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ABSTRACT

To assist in optimizing a mixed-physics ensemble for warm season mesoscale convective system rainfall
forecasting, the impact of various physical schemes as well as their interactions on rainfall when different
initializations were used has been investigated. For this purpose, high-resolution Weather Research and
Forecasting (WRF) model simulations of eight International H2O Project events were performed. For each
case, three different treatments of convection, three different microphysical schemes, and two different
planetary boundary layer (PBL) schemes were used. All cases were initialized with both Local Analyses and
Prediction System (LAPS) “hot” start analyses and 40-km Eta Model analyses. To evaluate the impacts of
the variation of two different physical schemes and their interaction on the simulated rainfall under the two
different initial conditions, the factor separation method was used. The sensitivity to the use of various
physical schemes and their interactions was found to be dependent on the initialization dataset. Runs
initialized with Eta analyses appeared to be influenced by the use of the Betts–Miller–Janjić scheme in that
model’s assimilation system, which tended to reduce the WRF’s sensitivity to changes in the microphysical
scheme compared with that present when LAPS analyses were used for initialization. In addition, differ-
ences in initialized thermodynamics resulted in changes in sensitivity to PBL and convective schemes. With
both initialization datasets, the greatest sensitivity to the simulated rain rate was due to changes in the
convective scheme. However, for rain volume, substantial sensitivity was present due to changes in both the
physical parameterizations and the initial datasets.

1. Introduction

To assist in optimizing a mixed-physics ensemble for
warm season continental mesoscale convective system
(MCS) rainfall forecasting, Jankov et al. (2005) evalu-
ated the impact that various physical schemes as well as
their interactions had on rainfall forecast skill in high-

resolution [12-km grid spacing with the Advanced Re-
search Weather and Research Forecasting (WRF)
model (ARW) dynamic core; 34 vertical levels] simu-
lations of eight International H2O Project (IHOP)
events. A general description of IHOP is given in
Weckwerth and Parsons (2006). All runs were initial-
ized with a diabatic Local Analyses and Prediction Sys-
tem (LAPS) “hot” start initialization (Jian et al. 2003).
Jankov et al. (2005) found that no single model con-
figuration was clearly better than the rest. In terms of
skill measures, the best configuration varied both with
the prediction time and rainfall threshold. In addition,
the results implied that if an ensemble designed for
MCS rainfall prediction lacks sufficient spread, model
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runs with different convective schemes should be in-
cluded as the most efficient way to increase the spread
substantially. On the other hand, for hydrological pur-
poses when rain volume is a desired quantity, model
runs with Ferrier et al. (2002) and Lin et al. (1983)
microphysical schemes may require different bias cor-
rections or weightings in an ensemble compared with
runs using National Centers for Environmental Pre-
diction-5 (NCEP-5) class microphysics (Hong et al.
1998).

The present study further addresses issues raised in
Jankov et al. (2005). It adopts the same approach with
the same matrix of 18 different model configurations
but compares the sensitivity to the parameterizations in
runs using 40-km NCEP Eta Model gridded binary
(GRIB) data as initial and boundary conditions to the
sensitivity in runs using a LAPS hot start for initializa-
tion. The main focus of the present study is to investi-
gate if and how the impact of the physical schemes and
their interaction changes when different initial condi-
tions are used. Such an evaluation has two merits: (i)
further exploring the WRF–ARW model’s prediction
performance and (ii) providing an additional insight
relevant to the ensemble prediction of convection un-
der varied physical schemes and initial conditions. To
perform this evaluation, some of the results from Jan-
kov et al. (2005) will be used in the present study. Meth-
odologies used in this paper are described in section 2,
results in section 3, with a concluding summary and
discussion in section 4.

2. Methodology

As in Jankov et al. (2005), the WRF–ARW model,
version 1.3, was used for simulations of eight 2002
IHOP convective cases (initialized at 0600 UTC 16
May, 1200 UTC 23 May, 1800 UTC 24 May, 1200 UTC
2 June, 0000 UTC 4 June, 0000 UTC 13 June, 0600 UTC
15 June, and 1200 UTC 19 June) with 18 different com-
binations of physical schemes. The integration domain
covered a roughly 1500 km � 1500 km region centered
over the south-central United States (see Fig. 5 for a
map of the domain). For each case, three different
treatments of convection were used: the Kain–Fritsch
(KF) scheme (Kain and Fritsch 1993; Kain 2004), the
Betts–Miller–Janjić (BMJ) scheme (Betts 1986; Betts
and Miller 1986; Janjić 1994), and the use of a noncon-
vective scheme. For an elaboration on performance dif-
ferences between the KF and BMJ schemes, see Jankov
and Gallus (2004). For each of these three convection
treatments, three different microphysical schemes were
used: Lin et al. (1983), NCEP-5 class (Hong et al. 1998),

and Ferrier et al. (2002). Within these nine possible
configurations, two different PBL schemes were used:
the Medium-Range Forecast (MRF) (Troen and Mahrt
1986; Hong and Pan 1996) and the Eta (often referred
to as Mellor–Yamada–Janjić model, version 2.5; Janjić
2001) schemes. For all model runs the same longwave
radiative scheme (Rapid Radiative Transfer Model;
Mlawer et al. 1997), shortwave radiative scheme (Du-
dhia 1989), and land surface model scheme (Chen and
Dudhia 2001) were used. The “control run,” as in Jan-
kov et al. (2005), was chosen to match the real-time
model configuration adopted by the National Oceanic
and Atmospheric Administration’s (NOAA’s) Forecast
Systems Laboratory during the IHOP experiment.
It used the KF convective scheme, the MRF PBL
scheme, and the NCEP-5 class microphysical scheme.
The abbreviations used in this study for runs with dif-
ferent combinations of physical schemes and the initial-
ization datasets are found in Table 1. A total of 288
WRF–ARW simulations were considered in the
present study (see appendix A for a statement related
to simulations that used the MPF scheme). For rainfall
validation, observed 6-h accumulated rainfall from the
NCEP stage IV analysis (Baldwin and Mitchell 1997)
was used.

In the present study all runs were initialized with
40-km NCEP Eta Model GRIB data, and integrated for
24 h. Comparisons are made with the Jankov et al.
(2005) results, which used the diabatic LAPS hot-start
initialization (Jian et al. 2003). The LAPS hot-start
technique is based on a three-dimensional analysis of
cloud attributes using radar, satellite, and surface data,
combined with a method of estimating hydrometeor
mixing ratios, precipitable water, and cloud vertical mo-
tions. By using a variational adjustment procedure (in-
volving dynamic balancing and a mass conservation

TABLE 1. Notation used for different physical schemes and ini-
tializations in the present study. Physical schemes used in the
control run are marked with an asterisk.

