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PREFACE

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially
students taking a first course in the subject. It is based on a one-semester course
I’ve taught for the past several years at MIT and Cornell. My goal is to explain the
mathematics as clearly as possible, and to show how it can be used to understand
some of the wonders of the nonlinear world.

The mathematical treatment is friendly and informal, but still careful. Analyti-
cal methods, concrete examples, and geometric intuition are stressed. The theory is
developed systematically, starting with first-order differential equations and their
bifurcations, followed by phase plane analysis, limit cycles and their bifurcations,
and culminating with the Lorenz equations, chaos, iterated maps, period doubling,
renormalization, fractals, and strange attractors.

A unique feature of the book is its emphasis on applications. These include me-
chanical vibrations, lasers, biological rhythms, superconducting circuits, insect
outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and
even a technique for using chaos to send secret messages. In each case, the sci-
entific background is explained at an elementary level and closely integrated with
the mathematical theory.

Prerequisites

The essential prerequisite is single-variable calculus, including curve-sketch-
ing, Taylor series, and separable differential equations. In a few places, multivari-
able calculus (partial derivatives, Jacobian matrix, divergence theorem) and linear
algebra (eigenvalues and eigenvectors) are used. Fourier analysis is not assumed,
and is developed where needed. Introductory physics is used throughout. Other
scientific prerequisites would depend on the applications considered, but in all
cases, a first course should be adequate preparation.
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Possible Courses
The book could be used for several types of courses:

* A broad introduction to nonlinear dynamics, for students with no prior expo-
sure to the subject. (This is the kind of course I have taught.) Here one goes
straight through the whole book, covering the core material at the beginning

~ of each chapter, selecting a few applications to discuss in depth and giving
light treatment to the more advanced theoretical topics or skipping them alto-
gether. A reasonable schedule is seven weeks on Chapters 1-8, and five or six
weeks on Chapters 9-12. Make sure there’s enough time left in the semester
to get to chaos, maps, and fractals.

* A traditional course on nonlinear ordinary differential equations, but with
more emphasis on applications and less on perturbation theory than usual.
Such a course would focus on Chapters 1-8.

* A modern course on bifurcations, chaos, fractals, and their applications, for
students who have already been exposed to phase plane analysis. Topics
would be selected mainly from Chapters 3, 4, and 8-12.

For any of these courses, the students should be assigned homework from the
exercises at the end of each chapter. They could also do computer projects; build
chaotic circuits and mechanical systems; or look up some of the references to geta
taste of current research. This can be an exciting course to teach, as well as to take.
I hope you enjoy it.

Conventions

Equations are numbered consecutively within each section. For instance, when
we’re working in Section 5.4, the third equation is called (3) or Equation (3), but
elsewhere it is called (5.4.3) or Equation (5.4.3). Figures, examples, and exercises
are always called by their full names, e.g., Exercise 1.2.3. Examples and proofs
end with a loud thump, denoted by the symbol &.
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OVERVIEW

1.0 Chaos, Fractals, and Dynamics

There is a tremendous fascination today with chaos and fractals. James Gleick’s
book Chaos (Gleick 1987) was a bestseller for months—an amazing accomplish-
ment for a book about mathematics and science. Picture books like The Beauty of
Fractals by Peitgen and Richter (1986) can be found on coffee tables in living
rooms everywhere. It seems that even nonmathematical people are captivated by
the infinite patterns found in fractals (Figure 1.0.1). Perhaps most important of all,
chaos and fractals represent hands-on mathematics that is alive and changing. You
can turn on a home computer and create stunning mathematical images that no one

has ever seen before.

Figure 1.0.1

The aesthetic appeal of chaos
and fractals may explain why so
many people have become in-
trigued by these ideas. But maybe
you fee] the urge to go deeper—to
learn the mathematics behind the
pictures, and to see how the ideas
can be applied to problems in sci-
ence and engineering. If so, this is
a textbook for you.

The style of the book is infor-
mal (as you can see), with an em-
phasis on concrete examples and
geometric thinking, rather than
proofs and abstract arguments. It is
also an extremely “applied”
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book—uvirtually every idea is illustrated by some application to science or engi-
neering. In many cases, the applications are drawn from the recent research litera-
ture. Of course, one problem with such an applied approach is that not everyone is
an expert in physics and biology and fluid mechanics . . . so the science as well as
the mathematics will need to be explained from scratch. But that should be fun,
and it can be instructive to see the connections among different fields.

Before we start, we should agree about something: chaos and fractals are part of
an even grander subject known as dynamics. This is the subject that deals with
change, with systems that evolve in time. Whether the system in question settles
down to equilibrium, keeps repeating in cycles, or does something more compli-
cated, it is dynamics that we use to analyze the behavior. You have probably been
exposed to dynamical ideas in various places—in courses in differential equations,
classical mechanics, chemical kinetics, population biology, and so on. Viewed
from the perspective of dynamics, all of these subjects can be placed in a common
framework, as we discuss at the end of this chapter.

Our study of dynamics begins in earnest in Chapter 2. But before digging in, we
present two overviews of the subject, one historical and one logical. Our treatment
1s intuitive; careful definitions will come later. This chapter concludes with a “dy-
namical view of the world,” a framework that will guide our studies for the rest of
the book.

1.1 Capsule History of Dynamics

Although dynamics is an interdisciplinary subject today, it was originally a branch
of physics. The subject began in the mid-1600s, when Newton invented differen-
tial equations, discovered his laws of motion and universal gravitation, and com-
bined them to explain Kepler’s laws of planetary motion. Specifically, Newton
solved the two-body problem-—the problem of calculating the motion of the earth
around the sun, given the inverse-square law of gravitational attraction between
them. Subsequent generations of mathematicians and physicists tried to extend
Newton’s analytical methods to the three-body problem (e.g., sun, earth, and
moon) but curiously this problem turned out to be much more difficult to solve.
After decades of effort, it was eventually realized that the three-body problem was
essentially impossible to solve, in the sense of obtaining explicit formulas for the
motions of the three bodies. At this point the situation seemed hopeless.

The breakthrough came with the work of Poincaré in the late 1800s. He intro-
duced a new point of view that emphasized qualitative rather than quantitative
questions. For example, instead of asking for the exact positions of the planets at
all times, he asked “Is the solar system stable forever, or will some planets eventu-
ally fly off to infinity?” Poincaré developed a powerful geometric approach to an-
alyzing such questions. That approach has flowered into the modern subject of
dynamics, with applications reaching far beyond celestial mechanics. Poincaré
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was also the first person to glimpse the possibility of chaos, in which a determinis-
tic system exhibits aperiodic behavior that depends sensitively on the initial condi-
tions, thereby rendering long-term prediction impossible.

But chaos remained in the background in the first half of this century; instead
dynamics was largely concerned with nonlinear oscillators and their applications
in physics and engineering. Nonlinear oscillators played a vital role in the develop-
ment of such technologies as radio, radar, phase-locked loops, and lasers. On the
theoretical side, nonlinear oscillators also stimulated the invention of new mathe-
matical techniques—pioneers in this area include van der Pol, Andronov, Little-
wood, Cartwright, Levinson, and Smale. Meanwhile, in a separate development,
Poincaré’s geometric methods were being extended to yield a much deeper under-
standing of classical mechanics, thanks to the work of Birkhoff and later Kol-
mogorov, Arnol’d, and Moser.

The invention of the high-speed computer in the 1950s was a watershed in
the history of dynamics. The computer allowed one to experiment with equa-
tions in a way that was impossible before, and thereby to develop some intuition
about nonlinear systems. Such experiments led to Lorenz’s discovery in 1963 of
chaotic motion on a strange attractor. He studied a simplified model of convec-
tion rolls in the atmosphere to gain insight into the notorious unpredictability of
the weather. Lorenz found that the solutions to his equations never settled down
to equilibrium or to a periodic state—instead they continued to oscillate in an ir-
regular, aperiodic fashion. Moreover, if he started his simulations from two
slightly different initial conditions, the resulting behaviors would soon become
totally different. The implication was that the system was inferently unpre-
dictable—tiny errors in measuring the current state of the atmosphere (or any
other chaotic system) would be amplified rapidly, eventually leading to embar-
rassing forecasts. But Lorenz also showed that there was structure in the
chaos—when plotted in three dimensions, the solutions to his equations fell
onto a butterfly-shaped set of points (Figure 1.1.1). He argued that this set had
to be “an infinite complex of surfaces”—today we would regard it as an exam-
ple of a fractal.

Lorenz’s work had little impact until the 1970s, the boom years for chaos. Here
are some of the main developments of that glorious decade. In 1971 Ruelle and Tak-
ens proposed a new theory for the onset of turbulence in fluids, based on abstract
considerations about strange attractors. A few years later, May found examples of
chaos in iterated mappings arising in population biology, and wrote an influential re-
view article that stressed the pedagogical importance of studying simple nonlinear
systems, to counterbalance the often misleading linear intuition fostered by tradi-
tional education. Next came the most surprising discovery of all, due to the physicist
Feigenbaum. He discovered that there are certain universal laws governing the tran-
sition from regular to chaotic behavior; roughly speaking, completely different sys-
tems can go chaotic in the same way. His work established a link between chaos and
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Figure 1.1.1

phase transitions, and enticed a generation of physicists to the study of dynamics. Fi-
nally, experimentalists such as Gollub, Libchaber, Swinney, Linsay, Moon, and
Westervelt tested the new ideas about chaos in experiments on fluids, chemical reac-
tions, electronic circuits, mechanical oscillators, and semiconductors.

