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This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical
point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for
extracting information concerning such local order from experiments, with emphasis on neutron
scattering and scanning tunneling microscopy. These ideas are tested by application to two model
systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly
interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can
be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe
correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting
perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are
treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and
strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are
viewed as a form of micro phase separation. The authors present quantitative indicators that the latter
view better accounts for the observed stripe phenomena in the cuprates.
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I. INTRODUCTION

Ordered states of matter are characterized by broken
symmetry. Depending on various real-world details, this
may be relatively easier or harder to detect experimen-
tally, but once detected it is unambiguous. The notion
that order-parameter fluctuations are important in the
disordered phase proximate to an ordered state is a
©2003 The American Physical Society1
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rather obvious extension of the idea of broken symme-
try; however, this notion is more difficult to define pre-
cisely. To develop this important concept, we shall dis-
cuss strategies for detecting quantum fluctuating order
in the particular context of high-temperature supercon-
ductors. We shall focus on the detection of stripe order
in the putative stripe liquid phase of these systems.1

More generally, we are interested in electronic liquid-
crystalline states and their associated fluctuations (Kiv-
elson et al., 1998), but the results are also easily general-
ized to other forms of order.2

Since the whole notion of fluctuating order is based on
proximity of an ordered state, it is essential first to es-
tablish the existence of the ‘‘nearby’’ ordered state by
directly detecting the relevant broken symmetry. The or-
dered phase may be induced by making small changes to
the chemical composition of the material, applying pres-
sure or magnetic fields, etc. Unless an actual ordered
state can be reached, it is dangerous to speculate about
the effects of related fluctuating order.

Typically, the best way to detect both the broken-
symmetry state and the relevant fluctuations is by mea-
suring the appropriate dynamical structure factor
S(q,v). Indeed, x-ray and neutron scattering studies
have provided the best evidence3 of ordered and fluctu-
ating stripe phases, as we shall discuss. However, in
many interesting materials, appropriate crystals are not
available and so such experiments are not possible.
Here, probes of local order, such as nuclear magnetic
resonance (NMR), nuclear quadrupole resonance
(NQR), muon spin rotation (mSR), and scanning tunnel-
ing microscopy (STM) techniques, may be the best avail-
able. All of these are quasistatic (i.e., nearly zero-
frequency) probes. In a pure quantum system, in its
disordered phase, the order-parameter fluctuations are
not static, but rather fluctuate with a characteristic fre-
quency that grows with the distance , to the quantum
critical point. Thus, unless something is done to ‘‘pin’’
these fluctuations, they are invisible to local probes.
Such pinning is induced by boundaries, vortices, crystal-
field effects, weak quenched disorder, etc.

In this article, we first discuss results obtained for
solvable model systems, which we analyze in various
ways to illustrate the optimal strategies for extracting
information about local order. In particular, much of this
discussion addresses the character of the local order in a
quantum disordered phase close to a quantum critical
point; we believe that the intuitions gleaned from this

1For brief reviews of the current evidence on various types of
stripe order in the cuprates, see Emery et al., 1999; Orenstein
and Millis, 2000; Zaanen, 2000; Sachdev, 2002; Carlson et al.,
2003; Castro Neto and Morais Smith, 2003.

2Fluctuations associated with off-diagonal (i.e., superconduct-
ing) order are best studied using different strategies; see, for
example, Jankó et al., 1999; Carlson et al., 2000; Xu et al., 2000;
Iguchi et al., 2001; Wang et al., 2001; Ussishkin et al., 2002.

3For reviews of neutron and x-ray evidence of stripes, see
Tranquada, 1998a, 1998b; Emery et al., 1999.
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study are more generally valid, but without the proxim-
ity to the critical point as a small parameter, it is difficult
to treat the problem in a controlled fashion. We also
review in some depth, although by no means exhaus-
tively, the experimental evidence of various forms of
stripe order in the cuprate superconductors. There are
several related topics that we do not cover in this article;
instead, we direct the interested reader to recent re-
views. Specifically, the mechanism of stripe formation4 is
given short shrift, and the possible relevance5 of local
stripe order to the mechanism of high-temperature su-
perconductivity and to the various remarkable normal-
state properties observed in the cuprates is only touched
on briefly. More broadly, the context for this review is
the role of ‘‘competing orders’’ in high-temperature
superconductors.6

In Sec. II we discuss basic scaling considerations that
govern the relevant length, frequency, and energy scales
of fluctuating order in the neighborhood of a quantum
critical point, and the consequences of the pinning in-
duced by disorder and other perturbations. We show
that it is the low-frequency part of the dynamical struc-
ture factor, rather than its integral over all frequencies,
that contains the clearest information concerning local
order. We also define a new response function which
determines the local density-of-states modulations in-
duced by a weak-impurity potential. Finally, we sketch
various possible versions of the phase diagram of a sys-
tem with competing stripe and superconducting phases.

In Sec. III (and Appendix A), we consider a theoreti-
cally well-understood system, the one-dimensional elec-
tron gas (1DEG) in the presence of an impurity. We
compute the local density of states, as would be mea-
sured in STM, and the dynamical structure factor, and
show by this explicit example how the general consider-
ations articulated in the present paper are manifest in
this solvable model. (The 1DEG can also be viewed as a
quantum critical state associated with charge-density-
wave order.) In addition to its pedagogical value, this
section contains explicit results that should be useful for
analyzing STM experiments on quasi-1D systems with
dilute impurities, such as the chain layers of YBCO

4Recent reviews of the mechanisms of stripe formation in the
cuprates and, more generally in doped antiferromagnets, often
with rather different perspectives on the issue, are those of
Zaanen and Littlewood, 1994; Zaanen, 1998; Emery et al.,
1999; Ichioka and Machida, 1999; Vojta and Sachdev, 1999;
White and Scalapino, 2000; Hasselmann et al., 2002; White
et al., 2002; Carlson et al., 2003.

5Various perspectives concerning the relevance of local stripe
order to other properties of the high-temperature supercon-
ductor are reviewed by Castro Neto, 2001; Lorenzana et al.,
2001a, 2001b; Zaanen et al., 2001; Carlson et al., 2003.

6Recent discussions of the role of competing orders in deter-
mining the phase diagram of the high-temperature supercon-
ductors are contained in Varma, 1997; Emery et al., 1999;
Orenstein and Millis, 2000; Sachdev, 2000; Zaanen, 2000;
Chakravarty, Laughlin, et al., 2001; Kivelson et al., 2001.
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(Derro et al., 2002), or on carbon nanotubes (Hornbaker
et al., 2002; Odom et al., 2002).

In Sec. IV we calculate the local density of states in
the context of a simple model system with quasiparticles
and incipient order—the weakly interacting electron gas
in two dimensions.

In Sec. V we discuss applications of these ideas to
experiments in the cuprates. Section V.A treats diffrac-
tion studies, and Sec. V.B scanning tunneling microscope
studies. This latter section contains new insights con-
cerning the optimal way to analyze STM data to extract
information about fluctuating order. Applying these
ideas to the recent experimental results of Hoffman
et al. (Hoffman, Hudson, et al., 2002; Hoffman, McElroy,
et al., 2002) and Howald et al. (2003a, 2003b) reveals the
existence of a nearby stripe-ordered phase in optimally
doped BSCCO.7 Section V.C contains a discussion of ex-
periments to detect local nematic order, and a discussion
of recent STM evidence of such order on the same
BSCCO surfaces. In Sec. V.D, we discuss indirect evi-
dence of stripe order that comes from the ‘‘1/8
anomaly.’’ In Sec. V.E we briefly discuss other probes of
stripe order, including NMR, NQR, and mSR.

In Sec. VI, we address an important issue of perspec-
tive: In the weak-coupling limit, the electronic proper-
ties of a solid are essentially determined by the quasipar-
ticle band structure, while collective modes and various
forms of order reflect slight rearrangements of the states
near the Fermi surface. Often these effects can be plau-
sibly treated in the context of a Hartree-Fock or
random-phase approximation (RPA) treatment of the
residual interactions. Conversely, in the strong-coupling
limit, the physics is more simply understood in terms of
interacting collective modes, such as spin waves, super-
conducting phase fluctuations, and the ‘‘phonons’’ of a
charge-ordered state. Here, we discuss the interrelation
between these opposite perspectives. In particular we
present evidence that the stripe order observed in the
cuprates and related compounds is best thought of as
arising from the strong-coupling antiferromagnetism of
the undoped Mott insulating parent compounds than
from the more conventionally metallic physics of the
strongly overdoped materials.

Our most important conclusions are embodied in five
numbered ‘‘lessons,’’ which are stated in Secs. II, III, and
IV, and summarized in Sec. VII.

II. GENERAL CONSIDERATIONS

Since the discovery (Bednorz and Müller, 1986) of
high-temperature superconductivity in the cuprate su-
perconductors, there has been intense interest in the
question of how a Mott insulating antiferromagnet is
converted, upon doping, into a high-temperature super-

7This conclusion is in agreement with the inferences drawn
from the data by Howald et al. (2002, 2003), but in disagree-
ment with those drawn by Hoffman, McElroy, et al. (2002); we
shall discuss the origins of the differing conclusions.
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conductor. Generally, in electronic systems, there is a
competition between the kinetic energy (Fermi pres-
sure), which favors a uniform Fermi-liquid phase with
sharply defined, itinerant quasiparticles, and the Cou-
lomb repulsion between electrons, which favors various
forms of insulating magnetic and/or charge-ordered
states. Thus it should not be at all surprising to find vari-
ous forms of charge-ordered states appearing in doped
antiferromagnets. In particular, ‘‘stripe’’ states have con-
sistently turned up in theoretical studies of doped anti-
ferromagnets, including early Hartree-Fock solutions of
the Hubbard model,8 studies of Coulomb frustrated
phase separation,9 slave-boson mean-field theories of
the t-J model,10 and various Monte Carlo and density-
matrix renormalization-group studies of t-J and Hub-
bard models.11 The discovery12 of stripe order in
La22xSrxNiO41d and soon after in La1.62xNd0.4SrxCuO4
(Tranquada, Sternlieb, et al., 1995) added considerable
credibility to the suggestion that stripe states form an
important bridge between the Mott insulator, and the
more metallic state at heavy doping.

‘‘Stripes’’ is a term that is used to describe unidirec-
tional density-wave states, which can involve unidirec-
tional charge modulations (‘‘charge stripes’’) or coexist-
ing charge and spin-density order (‘‘spin stripes’’).13

Charge-density wave states can occur in the weak-
coupling limit if there are sufficiently well nested por-
tions of the Fermi surface. From the strong-coupling
perspective, stripes are a real-space pattern of micro
phase separation (hence the name), driven largely by a
lowering of the doped-hole kinetic energy,14 in which the
doped holes are itinerant in metallic rivers, and the an-
tiferromagnetic correlations of the parent insulator are
preserved in between. Although the characteristic dy-
namics of the stripes may be quite different in these two
limits, as are the possible implications for other physical
properties, from a broken-symmetry viewpoint there is
no difference between a unidirectional charge-density-
wave-ordered and a stripe-ordered state.

8See Machida, 1989; Schulz, 1989; Zaanen and Gunnarsson,
1989.

9See Emery and Kivelson, 1993; Low et al., 1994; Castellani
et al., 1995; Seul and Andelman, 1995; Hasselmann et al., 1999.

10See Seibold et al., 1998; Han et al., 2001; Lorenzana and
Seibold, 2002.

11For varying perspectives, see Hellberg and Manousakis,
1997, 2000; White and Scalapino, 1998, 2000.

12See Hayden et al., 1992; Chen et al., 1993; Tranquada et al.,
1994.

13One can also imagine ‘‘orbital stripes’’ which involve a uni-
directional modulation of a staggered flux or d-density wave
order (Schollwoeck et al., 2003); in large part, the analysis of
the present paper would apply equally well to this form of
order.

14As discussed, for instance, by Poilblanc and Rice, 1989;
Schulz 1989; White and Scalapino, 1998; Emery et al., 1999;
Chernyshev et al., 2000; Zachar, 2000; Castro Neto and Morais
Smith, 2003.
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Since the principal purpose of the present paper is to
address questions concerning the existence of local
stripe order, we shall for the most part consider unidi-
rectional charge-density-wave order and stripe order as
two limits of the same physics. Indeed, it is important to
stress that the microscopic mechanism of stripe forma-
tion in particular materials is still not clear. Questions
such as whether or not the long-range Coulomb interac-
tions are important have been widely debated, but re-
main unresolved. There is always a linear coupling be-
tween any form of charge order and equal-period lattice
distortions, so it is obvious that lattice distortions play a
significant role in enhancing all the observed stripe phe-
nomena, whether or not they are fundamental to the
mechanism. This observation is further corroborated by
the observed stabilization of stripes by particular orien-
tational orders of the apical oxygens in some of the cu-
prates (Axe and Crawford, 1994; Büchner et al., 1994),
and by a series of thermal-transport (Baberski et al.,
1998; Sun et al., 2003) and isotope-effect (Crawford
et al., 1990) anomalies associated with the onset of stripe
order (Tranquada, Sternlieb, et al., 1995).

A. Stripe-ordered phases

In two dimensions, an ordered stripe phase with the
stripes running in the y direction gives rise to new Bragg
peaks in the electronic charge scattering (and corre-
sponding peaks in the nuclear scattering) at k56Qch
5(2p/a)(6dch,0) and its harmonics, where dch51/lch
and lcha is the charge-stripe period. Where spin order
coexists with charge order, new magnetic Bragg peaks
occur at harmonics of k5Qs5QAF6 1

2 Qch where QAF

5(2p/a)( 1
2 , 1

2 ) is the Néel ordering vector.15

Charge stripes break rotational symmetry and transla-
tion symmetry perpendicular to the stripes. In a crystal,
these are to be interpreted as a breaking of the crystal
symmetry group, rather than of the continuous symme-
tries of free space. The relevant order parameter, ^rQch

&,
is the Fourier component of the electron charge density
at the ordering wave vector. If the state is, in addition, a
conducting or superconducting electron fluid, it is a
charge-stripe smectic. Spin stripes also break spin-
rotational and time-reversal invariance (although a par-
ticular combination of time reversal and translation is
preserved). Wherever there is spin-stripe order, there is
necessarily charge-stripe order (Zachar et al., 1998). The
new order parameter that distinguishes the spin-stripe
phase ^sQs

& is the Fourier component of the spin density.
There is more than one possible stripe liquid phase. In

particular, there is the possibility of a ‘‘stripe nematic
phase,’’ in which thermal or quantum fluctuations have
caused the stripe-ordered state to melt (i.e., translational
symmetry is restored) but orientational symmetry re-

15Note that, in a crystal, wave-vector equalities are always to
be interpreted as meaning equal up to a reciprocal lattice vec-
tor.
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mains broken (i.e., a snapshot of the system is more
likely to see stripe segments oriented in the y than in the
x direction). The nematic shares with the charge-
ordered state a precise definition in terms of broken
symmetry. The order parameter can be taken to be any
physical quantity transforming like a traceless symmetric
tensor. For instance, the traceless part of the dielectric
tensor is a measure of the nematic order of the charged
fluid. In two dimensions, a useful nematic order param-
eter is (Chaikin and Lubensky, 1995)

Qk[
S~k!2S~R@k# !

S~k!1S~R@k# !
, (2.1)

where R is a rotation by p/2, and

S~k!5E
2`

` dv

2p
S~k,v! (2.2)

is the thermodynamic (equal-time) structure factor.
More exotic states can also occur, such as a ‘‘nematic
spin nematic,’’ which breaks rotational, spin-rotational,
and time-reversal symmetry, but not the product of R
and time reversal.16

B. Fluctuating order near a quantum critical point

We consider a system in a quantum disordered phase
near a quantum critical point beyond which the ground
state would be ordered.17 To be concrete, we shall dis-
cuss charge-stripe order. By a quantum disordered
phase, we mean one in which there is no long-range
stripe order as T→0, but in which there may be other
forms of order, for instance superconducting order.

The charge-density dynamical structure factor,
Sch(k,v), for k in the neighborhood of Qch , measures
the collective fluctuations that are most sensitive to the
proximity of the quantum critical point. The scaling
theory of quantum critical phenomena tells us that, on
the quantum-disordered side of the quantum critical
point, there are diverging length and time scales, j
;,2n and t;,2nz, where n is a critical exponent, z is
the dynamical critical exponent, and , is the dimension-
less distance to the quantum critical point.18

In the quantum disordered phase, and in the absence
of quenched disorder, the fluctuation spectrum has a
characteristic frequency scale EG /\ . In the absence of

16A nematic spin nematic is most easily pictured as a state in
which the spin-up and spin-down electrons each form a nem-
atic state, with their principle axes at 90° to each other.

17For extremely clear reviews, see Sachdev, 1999a and Sach-
dev, 2000, as well as Sondhi et al., 1997.

18The values of the critical exponents are universal in the
sense that they are a small discrete set of numbers depending
on some general features of the critical point. Under many
circumstances, z is either 1 or 2. n depends on the effective
dimension D1z and, to a lesser extent, on the symmetry of
the order parameter; typically, for D>2, n is in the range 2/3
>n>1/2.
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dissipation,19 which is the case we shall treat for con-
creteness, EG typically is a gap in the collective-mode
spectrum. EG is related to the correlation time by the
scaling law EG;\/t;,nz. For \v slightly larger than
EG , S(k,v) has a pole corresponding to a sharply de-
fined elementary excitation; this ‘‘soft mode’’ is the
quantity that condenses across the quantum critical
point, so its quantum numbers and characteristic wave
vector directly encode the nature of the nearby ordered
state. At somewhat higher energy (typically, for \v
.3EG) S(k,v) exhibits a multiparticle continuum.
Deep in the continuum the system effectively exhibits
scale invariance, and it behaves in much the same way as
if it were precisely at the quantum critical point. Both in
this high-frequency regime and at the quantum critical
point the notion of a quasiparticle is, truly speaking, ill
defined, although for systems with small anomalous di-
mension h (the typical case for D>2) the continuum
will often exhibit features (branch points, not poles)
whose dispersion resembles that of the Goldstone
modes of the ordered phase.20

A classical critical point is described by thermody-
namics alone, so none of these dynamical considerations
affect the critical phenomena. In particular, it follows
from the classical limit of the fluctuation-dissipation
theorem that S(k)5Tx(k,v50)[Tx(k), so S has the
same critical behavior as the (static) susceptibility x,
even though S involves an integral over the dynamical
structure factor at all frequencies. Consequently, a grow-
ing peak in S(k) at the ordering vector, k5Qch with
width uk2Qchu;1/j and amplitude S(Qch);uT2Tcu2g,
reflects the presence of fluctuating stripe order near a
thermal transition. Here g5n(22h) is typically about 1
or greater, so the amplitude is strongly divergent.

The situation is quite different at a quantum critical
point, where the dynamics and the thermodynamics are
inextricably linked. Here, the fact that the largest con-
tribution to S(k) comes from the high-frequency multi-
particle continuum, which does not directly probe the
fluctuating order, means that the relevant structure in
S(k) is relatively small and can be difficult to detect in
practice. To see this, we compare the expressions in
terms of the dissipative response function x9(k,v) for

19In the presence of zero-temperature dissipation, such as one
expects in a normal metal, the collective-mode spectrum may
be gapless, in which case the interpretation of t is more subtle.
Most of the scaling arguments we make in the present paper
are readily generalized to this case, as well. For a recent per-
spective on the effect of dissipation on quantum critical phe-
nomena, see Kapitulnik et al. (2001). See also Millis (1993) and
Sachdev (1999b) on quantum critical points in metals.

20The naive argument, which is often made, that at frequen-
cies larger than EG the quantum disordered phase looks like
the ordered phase is thus not completely correct. There is,
however, a more nearly correct version of this statement: at
high frequencies, on both the ordered and disordered sides of
the quantum critical point, the system looks quantum critical,
and so looks the same whichever state is being probed.
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the susceptibility (obtained from the Kramers-Krönig
relation) and S(k) (obtained from the fluctuation-
dissipation theorem):

x~k,v50 !5E dv

2p
x9~k,v!/v ,

S~k!5E dv

2p
cothS b\v

2 D x9~k,v!. (2.3)

In the limit T→0, coth(b\v)→1; then, clearly, the factor
1/v weights the important low-frequency part of the in-
tegral expression for x much more heavily than in the
expression for S . Consequently, it follows under fairly
general circumstances (Chakravarty et al., 1989; Chu-
bukov et al., 1994) from the scaling form of x9 that
S(Qch);t21x(Qch) or, in other words, that x(Qch)
;,2g is strongly divergent in the neighborhood of the
quantum critical point, while S(Qch);,nz2g

5,2n(22z2h) is much more weakly divergent, or, if per-
chance z>22h , not divergent at all. At criticality (,
50), similar considerations imply that S(k,v) is a less
singular function at small momentum/frequency than
the corresponding susceptibility.

These considerations apply even on the ordered side
of the quantum critical point, where the Bragg peak
makes an exceedingly small (although sharp) contribu-
tion to the total structure factor, which vanishes in pro-
portion to ,2b. By contrast, the Bragg peak constitutes
the entire contribution to S(k,v50) and is the domi-
nant piece of the structure factor integrated over any
small frequency window that includes v50.

Lesson 1: There is an important lesson to be gleaned
from this general discussion concerning the best way to
analyze experiments. It is the low-frequency part of
S(k,v) that is most directly sensitive to the stripe order.
Rather than analyze S(k), one can best obtain informa-
tion concerning local stripe order by studying x(k,v
50) or by analyzing the partially frequency-integrated
spectral function,

S̃~k,V![~2V!21E
2V

V dv

2p
Sch~k,v!, (2.4)

where on the ordered side of the critical point, the
smaller V the better, while on the quantum-disordered
side, V must be taken larger than EG /\ , but not more
than a few times EG /\ . This quantity is less severely
contaminated by a ‘‘background’’ arising from incoher-
ent high-energy excitations. As we shall discuss in Sec.
V.A, this is precisely the way local stripe order is best
detected in clean, high-temperature superconductors.

