ! terms, each equal to

A. Finally,

A† =
1

N !

∑

P

(−)P P† =
1

N !

∑

P

(−)P P−1 (1.95)
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We have replaced P† by P−1 by making use of the fact that P is a symmetry operator and

must be unitary. Then, noting that the parity of P is the same as that of P−1 and that the

sum over P can be shown equivalent to a sum over P−1, we can verify the other requirement

that A must satisfy to be a projection operator: A† = A.

Before leaving the subject of projection operators, let us consider them from the viewpoint

of matrix representations. If we use a basis containing the functions of the projection space,

placing these last, Eq. (1.88) shows that all elements of Q, the matrix of a projection

operator Q, will be zero except for the diagonal elements referring to φν in GQ, which will

be unity. The matrix Q is therefore of the form

Q =











0
... 0

· · · · · · · · ·

0
... 1











(1.96)

where the unit submatrix has the dimensionality of GQ. If a function ψ is represented by a

vector c, the action of Q will be to set all the components of ψ outside of GQ to zero, and

the vector representing Qψ will be Qc, of the block form

Qc =

























0
...

· · · · · ·

cµ
...

























(1.97)

If we wish to restrict consideration to the components within GQ that can be produced by

action of an arbitrary operator A on functions themselves within GQ, we may form QAQ,

whose matrix will be of the block form

QAQ =











0
... 0

· · · · · · · · ·

0
... · · ·Aµν · · ·











(1.98)

It is clear from Eq. (1.96) that Q (and therefore also Q) will have eigenvalues 0 and 1

(except in the trivial case Q = F), and that projection operators (other than F) are therefore

singular. As is apparent from the form of Eq. (1.98) and from the fact that QAQ contains

Q as factors, the projection of any operator must also be singular. It is sometimes useful to

construct the matrix obtained therefrom by inverting the block of Aµν from Eq. (1.98); note

that this is not the same as QA−1Q, because every element of A−1 contains contributions
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from all rows and columns of A. One way of indicating this ”inverse of the corner” of A is

as Q[QAQ + P]−1Q, where P = 1 − Q; the matrix whose inverse is taken is of the form

QAQ + P =











1
... 0

· · ·
... · · ·

0
... · · ·Aµν · · ·











(1.99)

and the further applications of Q remove the unit matrix after the inversion. It is also

possible to use the shorthand notation, suggested by Löwdin

Q

A
= Q [QAQ + P]−1 Q (1.100)

with Q/A for its operator equivalent. The foregoing analysis shows that Q/A is a projected

inverse of A in the sense that

QAQ
Q

A
=

Q

A
QAQ = Q (1.101)

The equivalent operator equation is

QAQ
Q

A
=

Q

A
QAQ = Q (1.102)

In what follows we discuss some useful theorems concerning the projection and permuta-

tion operators.

Theorem 1: The diagonal elements of a projection operator (in its matrix representation)

obey the inequality

0 ≤ Pij ≤ 1 (1.103)

The diagonal elements of the matrix representation of the projection operator P can be

represented by

< P >=< φ | P |φ >=< φ | P†P |φ > (1.104)

that is

< P >=< P φ | P φ >≥ 0 (1.105)

Now consider the operator

Q = 1 − P (1.106)
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This operator belongs to the remaining subspace not described by P. Now if P † = P, then

Q† = Q. Since 1 − P is also a projection operator, it follows that

< 1 − P >≥ 0 (1.107)

which leads directly to

< P >≤ 1 (1.108)

Combining Eqs. (1.105) and (1.108) we get

0 ≤< P >≤ 1 (1.109)

In order to make better use of notational advantage of the antisymmetrization operator,

it is necessary to reveal some of its mathematical properties. To do this we first prove the

following theorem.

Theorem 2: The permutation operator P is unitary. Consider a generalized wavefunction

of N electrons given by

φ = φ(x1,x2, · · · ,xN) (1.110)

The operation of P is to permute the electron coordinates to some new order x′
1, x′

2, · · · ,x
′
N ,

where each x′
i is one of the xi. We designate this permutation symbolically by

Pφ(x) = φ(x′) (1.111)

where x represents the collection of coordinates in the unpermuted order and x′ the collection

of coordinates in the permuted order. In terms of the inverse permutation this relationship

becomes

φ(x) = P−1 φ(x′) (1.112)

Now consider the definite integral

< Pφ1(x) |φ2(x) >=< φ1(x) |P† |φ2(x) > (1.113)

Another way to transform the left-hand integral is to use Eq. (1.111) for Pφ1(x) and Eq.

(1.112) for φ2(x). This produces

< Pφ1(x) |φ2(x) >=< φ1(x
′) |P−1 |φ2(x

′) > (1.114)
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Comparing the right-hand integral in Eqs. (1.113) and (1.114) and remembering that x and

x′ represent the same collection of dummy variables of integration, we obtain

P† = P−1 (1.115)

i.e., P is a unitary operator.

Theorem 3: The expectation values of the two-electron transposition operator Pµν obey

the inequality

−1 ≤< Pµν >≤ 1 (1.116)

Consider the operator

1

2

(

1 − Pµν

)

(1.117)

It is readily seen that Pµν = P−1
µν ; that is, Pµν is its own inverse. Furthermore, from Eq.

(1.115) Pµν is also unitary, i.e., P† = P−1. This means that P†
µν and therefore Pµν is also

self-adjoint. The square of the operator (1.117) is

[

1

2
(1 − Pµν)

]2

=

[

1

2
(1 − Pµν)

] [

1

2
(1 − P−1

µν )

]

=
1

4

(

1 + PµνP
−1
µν − Pµν − P−1

µν

)

=
1

2

(

1 − Pµν

)

(1.118)

which means that 1
2
(1 − Pµν) is also idempotent and therefore is a projection operator.

Theorem 1 now gives Eq. (1.116) immediately.

Theorem 3 now leads to some useful inequalities involving integrals. The expectation

value of Pµν for an arbitrary two-electron wavefunction ξ(µ, ν) is given by

< Pµν >=< ξ(µ, ν) |Pµν | ξ(µ, ν) >=< ξ(µ, ν) | ξ(ν, µ) > (1.119)

where ξ(µ, ν) and ξ(ν, µ) have transposed electron coordinates. Then by Theorem 3,

−1 ≤< ξ(µ, ν) | ξ(ν, µ) >≤ 1 (1.120)

If ξ(µ, ν) is normalized, we can write Eq. (1.120) as

−1 ≤< ξ(µ, ν) | ξ(ν, µ) >≤< ξ(µ, ν) | ξ(µ, ν) > (1.121)

Now consider the special case when ξ(µ, ν) is given as a product of two orbitals, namely,

ξ(µ, ν) = φ1(µ)φ2(ν) (1.122)

26



Equation (1.121) then gives

−1 ≤< φ1(µ) |φ2(µ) >< φ1(ν) |φ2(ν) >≤< φ1(µ) |φ1(µ) >< φ2(ν) |φ2(ν) > (1.123)

which can also be written

| < φ1(µ) |φ2(µ) > |2 ≤< φ1(µ) |φ1(µ) >< φ2(µ) |φ2(µ) > (1.124)

If orbitals φ1 and φ2 are merely required to be quadratically integrable functions, Eq. (1.124)

is known as the Schwarz integral inequality. This relationship tells us that the absolute

value of an overlap integral is always less than unity if the two overlapping functions are

normalized.

Now let

ξ(µ, ν) = φi(µ)φj(ν) (rµν)
−1/2 (1.125)

where φi and φj are normalized one-electron functions. Eq. (1.121) then leads to
〈

φi(µ)φj(ν) |
1

rµν

|φj(µ)φi(ν)

〉

≤

〈

φi(µ)φj(ν) |
1

rµν

|φi(µ)φj(ν)

〉

(1.126)
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II. THE VARIATIONAL METHOD

A. Preliminary Remarks

The many-electron Schrödinger equation [Eq. (1.1)] cannot be separated into ordinary

differential equations in terms of any known coordinate system. This fact is, of course,

the consequence of the occurrence of the r−1
µν terms, associated with interactions among the

electrons. Nonseparability of the Schrödinger equation for systems of physical interest turns

out to be the general rule, and only a very few simple systems admit of exact solutions.

Furthermore, many of these simple systems do not directly correspond to those exhibited

by nature, e.g., the particle in a box, the harmonic oscillator, and the rigid rotator. In

what follows we shall discuss in some detail the basic features of the variational method

which has been found useful in the construction of approximate solutions to the Schrödinger

equation. In fact, the variation method can be described as an alternative formulation

of Schrödinger equation, a formulation which has the advantage of suggesting a route to

approximate solutions of any desired degree of accuracy.

B. Basis of the Method

Let us consider the time-independent Schrödinger equation in the compact symbolic form

Hψ = E ψ (2.1)

where ψ and E are an exact eigenfunction and eigenenergy, respectively, of the Hamiltonian

operator H. In general, the mathematical form of the Hamiltonian will be such that Eq.

(2.1) will not be separable in any known coordinate system. Thus one cannot hope to

obtain an analytical closed-form expression for the eigenfunction ψ. Let us now examine

the properties of the functional (whereas the domain of a function, say f(x), is a region of

coordinate space, the domain of a functional, say F [f(x)], is a space of admissible functions;

thus, one may think of a functional as a function of a function, i.e., a superfunction) E [ξ]

defined by

E [ξ] =
< ξ | H | ξ >

< ξ | ξ >
(2.2)

where H is the exact Hamiltonian of the system defined by Eq. (2.1) and ξ is an arbitrary

function of the system coordinates, subject only to the restriction that it is normalizable
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over the configuration space of the system whose exact wavefunction is ψ. It is apparent

that if ξ is identical with ψ, the functional E [ξ] is the energy E (a constant). Let us regard

ξ as a trial approximation to the exact wavefunction ψ and assume that ξ differs from ψ by

no more than a first-order variation, namely,

ξ = ψ + δψ (2.3)

This means that ξ and ψ are normalizable in the same space. Now let us consider the

expectation value of the operator H−E with respect to the trial function ξ. First, we note

that application of the operator H− E to the trial function ξ leads to the result

(H− E) ξ = (H− E) (ψ + δψ) = (H− E) δψ (2.4)

i.e., the operator H−E annihilates the exact eigenfunction. The desired expectation value

then is

< H− E >=
< ξ | H − E | ξ >

< ξ | ξ >
=

< ξ | H − E | δψ >

< ξ | ξ >
=

< (H− E) ξ | δψ >

< ξ | ξ >

=
< (H− E) δψ | δψ >

< ξ | ξ >
=

< δψ | H − E | δψ >

< ξ | ξ >
(2.5)

where the turnover rule has been used twice. By simple rearrangement of the above equation,

the function E [ξ] is seen to be

E [ξ] =< H >= E +
< δψ | H − E | δψ >

< ξ | ξ >
(2.6)

In this result we see that the functional E [ξ] is an approximation to the exact energy E

and differs from E by only a second-order term in δψ. In other words, although the trial

function ξ is in error to the first order, the total energy is in error to only the second order.

Thus we can write

δE [ξ] = δ < H >= 0 (2.7)

Equation (2.7), which may be regarded as a statement of the variational principle, can now

be shown to lead to Schrödinger’s equation; i.e., one can show that the condition (2.7)

establishes that the trial function ξ is an eigenfunction of H. This problem is most generally

approached by the use of the calculus of variaitons, an area of mathematics concerned with

a generalization of maxima and minima problems. It is desired to find the function ξ such

that the functional

J [ξ] =< ξ | H | ξ > (2.8)
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is stationary, i.e., has an extremal value with respect to arbitrary, small variations in ξ.

To ensure consistency with probabilistic interpretations we impose on the functions ξ the

normalization restriction

< ξ | ξ >= 1 (2.9)

The variational problem can be cast in a more convenient form by defining the additional

functional

K[ξ] =< ξ | ξ > −1 (2.10)

and to find, instead, the functions ξ which make the new funcitonal

L[ξ] = J [ξ] − λK[ξ] (2.11)

stationary without any restrictions. The quantity λ is a real parameter known as a lagrangian

multiplier. The stationary values of L[ξ] will be those for which δL[ξ] vanishes, and provided

ξ is always normalized, this means that δ < H >= 0 is also satisfied.

The first-order variation in L[ξ] is

δL[ξ] =< δξ | H | ξ > + < ξ | H | δξ > −λ < δξ | ξ > −λ < ξ | δξ > −δλK[ξ] (2.12)

It is convenient to introduce the notational simplification

< δξ | H | ξ > −λ < δξ | ξ >= Q (2.13)

Then, since

(< δξ | H | ξ > −λ < δξ | ξ >)† =< ξ | H | δξ > −λ < ξ | δξ > (2.14)

we can write Eq. (2.12) as

δL[ξ] = Q +Q∗ − δλK[ξ] (2.15)

If < ξ|ξ >= 1, the coefficient of δλ vanishes, and the functional L[ξ] will be stationary only

if Q (and thus also its complex conjugate Q∗) vanishes, that is,

< δξ | H | ξ > −λ < δξ | ξ >= 0 (2.16)

If this equation is to be satisfied by any arbitrary variaiton δξ, it follows at once that

H |ξ > −λ |ξ >= 0 (2.17)
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which is just the Schrödinger equation. The condition that δ < H > vanish is thus sufficient

to make ξ an eigenfunction of the exact Hamiltonian H. It is apparent from Eq. (2.2) that

the lagrangian multiplier λ is to be identified with the functional E [ξ] =< H >.

Unfortunately, the condition δ < H >= 0 is necessary but not sufficient to establish that

λ is a minimum. The problem of establishing true sufficiency of the conditions leading to

true minima of functionals is a difficult one and has not been solved in general. In practice,

however, λ is usually found to be a true minimum, and one accepts the fundamental theorem

on faith in most physical applications.

As it now stands, the variation principle does not immediately disclose any particular

usefulness. Now let {ψi} be a complete orthonormal set of eigenfunctions of H and let {Ei}

be the corresponding eigenvalues. Even though we do not usually know the ψi explicitly, we

can nevertheless express the trial function ξ in this set by the expansion

ξ =
∞
∑

i=1

ψi ci +
∫

ψλ Cλ dλ (2.18)

where the integral allows for the possibility of a continuum, i.e., a set of continuous eigenval-

ues. The complete set of eigenfunctions of the central-field Hamiltonian consists of a discrete

set [the orbitals Rn;(r)Θlml
(θ)Φml

(φ)] and just such a continuum (associated with the radial

equation). The discrete set corresponds physically to the bound states of an electron moving

about the nucleus (E < 0), while the continuous set corresponds to a free electron scattered

by the nuecleus (E > 0). For simplicity we shall assume that our set {ψi} is discrete, so

that the integral term in the expansion (2.18) is missing. Equation (2.2) now becomes

E =
< ξ | H | ξ >

< ξ | ξ >
=

∑

i

∑

j c
∗
i cj Hij

∑

i

∑

j c
∗
i cj ∆ij

(2.19)

where we have dropped the [ξ] notation for the functional E [ξ], and where Hij and ∆ij are

the matrix elements of the Hamiltonian H and of the overlap matrix ∆ respectively, in the

basis of the {ψi}. Since {ψi} is a complete orthonormal set of eigenfunctions of H with

eigenvalues Ei, Eq. (2.19) reduces to

E =

∑

i |ci|
2Ei

∑

i |ci|2
(2.20)

If the trial function ξ is normalized, it follows that

< ξ | ξ >=
∑

i

|ci|
2 = 1 (2.21)
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so that Eq. (2.20) becomes

E =
∑

i

|ci|
2Ei (2.22)

Substracting E0, the exact energy of the ground state, from both sides of Eq. (2.22) and

using Eq. (2.21), we obtain

E − E0 =
∑

i

|ci|
2 (Ei − E0) (2.23)

Since, in general, Ei ≥ E0 and |ci|
2 ≥ 0 for all i, it follows that

E ≥ E0 (2.24)

This very important result is an upper-limit theorem for the energy. The theorem shows

that any trial wavefunction ξ (which is normalizable) leads to a value of the energy which

is never lower than the true ground-state energy of the system. In this result resides the

power (and also the weakness) of the variational method of approximating solutions to the

Schrödinger wave equation. The power lies in the fact that one can choose the ”best”

wavefunction from several alternatives on the basis of the criterion of lowest energy; the

weakness is that the energy turns out to be an insensitive criterion with respect to a ”best”

wavefunction for other physical properties. In fact, properties other than the energy are

not variational, because only the Hamiltonian is used to obtain the wavefunction in the

widely used computational chemistry methods. More precisely, Eq. (2.6), which shows that

a first-order error in a trial wavefunction leads to no first-order in the expectation value of

the Hamiltonian, does not hold for the expectation values of operators in general. The first-

order in ψ may be averaged over the coordinates in such a way that even though a very good

energy is obtained, the expectation values of other operators may be exceedingly poor. This

may happen, for example, if the error is large for certain values of the coordinates upon which

a particular operator depends. As a more specific example, suppose we are approximating

the electron distribution of a many-electron atom. The first-order error may be distributed

in such a way that it is very large in the neighborhood of the nucleus and small elsewhere.

This error will affect the energy only to second order, but an operator sensitive to properties

of the electron distribution next to the nucleus, e.g., an operator related to electron field

gradients, may yield expectation values which are completely erroneous; e.g., the sign as

well as the magnitude may be incorrect. One of the major problems of quantum mechanics
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is to find other and more sensitive criteria than the energy for the general acceptability of

wavefunctions.

Since it is not possible in practice to expand trial wavefunctions in terms of all the infinite

number of functions of a complete basis set, one has to attempt an expansion in terms of a

finite number of such functions. Such a finite set of functions is referred to as a truncated

basis set. In practice one seeks a finite number n of basis functions, attempting to find those

n particular functions which lead to the minimum energy. The actual number of functions

required to lead to a given energy depends upon the particular basis set and upon the system

of interest. For a given system of interest, some basis sets may be more efficient than others,

in the sense that fewer basis functions are required to lead to a given energy.

Let us now expand the trial wavefunction ξk in some arbitrary basis set {φi} and truncate

the expansion at the nth function, namely

ξk =
n
∑

i=1

φi cik (2.25)

We assume that the functions {φi} are linearly independent but not necessarily orthonormal.

If we define the matrices

Φ† =

















φ1

φ2

...

φn

















∆ =< Φ |Φ > Ck =

















cik

c2k

...

cnk

















H =< Φ | H |Φ > (2.26)

then the energy E may be written

E =
C

†
k HCk

C
†
k ∆Ck

(2.27)

Applying the variational theorem (2.7), we obtain

δE = 0 = δ
C

†
k HCk

C
†
k ∆Ck

=
1

C
†
k ∆Ck

(δC†
k HCk − E δC†

k ∆Ck) + c.c. (2.28)
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Thus, the variational theorem is satisfied if

δC†
k (HCk − E ∆Ck) = 0 (2.29)

In order for Eq. (2.29) to be satisfied for any arbitrary variation δCk of the coefficients, it

is necessary that the term in brackets vanish, namely,

(H − E ∆)Ck = 0 (2.30)

The conditions leading to Eq. (2.30) are equivalent to the n conditions

∂E

∂cik
= 0 ∀ i = 1, 2, · · · , n (2.31)

i.e., the expansion coefficients {cik} are variation paramters to be chosen so as to minimize

E . The nontrivial solutions of Eq. (2.30) are given by the n roots of the secular determinant

Det (H− E ∆) = 0 (2.32)

Labelling the n roots ε1, ε2, · · · , εn, we get the associated eigenvectors C1,C2, · · · ,Cn, re-

spectively. We now define the matrices

C =

(

C1 C2 · · ·Cn

)

(Ξ)ij = εi δij (2.33)

and write the Schrödinger equation in the matrix form

HC = ∆CΞ (2.34)

In the event that the basis {φi} is orthonormal, the above equation becomes

HC = CΞ (2.35)

One then obtains the n different trial functions

ξ = ΦC (2.36)

where

ξ =

(

ξ1 ξ2 · · · ξn

)

(2.37)

Equation (2.36) is just the matrix form of the n equations given by Eq. (2.25) when i =

1, 2, · · · , n.

34



If ε1 is the lowest root, then by Eq. (2.24) we have

ε1 ≥ E1 (2.38)

where E1 is the exact energy of the lowest state of the system whose wavefunction is ap-

proximated by ξ1.

It can be shown that if one extends the truncated basis set by one more function to the

n + 1 order, the roots of the n × n secular equation (2.32) will separate the roots of the

(n+ 1) × (n+ 1) secular equation resulting from the extended basis. Denoting the roots of

the extended basis by primes, this fact can be written

ε′1 < ε1 < ε′2 < ε2 < ε′3 < ε3 < ε′4 < ε4 < · · · < ε′n−2 < εn−2 < ε′n−1

< εn−1 < ε′n < εn < ε′n+1 (2.39)

By extending this analysis to an infinite basis set one can readily show that the jth root εj

of the secular equation of order n× n is an upper limit to the jth exact energy, that is

εj ≥ Ej j = 1, 2, · · · , n (2.40)

The roots {εj} are thus approximations to the energy of the ground state and the n−1 lowest

excited states of the system. Generally, however, even if ε1 is a very good approximation to

the exact ground-state energy E1, it turns out that the remaining roots are poorer approxi-

mations to the excited states. This is due largely to the fact that the n basis functions best

suited to represent the ground state are generally not nearly as suitable for representation

of other states.

The success of the above approxach obviously depends upon a judicious choice of a

particular basis set, the number of basis functions retained, and the particular functions

chosen. The criteria for the choice will depend upon the particular problem and cannot

easily be generalized.

An alternative way of utilizing the variational principle is to construct the trial wave-

functions in terms of a set of variaiton parameters {αi} which enter into the function in a

nonlinear manner. In general we can write

ξ = ξ(α1, α2, · · · , αn) (2.41)
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For example, the parameters {αi} may enter the trial function ξ as exponential factors. One

then chooses the {αi} so as to minimize E , that is

∂E

∂αi
∀ i = 1, 2, · · · , n (2.42)

In practice one often uses trial functions which contain both nonlinear and linear varia-

tion parameters. This freedom is useful in that it allows one to introduce the variational

parameters in such a way that their effect can be interpreted in a simple physical manner.

C. Atomic Units

Before we begin a discussion of some ways of solving Schrödinger’s equation in an ap-

proximate manner, it is convenient to introduce a system of dimensionless units commonly

used in the quantum theory of atoms and molecules. In this system, mass, length, and time

are expressed in units called atomic units (abbreviated a.u.).

The atomic unit of mass is the rest mass of the electron, namely, me = 9.1091× 10−28 g.

The atomic unit of length is the radius of the first Bohr orbit in hydrogen when the reduced

mass µ is replaced with the electron rest mass me. Thus the atomic unit of length is

a0 =
h̄2

mee2
= 0.52917 × 10−8 cm (2.43)

One then writes 1 a.u. (of length) instead of the above value in centimeters. All other

lengths are then given in terms of a0. For example, a length of 1.397Å (the C-C bond length

in benzene) is

1.397

0.5292
= 2.640 a.u. (of length) (2.44)

The atomic unit of time is defined as the time required for an electron to travel 1 a. u.

of length in the first Bohr orbit. Since the velocity of the electron in the first Bohr orbit is

e2/h̄, it is apparent that the atomic unit of time is a0h̄/e
2 (about 2.42 × 10−17 sec). This

also means that the atomic unit of velocity is e2/h̄ (about 2.19 × 108 cm/sec). From the

foregoing we see that the rest mass of the proton is 1836.1 a.u. and that the velocity of light

(to three significant figures) is given by

3.00 × 1010

e2/h̄
= 137 a.u. (2.45)
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Relativistic effects on electrons in atoms are of the order of (v/c)2, where v is the velocity

of the electron and c is the speed of light. Since v is directly proportional to the atomic

number Z, it follows that the relativistic effects are of the order of (Z/137)2.

The atomic unit of energy is chosen as

e2

a0

= 27.210 ev = 1 a.u. (of energy) (2.46)

This is just twice the ionization potential of the hydrogen atom if the reduced mass of the

electron is replaced by the rest mass. In terms of atomic units the experimental nonrela-

tivistic energy of the helium atom in its ground state (-79.99 ev) is

79.99

27.21
= −2.905 a.u. (2.47)

It follows from the above that the charge on the electron, e = 4.80298 × 10−10 esu,

represents 1 atomic unit of charge. Also it follows that an atomic unit of angular momentum

is given by h̄ (= 1.05450 × 10−27 erg sec).

It is important to be aware of the fact that other conventions are sometimes used for

expressing certain physical quantities. For example, some prefer to define the atomic unit

of energy as half that given in (2.46), i.e., as e2/2a0 (= 13.605 ev). Sometimes the energy is

given in terms of the Rydberg constant for infinite mass given by

R∞ =
e2

2a0h̄c
= 1.09737 × 105 cm−1 (2.48)

Still others use 2R∞ (the double Rydberg). The latter is consistent with the use of (2.46).

The infinite mass refers to that of the nucleus, i.e.,

lim
MN→∞

µ =
meMN

me +MN
= me (2.49)

When atomic units are used, one sets e = h̄ = me = 1 in quantum-mechanical expressions.

For example, the kinetic-energy operator −h̄2∇2/2m becomes − 1
2
∇2.

The advantage of atomic units is that if all calculations are directly expressed in such

units, the results do not vary with subsequent revision of the numerical values of the fun-

damental constants. Furthermore, there is certain notational simplicity which is useful in

writing down quantum-mechanical operators and functions.
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D. Variational Treatment of the H
+
2 Ion

As an example of the procedure described in section II.B let us consider the hydrogen

molecular ion H+
2 . In this molecule just one electron is moving in the potential field of

the two nuclei. We may get a rough description of the lowest orbital of this molecule by

considering it as a linear combination of the 1s orbitals of the two hydrogen atoms. Let

us designate the nuclei by the letters a and b, the 1s orbital of an electron in the field of

nucleus a alone by φa, and the 1s orbital of an electron in the field of nucleus b alone by φb.

Analytically (in a.u.)

φa =
1

π1/2
e−ra φb =

1

π1/2
e−rb (2.50)

If we put

∆ab =< φa |φb > Haa =< φa |H |φa > (2.51)

Hbb =< φb |H |φb > Hab =< φa |H |φb >= Hba (2.52)

the determination of the coefficients in the linear combination

ψ = ca φa + cb φb (2.53)

leads to the following secular determinant for the energy

Det

(

Haa − E Hab − ∆ab E

Hba − ∆ab E Hbb − E

)

= 0 (2.54)

From the symmetry of the problem it is evident that Haa = Hbb. Using this relation, the

roots of the determinant are found to be

Haa − E = ∓ (Hab − ∆ab E)

or

E1 =
Haa + Hab

1 + ∆ab
; E2 =

Haa − Hab

1 − ∆ab
(2.55)

The first root gives the following set of simulataneous equations for the coefficients in (2.53)

± [(Haa ∆ab − Hab) ca + (Hab − ∆ab Haa) cb] = 0 (2.56)
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Equations (2.56) are satisfied only if ca = cb. In order that the eigenfunction (2.53) be

normalized, we must have

c2a + c2b + 2 ca cb ∆ab = 1

so that

ca = cb = (2 + 2∆ab)
−1/2 (2.57)

Similarly, the second root gives

ca = −cb = (2 − 2∆ab)
−1/2 (2.58)

The wavefunctions and their associated energies are therefore

ψ1 =
φa + φb

(2 + 2∆ab)1/2
E1 =

Haa + Hab

1 + ∆ab
(2.59)

ψ2 =
φa − φb

(2 − 2∆ab)1/2
E2 =

Haa − Hab

1 − ∆ab
(2.60)

The integrals ∆ab, Haa, and Hab may all be evaluated exactly. In atomic units the nonrela-

tivistic Hamiltonian is

H = −

(

1

2
∇2 +

1

ra

+
1

rb

−
1

R

)

(2.61)

where R is the internuclear distance in a.u. Since

Hφa =

(

EH −
1

rb
+

1

R

)

φa (2.62)

where EH is the energy of the ground state of hydrogen, the matrix elements for the energy

become

Haa = EH +
1

R
− J J =< φa |

1

rb
|φa > (2.63)

Hab =

(

EH +
1

R

)

∆ab −K K =< φa |
1

ra
|φb > (2.64)

so that the energy levels are

E1 = EH +
1

R
−

J +K

1 + ∆ab
(2.65)

E2 = EH +
1

R
−

J −K

1 − ∆ab
(2.66)
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In order to evaluate the integrals involved in (2.63), (2.64) and (2.65), (2.66), it is convenient

to transform to elliptical coordinates

µ =
ra + rb

R
; ν =

ra − rb

R
; ϕ

dτ =
R3

8
(µ2 − ν2) dµ dν dϕ

1 ≤ µ ≤ ∞; −1 ≤ ν ≤ 1; 0 ≤ ϕ ≤ 2 π

For the ”overlap” integral ∆ab we have

∆ab =
∫

φa φb dτ =
1

π

∫

e−(ra+rb) dτ

=
R3

8 π

∫ ∞

1
e−Rµ dµ

∫ 1

−1
(µ2 − ν2) dν

∫ 2π

0
dϕ

=
R3

2

∫ ∞

1
µ2 e−Rµ dµ−

R3

6

∫ ∞

1
e−Rµ dµ (2.67)

The integrals involved are special cases of the general integral

∫ ∞

1
zn e−az dz =

n! e−a

an+1

n
∑

k=0

ak

k!
≡ An(a) (2.68)

so that ∆ab is readily found to be

∆ab = e−R

(

1 +R +
R2

3

)

(2.69)

The integral J is

J =
1

π

∫

e−2ra

rb
dτ =

1

π

2

R

∫

e−R(µ+ν)

µ− ν
dτ

=
R2

2

[

∫ ∞

1
µ e−Rµ dµ

∫ 1

−1
e−Rν dν +

∫ ∞

1
e−Rµ dµ

∫ 1

−1
ν e−Rν dν

]

(2.70)

The integrals in ν are special cases of the integral

∫ 1

−1
zn e−az dz = (−1)n+1An(−a) − An(a) (2.71)

Inserting the proper values for the integrals gives

J =
1

R
[1 − e−2R (1 +R)] (2.72)

In the same way, we find for the K integral the expression

K = e−R (1 +R) (2.73)
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For large values of R we see that ∆ab = 0, Haa = EH , Hab = 0, so that E1 = E2 = EH,

that is, just the energy of a normal hydrogen atom, as of course it should be. For R = 0,

∆ab = 1, Haa = EH − 1 + 1/R, Hab = Haa. Neglecting the nuclear repulsion term 1/R for

the time being, we see that the electronic energies are E ′
1 = 3 EH, E ′

2 = 0. When R = 0, the

lowest molecular orbital should become the 1s atomic orbital of He, with an energy 4EH.

Our approximation is therefore in error by an amount EH for R = 0, although it is correct

for large R. The reason for this is clear. For large R the orbital ψ1 is the correct orbital for

a hydrogen atom, but for R = 0 it is again a hydrogen orbital, but surrounding a nucleus

whose charge is two instead of one. In order to get a good approximation for small R we

should take a number of orbitals for each atom.

Referring to (2.65) and (2.66), and for simplicity neglecting ∆ab as compared with unity,

we see that the difference in energy between the two states, to this approximation, is just

2K. Also, to this approximation, state ψ2 is unstable with respect to a hydrogen atom

and a proton by an amount (1 + R) (e−R + e−2 R) while state ψ1 is stable by an amount

(1 + R) (e−R − e−2 R). That this should be so may be seen qualitatively in the following

manner. For state ψ1, the electron density is

ρ1 = ψ∗
1 ψ1 =

1

2 + 2 ∆ab

(φ2
a + φ2

b + 2φa φb) (2.74)

While for state ψ2 it is

ρ2 = ψ∗
2 ψ2 =

1

2 − 2 ∆ab

(φ2
a + φ2

b − 2φa φb) (2.75)

At a point midway between the two nuclei, se have

ρ1 =
2

1 + ∆ab
φ2

a; ρ2 = 0 (2.76)

State ψ1 thus has a much greater accumulation of charge between the two nuclei than

state ψ2; the attraction between this accumulation of charge and the two protons may be

considered as producing the stability of state ψ1.

It is of some interest to look at this problem from the following viewpoint. The wavefunc-

tions, including the time-dependent term, are, if we neglect the overlap ∆ab as compared to

unity,

Ψ1 = ψ1 e
−iE1h̄/t =

1

21/2
(φa + φb) e

−iE1h̄/t

Ψ2 = ψ2 e
−iE2h̄/t =

1

21/2
(φa − φb) e

−iE2h̄/t
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Any linear combination of these two solutions will represent some particular distribution

of electron density. Let us consider the combination Ψ = 2−1/2 (Ψ1 + Ψ2). The electron

density corresponding to this state is

ρ =
1

2

(

ψ2
1 + ψ1 ψ2

[

ei(E1−E2)t/h̄ + e−i(E1−E2)t/h̄

]

+ ψ2
2

)

For t = 0, ρ = 1/2 (ψ1 + ψ2)
2 = φ2

a, so that the electron is on nucleus a. For t =

π h̄ (E1 − E2)
−1,

ρ =
1

2
(ψ1 − ψ2)

2 = φ2
b

so that the electron is on nucleus b. From this viewpoint (which should not be taken too

literally), the electron oscillates between a and b, the frequency of the oscillation being

ν = (E1 − E2)/h. We thus have the result ∆E = h ν, where ν is the frequency of the

oscillation between the two states and ∆E is the difference in energy between these two

states.

In Fig. II.1 the energy levels for these two states are plotted as a function of the internu-

clear distance R, along with the experimental curve as determined from spectroscopic data.

In Fig. II.2 the distribution of charge along the internuclear axis is shown. It is seen that

this approximation gives qualitatively correct results, although quantitatively the treatment

is not very satisfactory.
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The results can be somewhat improved by taking more complicated zero-order functions.

A simple method of improving the agreement would be to introduce a parameter into φa

and φb; for example, we might take

φa =

(

α3

π

)1/2

e−αra; φb =

(

α3

π

)1/2

e−αrb

and then vary α so that the energy is minimized. We should then get agreement at R = 0

as well as at R = ∞. The energy may be further improved by including in the secular

equation the 2p orbitals of the hydrogen atoms. The inclusion of these terms partly takes

into account the polarization of the hydrogen atom by the other nucleus.

For H+
2 the band spectra indicate the values De = 2.791 e.v. and Re = 1.06Å. The

simple theory as described above gives De = 1.76 e.v. and Re = 1.32Å. Introduction of the

parameter α improves these results to De = 2.25 e.v. and Re = 1.06Å, and inclusion of the

2p orbitals gives De = 2.71 e.v., Re = 1.06Å. The value of De could, of course, be improved

by adding more and more hydrogen orbitals.
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III. THE BORN-OPPENHEIMER APPROXIMATION

A. Preliminary Remarks

Since molecules are very complicated arrangements of mutually nuclei and electrons, so-

lution of the Schrödinger equation, even for the simplest case of diatomic molecules, cannot

be accomplished without restoring to many approximations. In what follows we shall out-

line the procedure usually employed in molecular calculations. It is based on the empirical

observations of molecular spectroscopy, which show that the total energy of a molecule can

be viewed as the sum of several approximately noninteracting parts. Apart from the transla-

tional energy, a molecule has internal-energy contributions from electronic, vibrational, and

rotational motions. In this section we show how the electronic motions can be approximately

separated from the remaining motions.

B. Separation of the Electronic and Nuclear Motions

Changing slightly the notation of section I, the nonrelativistic Hamiltonian operator for

a molecule of S nuclei and N electrons is

H = −
1

2

S
∑

k=1

1

Mk

∇2
k −

1

2

N
∑

µ=1

∇2
µ −

N
∑

µ

S
∑

k

Zk

rµk

+
S
∑

k<l

ZkZl

rkl

+
N
∑

µ<ν

1

rµν

(3.1)

where atomic units are used and where it is assumed that all nuclear and electronic coordi-

nates have been referred to the center of mass of the system. The Hamiltonian defined by

Eq. (3.1) is then referred to as the internal Hamiltonian. The exact Schrödinger equation

which this Hamiltonian satisfies can be written

H Ψ(r;R) = EΨ(r;R) (3.2)

where E is the total internal energy of the molecule; that is, E is all the energy but that

due to translation. The wavefunction Ψ(r;R) depends upon both the electronic coordinates

r and the nuclear coordinates R. In general, each electronic and nuclear coordinate includes

both spatial and spin variables.

The first term in the Hamiltonian (3.1) represent the kinetic energy of the nuclei (Mk

is the mass in atomic units of the kth nucleus); the second term represents electron kinetic

energy; the third term is the electron-nucleus-attraction potential energy; the fourth term
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is the nuclear mutual-repulsion potential energy; and the last term is the electron mutual-

repulsion potential energy. Whereas the entire energy of an atom can be viewed as that

of the electrons (relative to the energy of a stationary center of mass), that of a molecule

arises from several different types of motions, viz, electronic motions, vibrational motions

of the nucleus, and rotational motions of the nucleus. Moreover, all these motions are

coupled in a rather subtle fashion, so that solution of the Schrödinger equation (3.2) can

be solved approximately, even for fairly large molecules, by making certain assumptions

and approximations concerning the magnitude of the coupling among the various types of

motion.

According to Born and Oppenheimer, the solutions of the Schrödinger equation (3.2)

can be expanded in a power series in the function M−1/4 (where M is the average mass

of the nuclei). If this function is very much smaller than unity, it turns out that one can

approximate solutions to Eq. (3.2) by first solving the Schrödinger equation for a series of

fixed nuclear positions, thus obtaining the electronic energy for particular arrangements of

nuclei. This electronic energy (which depends on the nuclear positions) can then be used as

the potential energy for the wavefunctions involving the nuclei alone. This approximation

rests upon the physical picture of massive nuclei moving so slowly relative to the electronic

motions that the electrons can be thought of as being in quasi-stationary states during the

course of the nuclear vibrations and rotations. This implies that the forces acting between

the nuclei can be calculated as gradients of the electronic energies and the electrostatic

repulsions between the nuclei themselves. The situation is closely related to the Ehrenfest

adiabatic principle, which states that if a system is perturbed slowly enough, it remains in

definite stationary states. In this case it is the nuclear motions which are perturbing the

system.

According to the Born-Oppenheimer approximation, the toal wavefunction of the

molecule can be written

Ψ(r;R) = ψR(r)φ(R) (3.3)

The function ψR(r) is called the electronic wavefunction and, for fixed nuclear positions,

depends only upon the quantum states of the electrons. Thus, this function depends para-

metrically upon the nuclear coordinates; otherwise, it is independent of the nuclear quantum

states. The function φ(R) is called the nuclear wavefunction. It describes the rotational and
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vibrational motions in a potential field supplied by the electrons.

It is now convenient to rewrite the internal Hamiltonian (3.1) in the simple symbolic form

H = TR + U + V (3.4)

where TR is the kinetic-energy operator of the nuclei, U is a sum of monoelectronic operators

each of the form

uµ = −
1

2
∇2

µ −
∑

k

Zk

rµk
(3.5)

and V is the potential-energy operator for nuclear repulsions and electronic repulsions. The

operator U + V is customarily referred to as the electronic Hamiltonian. This operator is

assumed to satisfy the Schrödinger equation

(U + V)ψR(r) = E(R)ψR(r) (3.6)

When the nuclear coordinates R are fixed, E(R) is the energy of the N electrons moving

in the field of S fixed nuclei plus the mutual-repulsion energy of the S fixed nuclei. E(R)

is usually referred to as the molecular energy in the fixed-nuclei approximation. The most

stable configuration for a given electronic quantum state is defined by those values of R

leading to a minimum value in the molecular energy.