Although chaos stole the spotlight, there were two other major developments in
dynamics in the 1970s. Mandelbrot codified and popularized fractals, produced
magnificent computer graphics of them, and showed how they could be applied in
a variety of subjects. And in the emerging area of mathematical biology, Winfree
applied the geometric methods of dynamics to biological oscillations, especially
circadian (roughly 24-hour) rhythms and heart rhythms.

By the 1980s many people were working on dynamics, with contributions too
numerous to list. Table 1.1.1 summarizes this history.

1.2 The Importance of Being Nonlinear

Now we turn from history to the logical structure of dynamics. First we need to in-
troduce some terminology and make some distinctions.
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Dynamics - A Capsule History
1666 Newton Invention of calculus, explanation of planetary motion
1700s Flowering of calculus and classical mechanics
1800s Analytical studies of planetary motion
1890s Poincaré Geometric approach, nightmares of chaos
1920-1950 Nonlinear oscillators in physics and engineering,
invention of radio, radar, laser
1920-1960 Birkhoff Complex behavior in Hamiltonian mechanics
Kolmogorov
Arnol'd
Moser
1963 Lorenz Strange attractor in simple model of convection
1970s Ruelle &Takens  Turbulence and chaos
May Chaos in logistic map
Feigenbaum Universality and renormalization, connection between
chaos and phase transitions
Experimental studies of chaos
Winfree Nonlinear oscillators in biology
Mandelbrot Fractals
1980s Widespread interest in chaos, fractals, oscillators,
and their applications
Table 1.1.1

There are two main types of dynamical systems: differential equations and it-
erated maps (also known as difference equations). Differential equations describe
the evolution of systems in continuous time, whereas iterated maps arise in prob-
lems where time is discrete. Differential equations are used much more widely in
science and engineering, and we shall therefore concentrate on them. Later in the
book we will see that iterated maps can also be very useful, both for providing sim-
ple examples of chaos, and also as tools for analyzing periodic or chaotic solutions
of differential equations. '

Now confining our attention to differential equations, the main distinction is be-
tween ordinary and partial differential equations. For instance, the equation for a
damped harmonic oscillator

2
md—f+bfii+kx=o (1)
dt dt
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is an ordinary differential equation, because it involves only ordinary derivatives
dx/dt and d’x/dt’ . That is, there is only one independent variable, the time 7. In
contrast, the heat equation

w_du
ot ox’

is a partial differential equation—it has both time ¢ and space x as independent
variables. Our concern in this book is with purely temporal behavior, and so we
deal with ordinary differential equations almost exclusively.

A very general framework for ordinary differential equations is provided by the
system

X =fix, .ohx,)
: (2)

X, = fi(x, ..o,x).

Here the overdots denote differentiation with respect to ¢. Thus X, =dx,/dt. The
variables x,, ..., x, might represent concentrations of chemicals in a reactor, popula-
tions of different species in an ecosystem, or the positions and velocities of the planets
in the solar system. The functions f,, ..., f, are determined by the problem at hand.

For example, the damped oscillator (1) can be rewritten in the form of (2),
thanks to the following trick: we introduce new variables x; = x and x, = x. Then
X, = x, , from the definitions, and

X,=x=—-Lxy-£x

2 m m

by ko
- m'x2 IH'X'[

from the definitions and the governing equation (1). Hence the equivalent system
(2)1is

X =X

N b ko
X, =—2x, —4x.

m m

This system is said to be linear, because all the x; on the right-hand side appear
to the first power only. Otherwise the system would be nonlinear. Typical nonlin-
ear terms are products, powers, and functions of the x,, such as x,x, , (x,)’, or
cos X, .

For example, the swinging of a pendulum is governed by the equation

¥+4sinx=0,

where x is the angle of the pendulum from vertical, g is the acceleration due to
gravity, and L is the length of the pendulum. The equivalent system is nonlinear:
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X=X

L g
X, =—4$sinx,.

Nonlinearity makes the pendulum equation very difficult to solve analytically.
The usual way around this is to fudge, by invoking the small angle approximation
sinx = x for x << 1. This converts the problem to a linear one, which can then be
solved easily. But by restricting to small x, we’re throwing out some of the
physics, like motions where the pendulum whirls over the top. Is it really necessary
to make such drastic approximations?

It turns out that the pendulum equation can be solved analytically, in terms of
elliptic functions. But there ought to be an easier way. After all, the motion of the
pendulum is simple: at low energy, it swings back and forth, and at high energy it
whirls over the top. There should be some way of extracting this information from
the system directly. This is the sort of problem we’l1l learn how to solve, using geo-
metric methods.

Here’s the rough idea. Suppose we happen to know a solution to the pendu-
Ium system, for a particular initial condition. This solution would be a pair of
functions x,(t) and x,(t), representing the position and velocity of the pendu-
lum. If we construct an abstract space with coordinates (x,x,), then the solu-
tion (x,(#), x,(¢)) corresponds to a point moving along a curve in this space
(Figure 1.2.1).

X

/H\OCQ,))

X x

(%1(0), %2 (0))

Figure 1.2.1

This curve is called a trajectory, and the space is called the phase space for the
system. The phase space is completely filled with trajectories, since each point can
serve as an initial condition.

Our goal is to run this construction in reverse: given the system, we want to

1.2 THE IMPORTANCE OF BEING NONLINEAR 7



draw the trajectories, and thereby extract information about the solutions. In many
cases, geometric reasoning will allow us to draw the trajectories without actually
solving the system!

Some terminology: the phase space for the general system (2) is the space with
coordinates x,, ..., x, . Because this space is n-dimensional, we will refer to (2) as
an n-dimensional system or an nth-order system. Thus n represents the dimen-
sion of the phase space.

Nonautonomous Systems

You might worry that (2) is not general enough because it doesn’t include any ex-
plicit time dependence. How do we deal with time-dependent or nonautonomous
equations like the forced harmonic oscillator mx + bx + kx = Fcost ? In this case too
there’s an easy trick that allows us to rewrite the system in the form (2). We let x; = x
and x, = x as before but now we introduce x, =¢. Then x, =1 and so the equivalent
system is

X =X,
X, =3 (~kx, — bx, + Fcos x,) (3)
X, =1

which is an example of a three-dimensional system. Similarly, an nth-order time-
dependent equation is a special case of an (n+1)-dimensional system. By this
trick, we can always remove any time dependence by adding an extra dimension to
the system.

The virtue of this change of variables is that it allows us to visualize a phase
space with trajectories frozen in it. Otherwise, if we allowed explicit time depen-
dence, the vectors and the trajectories would always be wiggling—this would ruin
the geometric picture we’re trying to build. A more physical motivation is that the
state of the forced harmonic oscillator is truly three-dimensional: we need to know
three numbers, x, x, and 7, to predict the future, given the present. So a three-
dimensional phase space is natural.

The cost, however, is that some of our terminology is nontraditional. For exam-
ple, the forced harmonic oscillator would traditionally be regarded as a second-
order linear equation, whereas we will regard it as a third-order nonlinear system,
since (3) is nonlinear, thanks to the cosine term. As we’ll see later in the book,
forced oscillators have many of the properties associated with nonlinear systems,
and so there are genuine conceptual advantages to our choice of language.

Why Are Nonlinear Problems So Hard?

As we’ve mentioned earlier, most nonlinear systems are impossible to solve ana-
Iytically. Why are nonlinear systems so much harder to analyze than linear ones?
The essential difference is that linear systems can be broken down into parts. Then
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each part can be solved separately and finally recombined to get the answer. This
idea allows a fantastic simplification of complex problems, and underlies such meth-
ods as normal modes, Laplace transforms, superposition arguments, and Fourier
analysis. In this sense, a linear system is precisely equal to the sum of its parts.

But many things in nature don’t act this way. Whenever parts of a system inter-
fere, or cooperate, or compete, there are nonlinear interactions going on. Most of
everyday life is nonlinear, and the principle of superposition fails spectacularly. If
you listen to your two favorite songs at the same time, you won’t get double the plea-
sure! Within the realm of physics, nonlinearity is vital to the operation of a laser, the
formation of turbulence in a fluid, and the superconductivity of Josephson junctions.

1.3 A Dynamical View of the World

Now that we have established the ideas of nonlinearity and phase space, we can
present a framework for dynamics and its applications. Our goal is to show the log-
ical structure of the entire subject. The framework presented in Figure 1.3.1 will
guide our studies thoughout this book.

The framework has two axes. One axis tells us the number of variables needed
to characterize the state of the system. Equivalently, this number is the dimension
of the phase space. The other axis tells us whether the system is linear or nonlin-
ear.

For example, consider the exponential growth of a population of organisms.
This system is described by the first-order differential equation

X =rx

where x is the population at time ¢ and r is the growth rate. We place this system
in the column labeled “n =1 because one piece of information—the current value
of the population x—is sufficient to predict the population at any later time. The
system is also classified as linear because the differential equation x = rx is linear
in x.

As a second example, consider the swinging of a pendulum, governed by

X+4sinx=0.

