
Agreat challenge for the
burgeoning field of

nanotechnology is the de-
sign and construction of mi-
croscopic motors that can
use input energy to drive di-
rected motion in the face of
inescapable thermal and
other noise. Driving such
motion is what protein mo-
tors—perfected over the
course of millions of years by evolution—do in every cell in
our bodies.1

To put the magnitude of the thermal noise in per-
spective, consider that the chemical power available to a
typical molecular motor, which consumes around
100–1000 molecules of adenosine triphosphate (ATP) per
second, is 10⊗16 to 10⊗17 W. In comparison, a molecular
motor moving through water exchanges about 4 × 10⊗21 J
(the thermal energy kT at room temperature) with its en-
vironment in a thermal relaxation time of order 10⊗13 s.
Thus, a thermal noise power of about 10⊗8 W continually
washes back and forth over the molecule. That power,
which, according to the second law of thermodynamics can-
not be harnessed to perform work, is 8–9 orders of magni-
tude greater than the power available to drive directed mo-
tion. For molecules, moving in a straight line would seem
to be as difficult as walking in a hurricane is for us.
Nonetheless, molecular motors are able to move, and with
almost deterministic precision. 

Inspired by the fascinating mechanism by which pro-
teins move in the face of thermal noise, many physicists
are working to understand molecular motors at a meso-
scopic scale. An important insight from this work is that,
in some cases, thermal noise can assist directed motion by
providing a mechanism for overcoming energy barriers. In
those cases, one speaks of “Brownian motors.”2 In this ar-
ticle, we focus on several examples that bring out some
prominent underlying physical concepts that have
emerged. But first we note that poets, too, have been fas-
cinated by noise; see box 1. [OK?]

Bivalves, bacteria, and biomotors
Bacteria live in a world in which they are subject to vis-
cous forces large enough that the inertial term mv� in New-
ton’s equation of motion can be safely ignored. The motion
of the bacteria, governed by those viscous forces, is very
different than the inertia-dominated motion that we know
from everyday experience. Edward Purcell, in his classic
article “Life at Low Reynolds Number,” highlighted that
difference by formulating what has come to be known as
the scallop theorem.3

A scallop is a bivalve (a mollusk with a hinged shell)

that could, in principle,
move by slowly opening its
shell and then rapidly clos-
ing it. (In fact, the scallop’s
method of locomotion is
somewhat different.) During
the rapid closing, the scallop
would expel water and de-
velop momentum, allowing
it to glide along due to iner-
tia. A typical scallop has a

body length a of about a centimeter and propels itself at a
speed v of several cm/s, that is, at several times its length
per second. Thus, the Reynolds number, R ⊂ avr/h (a di-
mensionless parameter that compares the effect of inertial
and viscous forces), is about 100, where r is the density of
the fluid (for water, the density is 1 g/cm3) and h is the
fluid’s viscosity (for water, about 10⊗2 g/(cm�s)). 

For organisms a few thousand times smaller than a
scallop, also moving at several body lengths per second, the
Reynolds number is much less than one. In that case, the
glide distance is negligible. Because the motion generated
by opening the shell cancels that produced on closing the
shell, a tiny “scallop” cannot move. The mathematical rea-
son is that motion at low Reynolds number is governed by
the Navier–Stokes equation without the inertial terms, 
⊗∇p ⊕ h∇2v ⊂ 0. Because time does not enter explicitly into
the equation, the trajectory depends only on the sequence
of configurations, and not on how slowly or rapidly any part
of the motion is executed. Hence, any sequence that retraces
itself to complete a cycle—and that is the only type of se-
quence possible for a system such as a “scallop” with just
one degree of freedom—results in no net motion.

With typical lengths of about 10⊗5 m and typical
speeds of some 10⊗5 m/s, bacteria live in a regime in which
the Reynolds number is quite low, about 10⊗4. Thus, bac-
teria must move by a different mechanism than that used
by a “scallop.” Our purpose is not to investigate how ac-
tual bacteria move (see the article “Motile Behavior of Bac-
teria” by Howard C. Berg in PHYSICS TODAY, January
2000, page 24) but to examine generic mechanisms by
which locomotion at low Reynolds number is possible, with
an ultimate focus on molecule-size Brownian motors.

Purcell described several locomotion mechanisms, all
of which pertain to motion induced by cyclic shape changes
in which, unlike the scallop’s cycle, the sequence of con-
figurations in one half of the cycle does not simply retrace
the sequence of configurations in the other half. Here, we
consider the two mechanisms shown in figure 1, the
corkscrew and the flexible oar. 