The validity of this approximation can be examined by susbtituting the approximation

(3.3) into the exact Schrödinger equation (3.2). In so doing, it is helpful to note the rela-

tionships

∇2
k ψR(r)φ(R) = ψR(r)∇2

k φ(R) + φ(R)∇2
k ψR(r) + 2∇k ψR(r).∇k φ(R)

∇2
µ ψR(r)φ(R) = φ(R)∇2

µ ψR(r)

One then obtains

−
∑

k

1

Mk

[

∇k ψR(r).∇k φ(R) +
1

2
φ(R)∇2

k ψR(r)

]

−
∑

k

1

2Mk

ψR(r)∇2
k φ(R) +

∑

µ

[(

−
1

2
∇2

µ −
∑

k

Zk

rµk

)

ψR(r)

]

φ(R)

+

(

∑

k<l

Zk Zl

rkl
+
∑

µ<ν

1

rµν

)

ψR(r)φ(R) = E ψR(r)φ(R) (3.7)

Assuming for the moment that the entire first summation can be ignored, Eq. (3.7) reduces

to

[(TR + U + V)ψR(r)]φ(R) = E ψR(r)φ(R) (3.8)
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where E is an approximation to the true energy E. Using Eq. (3.6) and dividing through

by ψR(r), one obtains

[TR + E(R)]φ(R) = E φ(R) (3.9)

The above equation implies that one can describe the nuclear motions by using an effective

Hamiltonian in which the potential energy is that provided by the electrons in the fixed-

nucleus approximation. Equation (3.8) is a justification of the separation of nuclear and

electronic variables assumed in (3.3) provided one can justify neglect of the first summation

in Eq. (3.7). Without spelling out the rigorous details, we state only that the dot-product

portion represents the rate of transition between different electronic states, a quantity which

is usually small enough to be neglected. The remaining terms are of the form ∇2
k ψR(r)

divided by Mk. Since ∇2
k ψR(r) is essentially ∇2

µ ψR(r), these remaining terms are more

than three orders of magnitude smaller than the kinetic energies of single elctrons. These

terms may then be neglected. Thus, the Born-Oppenheimer approximation amounts to

replacing the solution of the single equation (3.2) by the successive solutions of Eqs. (3.6)

and (3.9).

In certain types of calculations, e.g., those in which interactions between the electronic

motions and vibrational motions must be explicitly considered, one may treat the first

summation in Eq. (3.7) as a small perturbation.

An interesting sidelight to the Born-Oppenheimer approximation is that the approximate

energy E of Eq. (3.9) is a lower bound to the exact energy E of Eq. (3.2) (recall that the

variation theorem provides an upper bound to the exact energy). In fact, the exact energy

satisfies the relationship

E < Ψ |Ψ >r,R =< Ψ |H |Ψ >r,R (3.10)

where the subscripts on the inegrals are used as a remainder to integrate over both nuclear

and electronic coordinates. Applying the variational principle to Eq. (3.6) and considering

fixed nuclear coordinates allows one to write

< Ψ |U + V |Ψ >r ≥ E(R) < Ψ |Ψ >r (3.11)

Equations (3.4) and (3.10) then imply

E < Ψ |Ψ >r,R ≥< Ψ |TR + E(R) |Ψ >r,R (3.12)
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Now applying the variational principle to Eq. (3.9) and considering fixed electronic coordi-

nates leads to

< Ψ |TR + E(R) |Ψ >R ≥ E < Ψ |Ψ >R (3.13)

Therefore, Eq. (3.12) can be written

E ≥ E (3.14)

C. The Electronic States of the H
+
2 Ion

This one-electron molecule-ion plays a role in the electronic structure of diatomic

molecules which is analogous, in some respects, to the role of the hydrogen atom in atomic

structure. Just as the nonrelativistic wave equation of the hydrogen atom can be solved

exactly, so can the nonrelativistic wave equation of H+
2 , provided the Born-Oppenheimer

approximation is assumed. The Hamiltonian operator of H+
2 in the Born-Oppenheimer

approximation is given by Eq. (2.61), where the coordinate system is as shown in Fig.

III.1. The azimuthal angle ϕ is a rotation about the internuclear axis. The variable µ is

defined in the interval 1 to ∞, and ν is defined in the interval −1 to 1. The variable µ

describes confocal ellipsoids of revolution with the nuclei as foci, and ν describes confocal

hyperboloids. Transformation to these elliptical coordinates introduced in Section II.D, the

Laplacian operator ∇2 is found to be

∇2 =
4

R2 (µ2 − ν2)

×

{

∂

∂µ

[

(µ2 − 1)
∂

∂µ

]

+
∂

∂ν

[

(1 − ν2)
∂

∂ν

]

+
µ2 − ν2

(µ2 − 1) (1 − ν2)

∂2

∂ϕ2

}

(3.15)

On using the relationships

1

ra
+

1

rb
=

4µ

(µ2 − ν2)R
Eel = E −

1

R
(3.16)

The Schrödinger equation for H+
2 then becomes

{

∂

∂µ

[

(µ2 − 1)
∂

∂µ

]

+
∂

∂ν

[

(1 − ν2)
∂

∂ν

]

+

(

1

µ2 − 1
+

1

1 − ν2

)

∂2

∂ϕ2

+2R2

[

Eel

4
(µ2 − ν2) +

µ

R

]}

Ψ(µ, ν, ϕ) = 0 (3.17)
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It is seen that on replacing Ψ(µ, ν, ϕ) by the product function

Ψ(µ, ν, ϕ) = M(µ)N(ν)F (ϕ) (3.18)

one can effect a separation of the variables to obtain the three ordinary differential equations
{

d

dµ

[

(µ2 − 1)
d

dµ

]

+ ε µ2 + 2Rµ−
λ2

µ2 − 1
+ κ

}

M(µ) = 0 (3.19)

{

d

dν

[

(1 − ν2)
d

dν

]

+ ε ν2 +
λ2

1 − ν2
− κ

}

N(ν) = 0 (3.20)

(

d2

dϕ2
+ λ2

)

F (ϕ) = 0 (3.21)

The parameters λ and κ are separation constants, and the parameter ε is defined by

ε = −
1

2
R2Eel (3.22)

Equations (3.19 - 3.21) have well-behaved solutions only if the parameters λ, κ, and ε have

certain definite values. The equation in ϕ is of the same form as the ϕ portion of the

spherical harmonics (in complex form) and is well behaved only if λ = 0,±1,±2, · · ·. Thus,

λ is a quantum number associated with the component of the electronic orbital angular

momentum along the axis of nuclear centers. The case of λ = 0 corresponds to no rotation

about the bond axis; for λ 6= 0, the two possible integral values (differing only in sign)

represent the fact that clockwise and counterclockdwise rotations about the bond axis are

possible (even though we cannot distinguish the two). The solution of the equations in µ and

ν is rather involved and must be carried out by numerical methods. The latter equations

involve the energy parameter ε, which, in turn, invovles λ2. Thus the energy depends only

upon |λ|.
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Furthermore, for |λ| > 0 the energy levels must be doubly degenerate. The quantum

number λ can be seen to reduce to the atomic magnetic quantum number ml as the inter-

nuclear distance R approaches zero. However, it turns out that |λ| plays much the same

role in H+
2 as the azimuthal quantum number l does in a one-electron atom, for example,

He+, to which H+
2 reduces as R → 0. The various states of H+

2 are usually symbolized by

a notation analogous to the hydrogen-atom spectroscopic notation 1s, 2s, 2p, · · ·, namely,

n|λ| = 1sσg, 2sσg, 2pσu, 2pπu, · · ·

where nl refers to the one-electron atomic orbital (AO) to which the H+
2 orbitals [called

molecular orbitals (MO’s)] reduce as R → 0. The value of |λ| is given by σ, π, δ, φ, · · · when

|λ| = 0, 1, 2, 3, · · ·, respectively. The u and g refer to the inversion symmetry of the MO.

The ground state of H+
2 (|λ| = 0) is designated by 1sσg, which reduces to 1s of He+

when R → 0. The next state is designated 2pσu. The representation of the states of H+
2

by the n|λ| notation is sometimes called the united-atom correlation since He+ is formed

by uniting the nuclei of H+
2 to one nucleus at R = 0. In fact, one could regard H+

2 as a

perturbed united atom and obtain the wavefunction by a perturbation calculation.
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IV. ELECTRON SPIN AND THE ANTISYMMETRY PRINCIPLE

A. Preliminary Remarks

Let us consider two identical particles which may be part of a many-body system and

which, like the electron, possess a spin angular momentum, i.e., a fourth degree of freedom.

We label the coordinates of the two particles (relative to some given origin) by the position

vectors τ1 = (r1, σ1) and τ2 = (r2, σ2), where, in general, ri represents the cartesian coordi-

nates point (xi, yi, zi) or the polar coordinates point (ri, θi, ϕi) and σi is a spin coordinate.

For example, a single electron could have two possible spin coordinates, σ1 or σ2 which

represent the two possible projections of the spin angular momentum on an arbitrary axis.

The probability of finding particle 1 at the point τ1 and particle 2 at the point τ2 is given

by

|ψ[τ1(1), τ2(2)] |2 dτ1 dτ2 (4.1)

where ψ is a wavefunction describing the two-particle system. Since the two particles are

identical, they must be physically indistinguishable. Therefore, the above probability could

just as well be written

|ψ[τ2(1), τ1(2)] |2 dτ1 dτ2 (4.2)

which is the probability of finding the particle 1 at the point τ2 and particle 2 at the point

τ1. In (4.1) and (4.2) it is understood that τi(j) is to interpreted as ”an electron labeled j

is located at a point labeled i”. No functional dependence is implied by the notation. It is

apparent that the two expressions, Eqs. (4.1) and (4.2) differ only in the exchange of the

coordinates of two identical particles. In the absence of magnetic fields the wavefunction ψ

can always be chosen as real, so that we can write

ψ2[τ1(1), τ2(2)] = ψ2[τ2(1), τ1(2)] (4.3)

i.e.,

ψ[τ1(1), τ2(2)] = εp ψ[τ2(1), τ1(2)] εp = ±1 (4.4)

Equation (4.3) expresses a basic symmetry law of quantum mechanics; viz, if a physically

measurable property depends on the coordinates (including the spin) of identical particles,
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the outcome of any measurement of that property must be independent of any attempt to label

the particles of the system. In other words, the measurable property (and hence its operator)

must be a symmetric function of the coordinates. The quadratic expression (4.3) can be

satisfied in two different ways with respect to the symmetry of the wavefunction ψ under

an exchange of the coordinates of two indistinguishable particles. One possibility is to take

εp = +1 in Eq. (4.4), in which case ψ is said to be symmetric with respect to an interchange

of the coordinates of a pair of identical particles. The remaining possibility is to take

εp = −1, in which case ψ is said to be antisymmetric with respect to an interchange of the

coordinates of a pair of identical particles. We now postulate that all fundamental particles

are described by wavefunctions which belong to one or the other of the above symmetry types

and that particles never go from one symmetry type to another. Furthermore, we postulate

that all particles with half-integral spin are described by antisymmetric wavefunctions, and

all particles with zero or integral spin are described by symmetric wavefunctions.

Examples of particles described by antisymmetric wavefunctions are the electron, proton,

neutron, and, in general, all particles with odd mass number. Such particles obey Fermi-

Dirac statistics and are collectively referred to as fermions. Fermions tend to repel each

other more than one would expect on the basis of otherwise similar particles. For example,

a gas of fermions at a given temperature has a higher internal energy and pressure than an

otherwise similar gas of identical particles.

Particles with zero or integral spin obey Bose-Einstein statistics and are called bosons.

Such particles attract each other more than would expect on the basis of otherwise similar

particles, and therefore a gas of bosons at a given temperature has a lower internal energy

and pressure than an otherwise similar gas of identical particles. Examples of bosons are

the photon (spin= 1), deuteron (spin= 1), and, in general, particles of even mass number.

The spin is always zero if the atomic number is also even.

The postulate that electrons must be described by wavefunctions which are antisymmetric

with respect to an interchange of the coordinates (including the spin) of a pair of electrons

is known as the Pauli principle or the antisymmetry principle. The postulate is justified a

posteriori by the fact that it leads to the exclusion principle, which is in accord with the

experimental facts.
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B. Spin Operators

We postulate that the spin operators obey commmutation relations of the same general

form as the orbital-angular momentum operators, namely

[Sx, Sy] = i Sz, [Sy, Sz] = i Sx, [Sx, Sz] = i Sy (4.5)

where atomic units were used, i.e., h̄ = 1. Any operators satisfying commutation relations

like the above would have eigenvalues of the form

0,±1,±2,±3, · · ·

or

±1/2,±3/2,±5/2, · · ·

This is certainly consistent with the ±1/2 eigenvalues associated with the spin compo-

nents. Since there are only two components of the projection of the spin, we know that

the spin eigenfunctions must be representable as two-component column matrices, i.e., two-

component spinors. If these are required to be orthonormal, one possibility is

Ω

(

1

2

)

=

(

1

0

)

, Ω

(

−
1

2

)

=

(

0

1

)

(4.6)

If we regard Sz as the operator of the spin component which is quantized, the matrix

representation of this operator must satisfy the matrix eigenvalue equations

Sz Ω

(

1

2

)

=
1

2
Ω

(

1

2

)

, Sz Ω

(

−
1

2

)

= −
1

2
Ω

(

−
1

2

)

(4.7)

where Sz is the matarix representation of Sz,

Sz =
1

2

(

1 0

0 −1

)

(4.8)

The remaining matrix representations are

Sx =
1

2

(

0 1

1 0

)

, Sy =
1

2

(

0 −i

i 0

)

(4.9)

It is readily verified that each of these matrices is self-adjoint.

The matarix representation of S2 is most conveniently found by use of the step-up and

step-down operaors whose matrix representations are

S+ = Sx + iSy =

(

0 1

0 0

)

, S− = Sx − iSy =

(

0 0

1 0

)

(4.10)
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and by analogy to the orbital angular momentum we write

S2 = S−S+ + Sz (Sz + 1) = S+S− + Sz (Sz − 1) =
3

4

(

1 0

0 1

)

(4.11)

if H is a Hamiltonian which contains no spin coordinates, e.g., the nonrelativistic or spin-free

Hamiltonian, we have the commutation relations

[Sz,H] = 0 = [S2,H] (4.12)

Furthermore, analogous to the orbital angular momentum

[Sz, S
2] = 0 (4.13)

The fact that Sz and S2 commute with the Hamiltonian means that we can make use of

Theorem 5 (see Sect. I.E) in the simplification of matrix elements of H.

The spin eigenfunctions whose matrix representations are given by Eq. (4.6) are conve-

niently defined as follows

ω1, ω2 =



















































α =











1 spin + 1/2

0 spin − 1/2

β =











0 spin + 1/2

1 spin − 1/2

For example, ωi = α (i = 1 or 2) means that the probability of finding an electron with

spin 1/2 is unity if the electron has that spin and zero otherwise. This means that α is the

eigefunction of Sz with the eigenvalue +1/2 and that β is the eigenfunction of Sz with the

eigenvalue −1/2. These eigenfunctions satisfy the orthonormality condition

∑

ms

ω∗
1 ω2 = δ12 (4.14)

where the summation is over the two possible values of ms. More explicitly, this can be

written

∑

ms

ω∗
1 ω2 = ω∗

1 ω2

∣

∣

∣

∣

∣

ms=1/2

+ ω∗
1 ω2

∣

∣

∣

∣

∣

ms=−1/2

(4.15)

If ω1 = ω2 = α or ω1 = ω2 = β, the above leads to 1 + 0 = 1 or 0 + 1 = 1, respectively. For

ω1 6= ω2, one obtains 0 + 0 = 0. An alternative notation to (4.14) is

∫

ω∗
1 ω2 dσ = δ12 (4.16)
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where integration is interpreted as summmation over ms.

Using the spin function notation, we may summarize the following important relations:

Sx α =
1

2
β S+ α = 0

Sx β =
1

2
α S+ β = α

Sy α =
1

2
i β S− α = β

Sy β = −
1

2
i α S− β = 0

Sz α =
1

2
α S2 α =

3

4
α

Sz β = −
1

2
β S2 β =

3

4
β

If ω is a many-electron spin function, we obtain the relationships

Sz =
∑

i

Szi

Sz ω = MS ω

S2 ω = S (S + 1)ω

−S ≤ MS ≤ S

MS =
∑

i

msi

S =
∑

i

Si,
∑

i

Si − 1, · · · ≥ 0
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V. THE INDEPENDENT-PARTICLE MODEL

A. Preliminary Remarks

The independent-particle model has played a central role in electronic-structure calcula-

tions. While this model can be motivated by the observation that it becomes exact with

the suppression of inter-electron interactions, it is in actuality far more adequate than that

observation might suggest, and in addition has the great virtue of ease of visualization and

interpretation.

As currently understood, the term independent-particle model refers to any formalism

in which a many-particle wavefunction is based on a product of single-particle functions.

Each single-particle function, often called an orbital (or if it is desired to distinguish spatial

functions from those including spin a spinorbital) is usually determined by methods that

take cognizance of the nature of the other single-particle functions to be used, so that the

”independence” is formal, rather than physical. Moreover, the energy and other proper-

ties associated with the many-particle wavefunction are ordinarily not the sums of orbital

contributions, and the requirement of antisymmetry on particle interchange even causes the

probability distributions of the various particles to be correlated. However, these depar-

tures from a truly independent-particle description do not preclude the use of the intuitively

appealing and relatively satisfactory single-particle concepts.

B. The Hartree Product and Slater Determinants

We discuss a system containing N electrons and one or more fixed nuclei, and assume

the system to be characterized by an electronic Hamiltonian H of the form

H = U + V (5.1)

where U and V denote the one-electron and two-electron contributions to H respectively, and

may therefore be written in the forms

U =
∑

µ

u(µ) (5.2)

V =
∑

µ<ν

v(µ, ν) (5.3)
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where µ and ν refer to electrons. Ordinarily u(µ) will consist of the kinetic energy operator

for Electron µ, plus terms describing its potential energy in the field of the nuclei, i.e., for a

system containing in addition to N electrons, S fixed atomic nuclei

u(µ) = −
1

2
∇2

µ −
S
∑

i=1

Zi

|Ri − rµ|
(5.4)

v(µ, ν) in Eq. (5.3) describes the interaction between Electrons µ and ν (i.e., v(µ, ν) = r−1
µν ).

The Hamiltonian expressed in Eqs. (5.1) - (5.3) is in the Born-Oppenheimer approximation,

in which the coupling between electronic and nuclear motions is neglected. Except where

explicitly indicated otherwise, the potential energy of internuclear interactions will also be

omitted.

The Schrödinger equation that this N -electron system satisfies may be written symboli-

cally as

H Ψ(r1, r2, · · · , rN) = EΨ(r1, r2, · · · , rN) (5.5)

It is found that there is no known coordinate system which will permit one to separate the

variables by writing (Hartree product)

Ψ(r1, r2, · · · , rN) = ψ1(r1)ψ2(r2), · · ·ψN(rN) (5.6)

This unfortunate result is due to the presence of the coulombic term for the mutual repulsions

of the electrons. This fact presents one of the major mathematical difficulties in the solution

of Schrödinger’s equation for electronic systems more complicated than the hydrogen atom.

One possible approach to an approximate solution of the Schrödinger equation is to ignore

the electron-electron-repulsion terms in the Hamiltonian. Although one would hardly expect

this to lead to generally good results, nevertheless it suggests certain refinements which are

much more satisfactory.

If the electron-repulsion terms in the Hamiltonian are ignored, the Schrödinger equation

is separable in the coordinates of individual electrons, and one may apply Eq. (5.6) to obtain

N independent equations. In fact, inserting Eq. (5.6) into

U Ψ(r1, r2, · · · , rN) = EΨ(r1, r2, · · · , rN) (5.7)

and dividing by Ψ gives

N
∑

µ=1

1

ψµ(rµ)
u(µ)ψµ(rµ) = E (5.8)
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Each term in the sum on the left-hand side depends upon the coordinates of one electron

only, so that the equation can be separated into the N equations

u(µ)ψµ(rµ) = εµ ψµ(rµ) µ = 1, 2, · · · , N (5.9)

where εµ is the energy of the µth electron. The total energy is now given by the simple

expression

N
∑

µ=1

εµ = E (5.10)

Althogh it is a solution of Eq. (5.7) the function Ψ in Eq. (5.6) is not a correct wave-

function for two reasons. First, it should include the spin coordinates of the electrons. If

spin-orbit interaction is neglected, we may include spin by writing, instead of ψµ(r)

φµ(x) = ψµ(r)χµ(ξ) (5.11)

where ξ is the spin coordinate, x standing for both r and ξ, and the spin function χµ is

either α or β, defined by

α(1) = 1, α(−1) = 0

β(1) = 0, β(−1) = 1 (5.12)

The presence of the spin functions does not affect Eqs. (5.9) and (5.10).

Secondly, the wavefunction of any system of particles must be either symmetric or anti-

symmetric in the coordinates of the particles. Particles whose wavefunctions are symmetric

are called bosons, and those whose wavefunctions are antisymmetric are called fermions.

Photons, for exaple, are bosons, while electrons are fermions. Instead of a single product

like (5.6) we must therefore take an antisymmetric sum of such products with the elec-

tronic coordinates permuted in all possible ways. The result, including spin, is a normalized

N -electron independent-particle wavefunction, denoted Φ, assumed to be of the form

Φ = (N !)1/2A [φα(x1)φβ(x2) · · ·φω(xN )] (5.13)

where the φα are single-particle functions and A denotes the antisymmetrizer whose defini-

tion in terms of permutations P of the coordinates of the N electrons is

A =
1

N !

∑

P

(−)P P (5.14)
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where P is a permutation operator upon the electronic coordinates, P is the number of

interchanges in P, and the sum is over the N ! different permutations. As shown in Sect. I.G

A is a projection operator. This is just a compact way of writing the determinant (Slater

determinant)

Φ =
1

(N !)1/2
Det

















φ1(x1) φ1(x2) · · · φ1(xN )

φ2(x1) φ2(x2) · · · φ2(xN )
...

...
...

...

φN(x1) φN(x2) · · · φN(xN)

















(5.15)

The factor 1/(N !)1/2 (arising from the N ! spinorbital products resulting in the expansion of

the determinant) normalizes Φ, provided the one-electron functions are normalized. In fact,

integration with respect to x implies a sum over the two values ±1 of the spin variable ξ;

thus

∫

|φµ(x)|2 dx ≡
∑

ξ=±1

∫

|ψµ(r)|2 |χµ(ξ)|2 dr =
∫

|ψµ(r)|2 dr = 1 (5.16)

The functions ψµ are, of course, orthogonal and satisfy the completeness relation, since they

are the eigenfunctions of (5.9), i.e.,

∫

φ∗
µ(x)φν(x) dx = δµν (5.17)

∑

µ

φ∗
µ(x

′)φµ(x) = δ(x − x′) (5.18)

where δ(x′ − x) stands for δ(r − r′) δξξ′

The product of the diagonal elements in Eq. (5.15) is just the Hartree product wave-

function (with spin included) (5.6); the remaining N ! − 1 spinorbital products represent all

possible permutations of the electron coordinates among the spinorbitals. That this deter-

minantal form is really an antisymmetric function follows from the fact that a determinant

is antisymmetric under an exchange of any two rows, an operation equivalent to exchanging

the coordinates of a pair of electrons. In the special case that each spinorbital is associated

with four quantum numbers (say, n, l, ml, and ms), the determinant will vanish if any two

electrons have all four quantum numbers the same. This result follows from the fact that

two electrons with the same set of quantum numbers are described by the same spinorbital,

i.e., two of the columns of the determinant are identical, and thus the determinant vanishes.

In general, whether each spinorbital is associated with definite quantum numbers or not,
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the determinant will vanish whenever two electrons are represented by the same spinorbital.

This result is known as the Pauli exclusion principle. The vanishing of the wavefunction

whenever two electrons occupy the same point of space (coordinate space and spin space)

may be thought of as representing a repulsion between electrons of the same spin. How-

ever, the Slater determinantal form of the many-electron wavefunction allows for too high a

probability of two electrons of different spin occupying the same point of coordinate space.

The Hartree product is an uncorrelated or independent-electron wavefunction because

∏

µ

|φµ(xµ) |2 dx1 · · ·dxN (5.19)

which is the simulataneous probability of finding electron-one in the volume element dx1,

centered at x1, electron-two in dx2, etc., is just equal to the product of probabilities

|φ1(x1) |
2 dx1 |φ2(x2) |

2 dx2 · · · |φN(xN) |2 dxN (5.20)

that electron-one is in dx1 times the probability that electron-two is in dx2, etc.

Antisymmetrizing a Hartree product to obtain a Slater determinant introduces exchange

effects, so-called because they arise from the requirement that |Φ|2 be invariant to the

exchange of the space and spin coordinates of any two electrons. In particular, a Slater

determinant incorporates exchange correlation, which means that the motion of two elec-

trons with parallel spins is correlated. Since the motion of electrons with opposite spins

remains uncorrelated, it is customary to refer to a single determinantal wavefunction as an

uncorrelated wavefunction.

To see how exchange correlation arise, let us investigate the effect of antisymmetrizing a

Hartree product on the electron density. Consider a two-electron Slate determinant in which

spinorbitals φ1 and φ2 are occupied

Φ(x1,x2) = |φ1(x1)φ2(x2) > (5.21)

If the two electrons have opposite spins and occupy different spatial orbitals

φ1(x1) = ψ1(r1)α(ω1) (5.22)

φ2(x2) = ψ2(r2) β(ω2) (5.23)

Then by expanding the determinant, one obtains

|Φ|2 dx1 dx2

=
1

2
|ψ1(r1)α(ω1)ψ2(r2) β(ω2) − ψ1(r2)α(ω2)ψ2(r1) β(ω1) |

2 dx1 dx2 (5.24)
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for the simultaneous probability of electron-one being in dx1 and electron-two being in dx2.

Let P (r1, r2) dr1 dr2 be the probability of finding electron-one in dr1 at r1 and simultaneously

electron-two in dr2 at r2. This probability is obtained by integrating (averaging) Eq. (5.24)

over the spin coordinates of the two electrons, i.e.,

P (r1, r2) dr1 dr2 =
∫

dω1 dω2 |Φ |2 dr1 dr2

=
1

2

[

|ψ1(r1) |
2 |ψ2(r2) |

2 + |ψ1(r2) |
2 |ψ2(r1) |

2

]

dr1 dr2 (5.25)

The first term in Eq. (5.25) is the product of the probability of finding electron-one in dr1

at r1 times the probability of finding electron-two in dr2 at r2, if electron-one occupies ψ1 and

electron-two occupies ψ2. The second term has electron-one occupying ψ2 and electron-two

occupying ψ1. Since electrons are indistinguishable, the correct probability is the average

of the two terms as shown. Thus, the motions of the two electrons is uncorrelated. This is

particularly obvious if ψ1 = ψ2, for in that case

P (r1, r2) = |ψ1(r1) |
2 |ψ1(r2) |

2 (5.26)

Note that P (r1, r1) 6= 0 so that there is a finite probability of finding two electrons with

opposite spins at the same point in space.

If the two electrons have the same spin (say β), we have

φ1(x1) = ψ1(r1) β(ω1) (5.27)

φ2(x2) = ψ2(r2) β(ω2) (5.28)

then, by steps identical to the above, we obtain

P (r1, r2) =
1

2

{

|ψ1(r1) |
2 |ψ2(r2)|

2 + |ψ1(r2) |
2|ψ2(r1) |

2

−

[

ψ∗
1(r1)ψ2(r1)ψ

∗
2(r2)ψ1(r2) + ψ1(r1)ψ

∗
2(r1)ψ2(r2)ψ

∗
1(r2)

]}

(5.29)

where we now have an extra cross term, making the probabilities correlated. This is ex-

change correlation between electrons of parallel spin. Note that P (r1, r1) = 0, and thus the

probability of finding two electrons with parallel spins at the same point in space is zero.

A Fermii hole is said to exist around an electron. In summary, within the single Slater

determinant description, the motion of electrons with parallel spins is correlated but the

motion of electrons with opposite spins is not.

61



For the non-interacting system we have been considering, whose Hamiltoniain is U, the

determinantal wavefunction Φ gives the same energy E, Eq. (5.10), as the single product

function (5.6). The wavefunction of the ground state is just a determinant whose elements

are the one-electron functions corresponding to the lowest energy levels εµ (two functions

with opposite spin factors to each orbital state).

When the interaction term V is included in the Hamiltonian, so that we have the

Schrödinger equation (5.5), this equation can no longer be separated, and the wavefunction

cannot be expressed as a single determinant of one-electron functions. However, it would

seem possible to use the determinantal solutions of Eq. (5.7) as the basis of a perturbation

treatment of V - in other words, to take the non-interacting system as the unperturbed

system, with V as a perturbation.

Although it is possible to use the one-electron functions φµ, whose orbital factors are

solutions of Eq. (5.9), in constructing the solutions of Eq. (5.5), these may not be the

best choice -it may, for example, be better to use the one-electron functions obtained by the

Hartree or Hartree-Fock methods. Determinants formed from the latter functions would in

general no longer be solutions of Eq. (5.7), but solutions of (5.5) could still be expressed in

terms of them.

C. Expectation Values of Operators in a Basis of Determinantal Wavefunctions

If G is any operator which is symmetric in the system coordinates, it will commute with

every permutation, thereby also commuting with the sum of such permutations. Therefore

[G,A] = 0 (5.30)

The spin-free Hamiltonian of an N -electron system is just such an operator.

Now consider any quantum-mechanical operator G which commutes with the projection

operator A. Using the notation

ΦHP = [φα(x1)φβ(x2) · · ·φω(xN) ] (5.31)

for the Hartree product, the expectation value of this operator for the normalized function

Φ is given by

< G >=< Φ |G |Φ >= N ! < AΦHP |G | AΦHP > (5.32)
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The commutation relation (5.30) and the projection properties of A allows this expression

to be written as

< G >= N ! < ΦHP |G | AΦHP >=
∑

P

(−)P < ΦHP |G |PΦHP > (5.33)

This relationship is very useful in the evaluation of expectation values of oprators with

respect to determinantal wavefunctions. It is particularly useful for many-electron wave-

functions for which no factorization into space and spin functions is possible. We shall now

illustrate the use of this relationship by obtaining a general expression for the total energy

of a system with a closed-shell configuration, i.e., a configuration in which the N electrons

may be thought of as occupying N/2 doubly filled spatial orbitals.

The interaction of the µth electron with the different nuclei is given by the second term

on the right-hand side of the monoelectronic operator (5.4). The expectation value of this

operator represents the independent-particle energy of the µth electron.

In the following we shall find it convenient to use lowercase Greek letters µ, ν, · · · to

represent electron coordinates and lowercase Roman letters i, j, · · · to designate the orbitals.

We shall assume that the spatial orbitals {ψi} are orthonormal; i.e., for the µth electron

< ψi(µ) |ψj(µ) >= δij (5.34)

It then follows at once that the spinorbitals will also be orthonormal, either through the

orthonormality of their spatial factors or their spin factors. Equation (5.33) for the Hamil-

tonian (5.1) and a wavefunction constructed as a single determinant of N/2 doubly occupied

spatial orbitals becomes

< H >=
∑

P

(−)P < ΦHP |
∑

µ

u(µ) +
∑

µ<ν

v(µ, ν) |PΦHP > (5.35)

First, let us investigate the monoelectronic portion of < H >. The summation over the

identity permutations can be written

N
∑

µ

< φµ(µ) | u(µ) |φµ(µ) > (5.36)

Because of the assumed form of the wavefunction, the successive odd- and even- subscripted

spinorbitals have the forms

φµ(µ) = ψi(µ)α(µ) φµ+1(µ+ 1) = ψi(µ+ 1) β(µ+ 1) (5.37)
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Thus the summation in (5.36) can be more simply written [after integrating over the spin

coordinates by use of Eq. (4.16)]

2
N/2
∑

i=1

< ψi(µ) | u(µ) |ψi(µ) > (5.38)

The subscript µ is now superfluous as long as one keeps in mind that the above are one-

electrons integrals and that u is a monoelectronic operator. It is convenient to introduce the

symbol

ε
(0)
i =< ψi | u |ψi > (5.39)

For all other permutations, the monoelectronic contributions to < H > vanish because of

spin orthogonality. Thus we obtain

∑

µ

< u(µ) >= 2
N/2
∑

i=1

ε
(0)
i (5.40)

In the special case that the {ψi} are eigenfunctions of the monoelectronic operator u, Eq.

(5.40) represents the zeroth-order energy of the system, i.e., the energy predicted by the

independent-particle model. In general, however, we shall not assume that the {φi} are

eigenfunctions of u, so that the interpretation of (5.40) as a zeroth-order energy is not

strictly true. Nevertheless, it is still convenient to regard (5.40) as something near to the

zeroth-order energy of the system. This simplifies interpretation of certain calculations

within the format of perturbation theory.

Now let us look at the two-electron portion of < H >. For identity permutations we

obtain

∑

µ<ν

< φµ(µ)φν(ν) | v(µ, ν) |φµ(µ)φν(ν) > (5.41)

Now whenever µ is odd and ν = µ+ 1, we have

φµ(µ) = ψi(µ)α(µ) φν(ν) = ψi(ν) β(ν) (5.42)

There are N/2 such occurrences, so that this leads to a contribution (after integration over

spin)

N/2
∑

i=1

< ψi(µ)ψi(ν) | v(µ, ν) |ψi(µ)ψi(ν) >=
N/2
∑

i=1

Jii (5.43)

64



where Jii is a coulombic integral, defined in general by

Jij =

〈

ψi(µ)ψj(ν)

∣

∣

∣

∣

∣

1

rµν

∣

∣

∣

∣

∣

ψi(µ)ψj(ν)

〉

(5.44)

Such an integral represents the energy due to electrostatic repulsion between a pair of elec-

trons having charge distributions |ψi(µ)|2 and |ψj(ν)|
2, respectively. For all other values of

µ < ν there are four ways one can obtain a given coulombic integral Jij from (5.41). These

four ways occur whenever

φµ(µ) =











ψi(µ)α(µ)

ψi(µ) β(µ)

either one of which may be associated with

φν(ν) =











ψj(ν)α(ν)

ψj(ν) β(ν)

Identity permutations then lead to a two-electron contribution to < H > of

N/2
∑

i=1

Jii + 4
N/2
∑

i<j

Jij (5.45)

In the case of two-electron permutations (odd parity) one obtains

−
∑

µ<ν

< φµ(µ)φν(ν) | v(µ, ν) |φν(µ)φµ(ν) > (5.46)

When µ is odd and ν = µ+ 1, this leads to zero integrals as a result of spin orthogonality.

For other values µ < ν one obtains integrals of the form
〈

ψi(µ)ψj(ν)

∣

∣

∣

∣

∣

1

rµν

∣

∣

∣

∣

∣

ψj(µ)ψi(ν)

〉

= Kij (5.47)

known as exchange integrals. Unlike the coulombic integrals, the exchange integrals have no

simple classical interpretation, since they arise solely as a consequence of the nonclassical

antisymmetry principle. Of the four µ < ν combinations leading to a particular Kij, only

two (those involving only one type of spin function) lead to nonzero integrals for two-electron

permutations. Thus, the total contribution due to two-electron permutations is

2
N/2
∑

i<j

Kij (5.48)

It is readily verified that permutations involving more than two electrons lead to no nonzero

integrals. This, however, would not be true if we had not assumed orthonormality of the

spatial orbitals.
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The total energy can now be written as a summation over the N/2 spatial orbitals,

namely,

< H >= 2
N/2
∑

i=1

ε
(0)
i +

N/2
∑

i<j

(4 Jij − 2Kij) +
N/2
∑

i=1

Jii (5.49)

Equation (5.49) can be put into a more convenient form by noting that

Jij = Jji Kij = Kji Jii ≡ Kii (5.50)

One can then write

< H >= 2
N/2
∑

i=1

ε
(0)
i +

N/2
∑

i=1

Jii + 2
N/2
∑

i<j

(2 Jij −Kij)

= 2
N/2
∑

i=1

ε
(0)
i +

N/2
∑

i,j

(2 Jij −Kij) (5.51)

We note that the restriction i < j is removed in the last expression in (5.51).

Equation (5.51) is valid only for electronic systems with closed-shell configurations in

which the total wavefunction is approximated as a single determinant of doubly occupied

spatial orbitals. For other types of configurations and wavefunctions one must use a different

expression.

Had one not taken the indistinguishability of electrons into account by requiring the

total wavefunction to be antisymmetric, the energy expression (5.51) would not contain the

exchange integrals Kij. The inclusion of the exchange integral Kij always lowers the total

energy in the case of singlet states described by a determinantal wavefunctions of doubly

occupied orbitals. The first summation term in Eq. (5.51) is always negative, since it

represents the energy of bound electrons in an independent-particle model. The coulombic

integrals represent electrostatic-repulsion energies and are always positive. The exchange

integrals, however, have no classical interpretation, and thus one cannot tell at first sight

just what the sign of the exchange integral is. As an example, let us consider the exchange

integral given by

K12 =

〈

ψ1(µ)ψ2(ν)

∣

∣

∣

∣

∣

1

rµν

∣

∣

∣

∣

∣

ψ2(µ)ψ1(ν)

〉

(5.52)

where ψ1 and ψ2 are two orthonormalized functions. We see that if the 1/rµν term is omitted

from K12, that is, if rµν = 1, the integral vanishes as a result of the orthogonality of ψ1 and

ψ2. In general, such an orthogonality arises because the regions of space where ψ∗
1(µ)ψ2(µ)
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is positive are just canceled by regions of space where it is negative. Now considering both

electrons, the integrand will be positive whenever both electrons are in regions of space

where ψ∗
1(µ)ψ2(µ) and ψ∗

2(ν)ψ1(ν) are of the same sign. However, if the electrons are in

regions of space where ψ∗
1(µ)ψ2(µ) and ψ∗

2(ν)ψ1(ν) are of opposite sign, the integrand will

be negative. Since, on the average, rµν is much smaller in the former case, then, compared to

the case rµν = 1, the positive portions of the integral with rµν 6= 1 contribute more and the

negative portions contribute less. This means, then, that the exchange integral must always

be positive. Since neglect of the antisymmetry principle would lead to an energy (5.51)

without the exchange term, we see that antisymmetrization of the closed-shell wavefunction

leads to a lowering of the total energy.

It is also possible to show that the exchange integral K12 is always smaller than the

corresponding coulombic integral J12. In fact, from Eq. (1.126) one has

0 ≤ Kij ≤ Jij (5.53)

D. Ground-State Energy of the Helium Atom

Let us calculate the ground-state energy of the helium atom using the independent-

particle model. The two electrons will be described by the orbitals (in atomic units)

ψ1s(1) = π−1/2Z3/2e−Zr1 ψ1s(2) = π−1/2Z3/2e−Zr2 (5.54)

The total wavefunction (normalized) is the simple product

ψ(1, 2) = ψ1s(1)ψ1s(2) =
Z3

π
e−Z(r1+r2) (5.55)

Since

εi = −
Z2

2n2
a.u. (5.56)

and Z = 2 for helium, the total electronic energy is

E = ε1 + ε2 = −
1

2
Z2 −

1

2
Z2 = −Z2 = −4.00 a.u. (5.57)

which is just eight times the energy of the hydrogen atom in its ground state. The ex-

perimental value of the ground state of the helium atom is −2.905 a.u. The fact that the

calculated energy is too low is partially accounted for on the basis of neglecting the energy
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due to electron repulsion. The latter is obviously a positive quantity, so that its inclusion

would raise the total energy.

