Eugenia Kalnay

Atmospheric modeling,
data assimilation
and predictability

more information - www.cambridge.org/9780521791793


http://www.cambridge.org/9780521791793

This page intentionally left blank



Atmospheric modeling, data assimilation
and predictability

This comprehensive text and reference work on numerical weather prediction
covers for the first time, not only methods for numerical modeling, but also the
important related areas of data assimilation and predictability.

It incorporates all aspects of environmental computer modeling including an
historical overview of the subject, equations of motion and their approximations,
a modern and clear description of numerical methods, and the determination of
initial conditions using weather observations (an important new science known
as data assimilation). Finally, this book provides a clear discussion of the
problems of predictability and chaos in dynamical systems and how they can be
applied to atmospheric and oceanic systems. This includes discussions of
ensemble forecasting, El Nifio events, and how various methods contribute to
improved weather and climate prediction. In each of these areas the emphasis is
on clear and intuitive explanations of all the fundamental concepts, followed by
a complete and sound development of the theory and applications.

Professors and students in meteorology, atmospheric science, oceanography,
hydrology and environmental science will find much to interest them in this
book which can also form the basis of one or more graduate-level courses. It will
appeal to professionals modeling the atmosphere, weather and climate, and to
researchers working on chaos, dynamical systems, ensemble forecasting and
problems of predictability.

Eugenia Kalnay was awarded a PhD in Meteorology from the Massachusetts
Institute of Technology in 1971 (Jule Charney, advisor). Following a position as
Associate Professor in the same department, she became Chief of the Global
Modeling and Simulation Branch at the NASA Goddard Space Flight Center
(1983-7). From 1987 to 1997 she was Director of the Environmental Modeling
Center (US National Weather Service) and in 1998 was awarded the Robert E.
Lowry endowed chair at the University of Oklahoma. In 1999 she became the
Chair of the Department of Meteorology at the University of Maryland.
Professor Kalnay is a member of the US National Academy of Engineering and
of the Academia Europaea, is the recipient of two gold medals from the US
Department of Commerce and the NASA Medal for Exceptional Scientific
Achievement, and has received the Jule Charney Award from the American
Meteorological Society. The author of more than 100 peer reviewed papers on
numerical weather prediction, data assimilation and predictability, Professor
Kalnay is a key figure in this field and has pioneered many of the essential
techniques.
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Foreword

During the 50 years of numerical weather prediction the number of textbooks dealing
with the subject has been very small, the latest being the 1980 book by Haltiner and
Williams. As you will soon realize, the intervening years have seen impressive devel-
opment and success. Eugenia Kalnay has contributed significantly to this expansion,
and the meteorological community is fortunate that she has applied her knowledge
and insight to writing this book.

Eugenia was born in Argentina, where she had exceptionally good teachers. She
had planned to study physics, but was introduced to meteorology by a stroke of fate;
her mother simply entered her in a competition for a scholarship from the Argentine
National Weather Service! But a military coup took place in Argentina in 1966 when
Eugenia was a student, and the College of Sciences was invaded by military forces.
Rolando Garcia, then Dean of the College of Sciences, was able to obtain for her
an assistantship with Jule Charney at the Massachusetts Institute of Technology.
She was the first female doctoral candidate in the Department and an outstanding
student. In 1971, under Charney’s supervision, she finished an excellent thesis on the
circulation of Venus. She recalls that an important lesson she learned from Charney
at that time was that if her numerical results did not agree with accepted theory it
might be because the theory was wrong.

What has she written in this book? She covers many aspects of numerical weather
prediction and related areas in considerable detail, on which her own experience
enables her to write with relish and authority. The first chapter is an overview that
introduces all the major concepts discussed later in the book. Chapter 2 is a pre-
sentation of the standard equations used in atmospheric modeling, with a concise

xi



xii Foreword

but complete discussion of filtering approximations. Chapter 3 is a roadmap to nu-
merical methods providing a student without background in the subject with all
the tools needed to develop a new model. Chapter 4 is an introduction to the pa-
rameterization of subgrid-scale physical processes, with references to specialized
textbooks and papers. I found her explanations in Chapter 5 of data assimilation
methods and in Chapter 6 on predictability and ensemble forecasting to be not only
inclusive but thorough and well presented, with good attention to historical devel-
opments. These chapters, however, contain many definitions and equations. (I take
this wealth as a healthy sign of the technical maturity of the subject.) This complex-
ity may be daunting for many readers, but this has obviously been recognized by
Eugenia. In response she has devised many simple graphical sketches that illustrate
the important relations and definitions. An added bonus is the description in an ap-
pendix of the use of Model Output Statistics by the National Weather Service, its
successes, and the rigid constraints that it imposes on the forecast model. She also
includes in the appendices a simple adaptive regression scheme based on Kalman
filtering and an introduction to the generation of linear tangent and adjoint model
codes.

Before leaving the National Centers for Environmental Prediction in 1998 as
Director of the Environmental Modeling Center, Eugenia directed the Reanalysis
Project, with Robert Kistler as Technical Manager. This work used a 1995 state-of-
the-art analysis and forecast system to reanalyze and reforecast meteorological events
from past years. The results for November 1950 were astonishing. On November 24
of that year an intense snowstorm developed over the Appalachians that had not
been operationally predicted even 24 hours in advance. This striking event formed
a test situation for the emerging art of numerical weather prediction in the years
immediately following the first computations in 1950 on the ENIAC computer dis-
cussed in Chapter 1. In 1953, employing his baroclinic model, and with considerable
“tuning” Jule Charney finally succeeded in making a 24-hour forecast starting on
November 23 1950 of a cyclonic development, which, however, was still located
some 400 kilometers northeast of the actual location of the storm. This “prediction”
played a major role in justifying the creation of the Joint Numerical Weather Pre-
diction Unit in 1955 (Chapter 1). By contrast, in the Reanalysis Project, this event
was forecast extremely well, both in intensity and location — as much as three days
in advance. (Earlier than this the associated vorticity center at 500 mbs had been
located over the Pacific Ocean, even though at that time there was no satellite data!)
This is a remarkable demonstration of the achievements of the numerical weather
prediction community in the past decades, achievements that include many by our
author.

After leaving NCEP in 1998, Eugenia was appointed Lowry Chair in the School
of Meteorology at the University of Oklahoma, where she started writing her book.
She returned to Maryland in 1999 to chair the Department of Meteorology, where
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she continues to do research on a range of topics, including applications of chaos to
ensemble forecasting and data assimilation. We look forward to future contributions
by Professor Kalnay.

Norman Phillips
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Historical overview of numerical
weather prediction

1.1 Introduction

In general, the public is not aware that our daily weather forecasts start out as initial-
value problems on the major national weather services supercomputers. Numerical
weather prediction provides the basic guidance for weather forecasting beyond the
first few hours. For example, in the USA, computer weather forecasts issued by the
National Center for Environmental Prediction (NCEP) in Washington, DC, guide
forecasts from the US National Weather Service (NWS). NCEP forecasts are per-
formed by running (integrating in time) computer models of the atmosphere that
can simulate, given one day’s weather observations, the evolution of the atmosphere
in the next few days.! Because the time integration of an atmospheric model is an
initial-value problem, the ability to make a skillful forecast requires both that the
computer model be a realistic representation of the atmosphere, and that the initial
conditions be known accurately.

NCEP (formerly the National Meteorological Center or NMC) has performed
operational computer weather forecasts since the 1950s. From 1955 to 1973, the
forecasts included only the Northern Hemisphere; they have been global since 1973.
Over the years, the quality of the models and methods for using atmospheric obser-
vations has improved continuously, resulting in major forecast improvements.

1 In this book we will provide many examples mostly drawn from the US operational numerical
center (NCEP), because of the availability of long records, and because the author’s experience
in this center facilitates obtaining such examples. However, these operational NCEP examples
are only given for illustration purposes, and are simply representative of the evolution of
operational weather forecasting in all major operational centers.



2 1 Historical overview of numerical weather prediction

Figure 1.1.1(a) shows the longest available record of the skill of numerical weather
prediction. The “S1” score (Teweles and Wobus, 1954) measures the relative error
in the horizontal gradient of the height of the constant pressure surface of 500 hPa
(in the middle of the atmosphere, since the surface pressure is about 1000 hPa) for
36-h forecasts over North America. Empirical experience at NMC indicated that
a score of 70% or more corresponds to a useless forecast, and a score of 20% or
less corresponds to an essentially perfect forecast. This was found from the fact
that 20% was the average S1 score obtained when comparing analyses hand-made
by several experienced forecasters fitting the same observations over the data-rich
North American region.

Figure 1.1.1(a) shows that current 36-h 500-hPa forecasts over North America
are close to what was considered essentially “perfect” 40 years ago: the computer
forecasts are able to locate generally very well the position and intensity of the large-
scale atmospheric waves, major centers of high and low pressure that determine the
general evolution of the weather in the 36-h forecast. The sea level pressure forecasts
contain smaller-scale atmospheric structures, such as fronts, mesoscale convective
systems that dominate summer precipitation, etc., and are still difficult to forecast
in detail (although their prediction has also improved very significantly over the
years) so their S1 score is still well above 20% (Fig.1.1.1(b)). Fig. 1.1.1(a) also
shows that the 72-h forecasts of today are as accurate as the 36-h forecasts were
10-20 years ago. This doubling (or better) of skill in the forecasts is observed for
other forecast variables, such as precipitation. Similarly, 5-day forecasts, which had
no useful skill 15 years ago, are now moderately skillful, and during the winter of
1997-8, ensemble forecasts for the second week average showed useful skill (defined
as anomaly correlation close to 60% or higher).

The improvement in skill of numerical weather prediction over the last 40 years
apparent in Fig.1.1.1 is due to four factors:

m the increased power of supercomputers, allowing much finer numerical
resolution and fewer approximations in the operational atmospheric models;

m the improved representation of small-scale physical processes (clouds,
precipitation, turbulent transfers of heat, moisture, momentum, and radiation)
within the models;

m the use of more accurate methods of data assimilation, which result in
improved initial conditions for the models; and

m the increased availability of data, especially satellite and aircraft data over the
oceans and the Southern Hemisphere.

In the USA, research on numerical weather prediction takes place in the national
laboratories of the National Oceanic and Atmospheric Administration (NOAA), the
National Aeronautics and Space Administration (NASA) and the National Center
for Atmospheric Research (NCAR), and in universities and centers such as the
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Figure 1.1.1: (a) Historic evolution of the operational forecast skill of the NCEP
(formerly NMC) models over North America (500 hPa). The S1 score measures the
relative error in the horizontal pressure gradient, averaged over the region of interest.
The values S1 = 70% and S1 = 20% were empirically determined to correspond
respectively to a “useless” and a “perfect” forecast when the score was designed.
Note that the 72-h forecasts are currently as skillful as the 36-h were 10-20 years ago
(data courtesy C.Vlcek, NCEP). (b) Same as (a) but showing S1 scores for sea level
pressure forecasts over North America (data courtesy C.Vlcek, NCEP). It shows
results from global (AVN) and regional (LFM, NGM and Eta) forecasts. The LFM
model development was “frozen” in 1986 and the NGM was frozen in 1991.



4 1 Historical overview of numerical weather prediction

Center for Prediction of Storms (CAPS). Internationally, major research takes place
in large operational national and international centers (such as the European Center
for Medium Range Weather Forecasts (ECMWF), NCEP, and the weather services
of the UK, France, Germany, Scandinavian and other European countries, Canada,
Japan, Australia, and others). In meteorology there has been a long tradition of sharing
both data and research improvements, with the result that progress in the science of
forecasting has taken place on many fronts, and all countries have benefited from
this progress.

In this introductory chapter, we give an overview of the major components and
milestones in numerical forecasting. They will be discussed in detail in the following
chapters.

12 Early developments

Jule G. Charney (1917-1981) was one of the giants in the history of numerical
weather prediction. In his 1951 paper “Dynamical forecasting by numerical process”,
he introduced the subject of this book as well as it could be introduced today. We
reproduce here parts of the paper (with emphasis added):

As meteorologists have long known, the atmosphere exhibits no periodicities of
the kind that enable one to predict the weather in the same way one predicts the
tides. No simple set of causal relationships can be found which relate the state
of the atmosphere at one instant of time to its state at another. It was this realization
that led V. Bjerknes (1904) to define the problem of prognosis as nothing less than
the integration of the equations of motion of the atmosphere.” But it remained for
Richardson (1922) to suggest the practical means for the solution of this problem.
He proposed to integrate the equations of motion numerically and showed exactly
how this might be done. That the actual forecast used to test his method was
unsuccessful was in no way a measure of the value of his work. In retrospect it

[3%)

The importance of the Bjerknes (1904) paper is clearly described by Thompson (1990), another
pioneer of NWP, and the author of a very inspiring text on NWP (Thompson, 1961a). His paper
“Charney and the revival of NWP” contains extremely interesting material on the history of
NWP as well as on early computers:

It was not until 1904 that Vilhelm Bjerknes — in a remarkable manifesto and testament of
deterministic faith — stated the central problem of NWP. This was the first explicit, coherent
recognition that the future state of the atmosphere is, in principle, completely determined by its
detailed initial state and known boundary conditions, together with Newton’s equations of
motion, the Boyle—Charles—Dalton equation of state, the equation of mass continuity, and the
thermodynamic energy equation. Bjerknes went further: he outlined an ambitious, but logical
program of observation, graphical analysis of meteorological data and graphical solution of the
governing equations. He succeeded in persuading the Norwegians to support an expanded
network of surface observation stations, founded the famous Bergen School of synoptic and
dynamic meteorology, and ushered in the famous polar front theory of cyclone formation.
Beyond providing a clear goal and a sound physical approach to dynamical weather prediction,
V. Bjerknes instilled his ideas in the minds of his students and their students in Bergen and in
Oslo, three of whom were later to write important chapters in the development of NWP in the
US (Rossby, Eliassen and Fjortoft).
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becomes obvious that the inadequacies of observation alone would have doomed
any attempt, however well conceived, a circumstance of which Richardson

was aware. The real value of his work lay in the fact that it crystallized

once and for all the essential problems that would have to be faced by future
workers in the field and it laid down a thorough groundwork for their solution.

