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ReviewBanburismus and the Brain: Decoding
the Relationship between Sensory
Stimuli, Decisions, and Reward

named after the town of Banbury where they printed
special sheets of paper that allowed them to carry out
the computations that were central to this process. In
the second section, we apply this framework to simple,
two-alternative decisions on response-time perceptual
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Department of Physiology & Biophysics and tasks. We focus on how the critical components of the

theory might be implemented in the brain. Central toRegional Primate Research Center University
of Washington this neural implementation is the relationship between

the rate of reward and the decision rule that determinesSeattle, Washington 98195
how and when to read out the sensory evidence. In
the third section, we summarize recent experimental
findings that support this model.

This article relates a theoretical framework developed
by British codebreakers in World War II to the neural Background: Banburismus at Bletchley Park
computations thought to be responsible for forming To illustrate the framework developed by Turing, con-
categorical decisions about sensory stimuli. In both, sider the following problem encountered by the code-
a weight of evidence is computed and accumulated breakers at Bletchley Park. The physical configuration
to support or oppose the alternative interpretations. of an Enigma machine, which included interchangeable
A decision is reached when the evidence reaches a rotors and a modifiable plugboard, determined which
threshold value. In the codebreaking scheme, the of over a billion billion encoding schemes was being
threshold determined the speed and accuracy of the used at any given time. Even more cunningly, the config-
decision process. Here we propose that in the brain, uration of the machine changed for each character it
the threshold may be controlled by neural circuits that encoded, so that knowing the identity of one encoded
calculate the rate of reward. character would not necessarily reveal the identity of any

other. Fortunately for the codebreakers, the Germans’
procedures for using the machine greatly reduced the

In the early 1940’s, Alan Turing and his colleagues at uncertainty associated with each message. For exam-
Bletchley Park broke the supposedly unbreakable ple, all of the machines in use on a given day were set
Enigma code used by the German navy. They succeeded to very similar configurations at the beginning of each
by finding in the encoded messages the barest hints of message, differing only in the positions of the rotors
evidence to support or refute various hypotheses about (each of three rotors could be set in any of 26 positions,
the encoding scheme that they could exploit to deter- corresponding to 17,576 different schemes). Thus, it was
mine the contents of the message. Their success rested, reasonable to expect that some pairs of the thousands
in part, on a mathematical framework with three critical of messages intercepted in a single day would come
components: a method of quantifying the weight of evi- from machines in exactly (or very nearly) the same state.
dence provided by individual clues toward the alterna- This fact turned out to be essential for the British code-
tive hypotheses under consideration, a method of up- breakers, who realized that identifying these pairs could
dating this quantity given multiple pieces of evidence, help them to infer other details about the state of the
and a decision rule to determine when the evidence Enigma machines on that day (specifically, the identity
was sufficient to render a judgment on the most likely of the first and sometimes second rotor; for more details,
hypothesis (Good, 1979). This framework has been see http://www.codesandciphers.org.uk by Tony Sales;
shown to be of general use for making decisions about MacKay, 2002, currently available at http://www.inference.
sequentially sampled data (Wald, 1947). Recent prog- phy.cam.ac.uk/mackay/itprnn; Hodges, 2000). They there-
ress in neurobiology suggests that it may also offer an fore developed a set of methods for determining whether
account of decisions about a different kind of encoded or not two different messages were encoded by ma-
message: the representation of sensory stimuli in the chines in the same configuration (that is, whether they
brain. Our goal in this manuscript is to relate this theoret- were encoded by the same scheme).
ical framework to the operations that neurons perform Formally, the problem encountered by the codebreak-
to generate categorical decisions about sensory stimuli. ers came down to deciding which hypothesis—h0, that
A dividend of this framework is a prescription for how the encoding scheme for a given pair of messages was
the representation of reward—more specifically, the rate different, versus h1, that the encoding scheme was the
of reward—is incorporated into neural computations same—was more probable, given the weight of evidence
that underlie decision formation. from the messages themselves. The key was in recog-

In the first section, below, we review Turing’s theoreti- nizing that if h1 were true, the encoded messages would
cal framework and its role in cracking the Enigma code. not be quite as random as they were otherwise. This
We describe how the codebreakers implemented this lack of randomness would be evident in pairs of charac-
framework in a process that they called “Banburismus,” ters, one from each of the two messages. Specifically,

they knew that the output of a given Enigma machine
consisted of a roughly uniform distribution of charac-3 Correspondence: jigold@mail.med.upenn.edu
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ters—a great virtue of the machine to its users. More- kind of analysis, decisions in Turing’s Banburismus
scheme were made by considering how much weightover, two machines that were in different configurations