One might argue that the use of Z = 2 cannot be strictly correct since each electron would

act as a sort of screen over the nucleus with respect to the other electron. Thus although the

electrons are not assumed to interact directly, they may be assumed to interact in the sense

of screening the nucleus. This factor may be taken into account by defining the modified

nuclear charge

η = Z − S (5.58)

where S is a parameter called the screening constant. The total electronic energy of the

helium atom is now

E = −η2 = −(Z − S)2 (5.59)

If we choose η = 2.9051/2 = 1.70, then S = 0.30, and the correct experimental energy is

obtained. However, it is easy to show that this device cannot be a proper way of avoiding

the explicit introduction of electron repulstion. The ionization potential of the helium atom

on the basis of this model is

1

2
η2 = 1.453 a.u. = 39.5 ev (5.60)

whereas the experimental value is very close to 0.9 a.u., or 24.5 ev. The fact that the ion-

ization potential turns out to be too high means that the model predicts an electron more

tightly bound than is actually the case; i.e., the amount of electron repulsion is underesti-

mated in spite of the agreement with the total energy. It is evident that the model must be

physically incorrect.

One could continue such calculations for heavier atoms, but one would find that even

though screening constants could be chosen empirically so as to reproduce the total electronic

energy, the ionization potentials would become worse and worse. For the lithium atom with

the configuration 1s22s, oue would need to use two different screening constants, one for the

1s electron and another for the 2s electron.

The quantitative aspects of the independent-particle model notwithstanding, one might

ask how the model fares in a strictly qualitative fashion; e.g., is it adequate for the devel-
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opment of a theory of the periodic table? According to Eq. (5.6) and the Pauli exclusion

principle, the order of energy levels should follow the hydrogen-atom order

1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f · · · (5.61)

Experimentally, one finds that this is not the case. For example, the configuration 1s22s2

leads to a lower energy than the configuration 1s22p2 does. It turns out that one effect of

the electron repulsions is to remove the degeneracies associated with the azimuthal quantum

number. The modified order of levels then becomes

1s < 2s < 2p < 3s < 3p < 3d < 4s < 4p < 4d < 4f · · · (5.62)

However, there is yet another effect due to electron repulsion which the above does not

account for. Experimentally it is found that the 1s22s22p63s23p64s configuration leads to a

lower total energy than the 1s22s22p63s23p63d configuration does, suggesting an apparent

reversal of the 3d and 4s orbital energies. In the following subsection we shall show that this

apparent reversal of certain orbital energies is the result of details of the electron repulsion.

E. The Effect of Electron Repulsions on Atomic Energies

Let us correct the independent-particle model of the helium atom in a different way, i.e.,

by retaining the independent-particle wavefunction (5.55) but using the physically correct

Hamiltonian

H = −
1

2
(∇2

1 + ∇2
2) − Z

(

1

r1
+

1

r2

)

+
1

r12
(5.63)

The total electronic energy is now approximated by taking the expectation value of the

correct Hamiltonian with respect to the wavefunction obtained from the physically incorrect

independent-particle model. The total electronic energy is now given by

< H >=< ψ(1, 2) |H |ψ(1, 2) >= −
1

2
< ψ1s(1)ψ1s(2) | ∇2

1 + ∇2
2 |ψ1s(1)ψ1s(2) >

−Z

〈

ψ1s(1)ψ1s(2)

∣

∣

∣

∣

∣

1

r1
+

1

r2

∣

∣

∣

∣

∣

ψ1s(1)ψ1s(2)

〉

+

〈

ψ1s(1)ψ1s(2)

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ1s(1)ψ1s(2)

〉

(5.64)
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The first two integrals represent just the energy of the independent-particle model, −Z2, but

we shall show formally just how the integrals are separately evaluated. For the kinetic-energy

integral we have

−
1

2
< ψ1s(1)ψ1s(2) | ∇2

1 + ∇2
2 |ψ1s(1)ψ1s(2) >= − < ψ1s(1) | ∇2

1 |ψ1s(1) >

= − < ψ1s(2) | ∇2
2 |ψ1s(2) >= −

Z3

π
< e−Zr | ∇2 | e−Zr >

= −
Z3

π

∫ ∞

0

∫ 2π

0

∫ π

0
e−Zr

(

1

r2

∂

∂r
r2 ∂

∂r
e−Zr

)

r2 sin θ dθ dφ dr

= −4Z3
∫ ∞

0
(Z2 r2 − 2Z r) e−2Zr dr = Z2 (5.65)

In the last step we have used the standard integral

∫ ∞

0
xn e−ax dx =

n!

an+1
a > 0 n = 0, 1, 2, · · · (5.66)

The nucleus-electron attraction integral is

−Z

〈

ψ1s(1)ψ1s(2)

∣

∣

∣

∣

∣

1

r1
+

1

r2

∣

∣

∣

∣

∣

ψ1s(1)ψ1s(2)

〉

= −2Z

〈

ψ1s(1)

∣

∣

∣

∣

∣

1

r1

∣

∣

∣

∣

∣

ψ1s(1)

〉

= −2Z

〈

ψ1s(2)

∣

∣

∣

∣

∣

1

r2

∣

∣

∣

∣

∣

ψ1s(2)

〉

= −
2Z4

π

〈

e−Zr

∣

∣

∣

∣

∣

1

r

∣

∣

∣

∣

∣

e−Zr

〉

= −
2Z4

π

∫ ∞

0

∫ 2π

0

∫ π

0
r e−2Zr sin θ dθ dφ dr = −8Z4

∫ ∞

0
r e−2Zr dr = −2Z2 (5.67)

Combining the results of Eqs. (5.65) and (5.67), we obtain the independent-particle model

energy Z2−2Z2 = −Z2. The remaining integral in Eq. (5.64) accounts for electron repulsion

and is a bit more difficult to evaluate since it contains the interelectronic coordinate r12.

Three somewhat different approaches are commonly used to evaluate this electron-repulsion

integral. One way is to interpret the integral in terms of the electrostatic repulsion of

two charged spheres whose charge distribution is represented by the 1s orbitals. A second

approach involves expansion of 1/r12 in terms of associated Legendre polynomials. A third

way is perhaps the most useful in general and is the method we shall illustrate here.

The volume element associated with the two-electron repulsion integral in terms of spher-

ical polar coordinates is

r2
1 sin θ1 dθ1 dφ1 dr1 r

2
2 sin θ2 dθ2 dφ2 dr2 (5.68)
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It is possible to express the coordinates of the second particle relative to those of the first

particle in terms of the interelectronic distance r12 and the angles χ and ω as shown in Fig.

V.1. One then obtains for the volume element

r2
1 sin θ1 dθ1 dφ1 dr1 r

2
12 sinω dω dχ dr12 (5.69)

Using the law of cosines, we obtain

r2
2 = r2

1 + r2
12 − 2 r1 r12 cosω (5.70)

If r1 and r12 are held fixed, then

r2 dr2 = r1 r12 sinω dω (5.71)

Substituting Eq. (5.71) into Eq. (5.69) for sinω dω, the volume element becomes

r1 sin θ1 dθ1 dφ1 dr1 r2 r12 dχ dr2 dr12 (5.72)

The last integral in Eq. (5.64) then becomes

I =

〈

ψ1s(1)ψ1s(2)

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ1s(1)ψ1s(2)

〉

=
Z6

π2

∫ 2π

0

∫ 2π

0

∫ π

0

∫ r1+r2

|r1−r2|

∫ ∞

0

∫ ∞

0
e−2 Z(r1+r2) r1 r2 dr1 dr2 dr12 sin θ1 dθ1 dφ1 dχ (5.73)

where we note that r−1
12 has been eliminated. Integrating over the three angles θ1, φ1, and

χ, we get

I = 8Z6
∫ ∞

0
e−2 Z r1 r1 dr1

∫ ∞

0
e−2 Z r2 r2 dr2

∫ r1+r2

|r1−r2|
dr12 (5.74)

Because of the presence of the lower limit |r1 − r2| on r12, the integration must be carried

out in two parts. When r2 > r1, the variables r1, r2, and r12 are defined in the intervals

r1 ≤ r2 ≤ ∞

0 ≤ r1 ≤ ∞

r2 − r1 ≤ r12 ≤ r1 + r2 (5.75)

When r1 > r2, we have

r2 ≤ r1 ≤ ∞

0 ≤ r2 ≤ ∞

r1 − r2 ≤ r12 ≤ r1 + r2 (5.76)
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The integrals occurring in each part of the integration are symmetrical in r1 and r2 and thus

are equal. The integral I then becomes

I = 16Z6
∫ ∞

0
e−2 Z r1 r1 dr1

∫ ∞

r1

e−2 Z r2 r2 dr2

∫ r1+r2

r2−r1

dr12 (5.77)

Integrating over r12 yields 2r1. Then integration over r2 by parts and use of Eq. (5.66) leads

to the final result

I =
5

8
Z (5.78)

The total energy of the helium atom is the sum of Eqs. (5.65), (5.67), and (5.78), namely,

< H >= Z2 − 2Z2 +
5

8
Z = −Z2 +

5

8
Z = −2.75 a.u. (5.79)

This is only about 0.15 a.u. higher than the experimental value of −2.905 a.u. In general,

one can write the total energy of any atom in the form

E =
N
∑

i=1

εi +
N
∑

i<j

〈

1

rij

〉

(5.80)

where the εi are obtained from the independent-particle model and the < r−1
ij > are com-

puted from the independent-particle wavefunction. This would give unsatisfactory results

from a quantitative standpoint but would lead to some qualitative results useful in the un-

derstanding of the periodic table. The form of Eq. (5.80) suggests that the apparent reversal

of the 3d and 4s levels is not due to a reversal in the relative energies of the 3d and 4s or-

bitals but rather to an increased electron repulsion in the configuration 1s22s22p63s23p63d

relative to the 1s22s22p63s23p64s configuration. Thus if we are to retain our original notion

of putting electrons into orbitals on by one and yet be able to predict relative electronic

energies correctly, we must replace the order of orbitals in (5.62) by the empirical order

1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p

< 6s < 4d < 5d < 6p < 7s (5.81)

We do not imply that this represents the atual order of orbital energies. The above sequence

is merely an empirical order which enables one to predict ground-state configurations of

atoms and thus to qualitatively account for the periodic table. Experimentally determined

orders of orbital energies may be obtained from x-ray terms values or from optical spectro-

scopic term values and are found to agree with the order given in Eq. (5.62). As an example,
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the ground-state configuration of the copper atom is consistent with 1s22s22p62s23p44s3d9,

but that of the ion Cu+ is 1s22s22p63s23p63d9; that is, it is the 4s electron which is lost in

ionization.

Unfortunately (5.81) does not provide a complete answer to the empirically determined

configuration order. For a detailed explanation of such deviations one needs to take electron

spin into account.

F. Scaling and the Virial Theorem

We shall now show how the virial theorem introduced in Sec. I.C, can be used to improve

the treatment of the helium atom discussed in the previous subsection. We shall also show

how the virial theorem can be used to analyze such a treatment in terms of errors in the

kinetic and potential energies taken separately.

For a system of electrons and nuclei in which the potential energy is of coulombic form,

the virial theorem states that the exact wavefunction leads to

< T >= −
1

2
< V > (5.82)

Introducing the fact that the total energy < H > is conserved, we may rewrite the above as

< H >= − < T >=
1

2
< V > (5.83)

Let us consider a system of q particles (N electrons and p nuclei) having charges e1, e2, · · · , eq;

masses m1, m2, · · · , mq; position vectors v1,v2, · · · ,vq; and a nonrelativistic Hamiltonian

operator of the general form (h̄ = 1)

H = −
1

2

q
∑

i=1

∇2
i

mi

+
q
∑

i<j

eiej

rij

= T + V (5.84)

Now let a stationary state of the system be described by the Schrödinger

H Ψ = E Ψ (5.85)

where Ψ is the exact wavefunction and E is the exact energy. We now let Φ(v), an approx-

imation to Ψ, be given by

Φ(v) = Φ(v1,v2, · · · ,vq) (5.86)
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which leads to an approximate energy εi such that the virial theorem (5.83) is not necessarily

satisfied. We shall now show how we can ensure that such a function always leads to

satisfaction of the virial theorem. Let us replace Φ(v) by a new function in which each

position vector vi is multiplied by some arbitrary scale factor η. This means that each

coordinate xi, yi, and zi in vi is multiplied by a scale factor. The new function is called a

scaled wavefunction and may be written

Φη = η3/2q Φ(ηv) (5.87)

such that for η = 1 this reduces to Eq. (5.86). The factor η3/2q merely ensures that Φη is

normalized whenever Φ(v) is normalized. The action of the scale factor may be thought of

as a transformation which uniformly stretches all the coordinates from the origin by a factor

η.

Now let < T >(η) and < V >(η) represent the expectation values of the kinetic-energy

and potential-energy operators, respectively, with respect to the scaled wavefunction (5.87).

For the kinetic energy we get

< T >(η) =< Φη |T |Φη > (5.88)

where Φη is assumed to be normalized. We now introduce the change of notation

η3 vi = v′
i (5.89)

We note that

dv = dv1 dv2 · · ·dvq = dx1 dy1 dz1 · · ·dxq dyq dzq (5.90)

so that ηxi = x′i, ηyi = y′i, and ηzi = z′i. Equation (5.88) then becomes

< T >(η) =

〈

Φ(v′)

∣

∣

∣

∣

∣

−
1

2
η2

q
∑

i=1

(∇′
i)

2

mi

∣

∣

∣

∣

∣

Φ(v′)

〉

= η2 < Φ(v′) |T′ |Φ(v′) >= η2 < T >(1) (5.91)

This result follows from the fact that all functions and operators in v′ have exactly the same

form as those in vi, that is, v′ is a dummy variable, and the two are therefore equivalent.

The quantity < T >(1) is the expectation value of the kinetic-energy operator with respect

to the unscaled wavefunction Φ(v). Similarly one can show that

< V >(η) = η < V >(1) (5.92)
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The energy associated with the scaled wavefunction, which we shall denote by εη is now

given in terms of the expectation values of the unscaled function (η = 1) as

< H >= εη = η2 < T >(1) +η < V(1) (5.93)

We now wish to choose the scale function η such that the quantity |E − εη| is a minimum.

Since the exact energy E must be independent of η, this leads to

∂εη
∂η

= 2 η < T >(1) + < V >(1) = 0 (5.94)

Solving for the scale factor gives

η = −
1

2

< V >(1)

< T >(1)
(5.95)

Substituting Eq. (5.95) into (5.93), we see that

|E − εη|min =

∣

∣

∣

∣

∣

E +
[< V >(1)]2

4 < T >(1)

∣

∣

∣

∣

∣

(5.96)

If Φ(v) happens to be the exact wavefunction, then η = 1, and Eq. (5.95) leads to the virial

theorem (5.82). For any scaled wavefunction Φη in which η is given by (5.95), substitution

of this value of η into Eqs. (5.91) and (5.92) leads to

< T >(η) = −
1

2
< V >(η) (5.97)

which is a form of the virial theorem first derived by Fock. This equation states that the

virial equation can always be satisfied by a proper choice of scale factor; i.e., we can always

stretch the position vectors vi by some amount η such that the average value of the kinetic

energy is equal to one-half the negative of the average value of the potential energy.

Let us now consider the model in which the independent-particle wavefunction was used

along with the correct nonrelativistic Hamiltonian. The average values of the kinetic and

potential energies were

< T >(Z) = Z2 < V >(Z) = −2Z2 +
5

8
Z (5.98)

which clearly do not satisfy the virial theorem. If we use the scaled wavefuncion

ψη(1, 2) =
η3

π
e−η(r1+r2) (5.99)

the kinetic and potential enrgies turn out to be

< T >(η) = η2 < V >(η) = −2 η Z +
5

8
η (5.100)
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The value of η which will lead to satisfaction of the virial theorem is obtained by setting

η = 1 in Eq. (5.100) and using Eq. (5.95), namely,

η = −
1

2

< V >(1)

< T >(1)
=

1

2
(4 −

5

8
) =

27

16
= 1.69 (5.101)

Substituting this value of η into Eqs. (5.100) and adding to get the total energy, we find

εη = −2.85 a.u. (5.102)

which is an improvement of 0.1 a.u. over the previous result using Z = η = 2. This

represents the closest to the exact energy one can get using a wavefunction of the form of

Eq. (5.55).

The value of η may be physically interpreted as representing an effective nuclear charge,

just as used in the independent-particle model. In the present case, however, the interpreta-

tion is based on the correct Hamiltonian. The ionization potential of the helium atom based

on the properly scaled wavefunction is now given by

−[−2.85 − (−
1

2
Z2)] = 0.85 a.u. (5.103)

This result is low by only 0.05 a.u.

Let us now define the minimum error resulting from the wavefunction (5.55) by

∆E = E − εη = −0.05 a.u. (5.104)

Using the virial theorem in the form (5.83), we see that the errors in the kinetic and potential

energies are

∆T = 0.05 a.u. ∆V = −0.10 a.u. (5.105)

This means that the method underestimates the kinetic energy by 0.05 a.u. This is due to

the fact that we have assumed that the electrons undergo simpler motions than they do in

actuality; i.e., the electrons resort to more complicated motions in avoiding each other than

is implicit in the wavefunction (5.99). Similarly, the method overestimates the potential

energy, i.e., the electrons do not repel each other as strongly as the wavefunction (5.99)

implies. From the low value of the ionization potential in (5.103), we see that this is indeed

the case.
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G. Scaling and the Virial Theorem for Diatomic Molecules

We now extend the discussion of the virial theorem and scaling of the previous subsection

to diatomic molecules in the Born-Oppenheimer approximation, i.e., for fixed nuclei. If the

nuclei are fixed to a distance R, the external force holding the nuclei in this position is given

by

F = − grad E(R) = −
dE(R)

dR
(5.106)

where E(R) is the total energy at the internuclear separation R. The virial theorem then

becomes

2 < T >= − < V > −R
dE(R)

dR
(5.107)

where < T > is the average kinetic energy of the electrons (the nuclei are stationary and

have no kinetic energy) and < V > is the average electrostatic energy.

When R = Re or ∞, the last term in Eq. (5.107) vanishes, and we obtain the ordinary

virial theorem (5.82). We can thus apply the ordinary virial theorem to the variational or

perturbation calculation of Sec. II.D. The expectation value of the kinetic energy in the

ground state, using the same notation as in Sec. II.D, is

< T >=< ψ1 | −
1

2
∇2 |ψ1 >= [2 (1 + ∆ab)]

−1 < φa + φb | −
1

2
∇2 |φa + φb >

= (1 + ∆ab)
−1 [< φa | −

1

2
∇2 |φa > + < φa | −

1

2
∇2 |φb >] (5.108)

Using the integral values (in atomic units)

< φa | −
1

2
∇2 |φa >=

1

2
(5.109)

< φa | −
1

2
∇2 |φb >= −

1

2
[∆ab − 2 (1 +R) e−R] (5.110)

and Eq. (2.69) for ∆ab, one obtains (at R = 2.50 a.u.)

< T >= 0.3831 a.u. (5.111)

Since the total energy at R = 2.50 a.u. is −0.5654 a.u., the average potential energy is

< V >= −0.5654 − 0.3831 = −0.9485 a.u. (5.112)
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Clearly, the virial theorem is not satisfied, since

< T >

−1
2
< V >

=
0.3831

0.4743
= 0.8077 (5.113)

The calculated dissociation energy De can be written

De = −(∆T + ∆V) = 0.0654 a.u. (5.114)

where ∆T and ∆V are the changes in kinetic and potential energies, respectively, in going

from a hydrogen atom and a bare proton to H+
2 , that is,

∆T =< T > −0.5000 = −0.1169 a.u. (5.115)

∆V =< V > −(−1.0000) = 0.0515 a.u. (5.116)

Equations (5.115) and (5.116) imply that the process of forming H+
2 involves a decrease in

the kinetic energy and an increase in the potential energy. However, exact solution led to a

total energy of −0.6026 a.u., so that < T >= 0.6026 a.u., and < V >= −1.2052 a.u. Thus,

the true values of ∆T and ∆V are given by

∆T = 0.6026 − 0.5000 = 0.1026 a.u. (5.117)

∆V = −1.2052 − (−1.0000) = −0.2052 a.u. (5.118)

which shows just the opposite behavior to that predicted from the variational or perturba-

tion calculation. We therefore conclude that it is dangerous to interpret the perturbation

calculation too literally in terms of the chemical bonding, since the treatment partitions the

total energy incorrectly.

We now discuss the role of scaling when not all atoms are in their equilibrium positions.

Let us represent the unscaled and scaled wavefunctions of an N - electron diatomic molecule

by

φ(τ, R) = φ(τ1, τ2, · · · , τN , R) (5.119)

φη = η3N/2 φ(ητ, ρ) (5.120)

where ρ = ηR. Thus the internuclear distance R is stretched by a scale factor in the same

way as the electron position vectors. Instead of Eqs. (5.91) and (5.92), we now obtain

< T >(η,R) =< φη |T |φη >= η2 < T >(1,ρ) (5.121)
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< V >(η,R) =< φη |V |φη >= η < V >(1,ρ) (5.122)

The total energy associated with the scaled wavefunction is

E(η, R) = η2 < T >(1,ρ) +η < V >(1,ρ) (5.123)

Letting R be a fixed parameter and applying the variation principle with η as a variation

parameter, we get

∂E(η, R)

∂η

= 2 η < T >(1,ρ) + < V >(1,ρ) +η2R
∂ < T(1,ρ)

∂ρ
+ η R

∂ < V >(1,ρ)

∂ρ
= 0 (5.124)

The last two terms in the above arise because the expectation values depend on η through

ρ. The form of these terms arises when we employ the substitution
(

∂ρ

∂η

)

R

= R (5.125)

When φ(τ, R) is the exact solution, then η = 1, and ρ = R, so that Eq. (5.124) reduces to

2 < T >(1,R) + < V >(1,R) +R
dE(1, R)

dR
= 0 (5.126)

which is just the virial theorem (5.107). The last term in Eq. (5.126) arises from Eq. (5.124)

when η = 1 and ρ = R, since then E(1, R) is the exact energy and does not depend on η.

The last two terms in Eq. (5.124) then become

R
d

dR
(< T >(1,R) + < V >(1,R) = R

dE(1, R)

dR
(5.127)

If one uses the relationship (5.123) for η = 1 and ρ = R along with the virial theorem

(5.126), one can obtain the two useful relationships

< T >(1,R) = −E(1, R) − R
dE(1, R)

dR
(5.128)

< V >(1,R) = 2E(1, R) +R
dE(1, R)

dR
(5.129)

which are analogous to Eq. (5.83). These relationships allow one to calculate potential

energies and kinetic energies individually and in a unique manner if the total energy is

known as a function of R. Figure V.2 is a plot of total kinetic and potential energies for a

diatomic molecule whose total energy is closely approximated by the Morse function

E(R) = De (1 − e−β(R−R0))2 (5.130)
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Next we investigate the case when φ(τ, R) is not the exact wavefunction, so that the virial

theorem is not automatically satisfied. We let ρ = ηR, as before, but now we regard ρ as an

auxiliary basic parameter in terms of which R and η may be expressed, that is,

R = R(ρ) η = η(ρ) (5.131)

Solving Eq. (5.124) for η, we obtain

η = η(ρ) = −
< V >(1,ρ) +ρVρ

2 < T >(1,ρ) +ρTρ
(5.132)

where we introduce the convenient notation

Vρ =
∂ < V >(1,ρ)

∂ρ
Tρ =

∂ < T >(1,ρ)

∂ρ
(5.133)

The internuclear distance R is given in terms of ρ as

R = ρ η−1 = ρ

(

−
2 < T >(1,ρ) +ρTρ

< V >(1,ρ) +ρVρ

)

(5.134)
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From Eq. (5.134) we can obtain the inverse relationship ρ = ρ(R), so that η and R can

be related through Eq. (5.132) as well as through ρ = η R. This inverse relationship is most

readily found by using Eq. (5.134) to plot a graph of R versus ρ.

Multiplying Eq. (5.124) by η, we obtain

2 η2 < T >(1,ρ) +η < V >(1,ρ) +R (η3 Tρ + η2 Vρ) = 0 (5.135)

Now using Eqs. (5.121) and (5.122), we see that the first two terms in (5.135) are

2 < T >(η,R) + < V >(η,R) (5.136)

From Eq. (5.123) we see that the term in parentheses in Eq. (5.135) is

η

(

∂E(η, R)

∂ρ

)

η

=

(

∂E(η, R)

∂R

)

η

(5.137)

Since E(η, R) depends upon η and R, we can write

dE(η, R)

dR
=

(

∂E(η, R)

∂R

)

η

+

(

∂E(η, R)

∂η

)

R

dη

dR
(5.138)

But since ηR = ρ, the second term in Eq. (5.138) vanishes, and we get

dE(η, R)

dR
=

(

∂E(η, R)

∂R

)

η

(5.139)

Combining Eqs. (5.136) and (5.139), Eq. (5.135) can be rewritten as

2 < T >(η,R) + < V >(η,R) +R
dE(η, R)

dR
= 0 (5.140)

which shows that the trial wavefunction can always be made to satisfy the virial theoremm

at any internuclear separation R provided η and R are related by Eq. (5.132) and ρ = ηR.

If we are interested only in obtaining the minimum energy (for which R = Re), then from

Eqs. (5.135) and (5.139)

dE(η, R)

dR
= 0 = η3 Tρ + η2 Vρ (5.141)

Using the above result in Eq. (5.124) (after dividing by η) and solving for η, we obtain

η = −
< V >(1,ρ)

2 < T >(1,ρ)
(5.142)

which is analogous to Eq. (5.95). The value of η for the minimum in the energy curve

(which we shall call ηe) may be obtained from (5.142) by finding the value of ρ(= ρe) which
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minimizes E(η, R). From Eqs. (5.121) and (5.122) it follows that the energy can be written

as

E(η, R) = η2 < T >(1,ρ) +η < V >(1,ρ) (5.143)

and from Eq. (5.142) it is obtained

E(η, R) = −
(< V >(1,ρ))2

4 < T >(1,ρ)
(5.144)

which is analogous to Eq. (5.96). An alternative and equivalent procedure is to obtain ρe

by minimizing Eq. (5.144). From this ρe the minimum energy and ηe can be computed by

using Eqs. (5.142) and (5.141), respectively. The internuclear distance at which E(η, R) is

a minimum is then given by Re = ρeη
−1
e .

As an example of the method just discussed, we consider the simple MO treatment of

H+
2 obtained by scaling the wavefunction. The results for the equilibrium separation can be

obtained as follows. Using Eq. (5.142), we obtain the scale factor

ηe =
0.9485

2 (0.3831)
= 1.238 (5.145)

where the values given by Eqs. (5.111) and (5.112) have been used, i.e., this value of ηe is

valid for ρe = 2.50 a.u. Thus Re = ρe/ηe = 2.50/1.24 = 2.02 a.u. The minimum energy

is given by Eq. (5.144) as −0.5871 a.u. and leads to a dissociation energy of [−0.5 −

(−0.5871)] = 0.0871 a.u. (2.37 ev), over 0.6 ev higher than that found from the unscaled

function [Eq. (5.114)].

To close this subsection it remains to calculate the kinetic energy operator matrix elements

given in Eqs. (5.109) and (5.110). Using the atomic functions given in Eq. (2.50) and the

elliptical coordinates introduced in Sec. II.D, we write

< φa | −
1

2
∇2 |φa >= −

1

2 π
< e−(µ+ν) R/2 | ∇2 | e−(µ+ν) R/2 > (5.146)

that is,

< φa | −
1

2
∇2 |φa >= −

1

2 π

∫ ∞

1
dµ
∫ 1

−1
dν
∫ 2π

0
dϕ e−(µ+ν) R/2 ∇2 e−(µ+ν) R/2 dτ (5.147)

Application of the Laplacian operator given in Eq. (3.15) to the exponential function

e−(µ+ν)R/2 yields

∇2 e−(µ+ν) R/2 =
4

R2 (µ2 − ν2)

[

R2

4
(µ2 − ν2) +R (µ− ν)

]

e−(µ+ν) R/2 (5.148)
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Substitution of this expression in Eq. (5.147) yields, after integrating over ϕ,

< φa | −
1

2
∇2 |φa >= −

R

2

∫ 1

−1
dν
∫ ∞

1
dµ

[

R2

4
(µ2 − ν2) +R (µ− ν)

]

e−(µ+ν) R (5.149)

The integral over µ, with the help of Eq. (2.68), can be expressed as

∫ ∞

1
dµ

[

R2

4
(µ2 − ν2) +R (ν − µ)

]

e−µ R

=
R2

4
A2(R) −

R2

4
ν2 A0(R) +Rν A0(R) −RA1(R) (5.150)

Inserting this expression in Eq. (5.149), the resulting integral over ν is calculated from Eq.

(2.71). After some cancelations it yields

∫ 1

−1
dν

[

R2

4
A2(R) −

R2

4
ν2A0(R) +Rν A0(R) − RA1(R)

]

e−ν R

=
R2

4
(1 − C)A0(R)A2(−R) +R (1 + C)A0(R)A1(−R) (5.151)

where C is an operator that interchanges the sign of the argument in the product functions

Ai(R)Aj(−R) (i 6= j = 0, 1, 2), i.e., CAi(R)Aj(−R) = Ai(−R)Aj(R). Using the explicit

expressions of these Ai(R) as given in Eq. (2.68) one gets Eq. (5.109). The off diagonal

matrix element (5.110) can be obtained similarly.

H. Forces in Molecules: The Generalized Hellmann-Feynman Theorem

The Born-Oppenheimer approximation states that one can view the nuclear motions of

a molecule as occurring in a potential field E(R) provided by the electrons. This, then,

implies that the forces acting upon the nuclei are expressible as gradients of E(R). In the

following we shall investigate the calculation of such forces from both the exact wavefunction

and approximate wavefunctions.

Let ξ = ξ(α) be an arbitrary normalizable wavefunction which may or may not be an

exact eigenfunction of the system Hamiltonian H = H(α). We assume that H is the electronic

Hamiltonian of a molecule in the nonrelativistic and Born-Oppenheimer approximation, and

we let α represent some parameter present in H; for example, α may be a nuclear coordinate.

The energy asociated with the function ξ is given by

E =
< ξ |H | ξ >

< ξ | ξ >
(5.152)
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Differentiating E with respect to the parameter α and rearranging, we obtain

dE

dα
=< ξ | ξ >−1

(

2

〈

∂ξ

∂α

∣

∣

∣

∣

∣

H − E

∣

∣

∣

∣

∣

ξ

〉

+

〈

ξ

∣

∣

∣

∣

∣

∂H

∂α

∣

∣

∣

∣

∣

ξ

〉)

(5.153)

where it is assumed that ξ is a real function. Now in the special case that ξ is the exact

wavefunction ψ satisfying Hψ = Eψ and < ψ|ψ >= 1, the above reduces to

dE

dα
=

〈

∂H

∂α

〉 (

≡

〈

ψ

∣

∣

∣

∣

∣

∂H

∂α

∣

∣

∣

∣

∣

ψ

〉)

(5.154)

This relationship will be referred to as the generalized Hellmann-Feynman theorem. The

theorem states that the slope of the curve E(α) versus α can be calculated as the expectation

value of the operator ∂H/∂α. The form of the theorem is reminiscent of perturbation theory

in that changes in the energy of a system are related to changes in the Hamiltonian.

For a given choice of the parameter α, the physical consequences of the generalized

Hellmann-Feynman theorem depend upon which electronic coordinates are held stationary

during the differentiation. To illustrate this very important fact we consider the special

case of a diatomic molecule AB with an internuclear separation R. We then choose the

parameter α as the internuclear distance R.

First, we consider fixed electron coordinates measured along a space-fixed axis, viz, mea-

sured along the molecular axis. For simplicity we let the nucleus B serve as the origin of

the electronic coordinates (see Fig.III.1). The µth electron can then be described in terms

of rAµ, θAµ, and ϕAµ. Since T is independent of R, we can write
〈

∂H

∂R

〉

=

〈

∂V

∂R

〉

(5.155)

The potential-energy operator is

V = −
∑

µ

(

ZA

rAµ
+
ZB

rBµ

)

+
∑

µ<ν

1

rµν
+
ZAZB

R
(5.156)

Since rAµ and rµν do not depend upon R, we obtain
〈

∂V

∂R

〉

= −ZB

(

ZA

R2
+

〈

ψ

∣

∣

∣

∣

∣

∑

µ

∂r−1
Bµ

∂R

∣

∣

∣

∣

∣

ψ

〉)

= −ZB

(

ZA

R2
+
∫

γ
∂r−1

B

∂R
dv1

)

(5.157)

where γ is the first-order density matrix of the system. We can then write

dE

dR
= −ZB

(

ZA

R2
+
∫

γ
∂r−1

B

∂R
dv1

)

(5.158)

Equation (5.158) is usually called the electrostatic theorem. The slope dE/dR is just the

negative of the z component of the force acting upon the nucleus B (the z direction is chosen
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to coincide with the internuclear axis). A similar expression can be written down for the z

component of the force acting upon nucleus A. The electrostatic theorem states that forces

on nuclei can be calculated by classical electrostatics provided one describes the electronic

distribution by the correct quantum-mechanical distribution function.
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Next, we consider scaled electronic coordinates, i.e., any coordinates which have the

angles θAµ and θBµ invariant under the rotation d/dR (see Fig. V.3). The confocal elliptical

coordinates of Sec. II.D are just such coordinates. The use of scaled electronic coordinates

is equivalent to using 1/R as a scale factor. By analogy to Eqs. (5.121) and (5.122) we now

obtain

T = T(η, R) =
1

R2
T(1, 1) (5.159)

V = V(η, R) =
1

R
V(1, 1) (5.160)

η =
1

R
(5.161)

Thus

∂T

∂R
= −

2

R3
T(1, 1) = −

2

R
T (5.162)

∂V

∂R
= −

1

R2
V(1, 1) = −

1

R
V (5.163)

∂H

∂R
= −

1

R
(2 T + V) (5.164)

The slope dE/dr then becomes

dE

dR
= −

1

R
(2 < T > + < V >) (5.165)

which is just the virial theorem (5.107). Equation (5.165) represents another way of calcu-

lating the force on a nucleus.

Let us now return to Eq. 5.154) and consider the case when ξ is not the exact wavefunc-

tion ψ. In general, the generalized Hellmann-Feynman theorem (5.154) no longer follows.

Nevertheless, we may ask what it means to say that there exist approximate wavefunctions

ξ = ξ(α) which satisfy the generalized Hellmann-Feynman theorem, i.e., which satisfy

dE

dα
=

〈

∂H

∂α

〉 (

≡

〈

ξ

∣

∣

∣

∣

∣

∂H

∂α

∣

∣

∣

∣

∣

ξ

〉)

(5.166)

or, alternatively, which satisfy
〈

∂ξ

∂α

∣

∣

∣

∣

∣

H − E

∣

∣

∣

∣

∣

ξ

〉

= 0 (5.167)
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The meaning of the statement that a given approximate wavefunction ξ(α) satisfies (5.166) is

that the force calculated from the expectation value of ∂H/∂α agrees with the force obtained

from the slope of the approximate energy E(α) as a function of α. In general, one will not

obtain such an agreement; furthermore, neither the force dE/dα nor the force < ∂H/∂α >

will agree with the exact force calculated from the exact wavefunction. One would expect the

force obtained from dE/dα to be closer to the true force dE/dα than the force obtained from

< ξ|∂H/∂α|ξ >, since the former contains only second-order errors in the energy, whereas

the latter may contain first-order errors. Nevertheless, it is much easier to evaluate forces

from the latter. For this reason it is convenient to investigate the conditions under which

Eq. (5.167) is satisfied, so that we can use < ∂H/∂α > to compute approximate forces which

are equivalent to those obtained from dE/dα. To carry out such an analysis it is convenient

to define the functional

E [α, λ] =< ξ(λ) |H(α) | ξ(λ) > (5.168)

such that E [α, α] = E , the approximate energy defined by (5.152). The total differential of

E [α, λ] is

dE [α, λ] =
∂E [α, λ]

∂α
dα+

∂E [α, λ]

∂λ
dλ (5.169)

Dividing the above by dα and setting λ = α, we get

dE

dα
=

∂E [α, λ]

∂α

∣

∣

∣

∣

∣

λ=α

+
∂E [α, λ]

∂λ

∣

∣

∣

∣

∣

λ=α

(5.170)

where it is understood that we set λ = α after carrying out the partial differentiation. We

see at once that

∂E [α, λ]

∂α

∣

∣

∣

∣

∣

λ=α

=

〈

ξ

∣

∣

∣

∣

∣

∂H

∂α

∣

∣

∣

∣

∣

ξ

〉

(5.171)

so that ξ satisfies the Hellmann-Feynman theorem if

∂E [α, λ]

∂λ

∣

∣

∣

∣

∣

λ=α

= 0 (5.172)

Equation (5.172) states that of all possible approximate wavefunctions ξλ, the best (by the

variation criterion) is ξ(α). However, of greater interest is the case when the Hellmann-

Feynman theorem is satisfied for λ 6= α. We choose some variational parameter λ = λ(α)

and associate H(α) with the wavefunction ξ[λ(α)] such that

E = E [α, λ(α)] (5.173)
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Dividing (5.169) by dα but now setting λ = λ(α), we obtain

dE

dα
=

∂E [α, λ]

dα

∣

∣

∣

∣

∣

λ=λ(α)

+
∂E [α, λ]

∂λ

∣

∣

∣

∣

∣

λ=λ(α)

dλ(α)

dα
(5.174)

Since

∂H[α, λ]

∂α

∣

∣

∣

∣

∣

λ=λ(α)

=

〈

ξ

∣

∣

∣

∣

∣

∂H

α

∣

∣

∣

∣

∣

ξ

〉

(5.175)

dλ(α)

dα
6= 0 (5.176)

we see that the Hellmann-Ferynman theorem is satisfied if

∂H[α, λ]

∂λ

∣

∣

∣

∣

∣

λ=λ(α)

= 0 (5.177)

i.e., an approximate wafefunction ξ will satisfy the Hellmann-Feynman theorem if one in-

cludes a variational parameter λ = λ(α). The specific choice of λ depends upon the coordi-

nates which are held fixed during the variation. In the case of diatomic molecules, if fixed

electronic coordinates are used and the wavefunction is constructed from AO’s, one must

choose a variation parameter ζ = ζ(R) which describes a new coordinate origin shifted by

the amount ζ from one of the nuclei (see Fig. V.4). AO’s defined with reference to such an

off-nuclear origin are called floating orbitals. Use of the floating parameter ζ as a variational

parameter leads to an approximate wavefunction ξ which satisfies the electrostatic theorem

(5.158); i.e., the slope of the curve of E(R) versus R can be calculated from < ∂V/∂R >.

When scaled coordinates are used, one must choose λ(α) as a scale factor η = η(R). Use

of this parameter as a variationa parameter leads to an approximate wavefunction ξ which

satisfies the virial theorem, a situation discussed in the previous Subsection. It is important

to realize that unless both ζ = ζ(R) and η = η(R) are used as variational parameters,

the force calculated by the electrostatic theorem will not necessarily agree with the force

calculated from the virial theorem. If the approximate wavefunction is fully optimized, i.e.,

if the energy is minimized with respect to all possible variational parameters, not only is the

Hellmann-Feynman theorem satisfied, but also forces calculated by the electrostatic theorem

and the virial theorem agree. Such a situation obtains for exact Hartree-Fock wavefunctions.