Physical scheme/initialization Notation

Physical scheme
Betts–Miller–Janjić convection BMJ
Kain–Fritsch convection* KF
Run without convection NC
Eta PBL ETA
MRF PBL* MRF
Lin et al. microphysics MPL
NCEP-5 microphysics* MPN
Ferrier microphysics MPF

Initialization
40-km NCEP Eta Eta
LAPS hot start LAPS
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constraint), horizontal wind fields and the mass field
are adjusted to produce divergence consistent with the
assumed cloud updraft properties (depth, magnitude,
and shape of the updraft profiles). Essentially,
LAPS analyses include the initialization of hydromete-
ors, while that is not the case for the Eta Data As-
similation System (EDAS). This should result in an im-
mediate activation of microphysical schemes and
simulation of the grid-resolved precipitation compo-
nent at early forecast times in the case of runs initial-
ized with LAPS analyses. On the other hand, for runs
initialized with Eta analyses the model dynamics start
off with an unsaturated initial state and, therefore, a
delay in the activation of the microphysics should be
expected.

Also, it should be pointed out that the hot-start ap-
proach was developed for grid spacings that resolve
saturated updrafts and compensating subsidence, but it
is still used quasi-operationally for much coarser reso-
lutions (�x � 10 km). Coarser resolution requires
the use of a convective parameterization, which may
lead to a mismatch between the hot-start grid-resolved
vertical motion and grid-scale vertical motions associ-
ated with a cumulus parameterization scheme. None-
theless, the emphasis of the hot start is to initiate the
forecast with a vertical motion field that is at least
qualitatively consistent with the initial hydrometeor
field. It is presumed that this vertical motion mismatch
is not the cause of serious problems. As a measure of
forecast accuracy, an equitable threat score (ETS;
Schaefer 1990) and bias were calculated. A quantifica-
tion of an impact of varying two different model physi-
cal schemes on the simulated rainfall field was per-
formed by using the factor separation methodology for-
mulated by Stein and Alpert (1993). Based on this
methodology,

fxy � f0 � � fx � f0� � � fy � f0� � f̂xy, �1�

where f0 represents the control run simulated rain-
fall amount, fxy represents the rainfall amount simu-
lated by a run with changes in both physical schemes
of interest (two physical schemes changed compared
to the control run), fx represents the rainfall amount
produced by a run that has one of the two physi-
cal schemes of interest changed (as compared to
the control run), fy represents the rainfall amounts
simulated by a run with another physical scheme of
interest changed (as compared to the control run),
and f̂xy stands for a synergistic term [f̂xy � fxy � (fx � fy)
� f0] reflecting the rainfall amount contributed by the
nonlinear interaction between the two physical

schemes. This term may be thought of as the difference
between the actual rainfall occurring in the run in which
two schemes have been changed and the rainfall ex-
pected by adding the impacts of each individual change.
When the synergistic term is equal to zero, no rainfall is
attributed to the interaction of the two changed physi-
cal schemes.

The factor separation method was applied for an
analysis of two different rainfall measures: system-
average rain rate (rain depth integrated for amounts
exceeding a specified threshold averaged over the area
where the threshold was exceeded; hereafter, rain rate),
and domain-total rain volume (rain depth integrated
for amounts exceeding a specified threshold, averaged
over the whole simulated domain; hereafter, rain vol-
ume). The use of both measures characterizes the QPF
better, because two runs could have the same total rain
volume with one achieving it through light rainfall over
a large area and the other through heavy rainfall in a
small area. As part of the evaluation of changes in rain
rate and rain volume due to variations in physical
schemes, statistical significance testing was performed.
For the rigorous hypothesis testing, Hamill’s (1999) re-
sampling methodology was used. The null hypotheses
for the resampling tests were that differences in rain
rates, rain volumes, ETSs, or biases between the two
opposing forecasts were equal to zero. Based on the
null hypotheses, the test statistics and resampled distri-
butions were formed. The resampled statistics were
formed by randomly choosing either one or the other
forecast and then calculating differences between them
(i.e., rain rate, rain volume, or contingency table ele-
ments in the case of ETS and bias calculations). This
procedure was repeated 1000 times for both a separate
treatment of each 6-hourly forecast period and for all
6-h periods combined. Combining all forecast periods
together helped to increase the small sample size to
better evaluate the statistical significance. This tech-
nique to enlarge the sample size was only valid when
statistical stationarity was present and was not appro-
priate for cases in which variables were characterized
by strong temporal variability. Also, to investigate if the
statistical significance testing by combining all four 6-h
forecasts together was impacted by the spinup usually
associated with runs initialized with Eta analyses during
the first six forecast hours, the statistical significance
testing was performed with both first 6-h forecasts from
runs initialized with Eta analyses included and ex-
cluded. The same trends were obtained. Finally, the
hypotheses of the differences in rain rate, rain volume,
ETS, or bias were tested by determining the location
of the difference within the resampled distribution, or
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in other words, by calculating the corresponding p
value.

In the present study, the discussion will be focused
on the statistically significant results. The notation
presented in Table 1 will be used to indicate differ-
ent model configurations. The control configuration is
labeled with an asterisk in Table 1 (KF–MRF–MPN).

3. Results

a. Sensitivity of rainfall forecast skill to physical
scheme changes under different initial conditions

ETSs and bias values averaged for all eight cases for
all 18 model configurations indicated that no one con-
figuration was obviously best at all times for all thresh-
olds with both initializations (see appendix B for more
details). Figure 1 illustrates the ETS and bias averaged
for the six configurations of the KF, BMJ, and NC runs
for both initializations, during the 0–6-h forecast pe-
riod. It can be seen that for lighter thresholds the high-
est ETSs (Fig. 1a), accompanied by a slight positive bias
error (Fig. 1b), were associated with NC runs initialized
with LAPS analyses. These high ETSs might be ex-
plained by the impact of the hot-start initialization. This
initialization incorporates the ongoing precipitation in
the model, as discussed in section 2. In this way the
spinup effect and precipitation delay that are often as-
sociated with runs without convective parameteriza-
tions are minimized. For runs using convective
schemes, errors related to the schemes are still present
resulting in a lower skill compared with NC runs. For
the heavier thresholds, NC runs tended to have the
lowest ETSs. A subjective analysis showed that the low
ETS values associated with NC runs were very fre-
quently related to a displacement error. The low ETSs
are also consistent with the fact that the NC runs always
had lower bias values compared to runs using convec-
tive schemes.

For runs initialized with Eta analyses, the highest
ETSs for lighter and moderate thresholds were found
for the BMJ runs (Fig. 1c). These high ETSs might be
related to the fact that the EDAS uses the BMJ scheme.
Thus, initialized thermodynamics (which are tuned for
the BMJ scheme) may favor the activation of the BMJ
scheme during the early forecast hours. In addition, the
BMJ scheme has a tendency to generate large areas of
light rainfall (Jankov and Gallus 2004), yielding a high
bias (Fig. 1d), which is usually associated with higher
ETSs (Mason 1989).

Later in time, during the 12–18-h forecast period
(Fig. 2), for lighter thresholds, the highest ETSs were

generally associated with NC runs initialized with
LAPS analyses and with BMJ runs initialized with
Eta analyses. In the case of NC runs, bias values
were about 1 while in the case of BMJ runs they

FIG. 1. Average (a) ETS and (b) bias for the 0–6-h fore-
cast period for the six configurations associated with the KF,
BMJ, and NC runs initialized with the LAPS initialization.
(c), (d) As in (a) and (b), respectively, but for the Eta initializa-
tion.
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were higher, and around 2. For heavier thresholds NC
runs had the highest ETSs and biases associated with
them had increased compared to earlier times and were
now comparable to runs using the KF convective
scheme.