For a long time no one ventured to follow in Richardson’s footsteps. The
paucity of the observational network and the enormity of the computational task
stood as apparently insurmountable barriers to the realization of his dream that
one day it might be possible to advance the computation faster than the weather.
But with the increase in the density and extent of the surface and upper-air
observational network on the one hand, and the development of large-capacity
high-speed computing machines on the other, interest has revived in
Richardson’s problem, and attempts have been made to attack it anew.

These efforts have been characterized by a devotion to objectives more
limited than Richardson’s. Instead of attempting to deal with the atmosphere in
all its complexity, one tries to be satisfied with simplified models approximating
the actual motions to a greater or lesser degree. By starting with models
incorporating only what it is thought to be the most important of the
atmospheric influences, and by gradually bringing in others, one is able to
proceed inductively and thereby to avoid the pitfalls inevitably encountered
when a great many poorly understood factors are introduced all at once.

A necessary condition for the success of this stepwise method is, of course,
that the first approximations bear a recognizable resemblance to the actual
motions. Fortunately, the science of meteorology has progressed to the point
where one feels that at least the main factors governing the large-scale
atmospheric motions are well known. Thus integrations of even the linearized
barotropic and thermally inactive baroclinic equations have yielded solutions
bearing a marked resemblance to reality. At any rate, it seems clear that the
models embodying the collective experience and the positive skill of the forecast
cannot fail utterly. This conviction has served as the guiding principle in the
work of the meteorology project at The Institute for Advanced Study [at
Princeton University] with which the writer has been connected.

As indicated by Charney, Richardson performed a remarkably comprehensive
numerical integration of the full primitive equations of motion (Chapter 2). He used
a horizontal grid of about 200 km, and four vertical layers of approximately 200 hPa,
centered over Germany. Using the observations at 7 UTC (Universal Coordinate
Time) on 20 May 1910, he computed the time derivative of the pressure in central
Germany between 4 and 10 UTC. The predicted 6-h change was 146 hPa, whereas in
reality there was essentially no change observed in the surface pressure. This huge
error was discouraging, but it was due mostly to the fact that the initial conditions
were not balanced, and therefore included fast-moving gravity waves which masked
the initial rate of change of the meteorological signal in the forecast (Fig. 1.2.1).
Moreover, if the integration had been continued, it would have suffered “computa-
tional blow-up” due to the violation of the Courant—Friedricks—Lewy (CFL) condition
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Figure 1.2.1: Schematic of a forecast with slowly varying weather-related variations
and superimposed high-frequency gravity waves. Note that even though the forecast
of the slow waves is essentially unaffected by the presence of gravity waves, the
initial time derivative is much larger in magnitude, as obtained in the Richardson
(1922) experiment.

(Chapter 3) which requires that the time step should be smaller than the grid size
divided by the speed of the fastest traveling signal (in this case horizontally moving
sound waves, traveling at about 300 m/s).

Charney (1948, 1949) and Eliassen (1949) solved both of these problems by
deriving “filtered” equations of motion, based on quasi-geostrophic (slowly varying)
balance, which filtered out (i.e., did not include) gravity and sound waves, and were
based on pressure fields alone. Charney points out that this approach was justified by
the fact that forecasters’ experience was that they were able to predict tomorrow’s
weather from pressure charts alone:

In the selection of a suitable first approximation, Richardson’s discovery that
the horizontal divergence was an unmeasurable quantity had to be taken into
account. Here a consideration of forecasting practice gave rise to the belief that
this difficulty could be surmounted: forecasts were made by means of
geostrophic reasoning from the pressure field alone — forecasts in which the
concept of horizontal divergence played no role.

In order to understand better Charney’s comment, we quote an anecdote from
Lorenz (1990) on his interactions with Jule Charney:

On another® occasion when our conversations had turned closer to scientific
matters, Jule was talking again about the early days of NWP. For a proper

3 The previous occasion was a story about an invitation Charney received to appear on the
“Today” show, to talk about how computers were going to forecast the weather. Since the show
was at 7 am, Charney, a late riser, had never watched it. “He told us that he felt that he ought to
see the show at least once before agreeing to appear on it, and so, one morning, he managed to
pull himself out of bed and turn on the TV set, and the first person he saw was a chimpanzee.
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perspective, we should recall that at the time when Charney was a student, pressure
was king. The centers of weather activity were acknowledged to be the highs and
lows. A good prognostic chart was one that had the isobars in the right locations.
Naturally, then, the thing that was responsible for the weather changes was the
thing that made the pressure change. This was readily shown to be the divergence
of the wind field. The divergence could not be very accurately measured, and a
corollary deduced by some meteorologists, including some of Charney’s advisors,
was that the dynamic equations could not be used to forecast the weather.

Such reasoning simply did not make sense to Jule. The idea that the wind
field might serve instead of the pressure field as a basis for dynamical
forecasting, proposed by Rossby, gave Jule a route to follow.* He told us,
however, that what really inspired him to develop the equations that later became
the basis for NWP was a determination to prove, to those who had assured him
that the task was impossible, that they were wrong.

Charney, R. Fjgrtoft, and J. von Neuman (1950) computed a historic first one-day
weather forecast using a barotropic (one-layer) filtered model. The work took place
in 1948-9. They used one of the first electronic computers (the Electronic Numerical
Integrator and Computer, ENIAC), housed at the Aberdeen Proving Grounds of the
US Army in Maryland. It incorporated von Neuman’s idea of “stored programming”
(i.e., the ability to perform arithmetic operations over different operands (loops)
without having to repeat the code). The results of the first forecasts were quite
encouraging: Fig. 1.2.2, reproduced from Charney (1951) shows the 24-h forecast and
verification for 30 January 1949. Unlike Richardson’s results, the forecast remains
meteorological, and there is a pattern correlation between the predicted and the
observed pressure field 24-h changes.

It is remarkable that in his 1951 paper, just after the triumph of performing the
first successful forecasts with filtered models, Charney already saw that much more
progress would come from the use of the primitive (unfiltered) equations of motion
as Richardson had originally attempted:

The discussion so far has dealt exclusively with the quasi-geostrophic
equations as the basis for numerical forecasting. Yet there has been no intention
to exclude the possibility that the primitive Eulerian equations can also be used
for this purpose. The outlook for numerical forecasting would be indeed dismal
if the quasi-geostrophic approximation represented the upper limit of attainable
accuracy, for it is known that it applies only indifferently, if at all, to many of the
small-scale but meteorologically significant motions. We have merely indicated
two obstacles that stand in the way of the applications of the primitive equations:

He decided he could never compete with a chimpanzee for the public’s favor, and so he
gracefully declined to appear, much to the dismay of the computer company that had
engineered the invitation in the first place” (Lorenz, 1990).

4 The development of the “Rossby waves” phase speed equation ¢ = U — BL*/7” based on the
linearized, non-divergent vorticity equation (Rossby et al., 1939, Rossby, 1940), and its success
in predicting the motion of the large-scale atmospheric waves, was an essential stimulus to
Charney’s development of the filtered equations (Phillips, 1990b, 1998).
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Figure 1.2.2: Forecast of 30 January 1949, 0300 GMT: (a) contours of observed z
and ¢ + f att = 0; (b) observed z and ¢ + f att = 24 h; (c) observed (continuous
lines) and computed (broken lines) 24-h height change; (d) computed z and ¢ + f at
t = 24 h. The height unit is 100 ft and the unit of vorticity is 1/3 x 107*s™.
(Reproduced from the Compendium of Meteorology, with permission of the
American Meteorological Society.)

First, there is the difficulty raised by Richardson that the horizontal divergence
cannot be measured with sufficient accuracy. Moreover, the horizontal
divergence is only one of a class of meteorological unobservables which also
includes the horizontal acceleration. And second, if the primitive Eulerian
equations are employed, a stringent and seemingly artificial bound is imposed on
the size of the time interval for the finite difference equations. The first obstacle
is the most formidable, for the second only means that the integration must
proceed in steps of the order of fifteen minutes rather than two hours. Yet the
first does not seem insurmountable, as the following considerations will indicate.

He proceeded to describe an unpublished study in which he and J.C. Freeman
integrated barotropic primitive equations (i.e., shallow water equations, Chapter 2)
which include not only the slowly varying quasi-geostrophic solution, but also fast
gravity waves. They initialized the forecast assuming zero initial divergence, and
compared the result with a barotropic forecast (with gravity waves filtered out).
The results were similar to those shown schematically in Fig. 1.2.1: they observed
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that over a day or so the gravity waves subsided (through a process that we call
geostrophic adjustment) and did not otherwise affect the forecast of the slow waves.
From this result Charney concluded that numerical forecasting could indeed use the
full primitive equations (as eventually happened in operational practice). He listed in
the paper the complete primitive equations in pressure coordinates, essentially as they
are used in current operational weather prediction, but without heating (nonadiabatic)
and frictional terms, which he expected to have minor effects in one- or two-day
forecasts. Charney concluded this remarkable paper with the following discussion,
which includes a list of the physical processes that take place at scales too small
to be resolved, and are incorporated in present models through “parameterizations
of the subgrid-scale physics” (condensation, radiation, and turbulent fluxes of heat,
momentum and moisture, Chapter 4):

Nonadiabatic and frictional terms have been ignored in the body of the
discussion because it was thought that one should first seek to determine how
much of the motion could be explained without them. Ultimately they will have to
be taken into account, particularly if the forecast period is to be extended to
three or more days.

Condensational phenomena appear to be the simplest to introduce: one has
only to add the equation of continuity for water vapor and to replace the dry by
the moist adiabatic equation. Long-wave radiational effects can also be provided
for, since our knowledge of the absorptive properties of water vapor and carbon
dioxide has progressed to a point where quantitative estimates of radiational
cooling can be made, although the presence of clouds will complicate the
problem considerably.

The most difficult phenomena to include have to do with the turbulent
transfer of momentum and heat. A great deal of research remains to be done
before enough is known about these effects to permit the assignment of even
rough values to the eddy coefficients of viscosity and heat conduction. Owing to
their statistically indeterminate nature, the turbulent properties of the atmosphere
place an upper limit to the accuracy obtainable by dynamical methods of
forecasting, beyond which we shall have to rely upon statistical methods. But it
seems certain that much progress can be made before these limits can be reached.

This paper, which although written in 1951 has not become dated, predicted
with almost supernatural vision the path that numerical weather forecasting was to
follow over the next five decades. It described the need for objective analysis of
meteorological data in order to replace the laborious hand analyses. We now refer
to this process as data assimilation (Chapter 5), which uses both observations and
short forecasts to estimate initial conditions. Note that at a time at which only one-day
forecasts had ever been attempted, Charney already had the intuition that there was an
upper limit to weather predictability, which Lorenz (1965) later estimated to be about
two weeks. However, Charney attributed the expected limit to model deficiencies
(such as the parameterization of turbulent processes), rather than to the chaotic nature
of the atmosphere, which imposes a limit of predictability even if the model is perfect
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(Lorenz, 1963b; Chapter 6). Charney was right in assuming that in practice model
deficiencies, as well as errors in the initial conditions, would limit predictability. At
the present time, however, the state of the art in numerical forecasting has advanced
enough that, when the atmosphere is highly predictable, the theoretically estimated
limit for weather forecasting (about two weeks) is occasionally reached and even
exceeded through techniques such as ensemble forecasting (Chapter 6).

Following the success of Charney et al. (1950), Rossby moved back to Sweden,
and was able to direct a group that reproduced similar experiments on a powerful
Swedish computer known as BESK. As a result, the first operational (real time)
numerical weather forecasts started in Sweden in September 1954, six months before
the start-up of the US operational forecasts® (Do6os and Eaton, 1957, Wiin-Nielsen,
1991, Bolin, 1999).

1.3 Primitive equations, global and regional models,
and nonhydrostatic models

As envisioned by Charney (1951, 1962) the filtered (quasi-geostrophic) equations,
although very useful for understanding of the large-scale extratropical dynamics of
the atmosphere, were not accurate enough to allow continued progress in NWP, and
were eventually replaced by primitive equation models (Chapter 2). The primitive
equations are conservation laws applied to individual parcels of air: conservation
of the three-dimensional momentum (equations of motion), conservation of energy
(first law of thermodynamics), conservation of dry air mass (continuity equation),
and equations for the conservation of moisture in all its phases, as well as the equation
of state for perfect gases. They include in their solution fast gravity and sound waves,
and therefore in their space and time discretization they require the use of smaller
time steps, or alternative techniques that slow them down (Chapter 3). For models
with a horizontal grid size larger than 10 km, it is customary to replace the vertical
component of the equation of motion with its hydrostatic approximation, in which
the vertical acceleration is considered negligible compared with the gravitational
acceleration (buoyancy). With this approximation, it is convenient to use atmospheric
pressure, instead of height, as a vertical coordinate.

