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ABSTRACT

SPIN INTERACTION IN SEMICONDUCTORS
MEDIATED BY ITINERANT EXCITATIONS

By

Guillermo Federico Quinteiro Rosen

Circumscribed to the field of condensed matter, this thesis aims to enhance our

understanding of optically-induced indirect spin interactions in semiconductor struc-

tures, as well as to contribute to the development of solid state proposals for the

emerging science of Quantum Information.

The theoretical formalism that is used throughout this thesis is discussed. This

mathematical framework describes excitations of the semiconductor, light fields and

localized spin states. It is shown how the Hamiltonian is derived from a microscopic

model. This resulting Hamiltonian includes the: i) Interaction between laser light and

excitations of the semiconductor; ii) Kinetic energies of excitations; iii) interaction

of photons and excitons that yield exciton polaritons; iv) Spin interaction between

localized centers and optical excitations in the semiconductor (excitons and/or exciton

polaritons).

The formalism is first employed to analyze the spin indirect interaction mediated

by excitons in semiconductors and extend the results of previous works in this subject.

In contrast to previous works, a full analytical solution valid to all orders in the

strength of the interaction between excitations and localized spins is found. New

features arise from the non-perturbative solution. One important finding is that both

ferromagnetic and anti-ferromagnetic indirect coupling can be achieved.

The indirect interaction for semiconductors embedded in a planar micro-cavity

is then considered. This theory follows naturally as an extension of the one for bare



semiconductors. The focus is now on different features that are predicted using per-

turbation theory in the coupling between polaritons and localized spins. It is shown

that the indirect interaction presents two distinct regimes, depending on the sepa-

ration between the localized spins. In each regime, the dominant interaction is of a

different type: Ising or Heisenberg. Moreover, the range of the interaction for a semi-

conductor in a micro-cavity is found to be of longer range when compared to that of

a bare semiconductor.

The knowledge gained through the aforementioned investigations opens new pos-

sibilities for applications to quantum information. First, a detailed analysis of optical

quantum control in a system consisting of quantum dots grown on top of a quantum

well is presented. It is shown how this system is a possible candidate for quantum

computers. Then a discussion follows, describing how the findings on bare semicon-

ductor and micro-cavity indirect interactions are a rich ground for implementations

of quantum computing and other quantum information technologies.

This dissertation ends with comments on the future developments of the research

presented here.
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Introduction

Solid State Physics has experienced tremendous changes in the last century, and is

currently one of the most active research fields. It gives us basic insight into our

physical world, and enables us to control and modify the environment to improve

our lives. Among its various areas of research, semiconductor physics and magnetism

have had a central role. The research in semiconductors has made possible impressive

technological developments, e.g. digital computers. Moreover, the past few decades

have witnessed important technological advances that made possible the fabrication of

semiconductor systems with novel properties. Research on materials that have both

semiconductor and magnetic properties has also attracted much attention. These

concurrent new investigations promise further technological developments in classical

information technology as well as the new emerging field of quantum information.

Semiconductor engineered structures exhibit very interesting new features. [1] Per-

haps, the best examples of novel systems are quantum dots(QD) [2, 3] and planar

micro-cavities [4]. The former are usually regarded as artificial atoms. Although a

QD can be a hundred times larger than its natural counterpart, they share some

important characteristics. For instance, particles trapped in a QD are confined in all

directions – like in a real atom; for this reason it is considered a zero dimensional

structure. A planar micro-cavity consists of a very thin semiconductor structure –

a quantum well (QW)1 – enclosed by mirrors on both sides. When light is trapped

between the mirrors, it couples to electronic excitations of the QW, giving rise to a

1Width of the order of tens of an atom size.
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new quasi-particle named a polariton [5].

Magnetism has been the focus of extensive experimental and theoretical study. It

is well accepted that this phenomenon is due to collective mechanisms where elec-

tron correlations play a crucial role. Other possible sources of magnetism, with no

electronic correlation, do not account for experiments, and simple estimations show

that they vanish at high temperatures; for example, the magnetic dipole-dipole inter-

action energy is about 10−4 eV , which is approximately 1 Kelvin. Strong electronic

correlations, that can persist at room temperatures, are the result of the Pauli exclu-

sion principle and the Coulomb interaction, and are generally referred to as exchange

interactions. This encompasses itinerant-exchange, direct-exchange, super-exchange,

etc.

Semiconductors that exhibit magnetic properties can be obtained by doping or

the implantation of impurities. [18,49] These embedded particles are then responsible

for the magnetic features of the whole system. As explained above, various exchange

mechanisms may account for the magnetic interaction. Depending on the system

and conditions, the coupling among foreign particles may be assisted by excitations

on the host material which, for example, may be produced coherently by optical

excitation. [6–8] Thus we talk of indirect-interaction processes [9,10] that link localized

states. The light-induced spin-spin interaction is a convenient way for a fast quantum

control of spins. [6–8,11]

The concept of quantum computing (QC) was originally proposed by Richard

Feynman and others [12, 13]. They suggested that a new type of computer based

entirely on the principles of quantum mechanics may outperform any conceivable

classical computer. [14] A substantial effort is deployed now in the exploration of

physical systems that may implement a QC. Within solid state physics, magnetic

semiconductor nano-structures are very promising systems. The logical units (qubits)

are realized by impurity spin states or electrons in quantum dots, and the logical

operation performed using a variety of methods: electrical, optical, etc. [15–17]
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In conclusion, engineered magnetic semiconductor systems exhibit new features

that are worth studying from a fundamental perspective, and can have applications to

QC or other branches derived from Feynman’s original idea: quantum cryptography,

quantum teleportation, etc.

The research in systems using the aforementioned principles has led to important

results. A mechanism of indirect interaction between distant spins mediated by virtual

excitons in semiconductors has been studied [6]. In addition, QC schemes using the

indirect interaction were proposed, e.g. QD’s inside a zero-dimensional cavity [15] and

donors embedded in a 2D electron gas [78].

The work presented in this thesis is a theoretical contribution to the physics of

the exchange interaction between spins assisted by excitations in semiconductor struc-

tures – a problem of a complex nature encompassing all fields mentioned above. The

main results can be summarized as follow: i) In the case of bulk semiconductors, we

find a non-perturbative solution to the spin-spin interaction. This allows us to predict

that the corresponding coupling constant is either ferromagnetic or anti-ferromagnetic

depending on the frequency of the optical excitation. ii) We study for the first time

the spin-spin interaction in a planar micro-cavity mediated by polaritons. New fea-

tures arise: The range of the coupling constant is dramatically increased and the

interaction becomes anisotropic. iii) We analyze the optical quantum control and

role of spontaneous emission on a model for QC. We demonstrate that this system,

made out of excitons in QD’s and impurity-qubits, is fault-tolerant and thus is a good

candidate for QC.

Chapter 1 starts with an overview of the semiconductor physics necessary to build

our theory. Next, I introduce the mathematical formalism that will be employed, with

modifications and additions, throughout the whole dissertation.

Chapter 2 provides a theory of laser-induced interaction between spins localized

by impurity centers in a semiconductor host. We solve non-perturbatively the problem

of two localized spins interacting with one itinerant exciton, and we find an analytical
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expression for the induced spin-spin interaction as a function of the spin separation,

laser energy, and intensity. This non-perturbative approach is one of our main contri-

butions to the existing theories on optically mediated spin coupling. The application

of this theory to shallow neutral donors (Si) and deep rare-earth magnetic impurities

(Yb) in III-V semiconductors yields the following main result not predicted in the

previous perturbative treatments. When the photon energy approaches a resonance

related to excitons bound to the impurities, the coupling between the localized spins

increases, and may change from ferromagnetic to anti-ferromagnetic.

In chapter 3 we study the optically-induced spin interaction between two shallow

donors mediated by polaritons in a planar micro-cavity. The spin coupling mediated

by polaritons in a planar micro-cavity has been addressed for the first time in this

thesis. Our findings are: i) The vacuum Rabi splitting makes the spin interaction

anisotropic. ii) The spin interaction presents two distinct regimes, as a function of

the inter-spin separation. iii) The existence of the cavity – or polaritons – extends

the range of the spin interaction by several orders of magnitude compared to the case

of a bare semiconductor.

I study the possible applications of the preceding theory in chapter 4. First, I

show how the use of semiconductor excitation - localized state interaction can help

tackling intractable and/or very difficult problems in QC. In particular, we analyze

in detail the optical quantum control of impurity spins in the proximity of a quantum

dot. A laser pulse creates an exciton in the dot and controls the spins by an indirect

coupling. We show how to determine the control parameters to achieve maximal spin

entanglement, the most important ingredient in quantum information. We consider

errors in the quantum control due to the exciton radiative recombination. The control

errors in the adiabatic and nonadiabatic case are compared to the threshold needed for

scalable quantum computing. We find that the scheme we propose is fault-tolerant.

Finally, I analyze the possible applications of the theories presented in chapter 2

and chapter 3 to quantum computing in semiconductors. The errors in the spin-
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qubit operations due to the finite lifetime of the mediating particle represents one of

the most important limitations in all the optically-induced indirect spin interaction

schemes. The novel result we found for the quantum control – i.e. that by properly

choosing the parameters the errors are below the correction threshold – suggests that

this limitation can also be overcome in the systems of Chapter 2 and chapter 3.

This thesis ends with comments on future directions of research that may expand

the investigation exposed here.
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Chapter 1

The core mathematical model

Throughout this thesis, three physical systems will be analyzed. Though each one

sheds light onto different questions and possible applications, they all share important

features. These similarities stem from a common building block or core Hamiltonian,

out of which the specific dynamics for each system is constructed. The following

sections give a brief introduction to semiconductor physics, and show how the core

Hamiltonian can be derived from first principles. We also discuss the approximations

and their limitations.

1.1 Basic concepts in Semiconductor physics

Electron dynamics is of main importance to understand the transport and optical

properties of metals and semiconductors. [5, 18, 20] Electrons in solids are subjected

to the Coulomb potential due to lattice ions and other electrons. The theoretical

study can be carried out in series of successive approximations. The first aproximation

assumes that all sources of potential energy form an average single particle potential1

that has the periodicity of the lattice. Therefore, Bloch’s theorem applies. Bloch’s

theorem states that a possible description of the spatial wave function of particles in

1A common procedure to obtain such potential is through self consistent calculations.
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a periodic potential is the product

ψk(r) = eıkru(r)

of a plane wave with wavevector k (crystal momentum2 p = ~k) times an envelope

function u(r) with the periodicity of the potential. Alternatively, this can be expressed

as

ψk(r + R) = eıkRψk(r),

where R is a lattice vector. A description of electrons in these so-called Bloch states

can be given in terms of the momentum k restricted to the 1st Brillouin zone (BZ)3

and a band index n.

Though rough, the use of average potentials proves useful, for the dynamics of

the many electron system simplifies to the solution of a single-particle Schrödinger

equation. Tight binding or nearly-free electron models can then be employed. The

latter describes the loosely bound electrons in the outer orbitals. The starting point

is the assumption of an unperturbed Bloch function with u(r) = 1 that leads to a

quadratic dispersion law. Degenerate states at the boundary of the BZ are solved by

applying perturbation theory, and gaps between bands result. More accurate states

and energy bands are determined with the use of self consistent theories with spin

degrees of freedom, such as the original Hartree. Further refinements, e.g. Hartree-

Fock [18,19], introduce Pauli exclusion principle, symmetrization and spin dependent

interactions as well. Metals, insulators and semiconductors, are studied within the

formalism described above. The latter are binary compounds forming, in general,

covalent bonds. They can be regarded as insulators with a smaller energy gap (Eg <

5 eV) between the valence and conduction bands. A simplified band structure diagram

2This is not the linear momentum of the particle, for the problem does not have complete trans-
lational invariance.

3The Wigner-Seitz primitive cell in the reciprocal k space is known as Brillouin zone.
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Figure 1.1: Band structure of direct band gap III-V semiconductors showing valence
bands and the lowest conduction band close to the Γ point, with energy gap Eg. Spin-
orbit coupling breaks the degeneracy of the p-like valence band, leaving the energy of
the split-off J = 1/2 band lower than the heavy hole and light hole J = 3/2 bands.

of a direct band gap4 semiconductor of the III-V5 type is shown in Figure 1.1. The

valence and conduction bands arise from p and s atomic-like states, respectively.

Together with the spin degree of freedom, the total angular momentum is either

J = 1/2 for the conduction band or J = 3/2, 1/2 for the valence band. This is

completely degenerate at the Γ point (k = 0). Spin-orbit coupling lifts partially this

degeneracy, leaving the energy of the split-off J = 1/2 band lower than the heavy

hole and light hole J = 3/2 bands6. Other interactions, such as quantum confinement,

lattice strain, etc. further break the degeneracy between heavy hole mj = ±3/2 and

light hole mj = ±1/2. The ground state of a semiconductor consists of electrons filling

completely the valence band; excited states are only occupied via the promotion of an

electron from the valence to the conduction band. As the band gap energy is typically

of the order of electron-Volts, optical excitations are possible: a photon with energy

larger than Eg is absorbed and an electron changes state to one in the conduction

band, leaving a hole in the valence band.

4Valence maximum and conduction minimum occur at the same wavevector k.
5Chemical composition: the semiconductor is formed with an element of the III and V groups of

the periodic table.
6the splitting is of the order of magnitude of hundreds of meV .
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1.1.1 Excitons

So far, the effect of electron-electron interaction on the optical excitation has not been

described. In insulators and semiconductors, a well known consequence of Coulomb

interactions is the occurrence of new states with energy lower than the band gap

Eg
7. A photo-excited electron in the conduction band binds to the hole left behind in

the valence band in a state called exciton. [22] This particle is important to describe

optical properties of bulk semiconductor and engineered structures, specially at low

temperature.

The study of excitons was pioneered by Frenkel [24] and Wannier [23] in the

1930s. Consequently, this quasi-particle is nowadays classified according to whether

the electron and hole are strongly (Frenkel exciton) or weakly (Wannier exciton)

bound. The former occurs for example in ionic crystals, like NaCl [25]. The latter

is found in semiconductors that exhibit large dielectric constant (weaker screened

Coulomb interaction), such as GaAs.

As already anticipated, the electron-electron interaction complicates the mathe-

matical treatment, since a single-particle picture is no longer applicable [26]. The zero-

order ground state of the crystal can be represented by an antisymmetrized product

(Slater determinant) of atomic-like8 single-particle wave functions of electrons each

in its ground state a0 and centered at Ri

Φ0
.
= Aa0(r1 −R1)a0(r2 −R2)a0(r3 −R3) . . .

Nevertheless, a similar representation:

Φ1(Rh, β)
.
= Aa0(r1 −R1) . . . a1(ri −Re) . . . ,

7The difference in energy between this new state and the bottom of the conduction band is of
the few milielectron-Volts.

8Alternatively, Bloch wave functions can be used.
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for the excited crystal state with one electron promoted from a single-particle state

a0 at Rh to an single-particle excited state a1 at Re (β = Re−Rh) proves inadequate,

for the energy of the functions Φ1(Rh, β)’s for different Rh are degenerate. However,

a linear superposition of {Φ1(Rh, β)} written as

Φ1(K, β)
.
=

1√
N

∑
Rh

eiKRhΦ1(Rh, β)

partially diagonalizes the full Hamiltonian. With the use of these excitation waves,

originally introduced by Frenkel, and an equivalent representation Wannier showed

that the full Hamiltonian can be resolved in two terms. One accounts for transitions

with either electron or hole kept in its original site; this is a one-particle energy. The

other term is related to the Coulomb attraction between the electron and hole. From

this and the use of a new representation:

Ψν(K)
.
=

∑

β

Uν(β)Φ1(K, β),

Wannier found that the equations for the coefficients Uν(β), written in the form

Uν(β) = eiα′KβFν(β), lead to an hydrogen-like equation for Fν(β) in a medium of

dielectric constant ε, with α′ = m∗
e/(m

∗
e + m∗

h). Thus, the problem resembles that

of atomic systems with atomic energy spectrum and free center of mass motion.

Notice that, in Frenkel’s representation, the excitation is “free” to move with mo-

mentum K, but lacks relative motion; Wannier took into account the superposition

of states with different separation β between electron and hole. In the language of

creation/annihilation operators for electrons (α†/α) and holes (β†/β), the Wannier

exciton creation operator is represented by

b†νK = L−3/2
∑

k

ψν(k −K/2) α†kβ
†
K−k , (1.1)

where ψ is the Fourier transform of the electron-hole relative motion hydrogen-like
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wave function ν9, and L is the linear size of the 3D system. Being a composite particle

made up of two fermions, we can expect it to follow Bose statistics. Calculation of

the commutator

[bν0, b
†
ν0] = L−3

∑

k

|ψν(0)|2(1− α†kαk − β†−kβ−k)

shows that excitons are approximately bosons, and their deviation is proportional to

the density of electrons in the conduction and holes in the valence bands. [5]

In this thesis, we will consider an effective Hamiltonian for an electron and hole

in a medium with dielectric constant ε that leads to Wannier excitons in the bosonic

limit. Furthermore, we restrict the relative motion to the lowest ν = 1s state. [30]

1.1.2 Localized electrons in impurity centers and

quantum dots

Doping or implantation of impurities in semiconductors has been a common method

to alter both transport and optical properties of the host lattice. Nowadays, quantum

dots also allow us to modify those properties in engineered systems, such as quantum

wells.

The classification of impurities distinguishes two categories. These substitutional

atoms may be shallow or deep impurities, and donors, acceptors or iso-electronics. The

first division accounts for the effect introduced in the host lattice and the extension

to which the hydrogen-like model for impurities can be used. The second distinction

responds to the fact that impurities can donate to or accept from the lattice an

electron.

Quantum dots embedded in quantum wells can be charged in a controlled way. An

electron remains well localized within this structure and its dynamic follows closely

that of a trapped particle in a parabolic potential, thus presenting discrete levels.

9In the language of Wannier: Fν(β).
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In analogy to our treatment of excitons, we assume that neither the electron in the

impurity nor that in the quantum dot changes its orbital state, and remains always

in the ground state. This is a sensible approximation, for – in the case of donors –

the binding energy is around tens of meV , and thus much smaller than the energy of

excitation of the laser field10. Ionization is also suppressed, for the dipole moment is

very small for a transition connecting a localized state in the donor to a high energy

state in the conduction band. Therefore, we focus on the spin degree of freedom of

the electron in the impurity or quantum dot.