Figures 3 and 4 illustrate differences in ETS and bias
for (i) runs when the initial conditions were changed

and the model configuration was kept the same and (ii)
runs initialized with the two initial conditions when the
model control configuration was also changed (i.e., KF
changed to BMJ or NC, MRF changed to ETA, and
MPN changed to either MPL or MPF), for two different
thresholds (0.01 and 0.5 in.), during the 0–6- and 12–
18-h forecast periods. Thus, for example, the notation
IC-BMJ indicates differences between ETSs and biases
averaged for the six model configurations using the
BMJ scheme for the two different initial conditions,
while PP-BMJ indicates the differences in ETSs and
biases between the averages of the six model configu-
rations using the BMJ scheme and the model control
configuration and then averaged for both initial condi-
tions. It can be seen that differences in ETS (Figs. 3a
and 4a) were more influenced by changes in initial con-
ditions, especially for the 0.01-in. threshold during the
0–6-h forecast period. On the other hand, bias differ-
ences (Figs. 3b and 4b) due to changes in initial condi-
tions and changes in the model configuration were gen-
erally comparable for both thresholds and for both
forecast periods.

For the 0.01-in. threshold during the early forecast
period, runs initialized with LAPS analyses had higher
ETSs (usually statistically significant) compared with
runs initialized with Eta analyses (Fig. 3a). These
higher ETSs were associated with higher biases
(Fig. 3b). For the 0.5-in. threshold, runs initialized
with LAPS analyses were generally characterized with
lower ETSs and much smaller biases. The only excep-
tions were runs using ETA and MPL that had slightly
higher ETSs but opposite trends in bias. The MPL runs
initialized with LAPS analyses were characterized by
small bias, while the opposite was the case for the ETA
runs.

For the 0–6-h forecast period with the 0.01-in. thresh-
old, a statistically significant impact on ETS occurred
only for a change from KF to NC (Fig. 3a). With regard
to changes in bias, they were generally larger with dif-
ferent physics configurations than with different initial
conditions. For the heavier threshold the largest im-
pacts on ETS were associated with changes from KF to
both BMJ and NC.

During the 12–18-h forecast period, nearly all runs
initialized with LAPS analyses were characterized by
higher ETSs and biases compared with runs initialized
with Eta analyses (Fig. 4). Statistically significant
changes in ETS values due to a change in the initial
conditions occurred at the 0.01-in. threshold for runs
using NC and MPL, and at the 0.5-in. threshold for the
BMJ and MPL runs.

With regard to ETS changes due to varying model

FIG. 2. As in Fig. 1 but for the 12–18-h forecast period.
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configurations, statistically significant impacts only oc-
curred for BMJ runs at the 0.01-in. threshold. Changes
in bias were comparable to those associated with
changes in the initial conditions for both thresholds.
The overall comparable magnitudes of the changes in

ETS and bias from the changes in the physics and initial
conditions imply that the ensemble spread might be
effectively increased by the use of variations in both the
initial conditions and physical schemes (Stensrud et al.
2000; Grimit and Mass 2002).

FIG. 3. Differences in (a) ETS and (b) bias when the initial conditions were changed (LAPS
runs � ETA runs) while the physical parameterizations are kept the same (IC), and when the
physical parameterizations were changed (PP), and differences in skill scores averaged for the
two different initial conditions, for the 0.01- and 0.5-in. thresholds, during the 0–6-h forecast
period. Bars shaded in black, dark gray, and gray indicate results that are statistically signifi-
cant at the 95%, 90%, and 80% confidence levels, respectively.

506 W E A T H E R A N D F O R E C A S T I N G VOLUME 22



b. Sensitivity of system-average rain rate and
domain-total rain volume to physical scheme
changes under different initial conditions

1) QUANTITATIVE RESULTS

The factor separation methodology was used to
evaluate the sensitivity of both the rain rate (Table 2)
and the rain volume (Table 3) to changes in the physical
schemes when two different initializations were used.

The tables show the changes in rainfall due to indi-
vidual changes in the physical schemes, as expressed by
( fx � f0) or ( fy � f0), and due to synergistic interactions
between the two physical schemes, as expressed by f̂xy

[see Eq. (1)].
Only results that are statistically significant are pre-

sented. Table 2 shows the impact on rain rate for runs
initialized with both LAPS and Eta analyses for two
different thresholds (0.01 and 0.5 in.). It was found that

FIG. 4. As in Fig. 3 but for the 12–18-h forecast period.
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for runs initialized with LAPS analyses, the largest
positive impact on rain rate, associated with a statisti-
cally significant decrease in areal coverage, for the
lighter threshold was due to a change from KF to NC
(Jankov et al. 2005). Changes in the microphysics (from
MPN to both MPL and MPF) also resulted in a statis-
tically significant increase of the rain rate but with
lower levels of confidence. For the heavier threshold,
only the change from MPN to MPL had a statistically
significant impact (increase) on rain rate. None of the
synergistic interactions between the physical schemes
had a statistically significant impact on the rain rate for
both thresholds.

Runs initialized with the Eta analyses behaved simi-
larly to those initialized with the LAPS analyses for the
0.01-in. threshold, with the largest impact on rain rate
being due to changes in the convective treatment from
KF to both BMJ (which resulted in a large decrease of
rain rate due to the BMJ scheme’s tendency to over-
predict areal coverage and underpredict amounts com-
pared with the control run) and NC (which resulted in
a large increase of rain rate due to the NC scheme’s
tendency to underpredict areal coverage compared

with the control run), and less of a positive impact due
to changes in the microphysics. For the 0.5-in. thresh-
old, the largest impact (negative) on rain rate, associ-
ated with a statistically significant increase in areal cov-
erage (not shown), was due to a change from KF to
BMJ. This might be expected as a consequence of the
BMJ scheme tendency to underpredict heavier
amounts. In addition, changes in the microphysics in-
creased the rain rate (statistically significant with a
lower level of confidence).

In contrast to runs initialized with the LAPS analy-
ses, runs initialized with the Eta analyses differed in the
magnitude of the synergistic interactions among the dif-
ferent schemes, with several having a statistically sig-
nificant impact on the simulated rain rate. For the 0.01-
in. threshold a synergistic interaction between MPL
and NC resulted in a notable increase in rain rate with
a 95% level of confidence. Specifically, both changes
from MPN to MPL and from KF to NC increased the
rain rate, and the synergistic interaction between MPL
and NC had the same positive impact. On the other
hand, changes from both MPN to MPF and from KF to
NC increased the rain rate while the synergistic inter-
action between MPF and NC resulted in a significant
(80%–90% confidence level) decrease of rain rate.

A similar trend occurred for the heavier 0.5-in.
threshold for the interaction between ETA and MPF
except that the confidence level was higher (95%). In
addition, the interaction between MPL and NC was
statistically significant, but in contrast to the 0.01-in.