The continuous equations of motions are solved by discretization in space and in
time using, for example, finite differences (Chapter 3). It has been found that the ac-
curacy of a model is very strongly influenced by the spatial resolution: in general, the
higher the resolution, the more accurate the model. Increasing resolution, however, is
extremely costly. For example, doubling the resolution in the three space dimensions
also requires halving the time step in order to satisfy conditions for computational

5 Anders Persson (1999 personal communication) kindly provided the notes on the historical
development of NWP in the USA and Sweden reproduced in Appendix A.
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stability. Therefore, the computational cost of doubling the resolution is a factor of
2% (three space and one time dimensions). Modern methods of discretization attempt
to make the increase in accuracy less onerous by the use of semi-implicit and semi-
Lagrangian time schemes. These schemes (pioneered by Canadian scientists under
the leadership of Andre Robert) have less stringent stability conditions on the time
step, and more accurate space discretization. Nevertheless, there is a constant need for
higher resolution in order to improve forecasts, and as a result running atmospheric
models has always been a major application of the fastest supercomputers available.

When the “conservation” equations are discretized over a given grid size (typi-
cally from a few to several hundred kilometers) it is necessary to add “sources and
sinks” terms due to small-scale physical processes that occur at scales that cannot
be explicitly resolved by the models. As an example, the equation for water vapor
conservation on pressure coordinates is typically written as

07 _9g 07 99 — — daq
Mgl 545 o+ 22
ot 0x ay ap op

(1.3.1)

where ¢ is the ratio between water vapor and dry air mass, x and y are horizontal
coordinates with appropriate map projections, p is pressure, ¢ is time, # and v are
the horizontal air velocity (wind) components, w = dp/dt is the vertical velocity
in pressure coordinates, and the product of primed variables represents turbulent
transports of moisture on scales unresolved by the grid used in the discretization, with
the overbar indicating a spatial average over the grid of the model. It is customary
to call the left-hand side of the equation, the “dynamics” of the model, which is
computed explicitly (Chapter 3).

The right-hand side represents the so-called “physics” of the model. For the mois-
ture equation, it includes the effects of physical processes such as evaporation and
condensation E — C, and turbulent transfers of moisture which take place at small
scales that cannot be explicitly resolved by the “dynamics”. These subgrid-scale
physical processes, which are sources and sinks for the equations, are then “parame-
terized” in terms of the variables explicitly represented in the atmospheric dynamics
(Chapter 4).

Two types of models are in use for NWP: global and regional models (Chapter 5).
Global models are generally used for guidance in medium-range forecasts (more than
2 d), and for climate simulations. At NCEP, for example, the global models are run
through 16 d every day. Because the horizontal domain of global models is the whole
earth, they usually cannot be run at high resolution. For more detailed forecasts it is
necessary to increase the resolution, and this can only be done over limited regions
of interest.

Regional models are used for shorter-range forecasts (typically 1-3 d), and are
run with a resolution two or more times higher than global models. For example,
the NCEP global model in 1997 was run with 28 vertical levels, and a horizontal
resolution of 100 km for the first week, and 200 km for the second week. The regional
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(Eta) model was run with a horizontal resolution of 48 km and 38 levels, and later in
the day with 29 km and 50 levels. Because of their higher resolution, regional models
have the advantage of higher accuracy and the ability to reproduce smaller-scale
phenomena such as fronts, squall lines, and much better orographic forcing than
global models. On the other hand, regional models have the disadvantage that, unlike
global models, they are not “self-contained” because they require lateral boundary
conditions at the borders of the horizontal domain. These boundary conditions must
be as accurate as possible, because otherwise the interior solution of the regional
models quickly deteriorates. Therefore it is customary to “nest” the regional models
within another model with coarser resolution, whose forecast provides the boundary
conditions. For this reason, regional models are used only for short-range forecasts.
After a certain period, which is proportional to the size of the model, the information
contained in the high-resolution initial conditions is “swept away” by the influence
of the boundary conditions, and the regional model becomes merely a “magnifying
glass” for the coarser model forecast in the regional domain. This can still be
useful, for example, in climate simulations performed for long periods (seasons to
multiyears), and which therefore tend to be run at coarser resolution. A “regional
climate model” can provide a more detailed version of the coarse climate simulation
in a region of interest. Several other major NWP centers in Europe (United
Kingdom (http://www.met-office.gov.uk/), France (http://www.meteo.fr/), Germany
(http://www.dwd.de/)), Japan (http://www.kishou.go.jp/), Australia (http://www.
bom.gov.au/nmoc/ab_nmc_op.shtml), and Canada (http://www.ec.gc.ca/) also have
similar global and regional models, whose details can be obtained at their web
sites.

More recently the resolution of some regional models has been increased to just
a few kilometers in order to resolve better storm-scale phenomena. Storm-resolving
models such as the Advanced Regional Prediction System (ARPS) cannot use the
hydrostatic approximation which ceases to be accurate for horizontal scales of the
order of 10 km or smaller. Several major nonhydrostatic models have been devel-
oped and are routinely used for mesoscale forecasting. In the USA the most widely
used are the ARPS, the MM5 (Penn State/NCAR Mesoscale Model, Version 5),
the RSM (NCEP Regional Spectral Model) and the COAMPS (US Navy’s Coupled
Ocean/Atmosphere Mesoscale Prediction System). There is a tendency towards the
use of nonhydrostatic models that can be used globally as well.

1.4 Data assimilation: determination of the initial
conditions for the computer forecasts

As indicated previously, NWP is an initial-value problem: given an estimate of
the present state of the atmosphere, the model simulates (forecasts) its evolution.
The problem of determination of the initial conditions for a forecast model is very
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important and complex, and has become a science in itself (Daley, 1991). In this
section we introduce methods that have been used for this purpose (successive cor-
rections method or SCM, optimal interpolation or OI, variational methods in three
and four dimensions, 3D-Var and 4D-Var, and Kalman filtering or KF). We discuss
this subject in more detail in Chapter 5, and refer the reader to Daley (1991) as a
much more comprehensive text on atmospheric data analysis.

In the early experiments, Richardson (1922) and Charney et al. (1950) performed
hand interpolations of the available observations to grid points, and these fields
of initial conditions were manually digitized, which was a very time consuming
procedure. The need for an automatic “objective analysis” quickly became apparent
(Charney, 1951), and interpolation methods fitting data to grids were developed
(e.g., Panofsky, 1949, Gilchrist and Cressman, 1954, Barnes, 1964, 1978). However,
there is an even more important problem than spatial interpolation of observations to
gridded fields: the data available are not enough to initialize current models. Modern
primitive equations models have a number of degrees of freedom of the order of
107. For example, a latitude—longitude model with a typical resolution of 1° and
20 vertical levels would have 360 x 180 x 20 = 1.3 x 10° grid points. At each grid
point we have to carry the values of at least four prognostic variables (two horizontal
wind components, temperature, moisture), and the surface pressure for each column,
giving over 5 million variables that need to be given an initial value. For any given
time window of %3 hours, there are typically 10—100 thousand observations of the
atmosphere, two orders of magnitude less than the number of degrees of freedom
of the model. Moreover, their distribution in space and time is very nonuniform
(Fig. 1.4.1), with regions like North America and Eurasia which are relatively data-
rich, while others much more poorly observed.

For this reason, it became obvious rather early that it was necessary to use addi-
tional information (denoted background, first guess or prior information) to prepare
initial conditions for the forecasts (Bergthorsson and D&6s, 1955). Initially clima-
tology was used as a first guess (e.g., Gandin, 1963), but as the forecasts became
better, a short-range forecast was chosen as the first guess in the operational data
assimilation systems or “analysis cycles”. The intermittent data assimilation cycle
shown schematically in Fig. 1.4.2 is continued in present-day operational systems,
which typically use a 6-h cycle performed four times a day.

In the 6-h data assimilation cycle for a global model, the background field is a
model 6-h forecast x” (a three-dimensional array). To obtain the background or first
guess “observations”, the model forecast is interpolated to the observation location,
and if they are different, converted from model variables to observed variables y°
(such as satellite radiances or radar reflectivities). The first guess of the observations
is therefore H(x"), where H is the observation operator that performs the neces-
sary interpolation and transformation from model variables to observation space.
The difference between the observations and the model first guess y° — H(x?) is
denoted “observational increments” or “innovations”. The analysis x“ is obtained by
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Figure 1.4.1: Typical distribution of observations in a +3-h window.
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Figure 1.4.2: Flow diagram of a typical intermittent (6-h) data assimilation cycle.



1.4 Data assimilation: determination of the initial conditions 15

adding the innovations to the model forecast (first guess) with weights W that are
determined based on the estimated statistical error covariances of the forecast and
the observations:

x¢ = x + W[y’ — H(x")] (1.4.1)

Different analysis schemes (SCM, OI, 3D-Var, and KF) are based on (1.4.1) but
differ by the approach taken to combine the background and the observations to pro-
duce the analysis. Earlier methods such as the SCM (Bergthorsson and D&6s, 1955,
Cressman, 1959, Barnes, 1964) were of a form similar to (1.4.1), with weights deter-
mined empirically. The weights are a function of the distance between the observation
and the grid point, and the analysis is iterated several times. In OI (Gandin, 1963)
the matrix of weights W is determined from the minimization of the analysis errors
at each grid point. In the 3D-Var approach one defines a cost function proportional
to the square of the distance between the analysis and both the background and the
observations (Sasaki, 1970). The cost function is minimized directly to obtain the
analysis. Lorenc (1986) showed that OI and the 3D-Var approach are equivalent if
the cost function is defined as:

J= %{[y" —HX]"R 'y’ — HX)] + x —x")" B~ (x — x")} (1.4.2)

The cost function J in (1.4.2) measures the distance of a field x to the observations (the
first term in the cost function) and the distance to the first guess or background x” (the
second term in the cost function). The distances are scaled by the observation error
covariance R and by the background error covariance B respectively. The minimum
of the cost function is obtained for x = x“, which is defined as the “analysis”. The
analysis obtained in (1.4.1) and (1.4.2) is the same if the weight matrix in (1.4.1) is
given by

W =BH (HBH” + R™")™! (1.4.3)

The difference between OI (1.4.1) and the 3D-Var approach (1.3) is in the method
of solution: in OI, the weights W are obtained for each grid point or grid volume,
using suitable simplifications. In 3D-Var, the minimization of (1.4.2) is performed
directly, allowing for additional flexibility and a simultaneous global use of the data
(Chapter 5).

More recently, the variational approach has been extended to four dimensions, by
including within the cost function the distance to observations over a time interval
(assimilation window). A first version of this considerably more expensive method
was implemented at ECMWF at the end of 1997 (Bouttier and Rabier, 1997). Re-
search on the even more advanced and computationally expensive KF (e.g., Ghil et al.,
1981), and ensemble KF (Evensen, 1994, Houtekamer and Mitchell, 1998) is dis-
cussed in Chapter 5. That chapter also includes a discussion about the problem of
enforcing a balance in the analysis so that the presence of gravity waves does not
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mask the meteorological signal, as happened to Richardson (1922) (Fig. 1.2.1). The
method used for many years to solve this “initialization” problem was “nonlinear
normal mode initialization” (Machenhauer, 1977, Baer and Tribbia, 1977). The bal-
ance in the initial conditions is usually obtained by either adding a constraint to the
cost function (1.4.2) (Parrish and Derber, 1992), or through the use of a digital filter
(Lynch and Huang, 1992, Chapter 5).

In the analysis cycle, no matter which analysis scheme is employed, the use of
the model forecast is essential in achieving “four-dimensional data assimilation”
(4DDA). This means that the data assimilation cycle is like a long model integration,
in which the model is “nudged” by the observational increments in such a way that
it remains close to the real atmosphere. The importance of the model cannot be
overemphasized: it transports information from data-rich to data-poor regions, and
it provides a complete estimation of the four-dimensional state of the atmosphere.
Figure 1.4.3 presents the rms difference between the 6-h forecast (used as a first
guess) and the rawinsonde observations from 1978 to the present (in other words, the
rms of the observational increments for 500-hPa heights). It should be noted that the
rms differences are not necessarily forecast errors, since the observations also contain
errors. In the Northern Hemisphere the rms differences have been halved from about
30 m in the late 1970s, to about 13 m in 2000, equivalent to a mean temperature
error of about 0.65 K, similar to rawinsonde observational errors. In the Southern
Hemisphere the improvements are even larger, with the differences decreasing from
about 47 m to about 12 m. The improvements in these short-range forecasts are a
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Figure 1.4.3: Rms observational increments (differences between 6-h forecast and
rawinsonde observations) for 500-hPa heights (data courtesy of Steve Lilly, NCEP).
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reflection of improvements in the model, the analysis scheme used to assimilate the
data, and the quality and quality control of the data (Chapter 5).

1.5 Operational NWP and the evolution of forecast skill

Major milestones of operational numerical weather forecasting include the paper
by Charney et al. (1950) with the first successful forecast based on the primitive
equations, and the first operational forecasts performed in Sweden in September
1954, followed 6 months later by the first operational (real time) forecasts in the
USA. We describe in what follows the evolution of NWP at NCEP, but as mentioned
before, similar developments took place at several major operational NWP centers:
in the UK, France, Germany, Japan, Australia and Canada.

The history of operational NWP at the NMC (now NCEP) has been reviewed by
Shuman (1989) and Kalnay et al. (1998). It started with the organization of the Joint
Numerical Weather Prediction Unit JNWPU) on 1 July 1954, staffed by members of
the US Weather Bureau (later the National Weather Service, NWS), the Air Weather
Service of the US Air Force, and the Naval Weather Service.® Shuman pointed out that
in the first few years, numerical predictions could not compete with those produced
manually. They had several serious flaws, among them overprediction of cyclone
development. Far too many cyclones were predicted to deepen into storms. With
time, and with the joint work of modelers and practising synopticians, major sources
of model errors were identified, and operational NWP became the central guidance
for operational weather forecasts.