In contrast to the previous example, the state of this system is given by two vari-
ables: its current angle x and angular velocity x . (Think of it this way: we need
the initial values of both x and x to determine the solution uniquely. For example,
if we knew only x, we wouldn’t know which way the pendulum was swinging.)
Because two variables are needed to specify the state, the pendulum belongs in the
n =2 column of Figure 1.3.1. Moreover, the system is nonliﬂear, as discussed in
the previous section. Hence the pendulum is in the lower, nonlinear half of the
n=2 column.

1.3 A DYNAMICAL VIEW OF THE WORLD 9




LU

(s01§-1o1ABN) SPM]J 1UINGM,

Asdanidg

uoneHqry

S9AEM [EOTIDYO pue [2o130[01q
‘UOTSTUJIP-UOTIIRIY

K100 p[oy wyuend)
(urISUTy) ANATIR[RS [2IQUID
soyenbyyreg

Sewse[q

(SUOOS ‘SYO0YS) SIARM JBSUIUON

{nxapduiod pioduizy-onpds

SPINJ SNOISIA
SOTSTINY

UOLSTIJIP PUe 18I

(9rIn(] “S19qUASIOY “YUIPQIYIS)

SOMRYIIUI UIyURnd)

([PmxeR) wsnouSeonsa[q

SOMUIOUOST
SISAS00

WwaISAS sunurwy

SYIOMIBU [BINAN
UONBZIUOIYIUAS [[99 MBIH
sAexre uosydosor

(51030NPUOITUIIS)
so15Ayd 21€1S-pI[OS IBOUT[UON

SOTURYIIUL
[eonsneIs wnuqImbauoN
sondo Iesur[uou ‘s1ase

SI0)e[[1950 Jeaurfuou pajdnod)

{, SoBd Wmueng)
SORUD JO SISN [e0N)0RI]

(J[rWS ‘UOSUIAYT)
SIOJR[[10SO IBUI[UOU PIJIO]

(1o1q[epuei)

S[eroRIy

(umequagag) sdewr pyeIay
SONSULY [BOTWSY))
(preoutoq) ws[qoid Apog-¢

(zu2I10T)
s10y0eme J3ueng

sovy)

Jajuoly eyy

sorueyoauL
[eonsness wonqumby

SOMUBUAD IB[NI[OIN

Burreour3us [ed1no[q

1

(uosydosor ‘[od Iop ueA)

SOTUONIII[D IBSUIJUON
$9[0A0 Kaxd-1018paIg
(S[[92 1189y ‘SUOINAU)
s101e[[1950 [BIIS0[OIq
$a]0Ad ]

SI0)E[[19S0 JTUOUWLIRYUY

wnnpuag

(uoimay ‘1o[dey])
worqoxd Apoq-g

MN2I T

sorvads o[3urs 10y
uonenba onsido]

SOMUBUAp [RUOnEXR[AT
‘stsAs padurepisaQy
suonedInyIg

sjurod paxig

Keoop 2ANIROIPEY

OIS Y

suonenbo aaBM s915Ayd Q)eIS-pI[OS Bunds pue ssepy
SaImonns P o3 fenuauodxy
Aionserg SI0)[[1050 opuouLey pa[dnoy) ‘Burroourdus [1A1D) I0JB[[10SO Teaul]
wniiqinba
Su33nd pup S2ADM vuawousyd 2411921100 SUoyDIISO 10 ‘KDIIP YIMO.LD)
wnnunuo) [ <<u czu 7=u I=u
-

SO[qeLIRA JO IoqUINN

TEQUIJUON

[UON

Atreaur

TEQUI]

Figure 1.3.1



One can continue to classify systems in this way, and the result will be some-
thing like the framework shown here. Admittedly, some aspects of the picture are
debatable. You might think that some topics should be added, or placed differ-
ently, or even that more axes are needed—the point is to think about classifying
systems on the basis of their dynamics.

There are some striking patterns in Figure 1.3.1. All the simplest systems occur
in the upper left-hand corner. These are the small linear systems that we learn
about in the first few years of college. Roughly speaking, these linear systems ex-
hibit growth, decay, or equilibrium when n =1, or oscillations when n=2. The
italicized phrases in Figure 1.3.1 indicate that these broad classes of phenomena
first arise in this part of the diagram. For example, an RC circuit has n=1 and
cannot oscillate, whereas an RLC circuit has n =2 and can oscillate.

The next most familiar part of the picture is the upper right-hand corner. This is
the domain of classical applied mathematics and mathematical physics where the
linear partial differential equations live. Here we find Maxwell’s equations of elec-
tricity and magnetism, the heat equation, Schrodinger’s wave equation in quantum
mechanics, and so on. These partial differential equations involve an infinite “con-
tinuum” of variables because each point in space contributes additional degrees of
freedom. Even though these systems are large, they are tractable, thanks to such
linear techniques as Fourier analysis and transform methods.

In contrast, the lower half of Figure 1.3.1—the nonlinear half—is often ignored
or deferred to later courses. But no more! In this book we start in the lower left cor-
ner and systematically head to the right. As we increase the phase space dimension
from n =1 to n =3, we encounter new phenomena at every step, from fixed points
and bifurcations when n =1, to nonlinear oscillations when »n =2, and finally
chaos and fractals when n =3 . In all cases, a geometric approach proves to be very
powerful, and gives us most of the information we want, even though we usually
can’t solve the equations in the traditional sense of finding a formula for the an-
swer. Our journey will also take us to some of the most exciting parts of modern
science, such as mathematical biology and condensed-matter physics.

You’ll notice that the framework also contains a region forbiddingly marked
“The frontier.” It’s like in those old maps of the world, where the mapmakers
wrote, “Here be dragons” on the unexplored parts of the globe. These topics are
not completely unexplored, of course, but it is fair to say that they lie at the limits
of current understanding. The problems are very hard, because they are both large
and nonlinear. The resulting behavior is typically complicated in both space and
time, as in the motion of a turbulent fluid or the patterns of electrical activity in a
fibrillating heart. Toward the end of the book we will touch on some of these prob-
lems—they will certainly pose challenges for years to come.

1.3 A DYNAMICAL VIEW OF THE WORLD 11
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FLOWS ON THE LINE

2.0 Introduction

In Chapter 1, we introduced the general system

X = filxg, oux,)
X, =f,(x, ....x,)

and mentioned that its solutions could be visualized as trajectories flowing through
an n-dimensional phase space with coordinates (x,, ...,x,). At the moment, this
idea probably strikes you as a mind-bending abstraction. So let’s start slowly, be-
ginning here on earth with the simple case n=1. Then we get a single equation of
the form

%= f(x).

Here x(¢) is a real-valued function of time ¢, and f(x) is a smooth real-valued
function of x. We’ll call such equations one-dimensional or first-order systems.

Before there’s any chance of confusion, let’s dispense with two fussy points of
terminology:

1. The word system is being used here in the sense of a dynamical system,
not in the classical sense of a collection of two or more equations. Thus
a single equation can be a “system.”

2. We do not allow f to depend explicitly on time. Time-dependent or
“nonautonomous” equations of the form x = f(x,t) are more compli-
cated, because one needs two pieces of information, x and ¢, to predict
the future state of the system. Thus x = f(x,7) should really be re-
garded as a two-dimensional or second-order system, and will there-
fore be discussed later in the book.

2.0 INTRODUCTION 15



2.1 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will introduce
one of the most basic techniques of dynamics: interpreting a differential equation
as a vector field.

Consider the following nonlinear differential equation:

x = sin x. (1)

To emphasize our point about formulas versus pictures, we have chosen one of the
few nonlinear equations that can be solved in closed form. We separate the vari-
ables and then integrate:

dx
. )
sin x

dt=

which implies

t=J.cscxdx

=—In|escx+cotx| + C.

To evaluate the constant C, suppose that x = x, at t =0. Then C = lnl Csc X, +cot x, |

Hence the solution is

CSC X, + cot x
tr=1In kit BtV

(2)

csCx +cotx

This result is exact, but a headache to interpret. For example, can you answer
the following questions?

1. Suppose x, = m/4; describe the qualitative features of the solution x(r)
for all £ > 0. In particular, what happens as t — e ?

2. For an arbitrary initial condition x,, what is the behavior of x(r) as
t—> oo ?

Think about these questions for a while, to see that formula (2) is not transparent.

In contrast, a graphical analysis of (1) is clear and simple, as shown in Figure
2.1.1. We think of ¢ as time, x as the position of an imaginary particle moving
along the real line, and x as the velocity of that particle. Then the differential
equation x = sin x represents a vector field on the line: it dictates the velocity vec-
tor x ateach x. To sketch the vector field, it is convenient to plot x versus x, and
then draw arrows on the x-axis to indicate the corresponding velocity vector at
each x. The arrows point to the right when % >0 and to the left when x < 0.

16 FLOWS ON THE LINE



Figure 2.1.1

Here’s a more physical way to think about the vector field: imagine that fluid
is flowing steadily along the x-axis with a velocity that varies from place to
place, according to the rule x =sin x. As shown in Figure 2.1.1, the flow is to the
right when x >0 and to the left when x < 0. At points where x =0, there is no
flow; such points are therefore called fixed points. You can see that there are two
kinds of fixed points in Figure 2.1.1: solid black dots represent stable fixed
points (often called attractors or sinks, because the flow is toward them) and
open circles represent unstable fixed points (also known as repellers or
sources).