However, this would no longer be true if the Hartree-Fock calculation were improved (from

the point of view of energy) by an incomplete CI treatment, in spite of the fact that such a

treatment lowers the energy.
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VI. SPIN-ADAPTED CONFIGURATIONS

A. Preliminary Considerations

We have described the spin of a single electron by the two spin functions α(ω) ≡ α and

β(ω) ≡ β. In this Sect. we will discuss spin in more detail and consider the spin states

of many-electron systems. We will describe restricted Slater determinants that are formed

from spinorbitals whose spatial partis are restricted to be the same for α and β spins (i.e.,

{φi} = {ψiα, ψiβ}). Restricted determinants, except in special cases, are not eigenfunctions

of the total electron spin operator. However, by taking appropriate linear combinations of

such determinants we can form spin-adapted configurations, which are proper eigenfunctions.

Finally, we will describe unrestricted determinants, which are formed from spinorbitals that

have different spatial parts for different spins (i.e., {φi} = {ψα
i α, ψ

β
i β}).

In the usual nonrelativistic treatment, such as considered here, the Hamiltonian does not

contain any spin coordinates and hence both S2 and Sz commute with the Hamiltonian

[H, S2] = 0 = [H, Sz] (6.1)

Consequently, the exact eigenfunctions of the Hamiltonian are also eigenfunctions of the two

spin operators

S2 |Φ >= S (S + 1) |Φ > (6.2)

Sz |Φ >= MS |Φ > (6.3)

where S andMS are the spin quantum numbers describing the total spin and its z component

of an N -electron |Φ >. States with S = 0, 1/2, 1, 3/2, · · · have multiplicity 2S + 1 =

1, 2, 3, 4, · · · and are called singlets, doublets, triplets, quartets, etc. Approximate solutions of

the Schrödinger equation are not necessarily pure spin states. However, it is often convenient

to constrain approximate wavefunctions to be pure singlets, doublets, triplets, etc.

Any single determinant is an eigenfunction of Sz. In particular

Sz |φi φj · · ·φk >=
1

2
(Nα −Nβ) |φi φj · · ·φk >

= MS |φi φj · · ·φk > (6.4)

where Nα is the number of spinorbitals with α spin and Nβ is the number of spinorbitals

with β spin. However, single determinants are not necessarily eigenfunctions of S2. As we
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will discuss in the next Subsection, by combining a small number of single determinants it

is possible to form spin-adapted configurations that are correct eigenfunctions of S2.

B. Restricted Determinants and Spin-Adapted Configurations

As we have seen, given a set of K orthonormal spatial orbitals {ψi | i = 1, 2, · · · , K} we

can form a set of 2K spinorbitals {φi | i = 1, 2, · · · , 2K} by multiplying each spatial orbital

by either the α or β spin function

φ2i−1(x) = ψi(r)α(ω)

i = 1, 2, · · · , K

φ2i(x) = ψi(r) β(ω)

Such spinorbitals are called restricted spinorbitals and determinants formed from them

are restricted determinants. In such a determinant a given spatial orbital ψi can be occupied

either by a single electron (spin up or down) or by two electrons (one with up and the other

with spin down). It is convenient to classify types of restricted determinants according to

the number of spatial orbitals that are singly occupied. A determinant in which each spatial

orbital is doubly occupied is called a closed-shell determinant (see Fig. VI.1). An open shell

referes to a spatial orbital that contains a single electron. One refers to determinants by the

number of open shells they contain.
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...

...

· · · · · · · · · ψ6

· · · · · · · · · ψ5

· · · ↑↓ · · · ψ4

· · · · · · · · · ψ3

· · · ↑↓ · · · ψ2

· · · ↑↓ · · · ψ1

| 1Φ >= |φ1 φ1 φ2 φ2 φ4 φ4 >

Fig.V I.1 A singlet closed − shell determinant

All the electron spins are paired in a closed-shell determinant, and it is not surprising that a

closed-shell determinant is a pure singlet. That is, it is an eigenfunction of S2 with eigenvalue

zero,

S2 |φi φi φj φj · · · >= 0 (0 + 1) |φi φi φj φj · · · >= 0 (6.5)

Let us consider the construction of a wavefunction of a two-electron system in which

the two spinorbitals in the Hartree product are to be fabricated from two different space

orbitals ψ1 and ψ2 which are assumed to be separately normalized and mutually orthogonal;

for example, in the case of a two-electron atom, ψ1 and ψ2 may be two different hydrogenlike

atomic orbitals. Since we have two possible spin functions, α and β, we can form the four

different spinorbitals ψ1α, ψ1β, ψ2α, and ψ2β. In general, when one has 2N spinorbitals to

be used n at a time (n ≤ 2N), the total number of different combinations is given by

η =

(

2N

n

)

=
(2N)!

n! (2N − n)!
(6.6)

In the two-electron function we have four spinorbitals to be used two at a time, so that we

can obtain six different simple products, namely,

ΦHP αα
12 = ψ1(1)α(1)ψ2(2)α(2) 1

Φ
HP ββ
12 = ψ1(1) β(1)ψ2(2) β(2) − 1
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Φ
HP αβ
12 = ψ1(1)α(1)ψ2(2) β(2) 0

Φ
HP βα
12 = ψ1(1) β(1)ψ2(2)α(2) 0

Φ
HP αβ
11 = ψ1(1)α(1)ψ1(2) β(2) 0

Φ
HP αβ
22 = ψ2(1)α(1)ψ2(2) β(2) 0 (6.7)

Products such as ΦHP αα
11 are excluded on the basis of the exclusion principle. The numbers to

the right of each product function signify the Sz eigenvalues, i.e., MS. These eigenvalues are

readily verified by the direct application of Sz to a particular function using the appropriate

relations, for example

Sz ΦHP αα
12 = (Sz1 + Sz2)ψ1(1)α(1)ψ2(2)α(2)

= ψ1(1) [ Sz1 α(1) ]ψ2(2)α(2) + ψ1(1)α(1)ψ2(2) [ Sz2 α(2) ]

=
1

2
ψ1(1)α(1)ψ2(2)α(2) +

1

2
ψ1(1)α(1)ψ2(2)α(2) = ΦHP αα

12 (6.8)

i.e., the eigenvalue MS of ΦHP αα
12 is 1. In general, the MS eigenvalue of a product wavefunc-

tion (antisymmetrized or not) is given by the simple expression

MS =
1

2
(Nα −Nβ) (6.9)

The product functions (6.7), as they now stand, are not antisymmetric as required by the

Pauli principle. For example, we could just as well represent the first function in (6.7) by

ΦHP αα
21 = ψ2(1)α(1)ψ1(2)α(2) (6.10)

where the coordinates of the two electrons have been interchanged. Now consider the func-

tion obtained by taking the difference of ΦHP αα
12 and ΦHP αα

21 , namely,

92



2−1/2 (ΦHP αα
12 − ΦHP αα

21 ) = 2−1/2 [ψ1(1)α(1)ψ2(2)α(2) − ψ2(1)α(1)ψ1(2)α(2)]

= 2−1/2 [ψ1(1)ψ2(2) − ψ2(1)ψ1(2)]α(1)α(2)

= −2−1/2 (ΦHP αα
21 − ΦHP αα

12 ) (6.11)

where 2−1/2 is the normalization factor. It is evident that the function (6.11) is antisym-

metric, as a result, in this case, of the spatial functions. It is readily verified that the

antisymmetric function (6.11) is also representable by the determinant

Φαα
12 =

1

2!1/2
Det

(

ψ1(1)α(1) ψ2(1)α(1)

ψ1(2)α(2) ψ2(2)α(2)

)

(6.12)

in which ΦHP αα
12 itself is the product of the diagonal elements and ΦHP αα

21 is the product of

the remaining elements. It is often convenient to adopt a simplified notation for determi-

nantal wavefunctions and to write (6.12) as

Φαα
12 = 2−1/2 (ψ1 ψ2 − ψ2 ψ1)αα (6.13)

where it is understood that electrons 1 and 2 are associated with each product in the natural

order 1, 2 from left to right. An even simpler notation, which we shall use quite frequently,

is

Φαα
12 = |φ1 φ2 | (6.14)

where the vertical bars imply a determinant (including the normalization factor) and φ1 and

φ2 imply spinorbitals formed from the spatial orbitals ψ1 and ψ2 along with spin functions.

For spinorbitals formed with β spin functions, one would write

Φ
ββ
12 = 2−1/2 (ψ1 ψ2 − ψ2 ψ1) β β = |φ1 φ2 | (6.15)

The horizontal bar over a spatial orbital indicates that a β spin function is to be associated

with that spatial orbital in forming the spinorbital.

Exactly the same trick suffices to antisymmetrize each of the remaining product functions

of Eq. (6.7). We thus obtain

Φ
αβ
12 = 2−1/2 (ψ1 ψ2 αβ − ψ2 ψ1 β α) = |φ1 φ2 |

Φ
βα
12 = 2−1/2 (ψ1 ψ2 β α− ψ2 ψ1 αβ) = |φ1 φ2 |

Φ
αβ
11 = 2−1/2 ψ1 ψ1 (αβ − β α) = |φ1 φ1 |

Φ
αβ
22 = 2−1/2 ψ2 ψ2 (αβ − β α) = |φ2 φ2 | (6.16)
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These determinantal forms arise from the special choice of representing approximate wave-

functions as antisymmetrized products of orbitals.

Examination of an expanded determinantal wavefunction reveals that it is not possible, in

general, to speak of an electron as occupying a definite orbital, since the antisymmetrization

has the formal effect of distributing each electron over more than one space orbital.

By use of the relations of spin operators we can investigate the behavior of the six

antisymmetrized functions given by Eqs. (6.14) to (6.16) with respect to the operator

S2. It is found (after some rather tedious algebra) that all except |φ1 φ2 | and |φ1 φ2 | are

eigenfunctions of S2. However, if we form the linear combinations

2−1/2 (|φ1 φ2 | ± |φ1 φ2 |) = 2−1 (ψ1 ψ2 ∓ ψ2 ψ1) (αβ ± β α) (6.17)

we obtain two different eigenfunctions of S2. The determinantal wavefunctions formed from

the products (6.7) along with their Sz and S2 eigenvalues are given by

Eigenfunctions MS S (S + 1)

|φ1 φ2 | 1 2

|φ1 φ2 | − 1 2

2−1/2 (|φ1 φ2 | + |φ1 φ2 |) 0 2

2−1/2 (|φ1 φ2 | − |φ1 φ2 |) 0 0

|φ1 φ1 | 0 0

|φ2 φ2 | 0 0

In the simple two-electron case considered here, the final wavefunctions all factor into a

spatial wavefunction and a spin wavefunction. This behavior does not carry over into wave-

functions involving more than two electrons.

The first three functions have the same spatial function, that is, ψ1 ψ2 − ψ2 ψ1, but each

has a different spin function. Since each of these has the same value of S (S+1), we say that

these functions form the three components of a triplet state, i.e., a state which has threefold

spin degeneracy. This degeneracy follows from the fact that the energy associated with a

wavefunction depends only upon the spatial functions. The remaining functions all have

S (S + 1) values of zero, and since they have different spatial portions, they represent three

different nondegenerate states, called singlet states. It should be noted that the triplet-state
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spatial function is antisymmetric with symmetric spin functions and that the singlet-state

spatial functions are all symmetric with antisymmetric spin functions.

Either of the last two functions can be used to describe the ground state of a two-electron

system. Thus if φ1 (or φ2) is φ1s (a hydrogenlike 1s orbital), we obtain the familiar ground-

state wavefunction for the helium atom, namely,

ξ = |φ1s φ1s | = 2−1/2 φ1s(1)φ1s(2) (αβ − β α) (6.18)

except that there is now a spin wavefunction present. It is easy to demonstrate that this spin

wavefunction is immaterial as far as expectation values of spin-free operators are concerned.

If G is a spin-free operator, its expectation value for a system described by the wavefunction

(6.18) is

< G >=< ξ |G | ξ >=
∫ ∫

|φ1s φ1s |G |φ1s φ1s | dr dσ

=
∫

φ∗
1s(1)φ∗

1s(2) Gφ1s(1)φ1s(2) dr
∫

|αβ − β α |2

2
dσ (6.19)

By use of Eq. (4.16) we see that the right-hand integral becomes

1

2

∫

|αβ − β α |2 dσ =
1

2

(

∫

α∗ α dσ1

∫

β∗ β dσ2

−2
∫

α∗ β dσ1

∫

β∗ α dσ2 +
∫

β∗ β dσ1

∫

α∗ α dσ2

)

=
1

2
(1 − 0 + 1) = 1 (6.20)

Thus, the spin functions integrate out to unity, and the expectation value of G is simply

< G >=< φ1s(1)φ1s(2) |G |φ1s(1)φ1s(2) > (6.21)

In the case of systems with more than two electrons, it turns out that the spin functions

also integrate to unity even though one cannot factor the total electronic wavefunction into

a spatial part and a spin part. In such a case it is necessary to take the spin functions into

account in setting up the total wavefunction in order to obtain a spatial wavefunction of the

correct symmetry. Once this is done, it is always possible to set up an expression for < G >

which does not involve the spin functions (see Sect. V.B).

C. The Excited States of the Helium Atom

The lowest excited state of the helium atom is represented to zeroth order by the con-

figuration 1s2s. In Sect. VI.B we saw that this configuration leads to singlet and triplet
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states. The zeroth-order approximation to the singlet-state wavefunction is

1ξ = 2−1/2 (|1s 2s| − |1s 2s|)

where we let 1s and 2s represent normalized hydrogenlike atomic orbitals. The zeroth-order

approximation to the triplet-state wavefunctions is given by one of the functions

3ξ =











2−1/2 (|1s 2s| + |1s 2s|)

|1s 2s|

|1s 2s|











We recall that the singlet function has the spatial portion ψ1sψ2s +ψ2sψ1s with an antisym-

metric spin function, whereas the triplet function has the spatial portion ψ1sψ2s − ψ2sψ1s

with one of three symmetric spin functions. The symmetric and antisymmetric spatial func-

tions may be said to arise as a result of the double degeneracy of the unperturbed state

(the independent-particle model); i.e., the two electrons are indistinguishable. The anti-

symmetrization is irrelevant to the unperturbed state (since the zeroth-order Hamiltonian

is a sum of two monoelectronic operators) but is required for the perturbed state since the

complete Hamiltonian contains the two-electron term 1/r12. The lowest singlet and triplet

states are usually designated by 2 1S0 and 2 3S1, the number preceding the term symbol rep-

resenting an effective principal quantum number. This effective principal quantum number

arises from the Rydberg series of the atomic spectrum.

The first-order perturbation energies of helium in the 1s2s configuration (and in the

absence of spin-orbit interaction) is given by the roots of the determinant

Det

(

H
(1)
11 − ε H

(1)
12

H
(1)
21 H

(1)
22 − ε

)

= 0

where

H
(1)
11 =

〈

1ξ

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

1ξ

〉

H
(1)
22 =

〈

3ξ

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

3ξ

〉

H
(1)
12 = H

(1)
21 =

〈

3ξ

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

1ξ

〉
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Since S2 commutes with 1/r12 and 3ξ and 1ξ have different S2 eigenvalues, the off-diagonal

matrix elements H12 and H21 vanish. The energies of the singlet and triplet states to first

order then are

1E = ε
(0)
1s + ε

(0)
2s + H

(1)
11

3E = ε
(0)
1s + ε

(0)
2s + H

(1)
22

where the zeroth-order energy is given by (ε
(0)
i = −Z2/2n2 in a.u.)

ε
(0)
1s + ε

(0)
2s = −

4

2
−

4

8
= −

5

2
a.u.

Since two-electron wavefunctions (in the orbital approximation) factor into space and spin

function, the matrix elements H
(1)
11 and H

(1)
22 can be evaluated from the spatial portions of

1ξ and 3ξ, respectively; i.e., the spin integrates out to unit. One obtains, with the notation

1s ≡ φ1s = ψ1sα, 2s ≡ φ2s = ψ2sα, 1s ≡ φ1s = ψ1sβ, 2s ≡ φ2s = ψ2sβ,

H
(1)
11 =

1

2

〈

|φ1s φ2s| − |φ1s φ2s|

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

|φ1s φ2s| − |φ1s φ2s|

〉

=

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ1s ψ2s

〉

+

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ2s ψ1s

〉

= J12 +K12

H
(1)
22 =

1

2

〈

|φ1s φ2s| + |φ1s φ2s|

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

|φ1s φ2s| + |φ1s φ2s|

〉

=

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ1s ψ2s

〉

−

〈

ψ1s ψ2s

∣

∣

∣

∣

∣

1

r12

∣

∣

∣

∣

∣

ψ2s ψ1s

〉

= J12 −K12

Thus, the energies of the 21S0 and 23S1 states are

1E = −
5

2
+ J12 +K12

3E = −
5

2
+ J12 −K12

The energy difference between the singlet and triplet states is

1E −3 E = 2K12

From Sect. V.C we recall that K12 > 0, so that the triplet state is the lower in energy. This

is in accord with Hund’s rule of maximum multiplicity.

It is important to note that if one had used a simple product wavefunction φ1sφ2s, the

singlet and triplet states would have the same energy, namely, − 5
2

+ J12. It is clear that

the antisymmetry principle accounts for the separation of different spin states. The spin

functions, although not affecting the total energy directly, nevertheless influence the total

energy by determining the form of the spatial portion of the wavefunction.
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The values of the coulombic and exchange integrals are 0.419 and 0.044 a.u., respectively.

The singlet- and triplet-state energies then are

1E = −2.037 a.u. (exp. − 2.147 a.u.)

3E = −2.125 a.u. (exp. − 2.176 a.u.)

The singlet state is in error by 0.110 a.u., and the triplet state is in error by 0.051 a.u. The

fact that the triplet-state error is lower is due largely to the fact that the screening effect

is not so important for electrons with parallel spins as for electrons with antiparallel spins.

This, in turn, is due to the fact that the antisymmetry principle tends to keep electrons with

the same spin farther apart. On the other hand, the antisymmetry principle implies that

electrons with different spins come closer together than is actually the case.

The tendency for electrons with like spins to avoid each other is often referred to as

a spin correlation or exchange correlation effect. Such an effect is in addition to the ra-

dial and angular correlation. In general, the use of single-configurational antisymmetrized

wavefunctions accounts for correlation effects in triplet states much better than in singlet

states.

D. Construction of Determinantal Eigenfunctions of S2

As mentioned in Subsection VI.A, wavefunctions which are eigenfunctions of S2 are said to

describe pure spin states, i.e., states which are characterized by a definite relative alignment

of electron spins. Since one is almost always concerned with atoms and molecules which are

in pure spin states, and since determinantal wavefunctions are generally not automatically

eigenfunctions of S2, it is convenient to describe a systematic procedure for constructing

wavefunctions for pure spin states.

Consider the eigenvalue equation

Sz ω = MS ω (6.22)

where ω is an N -electron function containing spin coordinates. For N = 3 we have

MS = ms1 +ms2 +ms3 =
1

2
+

1

2
+

1

2
=

3

2

MS = ms1 +ms2 +ms3 =
1

2
+

1

2
−

1

2
=

1

2
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MS = ms1 +ms2 +ms3 =
1

2
−

1

2
−

1

2
= −

1

2

MS = ms1 +ms2 +ms3 = −
1

2
−

1

2
−

1

2
= −

3

2

i.e., there are four different possible spin alignments. Below we show that there are 23 = 8

different ways in which these four MS values can arise. These eight possibilities can be

grouped as follows: the group − 3
2
≤ MS ≤ 3

2
, which corresponds to S = 3

2
and thus

represents a state with multiplicity 2S + 1 = 4, and two groups − 1
2
≤ MS ≤ 1

2
, which

corresponds to S = 1
2

and thus represent states of multiplicity 2S+1 = 2. This means that

an atom or molecule having three electrons outside a closed shell may exist in a quadruplet

state or in one of two different doublet states.

Possible values of the Sz eigenvalues for a three− electron system

ms1 ms2 ms3 MS Φi

1

2

1

2

1

2

3

2
|φ1 φ2 φ3 |

1

2

1

2
−

1

2

1

2
|φ1 φ2 φ3 |

1

2
−

1

2
−

1

2
−

1

2
|φ1 φ2 φ3 |

−
1

2
−

1

2
−

1

2
−

3

2
|φ1 φ2 φ3 |

−
1

2
−

1

2

1

2
−

1

2
|φ1 φ2 φ3 |

−
1

2

1

2

1

2

1

2
|φ1 φ2 φ3 |

−
1

2

1

2
−

1

2
−

1

2
|φ1 φ2 φ3 |

1

2
−

1

2

1

2

1

2
|φ1 φ2 φ3 |
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For N > 3 the above procedure is rather tedious to carry out, since there will be 2N

different spin couplings to write down. Thus a systematic procedure is required.

We now develop general methods which enable us to obtain:

(i) the number of independent spin states characterized by the quantum number S which

exists for a system of N electrons when the space orbitals occupied by each electron are

different. We denote this number f(N, S).

Consider a many-electron spin function which is a simple product of N one-electron spin

wavefunctions. Since each one-electron spin wavefunction is restricted to either α or β type,

it follows that 2N different many-electron spin wavefunctions may be generated. Each of

these, of necessity, is a eigenfunction of Sz.

For a three-electron system, the possible values of S are 3/2 and 1/2. The values of

f(N, S) for this system are readily seen to be

f(3, 3/2) =
3!

3! 0!
= 1 (6.23)

f(3, 1/2) =
3!

2! 1!
− 1 = 2 (6.24)

In Eq. (6.23) we have in essence calculated the number of possible spin orientations

which yield MS = 3/2; the state S = 3/2 also contains three other spin components with

MS = 1/2, −1/2, and −3/2. Thus, in Eq. (6.24) where we calculate the number of possible

spin orientations with MS = 1/2, before we associate the number 3 with the number of

independent spin states S = 1/2 we must substract out that one spin orientation with

MS = 1/2 belonging to S = 3/2 - hence Eq. (6.24). Thus, the three-electron system

possesses one quartet spin wavefunction and two doublet spin wavefunctions. The total

number of wavefunctions is 8 = 23 = 1 × 4 + 2 × 2.

For a four-electron system, the values of S are 2, 1, and 0. The values of f(N, S) are

f(4, 2) =
4!

4! 0!
= 1 1 quintet (6.25)

f(4, 1) =
4!

3! 1!
− 1 = 3 3 triplets (6.26)

f(4, 0) =
4!

2! 2!
− 3 − 1 = 2 2 singlets (6.27)
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The total number of wavefunctions is 16 = 24 = 1 × 5 + 3 × 3 + 2 × 1.

The results for the three- and four-electrons systems are now generalized in analogical

fashion to yield

f(N, S) =
N !

(N/2 − S)! (N/2 + S)!
−

N !

(N/2 − S − 1)! (N/2 + S + 1)!

=
(2S + 1)N !

(N/2 + S + 1)! (N/2 − S)!
(6.28)

Multiplication of this expression by 2S + 1 and performing a summation over S gives the

total number of wavefunctions

∑

S

(2S + 1) f(N, S) = 2N (6.29)

Thus, by insertion of the appropriate values of N and S into f(N, S) we can evaluate the

number of independent spin states of a given multiplicity available for an N -electron system.

The results of such an evaluation are often presented in graphic form, in a construct such

as Fig. VI.2 termed branching diagram, from which it is possible to carry out the analysis

with very little labor. This diagram shows the number of states of different multiplicities

obtainable for a given number of independent electrons. The diagram is very easy to con-

struct beginning with a single electron and successively coupling other electron spins to it

in all possible algebraic ways. In the diagram the number of states of a given multiplicity

is indicated within a circle whose abscissa is the number of electrons and whose ordinate is

the multiplicity. The diagram is constructed in such a way that each encircled number is

the sum of the two adjacent encircled numbers to the left. We see that for four electrons

one would have two singlet states (MS = 0), three triplet states (MS = −1, 0, and 1), and

one quintet state (MS = −2,−1, 0, 1, and 2). Thus for four electrons not in closed shells

one could write down 16 linearly independent wavefunctions (not all of which would be

automatically orthogonal) leading to six different energies.
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(ii) A readily usable form of the operator S2. We may expand this operator as

S2 = S2
x + S2

y + S2
z (6.30)

If we now define

S+ ≡ Sx + i Sy S− ≡ Sx − i Sy (6.31)
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we obtain

S−S+ = S2
x + S2

y − h̄ Sz (6.32)

where the commutator relationship [Sx, Sy] = i h̄ Sz has been used. Insertion of Eq. (6.32)

into (6.30) yields

S2 = S2
z + h̄ Sz + S− S+ (6.33)

An equivalent form readily verifiable, is

S2 = S2
z − h̄ Sz + S+ S− (6.34)

At this point we note that

S+ ≡
∑

j

s+(j) S− ≡
∑

j

s−(j) (6.35)

s+(j) ≡ sx(j) + i sy(j) s−(j) ≡ sx(j) − i sy(j) (6.36)

where j is an electron numbering index and s is a one-electron operator. The effects of s+

and s− on the spin functions are

s−(j)

(

α(j)

β(j)

)

= h̄

(

β(j)

0

)

s+(j)

(

α(j)

β(j)

)

= h̄

(

0

α(j)

)

(6.37)

The operator s− steps down α to β but annihilates β whereas s+ annihilates α but steps up

β to α. If the operands of S2 are limited to Slater determinants or to simple products of

spinorbitals (these will be always assumed to be the cases), the Eqs. (6.33) and (6.34) can

be simplified further.

Consider the determinant

Φ = |ψ1 α(1)ψ2 β(2)ψ3 α(3) · · ·ψN α(N) | (6.38)

in which each electron is associated with a different space function. Since the spin operators

do not affect the orbital parts and since no restriction need be placed on the spin function

associated with a given space function (i.e., the spin function may be either α or β) it follows

that the determinantal wavefunction of Eq. (6.38) may be abbreviated to

Φ = |α(1) β(2)α(3) · · ·α(N) | (6.39)
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Indeed, with no loss of information, we can use the condensation

Φ = α(1) β(2)α(3) · · · ≡ α β α · · · (6.40)

as long as we remember that all of these constitute a short hand for Eq. (6.38).

The results of operating on Φ of Eqs. (6.38), (6.39), or (6.40) with Sz and S2
z are

Sz Φ =
1

2
(Nα −Nβ) h̄Φ (6.41)

S2
z Φ =

1

4
(Nα −Nβ)2 h̄2 Φ (6.42)

We may rewrite S−S+ in the form

S− S+ =
N
∑

i

s−(i) s+(i) +
N
∑

i

N
∑

i6=j

s−(i) s+(j) (6.43)

and consider each of the parts on the right-hand side of this equation with respect to their

effects on Φ. Consider first

N
∑

i

s−(i) s+(i)Φ =
N
∑

i

s−(i) s+(i) |α(1) β(2) · · · α(N) | (6.44)

By virtue of the one-electron nature of the s−(i) s+(i) operator, Eq. (6.44) reduces to

N
∑

i

s−(i) s+(i)Φ = Nβ h̄
2 Φ (6.45)

where the last equality follows from the noncommutativity of s− and s+ and from

s−(i) s+(i)

(

α(i)

β(i)

)

= h̄2

(

0

β(i)

)

(6.46)

Consider next the two-electron operator part
∑

i

∑

i6=j s−(i)s+(j) and note that the result

s−(i) s+(j)α(i) β(j) = h̄2 β(i)α(j) (6.47)

implies a formal identity of the operators

∑

i

∑

i6=j

s−(i) s+(j) = h̄2
∑

P

Pαβ (6.48)

where Pαβ is an operator which exchanges α and β functions in the original determinant (i.e.,

Pαβ is that subclass of all electron permutation operators which leads to an interchange of α

and β spins), and where the sum is taken over all possible interchanges. For the two-electron
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permutations, no terms survive. The effect of the operator S− S+ on Φ is then summarized

in the expression

S− S+ Φ =

(

Nβ +
∑

P

Pαβ

)

h̄2 Φ (6.49)

If we now collect all the terms of Eqs. (6.41), (6.42), and (6.49) and insert them into Eq.

(6.33), we obtain after a small amount of rearrangement

S2 Φ =

[

∑

P

Pαβ +
1

4
[(Nα −Nβ)2 + 2N ]

]

h̄2 Φ (6.50)

where N = Nα +Nβ. Thus, given Φ as an eigenfunction of S2, it is a relatively simple matter

to determine S.

(iii) A general method for construction of eigenfunctions with given S and MS charac-

teristics. For this purpose, we use projection operator techniques.

We now turn out attention to the generation of eigenfunctions of S2. Suppose we start

with a trial wavefunction Φt which satisfies one condition - namely, that it be resolvable

into a linear combination of eigenfunctions of S2

Φt =
∑

k

cik Φ(Sk) (6.51)

where the summation runs over all possible values of Sk consistent with the specific number

of electrons under consideration and where

S2 Φ(Sk) = Sk (Sk + 1) h̄2 Φ(Sk) (6.52)

The coefficients cik need not be known; all that is required is that Φt be a function in the

domain spanned by the basis set Φ(Sk). It then follows that

[S2 − Si (Si + 1) h̄2]Φt =
∑

k 6=i

dk Φ(Sk) (6.53)

We may consider [S2 − Si(Si + 1)] to be an operator which eliminates any admixture of an

Si wavefunction from Φt. Successive application of such annihilators finally yields one pure

spin state of specified multiplicity - if such a spin state exists in Φt. The required operator,

with λj = Sj(Sj + 1)h̄2, can be written as

O(Sk) =
∏

i6=k

(

S2 − λi

λk − λi

)

(6.54)

This operator projects a wavefunction of the required spin quantum number (i.e., Sk) out

of the general spin space; O(Sk) is a spin-projection operator.
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E. Spin Eigenfunctions of a Three-Electron System: An Example Calculation

The eigenfunctions of Sz may be written immediately. In a simple short-hand form,

using the condensate notation of Eq. (6.40) and from the results previously obtained for a

three-electron system, they are

ααα MS =
3

2

ααβ MS =
1

2

αβ α MS =
1

2

β αα MS =
1

2

αβ β MS = −
1

2

β αβ MS = −
1

2

β β α MS = −
1

2

β β β MS = −
3

2

where, for example, αβ α denotes |ψ1 α(1)ψ2 β(2)ψ3 α(3) | ≡ |φ1 φ2 φ3 | with ψ1 6= ψ2 6= ψ3.

Inspection of the branching diagram of Fig. VI.2 indicates that we should obtain one quartet

spin state (S = 3
2
) and two doublet spin states (S = 1

2
). The projection operators are

O[3/2] =
S2 − 3/4

15/4 − 3/4
(6.55)

O[1/2] =
S2 − 15/4

3/4 − 15/4
(6.56)

where, for brevity, we have eliminated the factor h̄2 from the operator S2. Since we have

made no attempt to normalize the spin-projection operators, we fully expect that the spin-

projected wavefunctions require normalization.

(a) Spin Eigenfunctions with S = 3
2
, MS = 3

2
, 1

2
,−1

2
,−3

2

We first let O[3/2] operate on ααα. The result is

O[3/2]ααα =
[0 + 1

4
(32 + 2 × 3)]ααα− 3

4
ααα

15/4 − 3/4
= ααα (6.57)
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Thus, it is clear that ααα is a satisfactory eigenfunction with S = 3
2
, MS = 3

2
. Using the

notation 2S+1ΦMS
to denote the eigenfunctions of a given multiplicity and a given MS we

can write

4Φ3/2 = ααα (6.58)

In order to exemplify the manner in which unwanted functions are eliminated, consider the

result of O[1/2 operating on ααα. The result is

O[1/2]ααα =
[0 + 1

4
(32 + 2 × 3)]ααα− 15

4
ααα

3/4 − 15/4
= 0 (6.59)

Thus, as evidenced by our inability to project a doublet spin eigenfunction out of ααα,

there is no doublet character in ααα. This, of course, had to be the case - ααα is, after

all, a quartet eigenfunction.

We next construct the spin wavefunction with S = 3
2
, MS = 1

2
. Clearly, this eigenfunc-

tion may be a linear combination of ααβ, α β α, and β αα only. We start with ααβ to

find

O[3/2]ααβ =

(

∑

P Pαβ + 1
4
[(Nα −Nβ)2 + 2Nα + 2Nβ]

)

ααβ − 3
4
ααβ

15/4 − 3/4

=
αβ α + β αα+ 1

4
[12 + 2 × 2 + 2 × 1]ααβ − 3

4
αα β

15/4 − 3/4

=
1

3
(αβ α+ β αα + ααβ)

(6.60)

Normalization yields

4Φ1/2 =
1

31/2
(αβ α+ β αα + ααβ) (6.61)

The spin wavefunction with S = 3
2
, MS = −1

2
is constructed in like manner from α β β,

β αβ, β β α. It is found to be

4Φ−1/2 =
1

31/2
(αβ β + β α β + β β α) (6.62)

The last of these four spin wavefunctions is

4Φ−3/2 = β β β (6.63)
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(b) Spin Eigenfunctions with S = 1
2
, MS = 1

2
, −1

2

There are two doublet spin wavefunctions. Those with MS = 1/2 are constructed from

αα β, αβ α, and β αα. Letting O[1/2] operate on each of these in turn, we find

O[1/2]ααβ =

(

∑

P Pαβ + 1
4
[(Nα −Nβ)2 + 2Nα + 2Nβ]

)

αα β − 15
4
αα β

3/4 − 15/4

=
α β α + β αα + 1

4
[12 + 2 × 2 + 2 × 1]ααβ − 15

4
ααβ

3/4 − 15/4

= −
1

3
(αβ α + β αα− 2ααβ) (6.64)

Analogously, it is found

O[1/2]αβ α = −
1

3
(ααβ + β αα− 2αβ α) (6.65)

O[1/2] β αα = −
1

3
(αβ α + ααβ − 2 β αα) (6.66)

Normalization of these three functions yields

2Φ1/2 = (1/6)1/2 (αβ α+ β αα− 2ααβ)

2Φ1/2 = (1/6)1/2 (αα β + β αα− 2αβ α)

2Φ1/2 = (1/6)1/2 (αβ α+ ααβ − 2 β αα)

Thus three wavefunctions with S = 1
2
, MS = 1

2
have been constructed. However, one of

them is linearly dependent on the other two and they are not orthogonal. Redundancy can

be eliminated and orthogonality produced if we note the cyclic symmetry exhibited by these

three wavefunctions and make maximum use of it. It is clear that these three wavefunc-

tions can be represented as three in-plane vectors separated by 120◦. Thus, the difference

of any two functions is orthogonal to the remaining one. A possible set of orthonormal

wavefunctions, then, is

2Φ1/2 = (1/6)1/2 (αβ α + β αα− 2αα β) (6.67)

2Φ1/2 = (1/2)1/2 (β αα− α β α) (6.68)

The generation of the two wavefunctions 2Φ−1/2 proceeds in a similar way. One gets

2Φ−1/2 = (1/6)1/2 (β αβ + β β α− 2αβ β) (6.69)
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2Φ−1/2 = (1/2)1/2 (β β α− β α β) (6.70)

These results are summarized as follows:

S MS Spin Adapted Configuration

3/2 + 3/2 4Φ3/2 = ααα

3/2 + 1/2 4Φ1/2 = 1/31/2 (αβ α + β αα + ααβ)

3/2 − 1/2 4Φ−1/2 = 1/31/2 (αβ β + β αβ + β β α)

3/2 − 3/2 4Φ−3/2 = β β β

1/2 + 1/2 2Φ1/2 = 1/61/2 (αβ α + β αα− 2ααβ)

1/2 + 1/2 2Φ1/2 = 1/21/2 (β αα− αβ α)

1/2 − 1/2 2Φ−1/2 = 1/61/2 (β α β + β β α− 2αβ β)

1/2 − 1/2 2Φ−1/2 = 1/21/2 (β β α− β α β)

109



VII. OCCUPATION-NUMBER FORMALISM

A. Occupation-Number Wavefunction

Many-fermion wavefunctions are often expressed in terms of determinants formed from

a basis of one-particle functions. These determinants may be described by their occupancy,

(i.e., by listing the basis functions that are used therein). Much of the discussion of many-

fermion systems can be systematized and thereby simplified, by adopting a suitable set of

notations for representing determinantal functions, the relationships between them, and the

effect of various operators thereon. The purpose of this Section is to develop such a notation

and the accompanying algebra.

Let φµ, φν, ..... denote an orthonormal basis of one-particle states to be used in construct-

ing many-fermion wavefunctions. The set of one-particle functions is assigned a lexical

ordering, which may be arbitrary but must remain unchanged during all of the discussion

to follow. For an N -fermion system, an occupation-number determinantal wavefunction can

be identified by specifying the N one-particle states to be occupied, then forming the de-

terminantal function based on these states in their lexical order. For example, if φ1, φ2, .....

denote the one-particle states in their lexical ordering, the normalized occupation-number

wavefunction Ψ formed from φ7, φ3, φ8 will be

Ψ = (3!)1/2A[φ3(1)φ7(2)φ8(3)] ≡ [φ3, φ7, φ8] (7.1)

where A is the antisymmetrizer, given in general, for an N -particle system, by

A =
1

N !

∑

P

(−)P P (7.2)

and where the sum is over all N ! permutations.

Note that the definition (7.1) uniquely determines the sign to be associated with each

occupation-number wafefunction. We shall use the definition of Eq. (7.1) even when it does

not indicate a lexically ordered occupation-number wavefunction. For example, [φ7, φ3, φ8]

will denote a function equal to −[φ3, φ7, φ8].

It is convenient to have a shorthand for characterizing the relationships between different

occupation-number wavefunctions. For this purpose we introduce the so-called annihilation

operator aµ, whose effect is to remove the function φµ from the occupied states list. Its

adjoint, the operator a†
µ, is called a creation operator, with the effect that it adds the function
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φµ to the occupied states list. If a function to be annihilated is already absent, or if a function

to be added is already present, the operation yields vanishing results. Further discussions

are simplified by making a superficially complex choice of the signs to be associated with

the application of aµ and a†
µ; the precise definition of these operators is as follows:

a†
µ[· · · , φλ, φν, · · ·] = (−)nµ [· · ·φλ, φµ, φν, · · ·]

a†
µ[· · · , φµ, · · ·] = 0

aµ[· · · , φλ, φµ, φν, · · ·] = (−)nµ [· · · , φλ, φν, · · ·]

aµ[· · · , φλ, φν, · · ·] = 0 (7.3)

where the one-particle states in each [ ] are in lexical order, and nµ is the number of occupied

one-particle states that lexically precede φµ in the adjacent [ ].

We should verify that the definitions of Eqs. (7.3) are consistent with the mathematical

meaning of adjoint. It is sufficient to have

< a†
µ[ ]|[ ]′ >=< [ ]|aµ[ ]′ > (7.4)

for all lexically ordered determinantal function [ ] and [ ]′ such that [ ]′ contains one more

one-particle state than [ ]. Eq. (7.4) is clearly satisfied, as both its members vanish unless

a†
µ[ ] = (−)nµ[ ]′, in which case we also have aµ[ ]′ = (−)nµ [ ], and each member reduces to

(−)nµ .

B. Commutation Rules for Creation and Annihilation Operators

Since the result of applying aµ or a†
µ has a sign dependent upon the number of occupied

states preceding φµ in lexical order, creation-annihilation operator products produce results

whose signs depend upon the ordering of the factors. In particular, consider the successive

application of aµ and aν to an occupation-number wavefunction Ψ containing both φµ and φν.