Shuman (1989) included a chart with the evolution of the S1 score (Teweles
and Wobus, 1954), the first measure of error in a forecast weather chart which,
according to Shuman (1989), was designed, tested, and modified to correlate well
with expert forecasters’ opinions on the quality of a forecast. The S1 score measures
the average relative error in the pressure gradient (compared to a verifying analysis
chart). Experiments comparing two independent subjective analyses of the same
data-rich North American region made by two experienced analysts suggested that a
“perfect” forecast would have an S1 score of about 20%. It was also found empirically
that forecasts with an S1 score of 70% or more were useless as synoptic guidance.

Shuman pointed out some of the major system improvements that enabled NWP
forecasts to overtake and surpass subjective forecasts. The first major improvement
took place in 1958 with the implementation of a barotropic (one-level) model, which
was actually a reduction from the three-level model first tried, but which included bet-
ter finite differences and initial conditions derived from an objective analysis scheme
(Bergthorsson and Do6s, 1955, Cressman, 1959). It also extended the domain of the

6 In 1960 the INWPU reverted to three separate organizations: the National Meteorological
Center (National Weather Service), the Global Weather Central (US Air Force) and the Fleet
Numerical Oceanography Center (US Navy).
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model to an octagonal grid covering the Northern Hemisphere down to 9-15° N.
These changes resulted in numerical forecasts that for the first time were competitive
with subjective forecasts, but in order to implement them JNWPU had to wait for the
acquisition of a more powerful supercomputer, an IBM 704, to replace the previous
IBM 701. This pattern of forecast improvements which depend on a combination of
the better use of the data and better models, and would require more powerful super-
computers in order to be executed in a timely manner has been repeated throughout
the history of operational NWP. Table 1.5.1 (adapted from Shuman (1989)) summa-
rizes the major improvements in the first 30 years of operational numerical forecasts
at the NWS. The first primitive equations model (Shuman and Hovermale, 1968) was
implemented in 1966. The first regional system (Limited Fine Mesh or LFM model,
Howcroft, 1971) was implemented in 1971. It was remarkable because it remained
in use for over 20 years, and it was the basis for Model Output Statistics (MOS).
Its development was frozen in 1986. A more advanced model and data assimilation
system, the Regional Analysis and Forecasting System (RAFS) was implemented as
the main guidance for North America in 1982. The RAFS was based on the multiple
Nested Grid Model (NGM, Phillips, 1979) and on a regional OI scheme (DiMego,
1988). The global spectral model (Sela, 1980) was implemented in 1980.

Table 1.5.2 (from Kalnay et al., 1998 and P. Caplan, personal communication,
2000) summarizes the major improvements implemented in the global system starting

Table 1.5.1. Major operational implementations and computer acquisitions at
NMC between 1955 and 1985 (adapted from Shuman, 1989)

Year Operational model Computer

1955 Princeton three-level quasi-geostrophic model IBM 701
(Charney, 1954). Not used by the forecasters

1958 Barotropic model with improved numerics, objective ~ IBM 704
analysis initial conditions, and octagonal domain.

1962 Three-level quasi-geostrophic model with improved IBM 7090 (1960)
numerics IBM 7094 (1963)

1966 Six-layer primitive equations model (Shuman and CDC 6600
Hovermale, 1968)

1971 LFM model (Howcroft, 1971) (first regional model at
NMC)

1974 Hough functions analysis (Flattery, 1971) IBM 360/195

1978 Seven-layer primitive equation model (hemispheric)

1978 OI (Bergman,1979) Cyber 205

Aug 1980 Global spectral model, R30/12 layers (Sela, 1980)
March 1985 Regional Analysis and Forecast System based on the
NGM (Phillips, 1979) and OI (DiMego, 1988)
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Table 1.5.2. Major changes in the NMC/NCEP global model and data assimilation
system since 1985 (adapted from Kalnay et al. 1998 and P. Caplan, pers. comm.,
2000)

Year Operational model Computer

April 1985  GFDL physics implemented on the global spectral
model with silhouette orography, R40/18 layers
Dec 1986 New OI code with new statistics
1987 2nd Cyber 205
Aug 1987 Increased resolution to T80/18 layers,
Penman—Montieth evapotranspiration and other
improved physics (Caplan and White, 1989, Pan,

1990)
Dec 1988 Implementation of hydrostatic complex quality
control (CQC) (Gandin, 1988)
1990 Cray YMP/8cpu/

32 megawords
Mar 1991 Increased resolution to T126 L18 and improved
physics, mean orography. (Kanamitsu et al.,

1991)

June 1991 New 3D-Var (Parrish and Derber, 1992, Derber
etal, 1991)

Nov 1991 Addition of increments, horizontal and vertical OI

checks to the CQC (Collins and Gandin, 1990)

7 Dec 1992 First ensemble system: one pair of bred forecasts at
00Z to 10 days, extension of AVN to 10 days
(Toth and Kalnay, 1993, Tracton and Kalnay,

1993)
Aug 1993 Simplified Arakawa—Schubert cumulus convection
(Pan and Wu, 1995). Resolution T126/28 layers
Jan 1994 Cray C90/16cpu/

128 megawords
March 1994 Second ensemble system: five pairs of bred
forecasts at 00Z, two pairs at 12Z, extension of
AVN, a total of 17 global forecasts every day to
16 days
10 Jan 1995 New soil hydrology (Pan and Mabhrt, 1987),
radiation, clouds, improved data assimilation.
Reanalysis model
25 Oct 1995 Direct assimilation of TOVS cloud-cleared Cray C90/16cpu/
radiances (Derber and Wu, 1998). New planetary 256 megawords
boundary layer (PBL) based on nonlocal
diffusion (Hong and Pan, 1996). Improved CQC
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Table 1.5.2. (cont.)

Year Operational model Computer

5Nov 1997  New observational error statistics. Changes to
assimilation of TOVS radiances and addition of
other data sources

13 Jan 1998  Assimilation of noncloud-cleared radiances
(Derber et al., pers.comm.). Improved physics.

June 1998 Resolution increased to T170/40 layers (to IBM SV2 256
3.5 days). Improved physics. 3D ozone data processors
assimilation and forecast. Nonlinear increments
in 3D-Var. Resolution reduced to T62/28levels
on Oct. 1998 and upgraded back in Jan. 2000

June 2000 Ensemble resolution increased to T126 for the
first 60 h

July 2000 Tropical cyclones relocated to observed position
every 6 h

in 1985 with the implementation of the first comprehensive package of physical pa-
rameterizations from GFDL (Geophysical Fluid Dynamics Laboratory). Other major
improvements in the physical parameterizations were made in 1991, 1993, and 1995.
The most important changes in the data assimilation were an improved OI formu-
lation in 1986, the first operational 3D-Var in 1991, the replacement of the satellite
retrievals of temperature with the direct assimilation of cloud-cleared radiances in
1995, and the use of “raw” (not cloud-cleared) radiances in 1998. The model resolu-
tion was increased in 1987, 1991, and 1998. The first operational ensemble system
was implemented in 1992 and enlarged in 1994. The resolution of the ensembles was
increased in 2000.

Table 1.5.3 contains a summary of the regional systems used for short-range
forecasts (up to 48 h). The RAFS (triple nested NGM and OI) were implemented
in 1985. The Eta model, designed with advanced finite differences, step-mountain
coordinates, and physical parameterizations, was implemented in 1993, with the same
80-km horizontal resolution as the NGM. It was denoted “early” because of a short
data cut-off. The resolution was increased to 48 km, and a first “mesoscale” version
with 29 km and reduced coverage was implemented in 1995. A cloud prognostic
scheme was implemented in 1995, and a new land-surface parameterization in 1996.
The OI data assimilation was replaced by a 3D-Var in 1998, and at this time the
early and meso-Eta models were unified into a 32-km /45-level version. Many other
less significant changes were also introduced into the global and regional operational
systems and are not listed here for the sake of brevity. The Rapid Update Cycle (RUC),
which provides frequent updates of the analysis and very-short-range forecasts over
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Table 1.5.3. Major changes in the NMC/NCEP regional modeling and data
assimilation since 1985 (from compilations by Fedor Mesinger and Geoffrey

DiMego, pers. comm., 1998)

Year

Operational model

Computer

March 1985

August 1991

June 1993

September 1994

September 1994

August 1995

October 1995

January 1996

July—August 1996

RAFS based on triply NGM (Phillips, 1979) and  Cyber 205

OI (DiMego, 1988). Resolution: 80 km/16
layers.

RAFS upgraded for the last time: NGM run with  Cray YMP

only two grids with inner grid domain doubled
in size. Implemented Regional Data
Assimilation System (RDAS) with three-hourly
updates using an improved OI analysis using all
off-time data including Profiler and Aircraft
Communication Addressing and Reporting
System (ACARS) wind reports (DiMego et al.,
1992) and CQC procedures (Gandin et al.,
1993).

First operational implementation of the Eta model
in the 00Z & 127 early run for North America
at 80-km and 38-layer resolution (Mesinger
et al., 1988, Janjic, 1994, Black et al., 1993)

The RUC (Benjamin et al., 1996) was
implemented for CONUS domain with
three-hourly OI updates at 60-km resolution on
25 hybrid (sigma-theta) vertical levels.

Early Eta analysis upgrades (Rogers et al., 1995)

A mesoscale version of the Eta model (Black,
1994) was implemented at 03Z and 15Z for an
extended CONUS domain, with 29-km and
50-layer resolution and with NMC'’s first
predictive cloud scheme (Zhao and Black,
1994) and new coupled land-surface—
atmosphere package (two-layer soil).

Major upgrade of early Eta runs: 48-km
resolution, cloud scheme and Eta Data
Assimilation System (EDAS) using
three-hourly OI updates (Rogers et al., 1996)

New coupled land-surface—atmosphere scheme
put into early Eta runs (Chen et al., 1997,
Mesinger, 1997)

Nested capability demonstrated with twice-daily
support runs for Atlanta Olympic Games with
10-km 60-layer version of Meso Eta.

8 processors
32 megawords

Cray C-90
16 processors
128 megawords

Cray C-90
16 processors
256 megawords
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Table 1.5.3. (cont.)

Year Operational model Computer

February 1997  Upgrade package implemented in the early and
Meso Eta runs.

February 1998 Early Eta runs upgraded to 32 km and 45 levels
with four soil layers. OI analysis replaced by
3D-Var with new data sources. EDAS now
partially cycled (soil moisture, soil temperature,
cloud water/ice & turbulent kinetic
energy).

April 1998 RUC (three-hourly) replaced by hourly RUC II
system with extended CONUS domain, 40-km
and 40-level resolution, additional data sources
and extensive physics upgrades.

June 1998 Meso runs connected to early runs as a single IBM SV2
4/day system for North American domain at 256 processors
32-km and 45-level resolution, 15Z run moved
to 18Z, added new snow analysis. All runs
connected with EDAS, which is fully cycled for
all variables.

continental USA (CONUS), developed at NOAA’s Forecast System Labora-
tory, was implemented in 1994 and upgraded in 1998 (Benjamin et al., 1996).

The 36-h S1 forecast verification scores constitute the longest record of forecast
verification available anywhere. They were started in the late 1940s for subjective
surface forecasts, before operational computer forecast guidance, and for 500 hPa in
1954, with the first numerical forecasts. Figure 1.1.1(a) includes the forecast scores
for 500 hPa from 1954 until the present, as well as the scores for the 72-h forecasts. It
is clear that the forecast skill has improved substantially over the years, and that the
current 36-h 500-hPa forecasts are close to a level that in the 1950s would have been
considered “perfect” (Shuman, 1989). The 72-h forecasts have also improved, and are
now as accurate as the 36-h forecasts were about 15 years ago. This doubling of the
skill over 10-20 years can be observed in other types of forecasts verifications as well.

Asindicated at the beginning of this chapter, the 36-h forecasts of 500 hPa showing
the position and intensity of the large-scale atmospheric waves and centers of high and
low pressure are generally excellent, as suggested by the nearly “perfect” S1 score.
However, sea level pressure maps are more affected by mesoscale structures, such as
fronts and convective systems which are still difficult to forecast in detail, and hence
they have a poorer S1 score (Fig. 1.1.1(b)). The solid line with circles starts in 1947
with scores from subjectively made surface forecasts, then barotropic and baroclinic
quasi-geostrophic models (Table 1.5.1), the LFM model and since 1983, the global
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Figure 1.5.1: Threat scores (day 1 and day 2 for 0.5 and 1’ 24-h accumulation,
annual average) of human forecasters at NCEP (data courtesy of J. Hoke).

spectral model (denoted Aviation or AVN). Other model forecasts are also presented
separately on Fig. 1.1.1(b). Note that the AVN model and the Eta model, which con-
tinue to be developed, show the most improvement. The development of the LFM was
“frozen” in 1986, and that of the NGM in 1991, when more advanced systems were
implemented, and therefore their forecasts show no further improvement with time
(except for the effect of improved global forecasts used as a first guess for the LFM).

Fig. 1.5.1 shows threat scores for precipitation predictions made by expert fore-
casters from the NCEP Hydrometeorological Prediction Center (HPC, the Meteoro-
logical Operations Division of the former NMC). The threat score (75) is defined as
the intersection of the predicted area of precipitation exceeding a particular threshold
(P), in this case 0.5 inches in 24 h, and the observed area (O), divided by the union
of the two areas: 7S = (P N O)/(P U O). The bias (not shown) is defined by P/O.
The T3, also known as critical success index (CSI) is a particularly useful score for
quantities that are relatively rare. Fig. 1.4.2 indicates that the forecasters skill in pre-
dicting accumulated precipitation has been increasing with time, and that the current
average skill in the 2-d forecast is as good as the 1-d forecasts were in the 1970s.
Beyond the first 612 h, the forecasts are based mostly on numerical guidance, so that
the improvement reflects to a large extent improvements of the numerical forecasts,
which the human forecasters in turn improve upon based on their knowledge and
expertise. The forecasters also have access to several model forecasts, and they use
their judgment in assessing which one is more accurate in each case. This constitutes
a major source of the “value-added” by the human forecasters.



