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Nonequilibrium Equality for Free Energy Differences
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An expression is derived for the equilibrium free energy difference between two configurations
system, in terms of an ensemble offinite-timemeasurements of the work performed in parametrica
switching from one configuration to the other. Two well-known identities emerge as limiting case
this result. [S0031-9007(97)02845-7]
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Consider a finite classical system in contact with a h
reservoir. A central concept in thermodynamics is that
thework performed on such a system, when some exte
parameters of the system are made to change with t
(These parameters may represent, for instance, the stre
of an external field, or the volume of space within whi
the system is confined, or, more abstractly, some parti
particle interactions which are turned on or off during t
course of a molecular dynamics simulation.) When the
rameters are changedinfinitely slowlyalong some pathg
from an initial pointA to a final pointB in parameter space
then the total workW performed on the system is equ
to the Helmholtz free energy differenceDF between the
initial and final configurations [1]:W ­ DF ; FB 2 FA.
[Here FA sFBd refers to the equilibrium free energy o
the system, with the parameters held fixed atA sBd.]
By contrast, when the parameters are switched along

at a finite rate, thenW will depend on the microscopic
initial conditions of the system and reservoir, and will,
average, exceedDF:

W $ DF . (1)

The overbar denotes an average over anensembleof mea-
surements ofW , where each measurement is made a
first allowing the system and reservoir to equilibrate
temperatureT , with the parameters fixed atA. (The path
g from A to B, and the rate at which the parameters a
switched along this path, remain unchanged from one m
surement to the next.) Note that the right side of Eq.
still refers to theequilibrium free energy differenceFB 2

FA. The differenceW 2 DF is just the dissipated work
Wdiss, associated with the increase of entropy during an
reversible process.

Equation (1) is an inequality. By contrast, the new res
derived in this paper is the followingequality:

exps2bWd ­ exps2bDFd , (2a)

or, equivalently,

DF ­ 2b21 ln exps2bW d , (2b)

whereb ; 1ykBT . This result, which is independent o
both the pathg from A to B, and the rate at which the
0031-9007y97y78(14)y2690(4)$10.00
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parameters are switched along the path, is surprising:
says that we can extract equilibrium informationsDFd
from the ensemble ofnonequilibrium (finite-time) mea-
surements described above.

Before proceeding with the proof of Eq. (2), we esta
lish notation and then relate Eq. (2) to two well-know
equilibrium identities forDF. Since we have fixed our at
tention on a particular pathg in parameter space, it will be
convenient to henceforth view the system as parametri
by a single quantityl, which increases from 0 to 1 as w
travel fromA to B alongg. Let z ; sq, pd denote a point
in the phase space of the system, and letHlszd denote the
Hamiltonian for the system, parametrized by the value
l. Next, letZl denote the partition function, letk· · ·ll de-
note a canonical average, and letFl ­ 2b21 ln Zl denote
the free energy, all with respect to the HamiltonianHl and
the temperatureT . We are interested in the following sce
nario, which we will refer to as “the switching process
The system evolves, in contact with a heat reservoir,
the value ofl is switched from 0 to 1, over a total switch
ing timets. Without loss of generality, assume a consta
switching rate,Ùl ­ t21

s . For a given realization of the
switching process, the evolution of the system is describ
by a (effectively stochastic) trajectoryzstd, and the work
performed on the system is the time integral ofÙl≠Hly≠l

along this trajectory:

W ­
Z ts

0
dt Ùl

≠Hl

≠l
ssszstdddd . (3)

Now imagine anensembleof realizations of the switching
process (withg andts fixed), with initial conditions for the
system and reservoir generated from a canonical ensem
at temperatureT . Then W may be computed for each
trajectoryzstd in the ensemble, and the overbars appear
in Eqs. (1) and (2) indicate an average over the distribut
of values ofW thus obtained.

