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Negative Resistance and Rectification in Brownian Transport
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We discuss under what conditions Brownian transport processes can display negative resistance. We
prove it cannot occur on 1D spaces like the circle or the line. We construct an entropic ratchet:
an explicit two-dimensional model, and its collapse onto a branched 1D backbone, showing negative
resistance and rectification as a consequence of a geometric symmetry breaking. We derive an accurate
numerical method for solving our 2D model. Finally, we discuss analogies and relevance to biological
ion channels, in particular, for channel inactivation and blocking.

PACS numbers: 87.22.Jb, 05.40.+j

If a current arises as a result of some force, then it willjuantum mechanical; hence, it would be interesting to
flow “downhill,” in the direction in which it dissipates provide classical analog. Finally, ratchet potentials in one
energy into heat; thus, the resistance is always positivelimension can be shown not to have NR, as we will
The diminishing of a current as the driving force becomeshow do.
stronger is called negative incremental resistance, or just In one dimension, an equation of the form

lain “negative resistance” (NR); devices that display NR . .
gxist andghave important tef:hn())logical applicatior?s;{hese ¥ =fl) + £, (€(De(s)) = 2kT3(t = 5)
devices are, usually, also rectifiers. If energy is providedias an associated stationary Fokker-Planck equation

through suitab!e bias voltages, soasto displace the steady 9,P(x.1) + a.J(x,1) =0,
state of operation to the NR region, then the negative slope
of the current can give rise to interesting instabilities like J(x,t) = fP(x,t) — ktd,P(x,1),

relaxatiqn o_scillations [1,2]. A typical such d_evice from \yhose steady state, for periodiér), can always be solved
electronics is the tunnel diode. Much more importantly,;, quadratures. If has a zero spatial average, then it is

the very existence of our nervous systems depends UpQRe gradient of a periodic potential, and detailed balance
the ability to generate action potentials to transmit nerve, 4 Bolizmann weights hold. If does not have a zero
impulses along axons; this phenomenon requires at 'eaéberage then it can be written As= —a,V + F with V

one NR rectifying device, which is known to be the sodiumperingic, and the stationary state can be solved in double

channel [3—7]. , L quadratures [11]. The Fokker-Planck probability current
In this Letter, we will show how NR and rectification can J as a function of¥ is given by

arise in a Brownian transport process, through a mecha- onF
nism we will callentropic trapping. Because of the purely J(F) = kT (eir” — 1) (1)
geometric nature of this mechanism, we can call our model O(F) |
anentropic ratchet. V)V ()4 Fx—x) 4 2 PO —3)

We will study a Brownian particle in a periodic po- Q(F) = ?{fe” dx'dx, (2)
tential, embedded in an equilibrium, constant temperature
bath, and subject to a single force trying to advect it. Thisvhere e;; means exfx/kT). Q is positive; moreover,
type of process is described by a Langevin equation of thé»Q is also positive, and satisfi¢§'dyQ < 27 Q. This
form inequality impliesdJ /dF > 0 and hence Brownian trans-

% = £(x) + £(r) port in one-dimensional periodic potentials (under a steady
’ force and in white noise) cannot show NR. (We will show

wherex belongs to some Euclidean spageis Gaussian later that this only holds if the underlying space is topo-
white noise satisfyingé; (1)¢;(s)) = 2kT6;;6(r — s),and  logically trivial.)

f is of the form—VV(x) + F with F constant; i.e.f is a Now we will construct an explicit example in two
vector field independent of time. We will assuvigo be  dimensions. First we illustrate the notion of entropic
periodic along the direction df. barriers, through a very simple example. Let us consider