(i.e., h0) had equally random outputs. Such machines, of evidence they needed to collect (in the form of
matched and non-matched pairs) to be confident thatencoding two different messages, thus produced pairs

of characters that would be expected to match each one hypothesis has been sufficiently proven. Specifi-
cally, they considered two “barriers” to bookend theother only as often as two letters picked independently

from uniform distributions of all 26 letters, which is equal process of accumulating decibans; one was a positive
number describing the weight of evidence needed toto a rate of 1/26. However, if two machines happened

to be in the same configuration (h1), the situation is quite decide h1, the other a negative number describing the
weight of evidence needed to decide h0. When thedifferent. In this case, even when encoding different

messages, the two machines would produce pairs of weight of evidence crossed either barrier, the decision
was made. A similar formulation for statistical applica-characters that matched each other if (and only if) the

letters they encoded also matched each other. There- tions was developed independently by Wald shortly after
the war (Wald, 1947).fore, the expected “match rate” from the encoded mes-

sages would be the same as that from the unencoded As Turing was aware, this formulation had two distinct
advantages. First, it had a definite stopping time thatmessages, which is equal to �1/13 in ordinary German

text. In other words, the likelihood of getting a match instructed the codebreaking team when to stop working
on one pair of ciphers and turn their attention to another.(m ) given h1, denoted Pr(m|h1), was greater than the

likelihood of getting a match given h0, denoted Pr(m|h0). Second, it predicted the accuracy of the decision, as
follows. By Bayes’ theorem, the weight of evidence canAccordingly, Turing defined the weight of evidence pro-

vided by a match (or, similarly, a non-match) in favor of h1 be related to several other probabilities:
over h0 as the logarithm of the ratio of these likelihoods:

log �Pr(h1|m)
Pr(h0|m)� � log �Pr(h1)

Pr(h0)
� � weight of evidence, (2)

Weight of evidence � log �Pr(m|h1)
Pr(m|h0)

� (1)
where Pr(h0|m) and Pr(h1|m) are called the posterior
probabilities and describe the probability of each hy-

As a logarithm of probabilities, this quantity is measured pothesis after all the evidence has been sampled, and
in units that depend on the base of the logarithm (Good, Pr(h0) and Pr(h1) are called the prior probabilities and
1979). In Banburismus, logarithms of base 10 were used describe the probability of each hypothesis before any
and were called “bans” (the Banburismus process actu- evidence is sampled. If, for example, there is an equal
ally computed weights of evidence in units of 1/10th of prior probability of either hypothesis (which was the
a ban—a deciban—that the codebreakers considered assumption made in Banburismus), then the weight of
to be “about the smallest weight of evidence that is evidence is equal to the logarithm of the ratio of the
directly perceptible to human intuition”; Good, 1979). posterior probabilities. In this case, for a given weight
Likewise, logarithms of base e were called “natural of evidence (e.g., the stopping point in Banburismus):
bans.” It is worth noting that other, closely related quan-
tities that are based on the logarithm of probabilities log �Pr(h1|m)

Pr(h0|m)� � weight of evidence � B (3)
can be measured in the same units. Thus, “surprisal”
and “mutual information” can be expressed in bans but

where B is a constant that represents the barrier heightare more familiar in units that use a logarithm of base
in favor of h1. For two mutually exclusive hypotheses2: “bits.”
(Pr(h0|m) � 1 � Pr(h1|m) or, equivalently, Pr(h0) � 1 �A quantity based on the logarithm of probabilities has
Pr(h1)), and assuming the weight of evidence is ex-another useful feature: additivity. Writing over 100 years
pressed in bans, this rearranges to:ago about the degree of “belief” in a hypothesis that

is provided by the evidence, Pierce noted that “two
Pr(h1|m) �

1
1 � 10�B

. (4)arguments which are entirely independent, neither
weakening nor strengthening each other, ought, when
they concur, to produce a belief equal to the sum of the Equation 4 indicates that the posterior probability of h1

depends only on the value of the barrier, B, and not onintensities of belief which either would produce sepa-
rately” (Peirce, 1878). Equation 1 fulfills this requirement, the particular samples of evidence, m, encountered. In

other words, as long as the weight of evidence reachessuch that the weight of evidence provided by two inde-
pendent sources is equal to the sum of the weights of B bans, the probability that h1 is correct is a fixed value.

Thus, in Banburismus, setting the height of the barrierevidence that they provide individually. Thus, for Turing,
the overall weight of evidence for h0 or h1 that was pro- that determined the weight of evidence to accumulate

before committing to a decision was equivalent to set-vided by all the corresponding pairs of letters in two
given messages could be computed by counting the ting an expected level of performance. For example,

accumulating matches and non-matches until thenumber of matches and non-matches, then simply add-
ing up the weight of evidence provided by each. weight of evidence reached 2 bans would provide ap-

proximately 100 to 1 odds that the decision was correct.This tally of matches and non-matches was a form
of sequential analysis, in which the overall weight of Of course, the greater the weight of evidence required,

the more time the codebreaker must spend on eachevidence bearing on the hypotheses under consider-
ation is updated given each new piece of evidence (in message. It is this critical feature of the decision rule,

explicitly linking the interpretation of the evidence to thethis case, the next pair of letters). Consistent with this
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speed and accuracy of the decision process, that turns h1) is the likelihood of obtaining that response given the
stimulus: Pr(response|h1). Thus, with two such curves,out to have important implications for how the brain

might implement a kind of Banburismus to form deci- one generated using h1 and the other generated using
h0, it is possible to compute the weight of evidence forsions about sensory stimuli, as we discuss in the next

section. any given neural response, which is log(Pr(response|h1)/
Pr(response|h0)). However, this cumbersome method
seems unlikely to be implemented in the brain, whichImplementation: Banburismus
would need access to a representation of the completePerformed by Neurons
distribution of neural responses to every stimulus en-In this section, we explore in detail the relationship be-
countered.tween Banburismus and an application for which it ap-

