Illuminating semiconductors with optical-vortex light

Guillermo F. Quinteiro

Departamento de Física Universidad de Buenos Aires Argentina

Basic concepts

Optical-vortex light ?

It evokes images of

... and is indeed something like this.

It is highly inhomogeneous light having a vortex or phase singularity in its axis, where the electric and/or magnetic fields can be zero.

A comment on nomenclature...

Optical-vortex light = Twisted Light

and also:

Light carrying orbital angular momentum

Mathematical representation

$$\overline{E'}(r, \varphi, z; \omega) = \overline{E}(r, \varphi) e^{i(\omega t - k z)}$$

Paraxial optical-vortex

Polarization: Spin angular momentum ± ħ

Vortex: Orbital angular momentum ± ħł

... and non-paraxial beams?

$$\overline{E}(r,\varphi) = \overline{\epsilon}_{\pm} e^{\pm i\ell\varphi} F_1(r) + \hat{z} F_2(r) e^{\pm i(\ell\pm 1)\varphi}$$

Longitudinal component

These beams can be produced by focusing a non-paraxial beam

Strong magnetic fields near the phase singularity may exist

Generation of OVs

Generation of paraxial optical-vortex beams

Cylindrical lenses

Holograms

Generation of OVs

Generation of paraxial optical-vortex beams

Research in optical-vortex light

PHYSICAL REVIEW A

VOLUME 45, NUMBER 11

1 JUNE 1992

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands (Received 6 January 1992)

Laser light with a Laguerre-Gaussian amplitude distribution is found to have a <u>well-defined orbital angular momentum</u>. An astigmatic optical system may be used to transform a high-order Laguerre-Gaussian mode into a high-order Hermite-Gaussian mode reversibly. An experiment is proposed to measure the mechanical torque induced by the transfer of orbital angular momentum associated with such a transformation.

It rapidly extended to many areas...

FIG. 1 (color). Experimental configuration. (a) Schematic of the toroidal optical dipole trap formed at the intersection of two red-detuned beams: a horizontal "sheet" beam and a vertical Laguerre-Gaussian beam (LG_0^1) with a ring-shaped intensity maximum. A pulsed pair of Raman beams (large downward arrows) copropagating with the LG trapping beam creates circulation in the condensate. (b) Energy level diagram for the

Orbital Angular Momentum Exchange in the Interaction of <u>Twisted Light with Molecules</u>

M. Babiker,¹ C. R. Bennett,² D. L. Andrews,³ and L. C. Dávila Romero³

¹Department of Physics, University of York, Heslington, York, YO10 5DD, United Kingdom ²RD114, QinetiQ, St. Andrews Road, Malvern, Warcs WR14 3RS, United Kingdom ³School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom (Received 29 April 2002; published 11 September 2002)

Interactions of twisted light with chiral molecules: An experimental investigation

F. Araoka, T. Verbiest, K. Clays, and A. Persoons KU Leuven, Laboratory of Chemical and Biological Dynamics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium (Received 21 January 2005; published 11 May 2005)

Angular EPR paradox

J. B. GÖTTE*, S. FRANKE-ARNOLD and STEPHEN M. BARNETT Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK

A <u>quantum electrodynamics</u> framework for the nonlinear optics of <u>twisted beams</u>

L C Dávila Romero¹, D L Andrews¹ and M Babiker²

¹ School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
² Department of Physics, University of York, Heslington, York YO10 5DD, UK

Physica Scripta. Vol. 72, 359-365, 2005

Screw-Shaped Light in Extended Electromagnetics

B. Lehnert¹

Alfvén Laboratory, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Received May 13, 2005; accepted June 6, 2005

Research directions

nature physics

nature.com > journal home > archive > issue > letter > abstract

NATURE PHYSICS | LETTER

Twisting of light around rotating black holes

Fabrizio Tamburini, Bo Thidé, Gabriel Molina-Terriza & Gabriele Anzolin

Affiliations | Contributions | Corresponding author

Research directions

THE BEST JOBS IN SCIENCE WEEKLY NEWS IDEAS INNOVATION NewScientist **Twisted Light** It's fast, furious and perfect for talking to aliens **Animal Minds** The amazing truth **Respect for fish** Monkeys and Machiavelli Betty, the engineer crow Smart sheep or woolly robots? The friendly hyena Dogs that speak Human

Optical-vortex light and Semiconductors

Papers published only after 2008 ... still only few groups

New effects were predicted

Paraxial beams:

- creation of circular electric currents
- generation of local and ultrafast magnetic fields
- new transitions in quantum dots

New effects were predicted

Paraxial beams:

- creation of circular electric currents
- generation of local and ultrafast magnetic fields
- new transitions in quantum dots

Non-paraxial beams:

- strong magnetic interactions
- excitation of intersubband states in quantum wells
- excitation of light holes in quantum dots

I will talk about

- How to write the interaction Hamiltonian for OVs
- circular electric currents in bulk and quantum rings (paraxial physics)
- new transitions in quantum dots for heavy and light holes (non-paraxial physics)

A short review on semiconductor optics

Bulk semiconductors

$$\varphi(\bar{r}) = \mathrm{e}^{i\,\bar{k}\,\bar{r}}\,u_b(\bar{r})$$

Simplified two-band model

Semiconductors

Bulk semiconductors

$$\varphi(\bar{r}) = \mathrm{e}^{i\,\bar{k}\,\bar{r}}\,u_{b}(\bar{r})$$

Normal light causes vertical transitions

Semiconductors

Semiconductor quantum dot $\varphi(\bar{r})$

$$\varphi(\bar{r}) = G(r) e^{im\varphi} u_b(\bar{r})$$

Transitions between discrete energy levels

Interaction Hamiltonian at r = 0 How to model it ?