We assume without loss of generality that φµ precedes φν, and write Ψ = [· · · , φµ, · · · , φν, · · ·].

Letting nµ and nν be the numbers of occupied one-particle states respectively preceding φµ

and φν in Ψ, we have

aνaµΨ = aνaµ[· · · , φµ, · · · , φν, · · ·] = (−)nµaν [· · · , φν, · · ·]

= (−)nµ(−)nν−1[· · · · · ·] (7.5)
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The factor (−)nν−1 arises because the prior removal of φµ causes only nν − 1 one-particle

states to precede φν in the function to which aν is applied. The situation is different if aν is

applied first:

aµaνΨ = aµaν[· · · , φµ, · · · , φν, · · ·] = (−)nνaµ[· · · , φµ, · · ·]

= (−)nν (−)nµ [· · · · · ·] (7.6)

Adding Eqs. (7.5) and (7.6), we have

(aµaν + aνaµ)Ψ = 0 (7.7)

for all occupation-number wavefunctions Ψ containing φµ and φν. Since Eq. (7.7) is trivially

satisfied if φµ or φν is absent from Ψ, we have the operator identity

aµaν + aνaµ = 0 (7.8)

Since Eq. (7.8) is symmetric in µ and ν and is clearly satisfied if µ = ν, the restriction that

φµ precedes φν may now be dropped.

An entirely similar argument leads to the analogous result for creation operators:

a†
µa

†
ν + a†

νa
†
µ = 0 (7.9)

Eq. (7.9) may also be derived simply by taking the adjoint of Eq. (7.8).

Consider next the operator products a†
µaν , and aνa

†
µ. Suppose again the φµ precedes φν

in lexical order. Let Ψ be an occupation-number wavefunction containing φν but not φµ,

with ην and ηµ the numbers of occupied states respectively preceding φν and φµ. Then

a†
µaνΨ = a†

µaν[· · · , φν, · · ·] = (−)nνa†
µ[· · · · · ·]

= (−)nµ(−)nν [· · · , φµ, · · ·] (7.10)

aνa
†
µΨ = aνa

†
µ[· · · , φν, · · ·] = (−)nµaν [· · · , φµ, · · · , φν, · · ·]

= (−)nµ(−)nν+1[· · · , φµ, · · ·] (7.11)

Eqs. (7.10) and (7.11) may be added to reach

(a†
µaν + aνa

†
µ)Ψ = 0 (7.12)

Eq. (7.12) can also be satisfied if φν precedes φµ in lexical order. Thus,

a†
µaν + aνa

†
µ = 0 (ν 6= µ) (7.13)
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Eq. (7.13) in contrast to Eqs. (7.8) and (7.9), is not satisfied for µ = ν. However, for an

occupation-numnber wafunction Ψ containing φµ:

a†
µaµΨ = a†

µaµ[· · · , φµ, · · ·] = (−)nµa†
µ[· · · · · ·]

= (−)nµ(−)nµ [· · · , φµ, · · ·] = Ψ (7.14)

aµa
†
µΨ = 0 (7.15)

where nµ is the number of occupied states preceding φµ. If Ψ does not contain φµ,

a†
µaµΨ = 0 (7.16)

aµa
†
µΨ = aµa

†
µ[· · · · · ·] = (−)nµaµ[· · · , φµ, · · ·]

= (−)nµ(−)nµ [· · · · · ·] = Ψ (7.17)

Thus, whether or not Ψ contains φµ,

(aµa
†
µ + a†

µaµ)Ψ = Ψ (7.18)

Eq. (7.18) implies

aµa
†
µ + a†

µaµ = 1 (7.19)

Eqs. (7.8), (7.9), (7.13), and (7.19) all have left sides of the form of anticommutators.

These equations may therefore be written

[aµ, aν]+ = 0

[a†
µ, a

†
ν]+ = 0

[aµ, a
†
ν]+ = δµν (7.20)

C. Reference States and Antisymmetry

The most convenient way to use creation and annihilation operators in specifying deter-

minantal wavefunctions is by using them to generate such wavefunctions from a reference

state. The simplest such state is the vacuum state |0 >, which corresponds formally to an

occupation-number wavefunction containing no occupied one-particle states. The state |0 >

itself has no observational meaning, but completely meainingful results may be obtained by
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applying creation or annihilation operators thereto, using the rules contained in Eq. (7.20).

For example, taking φ1, φ2, · · · to be the one-particle states in lexical order, a
†
4|0 >= [φ4],

a
†
6a

†
4|0 >= −[φ4, φ6], a3|0 >= 0, and so on.

An arbitrary determinant may be generated from |0 > by operation with a string of

creation operators for the one-particle states to be occupied therein. If the creation operators

are arranged in ascending lexical order from left to right, their operation on |0 > will generate

the appropriate occupation-number wavefunction with a positive sign. For example:

a
†
2a

†
3a

†
5a

†
6|0 >= +[φ2, φ3, φ5, φ6] (7.21)

This statement becomes obvious if we recognize that at the time of application of each a†
µ, it

operates on a function with no occupancy preceding φµ. If, however, the a†
µ are not arranged

in ascending order, we can permute them to that order with the aid of the anticommutator

listed in Eq. (7.20). We see that each interchange of adjacent a†
µ and a†

ν will introduce

a minus sign, so that the ordering of the a†
µ will be accompanied by the sign factor (−)P

associated with the parity of the ordering permutation. Since this is the same sign factor

as is associated with the reordering of the rows or columns of a determinant, we may make

an appropriate permutation of the one-particle functions in [ ] instead of including a factor

(−)P ; the result of this observation is the equation

a†
µ · · ·a

†
ν|0 >= +[φµ, · · · , φν] (7.22)

which is valid whether or not φµ, · · · , φν are in lexical order. Of course, if these functions

are not in lexical order, the right-hand side of Eq. (7.22) will not be in the standard form

of an occupation-number wavefunction.

Another, even more useful reference state for an N -fermion problem is an N -particle

determinantal state Φ obtained as its independent-particle zero-order solution. Letting φα,

φβ, · · · stand for the one-particle states occupied in Φ, in lexical order, we write

Φ = (N !)1/2A[φα(1)φβ(2), · · · , φω(N)]

= a†
αa

†
β · · ·a

†
ω |0 > (7.23)

Other determinantal states may now be obtained by applying annihilation operators to

remove unwanted one-particle states in Φ, and applying creation operators to add new

occupied one-particle states. If a new determinantal state is to describe the same number
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of particles as Φ, the operator string applied to Φ must contain equal numbers of creation

and annihilation operators.

Let us consider more closely the determinantal states we may produce from Φ. We may

classify such states by their degree of excitation, defined as the number of one-particle states

occupied in Φ but not in the new wavefunction. Letting φr, φs, · · · denote one-particle states

unoccupied in Φ, the singly, doubly, ..... excited determinants relative to Φ are of the forms

Φr
α = a†

raαΦ

Φrs
αβ = a†

ra
†
saβaαΦ

· · · · · · (7.24)

We shall use the notation of Eq. (7.24) irrespective of the lexical ordering of α, β, r, s, · · ·.

For describing determinants with arbitrary degrees of excitation, we introduce collective

indices R and ∆ to stand for r, s, · · · and α, β, · · ·, respectively, and write AR
∆ to stand for

the operator sequence a†
ra

†
s · · ·a

†
βa

†
α. Then the general form of Eq. (7.24) may be expressed

ΦR
∆ = AR

∆Φ (7.25)

It should be obvious that the remainder of a complete set of N -particle determinants can be

formed from Φ according to Eq. (7.25) (i.e., using creation (annihilation) operators only for

the one-particle states unoccupied (occupied) in Φ). For logical completeness, the possible

index sets denoted by R or ∆ must include the empty set.

One way of describing a wavefunction like Φr
α is by comparison with the reference state

Φ; we may say that Φr
α has a hole in state φα and a particle in state φr. Following this

terminology, φα, φβ, · · · are in more general contexts called hole states, while φr, φs, · · · are

known as particle states. The index sets α, β, · · · and r, s, · · · are respectively called hole and

particle indices. The transfer of a fermion from φα to φr may therefore be characterized as

the creation of a hole and a particle, or a particle-hole pair. The reverse transfer from φr

to φα, annihilates both members of the pair. The operator Ar
α is thus a particle-hole (pair)

creation operator. Wavefunctions of higher degrees of excitation may be thought of as the

result of the creation of larger numbers of particles and holes. For example, Ars
αβ create two

particles and two holes.

Because creation and annihilation operators anticommute, wavefunctions such as Φrs
αβ
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have signs that can be changed by index permutation. In particular, we have

Φrs
αβ = −Φsr

αβ = −Φrs
βα = +Φsr

βα (7.26)

In general, we may apply arbitrary permutations to the upper or lower indices of any ΦR
∆,

changing the wavefunction by (−)P , where P is the parity of the permutation applied; if

permutations are applied to both upper and lower indices, their respective sign factors must

both be included. This means that ΦR
∆ is invariant when R and ∆ are both subjected to the

same permutation.

We look next at the sign associated with the determinantal function ΦR
α . Remembering

that Φ is lexically ordered, and letting ηα and ηr in Φ respectively stand for the numbers

of occupied states lexically preceding φα and φr in Φ, and tentatively assuming that φα

precedes φr,

Φr
α = a†

raα[· · ·φα · · ·] = (−)ηαa†
r[· · ·] = (−)ηα(−)ηr−1[· · ·φr · · ·] (7.27)

The sign factor is exactly that which could be produced by moving φr in [ ] from its lexical

position to the position originally occupied by φα. We thus may interpret Φr
α as the deter-

minantal function obtained by direct replacement of φα by φr in [ ]. The same conclusion

may be reached if φr precedes φα. We illustrate the foregoing using the ordered basis φ1,

φ2, · · ·, the reference state Φ = [φ1, φ2, φ3, φ4] and the production of Φ5
3:

Φ5
3 = a

†
5a3Φ = a

†
5a3[φ1, φ2, φ3, φ4] = (−)2a

†
5[φ1, φ2, φ4]

= (−)2(−)3[φ1, φ2, φ4, φ5] = +[φ1, φ2, φ5, φ4] (7.28)

It is important to note that this analysis is not restricted to the reference state; the appli-

cation of any product a†
µ aν to any [ ] will produce a function in which φν has been directly

replaced by φµ.

In Φrs
αβ we encounter a string containing two creation and two annihilation operators.

Using the anticommutator property, we may make the following rearrangement:

Φrs
αβ = a†

ra
†
saβaαΦ = (a†

saβ)(a†
raα)Φ (7.29)

the sign is positive because an even number of adjacent-operator interchanges is required to

move a†
r to its final position. Drawing on the result of the preceding paragraph, we see that

Φrs
αβ is the determinant reached from Φ by direct replacement of φα by φr, followed by direct
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replacement of φβ by φs. A similar analysis shows that in general, ΦR
∆ (with R and ∆ index

strings of the same length) has the sign corresponding to the direct replacements of φα by

φr, φβ by φs, · · ·

D. Representation of Dynamical Operators

The effect of any dynamical operator on a determinantal function can be represented us-

ing creation and annihilation operators to describe the linear combination of determinants

thereby produced. This representation is possible because dynamical operators are sym-

metric in the coordinates of identical particles. We start with a discussion of one-particle

operators, i.e., operators U that can be written in the form

U =
∑

i

u(i) (7.30)

where u(i) operates on Particle i. In the basis φµ, φν, · · ·, the action of u may be described

by

uφν =
∑

λ

< φλ|u|φν > φλ (7.31)

Consider now the application of U to a determinantal function:

U[φµ, φν, · · · , φω] =

(

∑

i

u(i)

)

(N !)−1/2
∑

P

(−)P P[φµ(1)φν(2) · · ·φω(N)]

= (N !)−1/2
∑

P

(−)P P

[(

∑

i

u(i)

)

φµ(1)φν(2) · · ·φω(N)

]

= [uφµ, φν, · · · , φω] + [φµ, uφν, · · · , φω] + · · ·+ [φµ, φν, · · · , uφω] (7.32)

Because U is symmetric in the particle numbering, it is invariant under permutation, and

for that reason could be commuted through the antisymmetrizer. Then, because it is a sum

of one-particle contributions, it produces the sum of determinants shown in the last line of

Eq. (7.32). Next, we insert expansions for uφµ, uφν, · · · , uφω from Eq. (7.31), obtaining

U[φµ, φν, · · · , φω] =
∑

λ

< φλ|u|φµ > [φλ, φν, · · · , φω]

+
∑

λ

< φλ|u|φν > [φµ, φλ, · · · , φω] + · · ·

+
∑

λ

< φλ|u|φω > [φµ, φν, · · · , φλ] (7.33)
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Eq. (7.33) is simpified by using the result from the preceding section that the operator

a
†
λaµ causes direct replacement of φµ by φλ in a determinantal function, irrespective of the

location of φµ therein. Thus

[φλ, φν, · · · , φω] = a
†
λaµ[φµ, φν, · · · , φω],

[φµ, φλ, · · · , φω] = a
†
λaν [φµ, φν, · · · , φω], · · · ,

[φµ, φν, · · · , φλ] = a
†
λaω[φµ, φν, · · · , φω],

so

U[φµ, φν, · · · , φω] =

[

∑

λ

< φλ|u|φµ > a
†
λaµ +

∑

λ

< φλ|u|φν > a
†
λaν + · · ·

+
∑

λ

< φλ|u|φω > a
†
λaω

]

[φµ, φν, · · · , φω] (7.34)

The operator on the right-hand side of Eq. (7.34) is of the form
∑

λ,σ < φλ|u|φσ > a
†
λaσ, with

the λ sum unrestricted but with σ summed only over the occupied states of [ ]. However, the

σ summation can be extended to cover all one-particle states without error, as the added

terms have a vanishing effect on [ ]. This extension has the virtue that the right-hand side

operator then has a form independent of the occupancy of [ ], and let us write

U[φµ, φν, · · · , φω] =
∑

λσ

< φλ|u|φσ > a
†
λaσ[φµ, φν, · · · , φω] (7.35)

In line with the immediately preceding discussion, both sums are now unrestricted. Since

the determinantal function [ ] is arbitrary, Eq. (7.35) is equivalent to the operator equation

U =
∑

λσ

< φλ|u|φσ > a
†
λaσ (7.36)

An important illustration of Eq. (7.36) is its application to the reference function Φ.

Using the convention of Section VII.C we have

UΦ =
∑

λσ

< φλ|u|φσ > a
†
λaσΦ =

∑

α

< φα|u|φα > Φ +
∑

rα

< φr|u|φα > Φr
α (7.37)

In obtaining Eq. (7.37), we used the fact that the σ summation from Eq. (7.36) yields

nonzero results only if σ referes to a hole state (occupied in Φ). The λ summation then

contributes both for the value assigned to σ and for all particle states.

In general, as Eqs. (7.36) and (7.37) illustrate, a one-electron U can convert a determinant

into a linear combination of determinants, each differing from the original determinant by
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at most one occupied single-particle state. However, in the special case that the φµ are

eigenfunctions of u, with uφµ = εµφµ, the only nonzero terms in Eq. (7.36) are those with

λ = σ, and we have

U =
∑

λ

ελa
†
λaλ (7.38)

The operator product a
†
λaλ is sometimes called the number operator for the one-particle

state λ, as

a
†
λaλ[ ] = 1.[ ], if φλ occupied in [ ]

= 0, otherwise (7.39)

In other words, the eigenvalues of a
†
λaλ are the possible numbers of fermions occupying φλ.

Also, because aλa
†
λ = 1 − a

†
λaλ, the operator aλa

†
λ has eigenvalue unity for an unoccupied

state, and zero for an occupied state:

aλa
†
λ[ ] = 1.[ ], if φλ occupied in [ ]

= 0, otherwise (7.40)

In view of Eq. (7.39), we see that if U is diagonal [i.e., satisfying Eq. (7.38)], then

U [ ] =
∑

(λ occ)

ελ [ ] (7.41)

where the sum is over the one-particle states occupied in [ ]. Eq. (7.41) shows that [ ] is an

eigenfunction of U, with an eigenvalue that is the sum of the occupied-state eigenvalues of

u.

One of the obvious features of Eqs. (7.36) - (7.41) is that their forms are independent of

N , the number of particles described. This fact is suggestive of possibilities for convenient

formulation of problems in which the number of particles changes (e.g., electron attachment

or ionization). If we should somehow become sufficiently confused that we need to ask how

many particles are being represented by a given determinant, Eq. (7.39) even indicates an

operator that can do that job - the total number operator

N =
∑

λ

a
†
λaλ (7.42)

Application of N to a determinantal function will multiply it by the number of occupied

one-particle states contained therein:

N [ ] =
∑

λ

a
†
λaλ [ ] = N [ ] (7.43)

119



We proceed now to a discussion of two-particle operators V of the form

V =
∑

i<j

v(i, j) (7.44)

where

v(i, j)φµ(i)φν(j) =
∑

λσ

< φλφσ|v|φµφν > φλ(i)φσ(j) (7.45)

V is completely symmetric under permutations of the particle numbering, and therefore, like

U, may be commuted through the antisymmetrizer:

V[φµ, φν, φρ, · · · , φτ , φω]

= (N !)−1/2
∑

P

(−)P P

[

∑

i<j

v(i, j)φµ(1)φν(2)φρ(3) · · ·φτ (N − 1)φω(N)

]

(7.46)

Using Eq. (7.45) and the previously proved result that a
†
λa

†
σaνaµ causes direct replacement

of φµ by φλ and φν by φσ,

v[φµ, φν, φρ, · · · , φτ , φω] =
∑

λσ

< φλφσ|v|φµφν > [φλ, φσ, φρ, · · · , φτ , φω]

+
∑

λσ

< φλφσ|v|φµφρ > [φλ, φν, φσ, · · · , φτ , φω]

+ · · ·

+
∑

λσ

< φλφσ|v|φτφω > [φµ, φν, φρ, · · · , φλ, φσ]

=

[

∑

λσ

< φλφσ|v|φµφν > a
†
λa

†
σaνaµ

+
∑

λσ

< φλφσ|v|φµφρ > a
†
λa

†
σaρaµ

+ · · ·+
∑

λσ

< φλφσ|v|φτφω > a
†
λa

†
σaωaτ

]

×[φµ, φν, φρ, · · · , φτ , φω] (7.47)

The operator on the right-hand side of Eq. (7.47) is of the form
∑

µνλσ < φλφσ|v|φµφν >

a
†
λa

†
σaνaµ, with λ and σ unrestricted, but with µ and ν restricted to occupied states of [ ]

with φµ therein preceding φν. The restriction that φµ precedes φν can be removed if we

insert a factor ” 1
2
”, and the restriction to occupied states can, as for U, be dropped without

error. We thus have

V =
1

2

∑

µνλσ

< φλφσ|v|φµφν > a
†
λa

†
σaνaµ (7.48)
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Eq. (7.48) is consistent with our expectation that ”direct” and ”exchange” contributions

should have opposite signs. For example, look at two terms of V containing the same indices,

but in a different order:

V = · · ·+
1

2
< φλφσ|v|φµφν > a

†
λa

†
σaνaµ +

1

2
< φλφσ|v|φνφµ > a

†
λa

†
σaµaν + · · · (7.49)

If we interchange the order of aµ and aν in the second explicit term and introduce a corre-

sponding minus sign, we have

V = · · ·+
1

2
< φλφσ|v|φµφν − φνφµ > a

†
λa

†
σaνaµ + · · · (7.50)

Then, defining

< φλφσ|ṽ|φµφν >=< φλφσ|v|φµφν − φνφµ > (7.51)

we may write

V =
1

4

∑

µνλσ

< φλφσ|ṽ|φµφν > a
†
λa

†
σaνaµ (7.52)

We illustrate the use of Eq. (7.52) by calculating VΦ. Nonzero contributions only arise

if ν and µ refer to holes, λ and σ may refer either to particles or to the holes created by aν

or aµ. Using the conventions of Section VII.C, we have

VΦ =
∑

(αβ)

< φαφβ|ṽ|φαφβ > Φ +
∑

rαβ

< φrφβ|ṽ|φαφβ > Φr
α

+
∑

(rs)(αβ)

< φrφs|ṽ|φαφβ > Φrs
αβ (7.53)

The factor ” 1
4
” in Eq. (7.52) has been cancelled by the elimination of identical terms and

the restriction of index sums to inequivalent sets.

E. Example-Hartree-Fock State

As an initial example of the use of the occupation-numner formalism, let us consider

the equations of the Hartree-Fock method. We take the basis one-particle states to be the

eigenstates of the Hartree-Fock Hamiltonian H0 = U + UHF , with φα, φβ, · · · representing

occupied single-particle states and φr, φs, · · · representing unoccupied single-particle states.

We take the reference function Φ to be the Hartree-Fock wavefunction:

Φ = a†
αa

†
β · · · |0 > (7.54)
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where α, β, · · · are in lexical order. In accord with Eq. (7.38), the occupation-number

representation of H0 is

H0 =
∑

λ

ελa
†
λaλ (7.55)

where the sum over λ is unrestricted. If we apply H0 to Φ, the only non-vanishing terms will

be those for which λ describes an occupied single-particle state. Each such term is simply

ελΦ and we therefore get

H0Φ =

(

∑

α

εα

)

Φ (7.56)

where the sum is now restricted to the occupied single-particle states.

The terms comprising H0, namely U and UHF , may also be written in occupation-number

language. From Eq. (7.36)

U =
∑

λσ

< φλ|u|φσ > a
†
λaσ (7.57)

and using Eq. (7.36) again, this time in conjunction with the equation

< φµ|uHF |φν >=
∑

β

(< φµφβ|v|φνφβ > − < φµφβ|v|φβφν >) (7.58)

for the matrix elements of uHF ,

UHF =
∑

λσ

∑

β

< φλφβ|ṽ|φσφβ > a
†
λaσ (7.59)

If we now form the expectation values < Φ|U|Φ > and < Φ|UHF |Φ >, we can see that we

get nonvanishing contributions only if σ refers to a single-particle state occupied in Φ, and

if a
†
λ restores the state annihilated by aσ. Thus,

< U >=
∑

α

< φα|u|φα > (7.60)

< UHF >=
∑

α

∑

β

< φαφβ|ṽ|φαφβ > (7.61)

The two-particle part of H may be handled analogously. Starting from Eq. (7.52),

V =
1

4

∑

µνλσ

< φλφσ|ṽ|φµφν > a
†
λa

†
σaνaµ (7.62)

We note that the < Φ|V|Φ > contains nonvanishing terms only when µ and ν refer to

occupied single-particle states, and then only when a
†
λ and a†

σ restore the same states as
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were annihilated by aµ and aν . There are two ways in which this can happen: either λ = µ

and σ = ν, or σ = µ and λ = ν. In the first alternative, the operator sequence a†
µa

†
νaνaµ

restores the original wavefunction; in the second, the sequence a†
νa

†
µaνaµ produces a final

result differing from Φ by the interchange in position of φµ and φν (i.e., by a minus sign).

Thus,

< V >=
1

4

∑

αβ

[< φαφβ|ṽ|φαφβ > − < φβφα|ṽ|φαφβ >] (7.63)

Referring to the definition of ṽ given in Eq. (7.51), we see that

< φβφα|ṽ|φαφβ >= − < φαφβ|ṽ|φαφβ >, so that Eq. (7.62) reduces to

< V >=
1

2

∑

αβ

< φαφβ|ṽ|φαφβ > (7.64)

Remembering now that H = H0 + H′, with H′ = V − UHF , Eqs. (7.56), (7.61), and (7.64)

yield the expected results:

< H >= E0+ < V > − < UHF >

= E0− < V > (7.65)

with

E0 =
∑

α

εα (7.66)

F. Matrix Elements Between Determinantal Wavefunctions

As a second and most important example of the use of the occupation-number formalism,

we consider next the evaluation of matrix elements of various operators between determi-

nantal wavefunctions. As in Section VII.C, we use Φ to denote a reference determinant and

Φrs···
αβ··· to denote a determinant in which one-particle states α, β, · · · (collectively denoted ∆)

have been respectively replaced by states r, s, · · · (collectively denoted R). Letting R′ and

∆′ stand for index sets as well, the matrix elements of concern here are of the general forms

< ΦR
∆|U|Φ

R′

∆′ > and < ΦR
∆|V|Φ

R′

∆′ >, where U and V are one- and two-particle operators,

respectively. We will also need the overlap integral < ΦR
∆|Φ

R′

∆′ >.

Considering first the overlap integral, we note that it must vanish unless the index sets

R and R′ contain the same individual indices, although not necessarily in the same order.
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For a nonvanishing result, it is also necessary that ∆ and ∆′ contain the same indices. For

R, R′, ∆, ∆′ satisfying these conditions, we write

< ΦR
∆|Φ

R′

∆′ >=< AR
∆Φ|AR′

∆′Φ >

=< Φ|(AR
∆)†AR′

∆′ |Φ >

=< Φ|a†
αa

†
β · · ·asara

†
r′a

†
s′ · · ·aβ′aα′ |Φ > (7.67)

after which we permute the primed-index operators to the unprimed orderings r, s, · · · and

· · · , β, α. This permutation introduces a factor (−)P that is determined by its parity, and

the operator string thereby produced leaves Φ unchanged. Specifically, we have

< ΦR
∆|Φ

R′

∆′ >= (−)P < Φ|a†
αa

†
β · · ·asara

†
ra

†
s · · ·aβaα|Φ >

= (−)P < Φ|(ara
†
r)(asa

†
s) · · · (a

†
βaβ)(a†

αaα)|Φ > (7.68)

where the operator permutation carrying the first line of Eq. (7.68) into the second is

even and does not produce a sign change. As indicated in Eqs. (7.39) and (7.40), each

parenthesized pair of operators multiplies Φ by unity, so all may be dropped. Thus,

< ΦR
∆|Φ

R′

∆′ >= (−)P < Φ|Φ >= (−)P (7.69)

where P is the permutation bringing R′, ∆′ to the same order as R, ∆. We will encounter

this overlap integral so often that we condense its definition to
〈

R

R′

∣

∣

∣

∣

∣

R′

∆′

〉

(7.70)

This symbol has the value of +1 (−1) if R, ∆ → R′,∆′ can be produced by an even (odd)

permutation; it is equal to 0 if R, ∆ and R′, ∆′ differ by more than a permutation. It is

also defined so as to apply (with value zero) even when the strings R and R′ (or ∆ and ∆′)

are of different lengths.

Next, we proceed to matrix elements of one-particle operators. As pointed out in the

discussion after Eq. (7.37), a one-particle operator can change the single-particle state of

at most one fermion, so that a matrix element < ΦR
∆|U|Φ

R′

∆′ > must vanish unless ΦR′

∆′ and

ΦR
∆ differ by at most one single-particle state. We may distinguish four cases, of which the

first is the possibility that R, ∆ and R′, ∆′ represent the same occupancy. For this case,

permuting the operator string AR′

∆′ to the ordering AR
∆, we have

< ΦR
∆|U|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< ΦR
∆|U|Φ

R
∆ >
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=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

∑

λσ

< φλ|u|φσ >< ΦR
∆|a

†
λaσ|Φ

R
∆ > (7.71)

where we have inserted Eq. (7.36) for U. The final matrix element of Eq. (7.71) vanishes

unless σ = λ, with λ occupied in ΦR
∆. When these conditions are met the matrix element

has the value unity, and

< ΦR
∆|U|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉[

∑

r∈R

< φr|u|φr > +
∑

α∈̃∆

< φα|u|φα >

]

(7.72)

Remembering our convention that Greek indices α, β, · · · denote occupied states in Φ, we

see that the last sum in Eq. (7.72) is over the occupied states of Φ that are not listed in ∆.

In the next case for one-particle-operator matrix elements, the two determinantal func-

tions differ by one orbital not occupied in Φ. Denoting these wavefunctions ΦrR
∆ and ΦsR′

∆′ ,

where r 6= s and R, ∆ and R′, ∆′ differ only by a permutation, and using the relationship

ΦrR
∆ = a†

rΦ
R
∆,

< ΦrR
∆ |U|ΦsR′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< ΦrR
∆ |U|ΦsR

∆ >

=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

∑

λσ

< φλ|u|φσ >< ΦR
∆|ara

†
λaσa

†
s|Φ

R
∆ > (7.73)

The only nonzero term of Eq. (7.73) is that with λ = r and σ = s, and Eq. (7.73) reduces

to

< ΦrR
∆ |U|ΦsR′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φr|u|φs > (7.74)

A third one-particle-operator case is of the form < ΦR
α∆|U|Φ

R′

β∆′ >. Because ΦR
α∆ =

AR
∆aαΦ, and AR

∆ is a string containing an odd number of operators, we have AR
∆aα = −aαAR

∆,

so ΦR
α∆ = −aαΦR

∆, and the equation analogous to Eq. (7.73) is

< ΦR
α∆|U|Φ

R′

β∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

∑

λσ

< φλ|u|φσ >< ΦR
∆|(−a†

α)a†
λaσ(−aβ)|ΦR

∆ > (7.75)

Since by hypothesis α 6= β, the only nonzero term of Eq. (7.75) occurs when σ = α and

λ = β; because < ΦR
∆|(−a†

α)a†
βaα(−aβ)|ΦR

∆ >= −1

< ΦR
α∆|U|Φ

R′

β∆′ >= −

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φβ|u|φα > (7.76)

The fourth one-particle-operator case is < ΦrR
α∆|U|Φ

R′

∆′ >, where R, ∆ and R′, ∆′ are re-

lated by permutation. Using ΦrR
α∆ = +a†

raαΦR
∆, we obtain by the methods already illustrated

< ΦrR
α∆|U|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φr|u|φα > (7.77)
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Analogous methods may be applied for two-particle operators. We use Eq. (7.52) for the

two-particle operator V, noting that the summands of that equation are symmetric under

index interchanges µ↔ ν and λ↔ σ. We illustrate for one case:

< ΦrsR
∆ |V|ΦuvR′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< ΦR
∆|asarVa†

ua
†
v|Φ

R
∆ >

=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

1

4

∑

µνλσ

< φλφσ|ṽ|φµφν >< ΦR
∆|asara

†
λa

†
σaνaµa

†
ua

†
v|Φ

R
∆ > (7.78)

Nonzero terms result only if indices µ and ν are equal to u and v (in either order), and if

λ and σ are equal to r and s (in either order). There are four index choices that satisfy

these conditions; each makes the same contribution to Eq. (7.78). We therefore take any

one index choice, multiply by 4, and thereby cancel the factor ” 1
4
” that came as part of V.

We choose λ = r, σ = s, µ = u, ν = v; the final matrix element of Eq. (7.78) is then +1,

and

< ΦrsR
∆ |V|ΦuvR′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φrφs|ṽ|φuφv > (7.79)

Since the matrix element formulas are useful in discussions of some rather sophisti-

cated quantum formulations of many-particle systems, such as the configuration-interaction

method, many-body diagrammatic perturbation theory, coupled-cluster method, we reca-

pitulate those already derived and add the others needed to provide a complete collection.

The only matrix elements omitted from the following lists are those that can be obtained

by transposition of the formulas given.

One-particle operator:

< ΦR
∆|U|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉[

∑

r∈R

< φr|u|φr > +
∑

α∈̃∆

< φα|u|φα >

]

(7.80)

< ΦrR
∆ |U|ΦsR′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φr|u|φs > (7.81)

< ΦR
α∆|U|Φ

R′

β∆′ >= −

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φβ|u|φα > (7.82)

< ΦrR
α∆|U|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φr|u|φα > (7.83)

Two-particle operator:

< ΦR
∆|V|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉[

1

2

∑

rs;r,s∈R

< φrφs|ṽ|φrφs >

+
∑

r∈R

∑

α∈̃∆

< φrφα|ṽ|φrφα > +
1

2

∑

αβ;α,β∈̃∆

< φαφβ|ṽ|φαφβ >

]

(7.84)
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< ΦrR
∆ |V|ΦsR′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉[

∑

u∈R

< φrφu|ṽ|φsφu > +
∑

α∈̃∆

< φrφα|ṽ|φsφα >

]

(7.85)

< ΦR
α∆|V|Φ

R′

β∆′ >

= −

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉[

∑

r∈R

< φβφr|ṽ|φαφr > +
∑

γ∈̃∆

< φβφγ|ṽ|φαφγ >

]

(7.86)

< ΦrR
α∆|V|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉[

∑

s∈R

< φrφs|ṽ|φαφs > +
∑

β∈̃∆

< φrφβ|ṽ|φαφβ >

]

(7.87)

< ΦrsR
∆ |V|ΦuvR′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φrφs|ṽ|φuφv > (7.88)

< ΦR
αβ∆|V|Φ

R′

γδ∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φγφδ|ṽ|φαφβ > (7.89)

< ΦrR
α∆|V|Φ

sR′

β∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φrφβ|ṽ|φsφα > (7.90)

< ΦrsR
α∆ |V|ΦuR′

∆′ >= −

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φrφs|ṽ|φuφα > (7.91)

< ΦrR
αβ∆|V|Φ

R′

γ∆′ >= −

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φrφγ|ṽ|φαφβ > (7.92)

< ΦrsR
αβ∆|V|Φ

R′

∆′ >=

〈

R

∆

∣

∣

∣

∣

∣

R′

∆′

〉

< φrφs|ṽ|φαφβ > (7.93)

G. Density Matrix Elements

The matrix elements of reduced density operators can be cast in a form that permits their

evaluation by the methods outlined in the preceding section. To find such a formulation,

we start by writing an N -particle wavefunction [φµ, φν, φλ, · · ·] in a way that explicates its

dependence on the coordinates x1. Taking account of the N -dependent factors implicit in

the definition of [ ], we have

[φµ, φν, φλ, · · ·] =

[

(N − 1)!

N !

]1/2

(φµ(x1)[φν, φλ, · · ·]

−φν(x1)[φµ, φλ, · · ·] + φλ(x1)[φµ, φν, · · ·] − · · ·) (7.94)

127



In Eq. (7.94), the [ ] on the left has arguments x1, · · · ,xn, while the arguments of the [ ]

on the right are x2, · · · ,xn. If we assume φµ, φν, · · · are in lexical order, Eq. (7.94) can be

written

[φµ, φν, φλ, · · ·] =

[

(N − 1)!

N !

]1/2
∑

σ

φσ(x1)aσ[φµ, φν, φλ, · · ·] (7.95)

The alternating signs in Eq. (7.94) are just needed for use of aσ, and the arguments of aσ[ ]

are x2, · · · ,xn. The σ sum may be regarded as unrestricted, as the σ values not represented

in [φµ, φν, φλ, · · ·] lead to vanishing contributions.

Since the form of the operator in Eq. (7.95) is independent of the wavefunction to which

it is applied, we consider applying it to a general wafefunction Ψ consisting of an arbitrary

linear combination of lexically ordered [ ]. We get

Ψ(x1,x2, · · · ,xn) =

[

(N − 1)!

N !

]1/2
∑

µ

φµ(x1)aµΨ (7.96)

where the arguments of aµΨ are x2, · · · ,xn. It is obvious, then, that

Ψ(x′
1,x2, · · · ,xn) =

[

(N − 1)!

N !

]1/2
∑

ν

φν(x
′
1)aνΨ (7.97)

The first-order density matrix of a unit-normalized N -particle wavefunction Ψ, denoted

γ(x1,x
′
1), is

γ(x1,x
′
1) = N

∫

dx2 · · ·dxnΨ(x1,x2, · · · ,xn)Ψ∗(x′
1,x2, · · · ,xn) (7.98)

Introducing Eqs. (7.96) and (7.97) into the definition (7.98) we therefore obtain

γ(x1,x
′
1) = N

[

(N − 1)!

N !

]

∑

µν

φµ(x1)φ
∗
ν(x

′
1) < aνΨ|aµΨ >

=
∑

µν

φµ(x1)φ
∗
ν(x

′
1) < Ψ|a†

νaµ|Ψ > (7.99)

Comparing Eq. (7.6) with the expansion of γ(x1,x
′
1)

γ(x1,x
′
1) =

∑

µν

|φµ(x1) > γµν < φν(x
′
1)| (7.100)

with

γµν =
∫

dx1dx
′
1φ

∗
µ(x1)γ(x1,x

′
1)φν(x

′
1) (7.101)

we see that

γµν =< Ψ|a†
νaµ|Ψ > (7.102)

The formula for the second-order density matrix corresponding to Eq. (7.102) is

Γµν,λσ =
1

2
< Ψ|a†

λa
†
σaνaµ|Ψ > (7.103)
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H. Basis Transformation

In this section we consider the way in which expressions involving annihilation or creation

operators are affected by transformations of the single-particle basis. Since the formalism

we are using is based on orthonormal single-particle states, we limit the discussion to trans-

formations that preserve orthonormality, namely unitary transformations. Accordingly, we

consider the transformation from an orthonormal set {φµ} to another such set {φ′
µ}, with

the two sets related by a transformation operator U:

φ′
µ = Uφµ (7.104)

The matarix representation of Eq. (8.1) is

φ′
µ =

∑

ν

Uνµφν (7.105)

The matrix U is unitary, so that (U−1)µν = (U†)µν = U∗
νµ.

The matrix elements of a one-particle operator B transform in such a way that B′, the

matrix of B in the {φ′} basis, is related to the transformed matrix B by

B′ = U†BU (7.106)

< φ′
µ|B|φ

′
ν >=

∑

λσ

(U†)µλ < φλ|B|φσ > Uσν (7.107)

This result was obtained by substituting the transformation equations for φ′
µ and φ′

ν. The

corresponding result for two-particle operators is

< φ′
µφ

′
ν|B|φ

′
λφ

′
σ >=

∑

ρτηζ

(U†)µρ(U
†)ντ < φρφτ |B|φηφζ > UηλUζσ (7.108)

We are also concerned here with the relations between the operators a†
µ, aµ in the original

basis and their counterparts in the transformed basis, which we shall denote a′†
µ , a′

µ. Since

the operator a′†
µ is supposed to add a particle in the state φ′

µ, it must be equivalent to a

linear combination of additions to the original {φµ} with appropriate coefficients. That is,

a′†
µ =

∑

ν

Uνµa
†
ν (7.109)

Taking the adjoints of both sides of Eq. (7.109), we also have

a′
µ =

∑

ν

(U†)µνaν (7.110)
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Since Eq. (7.110) may seem to some extent nonintuitive, let us digress briefly to verify

its consistency. For this purpose, consider the anticommutation relation for the tranformed

operators:

a′†
µa′

ν + a′
νa

′†
µ = δµν (7.111)

Our objective is to verify Eq. (7.111) by rewriting it in the original basis. Using Eqs. (7.109)

and (7.110), we have

a′†
µa′

ν + a′
νa

′†
µ =

∑

λσ

Uλµ(U†)νσ[a†
λaσ + aσa

†
λ]

=
∑

λσ

Uλµ(U†)νσδλσ

=
∑

λ

(U†)νλUλµ =
∑

λ

(U−1)νλUλµ = δνµ (7.112)

as required.