As we have shown previously, there is an easier waypears to be particularly well suited: decisions about sen-
for the brain to compute the weight of evidence (Goldsory stimuli. We focus on how the brain might implement
and Shadlen, 2001): it can use the difference in spikethe key components of this process, using operations
rates from two neurons (or two pools of neurons). Forthat neurons perform. We address three specific ques-
example, consider a pair of MT neurons that representtions: (1) How does the activity of sensory neurons relate
the evidence corresponding to the two alternativeto Turing’s “weight of evidence”? (2) How does the brain
hypotheses on the direction-discrimination task. For amake use of all of the sensory evidence to which it has
decision between upward and downward motion, thisaccess? (3) What is the decision rule based on this
“neuron/antineuron” pair consists of an upward-sensi-evidence?
tive MT neuron (its response, x, tends to be larger if h1We consider these questions in the context of deci-
is true) and a downward-sensitive neuron (its response,sions between two alternatives (e.g., Is it present or not?
y, tends to be larger if h0 is true). As shown in FigureDoes it match or not? Which is larger?), because most
1, the weight of evidence (computed in natural bans)psychophysical and electrophysiological studies to date
provided by these two responses together is propor-address these kinds of decisions (Parker and Newsome,
tional to their difference. Thus, a positive value of (x �1998; Schall, 2001). We place particular emphasis on
y ) implies h1 was more likely; a negative value impliesdecisions about the direction of dynamic, random dots,
h0 was more likely.which have been studied extensively in behavioral ex-

This simple neural computation of the weight of evi-periments in humans (Blake and Hiris, 1993; Braddick,
dence is robust with respect to several potentially com-1995; Morgan and Ward, 1980; Watamaniuk and Sekuler,
plicating factors. The proportional relationship between1992) and combined behavioral and electrophysiologi-
(x � y ) and the weight of evidence does not depend oncal experiments in monkeys (reviewed in Albright and
the assumption of normality (which is illustrated in FigureStoner, 1995; Britten, 2003; Orban, 1997). To formulate
1). For example, it also holds for the exponential andthis decision as above, the problem is to decide between
Poisson distributions (Gold and Shadlen, 2001). Thish1, that motion was (say) upward, versus h0, that motion
relationship holds even if the responses x and y are notwas downward. It is known from recording, microstimu-
independent. For example, assume a bivariate normallation, and inactivation studies that the neurons in extra-
distribution with equal variances for x and y under h1striate areas MT and MST of the macaque represent the
(and assume opponency, giving an analogous expres-motion information that the monkey uses to form its
sion under h0):direction decision (Britten et al., 1992; Celebrini and

Newsome, 1994, 1995; Newsome and Pare, 1988; Pas-
ternak and Merigan, 1994; Salzman et al., 1992; Salzman Pr(x,y|h1) �

e�
Q
2

2��2√1 � �2
, (5)

and Newsome, 1994). Thus, neural activity in these areas
represents the encoded, noisy evidence that the brain

wheremust interpret to decide which hypothesis was most
probable.

Q �
1

1 � �2 �(x � �1)2 � (y � �0)2 � 2�(x � �1)(y � �0)
�2 �,Relating Sensory Signals to Turing’s

Weight of Evidence
�2 is the common variance, �1 and �0 are the means ofIt is common to consider categorical decisions about
x and y, respectively, under h1, and � is the covariancenoisy sensory signals by formulating quantities like Tu-
between x and y. Solving for the weight of evidence (inring’s weight of evidence that are monotonically related
units of natural bans) for h1 versus h0 yields:to the likelihood ratio (Green and Swets, 1966). Briefly,

the response of a sensory neuron—in this case, a rate
measured in spikes per second—can be thought of as weight of evidence � log�Pr(x,y|h1)

Pr(x,y|h0)
�

a random variable: for a given set of stimulus conditions
(e.g., upward motion), it has an expected value but can

�
(�1 � �0)

�2
·

1
(1 � �)

· (x � y) (6)vary considerably from moment-to-moment or trial-to-
trial. Thus, the neural response can take on numerous
values, each with a certain probability. These probabili- Note that numerous factors could cause nonzero values

of �, including intrinsic factors like attention and arousalties can be estimated by taking repeated measurements
of the response of a neuron (or group of neurons) to a and extrinsic factors like the light level or other variations

in the stimulus. For example, for the motion-discrimina-stimulus and generating a curve describing the distribu-
tion of responses to that stimulus. The height of such tion task, motion in a given direction is typically pre-

sented at a variety of strengths (i.e., h0 and h1 eacha curve at a given spike rate for a given stimulus (e.g.,
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Figure 1. Theoretical Relationship between Neural Responses and Turing’s Weight of Evidence