The two mechanisms shown have different symme-
tries. The corkscrew mechanism avoids retracing its steps
by its chirality. At low frequency, the bacterium moves a
fixed distance for each complete rotation of the chiral screw
about its axis. Thus, the velocity is proportional to the fre-
quency. Reversing the sense of corkscrew rotation reverses
the bacterium’s motion. Slow enough rotation produces mo-
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tion with essentially no dissipation, so
we call the corkscrew an adiabatic
mechanism. 

On the other hand, the flexible oar
relies on the internal relaxation of the
oar curvature to escape the scallop
theorem. At low frequency, the ampli-
tude of the bending of the oar is pro-
portional to the frequency and the ve-
locity is thus proportional to the
square of the frequency. Because, in
this case, relaxation and dissipation
are essential, the flexible oar is an ex-
ample of a nonadiabatic mechanism.4

The role of noise
The mechanisms in figure 1 illustrate
how self propulsion at low Reynolds
number is possible. A new problem
arises, however, when particles have
lengths characteristic of molecular di-
mensions, 10⊗8 m or so. 

In that case, diffusion caused by
thermal noise (Brownian motion) com-
petes with self-propelled motion. The
time to move a body length a at a self-
propulsion velocity v is a/v, while the
time to diffuse that same distance is of
the order a2/D. Here, the diffusion co-
efficient D is given in terms of particle
size, solution viscosity, and thermal energy by the
Stokes–Einstein relation D ⊂ kT/(6pha). At room temper-
ature, and in a medium whose viscosity is about that of
water, a bacterium needs more time to diffuse a body
length than it does to “swim” that distance. For smaller
molecular-sized particles, however, a body length is cov-
ered much faster by diffusion. For molecular motors, un-
like bacteria, the diffusive motion overwhelms the directed
motion of swimming.

A solution widely adapted in biology is to have the
motor on a track that constrains the motion to essentially
one dimension along a periodic sequence of wells and bar-
riers.5 The energy barriers significantly restrict the diffu-
sion. Thermal noise plays a promi-
nent constructive role by providing
a mechanism, thermal activation,
by which motors can escape over
the barriers.6 (See also the article
“Tuning in to Noise” by Adi R. Bul-
sara and Luca Gammaitoni in
PHYSICS TODAY, March 1996, page
39). The energy necessary for di-
rected motion is provided by ap-
propriately raising and lowering
the barriers and wells, either via
an external time-dependent modu-
lation or by energy input from a
nonequilibrium source such as a
chemical reaction.

A simple Brownian motor
Figure 2 shows a simple example
of a Brownian motor, in which a
molecule-sized particle moves on
an asymmetric sawtooth poten-
tial. Such an asymmetric profile is
often called a ratchet after the
beautiful example given by
Richard Feynman in his Lectures

on Physics, volume I, chapter 46 (Addison-Wesley, 1963).
Feynman used his ratchet to show how structural
anisotropy never leads to directed motion in an equilib-
rium system. But in the nonequilibrium system depicted
in figure 2, the potential’s cycling—which provides the en-
ergy input—combines with structural asymmetry and dif-
fusion to allow directed motion of a particle, even against
an opposing force. (An excellent simulation of the Brown-
ian motor is at the Web site http://monet. physik.unibas.
ch/~elmer/bm/.) 

For biological motors on a track, one might expect the
length a and track period L to be of molecular size and the
viscous drag coefficient to be around 10–10 kg/s, somewhat

higher than that in water due to
friction between the motor and
track. If the potential is switched
on and off with a frequency of
103 Hz, consistent with the rate of
ATP hydrolysis by many biologi-
cal motors, the induced velocity is
about 10⊗6 m/s and the force nec-
essary to stop the motion is ap-
proximately 10⊗11 N: The velocity
and force estimates are both con-
sistent with values obtained from
single-molecule experiments on
biological motors.1 (See also the
article “The Manipulation of Sin-
gle Biomolecules” by Terence
Strick, Jean-François Allemand,
Vincent Croquette, and David
Bensimon in PHYSICS TODAY, Oc-
tober 2001, page 46).