C. How weak disorder can make life simpler

In the absence of quenched disorder, there is no useful
information available from the structure factor at fre-
quencies less than EG , which means in particular that
static experiments (v50) are blind to fluctuating order.
However, a small amount of quenched disorder, with
characteristic energy scale Vdis;EG but much smaller
than the ‘‘bandwidth’’ of the continuum of the spectral
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function, has important effects on the low-energy states.
It is intuitively clear that the induced low-frequency
structure of S(k,v) will be largest for values of k where,
in the absence of disorder, S has spectral weight at the
lowest frequencies, i.e., for k;Qch . Although the effects
of quenched randomness on the pure critical theory can
be subtle (McCoy and Wu, 1968; Griffiths, 1969; Fisher,
1992) and are rarely well understood (unless disorder
happens to be irrelevant), low-energy states are fre-
quently produced.

Lesson 2: The upshot is that the effect of weak
quenched randomness in a quantum disordered phase is
to produce a low-frequency ‘‘quasielastic’’ part of the
spectral function S(k,v). In other words, disorder will
eliminate the spectral gap, but will only weakly affect
the partially integrated spectral function, Eq. (2.4), with
the integration scale set by Vdis . In particular, in the
presence of weak disorder, the static structure factor
S(k,v50) should exhibit similar k dependence to that
of S̃(k,V) of the pure system, and so can be used to
reveal the nature of the nearby ordered phase.

To formalize some of these notions, we consider the
somewhat simpler problem of the response of the sys-
tem to a weak, applied external field which couples to
the order parameter. In a quantum disordered phase the
existence of an order parameter can only be made ap-
parent directly by coupling the system to a suitable
symmetry-breaking field. For a charge-stripe smectic, a
nonuniform potential couples to the order parameter
and thus serves as a suitable symmetry-breaking field.
Thus the Fourier component Vk of a weak potential in-
duces a nonvanishing expectation value of the order pa-
rameter which, in linear response, is

^rk&5xch~k!Vk1¯ . (2.5)

The linear response law of Eq. (2.5) is valid provided Vk
is sufficiently small. However, if the typical magnitude of
V with Fourier components in the range uk2Qchuj&1 is
not small, V̄kch

@EG , then the critical region is accessed
and Eq. (2.5) is replaced by the law

^rQch
&;@V̄Qch

#1/d, (2.6)

where d52/(D221h) is another critical exponent.
Many local probes, including STM and NMR, are

more sensitive to the local density of electronic states
N(r,E). Again, in the quantum disordered state, trans-
lation invariance implies that, in the absence of an ex-
ternal perturbation, N(r,E)5N0(E) is independent of r.
In the presence of a weak potential, it is possible to
define a relation for the local density of states as

N~k,E !5xDOS~k,E !Vk1¯ , (2.7)

where N(k,E) is the Fourier transform of N(r,E).
From linear-response theory it follows that

xDOS~k,E !5~2p!21 E dr dt dt eiEt2ik"ru~t!

3^@$Cs
† ~r,t1t!,Cs~r,t!%,n̂~0!#&, (2.8)
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where u is the Heaviside function, Cs
† is the electron

creation operator, and n̂5(sCs
† Cs is the electron den-

sity operator. Note that, despite appearances, E is not a
frequency variable, but is rather the energy at which the
time-independent density of states is measured. A
simple sum rule relates xch to xDOS :

xch~k!5E dE f~E !xDOS~k,E !, (2.9)

where f(E) is the Fermi function.
It is also interesting to consider stripe orientational

(nematic) order. Since xch(k) is a property of the uni-
form fluid phase, it respects all the symmetries of the
underlying crystal; in particular, if rotation by p/2 is a
symmetry of the crystal, then xch(k)5xch(R@k#), so no
information about incipient nematic order can be ob-
tained to linear order in the applied field. However, the
leading nonlinear response yields a susceptibility for the
nematic order parameter, defined in Eq. (2.1), as

Qk5E dp xnem~k;p!@Vp2VR[p]#@V2p1V2R[p]# .

(2.10)

This nonlinear susceptibility (xnem contains a four-
density correlator) diverges at the nematic-to-isotropic
quantum critical point, and we would generally expect it
to be largest for k'Qch . It is important to note that the
density modulations, reflecting the proximity of stripe
order, are a first-order effect, while the nematic re-
sponse, which differentiates Qch from R@Qch# , is second
order and so will tend to be weaker, even if the nematic
quantum critical point is somewhat nearer at hand than
that involving the stripe-ordered state.

D. Phase diagrams

When there is more than one competing ordered
phase, the phase diagram can be very complicated and
moreover can be quite different, depending on various
microscopic details. Nonetheless, it is often useful to
have a concrete realization of the phase diagram in
mind, especially when thinking about issues related to
order and order-parameter fluctuations. In this subsec-
tion, we sketch schematic phase diagrams which charac-
terize some of the ordered phases and fluctuation effects
discussed above; the reader is cautioned, however, that
the shape, topology, and even the number of ordered
phases may vary for material-specific reasons.

Figure 1(a) represents the essential features we have
in mind, in the absence of any quenched disorder. Here,
there is a stripe-ordered phase which occurs at low dop-
ing and low temperature, with a phase boundary that
ends at a quantum critical point deep in the supercon-
ducting phase. In the region marked ‘‘fluctuating
stripes,’’ there is significant local stripe order, whose
character is governed by proximity to the quantum criti-
cal point. Notice that this fluctuation region extends into
the stripe-ordered phase itself; although there is true
long-range stripe order in this region of the phase dia-
gram, close to the quantum critical point the degree of
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striping at the local level is much greater than the small
ordered component. There is no universal statement
possible concerning how far the fluctuating stripe region
extends beyond the ordered phase. Clearly, if the region
in which there is local stripe order does not at least in-
clude the entire region of the phase diagram in which
high-temperature superconductivity occurs, it cannot be
essential for the mechanism of superconductivity.

Under many circumstances, the stripe-ordered phase
will not end at a quantum critical point, but rather will
terminate at a first-order line (Kivelson et al., 2001). If
the transition is only weakly first order, this will not af-
fect the general considerations presented here. If it is
strongly first order, fluctuation effects are much weaker,

FIG. 1. Schematic phase diagrams showing various forms of
stripe order, and their interactions with high-temperature su-
perconductivity; see text for discussion.
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and the effects of even very weak quenched disorder are
much more severe than in the case of a continuous tran-
sition. This limit warrants further study (Cardy, 1999),
both for application to the cuprates and more generally;
it is likely relevant for the organic superconductors.21

Figure 1(b) is a more ornate version22 of the phase
diagram, in which all the different broken-symmetry
phases discussed in the present paper are exhibited.
Here, we illustrate the case in which the nematic,
charge, and spin ordering occur at distinct transitions,
under which circumstances the nematic ordering must
precede the charge ordering, which must in turn precede
the spin ordering (Zachar et al., 1998). In general, there
are also distinctions between commensurate and incom-
mensurate, diagonal and vertical, bond-centered and
site-centered stripe order, so the same general consider-
ations could lead to significantly more complicated
phase diagrams.

Since the superconducting order is suppressed in the
vortex state, and eliminated above the critical field Hc2 ,
studies of the magnetic-field-induced changes in the lo-
cal stripe order have recently emerged as one of the best
ways of determining the nature of the interplay between
stripe and superconducting order. There has been a
flurry of recent papers, both experimental23 and
theoretical24 on this subject. Since the subject is fairly
involved and is well reviewed in the literature, we shall
not elaborate here on the phase diagram in a field, al-
though we will briefly mention some of the salient find-
ings in Sec. V.

Finally, Fig. 1(c) shows the effect of weak disorder on
the phase diagram illustrated in Fig. 1(b). Phase transi-
tions involving breaking of spatial symmetries are gen-
erally rounded by quenched disorder. The resulting
crossovers should have a glassy character, i.e., the appar-
ent transition temperature should be frequency depen-
dent. Thus the only true phase transitions in the pres-
ence of disorder are the superconducting and spin-glass

21A first-order transition of this sort has been reported in the
BEDT system (Lefebvre et al., 2000) and in (TMTSF)2PF6
(Brown et al., 2003).

22In sketching the global shape of the phase diagram, we have
included the prejudice that static stripe order, especially static
spin-stripe order, competes strongly with superconductivity,
but that a degree of local stripe order is necessary for high-
temperature pairing—the latter prejudice is reflected in the
vanishing of the superconducting Tc as the local stripe order is
suppressed upon overdoping. However, these prejudices affect
only the interplay between stripe order and superconducting
order in the phase diagram, and not the central features on
which we focus in the present article, concerning the character
of fluctuating stripe order.

23Recent experimental studies of induced stripe order in the
vortex state of high-temperature superconductors have been
carried out, including Katano et al., 2000; Lake et al., 2001,
2002; Hoffman, Hudson, et al., 2002; Khaykovich et al., 2002.

24Theoretical studies of the effect of magnetic fields on the
competition between stripe and superconducting order have
been extensive; see, for instance, Demler et al., 2001; Kivelson
et al., 2002; Zhang et al., 2002, and references therein. For an
earlier related discussion, see Arovas et al., 1997; Zhang, 1997.
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transitions, although the spin glass should have a local
stripe character—it is (Emery and Kivelson, 1993) a
‘‘cluster spin glass.’’ Note that quenched disorder gener-
ally introduces some frustration (Zachar, 2000), so that
whereas in the absence of quenched disorder the spin-
freezing temperature is large, quenched disorder tends
to suppress it. Conversely, where quantum fluctuations
have destroyed the ordered state, the additional pinning
effect of quenched disorder can lead to a spin-glass
phase extending beyond the border that the magnetic
phase would have in the zero-disorder limit.

III. ONE-DIMENSIONAL LUTTINGER LIQUID

In this section, we show how the general features de-
scribed above play out in the case of the 1DEG. For
simplicity, we present results for a spin-rotation-
invariant Tomonaga-Luttinger liquid; in a forthcoming
publication (Bindloss et al., 2003) we shall provide de-
tails of the derivations, and will also discuss the Luther-
Emery liquid, i.e., the spin-gap case. In this section we
will describe the most salient aspects of the ways fluctu-
ating order manifests itself in these critical systems. In
Appendix A we give more details of this theory. (We use
units in which \5kB51.)

Both the Tomonaga-Luttinger and the Luther-Emery
liquids can be regarded as quantum critical systems25

with dynamic critical exponent z51. So long as the
charge Luttinger parameter is in the range 0,Kc,1
(which is typically the case for repulsive interactions),
the charge susceptibility of the Tomonaga-Luttinger liq-
uid diverges as k→2kF as

x~2kF1q !;uqu2g, (3.1)

where kF is the Fermi wave vector and g512Kc . This
system can rightly be viewed as a quantum critical
charge-density wave state. (The charge-density wave
fluctuations are still stronger in the case of a Luther-
Emery liquid, where the susceptibility exponent is re-
placed by Kc22.) Thus it is the perfect laboratory for
testing the validity of the general scaling considerations
of Sec. II.

The charge-density structure factor of the Tomonaga-
Luttinger liquid is the Fourier transform of the more
readily evaluated space-time structure factor

S~k ,v!5E
2`

`

dtE
2`

`

dx S~x ,t !eikx2ivt, (3.2)

where the charge correlation function S(r ,t) is given by

S~r ,t !5S0~r ,t !1@ei2kFrS2kF
~r ,t !1c.c.#

1@ei4kFrS4kF
~r ,t !1c.c.#1¯ . (3.3)

Explicit expressions for S0 , S2kF
, etc. are given in the

literature (see footnote 25). These expressions can be

25For reviews of the theory of the 1DEG, see Emery, 1979;
Fradkin, 1991; Stone, 1994; Gogolin et al., 1998.
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Fourier transformed (although in general, this must be
done numerically) to yield expressions for the dynamical
structure factor. Since the Luttinger liquid is quantum
critical, this (and other) correlation functions have a
scaling form; for example, near 2kF (i.e., for small q)

S~2kF1q ,v!5
1

vc
S D

vcq D g

F2kFS v

vcq
,
v

T D , (3.4)

where D is an ultraviolet cutoff, i.e., the bandwidth of
the Tomonaga-Luttinger liquid. The scaling function
F2kF

of Eq. (3.4) depends implicitly on the dimension-
less parameters Kc and vc /vs with vc and vs , respec-
tively, the charge and spin velocities. (Spin rotation in-
variance constrains the spin Luttinger exponent Ks to be
equal to 1.) To exhibit the general features we are inter-
ested in, while making the Fourier transform as simple
as possible, we can consider the limit T50 and set vs
5vc5v . Then, for q small,

S~2kF1q ,v!;
1

v S D

vq D g

uS v2

v2q2 21 D F v2

v2q2 21G2g/2

,

(3.5)

where u(x) is the step function.
For fixed v, as a function of q , the dynamic structure

factor exhibits a multiparticle continuum for 2v/v<q
<v/v , but it does have singular structure, which can be
thought of as an image of the Goldstone (phason)
modes one would find were there true charge-density-
wave order:

S~2kF1q ,v!;@v2vuqu#2g/2 as uqu→v/v . (3.6)

The equal-time structure factor can also be readily com-
puted by integrating the dynamical structure factor; as
q→0,

S~2kF1q !;A2A8~ uqua/2!Kc, (3.7)

where A and A8 are numbers of order 1 and a is a
short-distance cutoff which we take to be a;vF /D . As
promised, this singularity is much weaker than that ex-
hibited by x, and indeed the 2kF component of the
structure factor remains finite (but not differentiable) as
q→0 (see Fig. 2).

FIG. 2. The T50 charge structure factor S(k) (solid line) and
the static susceptibility x(k ,v50) (dashed line), of the
Tomonaga-Luttinger liquid with vs5vc and Kc50.5.
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We now turn to the spatial structure in the 1DEG
induced by a single impurity at the origin. For Kc in this
range, the 2kF component of an impurity potential,
whose amplitude we will denote by G, is a relevant per-
turbation (Kane and Fisher, 1992, 1994) with (boundary)
scaling dimension d5 1

2 (Kc11). Thus there is a cross-
over energy scale TK}G2/(12Kc) such that excitations
with energy large compared to TK see a weak back-
scattering potential and are thus only weakly perturbed
by the impurity. Conversely, for energies low compared
to TK , the system is controlled (Kane and Fisher, 1992,
1994) by the fixed point at G→` . However, at this fixed
point, the high-energy cutoff is replaced by a renormal-
ized cutoff, D→TK .

We begin therefore by considering the limit G5` , i.e.,
a semi-infinite system with x>0 and the boundary con-
dition that no current can flow past x50. For finite G,
this solution is applicable for all energies uEu!TK . The
Fourier transform of the impurity-induced local density
of states,

N~k ,E !5N.~k ,E !1N,~k ,E !, (3.8)

N,~k ,E !5
1

2p E
2`

`

dtE
0

`

dx g,~x ,x ;t !ei(Et2kx),

can be computed using exact expressions for the appro-
priate single-hole Green’s function (Eggert et al., 1996;
Mattsson et al., 1997; Eggert, 2000):

g,~x ,x ;t !5(
s

^Cs
† ~x ,t !Cs~x ,0!&

[g0~x ,t !1@ei2kFxg2kF
~x ,t !

1e2i2kFxg22kF
~x ,t !#1¯ , (3.9)

where g0(x ,t) is the long-wavelength part and g2kF
(x ,t)

is the 2kF part; the single-electron piece can be com-
puted similarly from g., or more simply from the rela-
tion between their respective spectral densities,
N,(k ,E)5e2E/TN.(k ,E). We shall be interested in
the 2kF component, which clearly contains information
about charge-density-wave correlations in this semi-
infinite 1DEG, and for which a general expression in
space and time has been given by Eggert and others
(Eggert et al., 1996; Mattsson et al., 1997; Eggert, 2000).
As with the structure factor, the 2kF part of N(k ,E) can
also be expressed in terms of a scaling function F as (see
Appendix A)

N~q12kF ,E !5
B

2E S aE

vc
D 2b

FS 2E

vcq
,
E

T D , (3.10)

where b5(12Kc)2/8Kc and B is a dimensionless con-
stant; we have left implicit the dependence on the di-
mensionless parameters Kc and vc /vs .

The scaling form of N(k ,E), given in Eq. (3.10), ex-
presses the fact that the Luttinger liquid is a quantum
critical system. The spectrum of the Luttinger liquid and
the existence of a charge-ordered state induced by the
impurity dictate entirely the structure of the scaling
function F(x ,y): it has a multisoliton continuum for
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both right- and left-moving excitations, each with lead-
ing thresholds associated with one-soliton states carrying
separate spin and charge quantum numbers and moving
at their respective velocities, as well as a nonpropagating
feature associated with the pinning of the charge-
density-wave order by the impurity. Thus the STM spec-
trum exhibits all the striking features of the Luttinger
liquid: spin-charge separation and quantum criticality,
i.e., fluctuating order. The beauty of the 1DEG is that
much of this can be worked out explicitly.

In Figs. 3(a) and 3(c) we show the scaling function
computed numerically for various representative values
of the parameters. The plots show the real and imagi-
nary parts of N(2kF1q ,E) at fixed E/T as a function of

FIG. 3. Thermally scaled scanning-tunneling-microscope
(STM) spectra N(k ,E) in the neighborhood of k52kF [(a)
and (c)] and angle-resolved photoemission spectroscopy
(ARPES) spectra near k5kF [(b) and (d)]. In all cases,
vc /vs54 and Ks51; for (a) and (b) Kc50.5 (b51/16), while
for (c) and (d) Kc50.17 (b51/2). In (a) and (c), the density-
of-states oscillations are induced by an impurity scatterer at
the origin with TK@E . In the STM spectra, the real and imagi-
nary parts are represented by the solid and dashed lines, re-
spectively. The curves for E/T510 and E/T520 are offset by
1 and 2, respectively, in arbitrary units.
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the scaled momentum vcq/T , for uqu!kF . For compari-
son, we also show (Orgad et al., 2001) in Figs. 3(b) and
3(d), the single hole spectral function A(kF1q ,v) that
would be measured in an angle resolved photoemission
spectroscopy (ARPES) experiment on the same system
in the absence of an impurity.

There are several things to note about these plots.26

(1) Because of the quantum critical scaling form, high
energy and low temperature are equivalent. Note,
however, that in interpreting the large E/T spectra
as representative of the low-temperature behavior
of the system, it is important to remember that the
thermal scaling of the k axis of the figure hides the
fact that all features of the spectrum are becoming
sharper as T→0; this is made apparent in Fig. 4.

(2) It is clear that there are right-dispersing features of
the scaling functions characterized by the spin and
charge velocities. The interference between dispers-
ing features of the ARPES spectrum near kF and
2kF can be loosely thought of as giving rise to the
dispersing features in the STM spectrum; indeed, as
Kc→1 (the noninteracting limit), Re$N(2kF1q,E)%
}A(kF2q/2,2E) at fixed E.0. However, it is also
clear from the figure that the stronger the interac-
tions, the less direct is the resemblance between
N(2kF1q ,E) and A(kF2q/2,2E).

(3) There is also a very weak feature in the spectrum,

26Details of the asymptotic analytic behaviors of the singulari-
ties exhibited in these plots can be found in Appendix A.

FIG. 4. Low-temperature (E/T5100) form of the STM spec-
tra with k near 2kF , for the same parameters as in Fig. 3; (a)
Kc50.5; and (b) Kc50.17. Here, we have expressed N(k ,E)
5uN(k ,E)uexp@if(k,E)# where the amplitude is shown as a
solid line and the phase as a dashed line.
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visible only at quite large E/T (compare Figs. 3 and
4), which disperses in the opposite direction (left) to
the main features of the spectra with velocity 2vc .
Because these spectra are shown only for k’s in the
neighborhood of 12kF [or 1kF for A(k ,E)], there
is no symmetry between right- and left-moving exci-
tations. If we showed the spectra on a larger scale,
there would of course be the mirror symmetric spec-
tra near 22kF (or 2kF) as required by Kramer’s
theorem.

(4) In the STM spectrum, but not in the ARPES spec-
trum, there is a feature near q50 which does not
disperse with increasing energy; this is directly re-
lated to the pinned charge-density-wave order. Note
that for Kc50.5, this feature is weak in Fig. 3, and
only becomes prominent at very large E/T , as
shown in Fig. 4; but this is the most important fea-
ture of the data if one is interested in evidence of
pinned charge-density-wave order.

Lesson 3: From this explicit example we learn that
dispersing features in an STM measurement that re-
semble the interference effects that arise from noninter-
acting quasiparticles do not necessarily imply the exis-
tence of well-defined quasiparticles!

It is interesting to compare N(k ,E) with the local
density of states averaged over some energy scale,

Ñ~2kF1q ,E ![E21E
2E

0
de N~2kF1q ,e!. (3.11)

Note that at T50, EÑ(k ,E)→^rk& as E→` . However,
the expression we have used for N(k ,E) was derived for
an infinite strength scattering potential, and so is only
valid up to energies of the order of TK!D . This inte-
grated quantity is shown in Fig. 5 for representative
parameters27 at T50. In the limit as q→0, Ñ(2kF
1q,TK) has the asymptotic behavior

Ñ~2kF1q ,TK!}S 1
TK

D S aTK

vc
D 2bS TK

vcq D g/2

. (3.12)

Both the integrated induced tunneling density of states
and the induced tunneling density of states at fixed volt-
age E have a singular behavior of the form q2g/2 (see
Appendix A). However, the big difference is that
N(k ,E) has dispersing singularities in addition to the
nondispersing singularity at k→2kF , while the singular-
ity at k→2kF is the only singular feature of Ñ(k ,TK).
Thus Ñ(k ,TK) is more easily analyzed for evidence of
an almost ordered charge-density-wave state.