The panels on the left depict hypothetical distributions of responses from a pair of sensory neurons when h0 or h1 is true, as indicated. For
example, the upper curve could represent the responses of a direction-selective neuron that prefers upward motion. The lower curve would
then represent the responses of the opposing “antineuron” that prefers downward motion. Here we make the simplifying assumption that the
responses are normally distributed with mean values of �0 and �1 and equal variances (�2 ). Note that other forms of the distribution, including
the exponential and Poisson, lead to similar results (Gold and Shadlen, 2001). The panel on the right shows Turing’s weight of evidence
computed from these responses plotted as a function of their difference; note the linear relationship.

encompass several different stimuli of different motion total weight of evidence at time t � k �
t

0
��(	)�y(	)�d	(7)

strengths). Because x and y both depend on motion
strength, they are not independent: a strong stimulus where k is a constant. Note that if k does not equal the

constant of proportionality in Equation 6, then the valuethat would tend to produce a relatively large value of x
would also tend to produce a relatively small value of that is computed is merely proportional to the weight

of evidence. Regardless of the value of k, however, they. Equation 6 indicates that such a dependence between
x and y does not alter the fact that the difference (x � algorithm for updating the weight of evidence is the

same: accumulate the difference in spike rates overy ) is proportional to the weight of evidence.
Thus, under a variety of assumptions, the weight of time. As illustrated in Figure 2, this temporally accumu-

lating evidence can be thought of as simply a singleevidence can be computed by taking a simple difference
between the responses of two opposing neurons. The piece of evidence that lends more weight to the decision

as more time passes.obvious advantage of this scheme is the simplicity of
the computation. A potential pitfall is that it appears to Thus, as in Turing’s scheme, an accumulated differ-

ence of opposing sensory responses in the brain corre-require a constant of proportionality that depends on
the parameters of the distributions describing the re- sponds to the weight of evidence that can distinguish

between the alternative hypotheses. For equal priorsponses; e.g., �0, �1, �, and � in Equation 6. However, as
we discuss in the following sections, combining multiple probabilities, the value of this decision variable is partic-

ularly easy to interpret: zero implies that both hypothe-pieces of evidence does not necessarily require the con-
stant of proportionality to be known. Moreover, the ses are equally probable, an increasingly positive value

implies a growing probability that one of the hypotheseschoice of an appropriate decision rule can, in principle,
bypass the need to scale the weight of evidence appro- is correct, and an increasingly negative value implies

the alternative (Equation 2). It should be noted that thepriately.
Making Use of All of the Evidence decision variable can, in principle, take into account

many other factors and still distinguish between theIn Banburismus, multiple pieces of evidence—the
matched and non-matched pairs of characters from the hypotheses in such a straightforward manner. These

factors include sensory evidence from multiple sources,two messages—were combined by adding together the
weight of evidence computed from each pair individu- unequal prior probabilities, and anticipated costs and

benefits associated with the potential outcomes (Gra-ally. The resulting quantity, called a decision variable,
was the sole factor used to make the decision. Recall ham, 1989; Green and Swets, 1966). How these compli-

cated and in some cases subjective factors are com-that a critical advantage of this computation was that
the value of the decision variable determined the level puted in the brain is beyond the scope of this article.

Instead, we will simply assume that the decision variableof performance. In this section, we describe how the
brain might compute a similarly useful decision variable. reflects the posterior probabilities as if it were computed

as an accumulation of evidence from a single sourceConsider a case in which the sensory evidence comes
from the ongoing responses from the neuron/antineuron and equal prior probabilities. As we describe in the next

section, a particularly useful consequence of this as-pair. A single “piece” of evidence can be thought of as
representing the difference in spike rates at a given sumption is that it implies a close relationship between

the decision rule and the rate of reward.moment in time. As more time goes on, more evidence
is available. If the responses are independent and identi- The Decision Rule

Here we consider a decision rule that places barrierscally distributed over time, then accumulating the evi-
dence corresponds to a temporal integration of the dif- on the value of the decision variable. In Banburismus,

the height of the barriers represented a trade-off be-ference in spike rates:
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Figure 2. Decision Model

The weight evidence in favor of h1 over h0 is the accumulated difference between responses of a neuron that prefers h1 and an antineuron
that prefers h0 (see Equation 7). The curves depicted are computed under the condition that h1 is true. The thin, wavy line depicts a simulated
trajectory that represents how the weight of evidence might grow on a single trial as a function of time. The dashed line depicts the expectation
(mean value) of this trajectory at each time point. Note that changing the constant of proportionality used to relate the accumulated difference
to the weight of evidence (see text for details) simply scales the ordinate. The two insets illustrate the correspondence between the weight
of evidence and the underlying neuron and antineuron responses at two time points, viewed as hypothetical (normal, equivariate) probability
density functions. These functions describe the distributions of the total number of spikes generated by the neuron and antineuron up to that
time point, given that h1 is true. If the weight of evidence reaches the barrier at B, the process is stopped and a decision is rendered for h1.
This is the expected outcome when h1 is true. If the weight of evidence reaches �B (not shown), a decision for h0 is issued in error.

