PHYSICAL CONSTANTS | speed of light | c | 299,792,458 [†] | meter sec ⁻¹ | |--------------------------|----------------------------|--------------------------|--| | elementary charge | e | 4.803×10^{-10} | esu | | | | 1.602×10^{-19} | coulomb | | electron mass | m_e | 9.110×10^{-28} | gram | | proton mass | m_p | 1.673×10^{-24} | gram | | Avogadro's number | $N_{\scriptscriptstyle 0}$ | 6.022×10^{23} | mole ⁻¹ | | Boltzmann constant | k | 1.381×10^{-16} | erg kelvin-1 | | Planck constant | h | 6.626×10^{-27} | erg sec | | gravitational constant | \boldsymbol{G} | 6.672×10^{-8} | gram ⁻¹ cm ³ sec ⁻² | | electron magnetic moment | | 9.285×10^{-21} | erg gauss ⁻¹ | | proton magnetic moment | | 1.411×10^{-23} | erg gauss ⁻¹ | $^{^{\}dagger}$ The assignment of this exact value to c constitutes the new definition of the meter. as explained in Appendix E. The values of the other constants have here been arbitrarily rounded off to four digits. With the exception of the gravitational constant G they have all been determined experimentally with precision considerably better than that.