1.2 The core Hamiltonian

All three systems that are the subject of the following chapters share important phys-

ical properties that can be described using a unified formalism. The prototype system

representing them, for which the core Hamiltonian is built, is a direct band gap semi-

conductor with valence and conduction bands arising from p and s atomic orbitals,

respectively. Moreover, the valence band is split due to spin-orbit coupling and other

particular effects (described in each chapter); thus, only heavy-hole valence and con-

duction bands are taken into account. As a result, excitons are linear combination of

states belonging to these two bands. The optical excitation of the system is always

achieved by monochromatic light with energy slightly below the excitonic absorp-

tion line. This ensures that only virtual transverse excitons appear. Moreover, their

density is controlled by the detuning and the intensity of the light field. Localized

electrons are included in the model; they come either from impurities or quantum

dots. They interact via Coulomb forces with the electron or hole belonging to the ex-

citon. Exchange is usually the dominant interaction and the most interesting effect.

In almost all cases the hole spin interacts weakly with the electron spin, and therefore

it remains in its state through the evolution of the system.

10The laser is tuned slightly off-resonance with the exciton line, that lies hundreds of meV to eV
above the bottom of the valence band.
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For Wannier excitons in the effective mass approximation, the resulting effective

core Hamiltonian in first quantization form reads

H = H0 + HL + HI

H0 = −
∑

i

~2

2mi

∇2
i +

∑

l

V (rl)

HL =
∑

e

E(re) de e−i(kre−ωt)

HI =
∑

e,l

q2

ε|re − rl| , (1.2)

where subindexes {e, l, i} refer to the electron in the exciton, the electron localized in

the impurity/QD, and the exciton center-of-mass, respectively; d the dipole moment.

The first term is the kinetic energy of excitons plus the energy of localized electrons

in impurities/QDs. The second term is the coupling of the electron in the exciton to

the laser light. The last term is the Coulomb potential energy between the electron in

the exciton and the electron in the impurity/QD in a medium of dielectric constant ε.

Terms that give rise to energy shift, such as exciton-ion interaction, are not considered.

The binding of the exciton to the impurity/QD will be addressed in Chapter 2.

1.2.1 Kinetic energy

The exciton spatial wave functions is the product of relative and center of mass

motion wave functions. The former is of the 1s type, while the latter is a plane wave.

As such, when transforming to creation/annihilation operators in 2nd. quantization

form, the matrix element of the Laplacian gives a quadratic dispersion law. The energy

of different projections of spin are degenerate and symbolized by greek subindexes.

Therefore,

H0 = ε0
λ +

∑

kα

(
ε0 +

~2 k2

2 m

)
b̂†kαb̂kα ,
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where the constant ε0 is the energy of the k = 0 exciton. {b†, b} are the creation

and annihilation operators for excitons with momentum k and spin projection α. The

energy ε0
λ of the localized states is degenerate.

1.2.2 Light - exciton interaction

The Hamiltonian for the interaction between light and matter is obtained with the

use of the canonical momentum [27,28], and reads

h =
1

2 m
[p− eA(r, t)]2 + eφ , (1.3)

where A and φ are the vector and scalar potentials, respectively; and the particle has

mass m and charge e. In the Coulomb gauge [A, p] = 0 holds, since ∇ ·A = 0. Thus,

expanding the square in Eq. 1.3 we obtain

h =
p2

2 m
+ eφ− e

m
p · A +

e2

2m
A2 , (1.4)

where A accounts for a plane electromagnetic wave, and φ may represent a confining

potential for the particle. In the case of an atom, all terms that contain the vector

potential result in a small perturbation to the rest of the interaction; in addition, a

numerical estimate for the rate of the linear to the quadratic term in A gives 104. This

allows us to retain only the term e/m(p · A), which is a good approximation if the

photon density is low. An important additional simplification, possible in the atomic

case, is also good for excitations of semiconductors: Consider a monochromatic plane

wave, with A = A0e
i(kr−ωt) + c.c. in the visible region of the spectrum, λ ' 600 nm,

in resonance with the 1s exciton state. Assuming a very large, though realistic, value

for the spatial extension of the exciton wave function a0 ' 10 nm, there is no ap-

preciable variation of A in this scale. Therefore, in the evaluation of matrix elements

for the optical transition one can take ei(kr) ' 1, procedure known as dipole-moment
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approximation. In the following we restrict to the case of a semiconductor, where

the light couples to electrons and the aforementioned approximations are valid. The

Hamiltonian is

h =
p2

2 m
+ eφ− e

m
p · (A0e

−iωt + A∗
0e

iωt) . (1.5)

We first focus on the dynamics of one electron with momentum p in the presence

of the total average potential φ. This unperturbed part, which we call h0, leads to

electrons, holes, bands, excitons11, etc. as explained before, and is a function of p2

and its r operator. The operator p can be written as

p = −i
m

~
[r, h0].

We would like to keep a classical description of the light while using a creation /

annihilation operator language for electrons and holes. The optical transition is cal-

culated by evaluating the matrix elements between initial and final states. Due to the

symmetry of the wave functions and the operator r, the only non-vanishing matrix

elements are those connecting states of different parity, such as the valence (p-like)

and conducting (s-like) bands,

〈c| [r, h0] |v〉 = −(Eg −∆)〈c| r |v〉 = −~ωX〈c| r |v〉 , (1.6)

where the Coulomb binding energy ∆ for the electron and the hole lowers the energy

of the exciton state with respect to a free electron-hole pair. Thus, the perturbation

becomes

HL = −iωX(A0e
−iωt + A∗

0e
iωt)〈c| er |v〉α†β† +

iωX(A0e
−iωt + A∗

0e
iωt)〈v| er |c〉αβ . (1.7)

11To introduce excitons we need to include the electron-electron interaction. However, this new
energy term does not affect the analysis that follows, since still p = −im/~ [r, h0].
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The terms containing eiωt and e−iωt represent emission and absorption of a photon,

respectively. We apply the rotating wave approximation and consider only terms that

create a photon when annihilating an exciton, and vice versa. Taking into account all

possible direct transitions with wavevector k 12, we obtain

HL = −
∑

k

iωXA0e
−iωt〈c| er |v〉α†kβ†−k +

∑

k

iωXA∗
0e

iωt〈v| er |c〉αkβ−k

= −
∑

k

E0 dvc e−iωtα†kβ
†
−k + h.c. , (1.8)

where the dipole moment dvc is the matrix element of er, the vector potential is

related to the electric field by A0 = −iE0/ω, and we have matched ωX = ω giving

ωX/ω = 1 13; the quantities dvc and E0 are k dependent. The next step consists

of writing HL in terms of exciton operators. This is accomplished using the inverse

of Eq. 1.1: L−3/2
∑

ν ψν(q)
∗b†ν,K = α†K/2+qβ

†
K/2−q. The wavevector K represents the

momentum of the light that contributes to the center-of-mass motion of the electron-

hole system; this contribution can be safely neglected, for the photon momentum at

energies close to Eg is much smaller than the typical exciton momentum. In addition,

the spin of the photon introduces optical selection rules. Circular polarizations σ+ and

σ− correspond to spin projections of light equal to sz = −1 and sz = 1 respectively14.

The sum of total angular momentum of the electron plus the hole must equal σ; we

include both polarizations and the spin index to the exciton operators. Then,

HL = −L−d/2
∑

σν,k

~℘σψν(k)∗e−iωtb†ν,0,σ + h.c. ,

where we have defined the Rabi Energy ~℘ .
= E0dvc. The sum on ν is eliminated, for

we restrict to 1s exciton states ψν → ψ1s (with ψ1s real). An extra simplification is

12The frequency ωX depends on k.
13In the off-resonance case, where ωX 6= ω, the deviation of ωX/ω from one is usually smaller than

1% and can be neglected.
14The z-axis is normal to the QW, and coincides with the propagation direction of the light.
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possible thanks to
∑

k ψ1s(k),

∑

k

ψ1s(k) =

(
L

2π

)3 ∫
dk ψ1s(k)

=

(
L

2π

)3 ∫
dk

∫
dr φ1s(r) e−ik r

=

(
L

2π

)3 ∫
dr φ1s(r)

∫
dk e−ik r

=

(
L

2π

)3 ∫
dr φ1s(r) [(2π)3δ(r)] = L3φ1s(0) ,

where ψ1s and φ1s are conjugate functions for the Fourier transform. Finally, we arrive

at the expression that will be used hereafter,

HL = L3/2
∑

σ

~℘σφ1s(0) e−iωtb†0,σ + h.c. . (1.9)

1.2.3 Exciton - localized spin interaction

The interaction of excitons with localized electrons can be described using a basis set

of delocalized functions for excitons and atomic-like wave functions for the localized

states, with the inclusion of the spin degrees of freedom. It is not necessary to specify

the form of the basis used, which depends on the particular system (quantum well,

bulk, quantum dot, etc.). We only need to know that the wave function has a spatial

(ψ or φ) and spin (χ for electrons or η for holes) components. The complete wave

function for the system is composed by products of the itinerant ψkηχ and localized

ϕχ wave functions. This product must be anti-symmetrized with respect to the two

electrons, one belonging to the exciton (e) and the other to the localized state (l).

The total wave function is then written as

Ψk
.
=

η√
2
·
[

+ ψk(re, rh)ϕ(rl)χ(se)χ(sl)∓ ψk(re, rh)ϕ(rl)χ(sl)χ(se)

± ψk(rl, rh)ϕ(re)χ(se)χ(sl)− ψk(rl, rh)ϕ(re)χ(sl)χ(se)

]
, (1.10)
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where the ∓ and ± signs comes from the anti-symmetrization either of the spatial or

the spin part.

This function can also be written in an equivalent form that stresses its permu-

tation symmetries and facilitates the derivation of the Heisenberg Hamiltonian. I

make use of the coupled representation and separate the spin triplet and singlet wave

functions,

S =
η√
2
[ψk(re, rh)ϕ(rl) + ψk(rl, rh)ϕ(re)]× 1√

2
[u(se)d(sl)− u(sl)d(se)]

T0 =
η√
2
[ψk(re, rh)ϕ(rl)− ψk(rl, rh)ϕ(re)]× 1√

2
[u(se)d(sl) + u(sl)d(se)]

T+ =
η√
2
[ψk(re, rh)ϕ(rl)− ψk(rl, rh)ϕ(re)]× u(se)u(sl)

T− =
η√
2
[ψk(re, rh)ϕ(rl)− ψk(rl, rh)ϕ(re)]× d(se)d(sl) , (1.11)

where u(x) and d(x) stands for spin up and down of particle x respectively; the

complete basis is resolved into singlet S and triplet Ti states. The spin-orbital of the

decoupled representation Eq. 1.10 are linear combinations of Eq. 1.11.

The next step is to evaluate matrix elements of the Hamiltonian Eq. 1.2 between

complete wave functions, either of the form Eq. 1.10 or Eq. 1.11. First the coupled

representation is used to illustrate the procedure. Eq. 1.10 has the following structure,

S =
η√
2
[A + B]× ...

T =
η√
2
[A−B]× ... ,

where A
.
= ψk(re, rh)ϕ(rl) and B

.
= ψk(rl, rh)ϕ(re) are the spatial part of the wave

function. The spin part is given in matrix form. Every term in the Hamiltonian

operates only on the spatial part of the state.
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The direct and exchange Coulomb integrals read,

V AA = V BB =

∫
A∗

k HI Ak′ dredrhdrl

V AB =

∫
A∗

k HI Bk′ dredrhdrl .

The dependence of V on (k, k′) is implicit and omitted to simplify the notation. A

detailed evaluation of the integrals V is found in Appendix A.

HI, kk′ =
~2

2

{
(V AA + V BB) Ie − 2Re [V BA]M

}
Ih , (1.12)

where Ii is the identity matrix in the subspace of the i-particle and,

M .
=




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




=

(
ŝ

~

) 2

− 1 (1.13)

and ŝ
.
= ŝe + ŝl.

Alternatively, in the decoupled spin basis (Eq. 1.10), the Hamiltonian can be

expressed in terms of s = 1/2 spin operators as

HI, kk′ =
~2

2

{
(V AA + V BB) δsesl

− 2 Re[V BA]

(
δsesl

2
+ 2 ŝe · ŝl

)}
δhh′ . (1.14)

This representation makes clear the Heisenberg form of the Hamiltonian, and

shows that it is linked to the exchange integral V AB. The first term is unimportant,

for it only leads to a shift or renormalization of the energy. Hereafter, we focus on

the spin dependent part.

The many body interaction hamiltonian for excitons and N localized spins follows
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from Eq. 1.14 using 2nd. quantization, and reads

ĤI = L−3δhh′

N∑

l=1

∑

kk′
Jk,k′ e

−i (k−k′)·Rl ŝe · ŝl b̂†kb̂k′ , (1.15)

where the sum over the wave vector extends over the entire band of excitons with

creation (b̂†k) and annihilation (b̂k′) operators, and the index l identifies a particular

localized spin. We have resolved the factor −2 Re[V BA] into a phase exp(−i(k−k′)R),

the normalization L−3 and the remaining J . The operator ŝe must be understood as

acting on the particular set of bins {k, k′}: it transforms the spin of an exciton that

undergoes scattering from states k′ to k. We find that a more intuitive and suitable

representation of the many body problem is to write the spin part of the interaction

in matrix form. Thus, we replace b̂†k and b̂k′ by separate bosonic operators for each

projections of the electronic spin in the exciton (remember the spin of the hole is

fixed), and we replace the operator se by a tensor ŝαα′ , which in matrix form reads

s =
~
2




ẑ x̂− iŷ

x̂ + iŷ −ẑ


 . (1.16)

This takes into account the selection rules for transitions between different exciton

states, represented by different operators b̂†kα/b̂kα, with α being 1 ≡↑ (up) or 2 ≡↓
(down): for instance, s12 ≡ s↑↓. The final form of the Hamiltonian is

ĤI = L−3δhh′

N∑

l=1

∑
k k′
α α′

Jk,k′ e
−i (k−k′)·Rlsαα′ · ŝl b̂†kαb̂k′α′ . (1.17)
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1.2.4 The complete core Hamiltonian

The preceding sections have shown the different parts of the Hamiltonian, their deriva-

tion and approximations. The final form of the complete core Hamiltonian is

H = ε0
λ +

∑

kα

(
ε0 +

~2 k2

2 m

)
b̂†kαb̂kα +

L−3δhh′

N∑

l=1

∑
k k′
α α′

Jk,k′ e
−i (k−k′)·Rlsαα′ · ŝl b̂†kαb̂k′α′ +

L3/2
∑

σ

~℘σφ1s(0) e−iωLtb†0,α+β=σ + h.c. , (1.18)

and describes Wannier excitons in the 1s state with electron spin α, hole spin β and

wavevector k generated by monochromatic light of frequency ωL of circular polar-

ization σ. In addition, there are N localized spins with degenerate energy ε0
λ in the

lattice that interact through exchange with the photo-generated excitons.

1.3 The effective spin - spin interaction

For each particular system, the results and conclusions will be drawn using an ef-

fective Hamiltonian that describes the dynamics of two localized spins without the

explicit inclusion of excitons nor light. To achieve this, a transformation to a rotat-

ing frame15 with frequency ωL is performed so as to apply time-independent second

order perturbation theory in the light - exciton interaction (Sec. 1.2.2). The resulting

expression is then used to solve for the exciton - localized spin interaction (Sec. 1.2.3)

in the framework of single particle Green’s functions, with the final elimination of the

15The transition to a rotating frame is implemented with the unitary transformation U =
exp(−iνtR̂), which maps, respectively, the state and Hamiltonian to |ψ〉 → U |ψ〉 and H →
(UHU† − νR), in such a way that the Schrödinger equation holds and part of the time depen-
dency is eliminated from the Hamiltonian. The simplest case that resembles our problem clarifies
this procedure: Consider a system made of three levels { |a〉, |b〉, |c〉}, and H = H0 + HL + HI .
H0 = Ec |c〉〈c| +Eb |b〉〈b| is diagonal, HL = g exp(iνt) |a〉〈b| +h.c. and HI = ∆ S |c〉〈b| +h.c., where
S is an operator commuting with all others. It can be shown that, for U = exp[−iνt( |c〉〈c| + |b〉〈b| )],
UHLU† → g |a〉〈b|+h.c. and HI is invariant; in addition, there appears a new term ν( |c〉〈c|+ |b〉〈b| )
contributing a shift to the energy.
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exciton degree of freedom.

Perturbation theory may be developed using projection operator techniques [29].

The light - exciton interaction couples states belonging to subspaces of different num-

ber of excitons. We single out the zero-exciton subspace =0 using the projector op-

erator P and the remaining part of the Hilbert space with the operator Q = 1 − P .

The resolvent G(z) = (z −H)−1 in the subspace of interest is

PGP =
P

z − P (H0 + HI)P − PRP
,

which shows that the level-shift operator R can be regarded as a Hamiltonian in the

=0 subspace that corrects the unperturbed energy (H0 +HI). The expansion of PRP

reads

PRP = PHLP + PHLQ
1

z − (H0 + HI)
QHLP + . . . .

The first term vanishes, since HL is non-diagonal in the subspace of fixed number

of photons. By defining |λ〉 as any of four vectors { |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} of =0, the

Hamiltonian is transformed to its effective form16

Heff,λλ′ = 〈λ|HLQ
1

z − (H0 + HI)
QHL |λ′〉 ,

with no explicit exciton dependence17. HL transforms a vector |λ〉 in =0 to one of

same localized spin state and one exciton of wavevector k = 0 and angular momentum

σ, named |λ0σ〉. This vector belongs to the complement of =0; therefore, in the last

16With no light and restricting to the subspace of zero exciton, the unperturbed Hamiltonian is
trivial and uninteresting with all four states degenerate.

17This expression accounts for completely coherent processes of stimulated absorption and emis-
sion.
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expression, the operator Q is redundant and can be omitted,

Heff,λλ′ = L3~2
∑

σ

|℘σ|2|φ1s|2〈λ0σ| 1

(z −H0)−HI

|λ′0σ〉

= L3~2
∑

σ

|℘σ|2|φ1s|2Gλλ′0σ ,

where H0 was grouped with z to show that (z −H0)
−1 can be regarded as the bare

Green’s function, and the whole operator as the full resolvent of the system. The value

of z can be approximated by the value of the unperturbed energy ε0
λ of the state |λ〉

in =0. G is

Gλλ′0σ(ωL) = 〈λ0σ| 1

[G0(ωL)]−1 −HI

|λ′0σ〉

G0
k(ωL) =

δλλ′δkk′

~ωL −
(
ε0 + ~2k2

2 m

)
+ iη

,

where ε0
λ is finally chosen to be equal to zero, without lost of generality. Note that,

while G depends on spin, G0 does not. We remark that we work in the off-resonance

regime for which ωL < ε0, thus making the real part of G0 always negative.