Why would it be interesting to search for NR in transportthe following potential:
processes of this form? First of all, these processes 2
have very wide applications [8]. Second, transport in V(x,y) = x7cody) + 1.1].
symmetry broken potentials (“ratchets”) [8—14] has beenVe see that the potential is identically zero on thaxis,
shown to be analogous to conduction through electroniand bigger than zero everywhere else. Hence there are
diodes, capable of rectification; however, the mechanismo true energy barriers impeding motion of a Brownian
through which aunneldiode provides NR is intrinsically particle along the periodic direction However, the shape
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of the potential around the axis is also important at the energy required to climb back up is an honest activation
nonzero temperature. For any given a slice of the energy, and the time required to do so obeys an Arrhenius
potential along that value of is a parabola; however, law. But the probability that a particle on the backbone
as motion progresses along this parabola opens and will get into the spine does not depend exponentially on
closes periodically. In the absence of an external forceF’, and so the particle spends a larger proportion of time
a Brownian patrticle will spend more time aroupd= =  blocked away in the spines #&becomes more negative.
than on the bottleneck = 0, every now and then jumping The overall time scale to get into and out of the spine is not
one period up or down iy, as if there actually were an Arrhenius-like, yet near the bottleneck the potential energy
energy barrier; these are calledtropic barriersbecause, of points in the spine and in the backbone is the same. Ifit
unlike a true activation energy, the time scales they induceas, the time the particle spends stuck in the spine would
do not follow Arrhenius-Kramers laws. In other words, ascancel out with the time it spends in the backbone, and the
we will see, the violation of these laws is responsible forcurrent would be a monotonic function 6t

the nonmonotonic behavior of the current as a function of We have evolved numerically Eq. (4) to obtain the
the applied forcer. average speed of the particle as a functionfoind kT'.

We will now break the parity symmetry along the The mean speed equals the Fokker-Planck current times the
y axis; if we loosely call any parity broken potential period @) of the potential. The result of our simulations
a “ratchet,” we can say the following potential is an is shown in Fig. 2.
entropic ratchet: In performing a numerical integration of Eq. (4), one

encounters several numerical problems. The simplest

V(x,y) = x*[cogy + Incosh) + 1.1]/2,  (3)  method for numerical integration is the Euler method,

where In cosh is just an easy way to make a function that
is both even and linear infor largex. The equipotentials

are now symmetry broken and look like a herringbonewhere then are random Gaussian numbers with unit vari-
pattern; see Fig. 1. Our dynamics will be given by ance. While the Euler method is first orderAn for an
ordinary differential equation, it is only one-half order for a
Langevin equation, a property characteristic of diffusion.
This implies that extremely small time steps have to be
used for accurate integration. Several methods have been
proposed for increasing the order of the integration, includ-
ing stochastic versions of Runge and Kutta [15]. How-
ever, the spines in our potential arestif problem, being
‘long and skinny, which would limit the applicability of a
Runge-Kutta scheme even in the absence of noise. The

herringbone. It will progress upon the spine for a Wh'le’reason is that the time scale has to be small in compari-

dee_per the stronger the for_ce, and then will have to 990 with the relaxation time on the fastest direction, in this
againstthe force in order to climb back up and get again on

the backbone. Thus it will be locked for a while, because

x(t + At) = x(t) + f(x)Ar + V2kT At n,

x = -VV + Fy + £@1), (4)

where § is the unit vector alongy, and the noise
correlators are as before.

So, if we apply a forcé alongy, if the force is positive
the particle will move forward without problem. However,
if the force is negative, the particle will move backwards
but every now and then it will get into a spine of the
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x FIG. 2. J(F) atkT = 1 as computed from Langevin simula-

FIG. 1. The equipotentials of the model.

tions. Each run lasted fdr0> units of time; 10 runs were done
for each value off.
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case the skinny direction normal to the axis of the spine. 1.0 — I LA B
But then the interesting time evolution is thalbng the - g
axis of the spines, which becomes painfully slow. - .
We have devised a method to cope with this problem. - .
The fundamental problem in developing a Runge-Kutta - .
scheme is that somehow one is assuming analyticity both 0.5 |— \T; —
of the vector field and of the solution; the last one is justa - 6
not there. But one can safely assume analyticity of thes - (a) .
vector field alone. If we expand the latter to first order, - 4

f(x + Ax) = f(x) + Ax - (Vf) (x). 0.0 _

We use the fact thdt is curl free (and thu¥f is a sym-
metric tensor) to diagonalize it and rotate to its eigenbasis. T T T
In this base, the problem locally becomes a cross product
of independent Ornstein-Uhlenbeck processes. Thus, the
question is: if we know we currently are at positisrat

time ¢, what is the probability that we will be at position F/G- 3. (&) The phase space for the cartoon. (b}) as

x' at time¢'? The answer to this question is the Fokker-9'ven by Ed. (4).