Armed with this picture, we can now easily understand the solutions to the dif-
ferential equation x = sin x. We just start our imaginary particle at x, and watch
how it is carried along by the flow.

This approach allows us to answer the questions above as follows:

1. Figure 2.1.1 shows that a particle starting at x, = 7/4 moves to the
right faster and faster until it crosses x = /2 (where sinx reaches its
maximum). Then the particle starts slowing down and eventually ap-
proaches the stable fixed point x =7z from the left. Thus, the qualita-
tive form of the solution is as shown in Figure 2.1.2.

Note that the curve is concave up at first, and then concave down;
this corresponds to the initial acceleration for x < /2, followed by the
deceleration toward x = 7.

2. The same reasoning applies to any initial condition x,. Figure 2.1.1
shows thatif x >0 initially, the particle heads to the right and asymptot-

ically approaches the nearest sta-
ble fixed point. Similarly, if

- - - - - === x <0 initially, the particle ap-

proaches the nearest stable fixed

point to its left. If x =0, then x

remains constant. The qualitative

T .
4 form of the solution for any ini-
L ¢ tial condition is sketched in Fig-
_ ure 2.1.3.
Figure 2.1.2
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Figure 2.1.3

In all honesty, we should admit that a picture can’t tell us certain quantitative
things: for instance, we don’t know the time at which the speed | x| is greatest. Butin
many cases qualitative information is what we care about, and then pictures are fine.

2.2 Fixed Points and Stability

The ideas developed in the last section can be extended to any one-dimensional
system x = f(x). We just need to draw the graph of f(x) and then use it to sketch
the vector field on the real line (the x-axis in Figure 2.2.1).

x

f(x)

Figure 2.2.1
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As before, we imagine that a fluid is flowing along the real line with a local veloc-
ity f(x). This imaginary fluid is called the phase fluid, and the real line is the
phase space. The flow is to the right where f(x) > 0 and to the left where f (x)<0.
To find the solution to x = f(x) starting from an arbitrary initial condition x,, we
place an imaginary particle (known as a phase point) at x, and watch how it is car-
ried along by the flow. As time goes on, the phase point moves along the x-axis
according to some function x(¢) . This function is called the frajectory based at x,,
and it represents the solution of the differential equation starting from the initial
condition x,. A picture like Figure 2.2.1, which shows all the qualitatively differ-
ent trajectories of the system, is called a phase portrait.

The appearance of the phase portrait is controlled by the fixed points x *, de-
fined by f(x*)=0; they correspond to stagnation points of the flow. In Figure
2.2.1, the solid black dot is a stable fixed point (the local flow is toward it) and the
open dot is an unstable fixed point (the flow is away from it).

In terms of the original differential equation, fixed points represent equilib-
rium solutions (sometimes called steady, constant, or rest solutions, since if
x =x* initially, then x(z) = x * for all time). An equilibrium is defined to be sta-
ble if all sufficiently small disturbances away from it damp out in time. Thus sta-
ble equilibria are represented geometrically by stable fixed points. Conversely,
unstable equilibria, in which disturbances grow in time, are represented by unsta-
ble fixed points.

EXAMPLE 2.2.1:

Find all fixed points for x = x> — 1, and classify their stability.

Solution: Here f(x)=x*>—1. To find the fixed points, we set f(x*)=0 and
solve for x *. Thus x* = +1. To determine stability, we plot x* —1 and then sketch
the vector field (Figure 2.2.2). The flow is to the right where x* —1>0 and to the
left where x* —1< 0. Thus x* = —1 is stable, and x* =1 is unstable. m

fx)=x2-1

Figure 2.2.2
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Note that the definition of stable equilibrium is based on small disturbances;
certain large disturbances may fail to decay. In Example 2.2.1, all small distur-
bances to x* = —1 will decay, but a large disturbance that sends x to the right of
x =1 will not decay—in fact, the phase point will be repelled out to +e. To em-
phasize this aspect of stability, we sometimes say that x* = —1 is locally stable, but
not globally stable.

EXAMPLE 2.2.2:

Consider the electrical circuit shown in Figure 2.2.3. A resistor R and a capaci-
tor C are in series with a battery of constant dc voltage V,. Suppose that the switch
is closed at ¢ = 0, and that there is no charge on the capacitor initially. Let Q(¢) de-

] note the charge on the capacitor at time
R t =2 0. Sketch the graph of Q(z).
AN 0. Sketeh e graph of 00,
R olution: This type of circuit problem

is probably familiar to you. It is governed
by linear equations and can be solved an-
alytically, but we prefer to illustrate the
geometric approach.

First we write the circuit equations. As
we go around the circuit, the total voltage
= drop must equal zero; hence -V, +
Figure 2.2.3 RI+Q/C=0, where I is the current
flowing through the resistor. This current causes charge to accumulate on the ca-
pacitor at a rate Q = I . Hence

-V, +RQ+Q/C=0 or

- W 0
Q=70 = R RC
The graph of f(Q) is a straight line with a negative slope (Figure 2.2.4). The
corresponding vector field has a fixed point where f(Q)=0, which occurs at
Q*=CV,. The flow is to the right where

0 £(Q)>0 and to the left where f(Q)<0.
Thus the flow is always toward Q *—itis a

@
7 \ stable fixed point. In fact, it is globally sta-

ble, in the sense that it is approached from
Q  allinitial conditions.

o* To sketch Q(r), we start a phase point at
the origin of Figure 2.2.4 and imagine how
it would move. The flow carries the phase
point monotonically toward Q*. Its speed

Figure 2.2.4
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O decreases linearly as it approaches the fixed point; therefore Q(#) is increasing
and concave down, as shown in Figure 2.2.5. m

Q
EXAMPLE 2.2.3:

Sketch the phase portrait corre-
sponding to x=x-—cosx, and deter-
mine the stability of all the fixed points.

Solution: One approach would be to
plot the function f(x)=x-cosx and
I then sketch the associated vector field.
Figure 2.2.5 This method is valid, but it requires you
to figure out what the graph of

Vol — — — — — — — — — —

x —cos x looks like.

There’s an easier solution, which exploits the fact that we know how to graph
y=x and y=cosx separately. We plot both graphs on the same axes and then
observe that they intersect in exactly one point (Figure 2.2.6).

y==x

N 7 :
NS N

A
Y

Figure 2.2.6

This intersection corresponds to a fixed point, since x*=cosx* and therefore
f(x*)=0. Moreover, when the line lies above the cosine curve, we have x > cosx
and so x > 0: the flow is to the right. Similarly, the flow is to the left where the line is
below the cosine curve. Hence x * is the only fixed point, and it is unstable. Note that
we can classify the stability of x *, even though we don’t have a formula for x * it-
self! m

2.3 Population Growth

The simplest model for the growth of a population of organisms is N =rN,
where N(t) is the population at time 7, and r > 0 is the growth rate. This model
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Growth rate predicts exponential growth:
N(1)= Nye", where N, is the
population at t =0.

Of course such exponential
growth cannot go on forever.
To model the effects of over-
K N crowding and limited resources,

population biologists and de-

mographers often assume that

the per capita growth rate N / N

decreases when N becomes sufficiently large, as shown in Figure 2.3.1. For

small N, the growth rate equals r, just as before. However, for populations larger

than a certain carrying capacity

Growth rate K, the growth rate actually be-

comes negative; the death rate is
higher than the birth rate.

A mathematically convenient
way to incorporate these ideas is
to assume that the per capita

1\]\7 growth rate N/N decreases lin-
early with N (Figure 2.3.2).
This leads to the logistic equation

N:rN(l—E)
K

first suggested to describe the growth of human populations by Verhulst in 1838.
This equation can be solved analytically (Exercise 2.3.1) but once again we prefer a
graphical approach. We plot N versus N to see what the vector field looks like.
Note that we plot only N = 0, since it makes no sense to think about a negative pop-
ulation (Figure 2.3.3). Fixed points occur at N*=0 and N* = K, as found by set-
ting N=0 and solving for N. By looking at the flow in Figure 2.3.3, we see that
N*=0 is an unstable fixed point and N* = K is a stable fixed point. In biological
terms, N =0 is an unstable equilibrium: a small population will grow exponen-
tially fast and run away from N =0 . On the other hand, if N is disturbed slightly
from K, the disturbance will decay monotonically and N(#) — K as t — oo.

In fact, Figure 2.3.3 shows that if we start a phase point at any N, > 0, it will al-
ways flow toward N = K. Hence the population always approaches the carrying

r

Figure 2.3.1

r

Figure 2.3.2

capacity.
The only exception is if N, = 0; then there’s nobody around to start reproducing,
and so N =0 for all time. (The model does not allow for spontaneous generation!)
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K/2 K

Figure 2.3.3

Figure 2.3.3 also allows us to deduce the qualitative shape of the solutions. For
example, if N, < K/2, the phase point moves faster and faster until it crosses
N = K/2, where the parabola in Figure 2.3.3 reaches its maximum. Then the phase
point slows down and eventually creeps toward N = K. In biological terms, this
means that the population initially grows in an accelerating fashion, and the graph
of N(#) is concave up. But after N = K/2, the derivative N begins to decrease,
and so N(t) is concave down as it asymptotes to the horizontal line N = K (Figure
2.3.4). Thus the graph of N(¢) is S-shaped or sigmoid for N, < K/2.