In the limiting cases of infinitely slow and infinitely fas
switching of the external parameters, we know explicit
the ensemble distribution of values ofW , and thus can
readily check the validity of our central result. In th
slow limit sts ! `d, the system is in quasistatic equilib
rium with the reservoir throughout the switching proces
henceW ­

R1
0 dlk≠Hly≠lll for every trajectory in the
© 1997 The American Physical Society
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ensemble. Equation (2b) then reduces to

DF ­
Z 1

0
dl

ø
≠Hl

≠l

¿
l

. (4)

In the opposite limitsts ! 0d, the switching is instan-
taneous, and the work is simplyW ­ H1 2 H0 ; DH,
evaluated at the initial conditions [2]. Since we have
canonical distribution of initial conditions, Eq. (2b) be
comes, in this case,

DF ­ 2b21 lnkexp2bDHl0 . (5)

These two results, Eqs. (4) and (5), are well-establis
identities [3,4]. Note that both giveDF in terms of
equilibrium (canonical) averages. By contrast, for fin
ts, our ensemble of trajectories lags behind the equilibri
distribution in phase space asHl changes with time. In
this sense, Eq. (2) is the explicitlynonequilibrium results.

To prove our central result, it is instructive to first co
sider what happens when there isno reservoir during the
switching process. The evolution of the system is th
described by a deterministic trajectoryzstd which evolves
under Hlszd, as l changes from 0 to 1 over a timets.
Consider an ensemble of such trajectories, defined b
canonical distribution of initial conditions at temperatu
T . (This corresponds to allowing the system to equilibr
with a reservoir, and then decoupling the two, before e
realization of the switching process.) The ensemble of
jectories is described by a phase space densityfsz, td
which satisfiesfsz, 0d ­ Z21

0 expf2bH0szdg, and which
evolves under the Liouville equation,≠fy≠t 1 h f, Hlj ­
0, with l ­ lstd ­ tyts. Here,h?, ?j denotes the Poisso
bracket. Since the evolution is deterministic, a particu
trajectory in this ensemble is uniquely specified by a sin
point: There is exactly one trajectory which passes thro
a givenz at time t. This means we can define a “wor
accumulated” functionwsz, td, as follows. For the trajec
tory which passes through the pointz at timet, wsz, td is
the work performed on that trajectory (the time integral
Ùl≠Hly≠l) up to timet. Since the total workW is just
the work accumulated up to timets [Eq. (3)], the ensem-
ble averageexps2bWd may be expressed as

exps2bW d ­
Z

dz fsz, tsd expf2bwsz, tsdg . (6)

Now, the work done on an isolated system is equal to
change in its energy. Thus,wsz, td ­ Hlszd 2 H0sz0d,
wherez0 ­ z0sz, td is the initial condition for the trajec-
tory which passes throughz at timet; andl ­ lstd. Fur-
thermore, Liouville’s theorem tells us that phase spa
density is conserved along any trajectory, hencefsz, td ­
fsz0, 0d ­ Z21

0 expf2bH0sz0dg. Combining these result
gives

fsz, td expf2bwsz, tdg ­ Z21
0 expf2bHlszdg . (7)

Equation (6) then becomes
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exps2bW d ­ Z21
0

Z
dz expf2bH1szdg ­ Z1yZ0 .

(8)

Since DF ­ 2b21 lnsZ1yZ0d, we have established th
validity of Eq. (2) for the case in which the system
isolated during the switching process.

Now consider the situation in which the system rema
coupled to the reservoir. We assume that the system
interest and the reservoir together constitute a larger,iso-
lated Hamiltonian system. Letz0 denote a point in the
phase space of the reservoir, letH sz0d be the Hamiltonian
for the reservoir alone, and lety ­ sz, z0d denote a point in
the full phase space of system and reservoir. Motion in
full phase space is deterministic, and governed by a Ham
tonianGls yd ­ Hlszd 1 H sz0d 1 hintsz, z0d, where the
interaction termhint couples the system of interest to th
reservoir. LetYl be the partition function forGl. We
explicitly assume the reservoir to be large enough, and
interaction energyhint small enough [5], that whenl is
held fixed the system of interest samples its phase sp
according to the Boltzmann factore2bHlszd. Now imag-
ine that, att ­ 0, we populate thefull phase space with
a canonical distribution of initial conditions [6], using th
Boltzmann factore2bG0syd. From this ensemble of initia
conditions, an ensemble of trajectoriesystd evolves deter-
ministically underGl, asl switches from 0 to 1. Since
the system of interest and reservoir together constitute
isolated Hamiltonian system, the workW performed on the
system of interest is equal to the change in thetotal energy
of the system and reservoir:W ­ G1 sssystsdddd 2 G0sssys0dddd.
Therefore, applying the analysis of the previous paragr
to the situation considered here, withy, Gl, andYl replac-
ing z, Hl, andZl, respectively, we get

exps2bW d ­ Y1yY0 . (9)