Use minimal coupling:

$$H = \frac{1}{2m} [\overline{p} + q\overline{A}(\overline{r})]^2 + U(\overline{r}) + V(\overline{r})$$

It is perfectly safe to use the vector potential, but some people prefer to use electric and magnetic fields.

One can try a gauge transformation:

$$\overline{A}(\overline{r}) \rightarrow \overline{A'}(\overline{r})$$
$$U(\overline{r}) \rightarrow U'(\overline{r})$$

that resembles the dipole-moment approximation. Then:

Electric multipolar term

$$H = \frac{\overline{p}^{2}}{2m} + V(\overline{r}) + \frac{q}{|\ell| + 1} \overline{r} \cdot \overline{E}(\overline{r}) + T(\overline{B})$$

Magnetic term

Near the phase singularity, we cannot in general disregard the magnetic term !

When is E>>B?

Magnetic fields of optical-vortex are always smaller than electric fields when $Sign(\ell)=Sign(\sigma)$:

$$H = \frac{\overline{p}^2}{2m} + V(\overline{r}) + \frac{q}{|\ell| + 1} \overline{r} \cdot \overline{E}(\overline{r})$$

Currents in Bulk

Apologies for a tiny lie ... plane waves produce *almost* vertical transition

The momentum of light is transferred to the electron

The transition is simple for symmetry reasons

Optical-vortices have cylindrical symmetry, and they excite a superposition of electron states in the conduction band

Formation of complex patterns of electric currents

Currents in quantum rings

Quantum rings are 1D structures with the same symmetry as the optical-vortex

$$\varphi_m(\overline{r}) = \frac{1}{\sqrt{2\pi}} e^{im\varphi} u_b(\overline{r})$$

Currents in quantum rings

Quantum rings are 1D structures with the same symmetry of the optical-vortex

 $\varphi_m(\overline{r}) = \frac{1}{\sqrt{2\pi}} e^{im\varphi} u_b(\overline{r})$

$$\varphi_m(\bar{r}) \stackrel{H}{\rightarrow} \varphi_{m+\ell}(\bar{r})$$

No superposition of states !

Induced electric current

Two contributions: A : coherence A²: population

A possible application

One or a stack of quantum rings may control a spin

Heavy-hole transitions in Quantum Dots

Disk-shape quantum dot with parabolic confinement excited by a paraxial beam(only in-plane E field)

 $\varphi(\bar{r}) = G(r) e^{im\varphi} u_b(\bar{r})$

Transition matrix elements:

$$|\langle c s' m' | H_I | v s m \rangle| \propto \delta_{\ell - (m' - m)} h(\zeta)$$

(c) conduction band
(v) valence band
(m) orbital quantum #
(s) radial quantum #
(ζ) QD size / beam waist

(#) radial quantum number m orbital quantum number

(#) radial quantum number m orbital quantum number

Light-hole transitions in Quantum Dots

$$|3/2, +1/2\rangle = -\frac{1}{\sqrt{6}} [(|p_x\rangle + i|p_y\rangle) \downarrow -2|p_z\rangle \uparrow]$$
$$|3/2, -1/2\rangle = \frac{1}{\sqrt{6}} [(|p_x\rangle - i|p_y\rangle) \uparrow +2|p_z\rangle \downarrow]$$

Non-paraxial optical vortex

$$E_x(\mathbf{r},t) = \frac{E_0}{2}(q_r r)\sin(\omega t - q_z z - \varphi)$$

$$E_y(\mathbf{r},t) = \frac{E_0}{2}(q_r r)\cos(\omega t - q_z z - \varphi)$$

$$E_z(\mathbf{r},t) = -E_0\frac{q_r}{q_z}\cos(\omega t - q_z z)$$

$$|3/2, -1/2\rangle = \frac{1}{\sqrt{6}} [(|p_x\rangle - i|p_y\rangle) \uparrow + 2|p_z\rangle \downarrow]$$

$$|3/2, -1/2\rangle = \frac{1}{\sqrt{6}} [(|p_x\rangle - i|p_y\rangle) \uparrow |+2|p_z\rangle \downarrow]$$

$$|3/2, -1/2\rangle = \frac{1}{\sqrt{6}} [(|p_x\rangle - i|p_y\rangle) \uparrow +2|p_z\rangle \downarrow]$$

A possible application

Quantum computing

- scalability
- optical control of each QD

use the z-component of a focused non-paraxial optical vortex

SEM-micrograph of site-controlled InAs QDs. Rep. Prog. Phys. **76** (2013) 092501 ... the non-paraxial beam σ =-1, ℓ =1:

$$E_z(\mathbf{r},t) = -E_0 \frac{q_r}{q_z} \cos(\omega t - q_z z)$$

plus a plane wave σ =+1, ℓ =0:

$$E_x(\mathbf{r}, t) = \frac{E_0}{2} \sin(\omega t - q_z z)$$
$$E_y(\mathbf{r}, t) = \frac{E_0}{2} \cos(\omega t - q_z z)$$

Spin flip in less than a picosecond at normal incidence

Conclusions

The interaction of Optical Vortex with semiconductor brings about many new effects, such as

- B field may overcome E field interaction
- direct generation of circular electric currents
- extended control of electronic transitions in QDs

Obrigado pela atenção !