24 1 Historical overview of numerical weather prediction

70 L L B R N
I : : : - : : 1
L ]
ol 3 days - human ' / | | 1
s N U 3 : 7
: | adN T 3days - NWP |
50 | ‘ ‘ ]
whb r//\ g
30 _ ,,,,,,,, 5 days - hum\jn ,,,,,,,, NS \SdayS-NWP__
20 [ o N ]
IO N AR SRR I S R S S
1960 1965 1970 1975 1980 1985 1990 1995 2000
Year

Figure 1.5.2: Hughes data: comparison of the forecast skill in the medium-range
from NWP guidance and from human forecasters.

The relationship between the evolution of human and numerical forecasts is clearly
shown in a record compiled by the late F. Hughes (1987), reproduced in Fig. 1.5.2.
It is the first operational score maintained for the “medium-range” (beyond the first
two days of the forecasts). The score used by Hughes was a standardized anomaly
correlation (SAC), which accounted for the larger variability of sea level pressure at
higher latitudes compared to lower latitudes. Unfortunately the SAC is not directly
comparable to other scores such as the anomaly correlation (discussed in the next
section). The fact that until 1976 the 3-day forecast scores from the model were
essentially constant is an indication that their rather low skill was more based on
synoptic experience than on model guidance. The forecast skill started to improve
after 1977 for the 3-day forecast, and after 1980 for the 5-day forecast. Note that
the human forecasts are on the average significantly more skillful than the numerical
guidance, but it is the improvement in NWP forecasts that drives the improvements
in the subjective forecasts.

1.6 Nonhydrostatic mesoscale models

The hydrostatic approximation involves neglecting vertical accelerations in the ver-
tical equation of motion, compared to gravitational acceleration. This is a very good
approximation, even in stratified fluids, as long as horizontal scales of motion are
larger than the vertical scales. The main advantage of the hydrostatic equation (Chap-
ter 2) is that it filters sound waves (except those propagating horizontally, or Lamb
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waves). Because of the problem of computational instability, the absence of sound
waves allows the use of larger time steps (the Lamb waves are handled generally
with semi-implicit time schemes, discussed in Section 3.3).

The hydrostatic approximation is very accurate if the horizontal scales are much
larger than the vertical scales. For atmospheric models with horizontal grid sizes of
the order of 100 km, the hydrostatic equation is very accurate and convenient. Fur-
thermore, for quasi-geostrophic (slow) motion, the hydrostatic equation is accurate
even if the horizontal scales are of the same order as the vertical scales, i.e., the
hydrostatic approximation can be used even in mesoscale models with grid sizes of
the order of 10 km or larger without introducing large errors.

However, in order to represent smaller-scale phenomena such as storms or con-
vective clouds which have vertical accelerations that are not negligible compared
to buoyancy forces, it is necessary to use the equations of motion without the hy-
drostatic approximation. In the last decade a number of nonhydrostatic models have
been developed in order to simulate mesoscale phenomena in North America. They
include the Penn State/NCAR Mesoscale Model (e.g., Dudhia, 1993), the CAPS
Advanced Regional Prediction System (Xue et al., 1995), NCEP’s Regional Spectral
Model (Juang et al., 1997), the Mesoscale Compressible Community (MCC) model
(Laprise et al., 1997), the CSU RAMS (Tripoli and Cotton 1980), the US Navy
COAMPS (Hodur, 1997). In Europe and Japan several other nonhydrostatic models
have been developed as well.

Sound waves, which are generally of no consequence for atmospheric flow but
would require the use of very small steps, require a special approach in nonhydrostatic
models in order to maintain a reasonable computational efficiency. Sound waves
depend on compressibility (three-dimensional divergence) for their propagation. For
this reason, some nonhydrostatic models use the quasi-Boussinesq or “anelastic”
equations, where the atmosphere is assumed to be separated into a hydrostatic basic
state and perturbations, and where the density perturbations are neglected everywhere
except in the buoyancy terms (Ogura and Phillips, 1962, Klemp and Wilhelmson,
1978). Other approaches are the use of artificial “divergence damping” in the pressure
gradient terms (e.g., Xue et al., 1995, Skamarock and Klemp, 1992), and the use of
implicit time schemes for the terms affecting sound waves that are unconditionally
stable (Durran and Klemp, 1983, Laprise et al., 1997).

Nonhydrostatic models with an efficient (e.g., semi-implicit) treatment of sound
waves are computationally competitive with hydrostatic models, and future genera-
tions of models may become nonhydrostatic even in the global domain.

17 Weather predictability, ensemble forecasting,
and seasonal to interannual prediction

In a series of remarkable papers, Lorenz (1963a,b, 1965, 1968) made the fundamental
discovery that even with perfect models and perfect observations, the chaotic nature
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of the atmosphere would impose a finite limit of about two weeks to the predictability
of the weather. He proved this by running a simple atmospheric model, introducing
(by mistake) exceedingly small perturbations in the initial conditions, and running the
model again. With time, the small difference between the two forecasts became larger
and larger, until after about two weeks, the forecasts were as different as two randomly
chosen states of the model. In the 1960s Lorenz’s discovery, which started the theory
of chaos, was “only of academic interest” and not relevant to operational weather
forecasting, since at that time the skill of even two-day operational forecasts was low.
Since then, however, computer-based forecasts have improved so much that Lorenz’s
limit of predictability is starting to become attainable in practice, especially with
ensemble forecasting. Furthermore, skillful prediction of longer lasting phenomena
such as El Nifio is becoming feasible (Chapter 6).

Because the skill of the forecasts decreases with time, Epstein (1969) and Leith
(1974) suggested that instead of performing “deterministic” forecasts, stochastic
forecasts providing an estimate of the skill of the prediction should be made. The
only computationally feasible approach in order to achieve this goal is through “en-
semble forecasting” in which several model forecasts are performed by introducing
perturbations in the initial conditions or in the models themselves.

After considerable research on how to most effectively perturb the initial con-
ditions, ensemble forecasting was implemented operationally in December 1992 at
both NCEP and ECMWEF (Tracton and Kalnay, 1993, Toth and Kalnay, 1993, Palmer
et al., 1993, Molteni et al., 1996, Toth and Kalnay, 1997). Since 1994 NCEP has
been running 17 global forecasts per day, each out to 16 days, with initial pertur-
bations obtained using the method of breeding growing perturbations. This ensures
that the initial perturbations contain naturally growing dynamical perturbations in
the atmosphere, which are also present in the analysis errors. The length of the fore-
casts allows the generation of “outlooks” for the second week. The NCEP ensemble
forecasts can be accessed through the world-wide web at the EMC home page
(nic.fb4.noaa.gov:8000), and linking to the ensemble home page. At ECMWE, the
perturbation method is based on the use of singular vectors, which grow even faster
than the bred or Lyapunov vector perturbations. The ECMWF ensemble contains
50 members (Chapter 6).

Ensemble forecasting has accomplished two main goals: the first one is to provide
an ensemble average forecast that beyond the first few days is more accurate than
individual forecasts, because the components of the forecast that are most uncertain
tend to be averaged out. The second and more important goal is fo provide forecasters
with an estimation of the reliability of the forecast, which because of changes in
atmospheric predictability, varies from day to day and from region to region.

The first goal is illustrated in Fig. 1.7.1, prepared at the Climate Prediction Center
(CPC, the Climate Analysis Center of the former NMC) for the verification of the
NCEP ensemble during the winter of 1997-8. This was an El Nifio winter with major
anomalies in the atmospheric circulation, and the operational forecasts had excellent
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Figure 1.7.1: Anomaly correlation of the ensembles during the winter of 1997—-8
(controls, T1,¢ and Tg,, and ten perturbed ensemble forecasts). (Data courtesy Jae
Schemm, of NCEP.)

skill. The control “deterministic” forecast (circles) had an “anomaly correlation”
(AC, pattern correlation between predicted and analyzed anomalies) in the 5-day
forecast of 80%, which is quite good. The ten perturbed ensemble members have
individually a poorer verification with an average AC of about 73% at 5 days. This is
because, in the initial conditions, the control starts from the best estimate of the state
of the atmosphere (the analysis), but growing perturbations are added to this analysis
for each additional ensemble member. However, the ensemble average forecast tends
to average out uncertain components, and as a result, it has better skill than the control
forecast starting at day 5. Note that the ensemble extends by one day the length of the
useful forecast (defined as an AC greater than 60%) from about 7 days in the control
to about 8 days in the ensemble average.

The second goal of the ensemble forecasting, to provide guidance on the uncer-
tainty of each forecast, is accomplished best by the use of two types of plots. The
“spaghetti” plots show a single contour line for all 17 forecasts, and the probabilistic
plots show, for example, what percentage of the ensemble predicts 24-h accumulated
precipitation of more than 1 inch at each grid point (for probabilistic Quantitative
Precipitation Forecasts or pQPF). Both of them provide guidance on the reliability
of the forecasts in an easy-to-understand way. The use of the ensembles has provided
the US NWS forecasters with the confidence to issue storm forecasts 5—7 days in ad-
vance when the spaghetti plots indicate good agreement in the ensemble. Conversely,
the spaghetti plots also indicate when a short-range development may be particularly



11 -100 Tk B0
11s5/1z20 Y] _beight YER-TizZ6
551115/1200V120 500 MB baigbt 5640m AVHE thn
351115/1200V120 500 MB height 5640m AVYN T12%6
551115/1200V¥108 500 MB height 5640n MRF ptbn
(2) 951115/1200V108 500 MB height 5640m MRF T62
3511157/1200v¥108 500 MB height 5640m MRF T126

-1ido
_height
00VD72 500 MB height
00¥072 500 MB height

500 MB height
00V0&60 500 MB height
oovo 500 MP height

(®) 3



1.7 Weather predictability 29

difficult to predict, so that the users should be made aware of the uncertainty of the
forecast. Fig. 1.7.2(a) shows an example of the 5-day forecast for 15 November 1995,
the first East Coast winter storm of 1995-6: the fact that the ensemble showed good
agreement provided the forecasters with the confidence to issue a storm forecast these
many days in advance. By contrast, Fig. 1.7.2(b) shows a 2.5-day forecast for a storm
with verification time 21 October 1995, and it is clear that even at this shorter range,
the atmosphere is much less predictable and there is much more uncertainty about
the location of the storm.

The use of ensembles has also led to another major development, the possibility
of an adaptive or targeted observing system. As an example, consider a case in
which the lack of agreement among the ensemble members indicates that a 3-day
forecast in a certain region is exceedingly uncertain, as in Fig. 1.7.2(b). Several new
techniques have been developed to trace such a region of uncertainty backward in
time, for example 2 days. These techniques will point to a region or regions where
additional observations would be especially useful. The additional observations could
be dropwinsondes launched from a reconnaissance or a pilotless airplane, additional
rawinsondes, or especially intensive use of satellite data such as a Doppler Wind
Lidar. If additional observations are available 24 h after the start of the originally
critically uncertain 3-day forecast, they can increase substantially the usefulness
of the 2-day forecast. Similarly, a few additional rawinsondes could be launched
where short-range ensemble forecasts (1224 h) indicate that they are most needed.
Preliminary tests of this approach of targeted observations have been successfully
performed within an international Fronts and Storm Track Experiment (FASTEX)
in the North Atlantic during January and February 1997, and in the North Pacific
Experiment (NORPEX) in January and February 1998 (Szunyogh et al., 2000).

Ensemble forecasting also provides the basic tool to extend forecasts beyond
Lorenz’s 2-week limit of weather predictability (Chapter 6). Slowly varying surface
forcing, especially from the tropical ocean and from land-surface anomalies, can
produce atmospheric anomalies that are longer lasting and more predictable than
individual weather patterns. The most notable of these is the El Nifio—Southern Os-
cillation (ENSO) produced by unstable oscillations of the coupled ocean—atmosphere
system, with a frequency of 3—7 years. Because of their long time scale, the ENSO
oscillations should be predictable a year or more in advance (in agreement with the
chaos theory). The first successful experiments in this area were made by Cane et al.
(1986) with a simple coupled atmosphere—ocean model. The warm phases of ENSO
(EINifio episodes) are associated with warm sea surface temperature (SST) anomalies

Caption for Figure 1.7.2: (a) Spaghetti plot for the 5-day forecast for 15 Nov 1995,
a case of a very predictable storm over eastern USA. (Figure courtesy of R. Wobus,
NCEP.) (b) Spaghetti plot for the 2.5-day forecast for 21 Oct 1995, the case of a very
unpredictable storm over the USA. (Courtesy of R. Wobus, NCEP.) Dashes indicate
the control forecast.
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in the equatorial central and eastern Pacific Ocean, and cold phases (LLa Nifia episodes)
with cold anomalies. NCEP started performing multiseasonal predictions with cou-
pled comprehensive atmosphere—ocean models in 1995, and ECMWF did so in 1997.

A single atmospheric forecast forced with the SST anomalies would not be use-
ful beyond the first week or so, when unpredictable weather variability would mask
the forced atmospheric anomalies. Ensemble averaging many forecasts made with
atmospheric models forced by SST anomalies (and by other slowly varying anoma-
lies over land such as soil moisture and snow cover) allows the filtering out of the
unpredictable components of the forecast, and the retention of more of the forced
predictable components. This filtering is reflected in the fact that the ensemble aver-
age for the second week of the forecasts for the winter of 1997-8 (Fig. 1.7.1) had a
high AC of 57%, much higher than previously obtained. Researchers at the Japanese
Meteorological Agency have performed forecasts for the 28-day average and also
found that ensemble averaging substantially increased the information on the second
week and the last 2 weeks of the forecast. The very successful operational forecasts
of the ENSO episode of 1997-8 performed at both NCEP and ECMWF have been
substantially based on the use of ensembles to extract the useful information on the
impact of El Nifio from the “weather noise”.