N

s

K/2 A

Figure 2.3.4

Something qualitatively different occurs if the initial condition N, lies between
K/2 and K; now the solutions are decelerating from the start. Hence these solu-
tions are concave down for all ¢, If the population initially exceeds the carrying ca-
pacity (N, > K ), then N(#) decreases toward N = K and is concave up. Finally, if
N, =0 or N, = K, then the population stays constant.

Critique of the Logistic Model
Before leaving this example, we should make a few comments about the biological
validity of the logistic equation. The algebraic form of the model is not to be taken lit-
erally. The model should really be regarded as a metaphor for populations that have a
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tendency to grow from zero population up to some carrying capacity K.

Originally a much stricter interpretation was proposed, and the model was ar-
gued to be a universal law of growth (Pearl 1927). The logistic equation was tested
in laboratory experiments in which colonies of bacteria, yeast, or other simple or-
ganisms were grown in conditions of constant climate, food supply, and absence of
predators. For a good review of this literature, see Krebs (1972, pp. 190-200).
These experiments often yielded sigmoid growth curves, in some cases with an im-
pressive match to the logistic predictions.

On the other hand, the agreement was much worse for fruit flies, flour beetles,
and other organisms that have complex life cycles, involving eggs, larvae, pupae,
and adults. In these organisms, the predicted asymptotic approach to a steady car-
rying capacity was never observed—instead the populations exhibited large, per-
sistent fluctuations after an initial period of logistic growth. See Krebs (1972) for a
discussion of the possible causes of these fluctuations, including age structure and
time-delayed effects of overcrowding in the population.

For further reading on population biology, see Pielou (1969) or May (1981).
Edelstein—Keshet (1988) and Murray (1989) are excellent textbooks on mathemat-
ical biology in general.

2.4 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability of fixed
points. Frequently one would like to have a more quantitative measure of stability,
such as the rate of decay to a stable fixed point. This sort of information may be
obtained by linearizing about a fixed point, as we now explain.

Let x* be a fixed point, and let 77(r) = x(#) — x * be a small perturbation away
from x *. To see whether the perturbation grows or decays, we derive a differential
equation for 77. Differentiation yields

n=4x-x*=1x

since x * is constant. Thus = x = f(x) = f(x*+ 1). Now using Taylor’s expan-
sion we obtain

fx*+ )= fF*) +nf (x*)+00r°),

where O(17°) denotes quadratically small terms in 77 . Finally, note that f(x*)=0
since x * is a fixed point. Hence

n=nf'(x¥)+00").

Now if f'(x*)#0, the O(n*) terms are negligible and we may write the approxi-
mation
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n=nf'(x*).

This is a linear equation in 77, and is called the linearization about x* . It shows
that the perturbation 1(t) grows exponentially if f'(x¥)>0 and decays if
fi(x*)<0. If f’(x¥)=0, the O(n*) terms are not negligible and a nonlinear
analysis is needed to determine stability, as discussed in Example 2.4.3 below.

The upshot is that the slope f’(x*) at the fixed point determines its stability. If
you look back at the earlier examples, you’ll see that the slope was always nega-
tive at a stable fixed point. The importance of the sign of f’(x*) was clear from
our graphical approach; the new feature is that now we have a measure of how sta-
ble a fixed point is—that’s determined by the magnitude of f’(x*). This magni-
tude plays the role of an exponential growth or decay rate. Its reciprocal 1/|f"(x*)|
is a characteristic time scale; it determines the time required for x(z) to vary sig-
nificantly in the neighborhood of x *.

EXAMPLE 2.4.1:

Using linear stability analysis, determine the stability of the fixed points for
X =sinx.

Solution: The fixed points occur where f(x)=sinx =0. Thus x* =kx , where
k is an integer. Then

1, k even

(x¥) = k =
J'x%) = coskm {—1, k odd.

Hence x * is unstable if &k is even and stable if k is odd. This agrees with the re-
sults shown in Figure 2.1.1. m

EXAMPLE 2.4.2:

Classify the fixed points of the logistic equation, using linear stability analysis,
and find the characteristic time scale in each case.

Solution: Here f(N)=rN(1-4), with fixed points N¥=0 and N* = K. Then
S (N)y=r—2 and so f'(0)=+ and f'(K)=—r. Hence N*=0 is unstable and
N*=K is stable, as found earlier by graphical arguments. In either case, the char-
acteristic time scale is 1/|f(N*)|=1/r .=

EXAMPLE 2.4.3:

What can be said about the stability of a fixed point when f’(x*)=0?

Solution: Nothing can be said in general. The stability is best determined on a
case-by-case basis, using graphical methods. Consider the following examples:

@x=—x  ®i=x (c) x=x> @ x=0
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Each of these systems has a fixed point x* =0 with f’(x*)=0. However the sta-
bility is different in each case. Figure 2.4.1 shows that (a) is stable and (b) is unsta-
ble. Case (c) is a hybrid case we’ll call half-stable, since the fixed point is
attracting from the left and repelling from the right. We therefore indicate this type
of fixed point by a half-filled circle. Case (d) is a whole line of fixed points; pertur-
bations neither grow nor decay.

5 @ i )
X X
% © i @

Figure 2.4.1

These examples may seem artificial, but we will see that they arise naturally in the
context of bifurcations—more about that later. m

2.5 Existence and Uniqueness

Our treatment of vector fields has been very informal. In particular, we have taken
a cavalier attitude toward questions of existence and uniqueness of solutions to
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" the system x = f(x). That’s in keeping with the “applied” spirit of this book.
Nevertheless, we should be aware of what can go wrong in pathological cases.

EXAMPLE 2.5.1:

“Show that the solution to x = x'* starting from x, = 0 is not unique.

Solution: The point x =0 is a fixed point, so one obvious solution is x(¢) =0
for all . The surprising fact is that there is another solution. To find it we separate
variables and integrate:

jx'l”dx = J.dz

s0 2x** =¢+C. Imposing the initial condition x(0)=0 yields C=0. Hence
3/2 . .
x(t)=(%1)"" is also a solution! m

When uniqueness fails, our geometric approach collapses because the phase
point doesn’t know how to move; if a phase point were started at the origin, would
it stay there or would it move according to x(¢) = (% 1)3/2 ? (Or as my friends in el-
ementary school used to say when discussing the problem of the irresistible force
and the immovable object, perhaps the phase point would explode!)

Actually, the situation in Example 2.5.1 is even worse than we’ve let on—there
are infinitely many solutions starting from the same initial condition (Exercise

x 2.5.4).

What’s the source of the non-uniqueness?
A hint comes from looking at the vector field
(Figure 2.5.1). We see that the fixed point
x*=0 1is very unstable—the slope f’(0) is
infinite.

Chastened by this example, we state a theo-
Figure 2.5.1 rem that provides sufficient conditions for exis-

tence and uniqueness of solutions to x = f(x).

Existence and Uniqueness Theorem: Consider the initial value problem
x=f(x), x(0)=x,.

Suppose that f(x) and f’(x) are continuous on an open interval R of the x-axis,
and suppose that x, is a point in R. Then the initial value problem has a solution
x(¢) on some time interval (—7,7) about ¢t =0, and the solution is unique.

For proofs of the existence and uniqueness theorem, see Borrelli and Coleman
(1987), Lin and Segel (1988), or virtually any text on ordinary differential equations.
This theorem says that if f(x) is smooth enough, then solutions exist and are
unique. Even so, there’s no guarantee that solutions exist forever, as shown by the
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next example.

EXAMPLE 2.5.2:

Discuss the existence and uniqueness of solutions to the initial value problem
x=1+x?, x(0) = x,. Do solutions exist for all time?

Solution: Here f(x)=1+ x> This function is continuous and has a continuous de-
rivative for all x. Hence the theorem tells us that solutions exist and are unique for any
initial condition x,. But the theorem does not say that the solutions exist for all time;
they are only guaranteed to exist in a (possibly very short) time interval around ¢ = 0.

For example, consider the case where x(0) = 0. Then the problem can be solved
analytically by separation of variables:

Joefa
1+x

which yields

tan' x=t+C

The initial condition x(0) =0 implies C=0. Hence x(¢)=tan is the solution.
But notice that this solution exists only for —7/2 <t < 7/2, because x(t) — *oo as
t = +m/2. Outside of that time interval, there is no solution to the initial value
problem for x, =0.m

The amazing thing about Example 2.5.2 is that the system has solutions that
reach infinity in finite time. This phenomenon is called blow-up. As the name sug-
gests, it is of physical relevance in models of combustion and other runaway
processes.

There are various ways to extend the existence and uniqueness theorem. One
can allow f to depend on time ¢, or on several variables x,, ..., x, . One of the
most useful generalizations will be discussed later in Section 6.2.

From now on, we will not worry about issues of existence and uniqueness—our
vector fields will typically be smooth enough to avoid trouble. If we happen to
come across a more dangerous example, we’ll deal with it then.

2.6 Impossibility of Oscillations

Fixed points dominate the dynamics of first-order systems. In all our examples so
far, all trajectories either approached a fixed point, or diverged to teo. In fact,
those are the only things that can happen for a vector field on the real line. The rea-
son is that trajectories are forced to increase or decrease monotonically, or remain
constant (Figure 2.6.1). To put it more geometrically, the phase point never re-
verses direction.
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Figure 2.6.1

Thus, if a fixed point is regarded as an equilibrium solution, the approach to
equilibrium is always monotonic—overshoot and damped oscillations can never
occur in a first-order system. For the same reason, undamped oscillations are im-
possible. Hence there are no periodic solutions to x = f(x).