TABLE 2. Time series of percentage changes in system rain rate
(see section 2 for the definition of system rain rate) averaged for
all eight cases, due to physics changes ( f1 represents rainfall from
the KF–ETA–MPN run, f2 represents rainfall from KF–MRF–
MPL, f3 represents rainfall from KF–MRF–MPF, f4 represents
rainfall from NC–MRF–MPN, and f5 represents rainfall from
BMJ–MRF–MPN) averaged over points where rainfall exceeded
specified thresholds (0.01 and 0.5 in.) for two different initializa-
tions (LAPS and Eta). Here, f0 represents rainfall in the control
run (KF–MRF–MPN), and f̂13, f̂24, and f̂34 represent correspond-
ing synergistic terms. Values presented in boldface–italics, bold-
face, and italics indicate results that are statistically significant at
the 95%, 90%, and 80% confidence levels, respectively.

Threshold (in.) Initialization

Forecast period (h)

0–6 6–12 12–18 18–24

LAPS analysis
0.01 ( f2 � f0)/f0 (%) 5 16 16 39

( f3 � f0)/f0 (%) 10 14 12 22
( f4 � f0)/f0 (%) 52 55 37 10

0.5 ( f2 � f0)/f0 (%) 2 0 8 25
Eta analysis

0.01 ( f2 � f0)/f0 (%) 9 5 6 26
( f3 � f0)/f0 (%) 6 1 7 5
( f4 � f0)/f0 (%) 31 24 4 21
( f5 � f0)/f0 (%) �29 �45 �47 �48

f̂24/f0 (%) 28 100 85 80
f̂34/f0 (%) �19 �9 �12 �32

0.5 ( f1 � f0)/f0 (%) 2 4 8 15
( f2 � f0)/f0 (%) 16 8 2 21
( f5 � f0)/f0 (%) �15 �25 �44 �20

f̂13/f0 (%) �1 �3 �1 �17
f̂24/f0 (%) 1 37 41 23

TABLE 3. As in Table 2 but for domain-total rain volume (see
section 2 for the definition of domain-total rain volume).

Threshold
(in.) Initialization

Forecast period (h)

0–6 6–12 12–18 18–24

LAPS analysis
0.01 ( f2 � f0)/f0 (%) 37 32 53 94

( f3 � f0)/f0 (%) 26 22 22 46
0.5 ( f2 � f0)/f0 (%) 59 72 94 180

( f3 � f0)/f0 (%) 37 54 41 101
( f5 � f0)/f0 (%) �50 �68 �69 �91

f̂12/f0 (%) 0 �25 �20 �83
f̂13/f0 (%) 14 �15 �39 �27

Eta analysis
0.01 ( f1 � f0)/f0 (%) 8 7 13 22

f̂14/f0 (%) 11 45 23 10
f̂24/f0 (%) 21 47 24 24

0.5 ( f1 � f0)/f0 (%) 3 8 6 18
( f2 � f0)/f0 (%) 29 27 27 95
( f4 � f0)/f0 (%) �47 �10 �37 �23
( f5 � f0)/f0 (%) �45 �76 �74 �82

f̂15/f0 (%) 3 12 11 2
f̂24/f0 (%) 39 88 52 57
f̂34/f0 (%) 15 33 11 32
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threshold, the synergy contribution was positive like
those of the individual changes. If the goal is not only to
increase the ensemble spread by using different physi-
cal schemes but also to improve the accuracy of the
simulated rainfall, information about the synergistic ef-
fect may be used as a calibration tool. Specifically,
knowing how particular physical schemes and their in-
teractions impact the simulated rainfall quantitatively
may determine the choice of physical schemes used in
an ensemble.

Table 3 presents the factor separation results for the
rain volume. For runs initialized with LAPS analyses at
both light and heavier thresholds, the largest positive
impact was due to changes in the microphysics. In ad-
dition, for the 0.5-in. threshold, a change from KF to
BMJ decreased the rain volume significantly. On the
other hand, for runs initialized with the Eta analyses,
for the 0.01-in. threshold, only a change in the PBL
scheme produced a statistically significant positive im-
pact. For the 0.5-in. threshold, both a change from KF
to NC and from KF to BMJ reduced the rain volume
notably. A change from MPN to MPL and from MRF
to ETA resulted in an increase in the rain volume in
both cases but with a lower level of statistical confi-
dence.

In both Tables 2 and 3, the change from KF to BMJ
appeared to significantly impact the simulated rainfall
when 40-km Eta analyses were used, but not when
LAPS analyses were used. On the other hand, a change
from KF to NC had a significant impact on the simu-
lated rainfall for both initializations. This once again
may imply that the BMJ scheme used in EDAS influ-
ences the initial conditions in such a way that when a
different convective scheme is used in the model, the
impact on simulated rainfall is particularly large.

Finally, using Eq. (1), but with ( fx � f0) representing
a change in the physical scheme and ( fy � f0) repre-
senting a change in the initial conditions, synergistic
terms for both rain rate and rain volume were calcu-
lated (not shown). The synergistic term magnitudes
were quite small for all physics variations for both
thresholds and at all times. In addition, the majority of
the synergistic terms were negative. The only excep-
tions were in the case of rain rate, when the change
from the LAPS analyses to the Eta analyses was com-
bined with changes from KF to both BMJ (for both
thresholds) and to NC (only for the lighter threshold).
Due to their small magnitudes, these data were not
tested for statistical significance.

2) ILLUSTRATIVE RESULTS

Results previously presented indicated a larger sen-
sitivity to changes in the microphysics for runs initial-

ized with the LAPS analyses compared with those ini-
tialized with the Eta analyses. This might be explained
by the fact that the 40-km Eta analysis is generated by
the EDAS that uses the BMJ convective scheme, which
has a tendency to generate large areas of light rainfall
while substantially drying the atmosphere and reducing
the grid-resolved component of precipitation (e.g., Gal-
lus 1999). Thus, runs initialized with 40-km Eta analyses
may be too dry initially for microphysical schemes to
activate in areas where precipitation is likely to be ob-
served, and the role of the microphysics is restricted
until later forecast times when the influence of the ini-
tial conditions has diminished. Support for this argu-
ment is provided in Fig. 5, which shows the total and
grid-resolved rainfall components for the first forecast
hour on 13 June 2002 for the BMJ–ETA–MPF (the
NCEP operational Eta Model physical schemes) model
run initialized with both the Eta and LAPS analyses.
The total rainfall field from the run initialized with the
Eta analysis (Fig. 5a) was characterized by a much
lighter and broader rainfall area compared with the run
initialized with the LAPS analysis (Fig. 5b). More im-
portantly, Fig. 5c implies that most of the rainfall simu-
lated during the first forecast hour by the run initialized
with the Eta analysis came from the parameterized con-
vective precipitation component. In the case of the run
initialized with the LAPS analysis, a notable part of the
total simulated rainfall (Fig. 5b) was resolved on the
grid (Fig. 5d). Figure 6 shows the same fields as Fig. 5
but for the 17–18-h forecast period. It can be seen that
later in the forecast, as the influence of the initial con-
ditions diminished, the grid-resolved component of the
rainfall for the run initialized with the Eta analysis (Fig.
6c) became more substantial, but was still smaller than
it was in the run initialized with the LAPS analysis (Fig.
6d).