At energies E.TK , the response of the system to the
presence of the impurity is weak (i.e., proportional to G),
and can be computed in perturbation theory. For in-

27For technical reasons, what is actually plotted in Fig. 5 is
Ñ(k)[limTK→` *2`

` dE@12f(E)#N(k ,E), where f is the

Fermi function, but the distinction between this and Ñ(k ,TK)
is not important here.
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stance, in the weak-impurity limit TK→0 the integrated
response of the system over all energies is dominated by
the high-energy, perturbative regime where at T50 we
find, in agreement with the sum rule of Eq. (2.9) (see
also Appendix A),

Ñ~2kF1q ,D !5xch~2kF1q !G1O~G2!. (3.13)

By comparing the weak G behavior of Ñ(2kF1q ,D)
[Eq. (3.13)] with its behavior in the opposite G→` limit,
Eq. (3.12), we see that since xch;uquKc21 (as q→0), the
integrated local density of states for small G is much
more singular as q→0 than for large G. This is a neces-
sary consequence of the fact that the backscattering im-
purity potential is a relevant perturbation.

It is also worth noting that the impurity-induced local
density of states at a fixed finite distance x from the
impurity,

dN~x ,E !;E(12Kc)/2Kc, (3.14)

is always large at low energies uEu!v/x compared to the
background density of states of the clean Tomonaga-
Luttinger liquid,

N~E !;E(12Kc)2/4Kc. (3.15)

This is yet another illustration of the way impurities en-
hance the low-energy effects of fluctuating order.

IV. TWO-DIMENSIONAL FERMI LIQUID

In this section, we consider the application of these
ideas to the case of weakly interacting electrons in two

FIG. 5. Thermally scaled integrated STM spectra Ñ(k)

[uÑ(k)ueif̃(k);Ñ(k ,TK) in the neighborhood of k52kF for
vc /vs54 and Ks51: (a) Kc50.5; and (b) Kc50.17. The solid
line is the amplitude and the dashed line is the phase. (See
Appendix A for details.)
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dimensions. To obtain explicit results, we shall consider
electrons with a quadratic dispersion ek5\2k2/2m .

Although, as seen in Eq. (2.8), xDOS is a two-particle
correlator, for noninteracting quasiparticles, it can be ex-
pressed as a convolution (Byers et al., 1993; Polkovnikov
et al., 2003) of two single-particle Green’s functions:

xDOS~k,E !52
1
p

ImH E dq
~2p!d G~k1q,E !G~q,E !J .

(4.1)

Therefore, in weakly interacting systems, xDOS can be
analyzed to obtain information about the single-particle
spectrum. Explicitly, it is easy to see that for free elec-
trons in 2D xDOS(k,E) is given by

x0~k,E !5
m

p\2

u~ek24E !

Aek~ek24E !
. (4.2)

Here, the subscript 0 is introduced for later convenience
to signify x in the noninteracting limit, and once again
u(x) is the Heaviside (step) function. For fixed E as a
function of k, this quantity diverges along curves in k
space, where ek54E (uku52kF). Note that the fact that
x0 vanishes for ek,4E is a peculiarity of the 2D case
with infinite quasiparticle lifetime. In three dimensions,

x0~k,E !5
1

8p2 S 2m

\2 D 3/2 1

Aek

lnU2AE1Aek

2AE2Aek
U , (4.3)

which also has a singularity as ek→4E , but is nonzero
(and positive) for all E.0. In contrast, as shown in Sec.
III, in a 1D Luttinger liquid the induced density of states
has a phase jump as k crosses any of the propagating or
nonpropagating singularities. It is straightforward to see
that in both two and three dimensions a finite quasipar-
ticle lifetime leads to a rounding of the singularities and
that in two dimensions it also leads to a positive induced
density of states for all E.0. It is also simple to verify
that to nonlinear order in the external potential, the in-
duced density of states in two dimensions may or may
not have a phase jump across the singularity, depending
on the details of the perturbing potential. For instance,
the induced local density of states produced by a single
impurity can be computed (from the impurity t matrix);
it exhibits sign reversal (p phase shift) across the singu-
larity at ek54E for a repulsive potential, but not for an
attractive one. In contrast, as we shall show below, any
k-space structure that arises from proximity to a quan-
tum critical point is derived from the susceptibility x(k),
which is real and positive, so it always produces a signal
whose phase is constant.

Lesson 4: The density-of-states modulations induced
by weak disorder in a noninteracting metal are quite
different in character from those expected to arise from
proximity to a charge-density-wave quantum critical
point, both in that they disperse strongly as a function of
energy, and that the peak intensities lie along curves
(surfaces in three dimensions) in k space, as opposed to
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the structure associated with isolated points in k space
expected from near-critical fluctuations.28

The charge susceptibility itself, x0(k), is well known
from many studies of the 2DEG. It has an extremely
weak nonanalyticity, whenever uqu52kF ,

x0~q!5
m

2p\2 S 12u~q22kF!
Aq224kF

2

q D . (4.4)

The inverse Fourier transform of this meager nonanaly-
ticity is what gives rise to the famous Friedel oscillations
in the neighborhood of an isolated impurity,

^r~r !&;
1
r2 cos~2kFr !. (4.5)

What this means is that, for all intents and purposes, the
Friedel oscillations are all but invisible in the Fourier
transform of any conceivable STM experiment on a
simple metal in D.1. Some nontrivial method of data
analysis is necessary instead (Sprunger et al., 1997; Bri-
ner et al., 1998).

It is worthwhile considering the effects of interactions
on this picture. For weak enough interactions, the ef-
fects can be treated in a Hartree-Fock approximation.
Thus, if we absorb any interaction-induced changes in
the band parameters into a renormalized band structure,
the only change in the above analysis is that the external
perturbation Vk in Eqs. (2.5) and (2.7) must be replaced
by an effective potential, Vk→Vk1Ukrk , where U
(which can be weakly k dependent) is the strength of the
electron-electron repulsion. This leads to the usual RPA
expression for the susceptibilities of the interacting sys-
tem, and to

xch~k!5@12Uk x0~k!#21x0~k!,

xDOS~k,E !5@12Uk x0~k!#21x0~k,E !. (4.6)

[It is the fact that E is a probe energy, not a frequency,
that is responsible for the appearance simply of x0(k),
rather than a frequency-dependent factor, in the expres-
sion for xDOS(k,E).] Not surprisingly, since x0(k) is fi-
nite for all k, for small U there is little qualitative differ-
ence between x0(k) and x(k). However, if we imagine,
as is often done (although we are not aware of any rea-
son it is justified) that this RPA expression applies quali-

28In practice, the distinction between an N(k,E), which is
peaked along curves, indicative of quasiparticle interference
effects, and an N(k,E) peaked at isolated ‘‘ordering’’ vectors
k5Q may not always be straightforward to establish in experi-
ment. Consider the case in which there is an anisotropy of
strength a in the effective mass of the 2DEG, i.e., ek5\2(kx

2

1aky
2)/2m . In the limit of large anisotropy, a@1, when the

effects of the finite k resolution of actual experiments are
taken into account, apparent peaklike structures can emerge.
If we represent the effect of finite resolution by integrating the
expression in Eq. (4.2) over a range of momenta around dif-
ferent points along the ellipse ek54E , the integrated expres-
sion is peaked near k562A2mE êx , where it is a factor of Aa
larger than at its minimum near Aa k562A2mE êy .
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tatively for larger magnitudes of U , then as a function of
increasing magnitude of U we would eventually satisfy a
Stoner criterion for a charge-density-wave, Ukx0(k)
51. Here, due to the relatively weak k dependence of
x0(k), the charge-density-wave ordering vector Qch is
determined as much by the k dependence of Uk as by
effects intrinsic to the 2DEG.

Following this line of analysis, let us consider the be-
havior of xDOS(k,E) in the quantum disordered phase
close to such a putative Stoner instability, where xch(k)
is highly peaked at k5Qch . For k far from the ordering
vector, both the k and E dependence of xDOS are deter-
mined largely by x0(k,E). However, at fixed voltage,
xDOS(k,E) will also exhibit a peak at a k'Qch , with a
voltage-dependent intensity proportional to x0(Qch ,E).
Note, particularly, that as long as there is a finite corre-
lation length associated with the incipient order, i.e., so
long as the peak in xch(k) has a finite width, the corre-
sponding peak in xDOS(k,E) will not generally occur
precisely at Qch . To illustrate this point, here and in Fig.
6 we adopt as a simple phenomenological model,
xch(k)5A(jkF)2 exp@2 (j2/2)(uku2Qch)2# , where j is
the stripe correlation length. From Eq. (4.6), it follows
that in addition to the singularity inherited from
x0(k,E), xDOS(K,E) has a peak at a momentum k
which satisfies

k5Qch2j22Fek22E

ek24EG“k ln@ek# . (4.7)

In short, the peak associated with incipient order is
weakly dispersing (especially at energies far from any
quasiparticle resonance condition) but so long as j is
finite, the peak is never ‘‘nondispersing.’’ (In contrast,
the 1D example discussed above is quantum critical, so j
is infinite, and the feature associated with fluctuating or-
der is strictly nondispersive.)

Although the calculations are somewhat more in-
volved (and therefore must be implemented numeri-
cally), the same sort of weak-coupling analysis can be
carried out in the superconducting state. Oscillations in-
duced by a mean field with period 4, representing stripes

FIG. 6. The RPA expression for xDOS(k,E) plotted as a func-
tion of momentum at a fixed, low-energy E2m50.2m . A small
decay rate, G50.025m , is included to round the singularity and
produce a finite x0(k ,E) at all k . We have taken the phenom-
enological form for xch(k) discussed in the text. The figure was
plotted with j55kF

21 and Qch51.8kF .
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with various internal structures in a d-wave supercon-
ductor, were carried out by Podolsky et al. (2002). As
expected, the stripes induced oscillations in the local
density of states with the period 4, but with energy de-
pendences that reflected both the quasiparticle disper-
sion and the specific stripe structure assumed. Impurity-
induced oscillations in the local density of states in a
d-wave superconductor were computed by Byers et al.
(1993) and Wang and Lee (2003), and the effects of
proximity to a stripe-ordered state, at RPA level, were
investigated by Polkovnikov et al. (2002). In all cases,
interference and stripe-related effects interacted in fairly
complex ways that required detailed analysis to disen-
tangle.

Lesson 5: Depending on what regions of k space are
probed, the STM spectrum can either be dominated
largely by band-structure effects, or by the incipient
charge-density-wave order. The most singular enhance-
ment of the STM signal is expected to occur at energies
such that a dispersing feature reflecting the underlying
band structure passes through the ordering wave vector.

V. REGARDING EXPERIMENTS IN THE CUPRATES

Even where broken symmetry associated with stripe
order has ultimately been proven to exist, establishing
this fact has often turned out to be difficult for a number
of practical reasons. In addition, since quenched disor-
der is always a relevant perturbation (in the
renormalization-group sense), macroscopic manifesta-
tions of broken spatial symmetries are sharply defined
only in the zero-disorder limit. Nevertheless, the exis-
tence of some form of order which coexists with super-
conductivity has implications for the phase diagram
which can, in principle and sometimes in practice, be
tested by macroscopic measurements. A particularly re-
vealing set of phenomena occur when the strength of the
superconducting order is modulated by the application
of an external magnetic field.29 Moreover, as discussed in
Sec. V.C, from measurements of macroscopic transport
anisotropies, electronic nematic order (e.g., point-group
symmetry breaking) has been identified beyond all rea-
sonable doubt in quantum Hall systems (Du et al., 1999;
Lilly et al., 1999a), and very compelling evidence for its
existence has been reported in the last year in under-
doped La22xSrxCuO4 and YBa2Cu3O61y (Ando, 2002;
Ando, Segawa, et al., 2002).

However, most searches for stripe order rely on more
microscopic measurements, especially elastic neutron
scattering. One aspect of this that has caused consider-

29For experimental studies, see Ando et al., 1997; Tyler et al.,
1998; Katano et al., 2000; Ono et al., 2000; Lake et al., 2001,
2002; Ando, 2002; Hoffman, Hudson, et al., 2002; Khaykovich
et al., 2002; Hawthorn et al., 2003; Liu et al., 2003; for theoret-
ical analysis, see Arovas et al., 1997; Zhang, 1997; Ivanov et al.,
2000; Chakravarty, Laughlin, et al., 2001; Demler et al., 2001;
Kivelson et al., 2002; Polkovnikov et al., 2002; Zhang et al.,
2002.
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able confusion is that, unless an external perturbation
(such as weak crystalline orthorhombicity) aligns the
stripes in one direction, one generally finds equal num-
bers of y-directed and x-directed domains, leading to
quartets of apparently equivalent Bragg peaks, rather
than the expected pairs. Fortunately, where sufficiently
long-ranged order exists, it is possible, by carefully ana-
lyzing the scattering data, to distinguish this situation
from one in which the peaks arise from a more symmet-
ric ‘‘checkerboard’’ pattern of translation-symmetry
breaking. From elastic neutron scattering [i.e., measure-
ments of both the magnetic and the nuclear S(k,v
50)], and to a lesser extent from x-ray scattering, it has
been possible to establish the existence of stripe-ordered
phases in a wide range of members of the lanthanum
cuprate family of high-temperature superconductors:
La1.62xNd0.4SrxCuO4 over the whole range of doped
hole concentrations30 from 0.05,x<0.2, La22xBaxCuO4
(Fujita et al., 2002), La22xSrxCuO4 for31 0.02,x,0.13,
and La2CuO41d (Lee et al., 1999) (including optimally
doped material with a doped hole concentration '0.15
and a superconducting Tc of 42 K). Exciting preliminary
evidence of charge-stripe order has been recently re-
ported, as well, from elastic neutron scattering studies
on underdoped YBa2Cu3O61y [with y50.35 and Tc
539 K (Mook et al., 2002)] and optimally doped
YBa2Cu3O61y [with y50.93 and Tc593 K (Mook,
2002)]. And, it is worth mentioning, stripe order has also
been similarly detected in a number of nonsuper-
conducting doped antiferromagnets,32 including
La22xSrxNiO41d and the colossal magnetoresistance
manganites.33

Conversely, it is important to note that so far no evi-
dence of stripe order, or incipient stripe order, has been
found in any of the electron-doped cuprate supercon-
ductors. Indeed, all the low-energy magnetism that has
been reported to date (Yamada et al., 2003) is peaked at
the commensurate ordering wave vector QAF , rather
than at an incommensurate wave vector. This is rather
strong evidence that at least spin-stripe order is absent
in these materials. This does not rule out a possible role
for charge inhomogeneity; perhaps the electron-doped
materials are more prone to form bubble phases, i.e.,
crystalline phases with more than one doped electron
per unit cell (Seul and Andelman, 1995; Fogler et al.,
1996).

We now turn to the core problem: Given a system that
in the absence of quenched disorder or explicit

30See Tranquada et al. (1997); Ichikawa et al. (2000);
Wakimoto et al. (2001).

31See Niedermayer et al. (1998); Suzuki et al. (1998); Kimura
et al. (1999); Wakimoto et al. (1999, 2001); Matsuda et al.
(2000).

32See Lee and Cheong (1997); Tranquada (1998a); Yoshizawa
et al. (2000); Kajimoto et al. (2003).

33See Mori et al. (1998a, 1998b); Radaelli et al. (1999); Wang
et al. (2000).
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symmetry-breaking terms is in an isotropic fluid state,
how is the existence of substantial local stripe order
identified?

A. Diffraction from stripes

Peaks in S(k,v) at the characteristic stripe-ordering
vectors indicate a degree of local stripe order. The k
width of these peaks can be interpreted as an indication
of the spatial extent of local stripe order, and the low-
frequency cutoff as an indication of the typical stripe
fluctuation frequency. So long as there is no spontaneous
symmetry breaking, S(k,v) necessarily respects all the
point-group symmetries of the crystal, and thus will nec-
essarily always show peaks at quartets of k values, never
the pairs of k values of a single-domain stripe-ordered
state.

Low-frequency spin fluctuations with relatively sharp
peaks at incommensurate wave vectors were detected
many years ago in inelastic neutron-scattering studies
(Thurston et al., 1989, 1992; Cheong et al., 1991) of opti-
mally doped (x'0.15, Tc;38 K) La22xSrxCuO4 . How-
ever, not until the discovery (Tranquada, Sternlieb, et al.,
1995) of ‘‘honest’’ stripe-ordered phases in the closely
related compound La1.62xNd0.4SrxCuO4 was the inter-
pretation of these peaks as being due to stripe fluctua-
tions made unambiguously clear. For instance, as shown
in Fig. 7, the magnetic structure factor at low tempera-

FIG. 7. Comparison of constant-energy scans at \v53 meV
through an incommensurate magnetic peak (along path shown
in inset) for (a) La1.85Sr0.15CuO4 and (b) La1.48Nd0.4Sr0.12CuO4 .
Both scans are at T540 K.Tc . Measurement conditions are
described by Tranquada et al. (1999b).
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ture and small but finite frequency, \v53 meV, looks
very similar (in absolute magnitude and width) in both
La1.62xNd0.4SrxCuO4 with x50.12, where elastic scatter-
ing indicating statistically ordered stripes has been de-
tected (Tranquada, Sternlieb, et al., 1995), and in
La22xSrxCuO4 with x50.15, where no such static order
is discernible (Yamada et al., 1995). As discussed in the
previous section, this is precisely the expected behavior
near a quantum critical point, where presumably the
partial substitution of La by Nd has moved the system
from slightly on the quantum-disordered side to slightly
on the ordered side of a stripe-ordering quantum critical
point.34 We can now confidently characterize
La22xSrxCuO4 over an extremely broad range of doping
as being either in a stripe-ordered or a nearly ordered
stripe liquid phase.

An important test of this idea comes from studies of
the changes in S(k,v) produced by weak disorder. Spe-
cifically, in Fig. 8, we compare the low-frequency (Mat-
suda et al., 1993) and elastic (Hirota et al., 1998) pieces
of the magnetic structure factor of La22xSrxCuO4 in the
presence and absence of a small concentration (1.2%) of
Zn impurities. (Zn substitutes for Cu.) As one might
have expected, the Zn slightly broadens the k-space
structure, although not enormously (Kimura et al., 1999;
Tranquada et al., 1999a). Most dramatically, the Zn
‘‘pins’’ the stripe fluctuations, in the sense that what ap-
pear only as finite-frequency fluctuation effects in the
Zn-free material are pushed to lower frequencies and
even to v50 by the quenched disorder.35

The issue still remains actively debated whether or
not various fluctuation effects seen in neutron-scattering
studies of the other widely studied families of high-
temperature superconductors, especially YBa2Cu3O61y
and Bi2Sr2CaCu2O81d , can be associated with stripe
fluctuations. We will not review this debate here, but will
touch on it again in Secs. V.B and V.C, below.

One question arises (Chen et al., 2002) concerning
how we can distinguish a fluctuating stripe phase from a
fluctuating checkerboard phase (which breaks transla-
tion symmetry but preserves the symmetry under ex-
change of x and y). Of course, the strongest indication
that stripes, rather than checkerboards, are responsible
for the observed fluctuations comes from the presence
of nearby stripe-ordered phases, and the absence of any
clear evidence of actual ordered checkerboard phases in

34This interpretation is further supported by the finding that
the magnetic S(k,v) in near-optimally doped La22xSrxCuO4
has scaling properties consistent with its being dominated by a
nearby stripe-ordering quantum critical point; see Aeppli et al.,
1997.

35It is certain that one effect of the Zn impurities is to pin the
charge-stripe fluctuations. It may also be that the missing Cu
spin plays an important role in slowing the spin fluctuations in
the neighborhood of the Zn; the potential importance of this
form of coupling, based on the behavior of a Kondo impurity
in a system close to a magnetic quantum critical point, has
been stressed by Sachdev et al., 1999.
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FIG. 8. (Color in online edition) Comparison
of magnetic scattering measurements in
La22xSrxCuO4 with and without Zn; all scans

are along Q5( 1
2 1h , 1

2 ,0), measured in recip-
rocal lattice units. (a) Scan at E51.5 meV
and T57 K; (b) difference between elastic
scans measured at 7 and 80 K, both
for La1.86Sr0.14Cu0.988Zn0.012O4 (Tc519 K)
(Hirota, 2001); (c) scan at E52 meV and T
538 K (Yamada et al., 1998); (d) elastic scans
at T51.5 K (s) and 50 K (n) (Kimura et al.,
1999), for La1.85Sr0.15CuO4 (Tc538 K). Mea-
surement conditions were different for each
panel; see references for details.
any doped antiferromagnet, to date. However, in theo-
retical studies (Löw et al., 1994; Fogler et al., 1996;
Moessner and Chalker, 1996; Chen et al., 2002) both
types of order appear to be close to each other in energy,
so this argument should not be given undue weight.

Where both spin and charge peaks are observed, it
turns out that there is a straightforward way to distin-
guish between the two. From Landau theory it follows
(Zachar et al., 1998) that there is a preferred relation
between the spin- and charge-ordering wave vectors,
Qs1Qs85Qch . For stripe order, this means that the spin
and charge wave vectors are parallel to each other, and
related (up to a reciprocal lattice vector) by the relation
2Qs5Qch . However, in the case of checkerboard order,
the dominant spin-ordering wave vector is not parallel to
the charge-ordering wave vectors; if Qch5(2p/
a)(6dch,0) and Qch8 5(2p/a)(0,6dch), the correspond-
ing spin-ordering vectors, Qs5QAF6(2p/a)
3( 1

2 dch , 1
2 dch) and Qs85QAF6(2p/a)( 1

2 dch ,2 1
2 dch) sat-

isfy the requisite identities. Thus the relative orientation
of the spin and charge peaks can be used to distinguish
fluctuating stripe order from fluctuating checkerboard
order (Tranquada et al., 1999a).

B. Scanning tunneling microscope measurements
and stripes

1. General features

Scanning tunneling microscopy is a static probe and
thus cannot detect any structure associated with fluctu-
ating order unless something pins it.36 Density or ‘‘Frie-

36See Sprunger et al., 1997; Renner et al., 1998; Hudson et al.,
1999; Yazdani et al., 1999; Lang et al., 2000; Pan et al., 2000a,
2000b, 2001; Hoffman, Hudson, et al., 2002; Howald et al.,
2003a, 2003b.
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del oscillations’’ (Friedel, 1958) in simple metals pro-
duced by the presence of a defect are directly related to
Fermi-surface-derived nonanalyticities in the suscepti-
bility x(k). However, ‘‘generalized Friedel oscillations’’
can occur in more diverse systems in which the relevant
structure in x(k) is not directly related to any feature of
a Fermi surface. For instance, a bosonic superfluid on a
lattice close to a second-order transition to an insulating,
bosonic crystalline phase would exhibit generalized Frie-
del oscillations with the characteristic wavelength of the
roton minimum—these oscillations, in a very direct
sense, would image the fluctuating crystalline order
present in the fluid state.