This will be the starting point for Chapters 2 and 3, where it will be solved either

exactly or expanding in power series of HI .
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Chapter 2

A non-perturbative solution

for the indirect interaction

mediated by excitons

It was pointed out by Piermarocchi et al. [6] that itinerant excitons, i.e. optical

excitations free to move in the host material that embeds the localized spins, can

induce an effective spin-spin interaction between localized spins. This mechanism

has been dubbed Optical RKKY (ORKKY), in analogy to the mechanism in the

theory of magnetism [32], where electrons are involved. In the coherent optical case

virtual excitons are created, and the ORKKY coupling is obtained from a second

order perturbation theory in the exchange coupling between the itinerant exciton

and the localized spin. The ORKKY result predicts that the coupling between the

localized spins is always ferromagnetic, independently of the sign of the coupling with

the excitons. In this chapter we show that higher order terms in the exciton-impurity

coupling can modify the strength and sign of the interaction, and affect its dependence

as a function of the spin separation. The calculation of the spin-spin interaction can be

reduced to a spin dependent scattering problem that can be solved including exactly

all the multiple scattering terms between the two localized spins. We follow here an
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approach similar to that used to calculate multiple scattering effects of π± mesons

by deuterons [31]. The higher order terms in the exciton-impurity coupling describe

bound states which affect strongly the optically induced spin-spin interaction. In

particular, a controlled anti-ferromagnetic (AF) coupling can be realized when the

laser energy is tuned in the bonding-antibonding gap for the exciton localized by two

impurities. This laser controlled switching of sign of the spin-spin interaction opens

new directions in the investigation of competing interactions in spin systems.

The exchange between nuclear spins through excited electronic states has been

discussed in the past in the case of molecules [33] and insulators [34]. In particular,

Bloembergen and Rowland predicted in Ref. [34] an exponential decay of the spin-

spin interaction with a characteristic length κ = ~/
√

2mEg. This length depends on

the energy gap Eg of the insulator and on the mass of the virtual electron hole pairs

across the gap. In the optically induced RKKY, the energy gap is effectively reduced

by the laser field which increases the effective length to κ = ~/
√

2m(Eg − ~ωP ),

with ~ωP being the energy of the laser. Also, the density of electrons in the occupied

bands in the insulator is replaced in the optical case by the density of photons in

the field. The innovative strength of the optically induced case resides in the control

potentialities since both the intensity and the frequency of the laser can be controlled

in an experiment. Going beyond second order perturbation theory presents intrinsic

Light
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e
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e
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Figure 2.1: Scheme of the light induced spin-spin interaction in the case of two shallow
donors.
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difficulties in the case of metals [35]. These difficulties are not present in the optical

coherent case since there is no Fermi sea of electrons. The presence of a Fermi sea

simultaneously with the laser would produce light-induced Kondo effects [51], which

we do not consider here.

The chapter is organized as follows: In section 2.1 we recall the expression for the

effective Hamiltonian of two localized spins in the presence of a light field, relating

it to the spin-dependent T matrix operator of a two-center scattering problem. We

study first in Sec. 2.2 the scattering of one exciton with one center. By generalizing a

result from scattering theory [36] to the spin dependent case, we show in section 2.3

how the T matrix operator for the exciton scattering on two centers can be expressed

in terms of the T operator for the one center scattering. We also study in this section

the effects of the polarization of the light and we show that a circularly polarized field

will induce an additional term representing a magnetic field. The theory is applied in

section 2.4 to two systems: shallow donors, and deep rare earth magnetic impurities.

We discuss implications for quantum computing implementations and for the optical

control of macroscopic magnetic properties in Chapter 4, Sec.4.3.

2.1 The effective Hamiltonian for localized

spins coupled by the light

A scheme showing the realization of a light induced spin-coupling in the case of two

shallow donors is given in Figure 2.1. We are not interested in calculating the optical

properties of the whole system, but we want to consider the effect of a coherent

field on the dynamics of the two initially non-interacting localized spins sA and sB.

The light creates virtual/real excitons in the semiconductor host and couples the

localized spins. We want to study the behavior of the two localized spins in the

coherent optical regime. This implies that the laser is always off resonance with respect

to the free exciton band to avoid strong energy absorption. We therefore consider
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only single exciton processes in the presence of a monochromatic laser field. The

system of two localized spins coupled to one itinerant exciton is described by the

sum of two Hamiltonian terms. H0 describes a free exciton of mass m with dispersion

εk = ε0 + ~2k2/2m,

H0 = ε0 +
∑

kσ

~2 k2

2m
b̂†kσ b̂kσ

HI =
1

V

∑

kk′αα′β

Jk,k′(s
A · sα′α + e−i(k′−k)R sB · sα′α) b†k′α′βbkαβ (2.1)

and HI describes the spin dynamics, where the two localized spins 1/2 are described

by sA and sB. V is the volume, and s is the electronic spin of the itinerant exciton.

b†kαβ creates an exciton with center of mass momentum k, electron spin α, and hole

spin β. R is the separation between the two impurities. Jk,k′ is the exciton-spin ex-

change interaction. The strength and the sign of this term depend strongly on the

nature of the localized spin. The sign, for instance, is determined by the competi-

tion between the ferromagnetic potential exchange and the anti-ferromagnetic kinetic

exchange which is due to the hybridization of the itinerant exciton state with the

localized state [37]. We will keep for the moment a general approach independent of

the nature of the Jk,k′ , and we will discuss two specific examples in section 2.4. A

spin-independent term corresponding to a direct Coulomb interaction between the

exciton and the impurity is also present. This term is small for shallow impurities,

where kinetic exchange effects dominate, but becomes important for deep impurities.

We will include this term in the case of rare earth impurities discussed in Sec. 2.4.2,

and we disregard it in the general discussion since it only introduces spin-independent

energy shifts. We assume that the 1s excitons dominate the light induced effect, as

discussed in Ref. [6]. Moreover, we focus on systems where the localized states interact

only with the electron in the exciton: the full Hamiltonian in Eq. (2.1) is diagonal in

the hole spin index β. This is a good approximation for electrons in neutral donors,

since it is equivalent to neglecting the electron-hole exchange interaction which in
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most semiconductors is much smaller than the electron-electron exchange. Concern-

ing the second example we will consider, i.e. the case of the Yb3+ ions in III-V, it

is known that these ions act as strong isoelectronic traps for electrons and the s-f

exchange in the conduction band dominates.

The interaction of the excitons with an external time dependent optical field pro-

vides the mechanism for the control of the two localized spins and is described by the

Hamiltonian

HL =
√

V
∑

σ

℘σe
iωLtφ1sbk=0,α+β=σ + h.c. , (2.2)

where ℘σ
1 is the Rabi energy of the interband optical transition and ~ωL is the

energy of the laser, σ is the polarization of the light. We have used the rotating wave

approximation in Eq. (2.2). φ1s is the envelope function of the electron hole pair

taken at ρ = re − rh = 0. In the case of a cw laser field, the time dependence can be

eliminated by moving to the rotating frame with frequency ωL, thus replacing εk by

εk − ~ωL in H0.

We are deriving an effective Hamiltonian for the two localized spins in the presence

of the laser field, as shown in Chapter 1.

Heff,λλ′ = V
∑

σ

| ℘σ |2| φ1s |2 Gλ0σ,λ′0σ(ωL) (2.3)

where

Gλ0σ,λ′0σ(ωL) = 〈λ0σ| 1

[G0(ωL)]−1 −HI

|λ′0σ〉 (2.4)

is the Green’s function for the system composed by the exciton and two spins, with

G0(ωL) =
δkk′

~ωL − (ε0 + ~2k2

2m
) + iη

. (2.5)

Since we are dealing with only single-exciton processes, the Lippman-Schwinger equa-

tion for G can be rewritten in terms of an equation for the T -matrix defined by the

1In Chapter 1 the Rabi energy is designated by ~℘.
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relation G = G0 + G0TG0. We solve the problem in two steps: (i) the TA and TB

operators representing the scattering of the exciton with only one impurity (identified

by the index A or B) is solved. (ii) The T-matrix for the exciton interacting with two

impurities is explicitly rewritten in terms of TA and TB using [36]

T =
1

1− TAG0TBG0
TA[1 + G0TB] + (A ­ B) (2.6)

where (A ­ B) stands for repeating the previous term with interchange of super-

scripts A and B. Eq. (2.6) takes into account exactly all the multiple scattering

processes between the exciton and the two localized spins. We will focus in the next

section on the interaction of the exciton with a single localized spin. Multiple scat-

tering effects in the two spins case are addressed in section 2.3.

2.2 Exciton - single impurity scattering

This section focuses on the solution of the T-matrix equation for one scattering center

(named A). Due to the short range nature of the exchange interaction, the exchange

integral Jk,k′ in HI is often reduced to a constant, corresponding to a delta-like in-

teraction in space. Here we consider a more realistic form of the interaction using

the separable potential approximation [38, 39] where Jk,k′ = Jvkvk′ , with vk being a

dimensionless form factor that depends only on k = |~k| . vk describes the effect of

the finite size of the non-local exchange interaction (see Appendix E). The separa-

ble form of Jk,k′ will allow us to obtain analytical expressions for the T-matrix, and

provide a flexible theoretical framework with parameters that can be taken from the

experiments. On the other hand, this potential can support at most one s-like bound

state. The integral equation for the T-matrix, T = HI + HIG0T , can then be written
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explicitly as

TA
kk′αα′ =

J

V
vkvk′s

A · sαα′ +
J

V

∑

k′′α′′
vkvk′′s

A · sαα′′G
0
k′′T

A
k′′k′α′′α′ (2.7)

We can write the T-matrix as a sum of a scalar and vector part

TA
kk′αα′ =

vkvk′

V
[T0δαα′ + T1s

A · sαα′ ] (2.8)

and, using the identity

(sA · s)2 =
3

16
− sA · s

2
(2.9)

we rewrite Eq. (2.7) in the form of two coupled equations

T1 = J + JF0(T0 − T1/2) (2.10a)

T0 =
3

16
JF0T1 (2.10b)

where

F0(ωL) =
1

V

∑

k′′
v2

k′′G
0
k′′ (2.11)

The reduction of the integral equation to two algebraic equations is a consequence of

the form of the interaction and the fact that the all spins follow SU(2) algebra2. The

two coupled equations in Eq. (2.10) are solved and give

T0 =
3J

16

JF0

1 + JF0

2
− 3(JF0)2

16

(2.12a)

T1 =
J

1 + JF0

2
− 3(JF0)2

16

(2.12b)

This analytical solution allows us to investigate the strong coupling regime in which

the quantity JF0 is not small. The most interesting feature of the strong coupling

2In the general case of spin s > 1/2 the integral equation requires the inclusion of other powers
of the spin operators.
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regime is the formation of bound states of the exciton with the impurities, identified

by the poles in the T-matrix. Varying the frequency of the laser ωL, which will modify

the F0, we can scan the spectrum to obtain the energies of those bound states. We

remark that under the condition ωL < ε0, and assuming that the potential v(k) is

an analytic function of k, no singularities or branch cuts exist for the function F0.

Therefore, the only source of poles is given by the zeros of the function 1+ JF0

2
− 3(JF0)2

16
,

appearing in T1 and T0. Considering separately the singlet and triplet channels we

find

T S .
= 〈S|T |S〉 = − 3/4J

1 + 3/4JF0

(2.13a)

T T .
= 〈T |T |T 〉 =

J/4

1− 1/4JF0

. (2.13b)

Where |S〉 = 1/
√

2( |↑↓〉− |↓↑〉) and |T 〉 is any of the triplet states. In the singlet and

triplet channels only one of the two poles in Eq. (2.12) is present. Due to the fact that

F0(ωL) is negative for all allowed values of ωL, we also remark that, as expected, the

exciton binds in a singlet spin state if J > 0 (antiferromagnetic coupling), while the

bound state is a triplet if the exciton-electron exchange is ferromagnetic (i.e. J < 0).

2.3 Exciton - two impurities scattering

Starting from the results obtained in the previous sections, we construct in this section

the solution for the exciton-two impurities T-matrix and the corresponding Heff for

the localized spins. Eq. (2.6) can be expanded in terms of T operators as

T = TA + TAG0TB + TAG0TBG0TA + ... (2.14)

The matrix for TB can be obtained from a simple phase shift: if TA
kk′ is the T-matrix

for a scattering center with potential V (r) then e−i(k′−k)·RTA
kk′ is the corresponding one
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for a potential V (r−R), i.e. TB
kk′ [36]. We can take the matrix elements of Eq. (2.14)

in the k representation. To illustrate how this series can be summed let us consider

as an example the third term in Eq. (2.14)

〈k | TAG0TBG0TA | k′〉 =
1

V 3

∑

k′′,k′′′
vkvk′′Υ

AG0
k′′e

−i(k′′′−k′′)·Rvk′′vk′′′

×ΥBG0
k′′′vk′′′vk′Υ

A (2.15)

where we have defined

ΥA(B) = T0 + T1s
A(B) · s . (2.16)

Reordering factors and defining the function

FR(ωL) =
1

V

∑

k

eik·Rv2
kG

0
k , (2.17)

this term takes the form,

vkvk′

V
F 2

R(ωL)ΥAΥBΥA . (2.18)

Following the same procedure, the full series can be summed to

Tk,k′ =
vkvk′/V

1− F 2
RΥAΥB

ΥA[1 + FRΥB] + (A ­ B) . (2.19)

The T -matrix is now expressed as an operator in a 8-dimensional space generated

by three spins 1/2: one electron in the exciton and two localized electron states. By

direct inversion and products of 8 by 8 matrices, Eq. (2.19) can be rewritten in terms

of a combination of spin products (see Appendix B), and using G = G0 + G0TG0 we

obtain the spin dependent effective Hamiltonian

Heff = Beff · (sA + sB) + Jeffs
A · sB . (2.20)
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Beff represents an effective magnetic field acting on both spins and Jeff is an effective

isotropic Heisenberg exchange. The effective magnetic field and exchange constant can

be written as

Beff =
|℘σ+|2 − |℘σ−|2

δ2

|φ1s|2v2
0J(1− JF−

R )

(1− JF+
R )[1− JF+

R (3JF−
R − 2)]

ẑ

2
(2.21)

and

Jeff =
|℘σ+|2 + |℘σ−|2

δ2

|φ1s|2v2
0J

2FR/2(1− JF−
R )

(1− JF+
R )[1− JF+

R (3JF−
R − 2)][1− JF−

R (3JF+
R − 2)]

,

(2.22)

where we have defined

F±
R (ωL) =

1

4V

∑

k

(1± eik·R)v2
kG

0
k . (2.23)

ẑ identifies the direction of propagation of the light, δ = ε0 − ~ωL is the optical

detuning, and ℘σ± correspond to the contributions to the Rabi energy from the two

circularly polarized components of the light. From Eq. (2.19) a spin-independent term

is also derived which is not shown in Eq. (2.20) since it is irrelevant for our purposes. If

we want to include the effect of the degenerate light hole band the two expressions in

Eqs. (2.21) and (2.22) should be multiplied by 2/3 and 4/3, respectively. By keeping

the lowest order in J in Eqs. (2.21) and (2.22) we obtain

Beff =
|℘σ+|2 − |℘σ−|2

δ2
|φ1s|2v2

0J
ẑ

2
+ O(J2) , (2.24)

and

Jeff =
|℘σ+|2 + |℘σ−|2

δ2
|φ1s|2v2

0J
2FR/2 + O(J3) (2.25)

which recovers the Optical RKKY result of Ref. [6]. The magnetic field induced by

virtual excitons has recently been analyzed using a more fundamental approach in

the case of a single impurity by Combescot and Betbeder-Matibet in Ref. [40]. In this
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reference the spin independent term that provides a correction to the optical Stark

shift is also discussed.

2.4 The spin - spin coupling

In this section we apply the results obtained above to (i) excitons mediating the

interaction between two electronic spins localized in shallow donors (e.g. GaAs:Si)

and (ii) excitons mediating the interaction between two magnetic ions with spin 1/2

(two rare earth ion Yb3+ in InP). Yb in InP is one of the most investigated rare earth

doped III-V material. In principle Yb3+ in GaAs could be used but it is technically

more challenging to obtain samples where only substitutional Yb is present. [41] We

will focus on the effect of the binding of excitons on the spin-spin coupling. The

parameters J and the range of the potential vk can be fixed in such a way that the

single-spin exciton T -matrix reproduces the binding energy and the spin configuration

of the bound exciton obtained from the experiment.

2.4.1 Shallow donors

For a scheme of the system we can refer again to Figure 2.1. For excitons interacting

with a shallow neutral donor the effective mass approximation can be used. The prob-

lem of excitons bound to neutral donors and acceptors has been heavily investigated

both experimentally and theoretically [42]. In the case of GaAs it is known that the

exciton binds to a neutral donor with a binding energy of about 1 meV. It is also

clear from the magnetic field dependence of the bound exciton resonance that the

two electrons are paired in a singlet around the donor ion and the hole is bound by

Coulomb interaction. The picture is very similar to the one of a positive charge bound

to an H− ion. As in the H− ion case, the dominant term responsible for the binding of

the two electrons is a kinetic exchange term and we can therefore disregard the effect

of a spin independent term in the Hamiltonian. The range of the kinetic exchange is
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determined by the hybridization between the localized electron state in the neutral

donor and the electron state in the free exciton. We therefore assume that the vk is

of the form

v2
k =

1

1 + (Λk)2
, (2.26)

where the parameter Λ determines the range of the potential. In the following we will

use the excitonic atomic units, see Appendix C. We can calculate the functions F0

and FR in Eq. (2.11) and Eq. (2.17) as

F0 = − 1

4πΛ

1

(Λ
√

δν + ν)
(2.27)

FR = − 1

4πR

e−R/Λ − e−R
√

δ/ν

Λ2δ − ν
, (2.28)

where ν = µ/m is the reduced total mass ratio of the excitonic system which is about

1/5 in GaAs taking me = 0.08 and mh = 0.17. Notice that FR can be rewritten as

FR = F0 Λν
e−R/Λ − e−R

√
δ/ν

R(Λ
√

δν − ν)
(2.29)

and has no poles for positive detuning δ; for R À λ, FR has a Yukawa form with

a detuning-related decay length a∗B
√

ν/δ as found in Ref. [6], while at short R the

finite range of the potential regularizes the 1/R divergence. In vk we take Λ =0.25.