As an additional issue it was found that early in the
forecast, for runs initialized with the LAPS analyses,
the change in the PBL scheme did not notably affect
the rainfall forecast, while for runs initialized with the
Eta analyses, the rainfall was considerably altered. This
might be related to the fact that the EDAS uses the
BMJ scheme, whose structure favors activation in cases
with significant amounts of moisture in low and midlev-
els and positive convective available potential energy
(CAPE). In other words, favorable conditions for con-
vective scheme activation associated with the Eta
analyses result in an early triggering of convection,
which then induces differences in the evolution of the
thermodynamic profiles for runs using various PBL
schemes. These differences are especially noticeable for
runs initialized with the Eta analyses and they are illus-
trated in the following.
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Figure 7 presents the temporal variations of the ther-
modynamic profiles at the grid point (34°N, 100°W),
indicated by an asterisk in Fig. 5a, for the BMJ–MRF–
MPF (dashed lines) and BMJ–ETA–MPF (solid lines)
model runs initialized at 0000 UTC for 13 June 2002.
The two model configurations differ only in their PBL
schemes (MRF versus ETA). An examination of the
vertical velocity values at the location of interest indi-
cated rather small magnitudes for both initializations. It
can be seen that at this location both initializations
were characterized by nearly neutral elevated mixed
layers, and the Eta analysis (Fig. 7a) was slightly less
stable compared with the LAPS analysis (Fig. 7b). The
Eta profile was characterized by a large value of surface
CAPE (	3500 J kg�1) and a negligible convective in-

hibition (CIN; 	1 J kg�1), while in the case of the
LAPS analysis, the surface CAPE was much smaller
(	1300 J kg�1) and the CIN was much larger (	105 J
kg�1). Consequently, in the run initialized with the Eta
analysis the BMJ scheme activated (Fig. 7c) and pro-
duced light rainfall during the first two forecast hours.
The profiles from runs that used different PBL schemes
started to evolve differently. On the other hand, at this
time, profiles from runs initialized with the LAPS
analysis using different PBL schemes remained identi-
cal (Fig. 7d). Two hours later, in runs initialized with
the Eta analysis (Fig. 7e), both profiles were character-
ized by a distinctive “onion” shape, but they differed
notably in other ways. The profile from the run that
used the MRF scheme (dashed lines) was characterized

FIG. 5. Total accumulated precipitation for the 0–1-h forecast period initialized with (a) Eta and (b) LAPS. (c),
(d) As in (a) and (b), respectively, but for the grid-resolved precipitation component. Based on BMJ–ETA–MPF
model simulation initialized at 0000 UTC 13 Jun 2002. Contours are shown for 1, 5, 10, 20, and 30 mm.
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by a drier and more stable boundary layer. At the same
time, in runs initiated with the LAPS analysis (Fig. 7f),
the convective scheme had now activated and the pro-
files began to differ. Even at 0600 UTC, differences
between the profiles from runs that used different PBL
schemes and were initialized with the Eta analysis (Fig.
7g) were larger than the difference in profiles from runs
initialized with the LAPS analysis (Fig. 7h). This type of
behavior among runs using different PBL schemes ini-
tialized with different initializations was frequently ob-
served.

c. Mixed-physics and mixed initial condition
ensemble skill

Results from the factor separation method indicated
that for both initializations changes in the convective

treatment affected the rain rate the most. Rain volume
appeared to be influenced the most by changes in the
microphysics in the case of runs initialized with LAPS
analyses and by changes in the convective treatment for
runs initialized with the 40-km Eta analyses. This infor-
mation was used in designing the four different en-
sembles evaluated below.

Table 4 provides the areas under relative operating
characteristic (ROC) curves (Mason and Graham 1999)
for an 18-member ensemble, a 9-member ensemble (in-
cluding three different convective treatments, ETA
PBL, and three different microphysics), and two
6-member ensembles (one including three different
convective treatments, two different PBL schemes, and
MPF; and another including the BMJ scheme, two dif-
ferent PBL schemes, and three different microphysics),

FIG. 6. As in Fig. 5 but for the 17–18-h forecast period. Contours are shown for 1, 10, and 20 mm, and then
every 20 mm up to 120 mm.
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for the 0.01- and 0.25-in. thresholds for the two differ-
ent initializations during four 6-hourly forecast periods.
Areas under the ROC curves are a measure of the
probabilistic forecast skill of precipitation exceeding
the stated threshold, with values greater than 0.5 im-
plying the potential for a skillful forecast and values
near 0.7 implying a useful forecast (Buizza et al. 1999).

It should be noted that because of differences in the
bias among runs initialized with different analyses,
magnitudes of areas under ROC curves for ensembles
using different initial conditions should be interpreted
with caution. An increase in the bias has been shown to
lead to an increase in the probability of detection
(Baldwin and Kain 2004) and most likely a smaller in-

FIG. 7. The BMJ–ETA–MPF (solid lines) and BMJ–MRF–MPF (dashed lines) thermodynamic profiles from the
model runs initialized with the (left) Eta and (right) LAPS analyses at the point indicated by an asterisk in Fig. 5a
at (a), (b) 0000; (c), (d) 0200; (e), (f) 0400; and (g), (h) 0600 UTC.
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crease in the probability of false detection, resulting in
higher values of areas under ROC curves for ensembles
with higher biases.

Because the trapezoidal approach was used for the
calculation of the areas under the ROC curves, en-
sembles with more members would likely earn higher
values (more probability thresholds exist). Despite this,

Table 4 shows larger values for the 9-member ensemble
than for the 18-member one for both initializations and
both thresholds. In addition, values associated with the
two 6-member ensembles were generally similar to val-
ues from the full 18-member ensemble for both initial-
izations. These results further support findings indi-
cated by the factor separation method (identifying the

FIG. 7. (Continued)
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convective and microphysical treatments as those af-
fecting simulated MCS rainfall the most) in the design
of the ensembles.

Areas under ROC curves were also computed for
ensembles that combined various physical schemes and
different initial conditions (not shown). It was found
that runs initialized with Eta analyses using different
convective treatments combined with runs initialized
with LAPS analyses using various microphysics tended
to have the largest scores, but the scores were lower
than scores from ensembles initialized with the LAPS
analyses presented in Table 4. This might be explained
by the bias differences among the ensemble members.

In addition, rank histograms (see, e.g., Hamill 2001)
were created based on the gridded precipitation fore-
cast by each member of the ensembles listed in Table 4
and for both initial conditions. Because histograms re-
lated to different initial conditions showed the same
general trend, only those associated with the Eta initial
conditions will be presented. Figure 8 shows these for
the 0–6-h forecast periods, and Fig. 9 for the 12–18-h
forecast periods. During the 0–6-h forecast period, the
histogram for the full 18-member ensemble (Fig. 8a)

TABLE 4. Areas under ROC curves averaged for all eight cases
for the 18_full ensemble (including all 18 model configurations);
the nine member ensemble [9_cu_ETA_mp; including three dif-
ferent convective treatments (cu), ETA PBL, and three different
microphysics (mp)]; and two six-member ensembles [6_cu_
pbl_MPF and 6_BMJ_pbl_mp; the first including three different
convective treatments and two different PBL schemes (pbl and
MPF), and the second including the BMJ scheme, two different
PBL schemes, and three different microphysics], for the 0.01- and
0.2-in. thresholds, for the two different initializations, and for the
four specified 6-hourly forecast periods.