We are now ready to verify that the occupation-number expressions for operators are

invariant with respect to basis transformation; for a one-particle operator B we start from

B =
∑

µν

< φ′
µ|b|φ

′
ν > a′†

µa′
ν (7.113)

Applying Eqs. (8.2), (8.6), and (8.7), we find

B =
∑

µν

∑

λσρτ

[(U†)µλUσν < φλ|b|φσ >][Uρµa
†
ρ][(U

†)ντaτ ]

=
∑

λσρτ

[

∑

µ

Uρµ(U†)µλ

][

∑

ν

Uσν(U
†)ντ

]

< φλ|b|φσ > a†
ρaτ

=
∑

λσρτ

δρλδστ < φλ|b|φσ > a†
ρaτ

=
∑

λσ

< φλ|b|φσ > a
†
λaσ (7.114)

This is the desired result. A corresponding result can be obtained for two-particle operators.
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VIII. HARTREE-FOCK METHOD

Given any trial function Φ̃, the expectation value E[Φ̃] of the Hamiltonian operator H is

a number given by

E[Φ̃] =< Φ̃ |H | Φ̃ > (8.1)

We say that E[Φ̃] is a functional of Φ̃ since its value depends on the form of a function,

i.e., the function Φ̃, rather than any single independent variable. Suppose we vary Φ̃ by an

arbitrarily small amount, by changing the parameters upon which it depends, for example.

That is,

Φ̃ → Φ̃ + δ Φ̃ (8.2)

The energy then becomes

E[Φ̃ + δ Φ̃] =< Φ̃ + δ Φ̃ |H | Φ̃ + δ Φ̃ >

= E[Φ̃] +

[

< δ Φ̃ |H | Φ̃ > + < Φ̃ |H | δ Φ̃ >

]

+ · · ·

= E[Φ̃] + δ E (8.3)

where δ E, which is called the first variation in E, includes all terms that are linear, i.e., first

order, in the variation δ Φ̃. Notice that we can treat ”δ” just like a differential operator, i.e.,

δ < Φ̃ |H | Φ̃ >=< δ Φ̃ |H | Φ̃ > + < Φ̃ |H | δ Φ̃ >

In the variational method, we are looking for that Φ̃ for which E[Φ̃] is a minimum. In other

words, we wish to find that Φ̃ for which the first variation in E[Φ̃] is zero, i.e.,

δ E = 0 (8.4)

A. Minimization of the Energy of a Single Determinant

The definition of the φα in Eq. (5.13) is completed by the requirement that Φ be an

approximation to Ψ, the exact solution to the Scrödinger equation (1.1), i.e.,

HΨ = EΨ (8.5)

Different criteria for the determination of Φ lead to different sets of equations for the φα.

131



In terms of Φ, an approximation < H > to the exact energy E is given by the relation

< H >=< Φ |H |Φ > (8.6)

Inserting the definition of Φ from Eq. (5.13) and using the fact that A is self-adjoint,

commutes with H, and is idempotent [cf. Eq. (1.94)], we may write

< H >= N ! < φα(1) · · ·φω(N) |H | Aφα(1) · · ·φω(N) >

=
N !
∑

P

(−)P < φα(1) · · ·φω(N) |H P |φα(1) · · ·φω(N) > (8.7)

Now, introducing the definition of H as given in Eqs. (5.1)-(5.3), and taking note of the

orthonormality of the φα, Eq. (8.7) is reduced to the form

< H >=
N
∑

α

< φα | u |φα > +
N
∑

α<β

[

< φα φβ | v |φα φβ > − < φα φβ | v |φβ φα >

]

(8.8)

In accordance with our general notational conventions, the α and β summations run over

the orbitals included in Φ. Noticing that if we include the term α = β in the last sum, it

vanishes, we may remove the restriction α < β in favor of a factor 1
2
, giving

< H >=
N
∑

α

< φα | u |φα >

+
1

2

N
∑

αβ

[

< φα φβ | v |φα φβ > − < φα φβ | v |φβ φα >

]

(8.9)

Given the single determinant

|Φ >= |φ1 φ2 · · ·φa φb · · ·φN >

the energy

E0 =< Φ |H |Φ >

is a functional of the spinorbitals {φa}. To derive the Hartree-Fock equations we need

to minimize Eo[{φa}] with respect to the spinorbitals, subject to the constraint that the

spinorbitals remain orthonormal,

< φa |φb >= δab (8.10)

that is, the constraints are of the form

< φa |φb > −δab = 0 (8.11)
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We therefore consider the functional L[{φa}] of the spinorbitals

L[{φa}] = Eo[{φa}] −
N
∑

a=1

N
∑

b=1

λab (< φa |φb > −δab) (8.12)

where Eo[{φa}] is the expectation value of the single determinant |Φ >, written here using

a slightly modified notation, in the form

Eo[{φa}] =
N
∑

a=1

< a | u | a > +
1

2

N
∑

a=1

N
∑

b=1

(

< a b | a b > − < a b | b a >

)

(8.13)

and the λab in Eq. (8.12) constitute a set of Lagrangian multipliers. Minimization of Eo

subject to the constraints, is thus obtained by minimizing L, i.e., we now wish to find the

conditions which the orbitals {φa} must satisfy in order for the functional L to have a

minimum value; thus, we require that δ L = 0 for small variations δ φa of these optimum

orbitals. We therefore vary the spinorbitals an arbitrary, infinitesimal amount, i.e.,

φa → φa + δ φa (8.14)

In the following treatment it is convenient to define Coulomb and exchange operators by

Jb(µ)φa(µ) =< φb(ν) | r
−1
µν |φb(ν) > φa(µ) (8.15)

Kb(µ)φa(µ) =< φb(ν) | r
−1
µν |φa(ν) > φb(µ) (8.16)

Using these definitions, the Coulomb and exchange integrals occurring in Eq. (8.13) can be

written

Jab =< a b | a b >=< φa(µ) | Jb(µ) |φa(µ) >=< φb(ν) | Ja(ν) |φb(ν) > (8.17)

Kab =< a b | b a >=< φa(µ) |Kb(µ) |φa(µ) >=< φb(ν) |Ka(ν) |φb(ν) > (8.18)

It is seen that the Coulomb operator Jb(µ) is just the operator for the potential energy

which would arise from an electron distribution in space with a density φ∗
b φb. Such operators

correspond to the effective potentials occurring in the Hartree SCF mehtod. The exchange

operator, on the other hand, has no classical analogy, since it arises from the antisymmetry

principle.
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The first-order variation in the functional L is

δ L =
N
∑

a=1

(

< δ φa | u |φa > + < φa | u | δ φa >

)

+
1

2

N
∑

a=1

N
∑

b=1

(

< δ φa | Jb − Kb |φa > + < φa | Jb − Kb | δ φa >

)

+
1

2

N
∑

a=1

N
∑

b=1

(

< δ φb | Ja − Ka |φb > + < φb | Ja − Ka | δ φb >

)

−
N
∑

ab

(

λab < δ φa |φb > +λab < φa | δ φb >

)

(8.19)

The first and second double summations are symmetric in their indices and lead to the same

final sums. Thus, Eq. (8.19) can be written

δ L =
N
∑

a=1

[〈

δ φa

∣

∣

∣

∣

∣

u +
N
∑

b=1

(Jb − Kb)

∣

∣

∣

∣

∣

φa

〉]

+
N
∑

a=1

[〈

φa

∣

∣

∣

∣

∣

u +
N
∑

b=1

(Jb − Kb)

∣

∣

∣

∣

∣

δ φa

〉]

−
N
∑

ab

(

λab < δ φa |φb > +λab < φa | δ φb >

)

(8.20)

Since u, Jb, and Kb are hermitian, we see that the first and second summations are just the

adjoints of each other. Furthermore, we can interchange summations indices in the last term

of the double summation. Then using the fact that < φb|δφa > and < δφa|φb > are adjoints

of each other, we can write

N
∑

ab

λab < φa | δ φb >=
∑

ab

λba < δ φa |φb >
∗ (8.21)

Eq. (8.20) then becomes

δ L =
N
∑

a=1

[〈

δ φa

∣

∣

∣

∣

∣

u +
N
∑

b=1

(Jb − Kb)

∣

∣

∣

∣

∣

φa

〉

−
N
∑

b=1

λab < δ φa |φb >

]

+
N
∑

a=1

[〈

δ φa

∣

∣

∣

∣

∣

u +
N
∑

b=1

(Jb − Kb)

∣

∣

∣

∣

∣

φa

〉∗

−
N
∑

b=1

λba < δ φa |φb >
∗

]

(8.22)

The vanishing of δL for an arbitrary variation δφa is now satisfied by the conditions

[

u +
N
∑

b=1

(Jb − Kb)

]

|φa >=
N
∑

b=1

λab |φb > (8.23)

[

u +
N
∑

b=1

(Jb − Kb)

]

|φa >
∗ =

N
∑

b=1

λba |φb >
∗ (8.24)
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Taking the complex conjugate of Eq. (8.24) and substracting from Eq. (8.23), we obtain

N
∑

b=1

(λab − λ∗ba) |φb >= 0 (8.25)

Since the orbitals {φb} are linearly independent, it follows that λab = λ∗ba, i.e., the lagrangian

multipliers are the elements of a hermitian matrix. Thus, Eqs. (8.23) and (8.24) are complex

conjugates of each other and are equivalent. These equations are known as the Hartree-Focck

equations. Defining the Fock operator as

F = u +
N
∑

b=1

(Jb − Kb) = u + uHF (8.26)

the equation for the spinorbitals takes the form

F |φa >=
N
∑

b=1

λab |φb > a = 1, 2, · · · , N (8.27)

This result is perhaps surprising at first sight since it is not in the canonical (standard)

eigenvalue form of the equation

F |φa >= εa |φa > (8.28)

The reason is that any single determinant wavefunction Φ formed from a set of spinorbitals

{φa} retains a certain degree of flexibility in the spinorbitals; the spinorbitals can be mixed

among themselves without changing the expectation values Eo =< Φ |H |Φ >. Before

obtaining the canonical form of the Hartree-Fock equations, we need to consider unitary

transformations of the spinorbitals among themselves.

B. The Canonical Hartree-Fock Equations

Starting from Eq. (8.9), we may conveniently demonstrate an important property of

< H >, namely that its value is invariant with respect to unitary transformations among the

single-particle functions φa. This invariance means that we cannot attach unique physical

significance to the individual φa, but only to the N -particle space spanned by the set {φa}

occurring in the many-particle wavefunction Φ. To prove the invariance, consider a trans-

formation connecting the set {φa} to another set of single-particle functions denoted {φ′
a}.

We write

φβ =
∑

α

Uαβ φ
′
α (8.29)

135



Since the transformation is assumed unitary, the Uαβ are the elements of a unitary matrix

U, and the φ′
α, like the φα, are orthonormal. Substituting Eq. (8.29) into Eq. (8.9), we

obtain

< H >=
∑

αβγ

U∗
βα Uγα < φ′

β | u |φ
′
γ >

+
1

2

∑

αβ

∑

γλστ

U∗
γα U

∗
λβ Uσα Uτβ (< φ′

γ φ
′
λ | v |φ

′
σ φ

′
τ > − < φ′

γ φ
′
λ | v |φ

′
τ φ

′
σ >) (8.30)

Because U is unitary, U ∗
βα = (U−1)αβ, and we have the relation

∑

α

U∗
αβ Uγα = δβγ (8.31)

Taking similar steps for the last term of Eq. (8.30), we find

< H >=
∑

βγ

δβγ < φ′
β | u |φ

′
γ >

+
1

2

∑

γλστ

δγσ δλτ (< φ′
γ φ

′
λ | v |φ

′
σ φ

′
τ > − < φ′

γ φ
′
λ |v |φ

′
τ φ

′
σ >) (8.32)

Equation (8.32) reduces to the same form as Eq. (8.9), but with the functions φ′
α in place of

the φα. We thus see that the same value will be obtained for < H > irrespective of whether

{φα} or {φ′
α} are considered to be the single-particle functions comprising Φ. In fact, it can

be shown that the many-particle function built from the φ′
α is identical to Φ except for a

possible phase factor.

The Hartree-Fock equations can be written in the matrix form

Fφ = φΛ (8.33)

where φ and Λ are given by

φ = (φ1 φ2 · · · φN) Λ =

















λ11 λ12 · · · λ1N

λ21 λ22 · · · λ2N

· · · · · · · · · · · ·

λN1 λN2 · · · λNN

















(8.34)

It is evident from Eq. (8.26) that the Fock operator is a monoelectronic operator. The

summation term over the Coulomb and exchange operators represents a one-electron ap-

proximation to the behavior of one electron in the field of the others. Now, let φ represent

a matrix of Hartree-Fock spinorbitals. It is not difficult to show that the orthonormality of

the Hartree-Fock orbitals is invariant under a unitary transformation. Moreover, a Slater
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determinant is invariant under such transformation. Thus, one finds that the Hartree-Fock

wavefunction is determined only within a unitary transformation among the orbitals; i.e.,

the orbitals themselves are not unique. Given a particular set of Hartree-Fock orbitals, there

are many different other sets obtainable from them by different unitary transformations. It

turns out that the Hartree-Fock orbitals defined by Eqs. (8.23) and (8.24) are not partic-

ularly suitable for the description of many-electron systems in terms of orbitals associated

with definite energy values. It is then convenient to choose a unitary transformation such

that

U† ΛU = Ξ (8.35)

where Ξ is a diagonal matrix, namely,

Ξij = εi δij (8.36)

Now multiplying Eq. (8.33) from the right by U, using Eq. (8.35), and the unitarity of U,

we obtain

Fφ′ = φ′ Ξ (8.37)

where

φ′ = φU (8.38)

However, the operator F is defined in terms of the original Hartree-Fock orbitals{φa} and not

in terms of the transformed orbitals {φ′
a}, so that Eqs. (8.33) and (8.37) are not of the same

form. We now show that the operator (8.26) is invariant under the unitary transformation.

Since u does not depend on the Hartree-Fock orbitals, we need consider only the Coulomb

and exchange operators. Considering the Coulomb operator first, we write

J′b(µ)φa(µ) =< φ′
b(ν) | r

−1
µν |φ′

b(ν) > φa(µ) (8.39)

Letting Uab be an element of the unitary transformation matrix, we obtain

∑

b

J′b(µ)φa(µ) =
∑

kl

< φk(ν) | r
−1
µν |φl(ν) >

∑

b

U∗
kb Ulb φa(µ)

=
∑

kl

< φk(ν) | r
−1
µν |φl(ν) > δkl φa(µ)

=
∑

k

< φk(ν) | r
−1
µν |φk(ν) > φa(µ)

=
∑

b

< φb(ν) | r
−1
µν |φb(ν) > φa(µ)

=
∑

b

Jb(µ)φa(µ) (8.40)
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A similar result obtains for the exchange portion of the Hartree-Fock operator, so that

N
∑

b=1

(J′b − K′
b) =

N
∑

b=1

(Jb − Kb) (8.41)

The advantage of the particular unitary transformation (8.35) is that the Hartree-Fock

equations now assume the pseudoeigenvalue form (8.28)

F |φa >= εa |φa > (8.42)

where we dropped the primes on the transformed orbitals for notational convenience. The

{εa} are called the Hartree-Fock eigenvalues and are the energies associated with the Hartree-

Fock orbitals. Eq. (8.42), plus the equations of constraint, Eq. (8.11), define the εα and

φα. The constraint equations are important, because in their absence Eq. (8.42) would have

solutions for all values of the εα. However, the requirement that the φα be normalized makes

Eq. (8.42) a boundary-value equation, with solutions only for certain values of εα. We also

note that F = u + uHF is Hermitian, confirming our expectation that the εα are real and

verifying that different φα are orthogonal.

Since Λ is a hermitian matrix, it is always possible to find a unitary matrix U such that

the transformation (8.35) diagonalizes Λ. We are not concerned with how to obtain such

a matrix, only that such a matrix exists and is unique. There must exist then a set of

spinorbitals {φ′
a} for which the matrix of Lagrange multipliers is diagonal

F |φ′
a >= εa |φ

′
a > (8.43)

The unique set of spinorbitals {φ′
a} obtained from a solution of this eigenvalue equation

is called the set of canonical spinorbitals. We henceforth drop the primes and write the

Hartree-Fock equations as (8.42).

The canonical spinorbitals, which are solutions to F |φa >= εa |φa >, will generally be

delocalized and form a basis for an irreducible representation of the point group of the

molecule, i.e., they will have certain symmetry properties characteristic of the symmetry of

the molecule or, equivalently, of the Fock operator. Once the canonical spinorbitals have

been obtained it would be possible to obtain an infinite number of equivalent sets by a

unitary transformation of the canonical set.

It is not difficult to show that the Hartree-Fock wavefunction is invariant under the

unitary transformation (8.35), which transforms the N spinorbitals according to (8.38).
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Consider the linear transformation of the spinorbitals (8.29). Then the theorem is that

|φ1 φ2 · · ·φN | = |U | |φ′
1 φ

′
2 · · ·φ

′
N | (8.44)

where |U| is the determinant of the matrix of the Uαβ. To see this, we observe that in detail

the right hand side of Eq. (8.44) is

Det











∑N
β=1 U1β φ

′
β(1) · · ·

∑N
β=1 U1β φ

′
β(N)

...
...

...
∑N

β=1 U
N
Nβ φ

′
β(1) · · ·

∑N
β=1 UNβ φ

′
β(N)











(8.45)

which will be recognized as the determinant of the product of the two ”matrices” Uαβ and

φ′
β(s). Equation (8.44) then follows from the standard theorem that the determinant of a

product of matrices is equal to the product of the determinants of the separate matrices.

One then concludes that (DetU = ei ϕ)

|Φ′| = |Φ| (8.46)

that is, Φ is invariant to a unitary transformation of the basis orbitals. Because any ob-

servable property depends on |Φ|2, for all intents and purposes, the original wavefunction in

terms of the spinorbitals {φa} and the transformed wavefunction in terms of the spinorbitals

{φ′
a} are identical. For a single determinant wavefunction, any expectation value is therefore

invariant to an arbitrary unitary transformation of the spinorbitals. Thus, the spinorbitals

that make the total energy stationary are not unique, and no particular physical significance

can be given to a particular set of spinorbitals. Localized spinorbitals, for example, are not

more ”physical” than delocalized spinorbitals.

One can even show that any transformation Φ′ = ΦT (T nonsingular but not necessarily

unitary) leaves Φ invariant (except, possibly, for an immaterial normalization constant).

This result follows from the fact that |Det T| is equal to a constant numerical quantity.

However, if Φ is not of the form assumed here (determinant of doubly occupied spatial

orbitals), the preceding conclusions are not necessarily valid.

Turning now to the question of assuming the φa orthonormal, we first note that there

are many linear transformations of the type (8.44); for example, the well-known Schmidt

procedure, which, starting from a given linearly independent set of φa (and the φa must be

linearly independent to start with or else Φ ≡ 0) will produce an orthonormal set of φ′
a.

From (8.44), then, we see that Φ is proportional to a Slater determinant formed from the
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φ′
a, and therefore since the proportionality constant |T| will simply cancel out in calculating

E, we have the desired result that we can, without loss of generality, restrict attention to

determinants formed from orthonormal spinorbitals.

In summary, even with the requirement of orthonormality, the φ′
a are certainly not unique.

One important consequence of this observation is that we must expect that our variational

equations will not determine the optimal spinorbitals uniquely. Instead, at any stationary

point, they will be arbitrary up to a unitary transformation.

Actually we earlier encountered an example of nonuniqueness of the variational param-

eters. Namely in the linear variation method only the ratios of the coefficients were deter-

mined, while the overall scale could be chosen arbitrarily. Thus lack of uniqueness of this

variational parameters is not uncommon.

Alternatively, one may try to eliminate ambiguities by reparametrizing. Thus in the UHF

approximation, it will turn out that the individual φa appear in E only in the form of the

so called one-body density matrix

ρUHF (x1,x
′
1) ≡

N
∑

i=1

φi(x1)φ
∗
i (x

′
1) (8.47)

which is, as we will show, invariant to unitary transformations. Therefore one can bypass

the ambiguity by basing the whole theory of the UHF approximation on ρUHF rather than

on the φi individually.

To see that ρUHF is invariant we write

φi =
N
∑

j=1

Tij φ
′
i (8.48)

Then

ρUHF (x1,x
′
1) =

N
∑

k=1

N
∑

j=1

N
∑

i=1

T ∗
ik Tij φ

′
j(x1)φ

′∗
k (x′

1) (8.49)

which in turn does become

ρUHF (x1,x
′
1) =

N
∑

k=1

φ′
k(x1)φ

′∗
k (x′

1) ≡ ρ′UHF (x1,x
′
1) (8.50)

if the transformation is unitary, that is, if

N
∑

l=1

T ∗
lk Tlj = δkj (8.51)
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C. Interpretation of Hartree-Fock Wavefunction

The orbitals φα obtained from Eq. (8.42) with the Fock operator given by Eq. (8.26) have

a natural physical interpretation. The operator u + uHF is of the form of the Hamiltonian

for a single electron moving in the field of the nuclei, and subject to interaction with the

Hartree-Fock charge distributions of the other electrons. This interaction consists of two

parts, of which the first, or Coulomb part, is simply the electrostatic interaction of the

electron with the charge density of all other electrons. The remaining, or exchange part,

has no classical analog and is due to the antisymmetry requirement on the many-particle

wavefunction. Even though the sums in Eq. (8.42) for uHF are over all electrons, they

do not include the interaction of an electron with its own distribution. In this case the

Coulomb and exchange contributions are of equal magnitude, but opposite sign, and cancel

each other.

We can now see that the iterative process leading to the solution of Eq. (8.42) involves

the determination of individual electron distributions that are consistent with the Coulomb

and exchange interactions produced by the distribution found for all other electrons. It is for

this reason that the Hartree-Fock method is also known as the self-consistent field method

(SCF method).

It is important to recognize that even though each Hartree-Fock φα is determined from an

equation that includes interaction with all other electrons, the function Φ cannot be an exact

solution to the many-electron Schrödinger equation. In brief, φ is deficient in that it ignores

the fact that the probability distribution of each electron must be a function of the positions

of all other electrons, and not merely dependent upon their distributions as a whole. In

other words, the true probability of electron i being in any particular volume element must

correlate with the probabilities that other electrons are individually in particular volume

elements, and such a situation cannot be represented by a Φ that is an antisymmetric

product of functions φα. It has become customary to refer to the deficiency of the Hartree-

Fock wavefunction as a lack of electron correlation, and to identify the difference between

the exact energy and the Hartree-Fock < H > as the correlation energy that can be defined

precisely as follows:

The correlation energy for a certain state with respect to a specified Hamiltonian is the

difference between the exact eigenvalue of the Hamiltonian and its expectation value in the
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Hartree-Fock approximation for the state under consideration

The correlation energy so defined depends on the Hamiltonian and may be expressed

mathematically as

Ecorr =< H > (exact)− < H > (Hartree− Fock) (8.52)

From now on, unless otherwise stated, we shall assume that H is the nonrelativistic Hamilto-

nian, and we shall use the term correlation energy to mean nonrelativistic correlation energy.

It must be emphasized that the correlation energy defined in this way is not the difference be-

tween the exact experimental energy and the Hartree-Fock energy since the former contains

contributions from relativistic effects. This is the reason of why the correlation energy is

usually defined as the difference between the exact nonrelativistic energy and the restricted

Hartree-Fock energy.

The correlation energy must be regarded as a strictly mathematical quantity which serves

as a useful criterion for the acceptability of wavefunctions over Hartree-Fock wavefunctions.

Good wavefunctions (on the basis of the variational principle) will be those accounting for

as much of the correlation energy as possible. This is an important point in view of the

fact that the Hartree-Fock energy is usually within about 1 percent of the experimental

value. Although this may strike one as very good agreement, it must be pointed out that

total energies per se are not of much significance to the problem of physics and chemistry.

Rather, one is usually interested in energy differences, e.g., the energy difference between two

spectroscopic states. Unfortunately, these energy differences themselves are often no larger

than about 1 percent of the total energy of either state. Thus small absolute errors in the

total energies may easily lead to large relative errors in their differences. For this reason there

is a tremendous amount of interest in quantum-mechanical calculations which give better

energies than the Hartree-Fock method does. Since the Hartree-Fock method has been rather

widely applied, and since one is beginning to understand just what its inadequacies are, it

is helpful to use this method as a sort of reference point for more accurate calculations.

The above definition of correlation and correlation energy are unambiguous and well

accepted, but unfortunately deviate to some extent from the usual meanings of these words.

In a strict mathematical sense, there is in fact a correlation between individual electron

distributions in the Hartree-Fock Φ. This mathematical correlation is produced by the

antisymmetrization, and is most evident when we consider what happens when two electrons
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are at the same space-spin coordinate x - the antisymmetrization causes Φ to vanish, even if

no φα(x) vanishes. In fact, the so-called correlation error in the Hartree-Fock method reflects

the fact that ccoulombic interaction between pairs of electrons, especially electrons with

antiparallel spins, is not properly accounted for. Electrons of parallel spins are kept apart by

the antisymmetry principle, an effect which overrides the coulombic repulstion, and are thus

described somewhat better than electrons of antiparallel spins. Wavefunctions which lead to

lower energies than the Hartree-Fock energy must somehow account for details of electronic

motions in a more sophisticated manner than by just allowing each electron to move in a

”smeared-out” field of the others. It is this assumption of an average potential field which

allows electrons with antiparallel spins to avoid each other somewhat less assiduously than

would be expected on the basis of electrostatic effects alone. According to the variational

principle, it is evident that the correlation defined by Eq. (8.52) is a negative quantity, since

the Hartree-Fock energy lies above the exact energy. From the virial theorem, which the

Hartree-Fock energy satisfies, we see that

Tcorr = −
1

2
Vcorr (8.53)

so that Tcorr > 0, and Vcorr < 0. As we shall soon discuss, the correlation energy for a

two-electron atom is around −1.1 ev, so that Tcorr = 1.1 ev. This means that the kinetic

energy calculated by the Hartree-Fock method is always too low. This may be interpreted

to mean that the electrons actually undergo more complicated movions to avoid each other

than is implicit in the mehtod. The potential-energy error of −2.2 ev results primarily

from allowing two electrons with different spins to occupy the same spatial region, leading

to a higher potential energy than is actually the case. The simple Hartree SCF method,

which was discussed in Sect. V, is very similar to the Hartree-Fock SCF method except that

exchange effects are entirely absent in the former. For this very reason the Hartree method

(which does not include electron spin explicitly) is sometimes superior to the Hartree-Fock

method. This comes about from the fact that the Hartree method gives an equally poor

description of paired electrons and unpaired electrons, but the errors are of different sign

and tend to cancel. The introduction of antisymmetry improves the description of parallel

spins but does nothing to improve the description of antiparallel spins; hence cancellation

of errors no longer occurs. In general the simple Hartree SCF method often leads to more

sensible results than the Hartree-Fock method, e.g., in theories involving ferromagnetism,
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antiferromagnetism, and general magnetic properties.

The exact nonrelativistic energy of an atom is not always known with great accuracy, so

that the correlation energy as defined by Eq. (8.52) is often known only approximately. In

the case of two-electron atoms, accurate calculations are used obtain the exact nonrelativistic

energies. For other atoms the exact nonrelativistic energies have been estimated using the

relationship

ENR = Eexp − ER (8.54)

(NR = nonrelativistic, R = relativistic). The experimental energy is obtained from sum-

mation of the successive ionization potentials of the atom and its ions. The relativistic

correction to the energy is usually estimated by the use of perturbation theory.

The Hartree-Fock energy of the ground state of the helium atom is −2.861673 a.u. Using

the value of −2.903724 a.u. as the exact nonrelativistic energy, we obtain a correlation

energy of −0.042051 a.u. (about −1.14 ev). This represents an error of 1.14 ev in the

kinetic energy and −2.28 ev in the potential energy. In the following Table are listed the

theoretical and semiempirical correlation energies obtained for several two-electron atoms.

It is seen from this Table that the correlation energy is remarkably constant for the two-

electron systems. The slight discrepancy between the theoretical and semiempirical values

is within the limits of experimental error but may possibly indicate the existence of small,

not yet understood effect. For atoms and ions with more than two electrons, the correlation

energy is on the order of −2 ev (= 46 kcal mole−1) per doubly filled orbital. This is rather a

large error in view of the fact that it is of the same order of magnitude as chemical binding

energies.

Correlation energies in electron volts of some heliumlike systems

Theoretical Semiempirical

System Z Ecorr Ecorr Eexp − EHF ER

H− 1 − 1.08

He 2 − 1.14 − 1.142 − 1.145 − 0.003

Li+ 3 − 1.18 − 1.182 − 1.197 − 0.015

144



Be++ 4 − 1.20 − 1.194 − 1.250 − 0.056

B3+ 5 − 1.22 − 1.196 − 1.345 − 0.149

C4+ 6 − 1.23 − 1.197 − 1.521 − 0.324

∞ − 1.28

For heavier ions, for example, Al3+, the correlation energy is on the order of −11 ev (= 253

kcal mole−1). This is also, just about the magnitude of the relativistic energy. As seen from

the Table, the relativistic energy varies with Z even as the number of electrons stays the

same, increasing roughly as Z4. It has been estimated that the relativistic correction for

Al11+ is 9 ev, showing that the major portion of this correction comes from the inner shells.

For Z = 92 it has been estimated that the relativistic correction is about 15 percent of the

total energy. It is apparent that the relativistic effects contribute an important amount to

the total energy. This leads one to wonder whether or not relativistic effects are somehow

experimentally observable in chemistry.

We now turn to the total electronic energy associated with the Hartree-Fock wavefunction.

While this quantity is formally given by Eq. (8.9), now that the φα are presumed known,

it is instructive to relate it to the orbital energies εα. Note that because εα includes the

interaction of each other φβ with φα, the sum of the εα cannot yield the correct value of the

total energy, because it would count these interactions twice.

A convenient procedure for relating < H > to the sum of the εα may be developed from

the partitioning of H into the two parts H0 and H′,

H = H0 + H′ (8.55)

defined by

H0 = U + UHF (8.56)

H′ = V − UHF (8.57)

with

UHF =
∑

i

uHF (i) (8.58)
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U and V are given by Eqs. (5.2) and (5.3) respectively. This partitioning causes H0 to be

the sum of one-electron operators F(i)

H0 =
∑

i

F(i) (8.59)

where F, the Fock operator, is given by Eq. (8.26), i.e.,

F = u + uHF (8.60)

and is the operator occurring in the Hartree-Fock equation (8.42). We thus have

H0 Φ = E0 Φ (8.61)

with

E0 =
∑

α

εα (8.62)

The previously described situation makes it natural to call H0 the Hartree-Fock Hamiltonian.

We now write < H > as < H0 > + < H′ >, obtaining

< H >= E0+ < V − UHF > (8.63)

Eq. (8.63) shows that < V − UHF > is a measure of the exent to which E0 overcounts the

effect of the electron-electron interactions. Remembering that UHF is a sum of one-electron

operators, we write its expectation value in the form

< UHF >=
∑

α

< φα | uHF |φα > (8.64)

Using Eq. (8.26) for uHF and from the definitions of the Coulomb and exchange operators

given in Eqs. (8.15) and (8.16), we find

< φα | uHF |φα >=
∑

β

(< φα φβ | v |φα φβ > − < φα φβ | v |φβ φα >) (8.65)

which implies

< UHF >= 2 < V > (8.66)

We thus have

< H′ >= − < V > (8.67)
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or

< H >= E0− < V > (8.68)

confirming our earlier observation that the electron-electron interactions are counted twice

in E0. Since we also have < H >=< U > + < V >, we may convert Eq. (8.68) to the form

< H >=
1

2
(E0+ < U >) (8.69)

which clarifies the fact that once E0 has been determined, no further terms explicitly in-

volving two-electron operators need to be computed to get < H >.

We close the discussion of the Hartree-Fock Hamiltonian with a more complete examina-

tion of the matrix elements of uHF . These matrix elements occur whenever we partition H

as in Eqs. (8.55) -(8.59), and enter into formulations of the correlation energy in particular.

From Eq. (8.26), we find for any φµ and φν, whether occupied or unoccupied in Φ,

< φµ | uHF |φν >=
∑

β

(< φµ φβ | v |φν φβ > − < φµ φβ | v |φβ φν >) (8.70)

In fact, Eq. (8.70) holds for any functions φµ and φν, whether or not they are solutions to

the Hartree-Fock equations.

D. Koopmans’ Theorem

In order to solve the Hartree-Fock equations it is necessary to introduce a basis set and

solve a set of matrix equations. Before doing so, however, there are certain aspects of the

eigenvalue equation and its solutions that are independent of any basis, and it is appropriate

to discuss them at this point.

We have already seen that εα is an energy associated with a fermion in the orbital φα,

interacting with all the other fermions. More significance can be given εα by comparing the

energy expectation value of an N -electron system, assigned Hartree-Fock wavefunction Φ,

with the energy expectation value of an (N − 1)-electron system that is identical except for

the removal of one electron from the single-particle φα, so that the (N − 1)-electron system

is assigned a wavefunction Φ′, which is an antisymmetrized product of all the single-particle

states in Φ except φα. The Φ′ constructed in this way may be regarded as an approximation

to the state reached from Φ by an ionization that removes the electron in φα.

147



Using Eq. (8.9) for < H >, we find for the N -electron system the previously derived

result

< Φ |H |Φ >=
∑

β

< φβ | u |φβ > +
1

2

∑

βγ

< φβ φγ || (φβ φγ > (8.71)

where the two-electron antisymmetric integral < · · · || · · · > is given by

< φβ φγ ||φβ φγ >=< φβ φγ | v |φβ φγ > − < φβ φγ | v |φγ φβ > (8.72)

The corresponding result for the (N − 1)-electron system (for which we let HN−1 denote the

Hamiltonian) is

< Φ′ |HN−1 |Φ
′ >=

∑

β(β 6=α)

< φβ | u |φβ > +
1

2

∑

βγ(β,γ 6=α)

< φβ φγ ||φβ φγ > (8.73)

The difference between these expectation values is

< Φ |H |Φ > − < Φ′ |HN−1 |Φ
′ >=< φα | u |φα > +

∑

β

< φα φβ ||φα φβ > (8.74)

A factor ” 1
2
” is not needed in the last term of Eq. (8.74) because φα appears in Eq. (8.71)

both when β = α and when γ = α. The right-hand of Eq. (8.74) is seen to be

< φα | u + uHF |φα >= εα (8.75)

so we have

< Φ |H |Φ > − < Φ′ |HN−1 |Φ
′ >= εα (8.76)

This result, known as Koopmans’ theorem shows that −εα can be identified as an approxi-

mation to the ionization energy for an electron in orbital φα.

The identification of −εα as an ionization energy is approximate, not only because the

Hartree-Fock wavefunction of the N -electron system is inexact, but also because it was

assumed that the single-particle states originally found for the N -electron system could be

used without modification for the (N − 1)-electron system. Actually, the removal of one

electron will change the forces determining the optimum distributions of the other electrons,

with the result that a better description for the (N − 1)-electron system would be obtained

if readjustments were permitted in all the remaining occupied φβ. These readjustments,

sometimes referred to as relaxation, can be significant and are often a major source of error

in using −εα as a measure of ionization energy. It is also obvious that because neither Φ nor
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Φ′ permit a description of electron correlation effects, any differences in correlation energy

between the N -electron and (N−1)-electron systems will contribute to cause −εα to deviate

from a true ionization energy. Normally, these correlation energies will be significantly

different, except when φα is but weakly coupled to the remaining φβ (as, for example, when

φα describes a lone electron in an outer-atomic shell).

Koopmmans’ theorem can also be applied to the (N + 1)-electron states formed by the

addition of an electron in an unoccupied φr to the N -electron state Φ. Letting Φ” be the

antisymmetrized product formed by appending φr to the φα in Φ, and letting HN+1 be the

(N + 1)-electron Hamiltonian, we can use Eq. (8.9) to show

< Φ” |HN+1 |Φ” > − < Φ |H |Φ >=< φr | u |φr > +
∑

β

< φr φβ ||φr φβ > (8.77)

The right hand side of Eq. (8.77) is the energy εr obtained for solution φr to the Hartree-Fock

equations, and we see that −εr can be identified as an approximation to the electron affinity

for addition of an electron to Φ in state φr. The earlier remarks regarding relaxation and

correlation errors also apply here. For neutral systems, the errors in Koopmans’s-theorem

electron affinity estimates will usually be larger than for ionization energies, because the

electron repulsions in the negative ion are often sufficient to make the optimum wavefunction

far more diffuse than for the corresponding neutral system.

The foregoing discussion indicates that the εα can be identified with energies required to

remove an alectron from φα or to add one to φr. However, it dones not follow that εr − εα is

the energy required to move (excite) an electron from φα to φr, as can be seen by considering

the two-step process of (1) removal from φα, (2) addition to φr. The first step corresponds

to −εα, but the second involves addition to an (N − 1)-electron system, not the N -electron

system for which εr is appropriate. If we let Φr
α stand for the N -electron state in which φα

is replaced by φr, we may calculate directly from Eq. (8.9)

< Φr
α |H |Φr

α >=
∑

β(β 6=α)

< φβ | u |φβ > + < φr | u |φr >

+
1

2

∑

βγ(β,γ 6=α)

< φβ φγ ||φβ φγ > +
∑

β(β 6=α)

< φβ φr ||φβ φr > (8.78)

It is thus clear that

< Φr
α |H |Φr

α > − < Φ |H |Φ >=< φr | u |φr > − < φα | u |φα >

+
∑

β(β 6=α)

< φβ φr ||φβ φr > −
∑

β

< φα φβ ||φα φβ > (8.79)
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Introducing εr and εα, Eq. (8.79) can be rewritten

< Φr
α |H |Φr

α > − < Φ |H |Φ >= εr − εα− < φα φr ||φα φr > (8.80)

Equation (8.80) shows that εr overestimates the energy for addition of an electron in φr

by including the nonexistent interaction with an electron in φα. This formula for excita-

tion energies is of course subject to the remarks already made regarding relaxation and

correlation.

E. Basis-set Expansion

The equations for the Hartree-Fock orbitals, Eq. (8.42), are coupled integrodifferential

equations, as u contains the diferential operator descriptive of the kinetic energy. We may

also note that v, though algebraic, cannot be divided into factors dependent separately upon

µ and ν. In spite of the difficulties associated with this mathematical structure, the first

solutions to the Hartree-Fock equations were obtained by numerical integration methods.

However, it soon became apparent that acceptable approximate solutions could be obtained

more readily through the introduction of a basis set in which solutions might be expanded.

This procedure has been particularly advantageous in molecular and crystalline systems,

because of the complexity associated with their nonsphericity. The Hartree-Fock equations

then give the set of conditions determining the coefficients cµi relating to each φi to the basis

functions χµ of which it is composed.

To derive the Hartree-Fock equations appropriate to a basis expansion, sometimes referred

to as the matrix Hartree-Fock equations, each Hartree-Fock orbital is expanded in terms of

this basis set by

φi =
∑

µ

χµ cµ i = χCi (8.81)

If the complete basis set {χµ} is used, the {φi} are given exactly. In practice, however, one

truncates the expansion to m finite members of the basis set. Ci is then a column matrix

of m rows. In order to be able to construct at least N linearly independent solutions, it is

necessary that m ≥ N .

Before deriving the matrix Hartree-Fock equations it is useful to express < H > in terms

of integrals over the basis functions {χµ}. Direct substitution of Eq. (8.81) into (8.9) leads
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to

< H >=
∑

αµν

c∗µα cνα < χµ | u |χν >

+
1

2

∑

αβ

∑

µνλσ

c∗µα c
∗
λβ cνα cσβ (< χµ χλ | v |χν χσ > − < χµ χλ | v |χσ χν >) (8.82)

Equation (8.82) may be cast in a simpler form if we introduce the reduced density matrices

discussed in Section I. Starting from the definition in Eq. (1.8), the first-order density matrix

corresponding to a normalized Φ built from orthonormal orbitals [as given in Eq. (5.13)]

simplifies to

γ(x1,x
′
1) =

∑

α

φα(x1)φα(x′
1) (8.83)

In the manipulations leading to Eq. (8.83), we may not combine the antisymmetrizers

and appeal to the idempotence of A, because we do not have a scalar product with respect

to the variables x1 or x′
1. But we can observe that we will get no contribution to γ except

from terms such that the orbital ordering is identical in Ψ and Ψ∗, and that there will be

(N − 1)! such terms with a given orbital associated with x1 and x′
1.