1.8 The future

The last decades have seen the expectations of Charney (1951) fulfilled, and an
amazing improvement in the quality of the forecasts based on NWP guidance. From
the active research taking place, one can envision that the next decade will continue
to bring improvements, especially in the following areas:

m detailed short-range forecasts, using storm-scale models able to provide
skillful predictions of severe weather;

m more sophisticated methods of data assimilation able to extract the maximum
possible information from observing systems, especially remote sensors such
as satellites and radars;

m development of adaptive observing systems, in which additional observations
are placed where ensembles indicate that there is rapid error growth (low
predictability);

® improvement in the usefulness of medium-range forecasts, especially through
the use of ensemble forecasting;

m fully coupled atmospheric—hydrological systems, where the atmospheric
model precipitation is appropriately downscaled and used to extend the length
of river flow prediction;

m more use of detailed atmosphere—ocean—land coupled models, in which
long-lasting coupled anomalies such as SST and soil moisture anomalies lead
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to more skillful predictions of anomalies in weather patterns beyond the limit
of weather predictability (about two weeks);

®m more guidance to governments and the public on subjects such as air
pollution, ultraviolet radiation and transport of contaminants, which affect
health;

m an explosive growth of systems with emphasis on commercial applications of
NWP, from guidance on the state of highways to air pollution, flood
prediction, guidance to agriculture, construction, etc.



The continuous equations

21  Governing equations

V. Bjerknes (1904) pointed out for the first time that there is a complete set of seven
equations with seven unknowns that governs the evolution of the atmosphere:

m Newton’s second law or conservation of momentum (three equations for the
three velocity components);

the continuity equation or conservation of mass;

the equation of state for ideal gases;

the first law of thermodynamics or conservation of energy;

a conservation equation for water mass.

To these equations we have to add appropriate boundary conditions at the bottom
and top of the atmosphere.

In this section we briefly derive the governing equations. The reader may refer to
other texts, such as Haltiner and Williams (1980), or James (1994) for more details.

Newton’s second law or conservation of momentum:
On an inertial frame of reference, the absolute acceleration of a parcel of air in three
dimensions is given by
daVa
dt

On a rotating frame of reference centered at the center of the earth, the absolute
velocity v, is given by the sum of the relative velocity v plus the velocity due to the

—F/m 2.1.1)

32
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rotation with angular velocity €2:
V,=v+Qxr (2.1.2)

where r is the position vector of the parcel. This is a particular case (for A =r) of the
general formula relating the total time derivative of any vector on a rotating frame
dA/dt to its total derivative in an inertial frame d,A /dt:

d,A dA

= QXA 2.1.3)

We can also apply this formula to A = v,, giving

d,v, dv,
FralmiT +Q xv, 2.1.4)

Substituting (2.1.2) into (2.1.4) we obtain that the accelerations in an inertial (abso-
lute) and a rotating frame of reference are related by
d,v, dv

o =E+29xv+ﬂx(ﬂxr) (2.1.5)

This equation indicates that on a rotating frame of reference there are two apparent
forces per unit mass: the Coriolis force (second term on the right-hand side) and the
centrifugal force (third term).

The left-hand side of (2.1.5) represents the real forces acting on a parcel of air,
i.e., the pressure gradient force —a'V p, the gravitational acceleration g, = —V ¢,,
and the frictional force F. Therefore in a rotating frame of reference moving with the
earth, the apparent acceleration is given by

dv

E:—an—Vgﬁe—i—F—Zva—Qx(er) (2.1.6)

Here o« = 1/p is the specific volume (the inverse of the density p), p is the pressure,
¢. is the Newtonian gravitational potential of the earth, and, as indicated before,
the last two terms are the apparent accelerations, denoted the Coriolis force and
centrifugal force respectively. We have not included the tidal potential, whose effects
are negligible below about 100 km.

We can now combine the centrifugal force with the gravitational force, since
—Q x (2 x 1) = Q%1 = V(Q¥?/2),where 1 is the position vector from the axis of
rotation to the parcel. Therefore we can define as the “geopotential” ¢ = ¢, — Q21%/2,
and the apparent gravity is given by

~-Vop=g=g +91 (2.1.7)

We define the geographic latitude ¢ to be perpendicular to the geopotential ¢. At
the surface of the earth, the geographic latitude and the geocentric latitude differ by
less than 10 minutes of a degree of latitude. Therefore, Newton’s law on the rotating
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frame of the earth is written as

d
d—::—an—qu—i—F—Zva (2.1.8)

Continuity equation or equation of conservation of mass
This can be derived as follows: Consider the mass of a parcel of air of density p

M = pAxAyAz 2.1.9)

If we follow the parcel in time, it conserves its mass, i.e., the total time derivative
(also called the substantial, individual or Lagrangian time derivative) is equal to zero:
dM/dt = 0. If we take a logarithmic derivative of the mass

1 dM
M dr
in (2.1.9) we obtain the continuity equation:
1d
_ i vv=0 (2.1.10)
p dt
since
1 dAx  du
Ax dt  dx

and similarly for the other directions y, z.
Now, the total derivative of any function f(x, y, z, t), following a parcel, can be
expanded as
d 0 of d of d of d 0
af _ oy  ofdx  ofdy  ofdz _Of | oo @.1.11)
dt ot  dxdt dydt 0dzdt ot
Equation (1.11) indicates that the total (or Lagrangian or individual) time derivative
of a property is given by the local (partial, Eulerian) time derivative (at a fixed point)
plus the changes due to advection. If we expand dp/dt in (2.1.10) using (2.1.11) we
obtain an alternative form of the continuity equation, usually referred to as “in flux
form™:

= =V -(pv) (2.1.12)

Equation of state for perfect gases
The atmosphere can be assumed to be a perfect gas, for which the pressure p, specific
volume « (or its inverse p, density), and temperature 7 are related by

poa = RT (2.1.13)

where R is the gas constant for air. This equation indicates that given two thermody-
namic variables, the others are determined.
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Thermodynamic energy equation or conservation of energy equation
This equation expresses that if heat is applied to a parcel at a rate of Q per unit mass,
this heat can be used to increase the internal energy C, T and/or to produce work of
expansion:

ar do

=Cy— + p—

Q=Cogr TPy

The coefficients of specific heat at constant volume C, and at constant pressure C),

are related by C, = C, + R. We can use the equation of state (2.1.13) to derive

another form of the thermodynamic equation:
ar dp
P O
dt dt

The rate of change of the specific entropy s of a parcel is given by ds/dt = Q/T,

i.e., the diabatic heating divided by the absolute temperature. We now define potential

temperature by 0 = T (po/p)®/ €7, where py is a reference pressure (1000 hPa). With

this definition, it is easy to show that the potential temperature and the specific entropy

are related by
ds 1do 0

ds _ 140 _0Q 2.1.16
dr Podr T ( )

(2.1.14)

0=C (2.1.15)

This shows that potential temperature is individually conserved in the absence of
diabatic heating.

Equation for conservation of water vapor mixing ratio q
This equation simply indicates that the total amount of water vapor in a parcel is
conserved as the parcel moves around, except when there are sources (evaporation E)
and sinks (condensation C):

dq_
dr

Conservation equations for other atmospheric constituents can be similarly written

E—-C (2.1.17)

in terms of their corresponding sources and sinks. If we multiply (2.1.17) by p,
expand the total derivative dq /dt = dq /0t 4+ v - Vg, and add the continuity equation
(2.1.12) multiplied by ¢, we can write the conservation of water in an alternative “flux

g

5 = =V - (pvg) + p(E — C) (2.1.18)

The flux form of the time derivative is very useful in the construction of models.
The first term of the right-hand side of (2.1.18) is the convergence of the flux of ¢.
Note that we can include similar conservation equations for additional tracers such
as liquid water, ozone, etc., as long as we also include their corresponding sources
and sinks.
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We now have seven equations with seven unknowns: v = (4, v, w), T, p, por «,
and ¢g. For convenience we repeat the governing equations, which (when written
without friction F) are sometimes referred to as “the Euler equations”:

d
d—::—an—VdH—F—ZQXV (2.1.19)
3
a—‘; — V- (pv) (2.1.20)
pa = RT 2.121)
ar dp

_c 9T _ _dp 2.1.22
C=Cr0r %% (2.1.22)
9
% — —V - (ovq) + p(E — C) (2.1.23)

22 Atmospheric equations of motion
on spherical coordinates

Since the earth is nearly spherical, it is natural to use spherical coordinates. Near
the earth, gravity is almost constant, and the ellipticity of the earth is very small, so
that one can accurately approximate scale factors by those appropriate for true spher-
ical coordinates (Phillips, 1966, 1973, 1990a). The three velocity components are
then

u = zonal (positive eastward) = rcos (pz

d
v = meridional (positive northward) = rd—(f 2.2.1)

dr
w = vertical (positive up) = o,
Note that v = ui + vj + wk, where |, j, k are the unit vectors in the three orthogonal
spherical coordinates. When the acceleration (total derivative of the velocity vector)
is calculated, the rate of change of the unit vectors has to be included. For example,
geometrical considerations show that
dk w0k vidk ui  vj

= — - =
dt rcosgdr r e r r

Exercise 2.2.1: Use spherical geometry to derive this equation, and
di u dj u

- = (Jsing —kcos ¢) - = (—ising — kcosg)
dt rcosg dt rcosg

When we include these time derivatives, take into account that 2 = Q sin gk +
Q2 cos ¢, and expand the momentum equation (2.1.19) into its three components, we
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obtain
du o Jdp u .
= — + F, 4+ [2Q2+ (vsing — wcos @)
dt FCcos@ A r cos g
dv o dp . vw
— =———+F,—(2Q+ using — — (2.2.2)
dt r dp r cos @ r

dt or r Cos

dw op u v?
=—a——g+F +(2Q+ ucosp + —
17 r

The terms proportional to u#/r cos ¢ are known as “metric terms”.

A “traditional approximation” (Phillips, 1966) has been routinely made in NWP,
since most of the atmospheric mass is confined to a few tens of kilometers. This
suggests that in considering the distance of a point to the center of the earthr = a + z,
one can neglect z and replace r by the radius of the earth a = 6371 km, replace 9/9dr
by d/0dz, and neglect the metric and Coriolis terms proportional to cos ¢. Then the
equations of motion in spherical coordinates become

du L Y S i
— == — v sin
dt acosqg Ir * © ¢

acos
d 0
Do 2R, - (22+ sin g (2.2.3)
dt adp acosg
dw op
B F
ar e 8T
which possess the angular momentum conservation principle
d ap
—[(u + Qacosgp)acosp] =acosp | — — 4+ F), 2.2.4)
dt acosg A

With the “traditional approximation” the total time derivative operator in spherical
coordinates is given by

d0 _ 00 w00, 030 60

= 2.2.5
dt ot acosgp OA  a d¢ 0z ( )

and the three-dimensional divergence that appears in the continuity equation by

1 du  dvcosg ow
acosg \ oA R17) 9z

V;-v= (2.2.6)

23 Basic wave oscillations in the atmosphere

In order to understand the problems in Richardson’s result in 1922 (Fig. 1.2.1) and
the effect of the filtering approximations introduced by Charney et al. (1950), we
need to have a basic understanding of the characteristics of the different types of
waves present in the atmosphere. The characteristics of these waves, (sound, gravity,
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and slower weather waves) have also profound implications for the present use of
hydrostatic and nonhydrostatic models. The three types of waves are present in
the solutions of the governing equations, and different approximations such as the
hydrostatic, the quasi-geostrophic, and the anelastic approximations are designed to
filter out some of them.

To simplify the analysis we make a tangent plane or * f-plane” approximation.
We consider motions with horizontal scales L smaller than the radius of the earth.
On this tangent plane we can approximate the spherical coordinates (Section 2.2) by

1 a 0

19 ad 7~ 20
— -~ —, A2 2Q2 sin
adp Jy o

acosgpoa_k T ox

and ignore the metric terms, since u/(a tan ¢) is small compared with €2.
The governing equations on an f-plane (rotating with the local vertical component
of the earth rotation) are:

du 1ap

- i 2.3.1
I +fv 9 ( a)
d 19

A Sl & (2.3.1b)
dt oy

d 10

we___¥x_, (2.3.1c)
dt p 0z

dp ou ov Jdw

==+ —+ = 2.3.1d
di p(a Ty T 8z> (23.1d)
ds 0

E = ?; s = Cp In6 (2316)
p = pRT (2.3.1f)

Consider a basic state at rest uy = vy = wy = 0. From (2.3.1a) and (2.3.1b), we see
that po does not depend on x,y, po = po(z). From (2.3.1c), py and therefore the other
basic state thermodynamic variables also depend on z only.

Assume that the motion is adiabatic and frictionless, Q = 0, F = 0. Consider
small perturbations p = py+ p’, etc. so that we can linearize the equations (ne-
glect terms which are products of perturbations). For convenience, we define
u* = pou'; v* = pev’; w* = pow’; s* = pgs’. The perturbation equations are then

ou* ap’
P 232
or ~ TV T4y (2.3.22)
v+ ap’
Vo (2.3.2b)
at ay
ow* op’
=Py 232
ot 9z rs ( ©)

0o’ ou* Jv*  ow*
= =— 2.3.2d
ot (8x + ay + 0z ) ) 4
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as* L dso
— %0 (2.3.2¢)
ot dz
’ ’ T/
P _r Z (2.3.2)
po  po  To
where
9/ T/ R p/ p/
s* = poC,— = poC (— — ——) =C ( — ,0’) (2.3.29)
"o~ "\T T ¢y p) T P \WRTy £

Exercise 2.3.1: Derive (2.3.2a)—(2.3.2g), recalling that p = pRT,0 =
T (po/p)*'“», C, =R+ C,, y =C,/C, = 1.4, and ¢? = yRT ~ (320 m/s)? is
the square of the speed of sound.