Planck propagator (Green function), which is known ana-

lytically for the Ornstein-Uhlenbeck process [8]. It is a & circle, with a single spine of length attached to it, at
Gaussian, centered at the positignthat would be the so- an anglet, as in Fig. 3(a). There is no potential, just the
lution for the deterministic case at time and with a width ~ steady force. At the vertex, we have to impose that the
which has been changed because of the compression or @¥obability be continuous: the limit @t(x) as we approach
pansion due tg’ = df /dx. Thus itis a trivial matter to the vertex from allthree sides must be the samé, .
generate a new valué with the correct probability distri- The current should be conserved at the vertex, so that

bution for an Ornstein-Uhlenbeck process; our numericaprobability does not accumulate. Then, the probability
method then reads density on the circle is constant, and so is the current

on the backbone/ = FP,,. The current on the spine
= —x)e A+ x, + [T/ (1 — e ¥'2)]'25,  should vanish, and hence the probability along the spine
Yo =x — f/f Ar— ¢ — P(x) = exd —Fx/tan(#)]. Therefore, the final current is

. . . . . —  — g+ kT (1 _ e*FLCOSﬁ) (5)
for each eigendirection of the Hessian. The new coordi- J(F) F co9 kT ’

nates are then rotated back to the original frame. The ad-

vantages of this method over the stochastic Runge-Kuttﬁ’hi.Ch has th? right qualitative form_[Fig. 3(b)], except for
method are two. First, it solvesxactly the Ornstein- a single detail. FofF large and positive both cartoon and

Uhlenbeck process, by construction, and hence any Iineé?" case converge algebralca_lly to unity. But riarge

problem. Second, it can handle stiff problems more easily; nd negative/ = 0 expone'ntlally, W.h'le in the full case

it will not lose accuracy if the time step is larger than the!b[ seems to die faster._ This behaV|or. can b? gnderstood

relaxation time scale of the fast direction, because it wiII!f we recall' that the spines are truly different: first, there

notovershootind generate dynamical instabilities; one can® 2 potential along them, second, they are not of Ie_ngth

concentrate on the more interesting slow time scale. Thg’ but rath_er arbitrarily deep. The center of the SPINes

disadvantages are also two: analytic knowledge of the He 1eS apprOX|mater2ajz =7 —In C(.)Shc’. and the potential

sian is required, and a matrix eigensystem calculation ha ereisV = 0.05x°. The current in this case equals

to be performed, together with two coordinate frame trans- r * e

formations. Thus our method rapidly loses ground to thej r) =27+ 2f0 V1 + tank¥(x) e POSHEINCO) e

stochastic Runge-Kutta method for high dimensionalities, 6)

unless the problem is quite stiff or the Hessian is sparse.

For our stiff problem in two dimensions, this method is ex-Thus, for a large and negative force, the particle entering

tremely well adapted; Fig. 2 was generated in a few hourthe spine will find a stable fixed point at= 10F. Thus

of CPU time of a workstation and shows almost no trace othe effective length of the spinecreasesas F becomes

the residual noise typical of direct Langevin simulations. more negative; the activation barrier is the product of
Back to our problem, we would like to get some morethis effective length and, and hencequadratic in F

explicit understanding of thg(F) curve we have just rather than linear. So we have shown that NR is actually

obtained numerically. Let us consider a one-dimensiongbossible in one dimension, but only if the topology of the