Using the fact that the exciton binds to the donor only in the singlet channel, we can

determine the value of J in the T S in Eq. (2.13a) in such a way to have a pole at the

experimental binding energy. The J is positive, as expected from the fact that the

kinetic exchange is antiferromagnetic, and we take its value to be J = 1 Ry∗(a∗B)3

which gives a binding energy for the singlet of 0.23 Ry∗, in accordance with the

experimental value of 1 meV. The triplet is unbound.

We plot in Figure 2.2 the coupling constant Jeff obtained from Eq. (2.22) as a

function of the energy of the laser measured from the bottom of the free exciton
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Figure 2.2: Coupling constant Jeff between the two electronic spins localized in a
shallow neutral donor embedded in GaAs as a function of the laser energy, measured
from the bottom of the free exciton band. The intensity of the laser corresponds to a
Rabi energy of ℘σ+ = 0.05 meV. The dashed line gives the result predicted with the
same parameters using second order perturbation theory in the coupling constant J .

band, δ = ε0 − ~ωL. A small imaginary contribution to the energy, η = 0.0001Ry∗,

has been added in all the plots. The Rabi energy is ℘σ+ =0.05 meV. The σ− com-

ponent of the Rabi energy is zero. The separation between the two neutral donors R

is 2 a∗B. In the region of large detuning we have a ferromagnetic coupling in agree-

ment with the results obtained in the ORKKY limit. When we approach the energy

corresponding to the binding of the exciton to the impurity, at δ = 0.23, we observe

that the interaction is strongly enhanced and there is a region with an antiferromag-

netic (AF) coupling. Multiple scattering between the two impurities results in the

formation of bonding-antibonding states for the exciton. When the light has a fre-

quency in the bonding-antibonding gap the effective interaction changes sign. This is

analogous to the antiferromagnetic coupling generated by superexchange in magnetic

materials. [37] When the laser is tuned above the resonances we recover again the fer-

romagnetic coupling. In the same plot we also show the effective coupling that would

result by keeping the lowest order in J (ORKKY). In this case no resonances due to

the binding of the excitons are present and, in order to obtain a sizeable coupling,

the laser has to be tuned close the bottom of the excitonic band. In Figure 2.3 we

show a contour plot of the effective spin-spin coupling as a function of the detuning
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and impurity separation. Dark gray corresponds to either strong negative or strong

positive coupling depending on the region, the light gray tone in the upper-right cor-

ner corresponds to zero. At large R the coupling is mostly ferromagnetic and there is

only a small region close to the exciton binding energy where the coupling can be AF.

When the distance between the two impurities decreases, the bonding-antibonding

gap and the region corresponding to the antiferromagnetic coupling is wider. The

thick dashed line indicates a change of sign of Jeff . Notice also the different decay of

the interaction as a function of R for different values of the detuning. At δ =0.4 the

maximum strength is at R = 0.8 and decays quickly within a quarter of a∗B to the

minimum value in the plot. At δ =0.1 the same minimum is reached within a much

larger interval of about 2 a∗B. This is consistent with the fact that at a small detuning

there is a contribution from the free exciton band which can give a longer range for

the effective interaction.

2.4.2 Rare earth impurities

The magnetic properties of the Yb3+ ion in III-V [43] arise from its partially filled

4f shell, possessing 13 electrons. In III-V materials, for a substitutional impurity, the

crystal fields split the ground manifold of the ion into two doublets (spin=1
2
), Γ6 and

Γ7, and a quadruplet (spin=3
2
), Γ8. The lowest lying state is the Kramers doublet

Γ6, which behaves like a spin 1
2

with an effective isotropic g = 24/7. [44] Yb in InP

replaces Indium and acts as an isoelectronic trap. From electrical [45] and optical [46]

measurements it is known that the exciton binds to this isoelectronic impurity with

a binding energy of 30 meV. The binding is due to a short range potential that

arises from the difference in the core pseudopotential between the impurity and the

host ion it replaces. [47] It is reasonable to assume that this short range potential

is spin-independent and we take it into account by adding to the exciton-impurity
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Figure 2.3: Jeff as a function of the donors separation R and detuning δ . The contour
plot identifies the regions where the coupling is Ferromagnetic (FM) or antiferromag-
netic (AF). The thick dashed lines indicate a change of sign of Jeff . The intensity
of the laser corresponds to a Rabi energy of Ω = 0.1 meV. The intensity of gray
represents the value of Jeff .
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Hamiltonian of Eq. (2.1) the term

H2 =
1

V

∑

k,k′
∆k,k′(1 + e−i(k′−k)R)b†k′αβbkαβ . (2.30)

We use the separable potential approximation also for the spin-independent short-

range potential and we parametrize it in the form ∆k,k′ = ∆vkvk′ , i.e. it has the

same k dependence of Jk,k′ . A more general analytical result can be obtained using

a separable form for ∆k,k′ with different coefficients, but we expect the range of the

s-f exchange and that of the impurity potential to be very similar. The value of ∆

is determined by imposing that the exciton-single impurity T-matrix has a pole for

both singlet and triplet channels at 30 meV. Following the same procedure used in

Sec. 2.2 we obtain for the T operators in the singlet and triplet channels

T S =
−3/4J + ∆

1 + 3/4JF0 −∆F0

(2.31a)

T T =
J/4 + ∆

1− 1/4JF0 −∆F0

. (2.31b)

The expressions for the Jeff and Beff modified by the presence of ∆ can be obtained

by plugging the Eqs. (2.31) in the general expressions of Eqs. (B.5) in Appendix B.

The quantity J is the s-f exchange interaction between the impurity and the electron

in the exciton. In typical rare earth ferromagnetic semiconductors the s-f exchange is

ferromagnetic and is of the order of few eV Å3 [48], comparable to the s-d exchange

in Mn based diluted magnetic semiconductors. [49] We are using J = −10−4 in our

units which corresponds to a conservative estimate of 0.7 eV Å3 in InP. In InP the

value of the Ry∗ is about the same as that of GaAs (5 meV), while the Bohr radius

is about 120 Å. For Λ in vk we take Λ = 0.01 which is of the order of the ionic radius

of Yb3+.

We show in Figure 2.4 the contour plot of Jeff as a function of the laser detuning

δ = ε0 − ~ωL and of the separation between the impurities R. At large distances we
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Figure 2.4: Coupling constant Jeff between two magnetic Yb3+ localized in InP as a
function of the laser detuning δ = ε−~ωL and separation between the ions. The thick
dashed lines indicate Jeff=0 and a change form ferromagnetic to antiferromagnetic
coupling. The intensity of the laser corresponds to a Rabi energy of Ω = 0.1 meV.
The intensity of gray represents the value of Jeff .
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observe two resonances related to the binding of the exciton in the singlet and triplet

channels. Figure 2.5 (a) shows in detail the Jeff for a distance R = 1 a∗B. The two

peaks in Figure 2.5 (a) correspond to the exciton bound to the impurity in the triplet

and singlet channel. The peak at larger detuning corresponds to the triplet since the

s-f exchange is ferromagnetic. For shorter distances we see from Figure 2.4 that each

of the two peaks starts to split. The singlet (at smaller detuning) follows a behavior

similar to the one of the shallow donors described above: the bonding and antibondig

states identify a region where the coupling becomes antiferromagnetic. The triplet

state splits in many different peaks as can be seen from Figure 2.5 (b). The sign of

the interaction can change many times as a function of the detuning in this short

distance region. This is indicated by the sign of Jeff plotted in the lower part of

Figure 2.5 (b). Overall the antiferromagnetic coupling dominates at short distances

while the interaction is ferromagnetic at large R.

2.5 Discussion

In conclusion, we have studied the problem of two 1/2 spins localized by impurities in

semiconductor in the presence of an intense light field. The light induces a frequency

dependent spin-spin coupling and a magnetic field that can be controlled by the

polarization of the light. The effects are enhanced by the presence of impurity bound

excitons which may split into bonding and antibonding states in the case of two

impurities. The sign of the spin-spin coupling is generally ferromagnetic, but it can

switch to antiferromagnetic when the laser is tuned to the bonding-antibondig gap.

We have developed a flexible theoretical approach based on scattering theory where

the parameters from the experiment can be used to estimate the size of the effect. We

have discussed explicitly the case of two neutral donors in GaAs and two rare earth

magnetic ions (Yb3+) in InP.
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Figure 2.5: Coupling constant Jeff between two Yb+3 ions in InP as a function of
the detuning δ. (a) Large distance. The coupling is ferromagnetic and the resonances
in the interaction are close to the energy of the exciton bound to the Yb. (b) Short
distance. The triplet channel splits in many different peaks producing many changes
of the spin-spin coupling sign. The lower curve shows the sign of the coupling constant.
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Chapter 3

Indirect interaction in

micro-cavities

Planar micro-cavities are semiconductor devices that confine the electromagnetic field

by means of two parallel semiconductor mirrors. When a quantum well is placed in-

side a micro-cavity the optical excitations (excitons) in the well couple to the electro-

magnetic modes of the dielectric structure. In the so-called strong-coupling regime,

excitons and cavity photons give rise to new states, exciton polaritons [5], which

appear in two branches separated by a vacuum Rabi splitting. Due to their hybrid

light-matter nature, cavity polaritons have an effective mass that can be four to five

orders of magnitude smaller than the exciton mass, and this is known to affect their

interaction with phonons [52] and with interface disorder [53,54]. In this chapter, we

show that the small polariton mass also has a strong effect on the optically induced

spin coupling between localized spins.

The physical system that we consider is a set of shallow donors embedded in a

Quantum Well (QW) enclosed in a planar micro-cavity. A possible candidate is Si in

a GaAs QW. However, the same idea can be applied to other spin-based implementa-

tions, e.g. charged quantum dots. Under strong coupling conditions, optically active

excitons and cavity photons combine into polaritons, while dark excitons remain un-
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affected. If the system is excited by an extra-cavity cw light source with a frequency

below the polariton resonance, virtual polaritons appear in the system. These vir-

tual particles mediate an indirect interaction between pairs of impurities. We seek to

understand the indirect interaction of two spins when polaritons and dark excitons

mediate the interaction, and the consequence this has on the optically-induced para-

magnetic to ferromagnetic transition of an array of such impurities. The form of the

effective Hamiltonian that contains only spin operators for the impurities is derived

using perturbation theory to second order, similar to the optical indirect interaction

ORKKY [6,7]. For the sake of clarity, when solving for numerical data we will assume

our system consists of Si donors in GaAs micro-cavity QW.

3.1 Polaritons

A simplified picture of a planar micro-cavity is that of a Fabry-Pérot interferometer,

where light incident normal to the surface only propagates for discrete frequencies.

If a semiconductor QW is placed within the mirrors1, excitons are generated by the

interaction with light (see Figure 3.1). If the combined decay rates for cavity photons

and excitons is smaller than the strength of the interaction2 between these two par-

ticles a strong coupling develops. In this regime, the stationary states of the system

are no longer the excitons and/or photons, but an admixture of them, the polaritons.

An intuitive picture of the process is that of a photon that creates an exciton, which

in turn by coupling to the cavity mode, produces a photon, and the process continues

back and forth. The study of polaritons is done in the context of either classical or

quantum electrodynamics. [5, 54,55,57] We employ the latter.

1Instead of metallic mirrors, a series of semiconductor layers, the Distributed Bragg reflectors, are
used.

2This is strictly true when the energy of the exciton equals that of the cavity photons at k = 0,
that is in resonance condition.
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z
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C
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Figure 3.1: Micro-cavity with DBR mirrors (not to scale). Typical values for the size

of the system are: width of each DBR period λ/4, cavity width λ/2, QW width 100Å,
with λ the wavelength of the light.

The Hamiltonian describing cavity photons and excitons is

H = ~
∑

dark

ωX,k b†kbk + ~
∑

ωph,k c†kck + ~
∑
o.a.

ωX,k b†kbk

−i~
∑

gk c†kbk + h.c. , (3.1)

where b/b† and c/c† are operators for excitons and cavity photons3; o.a. and dark

stand for optical active and dark excitons. Photons only couple to o.a. states. In

Equation 3.1

ωX,k = ε0 +
~k2

2 m

ωph,k =
c

n

√
k2 + q2

~gk = L−1/2dcvφ1s(0)
√

2π~ωph,k ,

3Following the quasimode approximation, we treat the electromagnetic field inside (cavity pho-
tons) and outside (extra-cavity photons) the micro-cavity as different entities. [54] This in addition
to the fact that we deal with the off-resonance case, allows us to apply perturbation theory to the
Hamiltonian that describes the extra-cavity or laser field HL.
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Figure 3.2: Polariton dispersion law for a QW (solid line) and dark exciton band
(dashed line), for resonant conditions ∆ = 0.

where k is the in-plane momentum, q is the momentum in the growth direction

(z-axis), c/n is the speed of light in the medium of index of refraction n, and L

is the quantization length of the electromagnetic field in the growth direction.4 A

complete quantum mechanical treatment is possible using the Hopfield transformation

that brings the photon and exciton operators to polariton ones, and diagonalizes the

Hamiltonian. These polariton operators pi, i = 1, 2 represent the so-called upper and

lower polariton branches respectively, as shown in figure 3.2. The transformation reads

p̂i,k = ui,k b̂k + vi,k ĉk , (3.2)

where,

ui,k =

√
Ωi,k − ωphk

2 Ωi,k − ωphk − ωXk

vi,k = ±i

√
Ωi,k − ωXk

2 Ωi,k − ωphk − ωXk

(3.3)

Ωk, i =
1

2
(ωXk + ωphk)± 1

2

√
(ωXk − ωphk)2 + 4g2

k . (3.4)

4In Chapter 1 the quantity ε0 is an energy, in contrast here it is taken as a frequency.

48



∆ < 0 ∆ > 0

Lower: Ω2 ωX ωph

u2 1 0
v2 0 −i

Upper: Ω1 ωph ωX

u1 0 1
v1 i 0

Table 3.1: Limits of the energy dispersion law and Hopfield’s coefficients for coupling
g → 0, where ∆

.
= ωX0 − ωph0 = ε0 − c

n
q (k = 0).

In the last equations, − and + correspond to lower (i = 2) and upper (i = 1) branches

respectively. The Hamiltonian 3.1 is thus replaced by

H = ~
∑

dark

ωX,k b†kbk + ~
∑

k, i

Ωik p†ikpik . (3.5)

Table 3.1 shows that in limit g → 0 the excitonic or photonic physics is recovered

on one or the other branch depending on the sign of exciton-cavity detuning ∆
.
=

ωX0 − ωph0 = ε0 − c
n
q (k = 0).

3.2 The Hamiltonian of the system

As starting point, we use the total Hamiltonian for the system, as described in Chap-

ter 1, and the cavity Hamiltonian 3.5. In addition, the interaction between holes and

localized spins will be included, since it is important in the case of deep impurities.

The light-exciton interaction HL and the localized spin-exciton interaction HI must

be rewritten in terms of the new polariton operators. The calculation can be simplified

by restricting the analysis to the lower polariton branch. In a digression at the end of

Section 3.3, with more tools at hand, we show why this approximation is meaningful.

An important feature that we would like to capture is the difference between the

indirect interaction mediated by excitons and the one mediated by polaritons. For this

reason we want to be able to take the limit g → 0 to recover the only-exciton scenario.
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From now on, we will restrict to the lower polariton branch, with the requirement

∆ < 0, which ensures the correct limit for g → 0 – the branch index i will be dropped.

At low intensity and high detuning, only processes involving one virtual particle are

present. We further restrict the discussion to circular polarization σ+. Hereafter, we

refer to the particle type, either polariton or dark exciton, as the channel. Therefore,

the system consists of two localized spins plus one virtual excitation, either polariton

or dark exciton.

The extra-cavity light generates virtual optical active excitons and thus polaritons.

The interaction HI connects different channels, since a flip of the electronic spin will

cause (o.a. ⇔ dark). The terms HL and HI are obtained by inverting the Hopfield

coefficients {u, v}: b̂k = rkp̂k (Eq. 3.2), and replacing in the 2D versions of Eq. 1.9

and Eq. 1.17. They read

HL = ~
√

A
∑

σ

℘σr0e
iωLtφ1spk=0,α+β=σ + h.c.

HI =
~J
A

∑

j kk′αα′β

e−i(k′−k)Rjvkvk′
(
H j

PX + H j
XP + H j

PP + H j
XX

)
, (3.6)

where for the case of an arbitrary impurity j located at Rj

Hj
PP = r∗k′ rk Sj

PP p†k′α′pkα

Hj
XX = Sj

XX b†k′α′bkα

Hj
PX = r∗k′ Sj

PX p†k′α′bkα

Hj
XP = rk Sj

XP b†k′α′pkα ,

(3.7)

and the exciton-impurity exchange interaction is chosen separable (see Appendix E)

J v(k)v(k′) with v(k) = [1+(Λ k)2]−1 [38]; indexes {X, P} refer to the particle type or

channel : either dark exciton or polariton. The time dependency in HL is eliminated by

transforming to the rotating frame at frequency ωL. S contains the spin part, which as

stated before, has the interaction electron - localized state, and hole - localized state.
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The former consists of an Heisenberg interaction. The latter is of the Ising form, for

the existence of transverse spin operators acting on the hole would cause its spin to

undergo transitions to states of sz = ±1/2 which belong to the light hole band5:

SA
XX = SA

PP = sA
z (s1/2z + ζ s3/2z)

SA
PX = SA

XP =
1

2
sA

x (s1/2+ + s1/2−) +
1

2i
sA

y (s1/2+ − s1/2−) ,

where s and s1/2 are spin operators for the localized spin and for the electron in

the polariton/exciton respectively.6 We also include a constant ζ to account for the

difference in strength between these two contributions to HI . [49] The interaction that

connects an initial state of polaritons with a final state of dark excitons (or vice versa)

must be one that flips the spin of the state; this is accomplished with operators s−

and s+. No spin flip occurs for the case of the interaction that conserves the particle

type (either polariton or dark exciton)7.

The new physics we would like to describe is indeed evident already in second

order in J , the coupling between localized states and excitons8; thus, we restrict to

this order to keep the mathematical treatment simple and easy to grasp. Again, an

effective Hamiltonian for the interaction between two localized states will be derived

for the off-resonance excitation of polaritons.