23.1  Pure types of plane wave solutions

We first consider special cases with pure wave type solutions. They exist in their pure
form only under very simplified assumptions. However, if we understand their basic
characteristics, we will understand their role in the full nonlinear models, and the
methodology used for filtering some of the waves out. We will be assuming plane
wave solutions aligning the x-axis along the horizontal direction of propagation:

W*,v*, w*, p') = (U, V, W, P)e'txtmev (2.3.3)

Here k =2n/L, and m = 2n/L, are horizontal and vertical wavenumbers, re-
spectively, v =2 /T is the frequency, and U, V, W, and P are constant am-
plitudes. We will aim to derive the frequency dispersion relationship (FDR)
v = f(k, m, parameters) for each type of wave by substituting the plane wave for-
mulation (2.3.3) into the linear equation, and eliminating variables. The FDR gives
us not only the frequency, but also the phase speed components (v/k, v/m) as well
as the group velocity components (dv/ok, dv/dm). The phase speed is the speed of
individual wave crests and valleys, and the group velocity is the speed at which wave
energy propagates in the horizontal and vertical directions. A pure type of wave
occurs under idealized conditions, such as no rotation, no stratification for sound
waves, but its basic characteristics are retained even if the ideal conditions are not
valid (sound waves are still present but slightly modified in the presence of rotation
and stratification).

2.3.1.1 Pure sound waves

We neglect rotation, stratification and gravity: f =0, g =0, dsy/dz = 0. From
(2.3.2e), we have s* = 0 (recall that s* is a perturbation, and if it was constant, we
would have included its value into the basic state s¢). Therefore p’ = cf,o/, and (2.3.2)
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reduce to
ou* ap’
v__%P (2.3 4a)
Jat 0x
av* ap’
__ (2.3.4b)
at ay
ow* ap’
wo__ % (2.3.4¢)
ot 9z
1ap" ou* n ov* n ow* (2.3.4d)
2ot dx 3y 0z o

These show that sound waves occur through adiabatic expansion and contraction
(three-dimensional divergence), and that the pressure perturbation is proportional to
the density perturbation.

Assuming plane wave solutions (2.3.3), with the x-axis along the horizontal di-
rection of the waves, and substituting into (2.3.4), we get

—ivU = —ikP (2.3.5a)
—ivV =0 (2.3.5b)
—ivW = —imP (2.3.5¢)
—ivP = —c2(ikU +imW) (2.3.5d)

From (2.3.5b) V =0, and substituting U and W from (2.3.5a) and (2.3.5¢) into
(2.3.5d), we get the FDR:

v? = 2(k* + m?) (2.3.6)

These are sound waves that propagate through air compression or three-dimensional
divergence. The components of the phase velocity are (v/k, v/m) and the total phase
velocity is

v

N

+c

2.3.1.2 Lamb waves (horizontally propagating sound waves)

We now neglect rotation and assume that there is only horizontal propagation (no
vertical velocity), but we allow for the fluid to be gravitationally stratified. With
f =0 and w* = 0, we again have s* = 0, and from (2.3.2f) p’ = ¢2p’, but from
(2.3.2¢) the flow is now hydrostatic: dp’/dz = —p’g. If we insert the same type of
plane wave solutions (2.3.3) into (2.3.2), we find that p’ = Pe~®/eiks—D je
the vertical wavenumber is imaginary m = ig/c?, and the phase speed is v?/k* = 2.
Since the vertical wavenumber is imaginary, there is no vertical propagation, and the
waves are external.

Therefore, a Lamb wave is a type of external horizontal sound wave, which is
present in the solutions of models even when the hydrostatic approximation is made.
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This is very important because it means primitive equation models (which make the
hydrostatic approximation) contain these fast moving horizontal sound waves. We
will see that Lamb waves are also equivalent to the gravity waves in a shallow water
model. Note also that the FDR is such that v/ k = =c?2, so that the phase speed does
not depend on the wavenumber. This implies that the group velocity dv/dk = +c2. It
is also independent of the wavenumber, and as a result Lamb waves without rotation
are nondispersive, so that a package of waves will move together and not disperse.

2.3.1.3 Vertical gravitational oscillations

Now we neglect rotation and pressure perturbations, f = p’ = 0, so that there is no
horizontal motion, but allow for vertical stratification. Equations (2.3.2) become

ow*
N 2.3.7
o1 ng (2.3.72)
ap’ *d dIné
9 _ W dso _ 4100 (2.3.7b)
ot C,dz dz
From these two equations we get
2w* 2 X
o TNwW =0 (2.3.8)
and from the continuity equation we obtain
ap’ ow*
o __ v (2.3.9)
ot 0z

Substituting the plane wave solution (2.3.3) into (2.3.8) we obtain v> = N2, where
N? = gd Inf,/dz is the square of the Brunt—Vaisdild frequency. A typical value of N
for the atmosphere is N ~ 1072 s~!. A parcel displaced in a stable atmosphere will
oscillate vertically with frequency N. Equations (2.3.7b) and (2.3.9) show that the
amplitude of w* will decrease with height as e~@n0/d)z,

2.3.1.4 Inertia oscillations

Inertia oscillations are horizontal and are due to the basic rotation. We now assume

that p’ = 0, dso/dz = 0, and there are no pressure perturbations and no stratification.

Then s* = 0, and, therefore, 0" = 0 and the horizontal equations of motion become
av* 3v*

3[ :—kaV* or W:ka(kav*):—fzv* (2310)

As indicated by (2.3.10), the frequency of inertia oscillations is v = % f, with the
acceleration perpendicular to the wind, corresponding to a circular wind oscillation.
In the presence of a basic flow, there is also a translation, and the trajectories look
like Fig. 2.3.1.
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Figure 2.3.1: Schematic of
/_m an inertial oscillation in the
presence of a basic flow to

the right.

2.3.1.5 Lamb waves in the presence of rotation and geostrophic modes:

We now consider the same case as in Section 2.3.1.2 of horizontally propagating
Lamb waves, but without neglecting rotation, i.e., f # 0, but the vertical velocity is
still zero. From w* = 0 and (2.3.2c) we have again p’ = c¢?p’, and the hydrostatic
balance in (2.3.2g) then implies dp’/dz = —y RT,. Therefore the three-dimensional
perturbations can be written as p'(x,y,z,t) = p'(x,y,0,)e” /7" where

yH = cf/g.
The system of equations (2.3.2) becomes
8 *
th =—fkxv'=Vp
) (2.3.11)

ap _ 2 *
— =—V-v
ot ’

This system is completely analogous to the linearized shallow water equations (SWE)
which are widely used in NWP as the simplest primitive equations model:

d

a—jz—kav—qu’

¢’ 2.3.12
a—qu—CDV-v ( )

where ¢ = @ + ¢’

If we assume plane wave solutions of the form (u*, v*, p’) = (U, V, P)e~"*kx—v0,
and substitute in (2.3.11) we obtain:

—ivU = fV — ikP

—ivV = —fU (2.3.13)
—ivP = —c%ikU

Therefore the FDR is
v — =N =0 (2.3.14)

Note that this FDR contains two types of solution: one type is v? = f2 + c2k?,
Lamb waves modified by inertia (rotation), or inertia Lamb waves. In the SWE
analog, these are inertia-gravity waves (external gravity waves modified by inertia),
v2 = f% + ®k%. Note that in the presence of rotation the phase speed and group
velocity depend on the wavenumber: rotation makes Lamb waves dispersive (and
this helps with the problem of getting rid of noise in the initial conditions as in
Fig. 1.2.1).
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The second type of solution (and for us the more important!) is the steady state so-
lution v = 0. This means that d()/9t = —iv() = 0 for all variables. Without the pres-
ence of rotation, this steady state solution would be trivial: u* = v* = w* = p’ = 0.
But with rotation, an examination of (2.3.13) or (2.3.12) shows that this is the
geostrophic mode: U =0,V -v* =9U/dx =0,but V =ikP/f,ie.,

_Lop
- f ox
This is a steady state, but nontrivial, geostrophic solution. If we add a dependence of

f on latitude, the geostrophic solution becomes the Rossby waves solution, which
is not steady state, but is still much slower than gravity waves or sound waves.

v*

232 General wave solution of the perturbation equations
in a resting, isothermal atmosphere

So far we have been making drastic approximations to obtain “pure” elementary
waves (sound, inertia and gravity oscillations). We now consider a more general
case, including all waves simultaneously. We consider again the equations for small
perturbations (2.3.2), and assume a resting, isothermal basic state in the atmosphere:
To(z) = Too, a constant. Then

dIn6 dln Po
N* = =— 2.3.15
& dz 8« dz ( )
where k = R/C, = 0.4. Since the basic state is hydrostatic,
Po8 8 8K
N2 = _ =5 2.3.16
8K TR T H ( )

These equations show that for an isothermal atmosphere, both N2 and the scale height
H = RT/g are constant.

We continue considering an f-plane, a reasonable approximation for horizontal
scales L small compared to the radius of the earth: L << a. If L were not small
compared with the radius of the earth, we would have to take into account the vari-
ation of the Coriolis parameter with latitude, and spherical geometry. With some
manipulation, assuming that the waves propagate along the x-axis, and there is no
y-dependence, the perturbation equations (2.3.2) become

L (2.3.17a)
= v — . a
ot : 0x
av*
— 23.17b
o1 fu ( )
ow' _ W, (2.3.17¢)
o = — — . C
ot 0z rs

pI_ (e (2.3.17d)
or  \dx = 0z o
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ds * A72
—=-w'N (2.3.17¢)

. o,
s* = ”<§_ > (2.3.17f)

In these equations we have introduced two constants « and 8 as markers for the
hydrostatic and the quasi-Boussinesq approximations respectively. They can take the
value 1 or 0. If we make o = 0, it indicates that we are making the hydrostatic ap-
proximation, i.e., neglecting the vertical acceleration in (2.3.17c). If we make 8 = 0,
it indicates that we are making the anelastic or quasi-Boussinesq approximation, i.e.,
assuming that the mass weighted three-dimensional divergence is zero. Otherwise
the markers take the value 1. These markers will be used in the next section, where
we discuss filtering approximations.

We now try plane wave solutions, where the basic state is a function of z of the
form

W, v*, w*, p', p") = U(), V(2), W(), P(2), R(2))e' ™" (2.3.18)

Instead of assuming a z-dependence of the form ¢'™?, we will determine
it explicitly. If the horizontal scale is not small compared with the radius
of the earth, L ~ a, then the solutions are of the form (u*, v*, w*, p’, p) =
(U(2), V(2), W(2), P(z), R(2))A(@)e!®*"), and the equation obtained for A(gp) is
the Laplace tidal equation.

Substituting the assumed form of the solution (2.3.18) into (2.3.17) we get

—ivU = —ikP + fV (2.3.19a)
—ivV =—fU (2.3.19b)
. dpP
—ivaW = —Rg — — (2.3.19¢)
dz
: : aw
—ivBR = —ikU — — (2.3.19d)
dz
(P N?
—iv(5—-R)=-W— (2.3.19%)
c: g
From (2.3.19a) and (2.3.19b)
kv
U= — f_2 P (2.3.19f)
From (2.3.19d) and (2.3.19f)
K2 i dW
BR = p-L2 (2.3.19¢)

TV—f2 4z
From (2.3.19¢) and (2.3.19¢)
dP g

g p—La—NYW (2.3.19h)
dz = c? v
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From (2.3.19¢) and (2.3.19g)

dw N iv [,B(vz —f2)—c§k2] »

W
dz ~|—ﬂg 2 V2 — f2

From (2.3.19h) and (2.3.191)
2 22y 212120 A2
(d+g><d+ﬁN_>W:_l[(ﬁ(v 12 = e N)i|W

dz ' 2) \dz g c? v2 — f2

(2.3.1%1)

(2.3.20)

or a similar equation for P. This last equation is of the form

W +AdW +BW =0
dz? dz N

In order to eliminate the first derivative, we try a substitution of the form W = e2Q,
and obtain d>Q/dz* + C2 = 0. This requires that we choose § = —A /2, and in that
case C = B — A%/4.
From (2.3.20), the variable substitution, and additional sweat, we finally obtain
d*Q )
—4+n"Q2=0 (2.3.21)
dz?

where

2 2 21.2Y(1)2 2 2 2
nzz(ﬂ(v—f)—Csk)(VOé—N)_1<N g) (23.22)

202 — f2) iPyta
This is the frequency dispersion relationship for waves in an atmosphere with an
isothermal basic state. Given a horizontal structure of the wave (k), and its frequency
(v), (2.3.22) determines the vertical structure (n) of Q (and W), and vice versa.
The same FDR would have been obtained making the substitution Q = ¢~%*P, and
solving for Q.
Equation (2.3.22) indicates that depending on the sign of n> we can have either
external or internal wave solutions.

2.3.2.1 External waves

If n? < 0, the vertical wavenumber 7 is imaginary, n = im. The solution of (2.3.21)
is then Q = Ae™* + Be™™, or, going back to the vertical velocity,

w*(x, z,1) = ei(kvat)e_%(ﬂ%z+%)z(Aemz + Befmz) (2.3.23)

These are external waves (the waves do not oscillate in the vertical, and therefore do
not propagate vertically). If the boundary condition at the ground is that the vertical
velocity is zero, then Q = Ae™* + Be™™* =0atz =0,sothat A+ B =0, and

. 1 N? | ¢
w*(x,z,1) = e’(l"‘_"’)eﬁ(ﬁ?Jr%)Z 2A sinh(mz)
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Figure 2.3.2: Schematic of
density weighted internal
(vertically propagating)
waves.

which has an exponential behavior in z. Since sinh(mz) cannot be zero above the
ground, an upper boundary condition of a rigid top can only be satisfied if A = 0.
In other words, we cannot have external waves with rigid top and bottom boundary
conditions: external waves require a free surface at the top (or at the bottom).