An effect analogous to the di-
rected motion caused by cyclically
turning a potential on and off can
be demonstrated for particles mov-
ing on a fixed asymmetric track,
such as a sawtooth etched on a

Corkscrew

Flexible oar

FIGURE 1. SELF-PROPULSION at low Reynolds number can occur through a number
of mechanisms, two of which are shown here. In the top diagram, a bacterium is pro-
pelled by a rotating corkscrew. At low frequency, the resulting velocity is propor-
tional to the frequency. In the bottom illustration, a bacterium propels itself by wav-
ing its flagellum up and down in an undulatory motion. Because the flagellum is
flexible, it acquires a curvature whose concavity depends on the direction of its mo-
tion—concave down while the flagellum is moving upward, concave up when mov-
ing downward. The degree of curvature depends on the frequency with which the
flagellum is waved up and down. Thus, the velocity that results from the flexible oar
mechanism is proportional to the square of the frequency. [Caption OK?]

Box 1. The Place of the Solitaires
Let the place of the solitaires 
Be a place of perpetual undulation.

Whether it be in mid-sea
On the dark, green water-wheel
Or on the beaches.
There must be no cessation 
Of motion, or of the noise of motion, 
The renewal of noise 
And manifold continuation; 

And, most, of the motion of thought 
And its restless iteration, 

In the place of the solitaires, 
Which is to be a place of perpetual undulation. 

Wallace Stevens (1879–1955). 

From The Collected Poems of Wallace Stevens by
Wallace Stevens, copyright 1954 by Wallace
Stevens and renewed 1982 by Holly Stevens. Used
by permission of Alfred A. Knopf, a division of
Random House, Inc.
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glass slide.7 The energy input driving the directed motion is
provided by cyclically varying the temperature between
high and low values. At high temperatures the particles dif-
fuse, but when the temperature is low the particles are
pinned in the potential wells. Because of the asymmetry of
the track, the fluctuations over time between hot and cold
cause the particles to move, on average, over the steeply
sloped, shorter face of the etched sawtooth. 

In the scheme depicted in figure 2, the fuel is the en-
ergy supplied by turning the potential on and off. The track,
or substrate, is the lattice on which the particle moves. The
particle is the motor—the element that consumes fuel and
undergoes directional translation. The model illustrates the
two main ingredients necessary for self-propelled motion at
low Reynolds number: symmetry breaking and energy
input. The particle in the illustrated scheme is a true
Brownian motor, because without thermal noise to cause
Brownian motion, the mechanism fails.8

The ratchet in figure 2 mimics a
Brownian motor first proposed in 1992
by Armand Ajdari and Jacques Prost
working at the Ecole Supérieure de
Physique et de Chimie Industrielles in
Paris.9 They envisioned a situation in
which turning on and off an asymmet-
ric electric potential would provide a
means for separating particles based on
diffusion. 

Several groups explored that pos-
sibility in various ways during the
mid-to-late 1990s.10 In 1994, Ajdari
and Prost, along with colleagues Juli-
ette Rousselet and Laurence Salome,
constructed a device for moving small
latex beads unidirectionally in a non-
homogenous electric potential that
was turned on and off cyclically. About
a year later, Albert Libchaber and col-
leagues at Princeton University and at
NEC Research Institute Inc, made an
optical ratchet. By modulating the
height of the barrier on an asymmet-
ric sawtooth fashioned from light, they
could drive a single latex bead around
a circle. Most recently, Joel Bader and
colleagues at CuraGen Corp con-
structed a device for efficient separa-

tion of DNA molecules using interlocking combed elec-
trodes with an asymmetric spacing between the positive
and negative electrodes. 

General description
When we considered the scallop theorem and the devices
bacteria use to evade it, we focused on physical changes—
the opening and closing of a scallop’s shell, the turning of
a corkscrew, and the waving of a flexible flagellum. In a
general mathematical description of motion at low
Reynolds number, a time-dependent potential corresponds
to the changes in shape that we discussed earlier.

Imagine a particle constrained to move on a line, with
a spatially periodic time-modulated potential V(x, t). The
particle is governed by the equation of motion 

mv� ⊕ V� (x, t) ⊂ ⊗gy ⊕ =(2kTg)j(t),
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FIGURE 2. SWITCHING A SAWTOOTH POTENTIAL on and off
can do work against an external force. In the illustration, the

red gaussians indicate how the probability distribution of a
particle evolves as a sawtooth potential is turned off and then

on again. When the potential is off, a particle moves to the left
because of the force, but they also diffuses with equal probabil-

ity to the left and right. After some time, the potential is
turned on and the particle is trapped at the bottom of a well—

more likely the well to the right than the well to the left of
where the particle started. Were the sawtooth potential to re-

main either on or off, the net velocity would be to the left.
But in the illustrated system, the asymmetry of the potential