These general results are fundamentally topological in origin. They reflect the
fact that x = f(x) corresponds to flow on a line. If you flow monotonically on a
line, you’ll never come back to your starting place—that’s why periodic solutions
are impossible. (Of course, if we were dealing with a circle rather than a line, we
could eventually return to our starting place. Thus vector fields on the circle can
exhibit periodic solutions, as we discuss in Chapter 4.)

Mechanical Analog: Overdamped Systems

It may seem surprising that solutions to x = f(x) can’t oscillate. But this result be-
comes obvious if we think in terms of a mechanical analog. We regard x = f(x) as a
limiting case of Newton’s law, in the limit where the “inertia term” mx is negligible.

For example, suppose a mass m is attached to a nonlinear spring whose restor-
ing force is F(x), where x is the displacement from the origin. Furthermore, sup-
pose that the mass is immersed in a vat of very viscous fluid, like honey or motor
oil (Figure 2.6.2), so that it is subject to a damping force bx . Then Newton’s law is

mx+bx = F(x).
honey If the viscous damping is strong compared

¥ = to the inertia term (bx >>mX), the System

F should behave like &x = F(x), or equivalently

(x) x = f(x), where f(x)=b"F(x). In this over-

damped limit, the behavior of the mechanical

m system is clear. The mass prefers to sit at a sta-

— ~ ble equilibrium, where f(x)=0and f’(x)<0.
Figure 2.6.2

If displaced a bit, the mass is slowly dragged
back to equilibrium by the restoring force. No overshoot can occur, because the .
damping is enormous. And undamped oscillations are out of the question! These
conclusions agree with those obtained earlier by geometric reasoning.
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Actually, we should confess that this argument contains a slight swindle. The
neglect of the inertia term mX is valid, but only after a rapid initial transient during
which the inertia and damping terms are of comparableé size. An honest discussion
of this point requires more machinery than we have available. We’ll return to this
matter in Section 3.5.

2.7 Potentials

There’s another way to visualize the dynamics of the first-order system x = f(x),
based on the physical idea of potential energy. We picture a particle sliding down
the walls of a potential well, where the potential V(x) is defined by

dv
f(x)—"?‘,—);

As before, you should imagine that the particle is heavily damped—its inertia is
completely negligible compared to the damping force and the force due to the po-
tential. For example, suppose that the particle has to slog through a thick layer of
goo that covers the walls of the potential (Figure 2.7.1).

V(x)

Figure 2.7.1

The negative sign in the definition of V follows the standard convention in
physics; it implies that the particle always moves “downhill” as the motion pro-
ceeds. To see this, we think of x as a function of ¢, and then calculate the time-
derivative of V(x(¢)). Using the chain rule, we obtain

dv _ dV dx
de  dx dt’

Now for a first-order system,
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dr__dv

&t dx’
since x = f(x) =—dV/dx, by the definition of the potential. Hence,
2
av _ _(d_V) <0
dt dx

Thus V(t) decreases along trajectories, and so the particle élways moves toward
lower potential. Of course, if the particle happens to be at an equilibrium point
where dV/dx =0, then V remains constant. This is to be expected, since
dV/dx =0 implies x = 0; equilibria occur at the fixed points of the vector field.
Note that local minima of V(x) correspond to stable fixed points, as we’d expect
intuitively, and local maxima correspond to unstable fixed points.

EXAMPLE 2.7.1:

Graph the potential for the system x =—x, and identify all the equilibrium
points.

Solution: We need to find V(x) such that

—dV/dx=—-x. The general solution is V(x)=

1 x* +C, where C is an arbitrary constant. (It always

happens that the potential is only defined up to an ad-

ditive constant. For convenience, we usually choose

C=0.) The graph of V(x) is shown in Figure 2.7.2.

x The only equilibrium point occurs at x =0, and it’s

V(x)

stable. m

Figure 2.7.2

EXAMPLE 2.7.2:

Graph the potential for the system x=x—x’, and identify all equilibrium
points.

Solution: Solving —dV/dx=x-x" yields
V=—4x+L1x*+C. Once again we set C = 0. Fig-
\ ‘ / ure 2.7.3 shows the graph of V. The local minima at

x =x] correspond to stable equilibria, and the local
-1 1 maximum at x =0 corresponds to an unstable equi-
librium. The potential shown in Figure 2.7.3 is often
called a double-well potential, and the system is said
Figure 2.7.3 to be bistable, since it has two stable equilibria. m

V()
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2.8 Solving Equations on the Computer

Throughout this chapter we have used graphical and analytical methods to analyze
first-order systems. Every budding dynamicist should master a third tool: numeri-
cal methods. In the old days, numerical methods were impractical because they re-
quired enormous amounts of tedious hand-calculation. But all that has changed,
thanks to the computer. Computers enable us to approximate the solutions to ana-
lytically intractable problems, and also to visualize those solutions. In this section
we take our first look at dynamics on the computer, in the context of numerical in-
tegration of x = f(x).

Numerical integration is a vast subject. We will barely scratch the surface. See
Chapter 15 of Press et al. (1986) for an excellent treatment.

Euler’s Method

The problem can be posed this way: given the differential equation x = f(x),
subject to the condition x = x, at r =1,, find a systematic way to approximate the
solution x(t).

Suppose we use the vector field interpretation of x = f(x). That is, we think of a
fluid flowing steadily on the x-axis, with velocity f(x) at the location x. Imagine
we’re riding along with a phase point being carried downstream by the fluid. Ini-
tially we’re at x,, and the local velocity is f(x,). If we flow for a short time Az,
we’ll have moved a distance f(x,)At, because distance = rate X time . Of course,
that’s not quite right, because our velocity was changing a little bit throughout the
step. But over a sufficiently small step, the velocity will be nearly constant and our
approximation should be reasonably good. Hence our new position x(t, + At) is ap-
proximately x; + f(x,)At. Let’s call this approximation x,. Thus

x(ty + At) = x, = x, + f(x,)AL.

Now we iterate. Our approximation has taken us to a new location x, ; our new
velocity is f(x,); we step forward to x, = x; + f(x,)At; and so on. In general, the
update rule is

X, =x,+ f(x,)At.

n+l

This is the simplest possible numerical integration scheme. It is known as Euler’s
method.

Euler’s method can be visualized by plotting x versus ¢ (Figure 2.8.1). The
curve shows the exact solution x(¢), and the open dots show its values x(z,) at the
discrete times ¢, = 1, + nAt. The black dots show the approximate values given by
the Euler method. As you can see, the approximation gets bad in.a hurry unless At
is extremely small. Hence Euler’s method is not recommended in practice, but it
contains the conceptual essence of the more accurate methods to be discussed next.
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Figure 2.8.1
Refinements

One problem with the Euler method is that it estimates the derivative only at
the left end of the time interval between ¢, and ¢,,,. A more sensible approach
would be to use the average derivative across this interval. This is the idea behind
the improved Euler method. We first take a trial step across the interval, using the
Euler method. This produces a trial value x,,, = x, + f(x,)At ; the tilde above the
x indicates that this is a tentative step, used only as a probe. Now that we’ve esti-
mated the derivative on both ends of the interval, we average f(x,) and f(x,,,),
and use that to take the real step across the interval. Thus the improved Euler
method is

X, =x, + f(x,)At (the trial step)

‘xn+l = ‘xn + % [f(xn ) + f(;”-}-l )] At. (the real Step)

This method is more accurate than the Euler method, in the sense that it tends to
make a smaller error E = |x(t”)—x”| for a given stepsize At. In both cases, the
error E— 0 as Ar— 0, but the error decreases faster for the improved Euler
method. One can show that E o« At for the Euler method, but E o (Ar)* for the im-
proved Euler method (Exercises 2.8.7 and 2.8.8). In the jargon of numerical analy-
sis, the Euler method is first order, whereas the improved Euler method is second
order.

Methods of third, fourth, and even higher orders have been concocted, but you
should realize that higher order methods are not necessarily superior. Higher order
methods require more calculations and function evaluations, so there’s a computa-
tional cost associated with them. In practice, a good balance is achieved by the
fourth-order Runge—Kutta method. To find x,,, in terms of x,, this method first
requires us to calculate the following four numbers (cunningly chosen, as you’ll
see in Exercise 2.8.9):
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ki =f(x,)At

ky =f(x, +3k)Ar
ky = f(x, +3k;) At
ky=f(x, +ky)At.

Then x_,, is given by

n+l

Xy =X, ++(k +2k, +2k, +k,).

This method generally gives accurate results without requiring an excessively
small stepsize Az. Of course, some problems are nastier, and may require small
steps in certain time intervals, while permitting very large steps elsewhere. In such
cases, you may want to use a Runge—Kutta routine with an automatic stepsize con-
trol; see Press et al. (1986) for details.

Now that computers are so fast, you may wonder why we don’t just pick a tiny
At once and for all. The trouble is that excessively many computations will occur,
and each one carries a penalty in the form of round-off error. Computers don’t
have infinite accuracy—they don’t distinguish between numbers that differ by
some small amount 8. For numbers of order 1, typically § =~ 107" for single preci-
sion and & = 107" for double precision. Round-off error occurs during every cal-
culation, and will begin to accumulate in a serious way if Az is too small. See
Hubbard and West (1991) for a good discussion.