tween accuracy and speed. Higher barriers meant that 1968; Link and Heath, 1975; Luce, 1986; Ratcliff and
Rouder, 1998; Stone, 1960; Usher and McClelland, 2001;more evidence was accumulated, which, in turn, implied

a greater probability of getting the correct answer. How- Vickers, 1979).
This problem is analogous to one-dimensionalever, accumulating more evidence took more of the co-

debreakers’ valuable time. In the brain, a similar trade- Brownian motion to a pair of barriers (Link, 1992; Ratcliff
and Rouder, 1998). The means of the normal distribu-off occurs. We quantify this trade-off for a particular

set of assumptions and show that the barrier can be tions represent the drift rates, �i (where the subscript i
reflects the particular motion strength). The psychomet-adjusted to maximize a quantity like the rate of reward

that depends on both accuracy and speed. ric function describing the probability of correctly reach-
ing either the “up” or “down” barrier on a given trial is:To illustrate this idea, we will focus on a reaction-time

version of the direction-discrimination task, in which the
subject is allowed to control the amount of time to make pi �

1
1 � e�2B|�i|

, (8)
a response (Roitman and Shadlen, 2002). The sensory
evidence is a difference signal from visual cortex. We

which, like Equation 4, is the logistic function (here usingassume that the difference is a random variable that is
base e ). Unlike in Equation 4, however, the probabilitydrawn from a normal distribution with a variance of one
correct in this function depends on not just the barrierand a mean value that depends on the strength of motion
height B, but also a coherence-dependent term, �i. This(measured as a percentage of coherently moving dots,
extra term is to account for the coherence-dependentwhich typically takes values of 0, 3.2, 6.4, 12.8, 25.6,
scale factor that relates the weight of evidence to theand 51.2). Upward and downward motion strengths are
difference signal that reaches B (Equation 6). Specifi-assigned positive and negative means, respectively. We
cally, a fixed B corresponds to a smaller weight of evi-also assume that there are equal prior probabilities of
dence for lower coherences (i.e., weaker signals) thanupward and downward motion (that is, both are pre-
for higher coherences (stronger signals). The mean timesented with equal frequency). The decision process is
to reach the barrier is:simply to accumulate the difference (in 1 ms steps) until

it reaches a threshold of evidence, 
B. If the evidence
reaches �B, the decision is upward (see Figure 2); if it ti �

B
|�i|

tanh(B|�i|), (9)
reaches �B, the decision is downward. A class of mod-
els known as sequential sampling models share many where
of these features and have been particularly successful
at explaining accuracy and response times on this kind

lim
�→0

(t) � B2.of task (Audley and Pike, 1965; LaBerge, 1962; Laming,
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Figure 3. Predicted Effect of Barrier Height
on Speed, Accuracy, and Reward Rate in a
Direction-Discrimination Task

The calculations assume that an experiment
uses six levels of difficulty (see text for de-
tails). (A) Accuracy. The probability of a cor-
rect choice averaged across all six motion
strengths is plotted as a function of barrier
height. A higher barrier ensures that deci-
sions are based on a larger weight of evi-
dence and thus are more accurate on aver-
age. The dashed vertical line is the barrier
height associated with the maximum rate of
reward. (B) Reward rate. The reward rate de-
pends on the decision time plus fixed times
in and between trials plus a “time out” for an
error. A maximum reward rate occurs when
the decision process is sufficiently accurate
but not overly time consuming. We suggest
that the brain adjusts the barrier height to
achieve the maximum rate of reward. (C) Psy-
chometric function using the optimal barrier
height. The probability of a correct response
is plotted for each motion strength. By defini-
tion, the performance on the 0% coherent

motion stimulus is at chance (not shown). The line is a best fitting cumulative Weibull, which is a reasonable approximation to the logistic
function (Equation 8). (D) Response times using the optimal barrier height. The time from stimulus onset until behavioral response is plotted
at each of the motion strengths. The response time is decision time (from Equation 9) plus 250 ms.

Note that the average decision time also depends on B that there are three other intervals, each of a fixed dura-
tion: the non-decision time tfix on each presentation (e.g.,and the particular list of motion strengths chosen by the

experimenter. For details of these derivations, refer to visual latencies and motor preparation), equal to �250
ms; the time between trials tITI � �1 s; and a penaltyLink (1992) and Ross (1983).

The critical question is how the brain sets the barrier time added for errors tpenalty � �2 s. Of course, the values
are open to debate and even experimental manipulation.height. Equations 8 and 9 quantify for this decision pro-

cess the trade-off evident in Banburismus. A fixed bar- Exploiting a well-known theoretical result that the deci-
sion time on error trials is the same as on correct trialsrier height corresponds to a fixed level of performance.