There are a few important features of generalized
Friedel oscillations which follow from general principles.
If the liquid state is proximate to a highly anisotropic
state, such as a stripe state, the values of k5Q at which
x has maxima will reflect the pattern of spatial symmetry
breaking of the ordered state, but x(k) will respect the
full point-group symmetry of the crystal unless the liquid
state spontaneously breaks this symmetry, e.g., is a nem-
atic. So, the generalized Friedel oscillations around a
point impurity in a stripe liquid phase will inevitably
form a checkerboard pattern, unless some form of
external symmetry-breaking field is applied (Polkovni-
kov et al., 2002).

There is another form of spatial modulation of the
density of states, one with a period that disperses as a
function of the probe energy, which is sometimes (incor-
rectly, we believe) referred to in the STM literature as
Friedel oscillations. This latter effect, which was first
demonstrated by Crommie et al. (1993), is produced by
the elastic scattering of quasiparticles of a given energy
off an impurity. The resulting interference between scat-
tered waves leads to variations of the local density of
states at wave vectors Q5k2k8, where k and k8 are the
wave vectors of states with energy E5e(k)5e(k8), as
determined by the band structure, e(k). Generalized ver-
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sions of these oscillations can occur even when there are
no well-defined quasiparticles, so long as there are some
elementary excitations of the system with well-defined
dispersion relations, as is shown in Sec. III.

Thus in STM studies of cuprates we would expect
stripe correlations to make an appearance as generalized
Friedel oscillations, while quasiparticlelike interference
is a distinct phenomenon that could also be present. The
observation of a checkerboard pattern with a 4a period
about vortex cores in Bi2Sr2CaCu2O81d by Hoffman,
Hudson, et al. (2002) is provocative evidence for pinned
charge stripes. These results motivated Howald et al.
(2003a, 2003b), to search for similar evidence of stripes
in Bi2Sr2CaCu2O81d with no applied field. The discus-
sion below is focused on approaches for distinguishing
and enhancing modulations due to generalized Friedel
oscillations associated with such incipient order. Before
continuing, though, we should note that compelling evi-
dence for a quasiparticle interference response has been
reported by Hoffman, McElroy, et al. (2002) and by
McElroy et al. (2003). Those experimental results are
not in direct conflict with those of Howald et al. (2003a,
2003b); however, there has been some controversy over
interpretation, regarding whether the observed spatial
modulations in the tunneling conductance are explained
entirely by the interference mechanism, or whether in-
terference modulations coexist with generalized Friedel
oscillations. We shall return to that controversy in a sub-
section below.

Modulations that reflect the spectrum of elementary
excitations are distinguishable (Polkovnikov et al., 2003)
from those related to incipient order in a variety of
ways: whereas incipient order produces effects peaked
near isolated ordering vectors Q, the single-particle ef-
fects are peaked along extremal curves in k space which
disperse as a function of E . Peaks in the Fourier-
transformed local density of states N(k,E) produced by
incipient order tend to be phase coherent, while other
features either have a random phase or a phase that is
strongly energy dependent. Indeed, the phase informa-
tion may be the best way to distinguish the conse-
quences of incipient order from interference effects.
Naturally, in the presence of true long-range charge or-
der, N(k,E) should exhibit sharp (resolution-limited)
peaks which reflect the charge-density modulation in
real space. This effect has been seen in STM measure-
ments of the quasi-two-dimensional incommensurate
charge-density-wave system 1T-TaS2 , lightly doped
with Nb, by Dai et al. (1991).

To demonstrate the effect of the phase, assume we
have measured NL(r,E), the local density of states at a
particular bias voltage, V5E/e on a sample of size
L3L . Its Fourier transform, NL(k,E), has an arbitrary
k-dependent but E-independent phase, e2ik"r0, which
depends on the choice of origin of coordinates, r0 . As
discussed above, NL(k,E) can be expected to have con-
tributions from incipient order (with wave vector Q),
and dispersing quasiparticles. Integrating the signal over
a finite energy window yields the quantity Ñ(k,E), in
which the contributions from incipient order over the
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
entire range of integration add constructively, while
other features tend to interfere destructively.37 This
mode of analysis is particularly useful if an energy win-
dow can be found in which none of the dispersing fea-
tures expected on the basis of band-structure consider-
ations have wave vectors equal to the expected ordering
wave vector Q.

Indeed, Howald et al. (2003b) have already demon-
strated the first half of this point in STM studies of a
very slightly overdoped sample of Bi2Sr2CaCu2O81d

(Tc586). They identified a peak which in N(k,E)
at approximately k56Qch'6(2p/a)(0.25,0) and k
56R@Qch#56(2p/a)(0,0.25) (see Fig. 9), and showed
that at these wave numbers the phase of N(k,E) is en-
ergy independent for E between 0 and 40 meV, at which
point the amplitude crosses through zero, i.e., the sign of
the signal changes. The constancy of the phase implies
that the location in real space of the density-of-states

37It is important to emphasize that both the phase and the
amplitude information encoded in NL(k,E) are physically sig-
nificant. The commonly used power spectrum uNL(k,E)u2 will
not lead to destructive interference of propagating features
when integrated over energies.

FIG. 9. (Color in online edition) The real part of the Fourier
transform of the local density of states from an STM study of a
near-optimally doped crystal of Bi2Sr2CaCu2O81d . k is taken
along the (1,0) direction, in a tetragonal convention: (a)
dI/dV}N(k,E) measured at fixed voltage, V5E/e ; (b) I/V
}Ñ(k,E), which is the integral of the quantity shown in (a)
from V50 to V5E/e .



1217Kivelson et al.: Fluctuating stripes in the high-temperature superconductors
FIG. 10. (Color in online edition) Dispersion
of the peaks in N(k,E) (from STM mea-
surements on near-optimally doped
Bi2Sr2CaCu2O81d) at wave vectors k1 [along
the (1,0) direction] (left panel) and k2 along
the (1,1) direction from Fig. 4 of Hoffman,
McElroy, et al. (2002) (right panel). The solid
lines are from a global fit to the ARPES spec-
trum, as described in the text.
modulation is fixed at all energies, which strongly indi-
cates that it reflects pinned incipient order.

However, as explained above, the existence of incipi-
ent order can be magnified if we integrate the local den-
sity of states as a function of energy. In Fig. 9(a) we
show data from Howald et al. (2003a, 2003b), in which
the values of dI/dV were obtained by a Fourier trans-
form of a real-space image at various voltages, V
5E/e , on a patch of surface of size L5160 Å. The ori-
gin of coordinates was chosen such that NL(k,E) is real
and positive for k5Qch . In the figure, k is taken to lie
along the (1,0) direction and what is shown is the real
part of NL(k,E) (the imaginary part is generally small
and noisy.) In Fig. 9(b), we show the same data averaged
over energy from 0 to E , I/V}ÑL(k,E). It is apparent
that integration enhances the strength of the peak at Qch
and depresses the remaining signal, especially when E is
smaller than the maximum superconducting gap value,
D0'35 meV. Indeed, precisely this same integration
technique was used previously by Hoffman, Hudson,
et al. (2002) to enhance the magnetic-field-induced
checkerboard pattern in vortex cores.

2. Differing interpretations of the STM spectra

As mentioned in the Introduction, there is contro-
versy in the literature concerning the interpretation of
the STM spectra, although there seem to be only rela-
tively minor disagreements concerning the data them-
selves. Specifically, Hoffman, McElroy, et al. (2002) and
still more recently McElroy et al. (2003) have suggested
that the peaks seen in N(k,E) can be accounted for
entirely in terms of the interference pattern of sharply
defined quasiparticles in a d-wave superconductor, with
no need to invoke incipient stripe order—or any non-
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Fermi-liquid character of the elementary excitations, for
that matter. Let us briefly review the line of reasoning
that leads to this conclusion.

As we have seen (lesson 4), interference between qua-
siparticles in two dimensions naturally produces ridges
in N(k,E) along closed curves in k space, rather than
the peaks observed in experiment. However, as was first
recognized by Wang and Lee (2003), this result is modi-
fied by the extreme eccentricity of the contours of con-
stant quasiparticle energy in a d-wave superconductor,
where the dispersion in one direction is vF and in the
other is proportional to D0 . Consequently, with finite
experimental resolution, at energies less than D0 , one
obtains peaks in the interference patterns at points in k
space which connect the tips of the contours that sur-
round each of the four distinct nodal points on the
Fermi surface.

Specifically, if we assume that there are well-defined
quasiparticles with energy obtained by solving the
Bogoliubov–de Gennes equations for a d-wave super-
conductor, then for each energy E there are eight values
qj (two in the neighborhood of each nodal point) which
simultaneously satisfy the equations e(qj)50 (i.e., they
lie on the normal-state Fermi surface) and Dqj

5E(qj)
5E (i.e., the quasiparticle creation energy is E). Peaks
in N(k,E) will then occur at the various distinct values
of kij5qi2qj , of which there are seven (up to symme-
try). For instance, the two wave vectors with smallest
magnitudes are k1252qx(1,0) and k135&(qx
2qy)(1/& ,1/&), which come from the interference be-
tween the state q15(qx ,qy) and, respectively, the states
at q25(2qx ,qy) and q35(qy ,qx). The positions of the
peaks in N(k,E) thought to correspond to k12 and k13
from the work of Hoffman, McElroy, et al. (2002) are
reproduced in Fig. 10. Given the quasiparticle interpre-
tation of the STM spectrum, then from the observed
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location of any two distinct peak positions kij at a given
energy, it is possible to reconstruct the positions of all
eight locations in the Brillouin zone qj which give rise to
all the expected peaks at this energy. Thus, where seven
distinct peaks are observed [as are reported by McElroy
et al. (2003) in some ranges of energy], the quasiparticle
spectrum is highly overconstrained, and this provides a
very stringent self-consistency check on the quasiparticle
interpretation. According to McElroy et al. (2003), the
peaks they observe generally pass this consistency
check. The experimental case for dispersive features in
N(k,E) that are consistent with the quasiparticle inter-
ference mechanism is quite persuasive.

The controversy over interpretation revolves around
the degree to which quasiparticle interference is suffi-
cient to explain all of the structure in N(k,E). Examin-
ing Fig. 10 (left panel) one can see that, for energies
below ;20 meV, k12 lies close to the expected stripe-
ordering vector Qch . This is consistent with the experi-
mental measurements and analysis by Howald et al.
(2003b), who had interpreted this behavior as evidence
for stripe order; in contrast, Hoffman, McElroy, et al.
(2002) argued that the continuity with the dispersive sig-
nal favors a single mechanism based on band-structure
effects.

In weighing these alternatives, it is useful to consider
a second consistency check that the quasiparticle picture
should satisfy. While, as shown in Eq. (4.1), N(k,E)
is actually a measure of a two-particle response function,
to the extent that it is dominated by single-particle
effects it should be expressible in terms of a convolution
of single-particle Green’s functions, as in Eq. (4.1).
Thus it should be consistent with the behavior of the
spectral function measured in ARPES. In evaluating
this connection, significant challenges arise with respect
to the sufficiency of the quasiparticle interpre-
tation.

In the first place, ARPES consistently reveals strong
deviations from a noninteracting line shape.38 Well be-
low Tc , the measured energy distribution curve at fixed
q on the Fermi surface consists of a dispersing quasipar-
ticlelike peak with a small weight, Z!1, and a broad,
and largely featureless multiparticle continuum which
contains most of the spectral weight. Moreover, the qua-
siparticle peak is always anomalously broad with a dis-
tinctly non-Fermi-liquid temperature and energy depen-
dence (Gweon et al., 2001; Orgad et al., 2001). If this
measured spectral function were used to predict the
structure of N(k,E), then the quasiparticle interference
features would be weak (Capriotti et al., 2003) (in pro-

38At very low energies and at low temperatures there is good
reason to believe, and compelling evidence (although not from
ARPES or STM) to confirm, that the nodal quasiparticles in
the superconducting state are well defined and long lived; see
May et al. (2000). However, most of the dispersing features
seen in STM are at higher energies, typically at energies on the
order of D0/2, where even at low temperatures there is no
evidence of well-defined quasiparticles.
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portion to Z2), which is something of a surprise given
the apparent robustness of the experimental features.
One might also expect the interference features to be
broadened significantly by the short quasiparticle life-
times at the probed energies. Perhaps the most impor-
tant consequence is that the intensities of the structures
should have a dramatic temperature dependence, going
to zero as Z goes to zero at Tc . This provides a crucial
test to which we shall return shortly.

In the second place, Dq determined from the disper-
sion of the quasiparticlelike peak in ARPES differs
significantly, especially at low energies, from that ob-
tained by Hoffman, McElroy, et al. (2002) and McElroy
et al. (2003) in STM. This is illustrated in Fig. 10, as well.
The solid lines in the figure were computed [using the
method of Wang and Lee (2003)] from a global fit to the
measured ARPES spectrum, as follows: (1) The location
of the Fermi surface, e(q)50, was computed from the
phenomenological band structure that had been ob-
tained (Norman et al., 1994; Damascelli et al., 2003)
from a fit to ARPES experiments. (2) The gap function
along the Fermi surface was assumed to be of the simple
d-wave form, Dq5(D0/2) @cos(qxa)2cos(qya)#, a form
that has been widely found to fit the measured ARPES
spectrum in optimally doped and overdoped
Bi2Sr2CaCu2O81d , although significant deviations from
this form are often seen in underdoped samples (Mesot
et al., 1999). The gap observed in ARPES experiments
corresponds to D0;35–45 meV (Ding et al., 1995;
Loeser et al., 1997; Fedorov et al., 1999), near-optimal
doping. For purposes of the figure, we have adopted
D0540 meV. The solid black circle in the figure was
obtained from the location of the nodal point (which
determines the zero-energy limit of all dispersion
curves) as determined from ARPES experiments; this is
a feature of the ARPES spectrum that has been looked
at in great detail by several groups (Ding et al., 1997;
Valla et al., 1999). There is agreement39 within 1%
accuracy that the nodal point, where E(q)50, is q
5(2p/a)(0.195,0.195). (Note that the phenomeno-
logical band structure was determined from a fit to older,
less precise ARPES data, which is why the line in
Fig. 10 does not quite approach the correct zero-energy
limit; manifestly, correcting this discrepancy would
only exacerbate the disagreement between STM and
ARPES.)

It is clear from Fig. 10, as originally emphasized by
Howald et al. (2003b), that there are significant discrep-
ancies between the ARPES and STM results, especially
below 20 meV. In particular, in the region of k space
near the expected stripe-ordering wave vector, k5Qch

;(2p/a)( 1
4 ,0), the STM spectrum is considerably less

dispersive than would be expected on the basis of the
ARPES data; it appears that the peak in N(k,E) largely
stops dispersing when it reaches this magic wave vector

39We thank P. Johnson for pointing this out to us.
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[see, for instance, the discussion surrounding Eq.
(4.7)].40

It is not clear a priori how much significance one
should attach to the discrepancies between ARPES data
and the quasiparticle interpretation of the STM. Both
are highly surface sensitive probes, so there is always the
issue of whether either is telling us anything about the
bulk properties of the materials, but this worry does not
affect the comparison between the two sets of measure-
ments.

It seems significant to us that the most serious quan-
titative differences between the ARPES dispersion and
those inferred from a quasiparticle interpretation of the
STM data occur at low energies and are particularly pro-
nounced for k’s near Qch , where effects of incipient
stripe order are largest. In this context, it is worth noting
that in the STM studies of Howald et al. (2003a) shown
in Fig. 9, a peak at k5Qch is seen in all the curves with
E<15 meV all the way to E50. Hoffman, McElroy,
et al. (2002) and McElroy et al. (2003) do not report
spectra below about 6 meV. It is possible that, as sug-
gested by Howald et al. (2003a), this difference is a con-
sequence of the stripe signal’s being washed out due to
the existence of many domains in the larger field of view
used in the experiment of Hoffman, McElroy, et al.
(2002).

Moreover, in their STM study of the magnetic-field-
induced structure in vortex-core halos, Hoffman, Hud-
son, et al. (2002) observed oscillations at precisely these
same wave vectors, k5Qch , in the energy-integrated lo-
cal density of states (in a 12-meV window about 0 volt-
age). The amplitude of these latter oscillations is very
large compared with that of the disorder-induced signal,
and the dominant contribution comes from energies
around 7 meV.

We believe that the issues of interpretation can be
definitively resolved by studies of the temperature and
impurity concentration dependence of the signal. Since
the contribution to N(k,E) from quasiparticle interfer-
ence is proportional to Z2, and since Z is observed in
ARPES experiments to have a strong temperature de-
pendence and vanish above Tc , it should be very easy to
quench the interference signal by heating; what is left at
temperatures approaching Tc cannot be due to quasipar-
ticle interference. And, of course, above Tc in over-
doped samples, and above a suitable pseudogap tem-
perature in underdoped samples, the superconducting
gap vanishes, so only the more usual rings can possibly
arise from quasiparticle interference. Conversely, as dis-

40The same discrepancy between ARPES and STM at low
energies can be seen directly from full microscopic calculations
of N(k,E) for noninteracting quasiparticles. For instance,
N(k,E) was recently computed by Polkovnikov et al. (2003)
for noninteracting quasiparticles scattering from a point impu-
rity; it is apparent from their Fig. 4 that, at energies of 20 meV
and below, there is a local minimum in the neighborhood of
k5Qch , rather than a peak! The same is apparent in Figs. 2
and 3 of Wang and Lee (2003).
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cussed previously, light Zn doping is known to pin
stripes in La22xSrxCuO4 , so it is reasonable to expect
the same effect in Bi2Sr2CaCu2O81d . Thus stripe-
related signals should be strengthened and made less
sensitive to thermal depinning by small concentrations
of Zn impurities in the Cu-O planes.

STM studies at elevated temperatures are technically
demanding, but recently Vershinin et al. (2003) have
achieved atomic-scale resolution at temperatures well
above Tc on a Bi2Sr2CaCu2O81d surface. They report
that for T;Tc/2 many of the peaks in N(k,E) have,
indeed, been extinguished. However, the low-energy
portion of the peak at k12 (in Fig. 10) survives and even
remains unattenuated, well above Tc . This effect clearly
cannot be explained by the quasiparticle interference
mechanism. An explanation in terms of pinned stripes
seems much more plausible (although the persistence of
a stripe-induced signal at such an elevated temperature
requires further investigation).

One further feature of all the data that have been
reported to date is worth commenting on. This is the
large (factors of 2 or 3) differences observed (Hoffman,
McElroy, et al., 2002) in the peak intensities at Qch and
R@Qch# . Systematic experiments have not yet been con-
ducted to verify whether this effect is real or an experi-
mental artifact. If it is not an artifact, then this observa-
tion is among the first microscopic pieces of evidence of
a strong local tendency to stripe-orientational (i.e., nem-
atic) order. In addition, such large anisotropies are
something that cannot be accounted for in any simple
way by quasiparticle interference (nor local checker-
board order). It is important to bear in mind, however,
that even if the observed anisotropy reflects nematic or-
der, it is expected to decrease in magnitude (Howald
et al., 2003b) in direct proportion to A21/2, where A is
the area of the field of view, due to the unavoidable
domain structure produced by quenched disorder.

C. Detecting nematic order

While stripe order necessarily implies nematic order,
the converse is not true. Although nematic order in-
volves the spontaneous breaking of a spatial (point-
group) symmetry, when there is no accompanying break-
ing of translation symmetry, even the identification of
the ordered state is somewhat subtle, and this holds dou-
bly for fluctuation effects. Moreover, since quenched dis-
order is always relevant and results in domain structure,
true macroscopic measurements of spontaneous nematic
symmetry breaking are not possible. The difficulty of
detecting the rotational symmetry breaking associated
with ordered stripes is illustrated by the case of
La22xSrxNiO41d , a nonsuperconducting structural ana-
log of La22xSrxCuO4 . Even transmission electron mi-
croscopy, which is capable of measuring over a fairly
small sample area, tends to yield superlattice diffraction
peaks for stripe order that reflect the fourfold symmetry
of the NiO2 planes in the tetragonal crystal structure
(Chen et al., 1993). Only recently have electron diffrac-
tion patterns consistent with the twofold symmetry of an
ordered stripe domain been reported (Li et al., 2003).
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Thus almost all tests of nematic order in solids necessar-
ily involve the observation of an unreasonably large, and
strongly temperature-dependent, anisotropy in the elec-
tronic response to a small symmetry-breaking field
which favors the x direction over the y direction.

1. Transport anisotropies

An example of a system in which the electronic re-
sponse shows a large anisotropy is provided by the
2DEG in quantum Hall devices. While the fractional
quantum Hall effect dominates the physics at very high
magnetic fields, at intermediate magnetic fields (so that
more than one Landau level is occupied), it has recently
been discovered (Du et al., 1999; Lilly et al., 1999a) that
there is a set of anisotropic states which have been iden-
tified (Fradkin and Kivelson, 1999; Fradkin et al., 2000;
Cooper et al., 2002) as being quantum Hall nematics.
These states can be thought of as melted versions of the
long-predicted (Fukuyama et al., 1979; Koulakov et al.,
1996; Moessner and Chalker, 1996) quantum Hall smec-
tic (or stripe) phases. They are characterized by a large
resistance anisotropy, rxx@ryy , which onsets very
strongly below a characteristic temperature Tn
;100 mK. The precise origin of the symmetry-breaking
field which aligns the nematic domains in these experi-
ments has not been unambiguously determined (Cooper
et al., 2001; Zhu et al., 2002). However, by applying
(Lilly et al., 1999b; Pan, Jangwirth, et al., 2000; Cooper
et al., 2002) an in-plane magnetic field, one can vary the
magnitude of the symmetry-breaking field, and the tran-
sition can be significantly rounded, giving evidence
(Cooper et al., 2002) that local stripe order persists up to
temperatures well in excess of Tn . Even the orientation
of the nematic order can be switched, resulting in a state
with rxx!ryy .