5We remind that the quantum confinement splits the heavy-hole and light-hole bands, and thus,
transitions to the light-hole are suppressed. In other words, quantum confinement [56] forces the
hole to lie in the z-direction, thus contributing an Ising interaction.

6Note that H†
XP = HPX .

7HI as described in this chapter is the expanded version of Sα′α given in matrix form in Chapter 1,
with the addition of the hole interaction. For example, SPP is either S11 or S22, and SXP is either
S12 or S21.

8Notice also, that the hole can not flip between the states |Sz = 3/2〉 and |Sz = −3/2〉, because
this will imply the use of three operators s3/2+/−, which is third order in J .
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3.3 The effective Hamiltonian

Using the formalism of effective Hamiltonian described in Section 1.3, modifying

Eq. 3.1 and Eq. 3.6 according to a rotating frame with frequency ωL and defining the

Green’s function we write

Heff = ~2A|r0|2|℘σ|2|φ1s|2〈p0|G(ωL)|p0〉 ,

where p0 is a polariton with an in-plane wavevector k = 0 generated with circular

polarization σ+ such that (α + β) = σ+.

The problem is better analyzed if the state space =1 of one quasi-particle (polariton

or dark-exciton) is resolved into subspaces that are invariant under the action of G0:

=1X : {|k, 0, α, 0〉}

=1P : {|0, k, 0, α〉} ,

leaving the bare Green’s function G0 completely diagonal, depending only on channel

and wavevector. The bare polariton/dark exciton Green’s function reads

G0
P,k

.
= 〈k, 0, α, 0|G0 |k ′, 0, α ′, 0〉 =

δkk′δαα′

~
1

ωL − Ωk

G0
X,k

.
= 〈0, k, 0, α|G0 |0, k ′, 0, α ′〉 =

δkk′δαα′

~
1

ωL − ωX,k

G0
PX,k

.
= 〈0, k, 0, α|G0 |k ′, 0, α ′, 0〉 = 0

G0
XP,k

.
= 〈k, 0, α, 0|G0 |0, k ′, 0, α ′〉 = 0 .

However, the Green’s function G depends on wavevector, spin and channel, and has

non-zero off-diagonal matrix elements in all these indexes.

The expansion of Ĝ reads

G = G0 + G0HIG
0 + G0HIG

0HIG
0 + O(J3) . (3.8)
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The zero order term contributes a shift to the energy. The first order term is an

effective magnetic field. The second order term is the lowest contribution to the

indirect interaction, and contains cross terms formed out of HI belonging to different

sites, as well as single site terms. Our concern is with two site scattering and so, we

focus on the cross terms. Moreover, we consider only two localized states9 A and B

at positions r = 0 and r = R, respectively. In matrix representation

〈Γ′p0|G(2) |Γp0〉 = G0
P,0σ+〈Γ′p0|HA

I G0eiφHB
I |Γp0〉G0

P,0σ+

=
1

~2

(
1

ωL − Ωk

)2

〈Γ′p0|HA
I G0eiφHB

I |Γp0〉 ,

plus a term with site indexes interchanged. The phase φ is related to the separation

between impurities, see Eq. 3.6. We are studying the coherent stimulation of the

system, so |Γp0〉 = |Γ〉 ⊗ |0, k = 0, 0, σ+〉, where |Γ〉 stands for the spin degrees of

freedom of the two localized states. In matrix representation

HA
I G0eiφHB

I =


 H̃A

XX H̃A
XP

H̃A
PX H̃A

PP





 G0

X 0

0 G0
P


 eiφ


 H̃B

XX H̃B
XP

H̃B
PX H̃B

PP




=


 − −

− H̃A
PXG0

XeiφH̃B
XP + H̃A

PP G0
P eiφH̃B

PP


 ,

where, in the final matrix, we focus only in the element that is relevant for us. H̃j
MN =

(~J/A)
∑

kk′αα′β e−i(k′−k)Rjvkvk′H
j
MN where the dependence on the other quantum

numbers is omitted for clarity. The apparent asymmetry of the result is a consequence

of analyzing the coherent process that has the same initial and final (polariton) state.

From the definition 3.7, it is clear that the element HXX does not enter the process

9G0 does not depend in this new quantum number.
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because b†b |p〉 = 0. The resulting second order term is

〈Γ′p0|G(2) |Γp0〉 =
1

~2

(
1

ωL − Ωk

)2

×

〈Γ′p0| H̃A
PXG0

XeiφH̃B
XP + H̃A

PP G0
P eiφH̃B

PP |Γp0〉 . (3.9)

As an example, the first term – intermediate scattering of a dark exciton – for arbitrary

initial and final states of polaritons (without projecting the spins) is

[
H̃A

PXG0
XeφH̃B

XP

]
k k′

=
∑

k′′
H̃A

PX,k k′′G
0
X,k′′e

i(k′′−k′)·RH̃B
XP,k′′k′

=
(~ J)2

A
vkvk′r

∗
krk′SA

PXSB
XP

e−ik′·R

A

∑

k′′
v2

k′′e
ik′′·RG0

X,k′′ .

For both terms, the intermediate scattering mediated either by a polariton or a dark

exciton gives rise, respectively, to the series

FRX
=

1

A

∑

k′′
v2

k′′e
ik′′·RG0

Xk′′

FRP
=

1

A

∑

k′′
v2

k′′ |rk′′ |2eik′′·RG0
Pk′′ , (3.10)

both depending on R and ωL, as well as other parameters.

A similar analysis of other terms in the expansion of G in Eq. 3.8 shows that the

expansion is in powers of JF . In the spinless case it reads

〈Γ′p0|G |Γp0〉 = G0

{
1 +

(
G0v2

0

~J
A

) [
1 + JF + (JF )2 + . . .

]}
,

where F is any of the functions defined in Eq. 3.10.

Our interest is in the second order term. After some algebra on Eq. 3.9, evaluating

it at k = k′ = 0, and choosing the functions {r, ℘+, φ1s} real, we obtain

Heff = 2

(
~ J v0 r0

2 ℘+ φ1s

ωL − Ω0

)2 [
FRx SA

px SB
xp + FRp SA

pp SB
pp + A ­ B

]
,
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where the only operators that appear are the ones for the spin of localized states A

and B. The spin dependent term reads

SA
PPSB

PP = sA
z sB

z (s1/2z + ζ s3/2z)
2 = sA

z sB
z

[
~2

4
+ ζ2 (s3/2z)

2 + 2ζ s1/2zs3/2z

]

SA
PXSB

XP =
1

4
[sA

x (s1/2+ + s1/2−)− isA
y (s1/2+ − s1/2−)]×

[sB
x (s1/2+ + s1/2−)− isB

y (s1/2+ − s1/2−)]

=
1

4
[sA

x sB
x (s1/2+ + s1/2−)2 − isA

x sB
y (s1/2+ + s1/2−)(s1/2+ − s1/2−)−

isA
y sB

x (s1/2+ − s1/2−)(s1/2+ + s1/2−)−

sA
y sB

y (s1/2+ − s1/2−)2] . (3.11)

For the circular polarization σ+ considered here, the polariton generated in the cavity

has electron spin sz = −1/2 and hole spin sz = 3/2. Projecting expressions 3.11 onto

this state we obtain

〈p0| SA
ppSB

pp |p0〉 =
~2

4

(
1− 6ζ + 9 ζ2

)
sA

z sB
z =

~2

4
9

(
ζ − 1

3

)2

sA
z sB

z

〈p0| SA
pxSB

xp |p0〉 =
~2

4
[sA

x sB
x + sA

y sB
y + i (sA

y sB
x − sA

x sB
y )] ,

Heff = C1 C2(g)

[
FRp 9

(
ζ − 1

3

)2

sA
z sB

z + FRx(s
A
x sB

x + sA
y sB

y )

]
, (3.12)

with C1
.
= (~ v0 J ℘+ φ1s)

2 and C2(g0)
.
= (r0

2/δ)
2
, with detuning δ

.
= ωL − Ω0.

10

Eq. 3.12 presents some important features. The coupling between light and matter

breaks the degeneracy of dark and optical active excitons, making the indirect inter-

action mediated by a polariton and a dark exciton different in strength and form;

the interaction is anisotropic. In addition, the different nature of electron and hole

interactions introduces an extra source of anisotropy.

10We make explicit the dependence on g0 of C2 since this parameter controls the transition from
the exciton to the polariton picture, and is of crucial important for this work. Likewise, we prefer to
talk about δ instead of ωL because that is the parameter that makes possible to compare both cases,
excitons and polaritons. As a consequence of the change in g0 the bands drift and, if not corrected,
this contributes to a change in detuning δ = ωL − Ω0.
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3.4 The neglect of the upper branch polaritons

The following considerations support the neglect of the upper branch polaritons.

i) Consider the transformation that links the exciton operators with the polariton

operators for both branches: bk = rk p 2,k + tk p 1,k. Figure 3.3 presents the numerical

evaluation of the coefficients as a function of wave-vector for different coupling g0.

Note that, for the sign of ∆ chosen, the limit of the coefficients for g0 → 0 are 1 and

0 for lower and upper branches respectively. Moreover, tk is smaller than rk for all k.

ii) The extra-cavity light frequency is tuned below the lower branch. To second order,

0.01 0.03 0.05
k

0.1

0.3

0.5

tk 0.01 0.03 0.05
k

0.75

0.85

0.95

rk

Figure 3.3: Transformation coefficients as a function of wave-vector for different cou-
pling: g0 = 0.4 solid, g0 = 0.08 dotted and g0 = 0.03 dashed lines.

the probability of exciting a state is inversely proportional to the difference between

the laser energy and the state energy, power 4th. Then, it is much more likely to excite

lower than upper branch polaritons, since the detuning of the former is much smaller

than that of the latter. Therefore, the only process considered must be one that has

the same initial and final states, namely a lower branch polariton with wavevector

k = 0 and spin (α + β = σ+): |Γp0σ+〉. iii) Given the last argument, we are in a

position to understand that a scattering process with spin flip and intermediate upper

branch polariton is forbidden to second order in J : We must start with an initial state

|Γ p0σ+〉, if scattered with spin flip, the result is necessarily a dark state (there is no

such thing as a dark polariton), so the resulting state must belong to the dark exciton

band; given that we only consider second order in J the next scattering of this dark

state must lead inevitably to the channel that is coupled to the extra-cavity. Said in
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a different way, the second scattering process must return the state to |Γ p0σ+〉. If

the second scattering led to an upper branch polariton, a third interaction would be

required to comply with our stimulated emission process; the whole scattering would

be 3rd order. We still need to rule out the scattering that has no spin flip: iv) Assume

that upper branch polaritons are included in the model. New operators Hj
UI , that

account for the interaction between them and the other channels I (any of U,X, P )

will appear in Expression 3.7. As already explained, we know that Hj
UU = Hj

UX =

Hj
XU = 0. A new term in HIG

0HI will appear, of the form HPUG0
UHUP leading to

FRU
=

1

A

∑

k′′
v2

k′′ |tk′′ |2eik′′·RG0
Pk′′

=
1

A

∑

k′′
v2

k′′ |tk′′ |2eik′′·R 1

ωL − ΩU

;

clearly, FRU
<< FRP

for all k (the actual interval of k for which the integral is

meaningful is finite and “small”; this effective cut-off restricts the integrals to k such

that there is no overlap of lower and upper polariton branches.). The reason is twofold:

tk < rk and ωL−ΩU > ωL−ΩP . Therefore, the scattering from lower to upper branch

polaritons gives a negligible contribution to the effective Hamiltonian, and can be

eliminated.

3.5 Results

Due to the quasi-continuum character of the bands, we can replace sums by integrals in

the expressions for the functions FRX
and FRP

. The former can be solved analytically

to

FRX
=

1

(2π)2~

∫ ∞

0

eikR cos(θ)

[1 + (Λk)2]2(ωL − ωx)
k dk dθ

=
m

(
2 R ~K0 − 2 Λ R

√
2 ~mδx K0 + R2

Λ
(~− 2 mδx Λ2) K1

)

2 π Λ ~ (~− 2 mδx Λ2)2 , (3.13)
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where the K’s are modified Bessel functions. For large R, behaves as Yukawa 2D

potential:

FRX
∼=

−
(

m3

δx

) 1
4

2
3
4
√

π (1− 2 mδx Λ2)2

e−
√

2m δxR

√
R

, (3.14)

with δx = ωL − ωx. For FRp we have,

FRP
=

1

(2π)2~

∫ ∞

0

∫ 2π

0

r2 eikR cos(θ)

[1 + (Λk)2]2(ωL − Ωp)
k dk dθ , (3.15)

for which no analytical expression can be obtained.

3.5.1 A diagrammatic representation of the interaction

The relevant diagrams associated to the effective interaction for ζ = 0

Heff = C1 C2(g)
[
FRps

A
z sB

z + FRx(s
A
x sB

x + sA
y sB

y )
]

(3.16)

are depicted in figure 3.4. They describe processes by which the laser excites a k = 0

lower polariton that, after exchange interaction with one impurity becomes either a

dark exciton or a lower polariton with momentum k. After a second exchange in-

teraction with another impurity the quasiparticle becomes a k = 0 lower polariton

that closes the diagram. Interestingly, the spin properties of the intermediate states

are very different. If spin exchange occurs, the intermediate particle is a dark exciton

whereas spin conserving exchange yields a lower polariton as an intermediate particle.

The different dispersion of dark excitons and lower polaritons results in anisotropic

interactions with different dependence on the inter-spin separation, R. The diagram

with dark excitons as intermediate particles yields a transverse coupling whose inten-

sity FRX
(R) is very similar to Optical RKKY interaction [6]. The polariton mediated

coupling FRP
(R) is spin conserving or Ising. Its strength differs from ORKKY due to
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Figure 3.4: Diagrams for the dark-exciton mediated (upper) and lower polariton me-
diated (lower) interactions between local spins A and B. Zig-zag lines represent the
external laser, with 0 in-plane momentum.

the different dispersion and form factor for small momenta.

3.5.2 The enhancement of the cavity

The effective Hamiltonian Eq. 3.12 can be rewritten in a way that makes clear the

enhancement of the interaction due to the cavity.

We see in figure 3.5 that we can assign to the functions r and Ωp two characteristic

wave vectors kr and kΩ, and use kc
.
= Max[kr, kΩ] to separate the integral in two

regions. For k > kc both integrands of FRP
and FRX

coincide because r = 1 and the

effective mass of the polariton, ~ (d2Ωp

dk2 )−1, is the same of that of the exciton. The

k < kc part represents the deviation of FRp from FRx. Thus, we write

FRP
' FRX

+

∫ kc

0

dk k

∫ 2π

0

dθ(IP − IX)
.
= FRX

+DPX
, (3.17)

where Ii is the integrand of either FRp or FRx:

IP (k, R)
.
=

1

(2π)2~
r2 eik·R

[1 + (Λk)2]2(ωL − Ωp)

IX(k, R)
.
=

1

(2π)2~
eik·R

[1 + (Λk)2]2(ωL − ωx)
, (3.18)
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Figure 3.5: k dependence of the two functions r (solid) and Ω (dashed) in the integrand
of FRp. The cut-off kr = 0.037 was chosen at 10−2 the asymptotic value of r = 1; for
kΩ = 0.27 the cut-off is at 10−2 the deviation of the polariton mass from the exciton
mass.

whereDPX represents the scattering that has no exciton nature (only-polariton effect),

while all the excitonic effects (dark-excitons plus polaritons at large k) are gathered

in FRX
. Related to kc there is a crossover length Rc that depends on the detuning δ,

Rabi frequency ℘ and is inversely proportional to kc. This decomposition allows us

to make clear the transition from exciton to polariton effective Hamiltonians.11 For

the value of parameters and their range of variation in Si : GaAs we have, kΩ À kr.

Therefore, kc is determined by kΩ. The determination of the analytical dependency of

this function on the parameters (∆, ε, g0) is hindered by the complexity of the function

Ω. Nevertheless, it is possible to describe qualitatively some relevant features. The

only parameter that substantially affects Ω is g0, the others (∆, ε) only produce a

small effect; we point out that g0 depends on the dipole moment and the exciton

relative motion wave function at k = 0, ~g0 = L−1/2dcvφ1s(0)
√

2π~ (ε0 −∆). Taking

this into account, it is possible to get a numerical solution for kc(g0), and it turns out

to be a positive monotonic function. As kc → 0, we have DPX → 0, and so it can

be seen how the effective Hamiltonian tends to the one representing the problem of

excitons alone.

11Alternatively, a simplified analysis in terms of two regions with different masses is possible.

60



With the decomposition Eq. 3.17 the effective Hamiltonian reads

Heff = C1 C2(g0)× (3.19){
FRx

[
9

(
ζ − 1

3

)2

sA
z sB

z + sA
x sB

x + sA
y sB

y

]
+Dpx 9

(
ζ − 1

3

)2

sA
z sB

z

}
.

Notice that 9
(
ζ − 1

3

)2 ≥ 0, and thus, there is no change in sign no matter the value

of ζ. In addition, FRX
< 0; however, for certain values of the parameters DPX may

change sign. Therefore, the interaction may be either ferro- or anti-ferromagnetic.

Although both the first and second terms in Eq. 3.19 have contributions from the

two diagrams of Fig. 3.4, their physical interpretation is clear: the first term is the

standard optical exchange interaction and the second term represents the enhance-

ment of the optical exchange interaction due to the presence of the cavity.

3.6 Shallow donors

In what follows, the case of shallow donors is analyzed, for which the electron-hole

interaction can be neglected (ζ = 0). For the sake of clarity, a particular system (Si

in GaAs QW) will be used to extract numerical results. The calculation can be easily

extended to other donors, and with some modifications, to the case of deep impurities

in which the hole interaction must be taken into account. The truncation of the series

of G to second order is justified by the numerical data used, where (JF ) < 1 for

R > 2a∗B. This only imposes a limitation to the distance between impurity, that is

not relevant for our results.

The form of the effective Hamiltonian

Heff = C1 C2(g)
(
FRX

sA · sB +DPX sA
z sB

z

)
(3.20)

makes evident the transition from a regime where excitons and photons are indepen-
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Figure 3.6: Transition from weak to strong coupling regime. The relative weight of
only-polariton to exciton contributions is shown as a function of the separation be-
tween impurities: g0 = 0.4 (triangle), g0 = 0.3 (pentagon), g0 = 0.2 (square).

dent entities to the strong-coupling of polaritons: As the coupling is turned on (g0

increases) the value of DPX increases, as shown in Figure 3.6 12. The analytic and

numerical values for FRX
, FRP

and DPX are presented in Figure 3.7. The striking

feature is the existence of two distinct regions separated by the crossover distance Rc.