Threshold
(in.) Ensemble type

Area under ROC curve

0–6 h 6–12 h 12–18 h 18–24 h

Runs initialized with Eta analysis
0.01 18_full 0.802 0.721 0.691 0.720

9_cu_ETA_mp 0.805 0.752 0.708 0.712
6_cu_pbl_MPF 0.791 0.731 0.682 0.684
6_BMJ_pbl_mp 0.775 0.685 0.700 0.662

0.25 18_full 0.662 0.596 0.600 0.706
9_cu_ETA_mp 0.674 0.643 0.641 0.704
6_cu_pbl_MPF 0.652 0.606 0.607 0.661
6_BMJ_pbl_mp 0.640 0.546 0.590 0.624

Runs initialized with LAPS analysis
0.01 18_full 0.871 0.743 0.649 0.634

9_cu_ETA_mp 0.882 0.835 0.743 0.719
6_cu_pbl_MPF 0.851 0.797 0.711 0.703
6_BMJ_pbl_mp 0.862 0.802 0.703 0.701

0.25 18_full 0.664 0.635 0.582 0.582
9_cu_ETA_mp 0.674 0.694 0.619 0.602
6_cu_pbl_MPF 0.644 0.638 0.591 0.600
6_BMJ_pbl_mp 0.637 0.605 0.552 0.558

FIG. 8. Rank histograms for the (a) 18_full, (b) 6_cu_pbl_MPF,
(c) 6_BMJ_pbl_mp, and (d) 9_cu_ETA_mp ensembles (see Table
4 caption for the notation legends), for the 0–6-h forecast period
and using the Eta initial conditions.

514 W E A T H E R A N D F O R E C A S T I N G VOLUME 22



indicates that the ensemble members were too wet
compared with the observations. The same trend was
present in histograms related to the two six-member
ensembles (Figs. 8b and 8c), especially in the case of the

ensemble using the BMJ scheme (Fig. 8c). More pre-
cisely, this trend was present for all ensembles involving
different convective treatments combined with differ-
ent PBL schemes except when NC runs were the only
ones used. When only NC runs were used, the rank
histogram had a U shape, indicating insufficient spread
(not shown). Additionally, ranked histograms were cre-
ated using physical schemes from the two six-member
ensembles but combining different initial conditions
(not shown). The tendency of the ensemble members to
be too wet was reduced, although it was still present.
This may imply that the use of a combination of dia-
batic hot-start and cold-start initial conditions in an en-
semble designed for rainfall forecast might reduce the
bias related to light rainfall at earlier times. On the
other hand, the histogram for the nine-member en-
semble, which combined different convective treat-
ments and different microphysical schemes (Fig. 8d),
showed reasonable spread.

For the 12–18-h forecast period, histograms related
to the full 18-member ensemble (Fig. 9a) suggest a
slight underforecasting of precipitation during the 12–
18-h forecast period, while a 6-member ensemble using
BMJ (Fig. 9c), and a 9-member ensemble, (Fig. 9d)
indicate a generally reasonable spread. On the other
hand, the histogram shape for the six-member en-
semble, which included three different convective treat-
ments, two different PBL schemes, and MPF, indicates
a slight overdispersion.

4. Summary and discussion

General trends in the impact of various physical
schemes and their interactions on warm season, conti-
nental MCS rainfall forecasts were evaluated under dif-
ferent initial conditions. A matrix of 18 WRF–ARW
model configurations with 12-km grid spacing was cre-
ated using different physical scheme combinations for
eight IHOP MCS cases. For each case, three different
treatments of convection were used, with three differ-
ent microphysical schemes and two different PBL
schemes. The runs were initialized with both a diabatic
LAPS hot start initialization (Jian et al. 2003) and 40-
km Eta GRIB files.

ETS and bias analyses of the 288 WRF–ARW model
simulations considered in the present study indicated
that for both initializations no single model configura-
tion was clearly best for the entire simulation period
and for all thresholds. Differences in ETS and bias for
runs initialized with different initial conditions but us-
ing the same model configuration, as well as ETS and
bias changes for runs initialized with the two different

FIG. 9. As in Fig. 8 but for the 12–18-h forecast period.
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initial conditions but with changes in the model con-
figuration, were often statistically significant, implying
that both variations in the physics and the initial con-
ditions may be applied to increase the spread of an
ensemble used for MCS rainfall forecasting.

The factor separation method (Stein and Alpert
1993) was used to quantify the impacts of the variation
of two different physical schemes compared with a con-
trol run (KF–MRF–MPN) and their interaction (syn-
ergy) on the simulated rainfall. For both initializations,
changes in convective treatment affected the rain rate
the most. For runs initialized with the LAPS analyses,
rain volume was affected the most by changes in the
microphysics, while for runs initialized with the 40-km
Eta analyses, the rain volume was influenced most by
the choice of the convective treatment. Information
about the interactions among different physical
schemes obtained through the synergistic term analysis
should be useful in an ensemble calibration procedure.

Rank histograms and areas under ROC curves were
examined for ensembles using these various model con-
figurations and different initial conditions. Findings
supported the results from the factor separation meth-
odology, which identified convective and microphysical
treatments as those with the largest impact on the simu-
lated MCS rainfall.

In conclusion, it appears that the sensitivity of the
WRF–ARW model rainfall forecasts to the use of var-
ied physical schemes and their interactions is depen-
dent on the initialization dataset or procedure. If an
ensemble designed for MCS rainfall prediction lacks
sufficient spread, model runs with different convective
schemes should be included. If rain volume is a desired
quantity (e.g., hydrological purposes), and an initializa-
tion uses the LAPS analyses, runs with the MPL and
MPF microphysical schemes may require different bias
corrections or weightings in an ensemble compared to
runs using MPN. In contrast, when the Eta analysis is
used for initialization, runs with these different micro-
physical schemes may not need such different weight-
ings, but runs with NC and BMJ would require different
weightings as compared to KF runs. Knowledge of
which physical schemes exert the greatest impact on
rainfall forecasts can allow for the design of ensembles
that maximize skill while minimizing the number of
members needed.
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APPENDIX A

Sensitivity of System-Average Rain Rate and
Domain-Total Rain Volume to “Bug” in

Radiation Code

Late in the review process it came to the authors’
attention that in the official, publicly distributed ver-
sion of the WRF model code a bug related to the MPF
scheme had been found (this had affected all versions
of the model through that point in time). For the WRF
configurations using MPF, the short- and longwave ra-
diation codes did not consider the four condensates
available from MPF (cloud water, cloud ice, rain, and
“precipitating” ice). Instead, the radiative codes used
only the total amount of the four condensates from
MPF, treating this total condensate as cloud ice or wa-
ter depending on the temperature (with 273.15 K as a
threshold point). In this way an artificial microphysics
dependency on radiation was introduced, distinct from
that due to the difference in the mixing ratio of the
various species produced by MPF itself. Effectively, a
less refined cloud–radiation interaction than intended
was used for simulations with the MPF configuration.
Practically, it was not feasible to rerun the entire rel-
evant simulations with a code fix when the code bug
issue was pointed out. Additionally, the same code was
used also in Jankov et al. (2005) whose results are used
extensively for comparison purposes in the present
study.