Practical Matters

You have several options if you want to solve differential equations on the com-
puter. If you like to do things yourself, you can write your own numerical integra-
tion routines, and plot the results using whatever graphics facilities are available.
The information given above should be enough to get you started. For further guid-
ance, consult Press et al. (1986); they provide sample routines written in Fortran,
C, and Pascal.

A second option is to use existing packages for numerical methods. The soft-
ware libraries by IMSL and NAG have a wide variety of state-of-the-art numerical
integrators. These libraries are well documented, reliable, and flexible, and can be
found at most university computing centers or networks. The packages Matlab,
Mathematica, and Maple are more interactive and also have programs for solving
ordinary differential equations.

The final option is for people who want to explore dynamics, not computing.
Dynamical systems software has recently become available for personal comput-
ers. All you have to do is type in the equations and the parameters; the program
solves the equations numerically and plots the results. Some recommended pro-
grams are Phaser (Kocak 1989) for the IBM PC or MacMath (Hubbard and West
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1992) for the Macintosh. MacMath was used to generate many of the plots in this
book.

These programs are easy to use, and they will help you build intuition about dy-
namical systems.

EXAMPLE 2.8.1:

Use MacMath to solve the system x = x(1— x) numerically.

Solution: This is a logistic equation (Section 2.3) with parameters r =1, K =1.
Previously we gave a rough sketch of the solutions, based on geometric arguments;
now we can draw a more quantitative picture.

As a first step, we plot the slope field for the system in the (z,x) plane (Figure
2.8.2). Here the equation x = x(1 — x) is being interpreted in a new way: for each
point (¢, x) , the equation gives the slope dx/dt of the solution passing through that
point. The slopes are indicated by little line segments in Figure 2.8.2.

2
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Figure 2.8.2

Finding a solution now becomes a problem of drawing a curve that is always tan-
gent to the local slope. Figure 2.8.3 shows four solutions starting from various
points in the (¢,x) plane.

21

Figure 2.8.3

These numerical solutions were computed using the Runge-Kutta method with a
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stepsize At =0.1. The solutions have the shape expected from Section 2.3. m

Computers are indispensable for studying dynamical systems. We will use them
liberally throughout this book, and you should do likewise.

EXERCISES FOR CHAPTER 2

2.1 A Geometric Way of Thinking

In the next three exercises, interpret x = sin x as a flow on the line.
2.1.1  Find all the fixed points of the flow.
2.1.2 At which points x does the flow have greatest velocity to the right?

2.1.3
a) Find the flow’s acceleration X as a function of x.
b) Find the points where the flow has maximum positive acceleration.

2.1.4 (Exact solution of x = sin x ) As shown in the text, x = sin x has the solu-

tion t = ln] (cscx, +cot x,)/(csc x + cot x) |, where x, = x(0) is the initial value

of x.

a) Given the specific initial condition x, = #/4, show that the solution above can
be inverted to obtain

- A€
x(t) = 2tan (“—ﬁ).

Conclude that x(t) — 7 as t — oo, as claimed in Section 2.1. (You need to be good

with trigonometric identities to solve this problem.) '

b) Try to find the analytical solution for x(¢), given an arbitrary initial condition
Xy -

2.1.5 (A mechanical analog)

a) Find a mechanical system that is approximately governed by x =sin x.

b) Using your physical intuition, explain why it now becomes obvious that x* =0
is an unstable fixed point and x* = 7 is stable.

2.2 Fixed Points and Stability

Analyze the following equations graphically. In each case, sketch the vector field
on the real line, find all the fixed points, classify their stability, and sketch the
graph of x(¢) for different initial conditions. Then try for a few minutes to obtain
the analytical solution for x(z) ; if you get stuck, don’t try for too long since in sev-
eral cases it’s impossible to solve the equation in closed form!
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2.21 x=4x"-16 2.22 x=1-x"

223 x=x-Xx 224 x=¢ "sinx

225 x=1+4cosx 226 x=1-2cosx

2.2.7 x=e¢ —cosx (Hint: Sketch the graphs of ¢* and cosx on the same
axes, and look for intersections. You won’t be able to find the fixed points explic-
itly, but you can still find the qualitative behavior.)

2.2.8 (Working backwards, from flows to equations) Given an equation x = f(x),
we know how to sketch the corresponding flow on the real line. Here you are asked
to solve the opposite problem: For the phase portrait shown in Figure 1, find an
equation that is consistent with it. (There are an infinite number of correct an-
swers—and wrong ones t0o.)

—O——@ - O—»—
-1 0 2
Figure 1

2.2.9 (Backwards again, now from solutions to equations) Find an equation
x = f(x) whose solutions x(#) are consistent with those shown in Figure 2.

.:'—///
\
_1—//———

Figure 2

2.2.10 (Fixed points) For each of (a)—(e), find an equation x = f(x) with the
stated properties, or if there are no examples, explain why not. (In all cases, as-
sume that f(x) is a smooth function.)

a) Every real number is a fixed point.

b) Every integer is a fixed point, and there are no others.

¢) There are precisely three fixed points, and all of them dre stable.

d) There are no fixed points.

e) There are precisely 100 fixed points.

2.2.11 (Analytical solution for charging capacitor) Obtain the analytical solu-

Q

tion of the initial value problem Q = %-— with Q(0) =0, which arose in

RC’
Example 2.2.2.

2.2.12 (A nonlinear resistor) Suppose the resistor in Example 2.2.2 is replaced

by a nonlinear resistor. In other words, this resistor does not have a linear
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I relation between voltage and current. Such non-

(V) linearity arises in certain solid-state devices.
Instead of I, = V/R, suppose we have I, = g(V),
v where g(V) has the shape shown in Figure 3.

Redo Example 2.2.2 in this case. Derive the cir-
cuit equations, find all the fixed points, and ana-
lyze their stability. What qualitative effects does
the nonlinearity introduce (if any)?

Figure 3

2.2.13 (Terminal velocity) The velocity v(¢) of a skydiver falling to the ground

is governed by mv = mg — kv, where m is the mass of the skydiver, g is the accel-

eration due to gravity, and k£ > 0 is a constant related to the amount of air resis-
tance.

a) Obtain the analytical solution for v(¢), assuming that v(0)=0.

b) Find the limit of v(¢) as t — . This limiting velocity is called the terminal veloc-
ity. (Beware of bad jokes about the word terminal and parachutes that fail to open.)

c) Give a graphical analysis of this problem, and thereby re-derive a formula for
the terminal velocity.

d) An experimental study (Carlson et al. 1942) confirmed that the equation
mv =mg —kv* gives a good quantitative fit to data on human skydivers. Six
men were dropped from altitudes varying from 10,600 feet to 31,400 feet to a
terminal altitude of 2,100 feet, at which they opened their parachutes. The long
free fall from 31,400 to 2,100 feet took 116 seconds. The average weight of the
men and their equipment was 261.2 pounds. In these units, g=32.2 ft/sec’.
Compute the average velocity V, . .

e) Using the data given here, estimate the terminal velocity, and the value of the
drag constant k. (Hints: First you need to find an exact formula for s(t), the
distance fallen, where s(0)=0, s=v, and v(¢) is known from part (a). You
should get s(t) = VTzln (cosh gv’) where V is the terminal velocity. Then solve
for V graphically or numerically, using s = 29,300, t =116, and g=32.2.)

A slicker way to estimate V' is to suppose V =V, , as a rough first approxi-
mation. Then show that gt/V = 15. Since gt/V >>1, we may use the approxi-
mation In(coshx)=x—In2 for x>>1. Derive this approximation and then
use it to obtain an analytical estimate of V. Then k follows from part (b). This
analysis is from Davis (1962).

2.3 Populatiori Growth

2.3.1 (Exact solution of logistic equation) There are two ways to solve the logis-
tic equation N = rN(1— N/K) analytically for an arbitrary initial condition N,.
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a) Separate variables and integrate, using partial fractions.

b) Make the change of variables x = 1/N. Then derive and solve the resulting dif-
ferential equation for x.

2.3.2 (Autocatalysis) Consider the model chemical reaction

SEIEEN
A+ X _— 2X
in which one molecule of X combines with one molecule of A to form two mole-
cules of X . This means that the chemical X stimulates its own production, a process
called autocatalysis. This positive feedback process leads to a chain reaction, which
eventually is limited by a “back reaction” in which 2.X returnsto A+ X.

According to the law of mass action of chemical kinetics, the rate of an elemen-
tary reaction is proportional to the product of the concentrations of the reactants.
We denote the concentrations by lowercase letters x =[X] and a =[A]. Assume
that there’s an enormous surplus of chemical A, so that its concentration a can be
regarded as constant. Then the equation for the kinetics of x is

: 2
x=kax—k_x

where k, and k_, are positive parameters called rate constants.
a) Find all the fixed points of this equation and classify their stability.
b) Sketch the graph of x(t) for various initial values x,.

2.3.3 (Tumor growth) The growth of cancerous tumors can be modeled by the
Gompertz law N =—aNIn(bN), where N(1) is proportional to the number of cells
in the tumor, and a, b > 0 are parameters.

a) Interpret a and b biologically.

b) Sketch the vector field and then graph N(t) for various initial values.