Experiments that involve such fine control of an ex-
ternal symmetry-breaking field are considerably harder
to carry out in the context of the cuprates. Some of the
relevant materials, such as Bi2Sr2CaCu2O81d and
La22xSrxCuO4 with x.0.05, have an orthorhombic axis
at 45° to the expected stripe directions (i.e., a nematic
phase can be defined in terms of spontaneous breaking
of the mirror plane which lies along the orthorhombic a
axis). In these materials, if one wishes to align the nem-
atic domains, one must apply a suitable external
symmetry-breaking field such as a uniaxial strain or in-
plane magnetic field; however, such experiments tend to
be challenging.

When the principle axes of an orthorhombic phase lie
parallel to the expected stripe directions, the ortho-
rhombicity (typically ,2% in cuprates) plays the role of
a small, external symmetry-breaking field. Examples
where this occurs are superconducting YBa2Cu3O61y
with 0.35<y<1 and nonsuperconducting La22xSrxCuO4
with 0.02<x,0.05. In both of these cases, resistivity
anisotropies as large as a factor of 2 have been observed
(Ando, Segawa, et al., 2002) in detwinned single crystals.
Moreover, as in the quantum Hall case, this anisotropy is
strongly temperature dependent; in La22xSrxCuO4 ,
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uraa /rbb21u,10% for temperatures in excess of Tn

;150 K. Polarization-dependent measurements of the
infrared conductivity on a detwinned x50.03 crystal of
La22xSrxCuO4 reveal that the frequency dependence of
the conductivity anisotropy has a scale comparable to
kTn (Basov, 2002). Large anisotropies in the frequency-
dependent conductivity have also been observed (Basov
et al., 1995) in YBa2Cu3O61y and in YBa2Cu4O8 , al-
though in those cases, some part of the conductivity an-
isotropy must be due directly to the Cu-O chains. Taken
together, these various observations are circumstantial
evidence of a fair degree of local stripe order and of the
presence of a nematic phase, the trouble being that,
without a somewhat quantitative theory (which does not
exist), it is hard to say how large an observed resistance
anisotropy must be in order to be accepted as being an
‘‘unreasonably large’’ response to the orthorhombicity,
that is, one that can only be understood in terms of the
alignment of nematic domains.

More subtle investigations of orientational symmetry
breaking can be undertaken by studying the transport in
the presence of a magnetic field. A very clever approach
along these lines was introduced by Noda et al. (1999).
They applied a voltage along one axis of the CuO2
planes and a magnetic field perpendicular to the planes
in order to break the fourfold symmetry of the crystal
structure and to obtain evidence of one-dimensional
charge transport. In a stripe-ordered state, the geometry
used should be sensitive primarily to those domains in
which the stripes are aligned parallel to the direction of
the applied voltage. For x< 1

8 , they found that, within
the stripe-ordered phase, the transverse conductivity
tends to zero at low temperature while the longitudinal
conductivity remains finite. [This effect has been ex-
plained in terms of the electron-hole symmetry of a
1
4 -filled charge stripe (Emery et al., 2000; Prelovšek
et al., 2001).]

Ando et al. (1999) have observed a remarkable anisot-
ropy of the resistivity tensor induced by an in-plane
magnetic field in nonsuperconducting YBa2Cu3O61y
with y50.32 and y50.3. (Presumably, these samples are
antiferromagnetic.) The results were interpreted as evi-
dence for nematic stripe order. Alternative explanations
in terms of anisotropy associated with spin-orbit cou-
pling in the antiferromagnetic phase have also been pro-
posed (Jánossy et al., 2000; Moskvin and Panov, 2002).
This example illustrates the difficulty of making a
unique association between a bulk anisotropy and mi-
croscopic stripe order.

Finally, we note that there is a very direct way to de-
tect nematic order using light scattering. This approach
is well known from studies of classical nematic liquid
crystals (de Gennes, 1974). Recently Rübhausen and co-
workers (Rübhausen et al., 2000; Yoon et al., 2000) have
used light-scattering techniques to study the behavior of
the low-frequency dielectric tensor of the manganite
Bi12xCaxMnO3 near and below the charge-ordering
transition at Tco;160 K. In these experiments, a pro-
nounced anisotropy of the dielectric tensor was found
with a sharp temperature dependence near Tco . Raman
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scattering studies by the same group show that long-
range positional stripe order sets in only at much lower
temperatures. These experiments suggest that this man-
ganite is in a nematic state below the transition at Tco ,
and long-range charge-stripe order occurs at much lower
temperatures.

2. Anisotropic diffraction patterns

A more microscopic approach is to measure directly
the nematic order parameter Qk of Eq. (2.1), by diffrac-
tion. This was done (more or less) by Mook et al. (2000),
in neutron-scattering studies of the magnetic dynamic
structure factor of a partially (2 to 1) detwinned sample
of YBa2Cu3O61y with y50.6 and Tc'60 K. No elastic
scattering corresponding to actual stripe order was de-
tected; however, well-developed structure was observed
in the inelastic spectrum at the two-dimensional wave
vectors Qs'(0.560.1,0.5) and Qs8'(0.5,0.560.1) in
units of 2p/a . Remarkably, the intensities of the peaks
at Qs were found to be about a factor of 2 larger than
those of the Qs8 peaks, consistent with the supposition
that, in a single twin domain, the incommensurate in-
elastic structure is entirely associated with ordering vec-
tors perpendicular to the chain direction, i.e.,
QQ'1.

More recently, inelastic neutron-scattering studies of
Stock et al. (2003) on a nearly single-domain sample of
the ortho-II phase of YBa2Cu3O6.5 (Stock et al., 2002)
have revealed substantial structure down to the lowest
energies in the magnetic structure factor. These spectra
are highly anisotropic about the Néel ordering vector:
For a scan perpendicular to the chain direction, there is
a broad flat-topped peak [reminiscent of earlier results
on underdoped YBCO (Sternlieb et al., 1994)] which is
strongly suggestive of two barely resolved incommensu-
rate peaks at the expected stripe-ordering wave vector.
However, a scan along the chain direction reveals a
single, sharp peak at the commensurate wave vector
p/a . Moreover, in the normal state, this structure is ob-
served at all energies below the resonant peak energy,
v'25 meV, down to the lowest energies probed.

Although the presence of chains in this material cer-
tainly means that there is no symmetry operation that
interchanges the a and b axes, the copper-oxide planes
are nearly tetragonal. Thus it seems to us that the ex-
treme anisotropy of the inelastic scattering is very strong
evidence of a nematic liquid phase in this material. As
pointed out by Mook et al. (2000), this conclusion also
offers a potential explanation for the observed (Basov
et al., 1995) large but nearly temperature-independent
superfluid anisotropy in the a-b plane.

Interesting anisotropies have also been observed in
optical phonon branches of YBa2Cu3O61y with y50.6.
The identification by Mook et al. (2000) of an anoma-
lous broadening of a bond-bending mode at a wave vec-
tor expected for charge-stripe order is potentially the
most direct evidence of nematic order. However, con-
flicting results have been reported by Pintschovius et al.
(2002), who have instead observed a zone-boundary
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softening of the bond-stretching mode propagating
along b but not for that along a. This latter anisotropy is
unlikely to be directly associated with a stripe modula-
tion wave vector, since the anomaly occurs along the
direction parallel to the Cu-O chains. Of course, this
does not necessarily rule out a connection with stripes,
as the softening might be associated with anisotropic
screening due to charge fluctuations along the stripes.

In an attempt to understand the effects of stripe order
on phonons, a neutron-scattering study (Tranquada
et al., 2002) was recently performed on La1.69Sr0.31NiO4 .
Although the charge-ordering wave vector did not play
an obvious role, the high-energy bond-stretching mode
propagating parallel (and perpendicular) to the stripe
modulation exhibited an energy splitting toward the
zone boundary, while along the Ni-O bond direction (at
45° to the stripes) a softening from zone center to zone
boundary was observed with a magnitude similar to that
in the cuprates. A better understanding of the nature of
the relevant electron-phonon coupling processes is re-
quired to make progress here.

3. STM imaging of nematic order

Because it is a local but spatially resolved probe, STM
is actually the optimal probe of nematic order. One way
it can be used, which is illustrated in Fig. 11, has been
explored by Howald et al. (2003a, 2003b). What is shown
here is a filtered version of N(r,E) measured on a patch
of surface of a very slightly overdoped crystal of
Bi2Sr2CaCu2O81d (Tc586 K). Specifically, Howald et al.
defined a filtered image

Nf~r,E !5E dr8f~r2r8!N~r8,E !, (5.1)

FIG. 11. (Color in online edition) A filtered version of the
local-density-of-states map Nf(r,E) on a surface patch of a
Bi2Sr2CaCu2O81d crystal. Here, E515 meV and the distances
on the x and y axes are measured in angstroms. The filter is
defined in Eq. (5.1) with L5(2p/15a). The arrows point along
the directions of the Cu-O bonds.
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where in the present case, the filter function f has been
defined so as to accentuate the portions of the signal
associated with stripe order,

f~r!}L2e2r2L2/2@cos~px/2a !1cos~py/2a !# . (5.2)

Clearly, f(r)→d(r) when L→` , while Nf5N(Qch ,E)
1N(R@Qch# ,E)1c.c. in the limit L→0. For intermedi-
ate values of L, the filtered image shows only that por-
tion of the signal we have associated with pinned stripes.
The roughly periodic structure in the image has a period
of 4a . We know independently from the analysis in Sec.
V.B that there is prominent structure in the raw data
with this period, but even were there not, the filtering
would build in such structure. However, what is clear
from the image is that there is a characteristic domain
structure, within which the stripes appear to lie predomi-
nantly in one direction or the other. The domain size is
seen to be on the order of 100 Å;25a , which is large
compared to L21 and, more importantly, roughly inde-
pendent (Howald et al., 2003a) of the precise value of L.
This domain size is a characteristic correlation length of
the pinned nematic order.

This particular method of analysis builds directly on
the realization of the nematic as a melted stripe-ordered
state. Indeed, looking at the figure, one can clearly iden-
tify dislocations and disclinations in what looks like a
fairly well-developed locally ordered stripe array.

More generally, STM could be used to measure di-
rectly the two independent components of a suitably de-
fined traceless symmetric tensorial density. The simplest
such quantities are

Qxx~r,E !5@]x
22]y

2#N~r,E !,

Qxy~r,E !52]x]yN~r,E !. (5.3)

Of course, these quantities, like the local density of
states itself, will typically have features that reflect the
interference between elementary excitations, and other
extraneous information. To obtain a better view of the
long-wavelength nematic correlations, we should again
integrate these densities over a suitable energy interval
V, and filter out the short-wavelength components:

Q̃f~r!5E
0

V dE

V E dr8f~r2r8!Q~r8,E !, (5.4)

where f might be a Gaussian filter, as in Eq. (5.2), but
without the cosine factors. A map of Q̃f should produce
a domain structure, similar to that shown in Fig. 11, but
without all the short-wavelength detail. Where the do-
main size LN is large compared to a , the resulting pic-
ture should look qualitatively the same independent of
the range over which the signal is coarse grained, so long
as LN@L21@a . The above procedure should work well
if there are no other long-wavelength features in the
data. Unfortunately, for BSCCO, the inhomogeneities in
the gap structure (Lang et al., 2000; Howald et al.,
2003b) hamper such a procedure.

D. ‘‘1/8 anomaly’’

Many members of the lanthanum cuprate family of
high-temperature superconductors exhibit strong singu-
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larities in the doping dependence of various interesting
low-temperature properties at x51/8; together, these
phenomena are referred to as the ‘‘1/8 anomaly.’’ For
instance, in La22xBaxCuO4 and La1.62xNd0.4SrxCuO4 ,
there is (Moodenbaugh et al., 1988; Crawford et al.,
1991) a deep minimum in Tc(x); in La22xBaxCuO4 and
La22xSrxCuO4 there is a pronounced (Crawford et al.,
1990; Zhao et al., 1997) maximum in a(x), the isotope
exponent a[d ln(Tc)/d ln(M); and in La22xSrxCuO4
there is (Panagopoulos et al., 2002) a pronounced mini-
mum in the superfluid density ns(x). One of the central
inferences drawn by Tranquada, Sternlieb, et al. (1995)
following the discovery of stripe order in
La1.62xNd0.4SrxCuO4 is that this 1/8 anomaly is associ-
ated with a commensurate lock-in of the stripe structure.
At x51/8 the preferred spacing between charge stripes
is four lattice constants, so there is an additional com-
mensuration energy which stabilizes stripe order at this
particular hole density.

While it is possible to imagine other forms of charge-
density-wave order which would similarly be stabilized
at x51/8, there can be no doubt that in this family of
materials the 1/8 effect is associated with stripe order.
This has been confirmed, for example, in La22xSrxCuO4
where quasielastic magnetic scattering from spin-stripe
order has been detected (Suzuki et al., 1998; Kimura
et al., 1999) for x in the neighborhood of 1/8; in low-
energy inelastic measurements, Yamada et al. (1998)
have shown that the magnetic peak width is narrowest at
x51/8. Correspondingly, slow (probably glassy) spin
fluctuations have been detected by mSR in the same ma-
terial with a somewhat arbitrarily defined onset tem-
perature, Tg(x), which has (Panagopoulos et al., 2002) a
pronounced peak at x51/8. The fact that quasielastic
magnetic order as detected by neutron scattering onsets
at a considerably higher temperature than that detected
by mSR is clearly a consequence of the inevitable glassi-
ness of a density-wave transition in the presence of
quenched disorder; it reflects the differences in the time
scales of the two probes, not the presence of two distinct
ordering phenomena. More recently, new experiments
on La22xSrxCuO4 as a function of x show pronounced
singularities in the x dependence of the c axis Josephson
plasma edge (Basov, 2002) and in the low-temperature
thermal conductivity (Takeya et al., 2002); these effects
can be interpreted straightforwardly in terms of a peak
in the stability of the charge-stripe order at x51/8. Fur-
thermore, charge-stripe order has now been detected di-
rectly by neutron diffraction in La1.875Ba0.1252xSrxCuO4
(Fujita et al., 2002).

The large drop in Tc at x51/8 found in
La22xBaxCuO4 is not observed in La22xSrxCuO4 ; how-
ever, such a dip in the doping dependence of Tc can be
induced in La22xSrxCuO4 (centered at x50.115) by
substitution of 1% Zn for Cu, as shown some time ago
by Koike et al. (1992). Zn substitution enhances local
magnetic order at low temperature near the dip mini-
mum, as detected by mSR (Panagopoulos et al., 2002;
Watanabe et al., 2002). Given the clear association be-
tween the 1/8 anomaly and stripe order in
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La22xSrxCuO4 , an indirect method of looking for the
presence of local stripe order in other families of cuprate
superconductors is to test whether a 1/8 anomaly can
be induced by Zn substitution. In the case of
YBa2Cu3O61y , there already exists in the literature
strong evidence from the work of Tallon and collabora-
tors (Tallon et al., 1995) that the ‘‘60-K plateau’’ in the y
dependence of Tc is not, primarily, a reflection of some
form of oxygen ordering in the chain layers, as is com-
monly assumed, but rather is a barely resolved 1/8
anomaly; this conclusion is also supported by a Ca-
substitution study (Akoshima and Koike, 1998) and by a
recent study of transport properties (Ando and Segawa,
2002). To further test this idea, Koike and collaborators
(Akoshima and Koike, 1998; Akoshima et al., 2000; Wa-
tanabe et al., 2000) studied the doping dependence of
Tc , and of Tg measured by mSR, in lightly Zn-doped
YBa2Cu3O61y and Bi2Sr2CaCu2O81d . They found that
there is some tendency for light Zn doping to produce a
dip in Tc(x) and a more impressive peak in Tg(x) at x
'1/8 in both YBa2Cu3O61y and Bi2Sr2CaCu2O81d . Re-
lated results have been reported (Yang et al., 2000; Bala-
kirev et al., 2002) for the single-layer system
Bi2Sr22xLaxCuO61d . While it is clear that more work is
needed to test the connection between the 1/8 anomaly
and stripe pinning in these various systems, we consider
this a promising approach to the problem, as it permits
evidence of local order to be obtained using a variety of
probes that can be applied in materials for which large
crystals, and/or easily cleaved surfaces are not easily ob-
tained.

E. Other probes

It is clear that the most direct evidence for stripes
comes from techniques that can provide images of
charge, spin, and/or lattice modulations in real space
(STM) or in reciprocal space (diffraction techniques).
We have already discussed neutron and x-ray diffraction,
but explicit mention should also be made of transmis-
sion electron microscopy (TEM). The charge stripes in
La22xSrxNiO41d were first detected by TEM (Chen
et al., 1993), and a recent study has provided high-
resolution TEM images of local stripe order in
La1.725Sr0.275NiO4 (Li et al., 2003). So far, TEM studies
have not provided positive evidence for stripes in any
cuprates, but, though challenging, it should be possible
to do so.

Less direct but extremely valuable information comes
from techniques that are sensitive to local order. We
have already mentioned evidence for local, static hyper-
fine fields and slowly fluctuating hyperfine fields ob-
tained by mSR. Besides providing a practical measure of
local magnetic order as a function of doping (Nieder-
mayer et al., 1998; Klauss et al., 2000), mSR can detect
the distribution of local hyperfine fields in a sample with
relatively uniform order (Nachumi et al., 1998), as well
as being able to detect inhomogeneous magnetic or su-
perconducting order (Savici et al., 2002). Related infor-
mation can be obtained by NMR and NQR techniques,
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where the latter also provides information on the distri-
bution of local electric-field gradients. Some of the first
evidence for spatial inhomogeneity of magnetism in
lightly doped La22xSrxCuO4 , consistent with stripelike
behavior, was obtained in a La NQR experiment by Cho
et al. (1992). Later experiments (Tou et al., 1993; Goto
et al., 1994, 1997; Ohsugi et al., 1994) (including La and
Cu NMR and NQR) provided evidence for local mag-
netic order near x51/8 in La22xSrxCuO4 and
La22xBaxCuO4 .

The work by Imai’s group (Hunt et al., 1999) suggest-
ing that local stripe order in variants of La22xSrxCuO4
could be detected through the ‘‘wipeout effect’’ of Cu
NQR has motivated a considerable number of further
studies using Cu and La NMR and NQR (Julien et al.,
1999, 2001; Singer et al., 1999; Suh et al., 1999, 2000;
Curro, Hammel, et al., 2000; Teitel’baum et al., 2000,
2001; Hunt et al., 2001; Simovič et al., 2003). Although
there has been some controversy over details of inter-
pretation (and in certain cases, there may be differences
between samples), it is now generally agreed that NQR
and NMR are sensitive to the onset of slow spin fluctua-
tions whose appearance tends to correlate with the onset
of local charge-stripe pinning as determined by diffrac-
tion. In particular, the glassy nature of the ordering has
been investigated. In the case of Eu-doped
La22xSrxCuO4 , related information has been obtained
by electron-spin resonance detected from a very low
density of Gd impurities (Kataev et al., 1997, 1998). A
recent Cu NQR and Y NMR study (Singer and Imai,
2002) has shown that similar signatures are observed in
Ca-doped YBa2Cu3O6 , consistent with the mSR study
of Niedermayer et al. (1998) and suggestive of the pres-
ence of pinned stripes in that system at low tempera-
tures. Direct evidence for local spatial inhomogeneities
in La22xSrxCuO4 has been obtained from studies of
NMR line broadening (Haase et al., 2000) and
frequency-dependent NQR relaxation rates (Singer
et al., 2002).

Very recently, a fascinating study (Haase and Slichter,
2003) of the NMR/NQR spectra in YBa2Cu3O61y has
found evidence of two distinct planar O environments in
the unit cell, but only one Cu environment. This finding
is not consistent with any form of translation-symmetry
breaking. It is, however, suggestive of substantial nem-
atic order, in which the O sites midway between two
copper sites in one direction (for instance, the chain di-
rection) have substantially larger hole density than the
O’s on the bonds in the perpendicular direction. Of
course, because the crystal is orthorhombic, this does
not truly imply any symmetry breaking, but it should be
possible, in principle, to establish whether the magni-
tude of the effect is out of proportion with the small
distortions produced by the orthorhombicity.

Several recent NMR studies (Curro, Milling, et al.,
2000; Kakuyanagi et al., 2002; Mitrović et al., 2001, 2003)
have exploited the magnetic-field dependence of the
technique to probe the spatial variation of nuclear spin-
lattice relaxation rates in the vortex lattice state of cu-
prate superconductors. Vortex cores are regions of
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suppressed superconductivity, so if there is a competing
spin-stripe ordered phase, it will be enhanced and
pinned (Demler et al., 2001; Kivelson et al., 2002; Zhang
et al., 2002) in the neighborhood of the vortex core. In-
deed, 17O NMR measurements on YBa2Cu3O61y and
YBa2Cu4O8 indicate antiferromagneticlike spin fluctua-
tions and a reduced density of states associated with the
vortex cores (Kakuyanagi et al., 2002; Mitrović et al.,
2003). [Similar results, along with evidence of static spin
ordering in the vortex cores at low temperatures, have
been reported (Kakuyanagi et al., 2003) in
Tl2Ba2CuO61d .] A mSR study of the details of the
magnetic-field distribution in YBa2Cu3O6.50 suggests the
presence of a small local hyperfine field near vortex
cores (Miller et al., 2002). For completeness, we note
that while one neutron scattering study has indicated
very weak, field-induced, elastic antiferromagnetic scat-
tering in superconducting YBa2Cu3O61y (Vaknin et al.,
2000), two other studies, focusing on the effect of a mag-
netic field on inelastic scattering, found no low-
frequency enhancement (Bourges, Casalta, et al., 1997;
Dai et al., 2000).