Raising (or lowering) the barrier raises (lowers) perfor- in this “diffusion-to-barrier” model (Luce, 1986), the av-
erage rate of reward is given by:mance and increases (decreases) the mean time to

reach a decision. This trade-off between accuracy and
time is inherent to this kind of decision rule and therefore r � p�1N �

N

i�1
pi(ti � tfix � tITI) �

is likely to be central to the neural mechanisms responsi-
ble for controlling the barrier. We suggest that these

(1 � pi)(ti � tfix � tITI � tpenalty)�
�1

(10)mechanisms involve maximizing the overall rate of re-
ward in a given experiment. These equations allow us
to quantify this rate, by calculating both the overall per- Thus, the rate of reward r depends on the probability

of a correct response and the average time per trial,formance and the amount of time per trial.
Overall performance depends on the probability of which, in turn, depend on the particular list of motion

strengths as well as the barrier height.crossing the correct barrier, pi, at each motion strength,
ci. To calculate each pi, we assume that the difference Unlike overall performance, the rate of reward is not

a monotonic function of barrier height (Figure 3B). If thefrom upward and downward motion sensors—and thus
the drift rate �—is a linear function of motion strength barrier height is too low, then there are too many errors,

which do not yield a reward and add additional time. If(Britten et al., 1993). For illustration purposes (Figure 3),
we have chosen �i � 0.4ci, which leads to a psychomet- the barrier height is too high, then time is wasted. The

key insight is that the subject can maximize the rate ofric function that is qualitatively similar to data from mon-
keys (Roitman and Shadlen, 2002) and humans. For sim- reward by setting B to the value shown by the vertical

dashed line. This level determines the psychometric andplicity, we assume that accuracy is the same for upward
or downward motion, and that all six motion strengths response-time functions shown in Figures 3C and 3D.

Our goal here is not to compare these functions to dataare shown with equal frequency. In this case, the overall
performance is p � Mean[pi], which is depicted in Figure (although they appear to be qualitatively similar; see,

for example, Roitman and Shadlen, 2002) but to expose3A as a monotonically increasing function of the barrier
height B. the relationship between the representation of reward

and decision making.Given the overall accuracy, determining the rate of
reward requires calculating the amount of time per trial. How the brain might go about adjusting the level of

the barrier, B, is an open question. In principle, thisThis is the decision time, ti, plus several other intervals.
For simplicity in the following calculations, we assume adjustment could be accomplished by a process of trial-
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and-error, in which the barrier is raised and lowered until
the maximum rate of reward is achieved. Interestingly, in
this case, the constant of proportionality that relates the
accumulated difference (x � y) to the weight of evidence
is not needed to find the barrier height that leads to the
maximum rate of reward. That information is not lost,
however: once the barrier height is fixed, it corresponds
to a particular level of overall performance and thus can
be expressed in units of the weight of evidence, such
as natural bans. Note that this quantity is not the weight
of evidence that would be calculated based on knowl-
edge of the stimulus motion strength and the associated
sensory response distributions because that informa-
tion would lead to perfect performance at all motion
strengths. Rather, it is the weight of evidence that corre-
sponds to a fixed level of uncertainty across all stimulus
strengths in an experiment (this quantity will tend to
overestimate the evidence from weak stimuli and under-
estimate the evidence from strong stimuli). Accordingly,
the evidence that accumulates during a trial can be
interpreted as a fraction of this quantity and thus in units
of natural bans—even when the scaling between the
decision variable and the weight of evidence is not
known (e.g., if the brain does not know the shapes of
the sensory response distributions).

To summarize, we have described a decision variable
Figure 4. Banburismus in the Brain?based on equal prior probabilities and a scaled version
Responses from neurons in the lateral intraparietal area (LIP) of theof the weight of evidence. A decision rule that places
monkey during a reaction-time direction-discrimination task. The leftpositive and negative boundaries on this variable leads
side shows responses averaged from a population of LIP neuronsto a fixed percentage of correct responses and pre-
aligned to the onset of the motion stimulus. After an initial dip, thedictable decision times. Raising the barriers improves
responses recover and soon after increase in a roughly linear fashion

performance but slows down the decision process. with a slope that is approximately proportional to the motion
Lowering the barriers does the opposite, degrading per- strength. These coherence-dependent responses are thought to

represent the accumulated weight of evidence in favor of one direc-formance as it speeds up. A measurement like the overall
tion of motion. The right side shows the LIP responses aligned torate of reward is sensitive to this trade-off between accu-
the beginning of the monkey’s eye movement. When the responseracy and speed and thus could, in principle, be used to
reaches a value of �65 spikes/s, the monkey is committed to aadjust the barrier height in the brain.
decision, which is communicated by the eye movement �80 ms
later. Graph is modified from Roitman and Shadlen (2002), with
permission.Neurophysiology: Banburismus in the Brain

In this section, we briefly review experimental evidence
supporting the idea that a neural implementation of a
form of Banburismus is responsible for generating cate- decision. Performance accuracy on this task was similar

to that found on fixed-duration versions of the task.gorical decisions about sensory stimuli. We focus first
on a recent study of neural activity in the lateral intrapa- Response times were, as expected, inversely related to

accuracy: more difficult (lower motion strength) trialsrietal area (LIP) measured during a reaction-time version
of the direction-discrimination task (Roitman and Shad- took longer than less difficult trials. Correlates of this

motion strength- and time-dependent decision processlen, 2002). Results from that study provide the clearest
example to date of neural mechanisms that appear to were found in the activity of single neurons in area LIP.