The predictions of this simple model agree surprisingly well with data on tumor
growth, as long as N is not too small; see Aroesty et al. (1973) and Newton (1980)
for examples.

~P2.3.4 (The Allee effect) For certain species of organisms, the effective growth

rate N/N is highest at intermediate N. This is the called the Allee effect (Edel-

stein—~Keshet 1988). For example, imagine that it is too hard to find mates when N

is very small, and there is too much competition for food and other resources when

N is large.

a) Show that N/N = r—a(N —b)? provides an example of Allee effect, if r, a,
and b satisfy certain constraints, to be determined.

b) Find all the fixed points of the system and classify their stablhty

¢) Sketch the solutions N(z) for different initial conditions.

d) Compare the solutions N(z) to those found for the logistic equation. What are

the qualitative differences, if any?
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2.4 Linear Stability Analysis

Use linear stability analysis to classify the fixed points of the following systems. If
linear stability analysis fails because f’(x*)=0, use a graphical argument to de-
cide the stability.

2.4.1 x=x(1-x) 242 x=x(1-x)2-x)
243 x=tanx 2.4:.4 xi=x(6—x)

2
245 x=1-¢" 24,6 xi=Inx

2.4.7 i=ax—-x’, where a can be positive, negative, or zero. Discuss all three
cases.

2.4.8 Using linear stability analysis, classify the fixed points of the Gompertz
model of tumor growth N =—-aNIn(bN). (As in Exercise 2.3.3, N(¢) is propor-
tional to the number of cells in the tumor and a,b >0 are parameters.)

2.4.9 (Critical slowing down) In statistical mechanics, the phenomenon of

“critical slowing down” is a signature of a second-order phase transition. At the

transition, the system relaxes to equilibrium much more slowly than usual. Here’s

a mathematical version of the effect:

a) Obtain the analytical solution to x=—x for an arbitrary initial condition.
Show that x(z) >0 as t — o, but that the decay is not exponential. (You
should find that the decay is a much slower algebraic function of 7 .)

b) To get some intuition about the slowness of the decay, make a numerically ac-
curate plot of the solution for the initial condition x, =10, for 0 <z <10. Then,
on the same graph, plot the solution to x = —x for the same initial condition.

2.5 Existence and Uniqueness

2.5.1 (Reaching a fixed point in a finite time) A particle travels on the half-line

x 2 0 with a velocity given by x = —x°, where c¢ is real and constant. :

a) Find all values of ¢ such that the origin x =0 is a stable fixed point.

b) Now assume that ¢ is chosen such that x =0 is stable. Can the particle ever
reach the origin in a finite time? Specifically, how long does it take for the par-
ticle to travel from x =1 to x =0, as a function of ¢ ?

2.5.2 (“Blow-up”: Reaching infinity in a finite time) Show that the solution to
% =1+x"" escapes to +o in a finite time, starting from any initial condition.
(Hint: Don’t try to find an exact solution; instead, compare the solutions to those of
i=1+x%)

2.5.3 Consider the equation x=rx+x’, where r>0 is fixed. Show that
x(t) = too in finite time, starting from any initial condition x, # 0.

2.5.4 (Infinitely many solutions with the same initial condition) Show that the
initial value problem x = x'*, x(0) = 0, has an infinite number of solutions. (Hint:
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Construct a solution that stays at x = 0 until some arbitrary time ¢, after which it
takes off.)

2.5.5 (A general example of non-uniqueness) Consider the initial value prob-
lem i =|x|”%, x(0)=0, where p and g are positive integers with no common
factors.

a) Show that there are an infinite number of solutions if p <g.

b) Show that there is a unique solution if p >gq.

2.5.6 (The leaky bucket) The following example (Hubbard and West 1991,
p. 159) shows that in some physical situations, non-uniqueness is natural and obvi-
ous, not pathological.

Consider a water bucket with a hole in the bottom. If you see an empty bucket
with a puddle beneath it, can you figure out when the bucket was full? No, of
course not! It could have finished emptying a minute ago, ten minutes ago, or
whatever. The solution to the corresponding differential equation must be non-
unique when integrated backwards in time.

Here’s a crude model of the situation. Let A(t) = height of the water remaining
in the bucket at time ¢ ; a = area of the hole; A = cross-sectional area of the bucket
(assumed constant); v(r) = velocity of the water passingvthrougl{ the hole.

a) Show that av(r) = Ah(r). What physical law are you invoking?
b) To derive an additional equation, use conservation of energy. First, find the
change in potential energy in the system, assuming that the height of the water

in the bucket decreases by an amount Al and that the water has density p.

Then find the kinetic energy transported out of the bucket by the escaping wa-

ter. Finally, assuming all the potential energy is converted into kinetic energy,

derive the equation v* = 2gh.

¢) Combining (b) and (c), show h= —C«/ﬁ, where C = 4/2¢g (%)
d) Given A(0) =0 (bucket empty at t =0 ), show that the solution for A(t) is non- .
unique in backwards time, i.e., for t <0.

2.6 Impossibility of Oscillations
2.6.1°  Explain this paradox: a simple harmonic oscillator mx = —kx is a system
that oscillates in one dimension (along the x-axis). But the text says one-dimen-
sional systems can’t oscillate.

~P2.6.2  (No periodic solutions to x = f(x)) Here’s an analytic proof that periodic
solutions are impossible for a vector field on a line. Suppose on the contrary that
x(¢) is a nontrivial periodic solution, i.e., x(f)=x(t+7T) for some T >0, and
x(1)#x(t+s) for all O0<s<T. Derive a contradiction by considering

1+T
_[ Fx) 4L dr |
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2.7 Potentials

For each of the following vector fields, plot the potential function V(x) and iden-
tify all the equilibrium points and their stability.

271 x=x(1-x) 272 x=3
273 x=sinx 2.7.4 x=2+sinx
2.7.5 x=-sinhx 2.7.6 x=r+x—x for various values of r.

2.7.7  (Another proof that solutions to x = f(x) can’t oscillate) Let x = f(x) be
a vector field on the line. Use the existence of a potential function V(x) to show
that solutions x(t) cannot oscillate.

2.8 Solving Equations on the Computer

2.8.1 (Slope field) The slope is constant along horizontal lines in Figure 2.8.2.
Why should we have expected this?

2.8.2 Sketch the slope field for the following differential equations. Then “inte-
grate” the equation manually by drawing trajectories that are everywhere parallel
to the local slope.

a) x=x b) x=1-x* ¢ x=1-4x(1-x) d) x=sinx

—4 2.8.3 (Calibrating the Euler method) The goal of this problem is to test the

Euler method on the initial value problem x = —x, x(0)=1.
a) Solve the problem analytically. What is the exact value of x(1)?

b) Using the Euler method with step size At =1, estimate x(1) numerically—call
the result x(1). Then repeat, using Az =10",for n=1, 2, 3, 4.

¢) Plot the error E =|£(1) - x(1)| as a function of Az. Then plot InE vs. Int. Ex-
plain the results.

— 2.8.4 Redo Exercise 2.8.3, using the improved Euler method.
—®2.8.5 Redo Exercise 2.8.3, using the Runge—Kutta method.

2.8.6 (Analytically intractable problem) Consider the initial value problem
X =x+e", x(0)=0. In contrast to Exercise 2.8.3, this problem can’t be solved an-
alytically.

a) Sketch the solution x(z) for z>0. :

b) Using some analytical arguments, obtain rigorous bounds on the value of x at
t =1. In other words, prove that a < x(1)< b, for a, b to be determined. By
being clever, try to make a and b as close together as possible. (Hint: Bound
the given vector field by approximate vector fields that can be integrated ana-
lytically.)

¢) Now for the numerical part: Using the Euler method, compute x at t =1, cor-
rect to three decimal places. How small does the stepsize need to be to obtain
the desired accuracy? (Give the order of magnitude, not the exact number.)
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d) Repeat part (b), now using the Runge—Kutta method. Compare the results for
stepsizes At =1, At =0.1, and Ar=0.01.

2.8.7/ (Error estimate for Euler method) In this question you’ll use Taylor series
expansions to estimate the error in taking one step by the Euler method. The exact
solution and the Euler approximation both start at x = x, when ¢ =1,. We want to
compare the exact value x(t)=x(f, + Af) with the Euler approximation
X, = x4+ f(x,)AL,
a) Expand x(#,) = x(t, + At) as a Taylor series in Ar, through terms of O(AF?).
Express your answer solely in terms of x,,, Af, and f and its derivatives at x,, .
b) Show that the local error lx(t,)— X, ] ~ C(At)* and give an explicit expression
for the constant C. (Generally one is more interested in the global error in-
curred after integrating over a time interval of fixed length 7 = nAt . Since each
step produces an O(At)* error, and we take n=T/At=O(At"') steps, the
global error |x(t”) - X, ‘ is O(At), as claimed in the text.)

2.8.8 ) (Error estimate for the improved Euler method) Use the Taylor series ar-
guments of Exercise 2.8.7 to show that the local error for the improved Euler
method is O(A?).

2.8.9 (Error estimate for Runge—Kutta) Show that the Runge—Kutta method
produces a local error of size O(At).

(Warning: This calculation involves massive amounts of algebra, but if you do it
correctly, you’ll be rewarded by seeing many wonderful cancellations. Teach
yourself Mathematica, Maple, or some other symbolic manipulation language, and
do the problem on the computer.)
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