It has been demonstrated that stripe order has an im-
pact on phonon heat transport (Hess et al., 1999). The
thermal conductivity increases slightly on cooling
through the charge-ordering transition, exhibiting a nor-
mal peak at ;25 K. The suppression of the latter peak
in superconducting La22xSrxCuO4 has been attributed
to the scattering of phonons by fluctuating stripes (Bab-
erski et al., 1998). The doping dependence of the ther-
mal conductivity measured in YBa2Cu3O61y and in mer-
cury cuprates has been interpreted as evidence for a 1/8
anomaly in those materials (Cohn et al., 1999). An en-
hancement of the thermal conductivity in
La1.88Ba0.12CuO4 was originally noted by Sera et al.
(1990).

Indirect evidence of some form of local charge order
can also be gleaned from the response of a system to
electromagnetic radiation.41 For instance, Raman scat-
tering (Blumberg et al., 2002) was recently used to re-
veal charge ordering and, more importantly for present
purposes, to detect the effect of collective charge-
density-wave motion at higher temperatures in
Sr12Cu24O41 , a ladder system with a local electronic
structure very similar to that of the cuprate supercon-
ductors. Careful measurements of the optical response
of optimally doped YBa2Cu3O61y have revealed
(Homes et al., 2000; Bernhard et al., 2001) infrared ac-
tive phonons with oscillator strength comparable to
those in the undoped insulating compound. This has
been plausibly interpreted as giving evidence of ‘‘fluctu-
ating charge inhomogeneities’’ in the copper oxide
planes—the point being that for the phonons to be un-
screened at that frequency, their local environment on
some scale must be insulating.

41For a discussion of the electromagnetic signatures of
charge-density-wave order, see Gruner (1994).
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ARPES experiments can also be interpreted as giving
indirect evidence of local stripe order. At an empirical
level, this can be done by looking (Zhou et al., 1999,
2001) at the evolution of the ARPES spectra in a se-
quence of materials in the La2CuO4 family in which
various types of stripe order have been detected; this
provides a basis for identifying similar features in the
ARPES spectra of materials in which stripe order has
not been established. For instance, stripe long-range or-
der produces a tendency for the Fermi surface in the
antinodal region of the Brillouin zone to be flat (one
dimensional) and to suppress spectral weight in the
nodal region. Some of these same features, especially
the differing impact on the nodal and antinodal regions,
are induced by Zn doping of Bi2Sr2CaCu2O81d , as well,
plausibly reflecting (White et al., 1999) the tendency of
Zn to pin local stripe order. More broadly, many of the
most striking features of the observed (Fedorov et al.,
1999; Ino et al., 1999; Valla et al., 1999; Damascelli et al.,
2002; Campuzano et al., 2003) ARPES spectra can be
naturally interpreted in terms of an underlying quasi-
one-dimensional electronic structure (Carlson et al.,
2003). Examples of this are the disappearance of the
coherent quasiparticle peak (Carlson et al., 2001) upon
heating above Tc , the dichotomy between the widths of
the peaks as a function of momentum and energy in the
normal-state spectrum (Gweon et al., 2001; Orgad et al.,
2001) and the general structure of the spectra and the
evolution of the Fermi surface with doping (Salkola
et al., 1996; Ichioka and Machida, 1999; Zacher et al.,
2000, 2001; Eroles et al., 2001; Granath et al., 2001,
2002).

Finally, several probes have been used to search for
the inhomogeneous distribution of bond lengths ex-
pected from the lattice response to local charge-stripe
order. Pair-distribution-function analysis of scattering
data and extended x-ray-absorption fine structure
(EXAFS) spectroscopy can detect instantaneous distri-
butions of nearest-neighbor bond lengths. Both tech-
niques have the potential to provide indirect evidence of
dynamic, as well as static, stripes; however, whether they
have sufficient sensitivity to detect the very small bond-
length variations associated with charge modulation in
the cuprates remains a topic of some contention. Božin
et al. (2000) reported a doping-dependent broadening of
the in-plane Cu-O bond-length distribution in
La22xSrxCuO4 detected by pair-distribution-function
analysis of neutron powder diffraction data. While the
reported doping dependence is intriguing, the maximum
enhancement of the bond-length spread is much too
large to be compatible with the Debye-Waller factors
measured in a single-crystal neutron-diffraction experi-
ment on La1.85Sr0.15CuO4 by Braden et al. (2001).
A much more extreme discrepancy occurs with the
EXAFS studies of La22xSrxCuO4 (and other cuprates)
by Bianconi’s group (Bianconi et al., 1996; Lanzara et al.,
1996; Saini et al., 1997). They report a low-temperature
splitting of the in-plane Cu-O bond lengths of 0.08 Å,
which is not only incompatible with a large number of
diffraction studies, but is also inconsistent with EXAFS
analysis performed by other groups (Niemöller et al.,
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1998; Haskel et al., 2000). Large atomic mean-square
displacements detected in YBa2Cu3O61y by ion chan-
neling (Sharma et al., 2000) have been attributed to tran-
sitions associated with dynamic stripes, but the magni-
tude of the displacements and the temperature
dependence are difficult to reconcile with other experi-
ments.

In short, these various local measures of the distribu-
tion of lattice displacements are, in principle, a very
good way to look for local charge-ordering tendencies,
but it is important to reconcile the results obtained with
different techniques. Where apparent inconsistencies ex-
ist, they must be resolved before unambiguous infer-
ences can be made.

VI. WEAK- AND STRONG-COUPLING PERSPECTIVES

Order in simple metals is typically thought of as aris-
ing from a Fermi-surface instability caused by the weak
residual interactions between the lowest-energy quasi-
particles. Specifically, density-wave order occurs when
the band structure is such that there are nearly nested
segments of the Fermi surface. Thus, even at tempera-
tures above the ordering temperature, or if the interac-
tions are slightly weaker than the critical strength
needed for ordering, there will often be structure in the
appropriate dynamical structure factors due to this near
nesting which in some sense reflects the fact that the
metal is close to an ordered state. In this section, we
shall analyze the connection between this weak-coupling
Fermi-liquid theory based perspective and the descrip-
tion in terms of the collective modes of the ordered or
nearly ordered state which we have taken until now.

It is worth mentioning at the outset that one difficulty
arises from the relative paucity of established theoretical
results in the strong-coupling limit. More than half a
century of concerted work has produced a rather com-
plete understanding of the effects of weak residual inter-
actions on the properties of a well-formed Fermi liquid
in a simple metal. However, only in special circum-
stances is a comparably sound and complete understand-
ing available in a strongly interacting system. For in-
stance, in the weak-coupling limit, considerable useful
information about the quasiparticle spectrum can be ad-
duced directly from transport data, because Boltzmann
transport theory relates the two properties in a precise
manner. The theory of transport in a strongly interacting
system is, in our opinion, not established. The upshot of
this is that it is much easier to point to experiments that
show that simple, weak-coupling ideas cannot be safely
applied in many highly correlated materials, than to
point to experiments that show that strong coupling no-
tions can be applied.

A. Distinctions in principle

1. Thermodynamic distinctions

As mentioned in the Introduction, stripe-ordered
states are ultimately defined by a specific set of broken
symmetries. From this viewpoint, there is no distinction
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between the strong coupling-limit, in which spin stripes
can be viewed as micro phase separation of charges into
an array of rivers with strips of nearly insulating antifer-
romagnet between them, and the weak-coupling
Hartree-Fock description of a spin-density wave that
opens small gaps on various nearly nested segments of
the Fermi surface. Indeed, in many circumstances, the
two limits are adiabatically connected as a function of
the interaction strength. However, this is not guaran-
teed. For instance, a stripe-ordered state can be either
metallic or insulating. At T50, metallic and insulating
stripes are thermodynamically distinct states of matter.

There is a more subtle distinction possible between
metallic spin-stripe states in the weak- and strong-
coupling limits. Certainly, in the weak-coupling limit, the
ungapped portions of the Fermi surface support well-
defined quasiparticles, so the system remains a Fermi
liquid unless, at still lower temperatures, it suffers an
additional ordering transition, say to a superconducting
state. On the other hand, in the strong-coupling limit,
the metallic behavior in the stripe-ordered phase may or
may not be well characterized by Fermi-liquid power
laws. It is now established that non-Fermi-liquid states
can, in principle, exist in more than one dimension.42

The character of charge-stripe order tends to more
easily distinguish between strong- and weak-coupling
limits. For repulsive interactions, weak-coupling
Hartree-Fock theories always produce charge order
which is parasitic on the fundamental spin order. In Lan-
dau theory, there is a cubic coupling between charge-
and spin-density-wave order which, whenever the pri-
mary order parameter is the spin order, leads to charge-
density-wave order, which onsets at the same Tc , but
with a strength proportional to the square of the spin-
density-wave order: ^r2Q&}uSQu2;uTc2Tu2b. By con-
trast, in a strong-coupling picture of micro phase sepa-
ration, if the spin ordering is only triggered when the
holes agglomerate into stripes, one would typically ex-
pect the stripe-ordering transition to be first order, or for
the charge ordering to precede spin ordering. Thus the
measured sequence of transitions provides sharp criteria
that can be used to discriminate between weak and
strong coupling.

In the thermal or quantum disordered phase proxi-
mate to a stripe-ordered state, sharp thermodynamic
distinctions between the strong- and weak-coupling lim-
its are harder to draw. The only possible thermodynamic
distinction is, again, that in the weak-coupling limit the
disordered state is necessarily a Fermi liquid, while in
strong coupling it may either be a Fermi liquid or a non-
Fermi-liquid.

2. Quantitative distinctions

Even where no sharp thermodynamic distinctions ex-
ist, there are very many clear physical differences be-

42In particular, the existence of a non-Fermi-liquid ‘‘sliding’’
phase in a stripe-ordered system has been shown (Emery et al.,
2000; Vishwanath and Carpentier, 2001) for a class of interact-
ing Luttinger liquids.
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tween the weak- and strong-coupling limits. Of these,
the most obvious is the relative importance of electron
quasiparticles with a sharply defined Fermi surface. In
the weak-coupling limit, the quasiparticle is the essential
building block in terms of which all other properties are
derived. In the strong-coupling limit, by contrast, even
where it might be the case that well-defined quasiparti-
cles (with very small weight Z) are recovered in the
strict T→0 limit, such coherence may require such low
temperatures as to be only of academic interest. Thus,
on a practical level, ‘‘effective non-Fermi-liquids,’’ in
which the majority of the electronic excitations in the
experimentally relevant ranges of temperature, energy,
and wave number are not well-defined quasiparticles,
cannot be sensibly treated in terms of a weak-coupling
approach. Conversely, where well-defined quasiparticles
are everywhere manifest, there is an a priori reason to
prefer a weak-coupling viewpoint.

Another set of important quantitative distinctions
concern the k and v dependences of the magnetic dy-
namical structure factor S(k,v). In a one band model of
noninteracting electrons, the integral of S over all k and
v is (1/8)@12x2# , while in the large-interaction (local-
moment) limit it is (1/4)(12x), which is not dramati-
cally different. However, in weak coupling, the inte-
grated intensity comes from a very broad range of
energies, of order EF , and momenta, of order 2kF ,
while for an antiferromagnet the integral is dominated
by energies less than the exchange energy J and is highly
peaked near the magnetic ordering vector, whether or
not the system is actually ordered. Put another way, in
weak coupling the structure factor is dominated by the
particle-hole continuum, and there are signatures of
well-defined collective modes (spin waves) only at ener-
gies v&Tc , while in the strong-coupling limit, deep in
the ordered phase, spin waves dominate the structure
factor even at energies of order J . Also, in the ordered
state at weak coupling, the ordered moment m at T50
is small, m;mB(Tc /EF), while in the strong-coupling
limit, not too close to a quantum critical point, m;mB is
large.

As a concrete example, let us first consider the struc-
ture factor of a noninteracting electron gas in two di-
mensions. For momenta q.2kF it is

S~q ,v!5
kF

2

2p2vFq
A12S q

2kF
2

v

vFq D 2

(6.1)

when vFq(q/2kF 21),v,vFq(q/2kF 11) and zero
otherwise. (The expression for q,2kF is somewhat
more complicated.) Clearly, the spectral weight is dis-
tributed smoothly over the entire support of this
particle-hole continuum, i.e., over a range of momenta
of order 2kF and of energies of order the bandwidth.
From the weak-coupling perspective the chief qualita-
tive effect of interactions is to produce (quasi)bound
states that manifest themselves as peaks at or below the
threshold of the continuum. In the broken-symmetry
phase these bound states are Goldstone modes, which
descend to zero energy and lose weight to the new
Bragg peaks. What is important to note here is that even
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in the broken-symmetry phase, most of the spectral
weight remains in the incoherent background, spread
more or less uniformly over energies of the order of the
bandwidth.

In contrast, consider the zero-temperature structure
factor of an insulating antiferromagnet computed to first
order in a 1/S expansion, where S is formally the mag-
nitude of the spin, but more physically should be viewed
as the ‘‘distance’’ of the system from the nearest quan-
tum disordered phase. Here, on a square lattice,

Sij~q,v!5S~S2A !m̂im̂jd~v!d~q2QAF!

1
S

8J
A22cos qx2cos qy

21cos qx1cos qy
~d ij2m̂im̂j!

3d~v2vq!, (6.2)

where vk52SJA42(cos kx1cos ky)
2 is the spin-wave

dispersion (which depends on the lattice and the details
of the exchange interactions), m̂ is a unit vector parallel
to the magnetization, and A50.39321¯ . (Higher-
order terms in 1/S typically produce finite lifetimes for
all but the lowest-energy spin waves and also give rise to
a multi-spin-wave continuum.) As promised, the basic
energy scale is set by J , and a large portion of the total
spectral weight is found in a small region of k space
around k5p .

Note that the energy scale J can be deduced from the
value of the spin-wave energy near the zone boundary,
vk0

54SJ52J , for k05(p ,0). Even in the thermally dis-
ordered state, so long as T!J , the zone edge spin wave
can be studied to get an idea of the relevant energy
scales for magnetic excitations.

Finally, distinctions can be drawn based on the sensi-
tivity of the signatures of order or proximate order to
various weak perturbations: weak disorder, as we have
discussed extensively above, can serve to pin fluctuating
order and hence enhance the small v portion of S(q,v).
However, in weak coupling, the principal effect of weak
disorder is to scatter the quasiparticles and thus broaden
any Fermi-surface features (i.e., nested segments) that
might give rise to peaks at particular q’s in S(q,v).
Thus, in weak coupling, we expect weak quenched dis-
order to suppress, rather than enhance low-frequency
signatures of stripe order or incipient stripe order. Dis-
tinct responses to an applied magnetic field can also be
expected to differentiate the weak- and strong-coupling
limits. In particular, where the zero-field ground state is
superconducting, induced order in vortex cores occurs
under broad circumstances in the strong-coupling limit
where there are competing orders; this sort of phenom-
ena is generally much less prominent in the weak-
coupling limit. These issues are discussed in a number of
good recent reviews—see footnotes 23 and 24.

3. Intermediate coupling

It is worth remembering that in many materials the
interaction strength is comparable to the Fermi energy,
i.e., stability of matter (or some memory of the Virial
theorem) conspires to place systems in the awkward re-
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gime of intermediate coupling. Here, neither the weak-
coupling nor the strong-coupling approaches is well jus-
tified, and one is typically forced to extrapolate results
beyond their regime of validity. In this case, it is gener-
ally sensible to study the problem from both the strong-
and weak-coupling perspectives. Some features (such as
those that are most sensitive to the presence of a
particle-hole continuum) may be best viewed from the
weak-coupling perspective, while others (such as the
role of collective modes) may be better viewed from
strong coupling.

One traditional approach to understanding this re-
gime is to include the effects of interactions in the con-
text of the random-phase approximation (RPA). For the
complex spin susceptibility x, one writes

x~k,v!5
x0~k,v!

12Ukx0~k,v!
, (6.3)

where x0 is the susceptibility for noninteracting elec-
trons, and U characterizes the interaction. In the case of
dominantly forward-scattering interactions (such as the
long-range piece of the Coulomb interaction), the RPA
summation of bubble diagrams is justified even when the
interactions are relatively strong. For the case of short-
range interactions, no such systematic justification exists
to the best of our knowledge. However, the results ob-
tained from RPA are explicit and often intuitively ap-
pealing. It is certainly reasonable, at least on a phenom-
enological level, to compare the results of an RPA
treatment with experiment to determine whether the
physics is simply connected to the weakly interacting
limit or whether the interactions produce qualitatively
new phenomena.

One of the first RPA calculations was performed by
Bulut et al. (1990) to model the antiferromagnetic spin
fluctuations detected by NMR; for the interaction, they
selected Uk5U , the on-site Coulomb repulsion. Little-
wood et al. (1993) found significant structure in the bare
x09(k,v) from nearly nested features of the Fermi sur-
face. By suitable choice of the chemical potential, and
inclusion of band narrowing by a factor of 2–4 compared
to band-structure calculations, they were able to find
reasonable agreement with the early inelastic neutron
scattering measurements of low-energy magnetic excita-
tions in La22xSrxCuO4 (Cheong et al., 1991). Calcula-
tions for YBa2Cu3O61y (Monthoux and Pines, 1993; Si
et al., 1993) have typically found it necessary to employ
the RPA expression with Uk52J@cos(kxa)1cos(kya)#
(or a similar form) in order to obtain reasonable consis-
tency with experiment.43 Several recent calculations
(Brinckmann and Lee, 1999; Kao et al., 2000; Norman,
2000; Onufrieva and Pfeuty, 2002) have addressed the
resonance peak in YBa2Cu3O61y and the downward-

43Anderson (1997) has made a strong and compelling argu-
ment that antiferromagnetic exchange cannot be properly
treated in RPA and that the approach is internally inconsis-
tent.
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dispersing excitations that appear at slightly lower ener-
gies (Arai et al., 1999; Bourges et al., 2000; Ito et al.,
2002).

The lack of dispersion of the spin gap that develops
below Tc in La22xSrxCuO4 (Lake et al., 1999), together
with the enhancement of intensity above the gap (Ma-
son et al., 1996), have been interpreted in terms of the
spin response of the electrons that participate in the su-
perconducting state (Mason et al., 1996; Lake et al.,
1999; Kao et al., 2000; Morr and Pines, 2000).

B. Experimental evidence supporting a strong-coupling
perspective in the cuprates

From a purely theoretical perspective, it may not be
possible to determine a priori whether there is an advan-
tage to either a weak- or strong-coupling approach; how-
ever, we believe that numerous experimental results
point decisively towards the strong-coupling picture.
Many of the relevant results involve measurements of
magnetic correlations, and we have collected selected
experimental quantities in Table I. (Some explanations
of how the parameter values are taken from experiment
are given in Appendix B.) Below we highlight some of
the important observations, and explain their signifi-
cance.

• Magnetism in undoped cuprates is quantitatively
consistent with superexchange between local magnetic
moments on copper ions.

The undoped parent compounds, such as La2CuO4
and YBa2Cu3O6 , are antiferromagnetic insulators with
a charge-transfer gap of ;2 eV (Kastner et al., 1998).
The ordered magnetic moments are consistent with one
unpaired spin per planar Cu ion, after zero-point spin
fluctuations, given accurately by spin-wave theory (Iga-
rashi, 1992), are taken into account. The effective super-
exchange energy, Jeff;0.1 eV, determined from mea-
surements of the spin-wave dispersion, has been
calculated from ab initio cluster models (Van Oosten
et al., 1996; Muñoz et al., 2000), consistent with the local
superexchange mechanism.

If the antiferromagnetic order corresponded to a spin-
density wave due to Fermi-surface nesting, one would
expect the magnetic correlations and the optical gap to
disappear at the Néel temperature. Neither of these
things happens; these materials remain correlated insu-
lators in the disordered state, and the spin correlations
are well described by a nonlinear sigma model (Chakra-
varty et al., 1989) with parameters derived from the or-
dered state (Kastner et al., 1998).44

• With light doping, local magnetic moments change
little, even though long-range Néel order is destroyed.

In a mSR study of lightly doped La22xSrxCuO4 and
Y12xCaxBa2Cu3O6 , Niedermayer et al. (1998) showed

44The recent observation by Coldea et al. (2001) that the spin-
wave dispersion at large energies is better fit if a four-spin
exchange interaction is included in the microscopic Heisenberg
model is still consistent with a system of localized spins.
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TABLE I. Various quantities characterizing the strength of antiferromagnetic correlations in doped and undoped cuprates and
nickelates. All are determined at low temperature. The quantity p is the nominal hole concentration per planar Cu; for
YBa2Cu3O61y and YBa2Cu4O8 this was estimated from the ‘‘universal’’ formula of Presland et al. (1991) relating Tc /Tc

max and p .
The acronyms used under ‘‘phase’’ are AFI, antiferromagnetic insulator; CSO, charge-stripe order; SSO, spin-stripe order; SC,
superconducting order. m is the magnetic moment per planar Cu, and m/m0 is the moment relative to the AFI parent. *S(k,v)
is the dynamical structure factor, integrated over a Brillouin zone and over energy up to 100 meV, and normalized to the AFI
parent. Jeff is the effective superexchange energy characterizing the maximum energy of the magnetic excitations (2Jeff) measured
by neutron scattering, or obtained from Raman scattering, assuming that the two-magnon peak is at 2.7Jeff . Further discussion is
given in Appendix B.