In a given experiment, they recorded from an LIP neuroncorrespond to the key features of Banburismus, includ-
ing the accumulation of sensory evidence to a threshold and arranged the task so that one of the two choice

targets was located in that neuron’s response field. Theyvalue. We then consider the general properties of neu-
rons that may implement a process like Banburismus then sorted trials in terms of whether the monkey’s eye-

movement response was into or out of the neuron’sto form perceptual decisions.
The study by Roitman and Shadlen (2002) adds to a response field. They found that when the monkey cor-

rectly made an eye movement into the neuron’s re-growing body of work that addresses how the brain
transforms motion information into a categorical direc- sponse field, its activity (measured in spikes/s) gradually

built up while the monkey was viewing the dots andtion decision (Gold and Shadlen, 2000; Horwitz and New-
some, 1999; Kim and Shadlen, 1999; Shadlen et al., 1996; forming its decision (Figure 4). This build-up depended

on motion strength: more difficult trials correspondedShadlen and Newsome, 2001). A distinguishing feature
of their study was the use of a response-time version to a slower build-up than less difficult trials. In all cases,

however, the build-up appeared to progress until reach-of the direction-discrimination task, in which the monkey
was trained to indicate its judgment of direction by mak- ing a fixed value, at which point the monkey made its

eye-movement response.ing an eye-movement response as soon as it formed its
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Several aspects of these results are closely related may help to implement a process like Banburismus.
The first property is persistent activity, which may be ato Banburismus. First, LIP responses during motion

viewing, like those measured in other brain regions like hallmark of an ability to accumulate over time the salient
information needed to form the decision variable.the frontal eye field (FEF; Kim and Shadlen, 1999) and

the superior colliculus (Horwitz and Newsome, 1999), Among the many locations in the brain known to carry
persistent activity are frontal and parietal associationappear to represent the “read-out” of motion activity

represented in areas MT and MST. Computational mod- areas of cortex (Goldman-Rakic, 1995; Snyder et al.,
2000). In these regions, the persistent activity appearsels suggest that this read-out involves taking the differ-

ence from opposing pools of motion sensors (M.E. Ma- to be closely related to the formation of categorical
decisions. For example, neurons in both LIP and thezurek and M.N. Shadlen, submitted; Shadlen et al.,

1996); i.e., computing a form of Turing’s weight of evi- prefrontal cortex that exhibit sustained activity through
a delay period on a visually guided saccade task aredence. Second, LIP activity appears to represent the

integration over time of these motion signals. This inte- exactly those neurons that appear to be involved in
forming the decision on the direction-discrimination taskgration can be thought of as updating the overall weight

of evidence provided by the dynamic sensory signals (Kim and Shadlen, 1999; Roitman and Shadlen, 2002).
Likewise, the activity of some neurons in the FEF per-(Equation 7). A transformed version of this accumulating

weight of evidence also appears to be represented in sists throughout a delay period between the appearance
of a visual target and the initiation of an eye movementsignals related to the preparation of the oculomotor re-

sponse itself (Gold and Shadlen, 2000). Third, LIP activity to that target. This activity can represent the selection
of the target among distractors and the preparation ofduring motion viewing appears to reach a barrier height

that, in principle, may be related to the weight of evi- the eye-movement response (Bichot and Schall, 1999).
Additionally, in some cases the initiation of this kind ofdence required to make the decision and execute the

appropriate eye-movement response. visually guided eye movement appears to be tied to FEF
activity reaching a threshold level (Hanes and Schall,These results exemplify what appears to be a general

property of neurons involved in the formation of percep- 1996).
The second property of these circuits is that theytual decisions: the ability to link sensory evidence to

motor intention. That is, there seems to be a close rela- appear to be sensitive to psychological factors that can
affect the underlying decision variable. A particularlytionship in the brain between forming a categorical deci-

sion and planning behavior. Neurons that form categori- compelling example comes from area LIP, where both
the prior probability of getting a reward and the expectedcal decisions accumulate sensory (and other) evidence

that bears on hypotheses. If, as in Banburismus, the magnitude of the reward have been shown to modulate
neural activity related to a visually guided saccade taskevidence is accumulated to a threshold value, then

reaching that value implies that the decision process (Platt and Glimcher, 1999). Prior probabilities can simi-
larly affect the activity of neurons in the superior collicu-is over and the brain is committed to a proposition.

Typically, the proposition is linked to some behavior that lus (Basso and Wurtz, 1998; Dorris and Munoz, 1998).
In addition, regions of the lateral prefrontal cortex andis then permitted to ensue. Thus, it is convenient to

think about the threshold for commitment as a shift from the orbitofrontal cortex have been shown to represent
information related to the value and probability of ansensory analysis to behavioral intention. For this reason,

it is natural to consider the process of accumulating anticipated reward in the context of sensory-motor
tasks (Hikosaka and Watanabe, 2000; Leon and Shad-evidence to threshold in terms similar to sensorimotor

integration. For example, the brain regions that appear len, 1999; Tremblay and Schultz, 1999, 2000; Watanabe,
1996). Mechanisms responsible for shifting selective at-to represent the developing direction decision on the

motion-discrimination task—including area LIP, the tention may also help to shape the decision variable,
possibly by controlling the scale factor that determinesFEF, and the superior colliculus—are known also to play

a role in preparing the associated eye-movement re- the weight of evidence provided by a given set of sen-
sory neurons. Indeed, attentional modulation is a centralsponse (Schall, 1991).