An important feature of Eq. (8.83) is that it shows γ to be the sum of the contributions

from the individual occupied orbitals. If we now insert Eq. (8.81), thus replacing the set

{φα} with the set {χµ}, we reach

γ(x1,x
′
1) =

∑

αµν

cµα c
∗
να χµ(x1)χ

∗
ν(x

′
1) (8.84)

Comparing Eq. (8.84) with the general expansion formula for γ given in Eq. (1.72), we see

that if {χµ} is regarded as the expansion for γ, its matrix elements arge given by

γµν =
∑

α

cµα c
∗
να (8.85)

The second-order density matrix corresponding to Φ can also be simplified. The final

result contains two kinds of terms: those that arise from contributions in which the orbitals

of Ψ and those of Ψ∗ occur in the same order, and those in which the nonintegrated orbitals

(for Electrons 1 and 2) are reversed in Ψ∗ relative to their ordering in Ψ. Substituting Eq.

(5.13) into the expression for Γ given in Eq. (1.9), we find

Γ(x1,x2;x
′
1,x

′
2) =

1

2

∑

αβ

φα(x1)φβ(x2) [φα(x′
1)φβ(x′

2) − φ∗
β(x′

1)φ
∗
α(x′

2)] (8.86)
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Converting Eq. (8.86) to the {χµ} basis,

Γ(x1,x2;x
′
1,x

′
2)

=
1

2

∑

αβ

∑

µνλσ

cµα cλβ (c∗να c
∗
σβ − c∗νβ c

∗
σα)φµ(x1)φλ(x2)φ

∗
ν(x

′
1)φ

∗
σ(x

′
2) (8.87)

Comparison with Eq. (1.78) yields

Γµλ,νσ =
1

2

∑

αβ

cµα cλβ (c∗να c
∗
σβ − c∗νβ c

∗
σα) (8.88)

We note that Eq. (8.88) may be further simplified by substitution of the γµν from Eq.

(8.85). We obtain

Γµλ,νσ =
1

2
(γµν γλσ − γµσ γλν) (8.89)

Equation (8.89) shows that for an independent-particle wavefunction the second-order den-

sity matrix may be written in terms of that of first order. This is an important simplification

for independent-particle calculations, but one that will not be possible for wavefunctions that

are not of the independent-particle form.

We are now ready to obtain an alternate form for < H >. One possible route is to use

the general expressions given in Eqs. (1.74) and (1.80). Using Eq. (8.89), this approach

leads to

< H >=
∑

µν

γνµ < χµ | u |χν > +
1

2

∑

µνλσ

(γνµ γσλ − γνλ γσµ) < χµ χλ | v |χν χσ >

=
∑

µν

γνµ

[

< χµ | u |χν >

+
1

2

∑

λσ

γσλ (< χµ χλ | v |χν χσ > − < χµ χλ | v |χσ χν >)

]

(8.90)

In obtaining the last line of Eq. (8.90), we have renamed the summation indices to permit

extraction of a factor γνµ from all terms of < H >. Equation (8.90) could alternatively have

been derived by direct substitution of Eq. (8.85) into Eq. (8.82).

We now define the following matrices and matrix elements

χ = (χ1 χ2 · · · χm )

∆ =< χ |χ > ∆µν =< χµ |χν >

< φi | u |φi >= C
†
i < χ† | u |χ > Ci = C

†
i uCi

(Ji)µν =< χµ | Ji |χν > (Ki)µν =< χµ |Ki |χν >
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Jij = C
†
i Jj Ci = C

†
j Ji Cj

Kij = C
†
i Kj Ci = C

†
j Ki Cj

Using these definitions, the total energy associated with Φ becomes, after projecting the

single particle functions in the basis set (8.81),

E0 =
N
∑

i

C
†
i uCi +

N
∑

ij

C
†
i (Jj − Kj)Ci (8.91)

We now consider the functional

L = E0 −
N
∑

ij

λij(C
†
i ∆Cj − δij) (8.92)

The first-order variation in this functional is

δL =
N
∑

i=1

δC
†
i

[(

u +
N
∑

j=1

(Jj − Kj)

)

Ci −
N
∑

j=1

λij ∆Cj

]

+
N
∑

j=1

[

C
†
i

(

u +
N
∑

i=1

(Jj − Kj)

)

−
N
∑

j=1

λji C
†
j ∆

]

δCi (8.93)

The vanishing of δL for an arbitrary variation δCi is now satisfied by the conditions

FCi −
N
∑

j=1

λij ∆Cj = 0 (8.94)

C
†
i F −

N
∑

j=1

λji C
†
j ∆ = 0 (8.95)

where

F =< χ | F |χ > (8.96)

Equations (8.94) and (8.95) are known as Roothaan’s equations. By use of a properly chosen

unitary transformation on the {φi}, one can write Roothaan’s equations in the pseudoeigen-

value form

FCi = εi ∆Ci (8.97)

or, more generally,

FC = ∆C ε (8.98)
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where

C = (C1 C2 · · ·Cm ) Ci =

















c1i

c2i

...

cmi

















(8.99)

The m eigenvectors {Ci} are orthogonal in the sense that C
†
i ∆Cj = δij. The nontrivial

solutions of Eq. (8.98) are obtained by solving for the m roots of the secular determinant

Det (F − ε∆) = 0 (8.100)

where each matrix element is of the form

Fµν − ε∆µν =< χµ | F |χν > − ε < χµ |χν > (8.101)

and the Fock matrix elements (i.e., elements of F) are explicitly given by

Fµν =< χµ | u |χν > +
∑

λσ

γσλ < χµ χλ ||χν χσ > (8.102)

and γλσ is an element of the first-order density matrix as given by Eq. (8.85). The quantities

< χµ|u|χν > are manifestly matrix elements of u in the bassis set {χµ}, and uHF has matrix

elements

(uHF )µν =
∑

λσ

γσλ < χµ χλ ||χν χσ > (8.103)

Equation (8.103) is an obvious analog of Eq. (8.70).

The whole discussion of this Section implicitly assumes that exact solutions are to be

obtained for the Hartree-Fock equations. Of course, such solutions can only be realized

within the numerical accuracy of the procedures used for solving the equations, and, if a

basis set is introduced, to the limitations imposed by its lack of completeness. It therefore

becomes relevant to inquire as to the extent to which the formulas given for < H > and for

other quantities may be affected by these unavoidable inaccuracies. First of all, since the

matrix F depends on the {Ci}, the secular equations are nonlinear and must be solved by an

iterative process. One approach is to assume some matrix C(1) as first approximation, use

it to construct F(1), and then solve the Eqs. (8.100) to obtain a first-improved matrix C(2).

The process is repeated until an assumed matrix C(n) and the calculated matrix C(n+1) agree

within previously specified limits. Since the basis orbitals {χp} are not varied, this method
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does not lead to the true Hartree-Fock solutions unless the basis used for the expansion

(8.81) is rather large. The solutions are generally said to be self-consistent only with respect

to the elements of the matrix C.

Although it is not necessary to use an orthonormal basis set (linear independence is

sufficient), we shall find it convenient to do so (under this condition ∆ represents the identity

operator). We recall that it is always possible to tranform any m linearly independent

functions to a new, orthonormal set so that the assumption of an orthonormal basis set

leads to no loss of generality. Roothaan’s equations now become

FC = C ε (8.104)

It is clear that inaccuracies in solution of the Hartree-Fock equations will cause the

φα thereby determined to deviate from the set of single-particle functions that actually

minimizes < H >. But we may take the viewpoint that the φα, however determined, are to

be regarded as precisely defined quantities. Assuming only that they are orthonormal, Eqs.

(8.82) and (8.90) remain valid. If we also accept Eqs. (8.20) and (8.70) as precise definitions

of uHF , it will then continue to be true that < UHF >= 2 < V > [cf. Eq. (8.66)]. However,

unless φα are in fact exact, they will not be eigenfunctions of u + uHF .

Even though the φα are not the exact Hartree-Fock orbitals, they and their corresponding

orbital energies εα will frequently be obtained by a process that

< φα | u + uHF |φα >= εα (8.105)

Equation (8.105) will, for example, be satisfied if φα is a solution to the matrix Hartree-Fock

equations, even for a severely limited basis. Given Eq. (8.105), it is apparent that

< H >=
∑

α

εα− < V > (8.106)

An approximate operator F consistent with this discussion is

F =
∑

α

|φα > εα < φα | +
∑

r

|φr > εr < φr | (8.107)

where the unoccupied orbitals φr are an arbitrary set orthogonal to the {φα}, and the εr

are also arbitrary. With this F, Eq. (8.42) as well as Eqs. (8.61) - (8.69) will retain their

validity.

In the case that the φα are solutions to the matrix Hartree-Fock equations for a (neces-

sarily) limited basis, (u + uHF − εα)φα will have no component within the space spanned
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by the basis, and V − UHF will be an exact representation of H′ within the corresponding

many-particle space. We may thus use the partitioning implied by Eqs. (8.56) and (8.57) as

a starting point from which to consider basis-set expansions of electron correlation effects

not included in the independent-particle model.

F. Restrictions in the Hartree-Fock Method

Even for relatively simple systems it turns out to be both difficult and time-consuming

to implement the Hartree-Fock method in the totally unrestricted form in which it has been

presented in the preceding part of this section. Moreover, as will become clearer later, even

if an exact solution to the Hartree-Fock equations was obtained, it would generally not be

found to describe a many-particle wavefunction Φ possessing the spatial or spin symmetries

of the Hamiltonian, nor would its single-particle states φµ exhibit these symmetries. The

true Hartree-Fock optimization would thus have been obtained at a considerable cost in ease

of visualization and interpretation.

There are two alternatives for remedying the symmetry difficulties of the Hartree-Fock

function (referred to as a symmetry dilemma), of which the first is simply to restrict the de-

terminantal wavefunction Φ so that it possesses a symmetry appropriate to the Hamiltonian.

The second alternative, to be discussed in more detail later, is to generalize the independent-

particle formulation to include the symmetry projections of determinantal wavefunctions.

This approach constitutes a generalization because such projections usually yield wavefunc-

tions that cannot be written as single Slater determinants.

In this subsection we consider restrictions that may usefully be applied to Φ. Those

corresponding to one-particle operators can be effectuated by applying them to the single-

particle states φµ. Restrictions of this class include some spatial symmetries, and for spin-

independent electronic Hamiltonians, one (usually the z) component of the electron spin.

Thus, we might require that the spatial part of each φµ transform as a basis function of

some irreducible representation of the spatial symmetry group of the Hamiltonian, and that

the spin part of each φµ be an eigenfunction of the z component of the spin operator, sz.

Because the single-particle spin space is spanned by two sz eigenfunctions (denoted as in

sections IV and VI, α and β) with different eigenvalues (respectively + 1
2
h̄ and −1

2
h̄), each

φµ can be written as a spinorbital consisting of a spatial orbital multiplied by α or β.
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For spin-independent electronic Hamiltonians, there is one important symmetry condition

that involves a two-particle operator, namely that the wavefunction be an eigenfunction of

the square of the total spin. Letting s(i) be the spin operator for Electron i, the two-particle

nature of S2 is evident from the formula

S2 =
∑

i

s(i)2 +
∑

ij(i6=j)

s(i).s(j) (8.108)

Unless the spinorbitals φα satisfy certain restrictive conditions, the wavefunction Φ built

from them cannot be an eigenfunction of S2. There are two such restrictions, one or the

other of which must apply to each occupied φγ . The first alternative is that a spatial orbital

be doubly occupied (i.e., that it occur twice among the occupied φγ, once with spin eigen-

function α and once with eigenfunction β). As is well known, a pair of electrons doubly

occupying a spatial orbital will make no contribution to the total spin. The second restric-

tion, applicable to the single-occupied spatial orbitals, is that they all be associated with

the same sz eigenfunction. This condition causes these spins to couple to an eigenfunction

of maximum total spin.

Where the spatial symmetry group of the Hamiltonian possesses irreducible represen-

tations of dimension greater than unity, further restrictions may be necessary if Φ is to

transform appropriately under spatial symmetry operations. A general discussion is cum-

bersome and will not be presented here. Suffice it to say, Φ must not contain different

elements of two different bases of the same irreducible representation unless it contains at

least one of the complete bases. This condition is referred to as an equivalence restriction. A

typical example is provided by the p orbitals of an atom; the equivalence restriction demands

that they occur in Φ in sets, each set having its own radial dependence.

Use of the symmetry, occupancy, and equivalence restrictions described in the preced-

ing three paragraphs defines a standard procedure known as the Restricted Hartree-Fock

(RHF) method. The RHF method is at its simplest form when Φ can be assumed to consist

completely of doubly-occupied orbitals and when there are no partially occupied bases for

irreducible representations of the spatial symmetry group. A state well represented by such

an RHF Φ is termed a closed-shell state, and Φ is referred to as a closed-shell wavefunction.

The ground states of most molecules with an even number of electrons and without high

symmetry fall into this class, as do the ground states of the noble gas atoms and other

atoms with complete subshells (such as Be, configuration 1s22s2). States requiring an RHF
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Φ containing singly-occupied orbitals or partially-occupied irreducible-representation bases

are termed open shell; odd-electron molecules and many atomic states fall into this cate-

gory. It should be noted that there exist many molecular states (e.g., so-called nonclassical

structures) and atomic states (e.g., C 1s22s22p2, 1S) that are not well represented by any

single-determinant wavefunction and that are therefore inappropriate to the RHFmethod.

Such systems should be handled either by generalizations of the Hartree-Fock scheme or by

methods that include a suitable portion of the correlation energy.

G. Restricted Hartree-Fock Method - Closed Shell States

In this subsection we consider the simplifications resulting from the Hartree-Fock method

if we limit consideration to a spin-independent electronic Hamiltonian and closed-shell wave-

functions. The wavefunction then consists of spinorbitals occurring in pairs with the same

spatial function, but with different sz eigenvalues; to indicate this fact explicitly, we intro-

duce the notations φγ and φγ referring respectively to the members of a spinorbital pair

with α and β spin functions. For the moment we ignore the possible effects of any spatial

symmetry.

Our first concern must be to modify the derivation of the Hartree-Fock equations to take

proper account of the fact that φγ and φγ are not independent, but are constrained to have

the same spatial dependence. As in the original derivation, we obtain an expression for

< H >,

< H >=
∑

γ

(< φγ | u |φγ > + < φγ | u |φγ >)

+
1

2

∑

γδ

(< φγ φδ | v |φγ φδ − φδ φγ > + < φγ φδ | v |φγ φδ − φδ φγ >

+ < φγ φδ | v |φγ φδ − φδ φγ > + < φγ φδ | v |φγ φδ − φδ φγ >) (8.109)

Since we have explicitly included separate contributions for the two members of each spinor-

bital pair, the summations now run over spinorbitals with distinct spatial parts. Letting wγ

be the spatial of φγ and writing φγ = wγα, φγ = wγβ, we carry out the spin integrations,

causing some terms to vanish and other to become identical. The result is

< H >= 2
∑

γ

< wγ | u |wγ > +
∑

γδ

< wγ wδ | v | 2wγ wδ − wδ wγ > (8.110)
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We next examine < H > by varying the wγ subject to the constraint that they remain

orthogonal. Introducing Lagrange multipliers, we write

δ

(

< H > −2
∑

γδ

λδγ < wγ |wδ >

)

= 0 (8.111)

As before, we eliminate off-diagonal Lagrange multipliers by making a suitable unitary

transformation of the wγ. Note that this step requires the invariance of the form of < H >

under the transformation; the requirement is met here. Consideration of the effect of a

general variation δw∗
γ then leads to

(u + 2 J − K)wγ(r) = εγ wγ(r) (∀ γ) (8.112)

with

Jwγ(r) =
∑

δ

< wδ(r
′) | v(r, r′) |wδ(r

′) > wγ(r) (8.113)

Kwγ(r) =
∑

δ

< wδ(r
′) | v(r, r′) |wγ(r

′) > wδ(r) (8.114)

These sums are over distinct spatial orbitals wδ. J and K are called Coulomb and exchange

operators, respectively. J represents the classical electrostatic interaction with the occupied-

orbital charge distribution of one spin orientation; the term 2Jwγ(r) describes the classic

interaction between an electron in orbital wγ(r) and the occupied orbitals of both spin orien-

tations. K represents the exchange interaction with the occupied-orbital charge distribution

of appropriate spin orientation; the term −Kwγ(r) describes the exchange interaction be-

tween an electron in orbital wγ(r) and the occupied orbitals of the same spin orientation

(there is no exchange interaction between distributions of unlike spin orientation).

If we compare Eqs. (8.112) - (8.114) with Eq. (8.42) [with F given by Eq. (8.26)] we find

the two sets of equations to be identical if the wavefunctions summed over in Eq. (8.26)

are constrained to be a closed-shell set. This fact means that we can use all the formulas

developed in our earlier discussion of the Hartree-Fock method, providing that we specialize

them to reflect the restriction to a closed-shell wavefunction. In this way, we may use the

formulas relating to a basis-set expansion of the Hartree-Fock equations.

Accordingly, let us consider the Hartree-Fock equations in a spinorbital basis whose mem-

bers occur in pairs with the same spatial function. Let χµ and χµ be such a pair with spatial
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part gµ(r), so χµ = gµα, χµ = gµβ. Because the orbitals φγ and φγ are similarly paired, the

coefficients connecting them with the basis orbitals must satisfy

cµγ = cµ γ cµγ = cµγ = 0 (8.115)

and the elements of the first-order density matrix [cf. Eq. (1.73)] have a similar property

γµν = γµν γµν = γµν = 0 (8.116)

An examination of Eq. (8.102) and of the expression for ∆µν shows that the elements of the

Fock matrix F and the overlap matrix ∆ behave correspondingly, so the matrix Hartree-Fock

equations partition into two identical sets, one for each spin orientation. The restriction to

a closed-shell wavefunctiion therefore halves the dimensionality of a matrix Hartree-Fock

problem.

Let us now write explicitly the Fock matrix element connecting two α-spinorbitals. From

Eq. (8.102), using also Eq. (8.116),

Fµν =< gµ α | u | gν α > +
∑

λσ

(γσλ < gµ α gλ α | v | gν α gσ α− gσ α gν α >

+ γσ λ < gµ α gλ β | v | gν α gσ β − gσ β gν α >)

=< gµ | u | gν > +
∑

λσ

γσλ < gµ gλ | v | 2 gν gσ − gσ gν > (8.117)

One further notational change is needed to make Eq. (8.117) correspond with the bulk

of the RHF literature, namely to replace the first-order density matrix γ by the so-called

chage-bond order matrix, denoted P. As usually defined, P is based on spatial orbitals

rather than spinorbitals, and is related to γ by the equation

Pµν = γµν + γµ ν (8.118)

For closed-shell wavefunctions, Pµν = 2 γµν, so Eq. (8.117) becomes

Fµν =< gµ | u | gν > +
∑

λσ

Pσλ < gµ gλ | v | gν gσ − 1/2 gσ gν > (8.119)

It should be noted that the {Pµν} are the elements of an m×m matrix defined by

P = 2RR† R = (C1 C2 · · ·CN ) (8.120)

where R is an m×N matrix of the eigenvectors associated with the N lowest eigenvalues.

The RR† matrix is readily verified to be hermitian and idempotent and thus is the matrix

representation of a projection operator.
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We make explicit the other formulas needed for closed-shell RHF calculations

∆µν =< gµ | gν > (8.121)

Pµν = 2
∑

α

cµα c
∗
να (8.122)

FCγ = εγ ∆Cγ (∀ γ) (8.123)

< H >=
∑

µν

Pνµ

[

< gµ | u | gν > +
1

2

∑

λσ

Pσλ < gµ gλ | v | (gν gσ − 1/2 gσ gν) >

]

=
1

2

(

E0 +
∑

µν

Pνµ < gµ | u | gν >

)

=
1

2

(

E0 + TrPu

)

(8.124)

where

E0 = 2
∑

γ

εγ (8.125)

Symmetries other than those associated with sz, will lead to further factorization of the

matrices F and ∆ into blocks. The maximum factorization will result if the basis function

gµ are of definite symmetry species and subspecies. These terms respectively refer to an

irreducible representation of the spatial symmetry group and to individual elements of a

particular basis thereof; respective examples for an atom are ”p” and ”pz”.

Since the final RHF spatial orbitals will be of definite symmetry species and subspecies,

the matrix P will have vanishing elements Pµν unless gµ and gν are of the same species and

subspecies. If this symmetry is assumed for P, and if P is symmetric in its description of the

subspecies of each species (one of the closed-shell requirements), the symmetry properties

of the matrix elements of u and v suffice to yield a corresponding factorization of F. It is

clear that ∆ factorizes correspondingly.

In contrast to the spin factorization, blocks corresponding to different symmetry species

need not be identical. However, because of the equivalence restriction, blocks for different

subspecies of the same species will be identical; this fact can be used to avoid unnecessary

calculation. It should be noted that the spatial-symmetry-factorized matrix blocks are

coupled because elements from all blocks of P are needed to evaluate each block of F.

Thus far our discussion has been based on the symmetry properties that the charge-

bond order matrix P will have when constructed from the RHF wavefunction. It is natural,

therefore, to seed the RHF solution by an iterative process in which an input approximation
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to P also has this symmetry. We note that any symmetry-blocked input P, whether or not

constructed from the RHF solution, generates a correspondingly symmetry-blocked F, and

therefore leads to output symmetry spinorbitals and therefore to an output P preserving

the symmetry blocking. We thus see that the assumption of symmetry spinorbitals is stable

under iteration, and that when an appropriate iterative process has converged, we will have

exact solutions to the Hartree-Fock equations.

The fact that the RHF spinorbitals exactly satisfy the Hartree-Fock equations may lead

one to ask whether the RHF procedure actually constitutes a restriction in the Hartree-Fock

method. The answer to this question depends upon whether the vanishing of the variation

of the Hartree-Fock functional indicates a saddle point or a local minimum, and in the

latter case whether it is the absolute (i.e., lowest) minimum consistent with the state to be

described. In most problems of practical interest the symmetry-adapted solution is not an

absolute minimum, and therefore in fact is restricted. There is an interesting corollary to

the above discussion, namely that to solve the Hartree-Fock equations without symmetry

restrictions, it will be necessary to use input density matrices of broken symmetry.

H. Orthogonalization of the Basis

The basis sets that are used in molecular calculations are not orthonormal sets. The basis

functions are normalized, but they are not orthogonal to each other. This gives rise to the

overlap matrix in Roothaan’s equations. In order to put Roothaan’s equations into the form

of the usual matrix eigenvalue problem, we need to consider procedures for orthogonalizing

the basis functions.

If we have a set of functions {χµ} that are not orthogonal, i.e.,

< χµ |χν >= ∆µν (8.126)

then it will always be possible to find a transformation matrix X (not unitary) such that a

transformed set of functions {χ′
µ} given by

χ′
µ =

∑

ν

Xµν χν µ = 1, 2, · · · , m (8.127)

do form an orthonormal set, i.e.,

< χ′
µ |χ

′
ν >= δµν (8.128)
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To derive the properties of X, we substitute the transformation (8.127) into Eq. (8.128)

to get

< χ′
µ |χ

′
ν >=

∑

λ

∑

σ

X∗
λµ Xσν < χλ |χσ >

=
∑

λ

∑

σ

X∗
λµXσν ∆λσ = δµν (8.129)

The second line of this equation can be written as the matrix equation

X† ∆X = I. (8.130)

where I is the m ×m unit matrix. Thus, Eq. (8.130) defines the relation that the matrix

X must satisfy if the transformed orbitals are to form an orthonormal set. As we shall see

later, X must also be nonsingular, i.e., it must possess an inverse X−1. We now proceed to

show how to obtain two different transformation matrices X. Since ∆ is Hermitian it can

be diagonalized by a unitary matrix U,

U† ∆U = S (8.131)

where S is a diagonal matrix of the eigenvalues of ∆.

There are two ways of orthogonalizing the basis set {χµ} in common use. The first

procedure, called symmetric orthogonalization uses the inverse square root of ∆ for X

X ≡ ∆−1/2 = US−1/2 U† (8.132)

If ∆ is Hermitian then ∆−1/2 is also Hermitian. Substituting Eq. (8.132) into (8.130)

∆−1/2 ∆∆−1/2 = I (8.133)

shows that X = ∆−1/2 is indeed an orthogonalizing transformation matrix. Since the

eigenvalues of ∆ are all positive, there is no difficulty in (8.132) of taking square roots.

However, if there is linear dependence or near linear dependence in the basis set, then some

of the eigenvalues will approach zero and (8.132) will involve dividing by quantities that are

nearly zero. Thus symmetric orthogonalization will lead to problems in numerical precision

for basis sets with near linear dependence.

A second way of obtaining an orthonormal set of basis functions is called canonical or-

thogonalization. It uses the transformation matrix

X = US−1/2 (8.134)
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that is, the columns of the unitary matrix U are divided by the square root of the corre-

sponding eigenvalue

Xij = Uij/S
1/2
j (8.135)

Substituting this definition of X into Eq. (8.130) gives

X† ∆X =

(

US−1/2

)†

∆US−1/2 = S1/2 U† ∆US−1/2 = S−1/2 SS−1/2 = I (8.136)

showing that X = US−1/2 is also an orthogonalizing transformation matrix. It appears,

from Eq. (8.135), that this orthogonalization procedure will also entail difficulties if there is

linear dependence in the basis set, i.e., if any of the eigenvalues Sj approach zero. We can

circunvent this problem with canonical orthogonalization, however. In the matrix eigenvalue

problem (8.131), we can order the eigenvalues in any way in the diagonal matrix S provided

we order the columns of U in the same way. Suppose we order the positive values Sj in the

order S1 > S2 > S3 > · · ·. Upon inspection we may decide that the last m of these are too

small and will give numerical problems. We can then use as a transformation matrix, the

truncated matrix X̃,

X̃ =

















U11/S
1/2
1 U12/S

1/2
2 · · · · · · U1K−m/S

1/2
K−m

U21/S
1/2
1 U22/S

1/2
2 · · · · · · U2K−m/S

1/2
K−m

...
...

...
...

...

UK1/S
1/2
1 UK2/S

1/2
2 · · · · · · UKK−m/S

1/2
K−m

















(8.137)

where we have eliminated the last m columns of X to give the K× (K−m) matrix X̃. With

this truncated transformation matrix, we get only K − m transformed orthonormal basis

functions

χ′
µ =

K
∑

ν=1

X̃νµ χν µ = 1, 2, · · ·K −m (8.138)

These would span exactly the same region of space as the original set, provided the eliminated

eigenvalues were exactly zero. In practice, one often finds linear dependence problems with

eigenvalues in the region Sj ≤ 10−4.

One way of dealing with the problem of a nonorthogonal basis set would thus be to

orthogonalize the functions {χµ} to obtain the transformed basis functions {χ′
µ} and work

with these orthonormal functions throughout. This would eliminate the overlap matrix ∆

from the Roothaan’s equations, which could then be solved just by diagonalizing the Fock
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matrix. This would mean, however, that we would have to calculate all our two-electron

integrals using the new orbitals or else transform all the old integrals < µν|λσ > to the set

< µ′ν ′|λ′σ′ >. In practice this is very time consuming, and we can solve the same problem

in a more efficient way. Consider a new coefficient matrix C′ related to the old coefficient

matrix C by

C′ = X−1 C C = XC′ (8.139)

where we have assumed that X is non-singular. This will be the case if we have eliminated

linear dependences. Substituting C = XC′ into the Roothaan’s equations gives

FXC′ = ∆XC′ ε (8.140)

Multiplying on the left by X† gives
(

X† FX

)

C′ =

(

X† ∆X

)

C′ ε (8.141)

If we define a new matrix F′ by

F′ = X† FX (8.142)

and use (8.130), then

F′ C′ = C′ ε (8.143)

These are the transformed Roothaan’s equations, which can be solved for C′, by diagonal-

izing F′. Given C′, then C can be obtained from (8.139). Therefore, given F we can use

(8.142), (8.143) and (8.139) to solve the Roothaan’s equations FC = ∆Cε for C and ε. The

intermediated primed matrices are just the Fock matrix and expansion coefficients in the

orthogonalized basis, i.e.,

φi =
K
∑

µ=1

c′µi χ
′
µ i = 1, 2, · · · , K (8.144)

F ′
µν =< χ′

µ | F |χ′
ν > (8.145)
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I. Extensions of the Hartree-Fock Method

The Hartree-Fock equations (8.42) produce a set {φi} of spinorbitals. The single de-

terminant Φ formed from the N spinorbitals {φα} with the lowest orbital energies is the

Hartree-Fock approximation to the ground state.

An advantage of the Hartree-Fock method is that it provides one with a simple orbital

picture of electronic structure. This picture, resulting from the single-determinantal form of

the wavefunction, is a very useful one to the chemist who likes to think of electrons moving

in orbitals. Nevertheless, such an orbital description is not adequate from a quantitative

standpoint, however pleasing and satisfactory it may be from a qualitative viewpoint. In

general, wavefunctions which go beyond the Hartree-Fock approximation tend to eliminate

(or obscure) the orbital concept, so that quantitative accuracy is gained at the price of

losing a pleasing physical picture. Of course, the orbital picture provided by the Hartree-

Fock solution is in itself not unique, since there exist many different orbital pictures related

by unitary transformations which leave the total wavefunction invariant. Thus one can

choose unitary transformations to suit the particular typoe of analysis of interest.

Once one has obtained a Hartree-Fock solution to a particular problem, one can always

improve the energy by using the configuratio-interaction method. In a multideterminantal

representation of the exact ground state |Φ >, it is these determinants which might be

expected, a priori, to give the leading correction to the Hartree-Fock ground state |Φ >.

The improved wavefunctions (not normalized) can be written

|Ψ >= c0 |Φ > +
∑

rα

crα |Φ
r
α > + · · · (8.146)

where Φ is the Hartree-Fock solution. The remaining determinants can be constructed

from the Hartree-Fock orbitals, including those not occupied in the ground state of the

system. These latter orbitals are referred to as virtual orbitals and can be used to represent

excited states. We recall that each of the determinants in (8.146) must have the same Sz

eigenvalue as Φ; otherwise there will be no contribution to the total wavefunction of the

state represented by Φ.

If we consider only the singly excited determinants as corrections, then the coefficients

crα are determined from the variational principle by diagonalizing the Hamiltonian matrix in

the basis {Φ, {Φr
α}}. Consider for a moment the matrix eigenvalue problem involving one
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singly excited state

(

< Φ |H |Φ > < Φ |H |Φr
α >

< Φr
α |H |Φ > < Φr

α |H |Φr
α >

)(

c0

crα

)

= E

(

c0

crα

)

(8.147)

The mixing of the two states depends on the off-diagonal element < Φ|H|Φr
α >. This matrix

element is obtained by using the rules for evaluating matrix elements between determinants

given in Sect. VII, i.e.,

< Φ |H |Φr
α >=< φα | u |φr > +

∑

β

< φα φβ | v | (φr φβ − φβ φr) > (8.148)

The right-hand side of this equation can be simplified; the matrix elements of the Fock

operator (8.60) are given by

< φα | F |φr >=< φα | u |φr > +
∑

β

< φα φβ | v | (φr φβ − φβ φr) > (8.149)

where Eq. (8.70) has been used to express the matrix elements of uHF . Therefore

< Φ |H |Φr
α >=< φα | F |φr > (8.150)

The matrix element that mixes singly excited determinants with Φ is thus equal to an off-

diagonal element of the Fock matrix. Now, by definition, solving the Hartree-Fock eigenvalue

problem requires the off-diagonal elements to satisfy < φi|F|φj >= 0 (i 6= j). That is

< Φ |H |Φr
α >= 0 (8.151)

One can then say that solving the Hartree-Fock eigenvalue equation is equivalent to ensuiring

that Φ will not mix with any singly excited determinants. The Hartree-Fock ground state is

in this sense ”stable” since it cannot be improved by mixing it with singly excited determi-

nants. This represents a further restriction on the determinants. The important result we

have just derived is the Brillouin’s theorem. This theorem states that if two determinants

constructed from exact Hartree-Fock orbitals differ in one spinorbital, the matrix element

connecting these two determinants will vanish. The theorem depends upon the form of the

Hartree-Fock orbitals. It is not necessary, however, that the orbitals used to represent the

excited states be themselves eigenfunctions of the Hartree-Fock operator. The only require-

ment is that such orbitals be orthogonal to the occupied orbitals. The reason for this lies in

the fact that the solutions of the Hartree-Fock equations form a complete set of orthogonal

functions. Furthermore, these solutions can be divided into two sets (those occupied in the

167



ground state and those not occupied in the ground state) which span mutually orthogonal

subspaces. The set of unoccupied orbitals then forms a complete set for expansion of any

orbital orthogonal to the occupied orbitals. Brillouin’s theorem can then be applied to the

expansion term by term.

A configuration differing from the ground state by one spinorbital is said to be singly

excited; one differing by two spinorbitals is called doubly excited; and so on for configura-

tions differing by more spinorbitals. Brillouin’s theorem does not say that singly excited

configurations do not contribute to the total energy, since it is possible that matrix elements

between singly excited configurations and higher-excited configurations do not vanish and

thus contribute to the total energy (for example, one can expect doubly excited determinants

|Φrs
αβ > to provide the leading and most important corrections to |Φ >). This, however,

represents a higher-order effect. One can restate the Brillouin theorem as follows:

”Singly excited configurations constructed from spinorbitals orthogonal to the occupied

Hartree-Fock orbitals give no first-order contribution to the total energy.”

Brillouin’s theorem also follows from the fact that the Hartree-Fock wavefunction is the best

single-determinantal wavefunction (in the variational sense) and thus must be stationary to

first-order variations. Brillouin’s theorem also guarantees second-order errors for all one-

electron operators provided the exact Hartree-Fock solutions are employed. Such a situation

does not obtain, for example, when one solves Roothaan’s equations in a limited basis set.

The calculation of the energy of an excited state constructed from the Hartree-Fock

orbitals can be carried out by the use of Eqs. (7.80) - (7.81). We now illustrate such a

calculation for the case of singly excited configurations. We assume that the Hartree-Fock

problem for the singlet ground state has been solved. The ground-state wavefunction is

D0 = |φ1 φ1 φ2 φ2 · · ·φN φN | (8.152)

To form the singly excited configuration we promote one electron from an occupied orbital

φα to an unoccupied orbital φr. For simplicity, it is assumed that φα and φr are both

nondegenerate. This leads to the determinantal wavefunctions

1,3Φr
α = 2−1/2 (|φ1 φ1 · · ·φα φr · · ·φN φN | ± |φ1 φ1 · · ·φα φr · · ·φN φN |) (8.153)

where the negative sign refers to a singlet state and the positive sign refers to the tripet state.

For notational convenience we shall designate the determinantal functions appearing in Eq.
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(8.153) by D1 and D2 (in their order of appearance). The right subscript and superscript

on the wavefunction symbol are a convenient notation for indicating that an electron has

been promoted from φα to φr. The energy of the singlet state relative to the energy of the

ground state is given by

1E − E0 =<1 Φr
α |H | 1Φr

α > − < D0 |H |D0 >=
1

2
(H11 + H22) − H12 − H00 (8.154)

where

Hpq =< Dp |H |Dq > (8.155)

Rather than carrying out a generalized treatment of this calculation (which involves some

confusing summation notation) we shall consider the special case

D0 = |φ1 φ1 φ2 φ2| D1 = |φ1 φ1 φ2 φ3| D2 = |φ1 φ1φ2 φ3| (8.156)

Using Eqs. (7.80) and (7.84) for the one- and two-particle operators matrix elements and

integrating over the spin functions, we obtain for the diagonal elements

H00 = 2 u11 + 2 u22 + J11 + 4 J12 + J22 − 2K12 (8.157)

H11 = H22 = 2 u11 + u22 + u33 + J11 + 2 J12 + 2 J13 + J23 −K12 −K13 (8.158)

Similarly, when we use Eq. (7.90), the off-diagonal matrix element becomes

H12 = −K23 (8.159)

Combining these results, we obtain

1E − E0 = u33 − u22 − 2 J12 + 2 J13 + J23 − J22 +K12 −K13 +K23 (8.160)

It is convenient to rewrite this energy in terms of the Hartree-Fock eigenvalues given by

ε3 = u33 + 2 J13 + 2 J23 −K13 −K23 (8.161)

ε2 = u22 + 2 J12 + J22 −K12 (8.162)

Substituting Eqs. (8.161) and (8.162) into Eq. (8.160) and simplifying, it is obtained

1E − E0 = ε3 − ε2 − J23 + 2K23 (8.163)
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Similarly, for the triplet state it is found

3E − E0 = ε3 − ε2 − J23 (8.164)

The above results can be generalized to

1E − E0 = εr − εα − Jαr + 2Kαr (8.165)

3E − E0 = εr − εα − Jαr (8.166)

The Hartree-Fock theory then predicts that the singlet-triplet separation is

1E −3 E = 2Kαr > 0 (8.167)

i.e., the lowest triplet state lies below the lowest singlet excited state.

So far we have confined our discussion to a particular form of the Hartree-Fock method,

a form applicable to atoms whose wavefunctions can be developed on the basis of closed-

shell configuration, so that ml and ms quantum numbers do not have to be specified. In

all cases this leads to a wavefunction which is a 1S state and in which the orbitals turn

out to satisfy so-called ıequivalence restrictions. The equivalence restrictions are satisfied

whenever the radial portions of the orbitals are independent of the ms and ml quantum

numbers and the orbitals are associated with definite l quantum numbers. This means that

the resulting wavefunction is an eigenfunction of S2 and L2. For wavefunctions obtained

in other ways than by reference to traditional electronic configurations, the equivalence

restrictions are not automatically satisfied, even in the case of systems for which a closed-

shell configuration can be written. Such a situation has been well known in the case of

atoms whose wavefunctions are based on open-shell configurations, but it has not been

generally appreciated that the same situation occurs for closed-shell atoms or molecules if

one removes the closed-shell configurations basis for the wavefunctions. For example, there

exist Hartree-Fock solutions for the ions H−, Li−, O−−, and Na− which lead to energies

lower than those obtained from wavefunctions derived from the closed-shell configurations

1s2, 1s22s2, 1s22s22p6, and 1s22s22p63s2, respectively. Each of these results is obtained by

exhibiting a Slater determinant not satisfying the conventional equivalence restrictions. This

means that the popular notion of 1S states representing the ground states of such species is

not necessarily valid.
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The Hartree-Fock method in which the equivalence restrictions hold or are imposed is

known as the traditional, conventional, or restricted Hartree-Fock method. Most Hartree-

Fock calculations reported in the literature have been carried out by this method. In the case

of open-shell configurations in which the equivalence restrictions are imposed, it is not always

possible to write the total wavefunction as a single determinant. It is possible, however, to

apply the SCF theory of closed-shell systems to certain open-shell systems if the equivalence

restrictions are imposed; e.g., half-filled open shell may be treated in this way.