combines with diffusion and the cycling of the potential to
allow directed motion to the right, even against an external

force. The illustrated mechanism works even if, in imitation of
the effect of a chemical reaction, the potential is turned on and

off with random, Poisson-distributed lifetimes. (See R. D. 
Astumian, M. Bier, Biophys. J. 70, 637, 1996.) 
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FIGURE 3. SYMMETRIC TWO-DIMENSIONAL POTENTIALS, when modulated, can
serve as particle separators. The figure shows contour graphs of the 2D potential
functions V(x, y) ⊂ V0 cos(4px/Lx) ⊕ u(y) cos(2px/Lx) ⊕ e(y) sin(2px/Lx), with
u(y) ⊂ u0 cos(2py/Ly), e(y) ⊂ e0 cos(2py/Ly ⊕ v), and v ⊂ (0, p/2). The superim-
posed triangles and rectangles emphasize the symmetry of the functions. (a) The
modulating function with v ⊂ p/2, is the spatial equivalent of a traveling-wave tem-
poral modulation. For the resulting potential, switching the component of force in
the y direction switches the resulting component of particle velocity in the x direc-
tion. (b) The modulating function with v ⊂ 0 is the spatial equivalent of a standing-
wave temporal modulation. The resulting potential produces a drift in the ⊕x direc-
tion regardless of the sign of the y component of force. 
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where the prime denotes a spatial derivative and g ⊂ 6pha
is the viscous drag coefficient. The left-hand side of the
equation of motion describes the deterministic, conserva-
tive part of the dynamics, and the right-hand side accounts
for the effects of the thermal environment—viscous damp-
ing and a fluctuating force modeled by thermal noise j(t).
If both inertia and noise are negligible, the equation of mo-
tion may be approximated as V�(x, t) ⊂ ⊗gv: Explicit time
dependence enters only through V�(x, t). Thus, the pattern
of motion is independent of whether the modulations occur
rapidly or slowly. If, as is the case for a standing-wave
modulation, the changes are such that the path in the sec-
ond half of the cycle retraces those of the first, then the ve-
locity must also retrace its steps. That retracing is irre-
spective of the amplitude, waveform, or frequency of the
modulation. 

For Brownian motors, however, there is ineluctable
and significant thermal noise, which changes the situation
dramatically. Because noise provides a mechanism for re-
laxation—an internal response of the system to a change

in the external parameters—a single external degree of
freedom can combine with the internal dynamics to escape
the scallop theorem and yield directed motion, as in the
scheme depicted in figure 2. In boxes 2 and 3, we have
worked out a second illustrative scheme in detail and dis-
cussed the relationship of that scheme with the principle
of detailed balance.

As illustrated in the first of those boxes, the net cur-
rent (an appropriately normalized average velocity) due to
modulation of the potential can be broken into two contri-
butions. One is a purely geometric term corresponding to
motion similar to that induced by a slow traveling-wave
modulation. That term depends only on the two external
parameters that define the modulation and describes the
reversible part of the transport. Similar in spirit to the
Berry, or geometric, phase in quantum mechanics (see the
article “Anticipations of the Geometric Phase” by Michael
Berry in PHYSICS TODAY, December 1990, page 34), that
first term corresponds to the adiabatic transport mecha-
nism described by David Thouless and recently used by
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The illustration below summarizes the way in which parti-
cles that are subject to a time-modulated, spatially periodic

one-dimensional potential can exhibit net current. The upper
panel (a) shows the time-independent part of the model poten-
tial, V0 cos(4px/L), which reflects the underlying lattice on
which the particle moves. Superimposed on that potential is the
time-dependent modulation u(t) cos(2px/L) ⊕ e(t) sin(2px/L),
which may arise from stochastic or deterministic changes in the
environment.

If the modulation is not too large or too fast, and if the po-
tential amplitude is several times larger than the thermal energy
kT, then the effect of the modulation can be viewed as a per-
turbation on the escape rates for the underlying symmetric po-
tential. In that case, one can think of u(t) as governing the rela-
tive barrier heights and e(t) as independently regulating the
relative well energies. In the following we drop explicit nota-
tion of the time dependence of parameters, and take all energies
to be dimensionless quantities, measured relative to kT. 

The modulation distinguishes two types of wells—states—
designated A and B in panel (b) of the figure. Transitions be-
tween the A and B wells may be described by a two-state ki-
netic model with, for this model, time-dependent transition co-
efficients of the form kesc exp(�u�e).12 For example, the

coefficient with both signs positive in the exponent corre-
sponds to a transition from a B well to an A well over the bar-
rier to the left of the A well. In the figure, the coefficient is de-
noted kOBA.