It should be emphasized that this idea about the role feature of sensory-motor transformation signals in asso-
ciation areas of cortex (Colby and Goldberg, 1999; Desi-of action-oriented circuits in decision formation does

not imply that decisions must be coupled with overt mone and Duncan, 1995).
The third property suggested by the framework webehavioral responses. At least some of these circuits

may be able to interpret sensory information in a more have presented is that decision-making circuits in the
brain are likely to access information about accuracygeneral, “pragmatic” framework that includes represen-

tations of potential or deferred actions (Jeannerod, and the rate of reward. Consistent with this idea, psy-
chophysical studies in both humans (Johnstone and Al-1994; Rizzolatti et al., 1994). For example, neural signals

related to sensory-motor transformations that involve sop, 2000) and pigeons (McCarthy and Davidson, 1984)
suggest that reward schedules can affect the decisiondelayed actions, multiple potential actions, or complex

behavioral rules are found in certain areas of the prefron- rule on simple perceptual tasks (Sternberg, 2001). Where
this occurs in the brain is unknown, although recenttal cortex (Murray et al., 2000; Wallis et al., 2001). These

kinds of neurons may prove central to the ability to form studies suggest several possible candidates (for a re-
view, see Schultz, 2000). For example, the supplemen-categorical decisions about sensory stimuli across a

host of behavioral contexts. tary eye field appears to represent an evaluation of per-
formance on sensory-motor tasks, including whether aIn addition to representing the transformation of sen-

sory information into intention, many of these action- task was completed successfully and whether a reward
was obtained (Stuphorn et al., 2000). Neurons in a regionoriented circuits possess several other properties that



Review
307

cal sensitivity to motion signals in extrastriate area MST of theof the basal ganglia called the caudate reflect an antici-
macaque monkey. J. Neurosci. 14, 4109–4124.pation of reward in a manner that may be linked to the
Celebrini, S., and Newsome, W.T. (1995). Microstimulation of extra-decision to make a particular eye movement (Lauwere-
striate area MST influences performance on a direction discrimina-yns et al., 2002). Additionally, a quantity resembling the
tion task. J. Neurophysiol. 73, 437–448.

anticipated rate of reward has been reported in neurons
Colby, C.L., and Goldberg, M.E. (1999). Space and attention in pari-in the anterior cingulate cortex of monkeys performing
etal cortex. Annu. Rev. Neurosci. 22, 319–349.

a visual discrimination task (Shidara and Richmond,
Desimone, R., and Duncan, J. (1995). Neural mechanisms of selec-

2002). Of course, how these or other reward-related tive visual attention. Annu. Rev. Neurosci. 18, 193–222.
signals might serve to adjust the barrier height in the

Dorris, M.C., and Munoz, D.P. (1998). Saccadic probability influ-
decision process (see Figures 2 and 3) is far from clear. ences motor preparation signals and time to saccadic initiation. J.

Thus, an implementation of Banburismus in the brain Neurosci. 18, 7015–7026.
to form decisions about sensory stimuli is likely to de- Gold, J.I., and Shadlen, M.N. (2000). Representation of a perceptual
pend on neurons with several characteristics. These decision in developing oculomotor commands. Nature 404,

390–394.characteristics include involvement in the control of be-
Gold, J.I., and Shadlen, M.N. (2001). Neural computations that un-havior (the preparation for action, the control of intention
derlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16.and attention, the ability to invoke more complex behav-
Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neu-ioral rules); a capacity for persistent activity or temporal
ron 14, 477–485.integration; sensitivity to a host of factors like sensory
Good, I.J. (1979). Studies in the history of probability and statistics.evidence, prior probabilities, and anticipated costs and
XXXVII. A.M. Turing’s statistical work in World War II. Biometrikabenefits that may be incorporated into a decision vari-
66, 393–396.able; and access to information related to an evaluation
Graham, N.V.S. (1989). Visual Pattern Analyzers (Oxford: Oxford Uni-of performance. As we have discussed, neurons with
versity Press).

some of these characteristics appear to be capable of
Green, D.M., and Swets, J.A. (1966). Signal Detection Theory and

forming decisions in simple, two-alternative forced- Psychophysics (New York: Wiley).
choice tasks. However, their role in a wider variety of

Hanes, D.P., and Schall, J.D. (1996). Neural control of voluntary
tasks, as well as their sensitivity to changes in the ani- movement initiation. Science 274, 427–430.
mal’s reward schedule, as we have proposed, have yet Hikosaka, K., and Watanabe, M. (2000). Delay activity of orbital
to be established. Indeed, whether real neurons in the and lateral prefrontal neurons of the monkey varying with different
brain implement a form of Banburismus to form deci- rewards. Cereb. Cortex 10, 263–271.
sions about sensory stimuli remains an open question. Hodges, A. (2000). Alan Turing: The Enigma (New York: Walker Pub-
Hopefully, enough bans of evidence will be obtained lishing Company, Inc.).

in this active area of research to provide a rewarding Horwitz, G.D., and Newsome, W.T. (1999). Separate signals for target
selection and movement specification in the superior colliculus.answer.
Science 284, 1158–1161.
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