For R < Rc, the dominant interaction is of the isotropic Heisenberg form, while it

changes to an Ising like interaction for R > Rc. The former is mediated by exciton-

like particles and the second by polariton. This validates intuition: due to their small

mass, polaritons are well delocalized compared to excitons.13 Fig. 3.8 shows that, in

the scale of few a∗B, the interaction decays exponentially for excitons while it is clearly

of longer range for polaritons. For sufficiently large R, both FRX
and FRP

can be fitted

to a Yukawa law: Jα(R) ' R−1/2e−R/R0α where α = P or X and R0α is the range

of the corresponding interaction. As expected from fig. 3.8, R0P >> R0X . In both

cases the range of the interactions is related to the effective mass and the detuning of

12The calculation leading to Figures 3.6/3.7/3.8 is taken for fixed δ, achieved by adjusting the
laser frequency ωL.

13This can also be understood noticing that for large R, the integrand of the function FRX
oscillates

and the integral of it in the interval [kc,∞) tends to zero, which is what we expect to get a Yukawa
potential. On the other hand, the integrand of DPX behaves as a monotonic function for small R
and develops only few oscillations that are strongly damped for R close to its maximum value, so
the integral is almost constant in the interval [0, kc].
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the corresponding quasiparticle, R−1
0α =

√
2Mαδα. In the polaritonic case the fitting is

consistent with δP = δ and MP equal to the lower polariton effective mass, defined as
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the value that fits the lower polariton dispersion for small k to ΩP
k ' ΩLP

0 + k2

2MP
. For

the values of figure 3.8 we have MP = 10−5m0, where m0 is the free electron mass. On

the other side, for the excitonic case it can be analytically shown that Mα=X = MX

and δX = δ + g0, which is the detuning of the dark exciton and the laser. There-

fore, the long-range interaction of the cavity-enhanced optical exchange interaction is

related to the low effective mass of the lower polariton.

3.6.1 The critical temperature of an array of spins

As demostrated by Fernández-Rossier et al. [58], an array of localized spins can un-

dergo a ferromagnetic phase transition induced by light. This ordering is mediated

by photo-generated excitations of the host material. In this section, the Curie or crit-

ical temperature of an array of impurities in the presence of polaritons is determined

and compared to the case where only excitons exist. We assume the array in thermal

equilibrium and use the standard mean field approximation (MFA) – See Appendix D

for an overview of the procedure.

As seen in the previous section, there is a characteristic distance between impu-

rities Rc that separates the exciton and polariton regimes. Let us assume that the

array of impurities form a square lattice with lattice constant d, embedded in a host

lattice (e.g. GaAs) of unit cell area a and N sites per unit cell; the concentration χ

of impurities is related to those quantities by d2 = a/(Nχ).

For d > Rc (low impurity concentration) the largest term in Equation 3.20 is the

polariton Ising interaction with coupling DPX . In this limit it is valid to neglect the

Heisenberg term and write for the critical temperature

kTc =
~2

4
C1 C2(g0)

∣∣∣∣∣
∑

j

Dpx(R
j)

∣∣∣∣∣ .

The presence of the cavity prevents the Tc to decrease rapidly, as it will happen

at this concentration in a bare semiconductor. To obtain the Tc, we notice that
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| d · D−1
px dDpx/dR |¿ 1; thus, we can transform the sum into an integral, as

∑
j

Dpx(R
j) → 1

d2

∫ ∞

0

d2RDpx(R)− 1

d2

∫ d

0

d2RDpx(R) .

The calculation is carried out by adding and subtracting the integral in (0, d) and

using expression 3.18, for inverting in the first term the integration in R and k yields

a δ(k) and thus an analytical result:

1

d2

∫ ∞

0

d2RDpx(R) =
1

d2

∫ ∞

0

d2R

∫
d2k (IP − IX)

=
1

d2

∫ ∞

0

d2R

∫
d2k eik·R[IP (k, 0)− IX(k, 0)]

=
1

d2

∫
d2k

(∫ ∞

0

d2R eik·R
)

[IP (k, 0)− IX(k, 0)]

=
1

d2

∫
d2k δ(k)[IP (k, 0)− IX(k, 0)]

=
1

d2
[IP (0, 0)− IX(0, 0)] =

1

d2

1

(2π)2~

(
r2
0

ωL − Ω0

− 1

ωL − ε

)
,

where the integration in k is over a disc of radius kc. Due to the long range nature

of DPX , the numerical evaluation of the integral of DPX in (0, d) is easier than an

integral in (0,∞). The final expression for the critical temperature is

k Tc =
C1

d2

(
r2
0

δ

)2 [
1

(2π)2~

(
r2
0

δ
− 1

δ + Ω0 − ε

)
+

∫ d

0

d2RDpx(R)

]
. (3.21)

The numerical result is shown in Figure 3.9.

For d < Rc (high impurity concentration) the leading term in the Hamiltonian

Equation 3.20 is the Heisenberg interaction with constant FRX
. Therefore, any di-

rection of magnetization is equivalent, in contrast to the previous case where only

magnetization in the z-axis leads to ordering. We assume that a direction has been

singled out. The condition | d · F−1
Rp dFRp/dR |¿ 1 is also satisfied, and a procedure

similar to that used for the case d > Rc is used. Here, a complete analytical solution
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Figure 3.9: Critical temperature as a function of the coupling g0 for d > Rc. Parame-
ters: Rc ' 12 a∗b , δ = −0.15Ry∗, ℘ = 0.16Ry∗ and d = 30a∗B.

is attainable:

kTc =
~2

4
C1 C2(g0)

1

d2

∫ ∞

0

d2R FRX
(R)

=
~2

4
C1

(
r2
0

δ

)2
1

d2

1

(2π)2~

(
1

ωL − ε0

)

=
~ (~ v0 J ℘+ φ1s)

2

(4 π d)2

(
r2
0

δ

)2 (
1

δ + Ω0 − ε0

)
. (3.22)

Figure 3.10 shows that coupling photons to excitons actually reduces Tc, for constant

δ. Notice that the increase of g0 leads to an increase of δx.

We can compare our approach to the one by Fernández-Rossier et. al. [58] for the

critical temperature mediated by excitons, noting that both models are derived in

quite a different way. In ref. [58], the critical temperature reads

kBTC ∝ (Je − Jh)
2 cMn

|ψ1s(0)|2Ω2

4δ3
, (3.23)

where Ji is the coupling between electrons or holes with the localized Mn whose

concentration is cMn; δ is the detuning; Ω is the Rabi energy; and ψ1s is the exciton

66



0.1 0.2 0.3 0.4 0.5 0.6 0.7
g0@Ry

*D

0.4

0.6

0.8

T@KD

Figure 3.10: Critical temperature as a function of the coupling g0 for d < Rc. Para-
meters: Rc ' 12 a∗b , δ = −0.15Ry∗, ℘ = 0.16Ry∗ and d = 30a∗B.

wave function for relative motion. Comparing Eq. 3.23 with Eq. 3.21 and Eq. 3.22 we

observe a complete analogy.

In conclusion, we have shown that the existence of the crossover length Rc intro-

duces a strong dependence of the critical temperature on the impurity concentration.

In addition, the direction of preferred magnetization changes from isotropic in-plane

to an easy-axis in the z-direction.

If the case of deep impurities were treated, another source of anisotropy would be

found, arising from the Ising interaction that holes introduce.
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Chapter 4

Applications

The preceding chapters presented our theoretical formalism together with the study

of two particular systems: excitons in bulk and polaritons in micro-cavities. The goal

was to gain a better understanding of the physics of indirect interaction. Nevertheless,

the technological implications of our findings has not yet been discussed. This is the

subject of the current chapter. As anticipated in the Introduction we are particularly

interested in applications to quantum information; in Section 4.1 we give a very short

introduction of quantum computing (QC). In Section 4.2 we undertake the study of

a system where the indirect interaction is controlled with a light pulse that creates

excitons in a quantum dot. We demonstrate that it is possible to prepare an arbitrary

two-qubit state of the localized impurities near the QD. This is the building block

of QC algorithms. Furthermore, we show that the system is robust with respect to

errors. Section 4.3 and Section 4.4 give an account of the applications that may result

from our findings in the study of excitons in bulk semiconductor (Chapter 2) and

polaritons in micro-cavities (Chapter 3), respectively.
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4.1 Quantum computing

Quantum information brings together the main fields of physics, computer science,

and mathematics. [60] It encompasses quantum cryptography, quantum teleporta-

tion, and quantum computing (QC); the latter being possibly the most promising for

applications, and at the same time the most difficult to implement. As its name sug-

gests, quantum information relies on some peculiar features of quantum mechanics.

The most important one became clear after the EPR paradox: the entanglement. In

QC, the use of operations using entanglement and interference can lead to algorithms

that outperform by far those of classical computers (CC). So far, the number of al-

gorithms of this kind found is rather small. In spite of this, it shows that some hard

problems (computational complexity) for CC are tractable with a QC, for example

the factorization problem.

A quantum computer should include the following: i) qubits which are the logical

units for storing and performing operations; qubits are realized using two level sys-

tems, such as nuclear or electronic spin 1/2, atomic levels, etc. The two possible states

are designated by |0〉, |1〉. ii) A procedure to prepare the set of qubits to a given ini-

tial state, e.g. |0000....〉. iii) Control on the dynamics, using unitary transformations,

of both individual and groups of qubits. This control works as logical operations or

gates that are part of algorithms. iv) A procedure to measure the state of a set of

qubits after the set of operations – reading the output. It can be shown that only

four gates are required to construct any possible operation; this set of universal gates

consists of three one-qubit and one two-qubit operations. A possible set of universal

operations are the Hadamard, σx, Rz(π/4) and CNOT. These are

H =
1√
2




1 1

1 −1


 σx =




0 1

1 0


 Rz(π/4) =




1 0

0 eiπ/4




70



CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




.

We are concerned with the physical realization of two-qubit operations in semi-

conductors. It is instructive to see how a CNOT gate can be implemented [59]:

CNOT = R
(a)
y (−π/2)R

(b)
z (−π/2)R

(a)
z (−π/2)eiπ/4σ

(b)
z σ

(a)
z R

(a)
y (π/2), where the super in-

deces a, b stand for two distinct qubit. Therefore, we see that besides rotations of single

qubits, an operation involving two qubits is necessary. This operation is governed by

an Ising interaction. It is worth noting that there are other schemes that make use of

the Heisenberg interaction between two spins to realize two-qubit operations. This is

the connection between the previous chapters and QC.

The prescription given above does not acknowledge the existence of decoherence,

which affects any real system. Decoherence causes the system to evolve non-unitarily 1,

away from the evolution of the desired operation. In QC, the errors introduced by de-

coherence destroy the operations. Fortunately, error correction codes (ECC) has been

developed, much alike those in CC. They allow to reconstruct the state of the system

in each step of the operation, making feasible the realization of QC. Therefore, any

realistic scheme should take into account the errors and the possibility of correcting

them via ECC. We deal with this issue in Section 4.2.

1Decoherence can be seen as the environment performing measurements on the system. Measure-
ments project the state of the system, and are represented by operators of the form |a〉〈a| , which
are not unitary.
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4.2 Entanglement and errors in the control

of spins by optical coupling

Impurity spins embedded in semiconductors are currently under investigation for

quantum computing implementations. Recently, optical techniques have been pro-

posed to control the spin-spin coupling and realize two-qubit quantum gates. [6, 7,

61–65] The optical method suggests the possibility of an ultrafast control of the

qubits. The flexibility in the control that can be obtained by pulse shaping [66] and

the absence of noisy contacts represent additional advantages. On the experimental

side, ensemble optical measurements have demonstrated the production of spin en-

tanglement for impurities embedded in a semiconductor host. [67] More recently, the

measurement of the quantum state of a single impurity spin obtained by coupling

it to a single exciton in a QD has been experimentally carried out. [68] Here we

study theoretically the control of impurity spin states when the interaction among

them is controlled by optically-generated excitons in a QD. We analyze the control

errors due to the radiative recombination of the exciton that mediates the interac-

tion between the spins. Moreover, we illustrate how the control parameters can be

obtained directly from simple analytical expressions. The method is applied to design

the control parameters in the production of maximal spin entanglement.

4.2.1 The system

The physical system consists of two impurity spins placed close or inside a QD in

such a way that there is not a direct interaction between them. A schematic picture

is given in Figure 4.1. By coding the qubit in more than one spin efficient schemes

for fault-tolerant [69] and exchange-only [70] quantum computation can be naturally

applied to this setup. Dots of different size provide the frequency selectivity to address

specific spin pairs and realize two-qubit readouts. The model we use contains few

parameters describing the exciton-light and exciton-impurity coupling and can be
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Figure 4.1: Scheme of the system: localized spins located near self assembled QDs are
coupled by an exciton created by a laser pulse. Dots of different size provide selective
control and readout.

applied to different physical systems. For instance, it can be used for excitons localized

by monolayer fluctuation in III-V and II-VI quantum wells and interacting with a

finite number of localized impurities as in Ref. [67]. III-V or Si/Ge self-assembled

QDs can also be used as shown in Figure 4.1. For typical semiconductor systems we

can restrict the analysis to heavy-hole excitons due to the splitting between heavy-

hole and light-hole bands in the dot. The heavy-hole exciton spans a four dimensional

space consisting of two optically-active and two dark states. We treat the interaction

between the electromagnetic field and the excitons semiclassically, and we consider

spin states that interact only with the photoexcited electron in the dot. This is the case

for instance of donor impurity spins in typical semiconductors because the electron-

hole exchange is much smaller than the electron-electron exchange. Notice that by

using circularly polarized light the exciton induces, besides the spin-spin coupling,

also a local effective magnetic field on the spins as found in Chapter 2. [71] This

effective magnetic field can be controlled by the laser polarization and disappears for

linearly polarized light. We will consider below the case of circularly polarized light.

The exciton-spin part of the Hamiltonian (~ = 1) is
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H0 = ε
∑

α

b†αbα − 2V
2∑

n=1

∑

αα′
(sαα′ · sn)b†αbα′ , (4.1)

where ε is the energy of a single exciton in the dot, and bα is the creation operator of

an exciton with electron spin α. The spin-spin interaction of the impurity n with the

exciton is given by sαα′ · sn. α =↓ represents an optically active exciton with electron

spin −1/2 and hole spin +3/2, while α =↑ is a dark state exciton with electron spin

+1/2 and hole spin +3/2 (due to splitting of the degenerate valence band, we are able

to restrict our analysis to the heavy hole band with sz = ±3/2 [1]). For each impurity,

the operator sn represents its spin degree of freedom. V is the exchange interaction

between the impurity spins and the photoexcited electron in the dot. The strength

and the sign of V depend on the system. For instance, this coupling is expected to be

ferromagnetic for electrons in the dot interacting with localized rare-earth magnetic

impuritites, while it is antiferromagnetic for a dot mediating the interaction between

shallow donors, see Chapter 2 and Ref. [63]. Without loss of generality, we will assume

V > 0 below. Note that, since the exciton is well localized inside the QD, there is

no phase exp(−ikR) arising from the position of the impurity. Alternatively, this

can be understood recalling that the exciton in a QD is an 0D excitation with no

center-of-mass motion, and so k = 0. This fact allows us to use the formalism of

Schwinger bosons [76] to diagonalize the Hamiltonian Expression 4.1 in a basis of

coupled angular momentum, as follows. The transformation

N = b†↑b↑ + b†↓b↓

Lx =
1

2
(b†↓b↑ + b†↑b↓)

Ly =
i

2
(b†↓b↑ − b†↑b↓)

Lz =
1

2
(b†↓b↓ − b†↑b↑)

maps a set of two decoupled harmonic oscillators (in our case the optically active b↓

and dark b↑ excitons) onto a rotator with angular momentum L. The Hamiltonian
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can be rewritten as

H0 = εN − 2V (J2 − S2 − L2) , (4.2)

where S is the total spin of the two impurities. The total angular momentum

Ji = Li + Si.

The coupling of the excitons in the QD and the external laser field is given by

HL =
Ω(t)

2
e−iωtb†↓ + h.c. , (4.3)

where Ω(t) is the time-dependent Rabi energy associated with the optical pulses, and

ω is the energy of the laser. We consider only anti-clockwise polarization (σ+) which

generates excitons with electron and hole spin states −1/2 and +3/2, respectively.

Excitons with hole spin −3/2 are not included in the model since they are not excited

by σ+ light and the impurity spins can only flip the spin of the photoexcited electron.

A scheme of the relevant energy levels is given in Figure 4.2. In the ground state

n = 0 (where n is the quantum number associated with the operator N) we have the

singlet and the triplet states corresponding to the two non-interacting impurities. In

the excited state n = 1, the electron in the dot splits the triplet states in a quadruplet

J = 3/2 and a doublet J = 1/2. The total Hilbert space is thus spanned by a total

of 12 states. The arrows in the scheme identify the selection rules for σ+ optical

transitions. The transitions have different oscillator strengths, which are calculated

using the Clebsch-Gordan coefficients. Notice that the light does not connect directly

states with different spin S. The structure of the energy levels provides a natural

readout scheme for the coded logical qubit |0L〉, |1L〉 in the exchange-only scheme. [70]

An optical setup similar to the one for single spin readout [68] could be used: a single

peak at ε corresponds to |0L〉 while two peaks separated by 6V correspond to the

logical state |1L〉.
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Figure 4.2: Energy level diagram and optical selection rules for σ+ polarized light. In
n = 1, the total splitting is j = 6V .