Because of the modulation of the relative well energies
(characterized by e), the probability Q for a particle to be in an
A well changes as particles flow back and forth between the A
and B wells. The rate of probability change is given by

dQ/dt ⊂ I1 ⊕ I2,

where the currents I1 and I2 are defined in panel (a) of the fig-
ure. The probability for the particle to be in a B well is 1 ⊗ Q,
which allows expression of the currents in the form

I1,2 ⊂ kescexp(e�u)q/f(e).

Here the plus sign applies for I1 and the minus sign for I2, and
q ⊂ f (e) ⊗ Q is the deviation of the probability from its instan-
taneous equilibrium value given by the Fermi distribution
function f (e) ⊂ {1 ⊕ exp(⊗2e)}⊗1. Note that each individual
current goes to zero as equilibrium, q ⊂ 0, is approached, but
the fraction F of the current over the left-hand barrier

which depends only on u, does not. Once any transients have
decayed, the net current is the time average of F dQ/dt, and can
be written as the sum of two integrals:

Inet ⊂ w(�F df ⊗ �F dq),

where w is the frequency of the modulation. 
The first integral is independent of the frequency and de-

scribes the adiabatic contribution to the current. The first inte-
gral’s dependence on time arises only through u (via F ) and e
(via f ). It is nonzero only if u and e are out of phase with one
another.

The second integral, which depends on the deviation from
equilibrium q, describes the nonadiabatic contribution to the
current. To lowest order, its value depends linearly on fre-
quency. Because of the dissipation inherent in the relaxation of
the system to equilibrium, that integral can be nonzero even if
u and e vary together and at random times. Panels (c), (d), and
(e) in the figure show a situation in which randomly switching
the signs of both u and e together drives net transport: The par-
ticle moves on average almost one period per switching cycle.

F ⊂
I1

I I1 2⊕
[1 tanh( )],⊕ u⊂

1
2

Box 2. Adiabatic and Nonadiabatic Transport
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Charles Marcus and his colleagues to pump electrons
through a quantum dot with essentially no energy dissi-
pation (see PHYSICS TODAY June 1999, page 19).11

The second term corresponds to the dissipative part of
the transport and is the term typically associated with the
ratchet effect: In the on–off ratchets shown in figure 2, the
average of the adiabatic term is zero—all of the net trans-
port is described by the irreversible term. The dissipative
nature of the mechanism corresponding to the irreversible
term means that even random fluctuations such as those
that might arise from a simple two-state nonequilibrium
chemical reaction can drive transport.12

Two-dimensional ratchets
The Brownian motors we have considered so far have been
confined to one spatial dimension and subject to time-vary-
ing potentials. One can develop a sharper intuition for
Brownian ratchets by mapping time-modulated potentials
into static, 2D potentials: (x/L, wt) O (x/Lx, y/Ly). The mod-
ulation, instead of being characterized by functions of
time, is then characterized by functions of the coordinate
y.13,14 The nonequilibrium features implicit in the original
external temporal modulation are introduced by external
forces in the x or y directions.

The resulting 2D potentials yield two classes of de-
vices distinguished by symmetry. In one class, proposed by
Tom Duke and Bob Austin, symmetry is broken in both co-
ordinates in the sense that changing the sign of either x or
y changes the potential. A member of this symmetry class
is illustrated in figure 3a, which also shows the response
of particles to forces in the up and down directions. Note
that changing the direction of the force changes the direc-
tion of the resulting velocity. In general, for potentials with
broken symmetry in both coordinates, to leading order, the
x-component of current resulting from a force in the y di-
rection is the same as the y-component of current result-
ing from the same magnitude force in the x direction. Gen-

erally, if the force in the, say, x direction is zero, current in
both the x and y directions is proportional to the force in
the y direction. 

In the second class of devices, suggested by Imre
Derényi and Dean Astumian and by Axel Lorke and col-
leagues, symmetry is broken in only one coordinate. Fig-
ure 3b shows a member of this class, with broken symme-
try in the x coordinate. The figure also shows that a force
up or down induces flow to the right; by symmetry, a force
in the x direction induces no net flow in the y direction. An
algebraic manifestation of those responses to force is that,
to lowest order, the particle current in the x direction is
proportional to the square of the y component of force. 