Given the above, a selective series of tests was per-

TABLE A1. Time series of percentage changes in system rain
rate and domain rain volume, averaged for two cases (0000 UTC
4 Jun and 0000 UTC 13 Jun), because of the code fix for runs using
different convective treatment (KF and NC) averaged over points
where rainfall exceeded specified thresholds (0.01 and 0.5 in.).

Threshold
(in.)

Forecast period (h)

00–06 06–12 12–18 18–24

NC reruns
System-average rain rate

0.01 �20% 3% �7% �7%
0.5 0% 4% �11% �6%

Domain-total rain volume
0.01 22% 0% �20% 19%
0.5 23% 0% �21% �12%

KF reruns
System-average rain rate

0.01 21% �8% 4% 11%
0.5 17% 8% 4% 10%

Domain-total rain volume
0.01 24% 19% 18% 23%
0.5 22% 19% 15% 21%
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formed in order to evaluate the relative impact that the
code fix may have. In the evaluation two randomly se-
lected cases from the present study, both initialized
with Eta analyses at 0000 UTC, were used. Simulations
of these two cases with and without the code fix were
performed by using the latest version (2.1.2) of the
WRF model and two different convective treatments
(NC and KF). All reruns used MRF and MPF. For
these runs system-average rain rates and domain-total
rain volumes were recalculated. Relative changes in
these two measures between runs with and without the
code fix are presented in Table A1. The results indicate
that the code fix mainly affected the domain-total rain
volume, especially for runs using KF. Also, in the case
of the KF runs the code fix generally caused an increase

in both system-average rain rate and domain-total rain
volume, while in the case of the NC runs, decreases
were indicated occasionally. Based on the tendencies in
the original results and the general trend of the differ-
ence between runs with and without the code fix, it can
be suggested that the code fix should not affect the
general conclusions (i.e., for the 0.01-in. threshold, a
change in rain rate due to the fix in MPF will be more
pronounced; the opposite will be the case for the 0.5-in.
threshold; with regard to rain volume, for both thresh-
olds the large increase would be even more pronounced
when the version of the model with the MPF code fixed
is used). In addition, ETS and bias values were calcu-
lated for the two configurations and averaged over the
two cases. The code fix generated only small differ-

TABLE B1. ETS and bias (in parentheses) values averaged over the eight IHOP cases for different physical-scheme combinations for
the 0–6-h forecast period for four different rainfall thresholds and for two different initializations. The notation presented in Table 1
is used to indicate different model configurations. The maximum values are indicated in boldface.

Run

Threshold (in.)

0.01 0.10 0.50 1.0

KF–MRF–MPN–Eta 0.220 (1.6) 0.165 (1.8) 0.095 (2.2) 0.052 (2.7)
KF–MRF–MPN–LAPS 0.265 (1.6) 0.211 (1.8) 0.067 (1.1) 0.041 (0.4)
KF–ETA–MPL–Eta 0.207 (2.1) 0.154 (2.3) 0.081 (2.7) 0.040 (3.8)
KF–ETA–MPL–LAPS 0.235 (2.4) 0.187 (2.6) 0.077 (1.8) 0.055 (0.8)
KF–ETA–MPN–Eta 0.209 (1.9) 0.156 (2.0) 0.086 (2.2) 0.045 (2.7)
KF–ETA–MPN–LAPS 0.242 (2.0) 0.201 (2.1) 0.066 (1.2) 0.033 (0.4)
KF–ETA–MPF–Eta 0.216 (1.9) 0.156 (2.2) 0.085 (2.5) 0.039 (3.3)
KF–ETA–MPF–LAPS 0.272 (1.8) 0.205 (2.1) 0.090 (2.2) 0.063 (1.2)
KF–MRF–MPL–Eta 0.227 (1.9) 0.165 (2.1) 0.085 (2.7) 0.044 (3.7)
KF–MRF–MPL–LAPS 0.255 (2.1) 0.196 (2.6) 0.073 (1.8) 0.059 (1.2)
KF–MRF–MPF–Eta 0.225 (1.8) 0.164 (2.1) 0.083 (2.6) 0.049 (3.2)
KF–MRF–MPF–LAPS 0.276 (1.8) 0.206 (2.1) 0.075 (1.4) 0.038 (0.5)

NC–ETA–MPL–Eta 0.233 (0.9) 0.167 (1.1) 0.064 (2.3) 0.035 (4.8)
NC–ETA–MPL–LAPS 0.349 (1.0) 0.247 (1.3) 0.086 (1.9) 0.044 (1.2)
NC–ETA–MPN–Eta 0.211 (0.7) 0.161 (0.8) 0.051 (1.2) 0.027 (2.4)
NC–ETA–MPN–LAPS 0.327 (0.8) 0.215 (1.8) 0.048 (0.9) 0.022 (0.5)
NC–ETA–MPF–Eta 0.224 (0.9) 0.169 (1.1) 0.081 (1.8) 0.044 (2.8)
NC–ETA–MPF–LAPS 0.298 (1.1) 0.203 (1.4) 0.055 (0.8) 0.041 (0.5)
NC–MRF–MPL–Eta 0.236 (0.8) 0.161 (0.9) 0.058 (1.8) 0.035 (3.6)
NC–MRF–MPL–LAPS 0.308 (1.1) 0.201 (1.5) 0.066 (1.0) 0.039 (0.8)
NC–MRF–MPN–Eta 0.200 (0.5) 0.142 (0.5) 0.034 (0.8) 0.017 (1.6)
NC–MRF–MPN–LAPS 0.304 (0.7) 0.191 (0.7) 0.057 (0.3) 0.029 (0.4)
NC–MRF–MPF–Eta 0.258 (0.9) 0.181 (1.1) 0.085 (1.7) 0.048 (2.6)
NC–MRF–MPF–LAPS 0.311 (1.1) 0.208 (1.4) 0.057 (1.0) 0.032 (1.0)

BMJ–ETA–MPL–Eta 0.223 (2.2) 0.185 (2.4) 0.096 (1.9) 0.034 (2.4)
BMJ–ETA–MPL–LAPS 0.246 (2.1) 0.167 (2.6) 0.100 (1.0) 0.053 (0.6)
BMJ–ETA–MPN–Eta 0.217 (2.1) 0.180 (2.2) 0.107 (1.5) 0.017 (1.5)
BMJ–ETA–MPN–LAPS 0.249 (2.2) 0.182 (2.6) 0.070 (0.8) 0.026 (0.5)
BMJ–ETA–MPF–Eta 0.254 (2.0) 0.215 (1.9) 0.152 (0.9) 0.042 (0.6)
BMJ–ETA–MPF–LAPS 0.249 (2.4) 0.177 (2.8) 0.079 (1.1) 0.029 (0.8)
BMJ–MRF–MPL–Eta 0.225 (2.3) 0.180 (2.4) 0.094 (1.9) 0.037 (2.3)
BMJ–MRF–MPL–LAPS 0.249 (2.4) 0.179 (2.8) 0.099 (0.7) 0.054 (0.5)
BMJ–MRF–MPN–Eta 0.219 (2.1) 0.175 (2.2) 0.104 (1.5) 0.021 (1.1)
BMJ–MRF–MPN–LAPS 0.249 (2.1) 0.178 (2.5) 0.100 (0.7) 0.046 (0.3)
BMJ–MRF–MPF–Eta 0.223 (2.2) 0.187 (2.2) 0.095 (1.7) 0.035 (2.2)
BMJ–MRF–MPF–LAPS 0.252 (2.5) 0.180 (2.7) 0.074 (1.0) 0.038 (0.4)
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ences in the ETS and bias (up to about 5%), and infre-
quently resulted in a slight improvement of their values
(not shown).