4.2.2 Quantum control

In order to illustrate how to design the optical control we consider the production

of maximal spin entanglement. We choose the initial state | ↑↓〉 ⊗ |0〉 as the tensor

product of a linear superposition of impurity states {|S〉, |T0〉}, and the exciton |0〉
representing an empty QD. We consider separately the case of infinite and finite γ−1,

i.e. spontaneous radiative recombination lifetime for the exciton in the dot. Other

decoherence processes, such as pure dephasing due to elastic scattering with phonons,

are suppress in large QDs as experimentally shown by Bonadeo et. al. [72]. In the

first case we determine analitically the control parameters that provide maximal spin

entanglement. In the second case, we solve numerically the master equation for the

full system in Figure 4.2. This will allow us to analyze errors due both to the radiative

recombination and to the finite probability of remaining with an exciton in the dot

at the end of a pulse. The latter is an error similar to a double occupancy error in

the case of spins controlled by gate voltages [73]. Ideally, the QD must be empty at

the end of each optical pulse, and this can be achieved by an adiabatic evolution, or

by a nonadiabatic evolution plus additional conditions in the pulse area [74].
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Infinite radiative lifetime

In the following, we make extensive use of the concept of adiabatic evolution of the

system. We clarify this in the context of our model, which can be analyzed, in the

simplest situations, in terms of decoupled two or three level systems. Let us take the

situation, where only the singlet is excited. In the rotating frame (the perturbation still

retains the time dependency of the pulse envelope function), the energy of the levels is

renormalized by the frequency of the laser, giving rise to the detuning. If the perturba-

tion evolves slowly enough with respect to the energy difference between unperturbed

states (the detuning), i.e. dH/dt << δ2, the state will evolve adiabatically. This means

that if the initial state is an instantaneous eigenvector of the unperturbed H – say

un – the evolution will only introduce a phase: ψ(x, t) = un(x, t) exp(−i
∫ t

0
Endt′).

We first study the ideal case of a nonadiabatic evolution at γ = 0. We call nona-

diabatic the evolution that follows from a laser resonant with at least one transition

between the n = 0 and n = 1 subspaces in Figure 4.2. This implies that there is a

substantial exchange of energy between the electromagnetic field and the dot, which

in turn results in a significant population inversion during the pulse. Using a numeri-

cal simulation we illustrate in Figure 4.3 the evolution of the |S〉 and |T0〉 populations

under a Gaussian pulse giving a Rabi energy of the form,

Ω(t) =
Ω√
π

e−(t/τ)2 . (4.4)

The pulse is resonant with the bare exciton energy, which in the scheme of Figure 4.2

corresponds to a resonant transition for the singlet state. In order to have no exci-

tonic population at the end of the pulse, we need the pulse area for the resonant

excitation to be multiple of 2π, therefore Ω and τ are chosen so that the pulse area

is Ωτ = 8π.2 Notice that the population of the ground state singlet |S〉 is completely

2This is readily seen in the case of a two level system { |0〉, |1〉} with a square shape pulse
Hamiltonian connecting both states: HI = Ω(t)ϑ with ϑ = ( |0〉〈1| + |1〉〈0| ). As [HI(t1),HI(t2)] = 0
the evolution operator is U = exp(−i

∫ t

0
HI(t′)dt′) = exp(−iΩτϑ) = cos(Ωτ) + ϑ sin(Ωτ). If the
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depleted during the pulse but at the end comes back to the original population (0.5).

In contrast, the triplet (|T0〉) population follows an adiabatic evolution due to the ex-

change interaction affecting the optical resonance. In Figure 4.3 (inset) we show the

real and imaginary part of the coherence 〈S|ρ|T0〉. In order to create the maximally

entangled state we need a ±π/2 phase in this matrix element and the chosen optical

pulse achieves this goal. This relative phase transforms, for example, the state | ↑↓〉
into 2−1/2(|S〉+ i|T0〉) ∝ | ↑↓〉+ i| ↓↑〉. For a given value of the exchange coupling V

and pulse width τ , the maximum intensity of the field Ω in Eq. (4.4) is found from

the roots of the equation

φT (Ω, V, τ)± π/2 = 0 , (4.5)

where φT =
∫∞
−∞ λ0

T (t) dt is the dynamic phase that the state |T0〉 picks up following

the adiabatic evolution. Notice that since the pulse is a multiple of 2π the singlet will

only pick up a trivial phase (±1). λ0
T is the eigenvalue satisfying λ0

T (±∞) = 0 for a

3-level Hamiltonian representing the triplet states,

HT (t) =
1

2




0
√

2
3
Ω(t)

√
1
3
Ω(t)

√
2
3
Ω(t) 2δ − 2

3
j 0

√
1
3
Ω(t) 0 2δ + 4

3
j




. (4.6)

The optical detuning δ = ε − ω, and j = 6V is the splitting in the excited state

between J = 3/2 and J = 1/2 states. If we assume that the three eigenvalues of the

matrix in Eq. 4.6 do not cross during the pulse evolution, the expression for λ0
T (t)

can be written as

λ0
T (t) =

j

9
+

2

3
δ +

q(t)

3
cos

(
θ(t)

3

)
, (4.7)

where

θ(t) = 2kπ + arccos

(
r(t)

q3(t)

)
(4.8)

initial state is |0〉, then the only choice for the final state to return to |0〉 is Ωτ = 2πn. This also
can be shown to apply for pulses of arbitrary shape.
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Figure 4.3: Nonadiabatic control, γ = 0. Evolution of the |S〉 (solid line) and |T0〉
(dotted line) populations under a Gaussian pulse of area 8π. The temporal width of
the pulse τ is 7.02 ps and the ratio Ω/V is 0.6697. (Inset) Real (dotted line) and
imaginary (solid line) part of the coherence 〈S|ρ|T0〉.

with

q(t) =
√

28j2 + 12jδ + 36δ2 + 27Ω2(t)

r(t) = 4(4j − 3δ)(5j + 3δ)(j + 6δ)− 81(2j + 3δ)Ω2(t) .

If the exciton impurity coupling is ferromagnetic (j > 0), we have to take in Eq. (4.8)

k = 1 for δ > j/3, k = 2 for −2j/3 < δ < j/3, and k = 3 for δ < −2j/3. In

contrast, for j < 0, we have to take in Eq. (4.8) k = 1 for δ > −2j/3, k = 2 for

1/3j < δ < −2j/3, and k = 3 for δ < j/3. The analytical expression in Eq. (4.7)

allows us to determine exactly the control parameters from the roots of Eq. (4.5) . In

the γ = 0 adiabatic regime the laser pulse is tuned away from the optical resonances

between the n = 0 and n = 1 levels. An example of a simulation of an adiabatic control

is shown in Figure 4.4. The laser is tuned 2 meV below the bare excitonic energy and

1 meV below the triplet resonances corresponding to J = 3/2 in Figure 4.2. We plot

in Figure 4.4 the same quantities of Figure 4.3. Notice that in this case the pulse area

can be arbitrary, provided the adiabaticity is preserved. The change of phase in the

coherence 〈S|ρ|T0〉 is now obtained with a smooth transition. The control parameters
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Figure 4.4: Adiabatic control, γ = 0. The laser is tuned in 2 meV below the bare
excitonic energy. Evolution of the |S〉 (solid line) and |T0〉 (dotted line) populations
under a Gaussian pulse. The temporal width of the pulse τ is 10.2 ps and the ratio
Ω/V is 1.24. (Inset) Real (dotted line) and imaginary (solid line) part of the coherence
〈S|ρ|T0〉.

in this adiabatic case are determined by the roots of

φT (Ω, V, τ)− φS(Ω, V, τ)± π/2 = 0 . (4.9)

In contrast to the case of Figure 4.3, the singlet now picks up a nontrivial dynamic

phase φS =
∫∞
−∞ λ0

S(t) dt where λ0
S is the eigenvalue of the singlet Hamiltonian

HS(t) =
1

2




0 Ω(t)

Ω(t) 2δ


 (4.10)

with the property λ0
S(±∞) = 0. As for HT this has a simple analytical form λ0

S(t) =

δ
2
± 1

2

√
δ2 + Ω2(t) , (+ for δ < 0 and − for δ > 0 ) which can be used to determine

the control parameters from the roots of Eq. (4.9).

Finite radiative lifetime

In order to determine how this control scheme is affected by the finite lifetime of the

exciton in the dot we introduce a finite value for γ, and solve the master equation
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ρ̇ = −i[H, ρ] + L[ρ] using the values of the control parameters corresponding to the

evolution of Figs. 4.3 and 4.4. L[ρ] is the Liouvillian superoperator that can be written

as L[ρ] = L†ρL+ 1
2
{L†L, ρ} where L† =

√
γ b↓ 3 accounts for the spontaneous radiative

recombination of the exciton in the dot. Once ρ is obtained, a 4× 4 reduced density

matrix for the impurity spins ρS is computed by tracing out the exciton degrees

of freedom. The entanglement in the Bell state is mostly sensitive to decoherence

processes and its analysis provides a good test for the scheme. We quantify the error

on the reduced density matrix ρS using two different methods, the Purity and the

Peres criterion of separability. [75] According to the Peres criterion a state is entangled

iff Emin < 0, where Emin is the minimum eigenvalue of a matrix constructed by

transposing the non-diagonal 2 × 2 blocks of ρS. A maximally entangled state has

a Emin = −1/2. The deviation from that value gives a measure of the effect of the

radiative recombination on the entanglement and we quantify the entanglement error

as ∆E = Emin + 1/2. The purity of ρS is a different parameter that characterizes

the error in the spins states due to their entanglement with the exciton in the dot.

We quantify this error as ∆P = Trρ2
S − 1. In principle there are errors that can

disentangle the spin states without a change in the purity, for instance by affecting

the phase picked up in Eq. (4.9). Therefore, in principle the errors induced by γ

affect independently ∆E and ∆P . Next, we study the dependence of the errors in the

Entanglement ∆E (upper) and in the Purity ∆P on γ alone. We remind that both

Ω and γ depend on the dipole moment of the exciton in the dot. Therefore, a change

in γ at constant Ω may be realized by compensating with a change in the intensity of

the external laser field. This allows us to study how γ affects the errors with all the

other parameters kept constant. Figure 4.5 shows the results for the adiabatic and

nonadiabatic evolution. Both errors increase linearly at small γ. However, the errors

in the adiabatic case are always smaller than in the nonadiabatic case in the range of

3There are two harmonic oscillators for the excitation in the QD, i.e. b↑ and b↓, but only the
latter can couple to the continuum of electromagnetic radiation. Also, the assumption is that the
temperature equals zero.
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Figure 4.5: Log-Log plot of the deviation from maximal entanglement (upper panel)
and maximal purity (lower panel) as a function of the radiative recombination γ (in
meV). Solid line: adiabatic evolution. Dashed line: nonadiabatic evolution.
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parameters we have investigated. We remark that, due to the incommensurability of

the eigenvalues of HS and HT , there are not special conditions that would give perfect

entanglement with square pulses as in the case of a direct spin-spin coupling. [74]

An important figure of merit for the application of this quantum control technique

to quantum computation is provided by the error per gate parameter. This has to

be below a threshold value in order to make scalable quantum computing possible.

The estimate for such a threshold depends on assumptions on the error model and

device capabilities but the 10−4 value [80] is usually used as a benchmark in typical

experimental implementations. The error in the entanglement production gives an

estimation of the error per gate since the quantum operation done corresponds to a
√

SWAP modulo some single qubit operations. We see in Figure 4.5 that the 10−4

threshold can be achieved for γ smaller than 1µeV . Self assembled QDs have typically

a ground state exciton lifetime of the order of one or more nanoseconds and would

reasonably be in this region of parameters.

4.2.3 Conclusions

We have analyzed the entanglement production between two spin-impurities induced

by an exciton in a neighboring quantum dot. In the case of γ = 0, the parameters for

the quantum control can be analytically determined from the roots of simple integral

equations. We showed that the finite lifetime γ−1 of the exciton in the dot can affect

the purity of the spin states and introduces errors in the entanglement production.

In addition we found that such errors increase linearly with γ and can be kept below

the 10−4 threshold for error correction if parameters typical of self assembled QDs

are used in the simulation.
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4.3 The indirect interaction mediated

by excitons

The optical control of the spin of electrons localized in quantum dots or impurities has

several advantages with respect to approaches where electrodes are needed. Ultrafast

lasers are available, promising the realization of quantum gates in time scales that are

hard to achieve with an electrical control. Lasers are also very flexible for quantum

control since pulse shaping can be used to increase accuracy and speed. [50] Finally,

metallic electrodes necessarily add a source of noise for the quantum system, and

they are not needed in an optical scheme. The possibility of changing the sign of the

spin-spin interaction can add flexibility to many control schemes for the qubits, like

e.g. in the exchange-only scheme. [77] We have seen that resonances in the spin-spin

coupling induced by the binding of the excitons can increase the magnitude of the

interaction for distances that are reasonable from a nano-fabrication point of view.

This will imply that lasers with lower intensities can be employed in the control. The

polarization of the light represents an additional control parameter that can be used

to selectively address qubits with an optically induced magnetic field. This is also

an advantage from a practical point of view since it could simplify the experimental

setup by eliminating the need of an external magnetic field.

Although the feasibility of single impurity spectroscopy in semiconductors has

been proven [86, 87], little attention has been paid to optical properties of impurity-

bound excitons for information storage and processing. Impurities deserve at least the

same attention as quantum dots for such applications. Their homogeneous character

and the variety of properties that one can obtain combining different hosts and ions are

indeed special advantages. An exciton bound to an impurity has optical properties

very similar to an exciton trapped in a shallow quantum dot. Most of the ideas

involving excitons in quantum dots as a main ingredient for quantum information

and communication can be reformulated for excitons bound to impurities. We have
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provided only two examples here, but our phenomenological theory, being based on

inputs from the experiments, is very flexible and many other combinations of host and

ions can be used to explore a large range of confinement energy and different optical

properties. We also have seen that the spin-spin coupling has a resonant behavior at

frequencies depending on the separation between the impurities. By organizing the

impurities in chains with different separation this can be used to selectively address

a single pair of impurities and it allows for scalability.

A very special case is represented by impurities in silicon. This material has ob-

vious technological advantages and many proposals for using impurities in Si for

quantum computing have been suggested. [88–90] In particular, the optical control

of electronic spins localized by deep donors in Si using a control impurity has been

proposed. [61] In the scheme we are suggesting here, the exciton bound to the impu-

rity plays the role of the control impurity and it takes advantage of the host material

for mediating the interaction. Even if Si is an indirect gap material, there is a finite

optical coupling to the exciton bound to the impurity due to symmetry breaking. Ad-

ditional complications in the use of excitons bound to donors for mediating spin-spin

coupling arise from the valley degeneracy in Si. [91]

Excitons bound to rare earth magnetic ions can be controlled very rapidly and effi-

ciently due to their strong dipole moment. Their dipole moment is mainly determined

by the optical properties of the host material, since it involves the creation of electron

hole pairs across the semiconductor gap. At the same time, they interact with the

internal degrees of freedom in the core f states. Schemes involving excitons bound to

rare earth impurities in III-V materials bring in the advantages of the optical prop-

erties of the host and the stability of the internal degrees of freedom of the f orbitals

in the rare earth ion where the qubit is stored. This hybrid system is thus extremely

powerful, providing both reliable storage and fast processing of information.

Finally, the light controlled spin-spin coupling in a semiconductor matrix is also

appealing for the coherent control of macroscopic properties of materials. This was the
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idea behind the coherently induced ferromagnetism in Ref. [92]. There, a finite crit-

ical temperature for a paramagnetic to ferromagnetic transition in diluted magnetic

semiconductors was found when the material is coupled to a strong laser field. The

results presented here suggest that the presence of bound states could enhance the

effect. Also, the same idea could be used in other systems where the light can induce

antiferromagnetic or glassy phases starting from a paramagnetic system. This repre-

sents a unique opportunity to study phase transitions in a solid where the coupling

is controlled by an external field and may lead to a new class of controlled materials

to be investigated.

4.4 The indirect interaction mediated

by polaritons

Proposals for quantum computers based on spin degrees of freedom require that in-

dividual qubits are placed close enough so to have a significant exchange interaction

between them. This exchange interaction can be direct (i.e. induced by a controlled

overlap of the wavefunctions) or indirect when mediated by spin excitations in a 2D

electron gas [78] or by optical excitation across the semiconductor bandgap [6,7, 79].

In the indirect schemes, the range of the spin coupling is related to the mass of the

mediating particles, and the coupling decreases exponentially as a function of the

distance between the spins. Here, we showed that the small polariton mass gives an

extremely long range for the spin coupling and introduces a non-exponential behavior.

This implies that spin-qubits can be located several hundreds of nanometers apart

while still retaining control on pair interaction through the use of polaritons. The

long range nature of the polariton-mediated interaction presents important techno-

logical advantages for quantum information implementations. Using our parameters

(see Fig. 2.2), we predict that the strength of the interaction is |Jeff | ' 0.005 Ry∗ for

impurities separated by distances of the order of Rc = 12 a∗b ' 150 nm. An estimate
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for the time needed for an operation can be given as T = π/(2|Jeff |) ' 40 ps, which

is much smaller than the typical dephasing time for impurity spin qubits. Recent

measurements have reported a spin relaxation time of the order of µs for donors in

GaAs [81]. To our knowledge, the spin decoherence time (T2) of a single donor in

GaAs has not been measured, but is also expected to be in the µs range. The decay

time for polaritons is reported to be in the range of nanoseconds [82]. Moreover, notice

that the time needed for a quantum operation does not change considerably when

we further increase the qubit separation. Even with an inter-qubit separation of 1

micron the time needed for one operation increases only by one order of magnitude to

about 400 ps, and is still reasonably smaller than the decoherence time. With such a

long range interaction, the realization of electric gates to control one-qubit operations

and the use of localized magnetic field becomes feasible. The Ising-like interaction at

long separation is not a limitation for quantum gate implementations. The polariton

mediated coupling could be also used to control the nuclear spin of the donor in a

scheme similar to the one in Ref. [78]. In contrast to other cavity QED-based quan-

tum computing implementations [15], the scheme discussed here does not require 0D

confined electromagnetic modes, which is much harder to achieve experimentally. In

a planar cavity the lateral dimension is not limited by the optical wavelength, which

provides a fully scalable geometry for the qubit.
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Conclusions

I would like to start these concluding remarks by recalling what we have proposed and

done through this dissertation. Our main aim was to achieve a better understanding

of the optically-induced spin indirect interaction in semiconductor structures under

different conditions. Before turning to the actual physical systems, we developed a

formalism that enables us to address a variety of problems in this topic. In Chapter 2

we put this formalism to the test, and learned more about spin indirect interactions

of impurities in a bulk semiconductor. Next, in Chapter 3, we sought to determine

the effect on the indirect interaction of a micro-cavity. Finally, Chapter 4 presented

some possible applications of the theory previously developed.

Outlined in Chapter 1, the formalism we derived is meant to address problems in

optically excited semiconductors. More precisely, we found a suitable tool to describe

a system of optically generated quasi-particles obeying boson statistics that interact

with spins localized in the host lattice. The goal was to derive an expression for

the interaction between two localized spins, where the degrees of freedom of the

quasi-particle responsible for the indirect interaction are traced out. The formalism

is applicable to many situations: bulk semiconductors, quantum wells, quantum dots,

micro-cavities, etc. The quasi-particle may be an exciton, polariton, and possibly

others. We used the model to study some of them.