An advantage of the second class is that an oscillating
force in the y direction can drive unidirectional motion in
the x direction, thus allowing devices to be much smaller.
One can achieve good lateral separation without particles
traveling very far vertically. Combining systems with dif-
ferent symmetry properties may make it possible to tailor a
potential for the most effective separation in a given system. 

So far, only the first symmetry class has been applied
experimentally for particle separation,13 but the second
has been realized for ratcheting electrons that move bal-
listically through a maze of antidots.14 Electrons in a 2D
square array of triangular antidots move in a potential
similar to that shown in figure 3b. When irradiated by far-
infrared light, the electrons are shaken and crash against
the antidots rather like balls hitting the obstacles on a
pinball table. The electrons are then funneled into the nar-
row gaps between the antidots, thereby yielding a well-di-
rected beam. Indeed, one observes a net photo-voltage be-
tween source and drain—merely the expected ratchet
effect that turns an AC source into a DC one. 

Two-dimensional ratchets open a doorway to wireless
electronics on the nanoscale. For example, different orien-
tations of asymmetric block structures may allow for the
guiding of several electron beams across each other. As
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Directed motion driven by modulation of the relative bar-
rier heights and well energies seems to violate a principle

discussed by Lars Onsager in his famous 1931 paper on recip-
rocal relations in irreversible processes. In that paper, Onsager
remarked on the idea that, at thermodynamic equilibrium, each
forward transition in any chemical pathway is, on average, bal-
anced by an identical transition in the reverse direction. That
requirement, known as detailed balance, is closely related to the
principle of microscopic reversibility. 

The system discussed in box 2 is at steady state—the proba-
bility Q is constant—whenever the flow into well A equals the
flow out of A, that is, when the two currents satisfy the rela-
tion I1 ⊂ ⊗I2. (See box 2 for definitions of the terms used in this
box.) The principle of detailed balance, however, asserts that, at
the special steady state known as thermodynamic equilibrium,
each transition is independently balanced:

I1 ⊂ k
O

BA (1 ⊗ Q) ⊗ k
I

ABQ = 0, 

I2 ⊂ k
I

BA (1 ⊗ Q) ⊗ k
O

ABQ = 0.

Thus, a corollary of detailed balance that holds even away from
equilibrium is 

At first glance, it appears that as long as the above corollary
relation holds, there can be no net current. As the example in

box 2 shows, however, that conclusion need not be true if the
rate constants are time-dependent due to fluctuations of the
barrier heights and well energies. When the rate constants de-
rived in box 2 are inserted into the corollary relation, the time-
dependent functions u and e drop out: The corollary holds at
all times. Yet, for the system described in box 2—indeed, under
a wide range of circumstances—barrier-height and well-energy
fluctuations consistent with the corollary relation give rise to
net current, that is, detailed balance is broken.12 [OK?]

Systems at thermodynamic equilibrium experience energy
fluctuations that may be described in terms of u and e. How
can those fluctuations be consistent with the second law of
thermodynamics, which prohibits directed motion at equilib-
rium? The figure in box 2 provides a key to the explanation. It
shows that an increase in e implies an increase in the potential
energy if the particle is in a B well and a decrease if it is in an
A well. Thus, an increase in e must, at equilibrium, be expo-
nentially less likely when the particle is in a B well than when
it is in an A well; equilibrium fluctuations do not drive di-
rected motion.

External fluctuations, or fluctuations driven by a nonequi-
librium source, such as a chemical reaction, are not subject to
the energy constraint imposed on equilibrium fluctuations, and
so they can drive directed motion. In the limit of strong driv-
ing, the fluctuations of u and e are independent of the position
of the particle. That is the case shown in the lower panels of the
figure in box 2.

⊂ 1.
k kBA AB

k kAB BA

O O

O O

Box 3. Detailed Balance



suggested by Franco Nori and his collaborators at the Uni-
versity of Michigan, specially tailored 2D potentials, com-
bined with a source of thermal or quantum noise, can pro-
vide a lens for focusing or defocusing electrons, much as
optical lenses manipulate light.15

Ratchets in the quantum world 
Symmetry breaking and the use of noise to allow randomly
input energy to drive directed motion can also be exploited
when quantum effects play a prominent role. An especially
appealing possible application is the pumping and shut-
tling of quantum objects such as electrons along previously
selected pathways without the explicit use of directed wire
networks or the like.