In the case of configurations involving an odd number of electrons, one can drop the

restriction that the radial functions be independent of ms. This means that orbitals of

opposite spin need not have the same spatial functions in configurations with a singly oc-

cupied orbital. For example, one could write the lithium wavefunction as |1s1s′2s| instead

of |1s1s2s|. This arises from consideration of the fact that in a system of unbalanced spins

(where < Sz >6= 0) the electrons of one spin will be affected by an exchange potential

other than that from electrons of opposite spin, since exchange potentials occur only be-

tween electrons of parallel spins. This suggests that electrons with different spins should

be placed into different spatial orbitals in order to account for this exchange polarization.

This variant is usually referred to as the the spin-polarized Hartree-Fock method. If the trial

wavefunction is a single Slater determinant with no a priori constraints on the form of the

occupied orbitals, one has the so-called unrestricted Hartree-Fock method (see Sect.VIII.I).

This name is also sometimes applied to any Hartree-Fock method in which at least one of the

restrictions of the conventional Hartree-Fock method is removed. It should be noted that

the conventional Hartree-Fock method for systems described by closed-shell configurations

is a special case of the unrestricted Hartree-Fock method, since the equivalence relations are

not imposed but occur automatically. It is to the unrestricted Hartree-Fock method that

Brillouin’s theorem applies; for any other Hartree-Fock methods, e.g., open-shell systems

with imposed equivalence restrictions, Brillouin’s theorem does not apply exactly.

Reference is also made to an extended Hartree-Fock method, in which the trial function

is obtained from the Slater determinant of an open-shell configuration by use of L2 and S2

projection operators. The extended Hartree-Fock wavefunction can be written

Φp = OΦ (8.168)

where O is a desired projection operator and Φ is a single-determinantal wavefunction. The
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energy is then given by

< H >=
< Φ | O† HO |Φ >

< Φ | O |Φ >
(8.169)

The minimization process is applied in the usual way, but nos the relevant operator is O†HO

and not H. So far it has not proved feasible to apply this method to large systems.

There are certain difficulties in restricted Hartree-Fock methods. For example, consider

an arbitrary hermitian operator G which commutes with the total Hamiltonian. It follows at

once from Theorem 3, Sect. I that the exact eigenfunctions of H are also eigenfunctions of G

or, in the case of energy degeneracies, can always be chosen as eigenfunctions of G. However,

in the case of approximate eigenfunctions of H, there exists no theorem which also requires

these to be eigenfunctions of G. Any imposed requirement that such H eigenfunctions also

be G eigenfunctions then must represent a constraint, which necessarily raises the energy

above the absolute minimum. In the same way, restricting the wavefunction to one that

can be constructed from a closed-shell electronic configuration constitutes a constraint. It

is therefore apparent why the H−, Li−, O−−, and Na− have Hartree-Fock solutions with

energies below that of the usual 1S states.

The off-diagonal Lagrangian multipliers occurring in open-shell Hartree-Fock calculations

disappear if one drops the restriction of doubly occupied orbitals. In the case of systems

with an odd number of electrons this is just the spin-polarized Hartree-Fock method. Now,

however, the single-determinantal wavefunctions, for example, |1s1s′| and |1s1s′2s|, are not

eigenfunctions of S2. In general, the determinantal wavefunction of this form is a mixture

of different spin states and can be written

Φ =
∑

j=0

M+2jΦj cj (8.170)

where M = 2S + 1 and S is the spin quantum number of the state of lowest possible

multiplicity. The number of terms in Eq. (8.170) depends upon the total number of electrons

and can be found from the branching diagram of Fig. VI.2 . The functions M+2jΦj are

eigenfunctions of S2, with eigenvalues (S + j)(S + j + 1). An example of this type of

determinant is |φ1φ2|, which can be written

|φ1φ2| = c0
1Φ0 + c1

3Φ1 (8.171)

We recall from Sect. VI.B that

1Φ0 = |φ1 φ2| − |φ1 φ2|
3Φ1 = |φ1 φ2| + |φ1 φ2| (8.172)
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For a many-electron determinant the number of multiplets in (8.170) will be rather large.

One can use the determinant (8.170) as a trial wavefunction, but the resulting energy rep-

resents some average of the energies of the component multiplets. However, one can project

the spin state of the desired multiplicity and evaluate the energy of this multiplet. This

energy will be lower than that of the mixture and, furthermore, will be lower than that

obtained by the conventional (restricted) Hartree-Fock method. This circumstance arises

because the projected determinant will, in general, be a linear combination of determinants

and thus leads to a sort of configuration-interaction effect, in which the coefficients are fixed

by the projection instead of by a variational procedure.

J. ”Unrestricted” and Generalized Hartree-Fock Methods

The closed-shell RHF method outlined in Sect. VIII.G is found to be highly satisfactory

for the systems for which it is most appropriate. The restrictions are too extreme, however,

for systems possessing a partially occupied set of orbitals of a given symmetry species, or

for those where the spin state requires the existence of singly-occupied orbitals. Some of

these systems can be well handled by relaxing the requirement of double-occupancy, while

retaining the symmetry and equivalence restrictions. Calculations of this type are referred

to as open-shell RHF.

An alternate possibility is the so-called Unrestricted Hartree-Fock (UHF) method, ”so-

called” because not all of the RHF restrictions are removed. In the usual UHF approach,

the double-occupancy restriction is dropped, but the spinorbitals are still required to have

definite spatial symmetry and to be sz eigenfunctions. An energy improvement relative to

RHF is usually gained, but its cost is that Φ is no longer and S2 eigenfunction and that

spatial orbitals of different spin orientation are no longer identical or orthogonal.

Single-particle states and improved energies can alternatively be obtained using gener-

alizations of the Hartree-Fock method. One important class of generalizations is reached

by allowing the wavefunction to be a nondeterminantal function from a single determinant.

Wavefunctions of this type include those where a pure-symmetry component is projected out

of a determinantal function. Normally, the projected function will be a linear combination

of determinants with coefficients whose values are fixed by the projection process. A simple

example of a projected function is the singlet state obtained from the mixed-spin deter-
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minantal function Φ = w1αw2β − w2βw1α, namely Φs = 1/2(w1w2 + w2w1)(αβ − βα).

We see that Φs is a component of the original Φ by noting that Φ could have been

written Φ = Φs + Φt, where Φt, the other component of Φ, is the triplet function

Φt = 1/2(w1w2 − w2w1)(αβ + βα). We also note that Φs is not a determinantal function

but is the linear combination Φs = 1/2Det (w1α,w2β) − 1/2Det (w1β, w2α). Staes of pure

spatial symmetry may also be projected from mixed-symmetry determinantal functions.

Symmetry projection can improve a wavefunction, as it eliminates components that can-

not be present in an exact solution to the Schrödinger equations. Conceptually, it may also

be regarded as falling within the independent-particle model, as it does not impair the intro-

duction and use of single-particle concepts such as orbitals and orbital energies. In fact, the

antisymmetrizer A is a permutational-symmetry projection operator, and is fundamentally

very similar to the projectors for other types of symmetry.

Once one accepts the notion of using a symmetry-projected state, the most logical ap-

proach would be to find the Φ whose projection PΦ minimizes the expression

< H >=< P Φ |H | P Φ > / < P Φ | P Φ > (8.173)

where P is a projector for all symmetries of the state under study. This is the procedure

referred to as the Projected Hartree-Fock (PHF) method. Note that the PHF wavefunction is

not what would be obtained by projection of even an exact ordinary Hartree-Fock function.

Since the latter function has been determined by optimal choice of a necessarily mixed-

symmetry form, its pure-symmetry component will not itself be optimum, and will be a

poorer wavefunction than that obtained from the PHF process, where it is the projected

function which is optimized.

Considerable study has been directed toward spin-projected states. The situation is

complicated by the fact that in most cases the coupling of individual spins to a given total-

spin resultant is not unique, with different couplings defining the wavefunctions of different

energies. Many different types of spin-projected calculations are possible, depending upon

whether all, or only certain spin couplings are considered. The three most used formulations

are (1) those in which the spins associated with specific pairs of orbitals are coupled to zero

resultants (valence-bond or perfect-pairing structures); (2) those in which all spinorbitals of

the same spin orientation are coupled symmetrically; and (3) those in which an optimum

spin coupling is found (spin-optimized Hartree-Fock).
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As independent-particle wavefunctions, the unrestricted functions are underniably supe-

rior to the RHF function, and PHF results have in fact been used as a basis for discussing a

number of chemically interesting systems. However, the situation becomes less clear when

an independent-particle calculation is used as a starting point for correlation-energy studies.

The deficiencies of the RHF model are then easily corrected by subsequent calculation steps,

and increasing importance must be attached to the convenience of the starting point. Most

correlation studies use a basis set of orbitals derived from independent-particle calculations,

and are easier to carry out when the basis contains one orthogonal set of spatial orbitals.

K. Properties

Although much can be learned from a direct examination of the Hartree-Fock energies and

wavefunctions, a full understanding of the physical content of the independent-particle model

can only be obtained by the calculation of appropriate properties based on Hartree-Fock

wavefunctions. Some properties, such as the electric dipole moment, can be thought of as

describing features of the wavefunction. But other, as for example the electric polarizability,

can only be understood in terms of the response of a many-particle system to an appropriate

external perturbation. In particular, the energy change caused by the perturbation may be

related to the observed value of the corresponding property. In the case of the polarizability,

the perturbation is the interaction of all charges of the system with an electric field E , and

(in the absence of a preexisting dipole moment) the perturbation changes the energy by an

amount −1/2E .αE where α is the polarizability tensor. If E is directed along a principal

axis of the polarizability tensor (say the z axis), then this energy reduces to −1/2αzzE
2.

Properties that describe features of the wavefunction can also be identified in formulations

involving the energetic response of a system to an appropriate perturbation. For example,

the application of an electric field E to a system with electric dipole moment µ will result in

an energy change −µ.E − 1/2E .αE . If the field is made large enough, the dipole moment it

induces will no longer be linear in the field strength, and a complete representation of the

change in energy with E will contain further terms. The coefficient of each power of E in

the energy change is therefore in a certain sense a property of the many-particle system.

It may appear that we have identified two divergent methods for defining those properties

that are directly identifiable with features of the wavefunction of a many-particle system.
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However, it is clear that from an operational point of view, the experimental basis for the

measurement of a property must be in terms of the response of a system to a suitable

perturbation. As we have already pointed out, in the case of the electric dipole moment

the perturbation will be that caused by an electric field (presumably weak enough that its

presence will not produce a significant induced dipole moment). If, as for the electric dipole

moment, a linear relation exists (in the limit of small perturbations) between the magnitude

of the perturbation and the energy change thereby produced, the property is termed first-

order. Properties that are identifiable with features of a system wavefunction are necessarily

first-order. It is possible to show that for exact wavefunctions, a first-order property defined

by response to a perturbation can also be equivalently defined as an expectation value based

on the system wavefunction. However, it is possible to find approximate wavefunctions for a

many-particle system that do not preserve this equivalence, and in such cases the discrepancy

will be an indication of inaccuracies in the calculations by one, or possibly both approaches.

Some properties, such as the electric polarizability, inherently involve energy changes

associated with rearrangements of a many-particle wavefunction. If, as for the polarizability,

the energy change is proportional to the square of the magnitude of the relevant perturbation,

the property is termed second- order. As we shall see, second-order properties have values

that depend not only upon the unperturbed wavefunction but also upon the entire energy

spectrum of the many-particle system. Although we shall not discuss them, it is possible

to analyze the energy changes proportional to third or higher powers of the magnitude of a

perturbation; when the perturbation is that due to an electromagnetic field, these third and

higher-order properties are called hyperpolarizabilities.

Properties may also be classified according to the number of particles whose coordinates

are coupled in the relevant perturbation. Thus, dipole moments and polarizabilities are

one-particle properties, while spin-spin interactions are two-particle properties. Properties

may also be time-independent or time-dependent.

L. Calculation of Properties

We proceed now to a discussion of those properties associated with a general perturbation

to a many-particle Hamiltonian H. We write the perturbation in the form gW, where W is an

operator characteristic of the perturbation and g is a parameter controlling its magnitude.

176



For example, if the properties under consideration are the electric- dipole component µz

and the polarizability component αzz, g would be the magnitude E of an electric field in

the +z direction, and (suppressing constant factors) W would be a sum of z coordinates:

W = −
∑

i z(i). We write the perturbed Hamiltonian as

H(g) = H + gW (8.174)

The perturbed problem defined by H(g) will have eigenfunctions and eigenvalues that

may be expanded about the corresponding unperturbed quantities:

Ψ(g) = Ψ + gΨ(1) + g2 ψ(2) + · · · (8.175)

E(g) = E + g E(1) + g2E(2) + · · · (8.176)

We can without loss of generality require Ψ(1), Ψ(2), to be orthogonal to Ψ. The energies

E(1), E(2), · · · are proportional to the first, second, · · · order properties associated with the

perturbation gW. For the electric-field perturbation, we have already observed ∆E(E) =

−µzE−1/2αzzE
2+· · ·, so that (with g = E) we may identify µz = −E(1) and 1/2αzz = −E(2).

Another way of representing E(1) and E(2) is in terms of derivatives of E(g) evaluated at

g = 0:

E(1) =
dE(g)

dg

∣

∣

∣

∣

∣

g=0

(8.177)

E(2) =
1

2

d2E(g)

dg2

∣

∣

∣

∣

∣

g=0

(8.178)

If we assume that Ψ and E are known exactly, we can proceed to a formal derivation of

E(1), E(2), · · · We start by writing the Schrödinger equation for H(g):

[H(g) − E(g)] Ψ(g) = 0 (8.179)

Expanding all quantities in Eq. (8.179) according to Eqs. (8.174 - 8.176), we have

(H + gW − E − g E(1) · · ·)(Ψ + gΨ(1) + · · ·) = 0 (8.180)

Since Eq. (8.180) must be satisfied for arbitrary g, the coefficient of each power of g on its

left-hand side must vanish. From the coefficients of g0, g1, g2, · · ·,

(H − E) Ψ = 0 (8.181)
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(H − E) Ψ(1) + (W − E(1)) Ψ = 0 (8.182)

(H − E) Ψ(2) + (W − E(1)) Ψ(1) − E(2) Ψ = 0 (8.183)

The first of the preceding equations is satisfied by virtue of the fact that Ψ and E satisfy

the unperturbed Schrödinger equation. The second equation permits the determination of

Ψ(1) and E(1), and the third (and subsequent) equations lead to expression for Ψ(2), E(2),

and subsequent contributions. Taking the scalar product of Eq. (8.182) with < Ψ|, and

using the fact that < Ψ|(H − E) = 0, we find (choosing Ψ to be normalized)

E(1) =< Ψ |W |Ψ > (8.184)

This result confirms our earlier observation that in an exact calculation, a first-order property

may be specified equivalently by the energy response E(1) or by an expectation value based

on the unperturbed wavefunction Ψ.

In order to obtain the energy response E(2), we will need the first-order wavefunction

change Ψ(1). We proceed by a method that is valid only if the unperturbed energy E is

nondegenerate. Degeneracy of E leads to complications beyond the scope of the current

presentation. We solve Eq. (8.182) for Ψ(1) through left-multiplication by Q/(H−E), where

Q is the projector for the orthogonal complement to Ψ and the notation is that introduced

in Eq. (1.100). Because E is nondegenerate Q/(H − E) can be inverted in the subspace

defined by Q so Q/(H−E) exists and the procedure we are using will be well defined. The

left-multiplication yields

Q

H − E
(H − E) Ψ(1) +

Q

H − E
(W − E(1)) Ψ = 0 (8.185)

which, according to Eq. (1.102), reduces to

QΨ(1) = −
Q

H − E
(W − E(1)) Ψ (8.186)

Because QΨ = 0, we may drop the E(1). Remembering that Ψ(1) has been assumed orthog-

onal to Ψ, we replace QΨ(1) by Ψ(1), reaching

Ψ(1) = −
Q

H − E
W Ψ (8.187)

We now proceed to obtain E(2) by taking the scalar product of Eq. (8.183) with Ψ∗. We

see that the term < Ψ|(H − E)|Ψ(2) vanishes by letting H − E act to the left, and the term

< ψ|E(1)|Ψ(1) vanishes through the orthogonality of Ψ and Ψ(1). The surviving terms yield

E(2) =< Ψ |W |Ψ(1) > (8.188)
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Substituting from Eq. (8.187),

E(2) = −

〈

Ψ

∣

∣

∣

∣

∣

W
Q

H − E
W

∣

∣

∣

∣

∣

Ψ

〉

(8.189)

As pointed out before, E(2) depends upon the entire spectrum of H as well as the wavefunc-

tion Ψ. To evaluate Eq. (8.189), Q can be written in terms of the eigenfunctions Ψi of H

with respective eigenvalues Ei. Then

Q

H − E
=

′

∑

i

|Ψi >
1

Ei − E
< Ψi| (8.190)

where the prime means Ψ is omitted from the sum, and

E(2) = −

′

∑

i

< Ψ |W |Ψi >< Ψi |W |Ψ >

Ei − E
(8.191)

The foregoing analysis is based on the traditional assumption that Ψ(1) is orthogonal to

Ψ. As already pointed out, this is not a restrictive assumption because any Ψ(g) can be

written as Ψ plus a correction orthogonal thereto. However, if we look more closely at the

equation defining Ψ(1), we see that that equation is, in fact, indeterminate with respect to

component of Ψ(1) proportional to Ψ. In other words, addition of a term cΨ to Ψ(1) would

have no effect in Eq. (8.182), as such a term would be annihilated by H−E. Moreover, the

derivation of Eq. (8.184) does not depend upon the form of Ψ(1), so that the value of E(1)

would also remain unaffected by addition of cΨ to Ψ(1).

Looking now at the derivation of E(2), we find that if Ψ and Ψ(1) are nonorthogonal, Eq.

(8.188) must be replaced (for normalized Ψ) by

E(2) =< Ψ |W − E(1) |Ψ(1) > (8.192)

If we now substitute

Ψ(1) = cΨ + QΨ(1) (8.193)

where QΨ(1) is what is actually given by Eq. (8.187), we get

E(2) = c < Ψ |W |Ψ > + < Ψ |W | QΨ(1) > −cE(1)

=< Ψ |W | QΨ(1) > (8.194)

which leads to Eqs. (8.189) - (8.191). We conclude that both E (1) and E(2) remain invariant

even though the Ψ component of Ψ(1) is arbitrary. This fact is particularly relevant because

perturbative developments of Ψ(1) are not ordinarily orthogonal to Ψ. The true significance

of the assumption < Ψ|Ψ(1) >= 0 is that it yields the Ψ(1) of minimum norm, in which case

Ψ(g) is as close as possible to Ψ
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M. Properties for Hartree-Fock Wavefunctions

The derivations of the preceding subsection are not sufficient for treatment of approxi-

mate wavefunctions, because they made liberal use of the assumptions that Ψ was an exact

wavefunction of the unperturbed Hamiltonian. For approximate wavefunctions it will be

necessary to reesamine the analysis and to proceed in a manner consistent with the approxi-

mations already in use. Here we conduct such a further study for wavefunctions obtained by

the Hartree-Fock procedure. For simplicity, we restrict discussion to one-particle properties,

for which the operator W is of the form
∑

i w(i).

The quantity ultimately needed, E(g), is obtained by constructing a Fock operator F(g),

finding its eigenfunctions φµ(g) and eigenvalues εµ(g), and forming

E(g) =
∑

α

εα(g) −
1

2

∑

αβ

< φα(g)φβ(g) | v |φα(g)φβ(g) − φβ(g)φα(g) > (8.195)

We see that E(g) is affected not only by changes in the Fock eigenvalues, but also through

the two-particle term by which the eigenalue sum is modified. The Fock operator F(g) also

contains terms involving the perturbed single-particle states:

F(g) = u + g w +
∑

µνα

|φµ >< φµ φα(g) | v |φν φα(g)φν >< φν| (8.196)

Notice that in Eq. (8.196) the µ and ν summations simply provide resolutions of the identity,

and the φµ and φν could have been any complete sets of states. For later convenience we have

chosen to take them as the unperturbed states. We are continuing with our usual convention

that µ and ν summations are unrestricted, while α summations are over occupied, single-

particle states only.

As before, we expand all the g-dependent quantities in series:

E(g) = E + g E(1) + g2E(2) + · · · (8.197)

F(g) = F + g F(1) + g2 F(2) + · · · (8.198)

φµ(g) = φµ + g φ(1)
µ + g2 φ(2) + · · · (8.199)

εµ(g) = εµ + g ε(1)µ + g2 ε(2)µ + · · · (8.200)

By equating the coefficients of successive powers of g to zero in the Fock equation [F(g) −

εµ(g)]φµ(g) = 0, we reach

(F − εµ)φµ = 0 (8.201)
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(F − εµ)φ(1)
µ + (F(1) − ε(1)µ )φµ = 0 (8.202)

(F − εµ)φ(2)
µ + (F(1) − ε(1)µ )φ(1)

µ + (F(2) − ε(2)µ )φµ = 0 (8.203)

Equations (8.201) - (8.203) are similar to Eqs. (8.181) - (8.183), with the exception that

Eq. (8.138) does not contain a term analogous to the F(2) that appears in Eq. (8.203).

Proceeding as for the earliner set of equations, we may deduce

ε(1)µ =< φµ | F
(1) |φµ > (8.204)

φ(1)
µ = −

(

Qµ

F − εµ

)

F(1) φµ (8.205)

ε(2)µ =< φµ | F |φµ > + < φµ | F
(1) |φ(1)

µ > (8.206)

The notation Qµ refers to the projector for the orthogonal complement to φµ; the formulation

is valid only if the (unperturbed) εµ are nondegenerate.

In order to proceed, we will need to make more explicit the formulas for E (1), E(2), F(1),

and F(2). Introducing Eqs. (8.199) and (8.200) into Eqs. (8.195) and (8.196), and using the

space-saving notation

< φµ φν | ṽ |φλ φσ >=< φµ φν |v |φλ φσ − φσ φλ > (8.207)

we obtain

E(1) =
∑

α

ε(1)α −
∑

αβ

[

< φ(1)
α φβ | ṽ |φα φβ > + < φα φβ | ṽ |φ

(1)
α φβ >

]

(8.208)

E(2) =
∑

α

ε(2)α −
∑

αβ

[

< φ(2)
α φβ | ṽ |φα φβ > + < φα φβ | ṽ |φ

(2)
α φβ >

+
1

2
< φ(1)

α φ
(1)
β | ṽ |φα φβ > +

1

2
< φα φβ | ṽ |φ

(1)
α φ

(1)
β >

+ < φ(1)
α φβ | ṽ |φ

(1)
α φβ > + < φ(1)

α φβ | ṽ |φα φ
(1)
β >

]

(8.209)

F(1) = w +
∑

µνα

|φµ >

[

< φµ φ
(1)
α | ṽ |φν φα > + < φµ φα | ṽ |φν φ

(1)
α >

]

< φν| (8.210)

F(2) =
∑

µνα

|φµ >

[

< φµ φ
(2)
α | ṽ |φν φα > + < φµ φα | ṽ |φν φ

(2)
α >

+ < φµ φ
(1)
α | ṽ |φν φ

(1)
α >

]

< φν| (8.211)
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From Eqs. (8.210) and (8.211) we may obtain the following matrix element formulas

< φµ | F
(1) |φµ >=< φµ |w |φµ > +

∑

α

[

< φµ φ
(1)
α | ṽ |φµ φα >

+ < φµ φα | ṽ |φµ φ
(1)
α >

]

(8.212)

< φµ | F
(1) |φ(1)

µ >=< φµ |w |φ(1)
µ > +

∑

α

[

< φµ φ
(1)
α | ṽ |φ(1)

µ φα >

+ < φµ φα | ṽ |φ
(1)
µ φ(1)

α >

]

(8.213)

< φµ | F
(2) |φµ >=

∑

α

[

< φµ φ
(2)
α | ṽ |φµ φα > + < φµ φα | ṽ |φµ φ

(2)
α >

+ < φµ φ
(1)
α | ṽ |φµ φ

(1)
α >

]

(8.214)

We also have, because ε(2)µ must be real,

< φµ | F
(1) |φ(1)

µ >=< φ(1)
µ | F(1) |φµ > (8.215)

When these formulas are inserted in the expressions for ε(1)α and ε(2)α , Eqs. (8.208) and (8.209)

can be simplified considerably, to

E(1) =
∑

α

< φα |w |φα > (8.216)

E(2) =
1

2

∑

α

[

< φα |w |φ(1)
α > + < φ(1)

α |w |φα >

]

(8.217)

Equation (8.216) shows that the intuitive result has been recovered: that a firs-order

property is, within the Hartree-Fock model, represented by an appropriate expectation value.

The expression for E(2), however, reveals a more complex situation. Equation (8.217) gives

E(2) in terms of the wavefunction changes φ(1)
α , which in turn are given by Eq. (8.205). But

when an explicit expression for F(1) is inserted on the right side of Eq. (8.205), the φ(1)
α occur

on both sides of that equation, so that the set of such equations is not in a solved format.

More explicitly, Eq. (8.205) may be written

φ(1)
µ = −

∑

ν;ν 6=µ

(

1

εν − εµ

)[

< φν |w |φµ > +
∑

α

< φν φ
(1)
α | ṽ |φµ φα >

+
∑

α

< φν φα | ṽ |φµ φ
(1)
α >

]

φν (each µ) (8.218)

182



If we introduce expansions of the φ(1)
µ in terms of the unperturbed single-particle states,

φ(1)
µ =

∑

λ

cλµ φλ (8.219)

Eq. (8.218) leads to

cνµ =

(

−1

εν − εµ

)[

< φν |w |φµ > +
∑

αλ

c∗λα < φν φλ | ṽ |φµ φα >

+
∑

αλ

cλα < φν φα | ṽ |φµ φλ >

]

(each µ, ν;µ 6= ν) (8.220)

Now, the cνµ are not completely independent, as they must be consistent with the orthogo-

nality of the perturbed single-particle states φµ(g). The coefficient of g in the orthogonality

integral < φµ(g)|φν(g) > is c∗νµ + cµν, and upon equating this coefficient to zero we obtain

c∗νµ = −cµν (µ 6= ν) (8.221)

Inserting this result into Eq. (8.220), and separating the λ summations into occupied-state

and unoccupied-state parts, we find that the occupied-state portions of the two summations

cancel against each other, leaving λ restricted to unoccupied states. This result is to be

expected, as the φ(1)
µ should not be influenced by rearrangements completely within the

occupied states. A similar argument applies if the expansion of Eq. (8.219) is inserted into

Eq. (8.217) for E(2). Therefore, even though the coefficients cνα will be nonzero for both

occupied and unoccupied ν, the relevant equations are

E(2) =
1

2

∑

αr

(crα < φα |w |φr > +c∗rα < φr |w |φα >) (8.222)

crα =
−1

εr − εα

[

< φr |w |φα >

+
∑

βs

(c∗sβ < φr φs | ṽ |φα φβ > +csβ < φrφβ | ṽ |φα φs >)

]

(8.223)

We now see that the characterization of the φ(1)
α entails solving the simultaneous linear

inhomogeneous equation set given in Eq. (8.223). For a basis of M single-particle states, of

which N are occupied, the set will contain N(M −N) complex equations. If, as is normally

the case, the unperturbed basis has been chosen in such a way that all nonvanishing two-

particle integrals are real, the equations can easily be separated into noninteracting real and
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imaginary components. We have

Re(crα) =
−1

εr − εα

[

Re < φr |w |φα > +
∑

sβ

Re(csβ) (< φr φs | ṽ |φα φβ >

+ < φr φβ | ṽ |φα φs >)

]

(8.224)

Im(crα) =
−1

εr − εα

[

Im < φr |w |φα > +
∑

sβ

Im(csβ) (< φr φβ | ṽ |φα φs >

− < φr φs | ṽ |φα φβ >)

]

(8.225)

If, in addition, the operator w has only real matrix elements, we can see that the crα will

also be real.

For many practical problems the dimensionality of the equation systems impied by Eqs.

(8.224) and (8.225) is small enough that the necessary manipulations can be carried out

in a straightforward manner. However, for very large systems it may prove advisable to

proceed in an approximate fashion. A number of schemes can be considered for eliminating

or estimating the effect of the s, β summations in Eqs. (8.224) and (8.225); because these

summations have the effect of coupling different crα the procedures for handling them have

been identified by the name coupled Hartree-Fock.

184



IX. THE CONFIGURATION-INTERACTION METHOD

A. Preliminary Remarks

In the previous section we introduced a variety of independent-particle models for the

wavefunction of a many-fermion system. As we have observed, independent- particle con-

cepts provide an intuitively appealing framework for the discussion of many-fermion prob-

lems, and in addition can often yield qualitatively correct results for quantities such as the

total energy. Unfortunately, however, there are many physically important problems whose

solutions depend upon the deviations of actual wavefunctions from the independent-particle

form, and such problems require the introduction and use of more sophisticated forms of

many-fermion wavefunctions. Deviations from the independent-particle results are most ex-

treme for properties that depend on the details of the interparticle interaction or on the

variation in its magnitude between different states. Thus, quantities such as excitation en-

ergies, molecular dissociation energies, polarizabilities, and relativistic effects really must be

treated by methods beyond the independent-particle model. This section is concerned with

correcting the independent-particle model in such a way as to include those physical effects

needed for accurate calculation of important propeties.

In this section we will be concerned with the most widely used and mathemati-

cally simplest technique for correcting an independent-particle wavefunction, namely the

configurration-interaction (CI) expansion. The CI method, sometimes (and perhaps more

appropriately) referred to as the method of superposition of configurations, involves the ex-

pansion of the many-fermion wavefunction as a linear combination of determinantal functions

(configurations), with the coefficients of the various determinants found by application of

the variational principle.

B. The CI Wavefunction

Given an orthonormal set of one-particle functions {φµ}, the most general, fully-

antisymmetric N -fermion wavefunction can be written as a linear combination of deter-

minantal functions, each of which is of the form illustrated in Eq. (7.1), i.e.,

[φµ φν · · · · · ·] ≡ (N !)1/2 A (φµ φν · · · · · ·) (9.1)
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A CI wavefunction consists of a linear combination of those determinantal functions that

upon practical considerations it is decided to include. It is convenient to use the notation

of Section 7.C and introduce a reference determinant (assumed not orthogonal to the final

CI wavefunction)

Φ = [φα φβ · · · · · ·] = a† a† · · · · · · |0 > (9.2)

We will also require ”excited determinants” in which one or more of φα, φβ, · · · · · · are replaced

by a corresponding number of states φr, φs, · · · · · · not present in Φ. The excited determinants

are written

φr
α = a†

r aα Φ = Ar
α Φ

Φrs
αβ = a†

r a†
s aβ aα Φ = Ars

αβ Φ

· · · · · ·

ΦR
∆ = AR

∆ Φ (9.3)

This notation makes ΦR
∆ the determinantal function resulting if the one-particle functions

in Φ and listed in ∆ are replaced, in order, by those listed in R. The CI wavefunction Ψ is

therefore of the form

Ψ = c0 Φ +
∑

αr

crα Φr
α +

∑

(αβ)(rs)

crs
αβ Φrs

αβ + · · · (9.4)

with the coefficients c0(6= 0), crα, · · · to be determined variationally. Observe that the summa-

tion index notation limits the expansion to terms having distinct index sets; terms differing

only by an index permutation would be linearly dependent. To avoid awkwardness in later

equations, we adopt the convention that Eq. (9.4) contains only index sets arrayed in lex-

ical order; if a cR∆ with other orderings occurs in any equation, it is to be reduced to the

corresponding lexically ordered coefficient with the introduction of a factor (−)P , where P

is the parity of the permutation to the lexical order.

The effectiveness of the CI expansion depends, of course, upon the rapidity of its conver-

gence. Best results are normally obtained if the reference function Φ provides a reasonable

independent-particle model for the system under study. In that case the succeeding terms

of the CI expansion describes corrections to the reference function depending upon the co-

ordinates of one, two, ... particles, and under certain circumstances the higher-order terms

may become small. For that reason, and for further reasons of computational convenience
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to be identified later, Φ is frequently taken to be a Hartree-Fock wavefunction. However,

the CI formalism does not require use of any particular reference state, and there may be

applications where other choices could be more suitable. We also note that in principle it

is possible to make expansions of the form of Eq. (9.4) with nonorthogonal one-particle

functions. Except for systems with very few particles, the nonorthogonality procduces such

severe computational complications that it becomes impractical to complete the CI calcula-

tions.

Another way of expressing the relationship between Φ and Ψ given in Eq. (9.4) is to

write

Ψ = (c0 + C) Φ (9.5)

where C is an operator with definition

C =
∑

αr

crα Ar
α +

∑

(αβ)(rs)

crs
αβ Ars

αβ + · · · (9.6)

Since the normalization of Ψ is at our disposal and since c0 is by hypothesis nonzero, we may

arbitrarily set c0 = 1, with corresponding proportional changes in all the other coefficients.

We then have a formula that proves useful in the comparison of many-fermion wavefunctions:

Ψ = (1 + C) Φ (9.7)

The Ψ given by Eq. (9.7) possesses the so-called intermediate normalization

< Φ |Ψ >=< Φ |Φ >= 1 (9.8)

Although we realize that it is not the most convenient choice for actual CI calculations, for

formal reasons, we will use intermediate normalization. It is easier to solve simulataneous

homogeneous equations for arbitrary scale than to handle a less symmetrical but equivalent

inhomogeneous problem.

C. The CI Equations

With a normalized (to unity) wavefunction Ψ of the form given in Eq. (9.4), the expec-

tation value of the energy E for a Hamiltonian H is

E =< Ψ |H |Ψ >=
∑

R∆;R′∆′

cR
∗

∆ < ΦR
∆ |H |ΦR′

∆′ > cR
′

∆′ (9.9)
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where the summations are over all distinct index sets consistent with N -fermion wavefunc-

tions, including the empty set (correspondient to c0 and Φ). The unit normalization requires

that

< Ψ |Ψ >=
∑

R∆

|c∆R|
2 = 1 (9.10)

We now invoke the variational principle and seek the values of the cR
∆ that make the E

of Eq. (9.9) a minimum, subject to the constraint of Eq. (9.10). It is most convenient to

proceed by the method of Lagrange multipliers, which dictates that we seek an unconstrained

minimum of < Ψ|H|Ψ > −λ < Ψ|Ψ >, with λ ultimately chosen so that Eq. (9.10) is

satisfied. The variation of this quantity with respect to cR
∆ is

δ[< Ψ |H |Ψ > −λ < Ψ |Ψ >] =
∑

R′∆′

[(

δcr
∗

δ

)

< ΦR
∆ |H |ΦR′

∆′ > cR
′

∆′

+ cR
′∗

∆′ < ΦR′

∆′ |H |ΦR
∆ >

(

δcR∆

)]

− λ

[(

δcR
∗

∆

)

cR∆ + cR
∗

∆

(

δcR∆

)]

= 0 (9.11)

In deriving Eq. (9.11) we have used the fact that the ΦR
∆ are orthonormal. Since the

terms involving δcR
∗

∆ are the complex conjugates of those involving δcR
∆, it is necessary and

sufficient to require the quantities multiplying δcR∗

∆ to vanish. This leads to the following

CI equations:

∑

R′∆′

< ΦR
∆ |H |ΦR′

∆′ > cR
′

∆′ − λ cR∆ = 0 (∀ R,∆) (9.12)

As is well known, Eqs. (9.12) have nonzero values of the cR
∆ as solutions only for certain

values of λ. For these λ values the nonzero sets of cR
∆ are arbitrarily scaled and can be

chosen to satisfy Eq. (9.10) or, for that matter, any desired normalization including the

intermediate normalization described by Eq. (9.8).

To find the physical significance of λ, we multiply each of the Eqs. (9.12) by the corre-

sponding cR
∗

∆ and add all of the resulting equations together. We then arrive at

∑

R∆;R′∆′

cR
∗

∆ < ΦR
∆ |H |ΦR′

∆′ > cR
′

∆′ − λ
∑

∆R

|cR∆|
2 = 0 (9.13)

Comparing with Eqs. (9.9) and (9.10), we find that λ = E (irrespective of the normalization

chosen). Noting that < ΦR
∆|Φ

R′

∆′ > vanishes unless R∆ = R′∆′ (in which case it is unity),

we rewrite Eqs. (9.12) as

∑

R′∆′

< ΦR
∆ |H − E |ΦR′

∆′ > cR
′

∆′ = 0 (∀ R,∆) (9.14)
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The derivation of Eq. (9.14) remains valid if the expansion for Ψ is truncated to a finite set

of R∆. In that case, there will be an Eq. (9.14) for each retained R∆, and the solution of

these equations will give the minimum-energy Ψ of the truncated form.

Another way of obtaining Eqs. (9.14) is to start from the Schrödinger equation as applied

to an (in principle) untruncated and therefore completely general wavefunction expanded as

in Eq. (9.4):

(H − E) Ψ = (H − E)
∑

∆′R′

cR
′

∆′ ΦR′

∆′ = 0 (9.15)

If Eq. (9.15) is successively projected against all the ΦR
∆ retained in the expansion of Ψ

(including Φ itself), Eqs. (9.14) result. We may thus interpret Eqs. (9.14) as defining an

approximate solution Ψ to the Schrödinger equation that satisfies the equation in projection

upon the space in which the approximate Ψ is found. We show this explicitly by writing

P (H − E)P Ψ = 0 (9.16)

where P projects onto the space spanned by the configuration to be used. As we have already

pointed out, the derivation of Eq. (9.14) shows hat the CI procedure has the additional

feature of yielding he minimum energy expectation value within the space searched for Ψ.

D. Further Study of the CI Equations

Most actual calculations using the CI method have been accomplished by identifying Eq.

(9.14) as a matrix eigenvalue problem, then solving it by standard techniques. However,

some successive approximation procedures for large problems, and much additional insight,

can be obtained if we consider the CI equations to be a system that couples terms describing

increasing degrees of excitation from the reference state Φ. This viewpoint becomes partic-

ularly useful when we introduce approximations as to the nature of the terms that describe

high degrees of excitation.

We begin the analysis of this subsection by examing the member of the equation set

(9.14) corresponding to projection on Φ (i.e., the equation with ΦR
∆ = Φ). In intermediate

normalization, that equation is

< Φ |H − E |Φ > +
∑

αr

crα < Φ |H − E |Φr
α > +

∑

(αβ)(rs)

crs
αβ < Φ |H − E |Φrs

αβ >= 0 (9.17)
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Recall that (αβ) and (rs) denote summations over distinct index sets. Writing H = U + V,

where U and V are its one- and two-electron parts, respectively, and using Eqs. to evaluate

the matrix elements, we obtain

E − EΦ =
∑

αr

crα

[

< φα | u |φr > +
∑

β

< φα φβ | ṽ |φr φβ >

]

+
1

4

∑

αβ;rs

crs
αβ < φα φβ | ṽ |φr φs > (9.18)

with EΦ the energy expectation value associated with Φ:

EΦ =< Φ |H |Φ >=
∑

α

< φα | u |φα > +
1

2

∑

αβ

< φα φβ | ṽ |φα φβ > (9.19)

In Eqs. (9.18) and (9.19) we have removed the restrictions on the index sums and in-

serted appropriate factors 1
4

and 1
2
. This change requires the assumption that the crs

αβ are

antisymmetric under index permutation. Remember that the ṽ matrix elements are also

antisymmetrized. Because H contains no terms that depend on the coordinates of more

than two particles, triply and higher excited terms in Eq. (9.17) make no contribution to E.

190