Material p Phase
m

(mB) m/m0 *S(k,v)
Jeff

(meV) Tcrit

La2CuO4 0 AFI 0.60(5)a 1 1 152(6)b TN'300 K
La2Cu0.8(Zn,Mg)0.2CuO4 0 AFI 0.72(5)c TN'100 K
La1.88Ba0.12CuO4 0.12 CSO, SSO 0.60(2)d Tsso'35 K
La1.48Nd0.4Sr0.12CuO4 0.12 CSO, SSO 0.60(2)d 120(25)e Tsso'50 K
La2CuO4.11 0.16 SSO, SC 0.62(2)f Tsso5Tc542 K
La1.86Sr0.14CuO4 0.14 SC 0 0 0.4g 140(10)g Tc535 K
YBa2Cu3O6.1 0 AFI 0.55(3)h 1 1 125(8)i TN'400 K
YBa2Cu3O6.5 0.09 SC 0 0 0.5j Tc'52 K
YBa2Cu3O6.6 0.10 SC 0 0 0.6k 110(15)k Tc563 K
YBa2Cu3O6.7 0.11 SC 0 0 0.3l 125(5)m Tc'70 K
YBa2Cu4O8 0.13 SC 0 0 125(5)m Tc580 K
La2NiO4 0 AFI 1.0(1)n 1 31(1)o TN'330 K
La2NiO4.133 0.27 CO 0.8(1)p 0.80(5) Tsso5110 K
La22xSrxNiO4 ;0.33 CO 1.11(5)q 20(1)r Tsso'200 K

aFrom neutron diffraction (Yamada et al., 1987).
bFrom inelastic neutron scattering (Coldea et al., 2001).
cFrom neutron diffraction (Vajk et al., 2001).
dLocal moment relative to La2CuO4 from mSR (Nachumi et al., 1998).
eFrom two-magnon Raman scattering, assuming that the observed peak is at 2.7J (Nachumi et al., 2002; Gozer et al., 2003).
fLocal moment relative to La2CuO4 from mSR (Savici et al., 2002).
gFrom inelastic neutron scattering (Hayden et al., 1996a).
hFrom neutron diffraction (Casalta et al., 1994).
iFrom inelastic neutron scattering (Hayden et al., 1996b) and two-magnon Raman scattering (Blumberg et al., 1994, 1996).
jBased on inelastic neutron scattering results (Hayden et al., 1996b; Fong et al., 2000).
kBased on inelastic neutron scattering results (Hayden et al., 1996b; Dai et al., 1999).
lBased on inelastic neutron scattering results (Hayden et al., 1996b; Fong et al., 2000).
mFrom two-magnon Raman scattering (Blumberg et al., 1994, 1996).
nFrom neutron diffraction (Wang et al., 1992).
oFrom inelastic neutron scattering (Yamada et al., 1991).
pFrom neutron diffraction (Tranquada, Lorenzo, et al., 1995).
qLocal moment relative to La2NiO4 from mSR (Jestädt et al., 1999).
rFrom inelastic neutron scattering (Boothroyd et al., 2003; Bourges et al., 2003).
that there is essentially no change in the low-
temperature ordered moment per planar Cu as the long-
range antiferromagnet order is destroyed by increasing
the hole concentration. This behavior has also been de-
tected in NMR studies (Chou et al., 1993). In the spin-
glass regime that occurs in the doping range between the
antiferromagnetic and superconducting phases, the or-
dered moments decrease gradually (Niedermayer et al.,
1998). We now know that for La22xSrxCuO4 with 0.02
&x,0.06 the low-temperature phase involves ordering
of magnetic moments in a diagonal spin-stripe structure
(Wakimoto et al., 1999; Fujita et al., 2002). That identical
behavior occurs in Y12xCaxBa2Cu3O6 is supported by
an NQR/NMR study (Singer and Imai, 2002).

• The energy scale of magnetic excitations and the
strength of the dynamic structure factor at frequencies
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less than J change only modestly with doping.
One can see from Table I that Jeff decreases a rela-

tively small amount with doping. There is also evidence
in some underdoped YBa2Cu3O61y samples of effects
reminiscent of spin-wave-like dispersion at energies
above 50 meV (Bourges, Fong, et al., 1997; Fong et al.,
2000). The partially integrated dynamical structure fac-
tor decreases with doping, but remains substantial.

If the magnetic excitations corresponded to electron-
hole excitations across the Fermi surface, one would ex-
pect that the magnetic energy scale should increase to a
value comparable to the Fermi energy. For that scale to
be the same as the Jeff of the undoped phase would seem
to be an incredible coincidence. With a substantial in-
crease in energy scale, one would expect a correspond-
ing decrease in the integrated dynamical structure factor.
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Similar trends in terms of a modest reduction of
Jeff with doping and the survival of spin-wave-like ex-
citations are found in stripe-ordered La22xSrxNiO4
(Boothroyd et al., 2003; Bourges et al., 2003). This sys-
tem is definitely in the strong-coupling limit, as it re-
mains semiconducting above the charge-ordering tem-
perature (Katsufuji et al., 1996).

• The k dependence of the magnetic neutron scatter-
ing measured from superconducting samples of
YBa2Cu3O61y is consistent with spin density on planar
Cu ions.

The magnetic scattering cross section is proportional
to the square of the magnetic form factor (the Fourier
transform of the magnetization density); this is true for
both elastic and inelastic scattering. An early analysis of
inelastic magnetic scattering at different k points in su-
perconducting YBa2Cu3O61y samples revealed an an-
isotropy (Rossat-Mignod et al., 1992) that was later
shown to be consistent with the anisotropy due to the
magnetic form factor for a single spin in a 3dx22y2 or-
bital (Shamoto et al., 1993).

The coherence of spin excitations within the CuO2
bilayers of YBa2Cu3O61y also results in a bilayer struc-
ture factor. The structure factor is a sinusoidal function
of momentum transfer perpendicular to the bilayers,
with a period that is proportional to the spacing between
the layers of the centers of spin density. The observed
period is quantitatively consistent with the intrabilayer
spacing of the Cu atoms, but is incompatible with the
spacing of the oxygen atoms, which is significantly
smaller (Tranquada et al., 1992).

For electronic states at the Fermi level, there is a sub-
stantial amount of weight from planar O 2p states (Ta-
kahashi et al., 1988). As a result, one would expect that
magnetic scattering due to electron-hole excitations
should, in real space, have significant weight associated
with the oxygen sites. The measured modulations (Tran-
quada et al., 1992; Bourges et al., 1996; Fong et al., 1996)
are not compatible with a significant component corre-
sponding to the oxygen spacing.

• When stripe order is observed in more heavily
doped samples, the magnetic moments are large.

As indicated in the table, the local magnetic moments
detected in stripe-ordered phases by mSR are compa-
rable to the moment found in undoped La2CuO4 . The
large moments imply a strong modulation of hole den-
sity. The magnetic form factor determined by neutron
diffraction is consistent with that expected for spin mo-
ments (Tranquada et al., 1996).

• When stripe order is observed, charge orders before
the spins, and the ordering wave vector grows with dop-
ing.

When charge and spin-stripe order are observed, as in
La1.62xNd0.4SrxCuO4 , the charge order appears at a
higher temperature than the stripe order (Tranquada
et al., 1996; Ichikawa et al., 2000). (In
La1.875(Ba,Sr)0.125CuO4 , the ordering temperatures for
charge and spin are very close (Fujita et al., 2002); nev-
ertheless, the charge order parameter grows more rap-
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idly than the spin order parameter.) It follows (Zachar
et al., 1998) that the charge order is not driven by the
spin ordering.

This result is natural for a strong-coupling picture of
stripe correlations, but it poses a considerable challenge
for the weak-coupling approach. In the latter, if one at-
tributes the spin-stripe order to a nesting instability of
the Fermi surface, then one must find a distinct nesting
feature, with a spanning wave vector corresponding to
Qch , to explain the charge-stripe order. Of course it is
also necessary to explain the doping dependence of the
ordering wave vectors. According to ARPES studies,

the spanning wave vector near k5(2p/a)( 1
2 ,0) is close

to Qch . However, its variation with doping is opposite to
that of Qch (Ding et al., 1997; Ino et al., 2002); with in-
creasing x , the holelike Fermi surface approaches closer
to the (p,0) point, so the spanning wave vector de-
creases, while Qch increases. We are not aware of a plau-
sible explanation for the combined charge and spin
modulations from the weak-coupling perspective.

• Substituting Zn impurities into the CuO2 planes pins
stripe order in La22xSrxCuO4 .

The substitution of Zn into the CuO2 planes causes a
significant increase in normal-state resistivity without
modifying the carrier density (Fukuzumi et al., 1996). It
also wipes out the dispersive feature near the nodal
point observed by ARPES in the normal state (White
et al., 1999). We have already discussed the fact that Zn
doping can induce static stripe order in La22xSrxCuO4
(see Fig. 8). These results are incompatible with a
mechanism for stripe order based on Fermi-surface nest-
ing. The Zn impurities break translational symmetry and
cause considerable scattering of the charge carriers. Any
sharp features at the Fermi surface are smeared out in
the presence of the Zn. Thus the Zn should destroy, not
induce, a nesting instability.

• There is no evidence of well-defined quasiparticles
in the normal state of underdoped and optimally doped
cuprates.

There are many features of the doped system which
suggest that, for the most part, there are no well-defined
quasiparticles. ARPES spectra in Bi2Sr2CaCu2O81d and
La22xSrxCuO4 in some cases do exhibit features with a
well-defined dispersion, and when one looks at the spec-
tral intensity integrated over a small energy window
about the Fermi energy, a Fermi surface of sorts is ob-
served (Dessau et al., 1993; Ding et al., 1996; Ino et al.,
2002). However, in no case has a peak been observed
with a width small compared to its mean, which we take
to be the definition of a well-defined quasiparticle. In
some ranges of temperature and k, there is no well-
defined quasiparticle peak at all. Near the nodal points,
there are marginally defined quasiparticles, in the sense
that there is certainly a clear peak in the spectral func-
tion, but its width is approximately twice its mean en-
ergy (Valla et al., 1999). There is corroborating evidence
that any quasiparticles are at best marginal, which comes
from the T linear dependence of the normal-state resis-
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tivity and various other indirect (but bulk) measure-
ments (Anderson 1987, 1992; Varma et al., 1989; Lee,
1999).

In addition, there is considerable indirect evidence
that the familiar Fermi-liquid power laws are strikingly
absent. NMR experiments reveal significant tempera-
ture dependence to the nuclear 1/T1T and dramatic vio-
lations of the Korringa relation, not only in the
pseudogap regime, but even in the high-temperature re-
gime at optimal doping (Takigawa et al., 1991). The op-
tical conductivity has a clearly non-Drude form (Collins
et al., 1989), above and beyond the peculiar temperature
dependence of the dc conductivity. The Hall number, as
well, is anomalously temperature dependent (Wang
et al., 1987).

All together, these results strongly imply that a picture
of weakly interacting quasiparticles has limited validity
in the cuprates. The one exception is the low-energy be-
havior (E!D0) of the cleanest superconducting materi-
als, deep in the superconducting state. Here, consider-
able indirect evidence exists that there are remarkably
long-lived nodal quasiparticles which dominate the
physics (Sutherland et al., 2003). However, direct evi-
dence of these sharply defined excitations has yet to
emerge in any single-particle experiment such as
ARPES or STM.

VII. CONCLUSIONS

There are many reasons why identifying and studying
fluctuations associated with the presence of nearby or-
dered states has become one of the main thrusts in the
study of cuprate superconductors and related materials.
To some extent, these states are interesting just because
they occur somewhere in the (multidimensional) phase
diagram of these intriguing materials. Quantum critical
points associated with some of these orders have been
proposed as an explanation for the notoriously peculiar
high-temperature (normal-state) behavior observed in
many experiments. The possibility that certain local or-
ders are inextricably linked with the phenomenon of
high-temperature superconductivity is the most enticing
reason of all. However, before we can determine
whether a particular form of local order, such as local
stripe order, could possibly be central to the problem of
high-temperature superconductivity, we need to deter-
mine whether or not it is ubiquitous in the families of
materials that exhibit high-temperature superconductiv-
ity. Regardless of one’s motivation, it is clear that the
ability to identify proximity to an ordered phase by the
signatures of fluctuating order is very useful. This paper
has focused on practical considerations pertinent to this
task.

A combination of rather general scaling consider-
ations concerning quantum critical phenomena, and spe-
cific insights gleaned from the solvable models studied,
has led us to articulate a number of ‘‘lessons’’ concerning
the optimal way of obtaining information about nearby
ordered states from experiment:
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(1) The information is best obtained from the low-
frequency part of the dynamic structure factor, pref-
erably integrated over a small, but nonzero range of
frequencies, with the scale of frequencies set by the
characteristic frequency of quantum fluctuations,
EG /\ .

(2) Weak disorder can make it easier, especially for
static probes, to image the local order, as it can pin
the fluctuations without greatly disrupting the intrin-
sic correlations.

(3) Experiments that reveal strongly dispersing features
generally give information about the elementary ex-
citations of the system; however, distinguishing dis-
persing features that arise from well-defined quasi-
particles from the multiparticle continua
characteristic of quantum critical points can be ex-
ceedingly subtle. Specifically, even where one set of
experiments can be sensibly interpreted in terms of
band-structure effects, care must be taken in inter-
preting this as evidence of well-defined electronlike
quasiparticles.

(4) Several aspects of the E and k dependence of the
local density of states (measurable by STM) in the
presence of weak disorder allow one, in principle, to
distinguish interference effects due to scattering of
elementary excitations from impurities, from the ef-
fects of pinned incipient order. Interference effects
in two dimensions produce peaks along curves in k
space, which disperse as a function of energy in a
manner is directly related to the quasiparticle dis-
persion relations, such as could be measured in
ARPES, and they may or may not have a strongly
energy-dependent phase. Pinning of incipient order
produces peaks at well-defined points in k space
which depend only weakly on energy, and generally
have an energy-independent phase.

(5) It will often be true that interference effects and
collective pinning will jointly produce complicated
k- and E-dependent properties in the local density
of states that arise from a combination of both ef-
fects, especially in energy ranges in which the inter-
ference and pinning features lie at nearby values
of k.

In Sec. IV of this paper, we applied these ideas to an
analysis of the evidence of local stripe order in a number
of neutron scattering and STM measurements on vari-
ous cuprate superconductors. The evidence of both spin-
and charge-stripe order is unambiguous in the La2CuO4
family of high-temperature superconductors. However,
there is increasingly strong evidence of substantial local
charge-stripe order, and probably nematic order as well,
in Bi2Sr2CaCu2O81d and YBa2Cu3O61y . Conversely,
no evidence of incipient stripe order has been reported
to date in the electron-doped cuprates
Ne22xCexCuO46d and Pr22xCexCuO46d .

Note added: After this work was completed, we re-
ceived an advance copy of a colloquium article by Sach-
dev (2003) that has overlapping material with the
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present paper and that reaches similar conclusions con-
cerning the effects of incipient stripe order on the STM
spectra.
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APPENDIX A: LUTTINGER LIQUIDS
AS ONE-DIMENSIONAL QUANTUM CRITICAL
CHARGE-ORDERED STATES

In Sec. III we discussed how a single impurity induces
charge order in the simplest and best understood quan-
tum critical system, the Tomonaga-Luttinger model of a
one-dimensional electron gas. In this appendix we give a
summary of the physics and of essential technical as-
pects of the discussion of Sec. III, presenting only the
aspects of the theory relevant to the derivation of the
expressions used in Sec. III. There are a number of ex-
cellent reviews that cover the theory of the 1DEG in
great depth, and we refer the interested reader to that
literature (Emery, 1979; Fradkin, 1991; Stone, 1994;
Gogolin et al., 1998).

Consider a one-dimensional system of interacting
spin-one-half fermions (electrons). We shall denote by
Cs(x) the Fermi field for an electron with spin s
5↑ ,↓ , and by c6 ,s(x) its right- and left-moving compo-
nents, respectively:

Cs~x !5eikFxc1 ,s~x !1e2ikFxc2 ,s~x !, (A1)

where kF is the Fermi wave vector. In what follows we
shall assume that the electron density is incommensurate
and ignore umklapp scattering effects. Thus we shall be
working in a regime in which the dynamics of the right-
and left-moving components of the electron are slowly
varying and hence are well described by an effective
continuum Hamiltonian density H5H01Hint , where

H052ivF (
s5↑ ,↓

~c1 ,s
† ]xc1 ,s2c2 ,s

† ]xc2 ,s! (A2)
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is the Hamiltonian density for noninteracting electrons
in the low-energy regime where the dispersion is linear-
ized; here vF is the Fermi velocity. As usual, irrelevant
operators which account for corrections to the linear dis-
persion are not included (however, see below for cave-
ats). The effects of interactions are included in Hint .

The best way to describe the physics of the 1DEG is
by means of bosonization methods. Bosonization of an
interacting system of fermions is possible because the
low-energy spectrum of the 1DEG is exhausted by a
long-lived bosonic excitation described by a field fs(x)
which represents particle-hole fluctuations of spin s near
the Fermi points 6kF . It turns out that the field fs also
describes the phase fluctuations of a 2kF charge-density-
wave. Consequently the electron-density operator rs(x)
is decomposed into a long-wavelength piece j0

s and a
2kF piece related to the density-wave order parameter.
The long-wavelength electron density for spin projection
s, j0

s(x), is

j0
s~x !5c1 ,s

† c1 ,s1c2 ,s
† c2 ,s (A3)

and the long-wavelength current density with spin pro-
jection s, j1

s(x), is

j1
s~x !5c1 ,s

† c1 ,s2c2 ,s
† c2 ,s . (A4)

Here j0
s and j1

n are operators normal ordered with re-
spect to the filled Fermi sea.

The density and current-density operators obey the
equal-time bosonic commutation relations

@ j0
s~x !,j1

n~y !#5
i

p
]xd~x2y !ds ,n , (A5)

where s ,n5↑ ,↓ . One can identify j0
s(x) and j1

s(x) with

j0
s~x !5

1

Ap
]xfs~x !,

j1
s~x !5

1

Ap
Ps~x !, (A6)

where fs(x) is a Bose field and Ps(x) is its canonically
conjugate momentum; they obey the canonical equal-
time commutation relations,

@fs~x !,Pn~y !#5ids ,nd~x2y !. (A7)

The (slowly varying) Fermi fields c6 ,s(x) can them-
selves be reconstructed from the Bose field fs(x):

c6 ,s~x !5
1

A2pa
NseiAp[6fs(x)2us(x)] (A8)

(here a;vF /D is a short-distance cutoff and D is the
fermion bandwidth), where we have introduced the dual
field us(x) defined by the identity

]xus~x !5Ps~x !, (A9)

and where Ns , the Klein factor, is an operator that guar-
antees that Fermi fields with different spin labels anti-
commute with each other.

It is convenient to introduce the charge and spin Bose
fields fc and fs ,
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fc5
1

&
~f↑1f↓!,

fs5
1

&
~f↑2f↓!. (A10)

The Hamiltonian density of the interacting system can
be written as a sum of operators, which are marginal
(with scaling dimension equal to 2), relevant (with scal-
ing dimension smaller than 2), and irrelevant (with scal-
ing dimension larger than 2). For an incommensurate
1DEG, the effective low-energy Hamiltonian, which
contains only marginal operators, has the spin-charge
separated form

H5Hc1Hs , (A11)

where the charge Hamiltonian density Hc in bosonized
form has the universal (Tomonaga-Luttinger) form

Hc5
vc

2
KcPc

21
vc

2Kc
~]xfc!2, (A12)

where vc is the charge velocity and Kc is the charge
Luttinger parameter. For repulsive interactions, the spin
Hamiltonian density Hs has the same form,

Hs5
vs

2
KsPs

21
vs

2Ks
~]xfs!

2. (A13)

The nonuniversal charge and spin velocities and the Lut-
tinger parameters encode the dependence of this low-
energy theory on the microscopic parameters of the sys-
tem. Quite generally, for a system with repulsive
interactions, the charge Luttinger parameter obeys the
inequality Kc,1, and for spin rotationally invariant in-
teractions the spin Luttinger parameter satisfies the
equality Ks51. Typically the charge and spin velocities
satisfy the inequality vc.vs . In the weak-coupling limit,
and neglecting all irrelevant operators, simple expres-
sions for Kc , vc , and vs in terms of the backscattering
and forward-scattering amplitudes can be written
down.45

Physical observables of the 1DEG have simple ex-
pressions in the bosonized theory. Since the Tomonaga-
Luttinger model is strictly quadratic in Bose fields, it
allows for a straightforward computation of the correla-
tion functions of all observables of interest, at both zero
and finite temperature, as well as for different types of
boundary conditions. For the purposes of this review it
will be sufficient to note that the electron density has the
decomposition

r~x !5
2kF

p
1j0~x !1ei2kFxOCDW~x !

1e2i2kFxOCDW
† ~x !1ei4kFxO4kF

~x !

1e2i4kFxO4kF

† ~x !, (A14)

45At intermediate and strong coupling the effective low-
energy theory still has the same form but with significant
renormalization of these parameters.
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where

j05j0
↑1j0

↓5A2
p

]xfc (A15)

is the long-wavelength charge density, and

OCDW5(
s

c1 ,s
† c2 ,s5

1
pa

cos~A2pfs!e2iA2pfc

(A16)

is the charge-density-wave order parameter (i.e., the 2kF
amplitude of the charge density), and O4kF

is the 4kF

charge-density-wave order parameter (which we shall
not discuss here).

In particular this implies that the charge dynamical
structure factor for wave vectors close to 2kF , discussed
in Sec. III, is the (retarded) correlation function of the
charge-density-wave order parameter:

SCDW~x ,t !5^OCDW
† ~x ,t !OCDW~0,0!& , (A17)

whereas for small wave vectors it is given instead by the
(retarded) density correlator

S0~x ,t !5^j0~x ,t !j0~0,0!&. (A18)

In particular, the spectral function for SCDW(x ,t), which
we shall denote by S̃CDW(k ,v), has the scaling form

S̃CDW~k ,v!5
vc

16p4 S pTa

vc
D Kc21

FCDWS vsk

pT
,

v

pT D ,

(A19)

where FCDW(x ,y) is the (dimensionless) scaling func-
tion (Orgad et al., 2001)

FCDW~x ,y ![E
2`

`

duE
2`

`

dv hKc/2S u1v
2 D

3hKc/2* S u2v
2 Dh1/2S 2

ru1v
2 D

3h1/2* S ru2v
2 D . (A20)

Here r5vs /vc,1 and hn(z) is given by (Orgad et al.,
2001)

hn~z !5ReF ~2i !nBS n2iz

2
,12n D G , (A21)

where B(x ,y) is the Euler beta function,

B~x ,y !5
G~x !G~y !