One of the most important features of quantum trans-
port not present in the classical regime is quantum tun-
neling. Tunneling provides a second mechanism—the first
being the thermal activation exploited for classical ratch-
ets—for a particle to move among energy wells. Heiner
Linke and colleagues took brilliant advantage of the two
mechanisms in designing a quantum ratchet showing a
current reversal as a function of temperature (see figure
4).16 Peter Hänggi and coworkers applied quantum dissi-
pation theory to a slowly rocked ratchet device to theoret-
ically anticipate such a current reversal.17

Using electron beam lithography, Linke and cowork-
ers constructed an asymmetric electron waveguide within
a 2D sheet of electrons parallel to the surface of an alu-
minum-doped gallium arsenide/gallium aluminum ar-
senide heterostructure. The device comprised a string of
funnel-shaped constrictions, each of which forms an asym-
metric energy barrier for electrons traveling along the
waveguide. A slow (192 Hz), zero-average, periodic,
square-wave voltage was applied along the channel to rock
the ratchet potential. In other words, electrons traveling
through the waveguide were subjected to a uniform per-
turbing force that periodically switched direction. 

At low temperature, tunneling predominates. The
barriers are narrowed when the force is to the right and
widened when the force is to the left, thus inducing elec-
tron current to the right. Because of the asymmetry, the
rocking produces a net current. At high temperatures,
where thermal activation predominates, electrons move
preferentially over the gentle slope of the potential. That
movement leads to an electron current to the left. More-
over, the device functions as a heat pump even when the
temperature is set to the value that produces no net elec-
trical current: The thermally activated current is predom-
inantly due to electrons in higher-energy states whereas
the tunneling current is mainly due to electrons in the
lower-energy states.17

Quantum ratchets are potentially useful in any num-
ber of tools such as novel rectifiers, pumps, molecular
switches, and transistors. Some day, devices built with
quantum ratchets may find their way into practical 
applications.

Perspective and overview
A Brownian motor is remarkably simple: The essential
structure consists of two reservoirs, A and B, with two
pathways between them. (In the example of box 2, the two
pathways are defined by whether the potential barrier
overcome is to the left or right of well A.) By periodically
or stochastically altering both the relative energies of the
reservoirs and the “conductances” of the pathways be-
tween them, with a fixed relationship between the two
modulations, one can arrange that transport from A to B
is predominately via one pathway and transport from B to
A is via the other pathway. Depending on the topology, the
induced particle motion could be realized as directed trans-
port along a circle or a line, transfer of microscopic cargo
or electrons between two reservoirs, or coupled transport
in two dimensions.

In micro- and nanoscale materials such as polymers
or mesoscopic conductors, thermal activation and quan-
tum mechanical tunneling are mechanisms for overcom-
ing energy barriers (incidentally introducing nonlinear-
ity).6 In addition, the multiple time scales inherent in
complex systems allow the necessary correlations between
the fluctuations of the conductances and energies to
emerge spontaneously from the dynamics of the system. In
those cases, noise plays an essential or even dominating
role: It cannot be switched off easily and, moreover, in
many situations, not even the direction of noise-induced
transport is obvious! Because the direction and speed of
transport depend on different externally controllable pa-
rameters—temperature, pressure, light, and the phase,
frequency, and amplitude of the external modulation—as
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FIGURE 4. IN A QUANTUM RATCHET, tunneling can con-
tribute to electron current. The two contributions to the time-

averaged net current—thermal activation over, and tunneling
through, the barriers—flow in opposite directions. Because the
relative strengths of the two contributions depend on the elec-
trons’ energy distribution, the direction of the net current can

be controlled by tuning the temperature, as shown in the
graph. Below the graph is a scanning electron micrograph of

the quantum ratchet discussed in ref. 16. (Courtesy of Heiner
Linke, University of Oregon.)



well as on the characteristics of the potential and on the
internal degrees of freedom of the motor itself, synthetic
Brownian molecular motors can be remarkably versatile.18

In the microscopic world, “There must be no cessa-
tion / Of motion, or of the noise of motion” (box 1). Rather
than fighting it, Brownian motors take advantage of the
ceaseless noise to move particles efficiently and reliably.

R.D.A. thanks Anita Goel for many stimulating discussions
and Ray Goldstein for an inspiring series of lectures on
biopolymers. We thank our colleagues for their help and com-
ments, particularly Howard Berg, Hans von Baeyer, Imre
Derényi, Igor Goychuk, Dudley Herschbach, Gert-Ludwig 
Ingold, Heiner Linke, Manuel Morillo, Peter Reimann, Peter
Talkner, and Tian Tsong.

References
1. S. M. Block, Trends Cell Biol. 5, 169 (1995); J. Howard, Na-

ture 389, 561 (1997); R. D. Vale, R. D. Milligan, Science 288,
88 (2000).