The right side of Eq. (9) depends only on the initial a
final HamiltoniansG0syd and G1syd, and on the tem-
peratureT , which means thatexps2bWd is independent
of the switching timets. But we already know that
exps2bW d ­ exps2bDFd in the limit ts ! `, since
W ­ DF for every member of the ensemble, in th
limiting case. We therefore conclude that

exps2bWd ­ exps2bDFd (10)

for all values ofts (and all pathsg).
Equation (9), which tells us thatexps2bWd is indepen-

dent of bothg andts, is identically true, given the formu-
lation of the problem. However, in going from Eq. (9) t
Eq. (10), we invoke a result from quasiequilibrium stat
tical mechanics, which relies on the assumption of we
coupling (smallhint). Equation (2), therefore, is validfor
sufficiently weak couplingbetween the system and rese
voir. This may be seen more directly by writing an e
plicit expression for the ratioY1yY0: only if hint may be
2691
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neglected does this ratio immediately reduce toZ1yZ0
f­ exps2bDFdg.

Note that the inequalityW $ DF [Eq. (1)] follows
directly from the equalityexps2bW d ­ exps2bDFd
[Eq. (2a)], by application of the mathematical identi
expx $ expx [7]. This establishesW $ DF directly
from a microscopic, Hamiltonian basis rather than
invoking the increase of entropy. [In the limitts ! 0,
we haveW ­ kDHl0, and Eq. (1) reduces to the Gibb
Bogoliubov-Feynman bound [7],kDHl0 $ DF.]

It is also worthwhile to point out that the right side o
Eq. (2b) may be expanded as a sum of cumulants
Eq. (9) of Ref. [4]]:

DF ­
X̀
n­1

s2bdn21 vn

n!
, (11)

wherevn is thenth cumulant of the ensemble distributio
of values ofW . If this distribution happens to be Gaussia
(as may be expected for sufficiently slow switching), th
only the first two terms survive, and we have

DF ­ W 2 bs2y2 , (12)

where s2 ; W2 2 W
2. The dissipated workWdiss

s­ W 2 DFd is then related to the fluctuations inW by
Wdiss ­ bs2y2. This fluctuation-dissipation relation ha
been obtained previously by Hermans [8].

The central result of this paper, Eq. (2), makes a c
crete prediction regarding the outcome of an ensembl
measurements, which, in principle, is subject to experim
tal verification. In practice, however, theapplicability of
Eq. (2) may be severely limited by the following consi
erations. If the fluctuations inW from one measuremen
to the next are much larger thankBT (i.e., if s ¿ b21),
then the ensemble average of exps2bW d will be domi-
nated by values ofW many standard deviations belowW .
Since such values of the work represent statistically v
rare events, it would require an unreasonably large n
ber of measurements ofW to determineexps2bW d with
accuracy. Therefore, given a specific system of inter
switching pathg, and switching timets, the fluctuations
in the workW must not be much greater thankBT , if we
are to have any hope of verifying Eq. (2) experimenta
This condition pretty much rules out macroscopic syste
of interest. In recent years, however, the direct manipu
tion of nanoscaleobjects—and the measurement of forc
thereon [9]—has become feasible. Such systems may
fer the best chance for experimentally testing the new re
of this paper.

So far, we have assumed that our system is coup
to a physical heat reservoir. It is interesting, howeve
to discuss this problem within the context of numeric
simulations. On a computer, a heat reservoir must
“mocked up.” One way to accomplish this is with a Nos
Hoover (NH) thermostat [10]. In its simplest form, th
method replaces the reservoir with a single variablez ;
2692
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motion in the extended phase spacesz, z d is governed by
the NH equations,

h Ùq ­ pym, Ùp ­ 2=Fl 2 zpjn , (13)
Ùz ­ sKyK0 2 1dyt2. (14)

[We have assumedHl ­ p2y2m 1 Flsqd. The index
n runs over all D degrees of freedom of the system
K ­ p2y2m is the total kinetic energy of the system,K0 ­
b21Dy2 is the thermal average ofK , and the parametert

acts as a relaxation time.] Forl fixed, a trajectoryzstd
generated by these equations of motion samples ph
space according to the Boltzmann factor expf2bHlszdg,
provided that the evolution is sufficiently chaotic.