G~x1y !
, (A22)

and G(z) is the gamma function.
We now turn to the calculation of the tunneling den-

sity of states discussed in Sec. III. There we presented
the behavior of the 2kF component of the tunneling
density of states N(2kF1q ,E), the Fourier transform in
x and t of the 2kF component of the electron spectral
function. At zero temperature and for a semi-infinite
system with 0<x,L (with L→`), the 2kF component
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of the fermion Green’s function, g2kF
(x ,t), is given by

(Eggert et al., 1996; Mattsson et al., 1997; Eggert, 2000)

g2kF
~x ,t ![^c1 ,s

† ~x ,t !c2 ,s~x ,0!&

;
1

2p

aa1b21/2~2x/vct!c

~vst22x !1/2~vct22x !a~vct12x !b ,

(A23)

where t5t1i01. Notice that in Eq. (A23) we have kept
the dependence on the short-distance cutoff a; conse-
quently, g2kF

(x ,t) naively has units of a21. However, in
a Luttinger liquid the fermion operator has an anoma-
lous scaling dimension. For this semi-infinite geometry
the scaling dimension is governed by the exponents a , b ,
and c , which are given by

a5
~Kc11 !2

8Kc
, b5

~Kc21 !2

8Kc
, c5

1
4 S 1

Kc
2KcD .

(A24)

At finite temperature T.0, g2kF
(x ,t ;T) becomes

g2kF
~x ,t ;T !;

1
2pa S pTa

vs
D 1/2S pTa

vc
D ~1/4!(Kc1Kc

21)

3S 2i

sinhFpT

vs
~vst22x !G D 1/2

3S 2i

sinhFpT

vc
~vct22x !G D a

3S 2i

sinhFpT

vc
~vct12x !G D b

3S sinhS 2pTx

vc
D

sinhS pTt

vc
D D

c

. (A25)

As with the structure factor, N(q12kF ,E) can also be
expressed in terms of a scaling function F as

N~q12kF ,E ![E
0

`

dxE
2`

`

dt e2i(qx2Et)g2kF
~x ,t !

5
B

2E S aE

vc
D 2b

FS 2E

vcq
,

E

kBT D , (A26)

which also depends on the charge Luttinger parameter
Kc and on the ratio of the charge and spin velocities
vc /vs . B is the dimensionless quantity

B5
e2ip(c11)/2

GS a1b1c2
1
2 D . (A27)
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The behavior of N(2kF1q ,E ;T) for T.0 is shown in
Figs. 3 and 4 in Sec. III. At T50 the scaling function
F(2E/vcq) is given by

F~u !5Avc

vs
uc11E

0

1
dt tc~12t !a1b2 3/2~12ut !2a

3~11u* t !2bS 12
vc

vs
ut D 2 1/2

. (A28)

Here u52uEu/qvc1i01. We have obtained analytic ex-
pressions for the singular pieces of N(k ,E) at T50, for
a general value of the charge Luttinger parameter in the
range of interest 0,Kc,1, and general vc /vs . N(k ,E)
has power-law singularities as 2E/vcq→61, 2E/vcq
→0, and 2E/vcq→` and 2E/vcq→vs /vc .

Physically the nonanalyticities at 2E/vcq561 and
2E/vsq51 represent the threshold of the continuum of
propagating excitations of appropriate type, moving to
the right and to the left, respectively. The singularity at
2E/vcq→` corresponds to the 2kF charge-density-wave
stabilized (pinned) by the boundary.

Close to the right-dispersing charge-related singularity
at q→2E/vc we find

N~2kF1q ,E !;
1

2E S aE

vc
D 2b

A1F12
2E

vcqGb2 1/2

,

(A29)

where A1 is a finite complex coefficient determined by
the strength of the singularity. An important feature of
this result is that, as E goes through this singularity at
fixed q , the phase of N(2kF1q ,E) jumps by p(b
21/2) (see Fig. 4). Close to the right-dispersing spin-
related singularity at q→2E/vs we find

N~2kF1q ,E !;
1

2E S aE

vs
D 2bS vs

vc
D a1b1c21

3A18 F12
2E

vsq
G2b2 1/2

, (A30)

where A8 is another complex coefficient. In the nonin-
teracting limit Kc51 and vs5vc , these two singularities
coalesce into a simple pole for a particle moving to the
right. However, for Kc,1, the Tomonaga-Luttinger liq-
uid does not have quasiparticles but massless soliton
states instead. As usual, the power laws reflect the mul-
tisoliton continuum. [More generally, the limit vs /vc
→1 is somewhat subtle (Bindloss et al., 2003).] Similarly,
for q→22E/vc ,

N~2kF1q ,E !;
1

2E S aE

vc
D 2b

A2F11
2E

vcqGb

, (A31)

where, once again, A2 is a finite complex coefficient
specific to this singularity. However, unlike the singular-
ity at E51vcq , the behavior near E52vcq although
nonanalytic is not divergent, since b.0 for repulsive in-
teractions.

In addition to propagating excitations, we also find
that N(2kF1q ,E) has a singularity associated with the
nonpropagating charge-density-wave as q→0:
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N~2kF1q ,E !}
1

2E S aE

vc
D 2bS vs

vc
D 1/2F 2E

vcqG (12Kc)/2

,

(A32)

which diverges as q→0. This singularity also exhibits a
phase jump as q→06, equal to p(12Kc)/2.

At low voltages E→0 and at fixed q , we find

N~2kF1q ,E !}
1

2E S aE

vc
D 2bS vs

vc
D 1/2F 2E

vcqG c11

. (A33)

Finally, we summarize here the calculation of the in-
duced density of states in the weak-impurity limit, E
.TK . In Sec. II.C we showed that the density of states
at wave vector k and voltage E induced by an impurity
potential with amplitude V(k) at wave vector k defines
the susceptibility xDOS(k ,E) given in Eq. (2.8). Here we
shall sketch the calculation of xDOS(2kF1q ,E) to lead-
ing order in V(k) for a Luttinger liquid. We must first
find the Green’s function,

G~z1 ,z2 ,z3!5^c1 ,↑
† ~z1!c2 ,↑~z2!

3@c2 ,↑
† ~z3!c1 ,↑~z3!1↑↔↓#&, (A34)

which can be computed readily using bosonization meth-
ods. At T50 and for an infinite system the time-ordered
Green’s function G(z1 ,z2 ,z3), in imaginary time, is
given by

G~z1 ,z2 ,z3!5
1

2p2a2 uz12z2u2 ~12Kc
2
!/4Kc

3~z12z3!2 ~Kc21 !/4~z22z3!2 ~Kc11 !/4

3~w12w3!2 1/4~ z̄12 z̄3!2 ~Kc11 !/4

3~ z̄22 z̄3!2 ~Kc21 !/4~w̄22w̄3!2 1/4, (A35)

where we have used the charge and spin complex coor-
dinates z5x1ivct and w5x1ivst . The susceptibility
xDOS(2kF1q ,E) is obtained, upon analytic continua-
tion to real frequencies, from

xDOS~2kF1q ,E !5Im E
2`

`

dxE
2`

`

dt e2i(kx2Et)

3E dt8G~x ,t ;x ,0;0,t8!. (A36)

The result for the integrated density of states Ñ(2kF
1q ,D) presented in Sec. III, Eq. (3.13) follows from
integrating Eq. (A36) over energies large compared with
the low-energy cutoff TK .

APPENDIX B: EXPERIMENTALLY DETERMINED SCALES
OF MAGNETISM IN VARIOUS MATERIALS

Here we explain some of the assumptions behind the
parameter values specified in Table I. For antiferromag-
netic phases, the meaning of the parameters is relatively
straightforward, but extracting parameters from mea-
surements on doped systems can require extrapolations
from simple models. Note that we have not addressed
important issues related to possible novel forms of or-
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
bital magnetism that have been proposed (Varma, 1997;
Chakravarty, Kee, and Nayak, 2001).

1. Magnitude of the ordered moments

a. Absolute moments from neutron scattering

In the case of long-range antiferromagnetic order, the
absolute magnitude m of the average ordered moment
per planar Cu is obtained from an elastic neutron-
diffraction measurement by comparing the intensities of
the magnetic Bragg superlattice peaks with those of
Bragg peaks from the chemical lattice. It has been ob-
served that m is correlated with the Néel temperature
TN in both La2CuO4 (Yamada et al., 1987) and
YBa2Cu3O61y (Tranquada et al., 1988). In the earliest
measurements of La2CuO4 , samples typically contained
excess oxygen, resulting in values of m and TN signifi-
cantly lower than those of the stoichiometric material.
Another complication is that determination of m re-
quires knowledge of the magnetic form factor, which
turns out to be considerably more anisotropic (Shamoto
et al., 1993) than was appreciated initially.

For comparison, it is worth noting that for a spin-1
2

Heisenberg model on a square lattice with only nearest-
neighbor interactions, the magnitude of the average or-
dered spin per Cu, to second order in a 1/S expansion
(Igarashi, 1992) is ^S&50.307. For a moment due to spin
only, g52 and m5g^S&mB50.61mB . Although it has
not been possible to measure the g factor for Cu in the
layered cuprates,46 a typical value for a Cu21 ion in a
distorted octahedral environment is 2.2 (Abragam and
Bleaney, 1970), which implies a typical moment of
0.67mB . The fact that the observed maximum moments
in La2CuO4 and YBa2Cu3O61y are 10–20 % smaller
than this could be a result of hybridization of the Cu
3dx22y2 orbital with O 2ps orbitals. (By symmetry, the
net spin density on oxygen sites is zero in the Néel struc-
ture.)

b. Relative moments from mSR

In mSR, one measures a precession frequency, which
is directly proportional to the local hyperfine field at the
m1 site. Determination of the absolute moment requires
knowledge of the m1 location (obtained by calculation
rather than experiment) and a calculation of the mag-
netic field at that site due to the ordered Cu moments.
Alternatively, under the assumption that the m1 site is
unchanged by doping, one can determine the local mo-
ment in a doped sample relative to that in the parent
insulator. An advantage of the mSR technique is that its
sensitivity does not depend on the existence of long-
range order. A beautiful example of this is the study of
Niedermayer et al. (1998) in which it was shown that the
local ordered moment (at very low temperature)
changes little as long-range antiferromagnetic order is

46Despite numerous attempts, it has not been possible to de-
tect an electron-spin resonance signal from Cu21 in planar cu-
prates (Simon et al., 1993).
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destroyed by doping in La22xSrxCuO4 and
Y12xCaxBa2Cu3O6 . In a complementary study, Klauss
et al. (2000) showed that substantial moments associated
with local antiferromagnetic order (presumably stripe
order pinned by the tetragonal structure) are present in
La1.82xEu0.2SrxCuO4 for 0.08&x&0.18.

In a stripe-ordered sample, the muons sample a distri-
bution of local hyperfine fields, resulting in a fairly rapid
damping of the precession signal (Nachumi et al., 1998;
Klauss et al., 2000; Savici et al., 2002). The relative mo-
ment quoted in the table corresponds to the maximum
of that distribution.

2. Integrated low-energy spectral weight

Neutron scattering measures the dynamical magnetic
structure factor S(Q,v)[Szz(Q,v). Actually, the spin
structure factor is the tensorial quantity Sab(Q,v),
which obeys the sum rule

E
0

`

dvE
BZ

dQ (
a

Saa~Q,v!5S~S11 !, (B1)

where S is the spin per magnetic ion. For cuprates in
general, and superconducting samples in particular, it is
challenging to measure the magnetic scattering to suffi-
ciently high energies (with sufficient signal-to-noise ra-
tio) that the sum rule can be evaluated; however, there
do exist a few studies that allow one to evaluate the
energy integral up to 100 meV. While there are signifi-
cant uncertainties in evaluating the integral from pub-
lished data, these should be smaller than the uncertainty
in the calibration of the sample volume contributing to
the signal, which for superconducting samples can be on
the order of 30% (Fong et al., 2000).

Since we are interested in the change of this inte-
grated quantity with doping, we have normalized it to
the value measured for the relevant parent antiferro-
magnet. Note that, for the latter case, the integral in-
cludes the signal in the magnetic Bragg peaks as well as
that from the spin waves.

Another quantity that one can evaluate is the relative
weight under the resonance peak, which appears below
Tc in the superconducting state. Values, normalized to
the full sum-rule weight, have been tabulated by Kee
et al. (2002). For YBa2Cu3O61y samples with Tc varying
from 52 to 93 K, they found the normalized weight to be
about 1.5%; for a sample of Bi2Sr2CaCu2O81d with Tc
591 K, the value is ;6%. It should be noted that inte-
grating S(Q,v) up to 100 meV for the experimental
measurements on antiferromagnetic YBa2Cu3O6.15
(Hayden et al., 1996b) gives just 20% of the full sum-rule
weight; hence, using the same normalization as for
*S(Q,v) in Table I, the weight of the resonance peak in
YBa2Cu3O61y is about 0.08.

3. Energy scale of spin fluctuations

a. From neutron scattering

In the spin-wave theory of a Heisenberg model on a
square lattice with only nearest-neighbor coupling, the
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
zone-edge magnon with q05(p ,0) has energy eq0

54SJeff52Jeff , where the final equality applies for S
5 1

2 . Longer-range couplings have observable effects in
the spin-wave dispersion curves measured for La2CuO4
(Coldea et al., 2001); nevertheless, it is useful to charac-
terize eq0

, which is essentially the local energy to flip a
spin, in terms of Jeff . Assuming that a local superex-
change coupling is still active between local moments in
doped samples, we have used the same formula to define
Jeff in terms of the maximum spin-excitation energy ob-
served in superconducting cuprates.

b. From two-magnon Raman scattering

While Raman scattering is not sensitive to individual
spin waves, it does provide a valuable probe of two-
magnon correlations in 2D square-lattice antiferromag-
nets (Lyons et al., 1988). The dominant part of the re-
sponse has B1g symmetry and appears at low
temperature as a strong peak occurring at an energy of
2.8Jeff for S5 1

2 and 6.8Jeff for S51 (Canali and Girvin,
1992). The scattering mechanism is believed to involve
relatively short-range excitations, so that the response is
not very sensitive to the existence of long-range order.
Although there is no formal justification for it, we have
used the formula for peak energy in the antiferromag-
netic state in order to extract a characteristic value for
Jeff from the two-magnon signal measured from super-
conducting samples. Note that there are also results
available on Bi2Sr2CaCu2O81d (Blumberg et al., 1997;
Sugai and Hosokawa, 2000), which we have not included
in Table I.
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Byers, J. M., M. E. Flatté, and D. J. Scalapino, 1993, Phys. Rev.

Lett. 71, 3363.
Rev. Mod. Phys., Vol. 75, No. 4, October 2003
Campuzano, J. C., M. R. Norman, and M. Randeria, 2003, in
Physics of Conventional and Unconventional Superconduct-
ors, edited by K. H. Bennemann and J. B. Ketterson
(Springer, Berlin).

Canali, C. M., and S. M. Girvin, 1992, Phys. Rev. B 45, 7127.
Capriotti, L., D. J. Scalapino, and R. D. Sedgewick, 2003, Phys.

Rev. B 68, 014508.
Cardy, J., 1999, Physica A 263, 215.
Carlson, E. W., V. J. Emery, S. A. Kivelson, and D. Orgad,

2003, in The Physics of Conventional and Unconventional Su-
perconductors, edited by K. H. Bennemann, and J. B. Ketter-
son (Springer, Berlin).

Carlson, E. W., S. A. Kivelson, V. J. Emery, and E. Man-
ousakis, 2000, Phys. Rev. Lett. 83, 612.

Carlson, E. W., D. Orgad, S. A. Kivelson, and V. J. Emery,
2001, Phys. Rev. B 62, 3422.

Casalta, H., P. Schleger, E. Brecht, W. Montfrooij, N. H.
Andersen, B. Lebech, W. W. Schmahl, H. Fuess, R. Liang, W.
N. Hardy, and T. Wolf, 1994, Phys. Rev. B 50, 9688.

Castellani, C., C. Di Castro, and M. Grilli, 1995, Phys. Rev.
Lett. 75, 4650.

Castro Neto, A. H., 2001, Phys. Rev. B 64, 104509.
Castro Neto, A. H., and C. Morais Smith, 2003, ‘‘Charge inho-

mogeneities in strongly-correlated systems,’’ e-print
cond-mat/0304094.

Chaikin, P. M., and T. C. Lubensky, 1995, Principles of Con-
densed Matter Physics (Cambridge University, Cambridge,
UK).

Chakravarty, S., B. I. Halperin, and D. R. Nelson, 1989, Phys.
Rev. B 39, 2344.

Chakravarty, S., H.-Y. Kee, and C. Nayak, 2001, Int. J. Mod.
Phys. B 15, 2901.

Chakravarty, S., R. B. Laughlin, D. K. Morr, and C. Nayak,
2001, Phys. Rev. B 64, 094503.

Chen, C. H., S.-W. Cheong, and A. S. Cooper, 1993, Phys. Rev.
Lett. 71, 2461.

Chen, H.-D., J.-P. Hu, S. Capponi, E. Arrigoni, and S.-C.
Zhang, 2002, Phys. Rev. Lett. 89, 137004.

Cheong, S.-W., G. Aeppli, T. E. Mason, H. Mook, S. M. Hay-
den, P. C. Canfield, Z. Fisk, K. N. Clausen, and J. L. Martinez,
1991, Phys. Rev. Lett. 67, 1791.

Chernyshev, A. L., A. H. Castro Neto, and A. R. Bishop, 2000,
Phys. Rev. Lett. 84, 4922.

Cho, J. H., F. Borsa, D. C. Johnston, and D. R. Torgeson, 1992,
Phys. Rev. B 46, 3179.

Chou, F. C., F. Borsa, J. H. Cho, D. C. Johnston, A. Lascialfari,
D. R. Torgeson, and J. Ziolo, 1993, Phys. Rev. Lett. 71, 2323.

Chubukov, A. V., S. Sachdev, and J. Ye, 1994, Phys. Rev. B 49,
11 919.

Cohn, J. L., C. P. Popoviciu, Q. M. Lin, and C. W. Chu, 1999,
Phys. Rev. B 59, 3823.

Coldea, R., S. M. Hayden, G. Aeppli, T. G. Perring, C. D.
Frost, T. E. Mason, S.-W. Cheong, and Z. Fisk, 2001, Phys.
Rev. Lett. 86, 5377.

Collins, R. T., Z. Schlesinger, F. Holtzberg, P. Chaudhari, and
C. Feild, 1989, Phys. Rev. B 39, 6571.

Cooper, K. B., M. P. Lilly, J. P. Eisenstein, T. Jungwirth, L. N.
Pfeiffer, and K. W. West, 2001, Solid State Commun. 119, 89.

Cooper, K. B., M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K.
W. West, 2002, Phys. Rev. B 65, 241313(R).

Crawford, M. K., W. E. Farneth, E. M. McCarron III, R. L.
Harlow, and A. H. Moudden, 1990, Science 250, 1390.



1237Kivelson et al.: Fluctuating stripes in the high-temperature superconductors
Crawford, M. K., R. L. Harlow, E. M. McCarron, W. E. Far-
neth, J. D. Axe, H. Chou, and Q. Huang, 1991, Phys. Rev. B
44, 7749.

Crommie, M. E., C. P. Lutz, and D. M. Eigler, 1993, Nature
(London) 363, 524.

Curro, N. J., P. C. Hammel, B. J. Suh, M. Hücker, B. Büchner,
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row, K. Lefmann, M. Isshiki, M. Nohara, H. Takagi, and S. M.
Hayden, 1999, Nature (London) 400, 43.

Lake, B., et al., 2002, Nature (London) 415, 299.
Lang, K. M., V. Madhavan, J. E. Hoffman, E. W. Hudson, H.

Eisaki, S. Uchida, and J. C. Davis, 2000, Phys. Rev. Lett. 85,
1536.

Lanzara, A., N. L. Saini, T. Rossetti, A. Bianconi, H. Oyanagi,
H. Yamaguchi, and Y. Maeno, 1996, Solid State Commun. 97,
93.

Lee, P. A., 1999, Physica C 317-318, 194.
Lee, S.-H. and S.-W. Cheong, 1997, Phys. Rev. Lett. 79, 2514.
Lee, Y. S., R. J. Birgeneau, M. A. Kastner, Y. Endoh, S.

Wakimoto, K. Yamada, R. W. Erwin, S.-H. Lee, and G.
Shirane, 1999, Phys. Rev. B 60, 3643.

Lefebvre, S., P. Wzietek, S. Brown, C. Bourbonnais, D. Jer-
ome, C. Mezière, M. Fourmigue, and P. Batail, 2000, Phys.
Rev. Lett. 85, 5420.

Li, J., Y. Zhu, J. M. Tranquada, K. Yamada, and D. J. Buttrey,
2003, Phys. Rev. B 67, 012404.

Lilly, M. P., K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K.
W. West, 1999a, Phys. Rev. Lett. 82, 394.

Lilly, M. P., K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K.
W. West, 1999b, Phys. Rev. Lett. 83, 824.

Littlewood, P. B., J. Zaanen, G. Aeppli, and H. Monien, 1993,
Phys. Rev. B 48, 487.



1239Kivelson et al.: Fluctuating stripes in the high-temperature superconductors
Liu, Z. Y., H. H. Wen, T. Xiang, S. Komiya, X. F. Sun, and Y.
Ando, 2003, ‘‘Core size effect on the vortex quasiparticle ex-
citations in overdoped La22xSrxCuO4 single crystals,’’ e-print
cond-mat/0301366.

Loeser, A. G., Z. X. Shen, M. C. Schabel, C. Kim, M. Zhang,
A. Kapitulnik, and P. Fournier, 1997, Phys. Rev. B 56, 14 185.

Lorenzana, J., C. Castellani, and C. Di Castro, 2001a, Phys.
Rev. B 64, 235127.

Lorenzana, J., C. Castellani, and C. Di Castro, 2001b, Phys.
Rev. B 64, 235128.

Lorenzana, J., and G. Seibold, 2002, Phys. Rev. Lett. 89,
136401.
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