2. P. Hänggi, R. Bartussek, in Nonlinear Physics of Complex
Systems: Current Status and Future Trends, J. Parisi, S. C.
Müller, W. Zimmerman, eds., Springer-Verlag, New York,
(1996), 294; F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys.
69, 1269 (1997); R. D. Astumian, Science 276, 917 (1997). A
comprehensive review is given by P. Reimann, Phys. Rep.
361, 57 (2002). See also the articles in the special issue on
“Ratchets and Brownian Motors: Basics, Experiments, and
Applications,” Appl. Phys. A 75 (August 2002).

3. E. Purcell, Am. J. Phys. 45, 3 (1977).
4. R. D. Astumian, I. Derényi, Phys. Rev. Lett. 86, 3859 (2001);

M. G. Vavilov, V. Ambegaokar, I. L. Aleiner, Phys. Rev. B 63,
195313 (2001).

5. P. H. von Hippel, O. G. Berg, J. Biol. Chem. 264, 675 (1989).
6. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251

(1990).
7. P. Reimann, R. Bartussek, R. Haussler, P. Hänggi, Phys. Lett.

A 215, 26 (1996). 
8. M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993); R. D. As-

tumian, M. Bier, Phys. Rev. Lett. 72, 1766 (1994); R. Bar-
tussek, P. Hänggi, J. G. Kissner, Europhys. Lett. 28, 459
(1994); J. Prost, J.-F. Chauwin, L. Peliti, A. Ajdari, Phys. Rev.
Lett. 72, 2652 (1994); C. R. Doering, W. Horsthemke, J. Rior-
dan, Phys. Rev. Lett. 72, 2984 (1994).

9. A. Ajdari, J. Prost, C. R. Acad. Sci., Paris t. 315 (series no. 2),
1635 (1992).

10. J. Rousselet, L. Salome, A. Ajdari, J. Prost, Nature 370, 446
(1994); L. Faucheaux, L. S. Bourdieu, P. D. Kaplan, A. J.
Libchaber, Phys. Rev. Lett. 74, 1504 (1995); J. S. Bader et al.,
Proc. Natl. Acad. Sci. USA 96, 13165 (1999).

11. D. J. Thouless, Phys. Rev. B 27, 6083 (1983); P. W. Brouwer,
Phys. Rev. B 58, R10135 (1998); M. Switkes, C. M. Marcus, K.
Campman, A. C. Gossard, Science 283, 1905 (1999); M. Wag-
ner, F. Sols, Phys. Rev. Lett. 83, 4377 (1999).

12. T. Y. Tsong, R. D. Astumian, Bioelectrochem. Bioenerg. 15,
457 (1986); R. D. Astumian, P. B. Chock, T. Y. Tsong, H. V.
Westerhoff, Phys. Rev. A 39, 6416 (1989).

13. T. A. J. Duke, R. H. Austin, Phys. Rev. Lett. 80, 1552 (1998);
G. W. Slater, H. L. Guo, G. I. Nixon, Phys. Rev. Lett. 78, 1170
(1997); I. Derényi, R. D. Astumian, Phys. Rev. E. 58 7781
(1998); D. Ertas, Phys. Rev. Lett. 80, 1548 (1998); A. van Oud-
eraarden et al., Science 285, 1046 (1999); C. Keller, F. Mar-
quardt, C. Bruder, Phys. Rev. E 65, 041927 (2002).

14. A. Lorke et al., Physica B 249, 312 (1998).
15. J. F. Wambaugh et al., Phys. Rev. Lett. 83, 5106 (1999); C. S.

Lee, B. Jankó, I. Derényi, A. L. Barabasi, Nature 400, 337
(1999).

16. H. Linke et al., Science 286, 2314 (1999).
17. P. Reimann, M. Grifoni, P. Hänggi, Phys. Rev. Lett. 79, 10

(1997); I. Goychuk, P. Hänggi, Europhys. Lett. 43, 503 (1998).
18. T. R. Kelly, H. De Silva, R. A. Silva, Nature 401, 150 (1999); N.

Koumura et al., Nature 401, 152 (1999); Z. Siwy, A. Fulinski,
Phys. Rev. Lett. 89, 158101 (2002); J. Vacek, J. Michl, Proc.
Natl. Acad. Sci. USA 98, 5481 (2001). �

NOVEMBER 2002    PHYSICS TODAY    39 Circle number xx on Reader Service Card