It is interesting to ask, does Eq. (2) remain valid if th
system evolves under the NH equations, rather than un
the influence of a physical reservoir? Let us consider
ensemble of initial conditions described by the density,

fsz, z , 0d ­ cZ21
0 expf2bQ0sz, z dg , (15)

where Qlsz, z d ; Hlszd 1 Dz 2t2y2b, and c ­ sDt2y
2pd1y2 is a normalization factor. [The distributioncZ21

l 3

exps2bQld is stationary under the NH equations whe
l is held fixed, and may be viewed as the “canonica
distribution in the extended phase space.] Allowing the
initial conditions to evolve under the NH equations, asl

changes from 0 to 1, we obtain an ensemble of trajecto
described by a time-dependent densityfsz, z , td. As be-
fore, the work performed on each member of the ensem
is defined to be the time integral ofÙl≠Hly≠l. We now
introduce a work accumulated functionwsz, z , td, analo-
gous towsz, td introduced earlier. It is straightforward to
establish that

fsz, z , td ­ fsz0, z0, 0d exp

"
D

Z t

0
z st0d dt0

#
, (16)

wsz, z , td ­ Qlsz, z d 2 Q0sz0, z0d 1 b21D
Z t

0
z st0d dt0,

(17)

where sz0, z0d are the initial conditions associated wit
the trajectory which passes throughsz, z d at time t, and
the integral

Rt
0 z dt0 is performed along this trajectory

Then, repeating the steps leading to Eq. (8), we ag
get exps2bW d ­ exps2bDFd, where the overbar now
denotes an average over our ensemble of NH trajec
ries. Thus, Eq. (2) remains valid [given the canonical in
tial distribution specified by Eq. (15)] when the syste
is coupled to a Nosé-Hoover thermostat. This result
identically true: No weak coupling assumption is nece
sary, nor do we need to assume that the evolution is chao

It may similarly be established that Eq. (2) is iden
tically valid when the thermostat is numerically imple
mented using the Metropolis Monte Carlo algorithm (se
e.g., Ref. [11]) rather than Nosé-Hoover dynamics.
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Numerical simulations of this sort are often used
compute free energy differences of physical, chemical
biological interest [12,13]. Typically, a number of simu
lations of slow switching from one configuration to a
other are performed, and the workW obtained from each
simulation is treated as an estimate of the free energy
ferenceDF. This estimate contains both statistical erro
(W differs from one simulation to the next) and syste
atic errors [any finite-rate simulation has a bias, as
Eq. (1)]. Statistical errors are removed by averaging o
many simulations, but the systematic error remains, t
the average ofW really represents an upper bound
DF. (Reversing direction, a lower bound is establish
as well [11].) Now, Eq. (2a) tells us that if we usee2bW

as an estimate fore2bDF (rather thanW for DF), thenthis
estimate isunbiased: There are only statistical errors. W
can take advantage of this fact by using the “exponen
average,”Wx ; 2b21 ln exps2bW d, rather than the or-
dinary averageW , as an estimate ofDF; the overbar now
denotes an average over a finite numberNs of simulations.
It is easily shown that the systematic error inWx is smaller
than that inW , and vanishes asNs ! ` [Eq. (2b)]. The
upshot is that, if we perform more than one simulation
the switching process, thenWx will provide a tighter upper
bound onDF thanW .

Hunter [14] has performed a “back-of-the-envelop
test of this idea. Reference [15] details the results of
switching simulations in which a threonine dipeptide
converted to an alanine dipeptide, and vice versa. Us
this data, Hunter computedWx for both sets of simu-
lations, obtaining the following bounds:25.4 # DF #

24.5. This compares favorably with the bounds obtain
by computingW : 26.2 # DF # 23.8.

In the time since the original submission of this pap
numerical simulations by Tams (manuscript in preparati
have provided a nice illustration of Eq. (2).

To summarize, the central result of this paper gives
equilibrium free energy differenceDF between two con-
figurationsA andB of a classical system, in terms of an e
semble of finite-time measurements of the work perform
on the system as it is switched fromA to B. The derivation
relies on the usual assumption of weak coupling betw
system and reservoir, but otherwise follows directly fro
Hamilton’s equations. Two well-known equilibrium iden
tities for DF, Eqs. (4) and (5), emerge as limiting cases
this more general, nonequilibrium result. Practical cons
erations, in all likelihood, limit the applicability of Eq. (2
to systems of no more than a moderate number of deg
of freedom. Finally, the equality may be useful when n
merical simulations of thermostatted systems are use
compute free energy differences.
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