In Chapter 2 we employed our model to study the case of a doped bulk semicon-

ductor. We derived an analytical solution to all orders in the interaction between

excitons and localized spins. As a consequence, we found that the quasi-particle
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binds to pairs of impurities; moreover, the indirect interaction can be made ferro-

or antiferro-magnetic. The results are useful to describe doped systems containing

impurities with spin 1/2. A question that remains open is if it is possible to general-

ize the non-perturbative analysis to systems with spin angular momentum S 6= 1/2.

In Chapter 3 we focused on the indirect interaction that polaritons mediate be-

tween impurities localized in a micro-cavity quantum well. The interesting findings

are the existence of two different regimes, and the long-range nature of the polari-

ton interaction. The first one shows that the spin-dependent interaction changes form

when the separation between impurities is larger than a certain value. One of the con-

sequences of it is that the critical temperature of a large number of impurities may

be made larger than with the use of excitons. Also, the ordering of impurity spins in

the ferromagnetic case is different in each regime. The long-range nature of the po-

lariton mediated indirect interaction now opens possibilities for quantum computing

two-qubit operations. There are many interesting future lines of investigation. A spin

coupling can also be obtained by a real polariton population in a scheme analogue to

the RKKY [9] spin coupling mechanism. The spin interaction induced by a 0D cavity

and excitons in quantum dots has been recently investigated [83], and also in this 0D

case the presence of a strong coupling generates anisotropies in the spin interaction.

The use of real carriers is not appealing for quantum computing implementation since

it adds decoherence to the spin-qubit. However, it would be interesting to explore the

dynamics of spin in the presence of a dense polaritons population that condense in

a phase coherent state, as observed recently in II-VI microcavities [84]. High-quality

micro-cavities embedding Mn-doped magnetic quantum wells in the strong coupling

regime have recently been realized [85]. The polariton mediated spin coupling could

be explored in these systems as a method for the ultrafast control of the quantum

well magnetization.

Chapter 4 dealt with a more detailed analysis of the applicability of our ideas. We

started by modeling a system of impurities and QDs embedded in a QW. The indirect
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interaction is here mediated by excitons in the QD. We studied the feasibility of two-

qubit operations using this system, including two important realistic assumptions not

explicitly considered in Chapters 2-3, namely: i) The optical excitation is achieved

by a laser pulse, and ii) there is decoherence in the form of spontaneous radiation

recombination of the exciton. This chapter also discusses some possible applications

of the results obtained in Chapters 2-3.

To date, we are not aware of experiments that test our findings. We hope that

this work will motivate experimental groups interested in fundamental questions as

well as applications to quantum computing to perform experiments following the lines

presented here.
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Appendix A

Exchange integrals

In this appendix, we show how to calculate an exchange integral in 2D, which appears

in the Hamiltonian for the interaction between localized spin and exciton:

V =

∫
drhdredrl ψk′(re, rh)ϕ(rl)

e2

ε0|re − rl|ψk(rl, rh)ϕ(re) (A.1)

with the functions

ψk(re, rh) =
1√
A

e−ik·(βere+βhrh)

√
2

π

1

λ
e−|re−rh|/λ

ϕ(r) =
1√
a3

Bπ
e−|r−R|/aB

for the exciton and localized state respectively, with βi = mi/(me + mh). Replacing

the functions above

V = C

∫
drhdredrl eik′·(βere+βhrh) e−|re−rh|/λ e−|rl−R|/aB

1

|re − rl| ×

e−ik·(βerl+βhrh) e−|rl−rh|/λ e−|re−R|/aB

with C = 2 e2/(π2Aλ2a3
Bε0). Next we transform to relative coordinates s = re − rh

and t = rl − rh, with Jacobian equal to 1. Our new set of coordinate is {re, s, t}.
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Then,

V = C

∫
dre ds dt eik′·[βere+βh(re−s)] e−s/λ e−|(t−s+re)−R|/aB

1

|s− t| ×

e−ik·[βe(t−s+re)+βh(re−s)] e−t/λ e−|re−R|/aB

= C

∫
dre ds dt eik′·(re−βhs) e−s/λ e−|(t−s+re)−R|/aB

1

|s− t| ×

e−ik·(re−s+βet) e−t/λ e−|re−R|/aB ,

where we have used that βe + βh = 1. Now we replace exponentials by Gaussians, a

common procedure in quantum chemistry: [19]

e−|(t−s+re)−R|/aB →
√

α1

π
e−α1[(t−s+re)−R]2

e−|re−R|/aB →
√

α1

π
e−α1(re−R)2

e−t/λ →
√

α2

π
e−α2 t2

e−s/λ →
√

α2

π
e−α2 s2

with the constants αi chosen so as to fit the exponentials. The integral reads

V = C
α1α2

π2

∫
dre ds dt ei(k′−k)·ree−iβhk′·s e−ik·(βet−s) 1

|t− s| ×

e−α2 s2

e−α1[(t−s)+(re−R)]2 e−α2 t2 e−α1(re−R)2 ,

and multiplying by exp[i(k′ − k)R] and c.c., collecting factors of (re −R) and com-

pleting squares,

V = C
α1α2

π2
ei(k′−k)·R

∫
dre ds dt e−iβhk′·s e−ik·(βet−s) 1

|t− s| ×

e−α2 s2

e−2α1[u+(re−R)]2 e2α1 u2

e−α2 t2
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with u = 1/2[(t − s) − i(k′ − k)/(2α1)], and the integration in re can be performed,

defining v = re + (R + u)

∫
dv e−2α1v2

=

√
π

2α1

,

and so

V = C
α1α2

π2

(
π

2 α1

)3/2

ei(k′−k)·R
∫

ds dt e−iβhk′·s e−ik·(βet−s) 1

|t− s| ×

e−α2 s2

e
− |k′−k|2

8 α1 e−i (k′−k)(t−s)eα1|t−s|2/2e−α2 t2

= C
α1α2

π2

(
π

2 α1

)3/2

ei(k′−k)·Re
− |k′−k|2

8 α1

∫
ds dt ei(βhk′+k)·s e−iβek·t 1

|t− s| ×

e−i (k′−k)(t−s)eα1|t−s|2/2 e−α2 (t2+s2) .

We define new variables x = t + s and z = t− s

V = C
α1α2

π2

(
π

2 α1

)3/2

ei(k′−k)·Re
− |k′−k|2

8 α1

∫
dx dz ei(βhk′+k)·[(x−z)/2] ×

e−iβek·[(x+z)/2] 1

|z| e
−i (k′−k)·ze−α1|z|2/2 e−α2 [(x2+z2)/2]

We can complete squares in x and follow the same procedure as before, to obtain

V = C
α1α2

π2

(
π

2 α1

)3/2 (
2π

α2

)3/2

ei(k′−k)·Re−|k
′−k|2/(8 α1) e−[βhk′+(1−βe)k]2/(8α2) ×

∫
dz ei(βhk′+k)·z/2e−iβek·z/2 1

|z| e
−i (k′−k)·ze−(α1+α2)|z|2/2 ,

The use of βh = 1− βe yields

V = Cπ(α1α2)
−1/2 ei(k′−k)·Re−|k

′−k|2/(8 α1) e−βh|k′+k|2/(8α2) ×
∫

dz ei(βhk′+k)·z/2e−iβek·z/2 1

|z| e
−i (k′−k)·ze−(α1+α2)|z|2/2 ,
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and using the definition: K = 1/2(k′ + k) and q = k′ − k

V = Cπ(α1α2)
−1/2 eiq·Re−q2/(8 α1) e−βhK2/(2α2) ×

∫
dz ei(βhK−q)·z 1

|z| e
−(α1+α2)|z|2/2 .

Evaluating the expression in polar coordinates, we arrive at

V = Cπ(α1α2)
−1/2 eiq·Re−q2/(8 α1) e−βhK2/(2α2) ×

2
√

2 π
5
2√

α1 + α2

e
− |βhK−q|2

4 (α1+α2) I

(
0,
|βhK− q|2
4 (α1 + α2)

)

= eiq·R C(α1α2)
−1/2 2

√
2 π

7
2√

α1 + α2

e−q2/(8 α1) e−βhK2/(2α2) ×

e
− |βhK−q|2

4 (α1+α2) I

(
0,
|βhK− q|2
4 (α1 + α2)

)
,

where I is the modified Bessel function.
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Appendix B

The matrix Representation

of the T operator

Using the basis set |sA
z , sB

z , sz〉 we obtain for the spin products sA · s, sB · s, sA · sB

the matrices

sA · s =




1
4

0 0 0 0 0 0 0

0 −1
4

0 0 1
2

0 0 0

0 0 1
4

0 0 0 0 0

0 0 0 −1
4

0 0 1
2

0

0 1
2

0 0 −1
4

0 0 0

0 0 0 0 0 1
4

0 0

0 0 0 1
2

0 0 −1
4

0

0 0 0 0 0 0 0 1
4




(B.1a)
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sB · s =




1
4

0 0 0 0 0 0 0

0 −1
4

1
2

0 0 0 0 0

0 1
2

−1
4

0 0 0 0 0

0 0 0 1
4

0 0 0 0

0 0 0 0 1
4

0 0 0

0 0 0 0 0 −1
4

1
2

0

0 0 0 0 0 1
2

−1
4

0

0 0 0 0 0 0 0 1
4




(B.2a)

sA · sB =




1
4

0 0 0 0 0 0 0

0 1
4

0 0 0 0 0 0

0 0 −1
4

0 1
2

0 0 0

0 0 0 −1
4

0 1
2

0 0

0 0 1
2

0 −1
4

0 0 0

0 0 0 1
2

0 −1
4

0 0

0 0 0 0 0 0 1
4

0

0 0 0 0 0 0 0 1
4




. (B.3a)

By substituting these expressions in ΥA and ΥB and then in Eq. (2.19), we obtain

after matrix inversions and multiplications an expression for

T = (1− F 2
RΥAΥB)−1ΥA[1 + FRΥB] + (A ­ B) .
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The traceless part of this matrix is




β+2α
4

0 0 0 0 0 0 0

0 β−2α
4

α
2

0 α
2

0 0 0

0 α
2

−β
4

0 β
2

0 0 0

0 0 0 −β
4

0 β
2

α
2

0

0 α
2

β
2

0 −β
4

0 0 0

0 0 0 β
2

0 −β
4

α
2

0

0 0 0 α
2

0 α
2

β−2α
4

0

0 0 0 0 0 0 0 β+2α
4




, (B.4)

where α and β can be conveniently expressed as a function of the single impurity T T

and T S operators in Eqs. (2.13) or Eqs. (2.31) as

α =
2(T T − T S)(T T FR + 1)

(T T FR − 1)[FR(T S − T T + 2FRT T T S)− 2]
(B.5a)

β = −α
(T T − T S)FR

(FR(T T − T S + 2FRT T T S)− 2)
, (B.5b)

where we have dropped the {A,B} index since we are considering two identical centers.

Notice that the matrix in Eq. (B.4) can be rewritten as

α(sA + sB) · s + βsA · sB . (B.6)

99





Appendix C

Units and Physical constants

C.1 (Exciton) Rydberg units

In analogy to the Atomic Rydberg system of units, 1s state of a Wannier exciton units

are sought. The starting point consists in choosing ~ = 2 m = e2/2 = 1 The energy

and wave function of the 1s state follows that of the hydrogen atom, with the proper

reduced mass and re-scaled by the dielectric constant ε of the medium.

Ry∗ =
e4µ

2 ε2~2

a∗B =
ε~2

µ e2
,

where µ is the reduced mass of the electron hole system (not to be confused with

the mass m = (me + mh)/2 related to the center of mass motion appearing in the

dispersion law for excitons in Chapters 1, 2, 3). Any other unit may be obtained from

the previous relationships. As examples, we show the units of time and speed

t∗0 =
~

Ry∗

a∗B/t∗0 =
e2

2 ε~
;
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from here, we obtain the speed of light in a medium of index of refraction n,

c[a∗B/t∗0] = c[SI]
e2/2 ε~ .

C.1.1 Mn in CdTe

We use the values of the binding energy and Bohr radius of an exciton in bulk CdTe,

a∗B = 65 Å

Ry∗ = 11 meV .

Constant Value

Plank constant ~ 1
Electric Charge e 1
Mass of exciton m 0.36 me

Impurity separation R (0.4,8) a∗B
Strength of hole interaction ζ −5

Exciton k = 0 energy ~ε 300 Ry∗

Exciton-impurity exchange interaction range ~Λ 0.01 a∗B
Exchange coupling exciton-impurity J 10−4Ry∗a∗2B

Table C.1: Approximate values for the physical constants in excitonic Rydberg units
for Mn deep impurities in CdTe QW.

C.1.2 Si in GaAs

We use the values of the binding energy and Bohr radius of an exciton in bulk GaAs,

a∗B = 125 Å

Ry∗ = 4.4 meV .
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Constant Value

Plank constant ~ 1
Boltzmann constant k 0.02 Ry∗/K

Electric Charge e 1
Speed of light ~c/n 1300 Ry∗a∗B

Index of refraction n 3
Mass of exciton m 0.28 me

Coupling exciton-cavity at k = 0 ~g0 0.4 Ry∗

Impurity separation R > 0.5a∗B
Strength of hole interaction ζ 0
Exciton-cavity detunning ~∆ -0.1 Ry∗

Exciton k = 0 energy ~ε 300 Ry∗

Extracavity energy ~ωL −Ry∗

Exciton-impurity exchange interaction range ~Λ 0.25 a∗B
Polariton-Extracavity detunning ~δ = ωL − Ω0 -0.3 Ry∗

Rabi energy ~℘ −Ry∗

Exchange coupling exciton-impurity J 21Ry∗a∗2B

Table C.2: Approximate values for the physical constants in excitonic Rydberg units.

To calculate the factors that appear in the expressions for Jeff we use,

v0 = 1

φ1s =

√
2

π

1

a∗b
' 0.8 .
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Appendix D

Mean field approximation

First it is worth mentioning that it should always be a mechanism that singles out a

direction along which the spins aligns prior to the ordering. This could be the linear

term in J that contributes an effective magnetic field (as shown in Chapter 2) or an

external magnetic field, etc. For example, the spins become aligned at T > Tc by this

“external” agent, the temperature is then lowered below Tc; if the system is irradiated

by the laser field, and the external agent is eliminated, the spins will remain aligned

as a consequence of ferromagnetic interactions.

To illustrate the procedure, suppose the dynamics is governed by a spin Hamil-

tonian that contains only one type of interaction, say Heisenberg: A
∑

jk Fjks
j · sk.

As said before, there is a preferred direction; take this in the z-axis. Single out an

impurity k, and assume that its neighbors have mean magnetization (spin) m. The

projected Hamiltonian for one impurity k reads

A
∑

j

Fjk sj · sk → A m

(∑
j

Fjk

)
sk

z .
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The thermodynamics follows from the partition function

Z = Tr[e−α sk
z ]

α
.
= β Am

(∑
j

Fjk

)
,

using eigenstates of {s, sz} and the fact that the localized states are s = 1/2,

Z = 2 cosh

(
~α

2

)
.

The magnetization is given by

m =
1

Z
Tr[sk

z e−α sk
z ]

= − ∂

∂α
(ln Zk)

= − ~
Z

sinh

(
~α

2

)
.

For the case α < 0 1, and defining a positive constant γ = ~/2 β A|∑j Fjk|, a tran-

scendental equation for m is found

m =
~
2

tanh (γ m) .

When this equation has more than the trivial m = 0 solution, there is ordering in

the system (macroscopic magnetization). The temperature for which these nonzero

solutions appear is the Curie Tc temperature; this occurs when the tanh has slope

equal to 2/~ at the origin: 1 = ~γ/2 sech2(0) = ~γ/2,

kTc =
A ~2

4

∣∣∣∣∣
∑

j

Fjk

∣∣∣∣∣ .

1The range of physical parameters used for FRP are such that this functions is negative for all
values of its argument. FRP > 0 always.
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Appendix E

Separable potentials

Following Mott [36] consider the case of the scattering of two identical particles, one

localized and restricted to one orbital φ and the other an unbound state M

Ψ(rl, ru) =
1√
2
[φ(rl)M(ru)± φ(ru)M(rl)] . (E.1)

The complete time independent schrödinger equation can be reduced to an equa-

tion for the wave function M(ru) describing the unbound state. Applying the total

Hamiltonian for the system to the wave function Eq. E.1, multiplying by φ(rl) and

integrating in ru reduces the equation to

(52 + k2)M(ru) = U(ru)M(ru)±
∫

K(ru, rl)M(rl)drl (E.2)

K(ru, rl) = φ(ru)φ
∗(rl)[k

2 + λ2 + U(rl, ru)] ,

where λ2 and k2 are the energies of the localized and unbound state respectively;

U(x, y) and U(x) are the complete and integrated Coulomb interactions, respectively.

We are only interested in the exchange part of the interaction, thus we consider the

second term on the r.h.s. of Eq. E.2. It is important to notice that this term enters the

equation in the form of a non-local potential. Moreover, because it is formed by the
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product of well localized state functions φ’s it is short-range. This last fact allows us

to replace K(ru, rl) by a separable kernel.1 On the other hand, the integral of K(ru, rl)

weighted with the product M∗(ru)M(rl) is an exchange integral, say L(k, k′). This

is in complete analogy with our case of excitons and localized states, where the role

of M is played by the exciton wave functions and the exchange integral J(k, k′) is

calculated exactly as L(k, k′). Therefore, if K(ru, rl) is separable in (k, k′), so is the

corresponding exchange integral.

Following the preceding arguments, we assume that the exchange integral Jk,k′

can be well approximated by a separable potential, i.e. Jk,k′ = Jvkvk′ , where v(k) is

a function only on k = |~k|, and J is a constant.

Finally, we note that a non-local separable potential can support a finite number

of bound states. We are particularly interested in the case of a rank 1 potential. In

this situation, the schrödinger equation reads,

−∇2ψ(x)− v(x)

∫
d3x′ v(x′)ψ(x′) = εψ(x) .

After some algebra, we arrive to the following condition that ε must satisfy,

1 =
1

(2π)3

∫
d3q

|v(q)|2
q2 − ε

.

Given that the r.h.s. is a monotonic function of ε, and that bounds states occur only

for negative energies, it is clear that only one bound state can occur. [93]

1When the potential is rotationally invariant, it can be written in terms of partial waves.
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