Finally, in the present study 288 simulations were
carried out, and only 1/6 contained the MPF scheme.
With this weighting for the MPF scheme, although
some uncertainties are present in the MPF results due
to the presence of the radiation bug, the general con-
clusions reached in this study are not likely to be af-
fected.

APPENDIX B

ETS and Bias Values for 8 Cases and 18 Model
Configurations

ETSs and bias values averaged for all eight cases for
all 18 model configurations, for the 0–6- (Table B1) and

12–18-h (Table B2) forecast periods, computed for four
different thresholds (0.01, 0.1, 0.5, and 1.00 in.) and for
both initializations, indicate generally lower scores at
later times. Scores are always higher for lighter than
heavier thresholds. For the 0–6-h forecast period for
the 0.01-in. threshold, the ETS is always higher for KF
runs initialized with LAPS analyses than for ones using
Eta input. Also, for the heavier threshold these runs are
characterized with lower bias values. On the other
hand, for KF runs initialized with Eta analyses the bias
increases with threshold for all combinations of the
other physics, while the opposite is the case when the
LAPS analyses are used.

For the 12–18-h forecast period for the 0.01-in.
threshold, the BMJ runs initialized with the Eta analy-
ses are almost always characterized with higher ETSs
compared to runs initialized with the LAPS analyses.

TABLE B2. As in Table B1 but for the 12–18-h period.

Run

Threshold (in.)

0.01 0.10 0.50 1.0

KF–MRF–MPN–Eta 0.138 (1.2) 0.115 (1.3) 0.100 (1.3) 0.015 (1.9)
KF–MRF–MPN–LAPS 0.169 (1.3) 0.155 (1.7) 0.091 (1.0) 0.027 (0.8)
KF–ETA–MPL–Eta 0.134 (2.1) 0.100 (2.3) 0.086 (1.9) 0.027 (2.4)
KF–ETA–MPL–LAPS 0.160 (2.1) 0.145 (1.9) 0.102 (1.4) 0.029 (1.4)
KF–ETA–MPN–Eta 0.146 (1.7) 0.129 (1.7) 0.085 (1.5) 0.022 (1.8)
KF–ETA–MPN–LAPS 0.168 (1.8) 0.157 (1.6) 0.089 (1.3) 0.018 (0.9)
KF–ETA–MPF–Eta 0.117 (1.8) 0.100 (2.0) 0.068 (1.6) 0.009 (1.8)
KF–ETA–MPF–LAPS 0.133 (2.0) 0.122 (1.8) 0.105 (1.0) 0.027 (1.0)
KF–MRF–MPL–Eta 0.148 (1.5) 0.111 (1.7) 0.089 (1.7) 0.017 (2.3)
KF–MRF–MPL–LAPS 0.177 (1.7) 0.146 (1.7) 0.103 (2.5) 0.047 (1.6)
KF–MRF–MPF–Eta 0.130 (1.4) 0.104 (1.6) 0.089 (1.4) 0.018 (1.6)
KF–MRF–MPF–LAPS 0.172 (1.5) 0.141 (1.5) 0.085 (2.6) 0.023 (1.3)
NC–ETA–MPL–Eta 0.154 (1.0) 0.098 (1.1) 0.061 (1.6) 0.015 (3.1)
NC–ETA–MPL–LAPS 0.156 (1.4) 0.152 (1.0) 0.079 (1.9) 0.016 (1.4)
NC–ETA–MPN–Eta 0.164 (1.0) 0.121 (0.9) 0.101 (1.1) 0.045 (2.2)
NC–ETA–MPN–LAPS 0.156 (1.3) 0.152 (1.0) 0.079 (0.9) 0.016 (1.1)
NC–ETA–MPF–Eta 0.137 (1.1) 0.092 (1.2) 0.052 (1.5) 0.034 (2.0)
NC–ETA–MPF–LAPS 0.164 (1.4) 0.151 (1.1) 0.057 (2.3) 0.014 (1.5)
NC–MRF–MPL–Eta 0.148 (0.6) 0.110 (0.7) 0.083 (1.2) 0.026 (2.6)
NC–MRF–MPL–LAPS 0.239 (1.1) 0.213 (1.0) 0.113 (1.5) 0.043 (1.4)
NC–MRF–MPN–Eta 0.107 (0.6) 0.070 (0.6) 0.067 (0.8) 0.037 (1.3)
NC–MRF–MPN–LAPS 0.211 (0.8) 0.195 (0.8) 0.118 (0.7) 0.040 (0.5)
NC–MRF–MPF–Eta 0.145 (0.8) 0.111 (0.9) 0.092 (1.1) 0.062 (1.6)
NC–MRF–MPF–LAPS 0.181 (1.1) 0.159 (1.2) 0.077 (1.1) 0.034 (0.9)
BMJ–ETA–MPL–Eta 0.169 (2.0) 0.150 (2.1) 0.041 (0.8) 0.005 (0.5)
BMJ–ETA–MPL–LAPS 0.167 (2.1) 0.141 (2.8) 0.064 (1.4) 0.020 (0.5)
BMJ–ETA–MPN–Eta 0.187 (1.9) 0.166 (1.9) 0.038 (0.6) 0.000 (0.2)
BMJ–ETA–MPN–LAPS 0.162 (2.2) 0.148 (2.7) 0.065 (1.2) 0.014 (0.4)
BMJ–ETA–MPF–Eta 0.202 (2.0) 0.164 (2.1) 0.026 (0.9) 0.001 (0.6)
BMJ–ETA–MPF–LAPS 0.160 (2.1) 0.145 (2.6) 0.053 (1.0) 0.020 (0.3)
BMJ–MRF–MPL–Eta 0.172 (1.9) 0.149 (2.1) 0.041 (0.6) 0.001 (0.3)
BMJ–MRF–MPL–LAPS 0.176 (2.0) 0.148 (1.6) 0.065 (1.4) 0.022 (0.6)
BMJ–MRF–MPN–Eta 0.190 (1.7) 0.164 (1.8) 0.037 (0.6) 0.006 (0.1)
BMJ–MRF–MPN–LAPS 0.168 (1.8) 0.145 (1.5) 0.043 (1.4) 0.009 (0.2)
BMJ–MRF–MPF–Eta 0.159 (1.9) 0.125 (1.9) 0.050 (0.7) 0.000 (0.4)
BMJ–MRF–MPF–LAPS 0.160 (2.0) 0.126 (1.5) 0.061 (1.6) 0.015 (0.5)
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At the same time the BMJ runs have higher bias values
than do the KF or NC runs, with the lowest bias asso-
ciated with NC runs. For almost all BMJ entries in the
table, the bias notably decreases with an increasing
threshold.

In conclusion, ETS and bias analyses indicated that
no one configuration was obviously best at all times for
all thresholds with both initializations.
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