cartoon of the system: we can represent the backbone apace is more complicated than just a circle.
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We have presented an explicit example of a Browniarthe stationary current [22], and in this case the observed
transport process showing NR; the NR region is generategeakl-V curve is qualitatively similar to what we observe.
through an essentially entropic process. There are no ob- We wish to thank Albert Libchaber, Sanderman Simon,
stacles and no energy barriers to the motion of the particland Gustavo Stolovitzky for many discussions.
along they axis. There isjust a finite probability of explor-
ing space a bit out of the center, and end up blocked inside
a spine. Since we are in a thermal, rather than quantum,
situation, our system has much more similarity to biologi-
cal ion _channels 'ghan to electronics. There are two wel Princeton, 1962).
k_nown Inlstf’:lnces in channels where NR IS observed._ The[Z] J. Guckenheimer and P. Holmedpnlinear Oscillations,
first one is in channels that can haveiaactivestate; this Dynamical Systems, and Bifurcations of Vector Fields
is the case of the Na channel, but some K channels also  (Springer-Verlag, Berlin, 1983).
have this property; this is extremely important biologically, [3] K. Kornacker, inBiological Membranesedited by R. M.
because the NR resulting from inactivation is essential to  Dowben (Little, Brown and Co., Boston, 1969).
the regeneration of action potentials. The second one ig4] A.L. Hodgkin and A. F. Huxley, J. Physiol. (Londori)L6,
the blocking of channels through large ions; this is impor- ~ 449-472 (1952);116 473-496 (1952);116 497-506
tant experimentally, because in order to assess properties  (1952);117 500-544 (1952).
of new channels, biophysicists will test for changes in be- 2] B- Hille, J. Gen. Physiol66, 535-560 (1975).
havior when the channel is “poisoned” with various com- [6] J. M. Dubois, M. F. Schneider, and B. I. Khodorov, J. Gen.

Physiol.81, 829844 (1983).
pounds of known effect on known channels. The standard 7] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and

poiso_n arsenal includes several !arge ions, that can getpar-* j WatsonThe Molecular Biology of the Ce{Garland,
tially into the_channel and block it; for example, tetraethy- New York, 1989), 2nd ed.

lammonium is used for Na channels [16] and Mg [17], Cs [g] H. Risken, The Fokker-Planck Equation: Methods of
[18], or polyamines [19] for K channels. It is worth not- Solution and ApplicationéSpringer-Verlag, Berlin, 1989).
ing that thel-V curves of such channels look extremely [9] A. Ajdari and J. Prost, C. R. Acad. Sci. Ser.315 1635
similar to that of our model, and, furthermore, several of (1993).

the experimental measurements [6,16,18] show the fastell0] M. Magnasco, Phys. Rev. Leftl, 1477 (1993).
than-exponential decay of our model, while standard theo1] M. Magnasco, Phys. Rev. Lef{2, 2656 (1994).

retical models wittixedbarriers [17,20] show exponential [12] ('\iég'\i')"o"as and M. Dykman, Phys. Lett. A85 65
decays; this discrepancy can only be solved through mod- _— .

els having barriers that depend on the field. This migh 13] l()l.géAA:c,)tummn and M. Bier, Phys. Rev. Lett2, 1766
mean that the large ion buries itself deeper and deeper in .

c g 4] C. Doering, W. Horsthemke, and J. Riordan, Phys. Rev.
the crevice of the channel, getting more and more stuc Lett. 72, 2984 (1994).

and having to climb a larger distance against the potentighs) R. L. Honeycutt, Phys. Rev. A5, 600—603 (1992).

to get out, just as for our spines. There are also similarif16] C. M. Armstrong and L. Binstok, J. Gen. PhysiéB, 855—
ties with the case of channel inactivation. These chan- 872 (1965).

nels are hypothesized to have three states: closed, opdfy] B. Hille and W. Schwartz, J. Gen. Physigl2, 409-442
and inactive. The transition between open and inactive  (1978).

states has been modeled with a “ball and thread” mechdl8] S. Hagiwara, S. Miyazaki, and N.P. Rosenthal, J. Gen.
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