2.3.2.2 Internal waves

If n? > 0, the vertical wavenumber 7 is real:
Wx 2, 1) = e ED(Apine 4 Bemineye—H (5 +E)e (2.3.24)

A, B are determined from the boundary conditions. Now there is both vertical and
horizontal propagation. For example, if there is a rigid bottom, we have again A +
B = 0, and the solution becomes

w*(x, Z f) — A(ei(kx+nz—ul) _ ei(kx—nz—vt))e*%(lngr%)Z

The shape of internal waves in the vertical is shown schematically in Fig. 2.3.2.

233  Analysis of the FDR of wave solutions in a resting,
isothermal atmosphere

We will now plot the general FDR equation (2.3.22). We assume Ty = 250 K and
f =29Qsin45° ~ 107* s~!. Then, the speed of sound is ¢> = y RT ~ 10° m?/s?,
or ¢y & 320 m/s, the scale heightis H = RT/g = 7.3 km = 7300 m, and the Brunt—
Vaisili frequency is N> = gd(In6y)/dz = gk /H for the isothermal atmosphere, or
about 4 x 10~* s2. Note that the frequency associated with inertial oscillations is
much lower than the frequency associated with gravitational oscillations.

f~10*s << N~1072%57! (2.3.25)

We first plot in Fig. 2.3.3 the FDR (2.3.22), with « = = 1, i.e., without making
either the hydrostatic or the quasi-Boussinesq approximations. Note that this equation
contains four solutions for the frequency v, plus an additional solution v = 0, the
geostrophic mode that satisfies nontrivially (2.3.19).
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v
Lamb wave: v’=f2c? k% n’=—1/4(N%g - g/ c2)?
Sound waves (n?> 0)
10"
N~107?
10°
Internal gravity waves (n2 > 0)
f~10*
v=0
10* 10° 10° 10 1 Horiz. scale (km)
107 10°® 10° 10™ 107 Horiz. wavenumber k (m")

Figure 2.3.3: Schematic of the frequencies of small perturbations in an isothermal
resting atmosphere as a function of &, the horizontal wavenumber (the horizontal
scale is its inverse), and the vertical wavenumber n. Shaded regions represent n> < 0,
external waves.

24  Filtering approximations

When we neglect the time derivative of one of the equations of motion, we convert
it from a prognostic equation into a diagnostic equation, and eliminate with it one
type of solution. Physically, we eliminate a restoring force that supports a certain
type of wave. We call this a “filtering approximation”. Use of the quasi-geostrophic
filtering approximation that eliminates both sound and gravity waves made possible
the successful forecast of Charney ef al. (1950). Currently most global models and
some regional models use the hydrostatic approximation, which filters sound waves.
In this section we explore the effect of the filtering approximations.

24.1 Quasi-geostrophic approximation

As we have already seen, without rotation, if we assume a steady state, the solution
of (2.3.19) would be a trivial solution: all perturbations would be equal to zero.
However, with rotation, if we assume steady state solutions, and neglect all time
derivatives v = 0, we obtain from the perturbed equations (2.3.17), the geostrophic



48 2 The continuous equations

mode, a nontrivial solution:

V =ikP/f
U=0

dP
i —Rg (2.4.1)

dw
—__ =0
dz

P =cR

For the continuous perturbation equations (2.3.17), this means:

a /
fov* = _8£ (geostrophically balanced flow)
by
ov*
a7 =0 (steady state flow)
o', :
0= i g (hydrostatically balanced flow)
z
w* =0
ow*  du* ) i 2.4.2)
3 = 3 =0 (horizontal, nondivergent flow)
z X

s*=C, (K -0 > =0 (pressure perturbations are propor-

tional to density perturbations multi-
plied by the speed of sound squared,
which is true whenever the hydrostatic
equation is valid)

This is the “ultimate” filtering approximation: it filters out sound waves, inertia and
gravity oscillations.

For large horizontal scales we have to include the effects of varying rotation,
and the f-plane becomes a §-plane: f = f, + By. When horizontal advection by
the basic flow is included, the stationary geostrophic flow solution becomes quasi-
stationary (slowly varying). The waves corresponding to the geostrophic mode are
Rossby-type waves with a frequency small compared with the Coriolis or inertial
frequency v ~ Uk — B/k ~ 107> — 1079 s~!. Rossby waves are quasi-geostrophic
(v? << f?), hydrostatically balanced, and the flow is quasi-horizontal (w*/H <<
U*/L), and therefore quasi-nondivergent (V - v, =~ 0).

Note that this type of quasi-geostrophic solution, fundamental for NWP, is still
present in the general equations of motion, and survives as a solution when we
make either the anelastic or the hydrostatic approximation in order to filter out sound
waves.
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242 Quasi-Boussinesq or anelastic approximation

(Ogura and Phillips, 1962)

We now substitute § =0 in (2.3.19d). This means that we neglected the time
derivative dp’/dt compared with V5 - v*, dw*/9z in the continuity equation. With
this approximation, the equations become “anelastic”, i.e., they do not allow the
presence of sound waves, which require three-dimensional divergence and con-
vergence for their propagation. Consider the terms that are neglected in the FDR
(2.3.22):

(1) v? — f? << c2k?, i.e., the frequency of retained solutions is much smaller
than that of sound waves, therefore this also filters out the Lamb waves, i.e.,
horizontally propagating sound waves.

(2) N?/g << g/ csz. This approximation is justified if

N2 1d9() 8 . )/Hd@()
— — —— << 1

= —_— << , L.e.,
8 90 dZ ]/RT() 90 dZ

In other words, the deep anelastic approximation is justified for a model for
which the potential temperature does not change too much within the depth
¥ RT /g ~ 10 km. This is a reasonable approximation for the standard
troposphere (not for deep flow into the stratosphere), since for the
troposphere: Aby/6y ~ 30 K/300 K ~ 0.1.

For models that are so shallow that not only A6y/6, << 1,butalso ATy/ Ty << 1,
we can also neglect dpy/9z in the continuity equation, and assume V3 - v = 0, not
just V3 - v* = 0. In this case we treat the atmosphere as if it was an incompressible
fluid. This approximation is only accurate for very shallow atmospheric models (less
than 1 km depth), but is very appropriate for ocean models, since water is well
approximated as an incompressible fluid.

Fig 2.4.1 schematically shows the FDR when we make the anelastic approxima-
tion. From (2.3.22), and letting 8 = 0 (with « = 1), we can derive the frequency of
inertia-gravity waves with the anelastic approximation:

n’> 4+ p? 5 k2

)
R R e

(2.4.3)

where p is like the inverse of a vertical wavelength

Sole 1
2¢2 20

From (2.4.3) we see that, for internal (n> > 0) inertia-gravity waves, f? < v> < N2,

the frequency v is between the Coriolis and Brunt—Vaisild frequencies. Note from

Fig. 2.4.1 that for these waves, dv%/dk> > 0, but 3v>/dn> < 0. This implies (since we

can assume without loss of generality that k£ > 0) that the horizontal group velocity

for gravity waves dv/0k has the same sign as the phase velocity (the energy of gravity
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14
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Figure 2.4.1: Schematic of the frequencies of small perturbations in an isothermal
resting atmosphere when the quasi-Boussinesq or anelastic approximation is made

(B =0).

waves moves in the same direction as the phase speed in the horizontal). In the
vertical the opposite is true: if the group velocity is upwards, which happens for
example when gravity waves are generated by mountain forcing, the phase velocity
is downwards.

Because the anelastic equation filters out acoustic internal waves (as well as the
Lamb wave) it is widely used for problems in which the hydrostatic approximation
cannot be made, as is the case for convection. For example, the ARPS model is based
on deep anelastic equations. The FDR with the quasi-Boussinesq approximation is
shown schematically in Fig. 2.4.1.

243 Hydrostatic approximation

If we neglect the vertical acceleration dw*/0¢ in the vertical momentum equation
(2.3.17¢), letting « = 0 (with 8 = 1), we get the FDR

(02 2 27272 2 2
g2~V [P GkIN _1<N g) 2.4.4)

02 = 1) s &



2.4 Filtering approximations 51

This FDR has two solutions: the horizontally propagating external sound wave (Lamb
wave) solution, which unfortunately is retained:

vi= 243, n? = —1/4(N?/g — g/c?)? (2.4.5)

and inertia-gravity waves. From (2.4.4) we can derive the following relationship for
inertia-gravity waves: using N> = kg/H, H = RT/g, ¢ = yRT
N2k? 1 N%k?
n=———-—— orvi=fr4 — — (24.6)
vZ— f2  4H? Lo

Fig. 2.4.2 shows the relationship between frequency and horizontal and vertical
wavenumbers with the hydrostatic equation.

Exercise 2.4.1: Derive (2.4.6) from (2.4.5).

When are we justified in using the hydrostatic equation? By taking o = 0, we ne-
glected the time derivative of the vertical velocity compared to p'/ppg. Note that it is
not enough to find dw/dt << g to make the hydrostatic approximation: the vertical
acceleration is small compared to gravity even for strong vertical motions, as in a

2 P=—1/4(N*/g — g/c?)?

10"

N~ 102

10°

Internal gravity waves (n2 >0)

f~10" &

v=0
10* 10° 10° 10 1 Horiz. scale (km)
107 10° 10° 10 107 Horiz. wavenumber k (m'1)

Figure 2.4.2: Schematic of the frequencies of small perturbations in an isothermal
resting atmosphere when the hydrostatic approximation is made (o = 0).
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cumulus cloud. The hydrostatic approximation requires that the vertical acceleration
be small compared with the buoyancy (p’/p)g, or gravitational acceleration within
the fluid. It can be shown by scale analysis that the hydrostatic approximation is valid
as long as we are dealing with shallow flow (H /L << 1). For quasi-geostrophic flow,
the condition for hydrostatic balance is valid even if H/L ~ 1. This implies that the
hydrostatic approximation is very accurate for models with grid sizes of the order
of 100 km or larger, and still quite acceptable for quasi-geostrophic flow, even when
the horizontal grid size of the model approaches 10 km. However, the hydrostatic
equation is not valid for models with grid sizes of the order of 10 km that attempt
to resolve explicitly cumulus convection. Fig. 2.4.2 shows that for high frequencies
v ~ N or larger, or small horizontal scales the hydrostatic approximation distorts the
original FDR (compare with Fig. 2.3.3).

Exercise 2.4.2: Show by scale analysis that as long as we are dealing with shallow
flow (H/L << 1) the hydrostatic approximation is valid.

Exercise 2.4.3: Show that the condition for quasi-geostrophic balance, the hydro-
static approximation is valid even if H/L ~ 1.

We now summarize in Table 2.4.1 the characteristics of the different types of waves
and the approximations that can be used to filter them out. For more details about
Rossby waves and the filtering of inertia gravity waves, see Section 2.5, where these
topics are discussed in the context of the SWEs.

Notes
(1) In normal mode analysis of large-scale (hydrostatic) motion, or of
atmospheric models, it is customary to find a horizontal structure equation
and a vertical structure equation, associated by a separation constant /z, where
h is denoted as “equivalent depth” (e.g., Williamson and Temperton, 1981).
In our simple f-plane case, the horizontal structure equation for the inertia
gravity waves (2.4.6) is

1)2 _ f2
— = gh (24.7)
and the vertical structure equation
1 kH 1
2
- (== _Z 2.4.8
SE ( h 4) (248

where we have used N2> = kg/H.

The reason 4 is called the equivalent depth is that internal modes are
governed by equations similar to the SWEs with depth . However, £ is not a
constant but a function of vertical wavenumber, and therefore the analogy is
only approximate.
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Table 2.4.1. Summary of wave characteristics and the filtering approximations

(adapted from Zhang, personal communication, 1996).

Type of wave Filtering
(typical amplitude) Phase speed Restoring force approximations
Acoustic (less than  /y RT (320 m/s) Compression Hydrostatic
0.1 hPa, noise anelastic quasi-
level) geostrophic
External gravity /gH (320 m/s for Gravity No free surface at
(if initial H = 10 km) the top or the
conditions are bottom, or no
not balanced, net column mass
10 hPa) convergence
Internal gravity Buoyancy Neutral
(0.1-1 hPa) ~ l Nk ~ N/k (gravitational stratification
k\ k2 +n? acceleration (N =0), or
(50 m/s for L = within fluid) oV -vy
30 km) a
Inertia f/k (15 m/s for Coriolis force (f) No rotation
L = 1000 km) (f=0)
Rossby (20 hPa) U — B/k? (relative Variation of f with  Constant f
phase speed ~ 20— latitude (B effect) B =0
50 m/s depending dg/dt = —Bv

on L)

(2) With the hydrostatic approximation, the geopotential energy gz and the
internal energy C,T of an air column are related to each other,
since [T pgzdz = [ —(0p/d2)z dz = [—pz]T + /7 pdz =
Pszs + 5. pRTdz. Here the subscript s represents the earth’s surface, and
lim, . pz = 0 is assumed. So, when z; = 0, the ratio of the potential to the
internal energy of a column is equal to R/C, = 0.4. When z; is not constant,
the total potential energy (Lorenz, 1955) is given by

s

s

oo oo
/ p(gz+ CyT)dz = pszs +/ pC,Tdz
< z

25  Shallow water equations, quasi-geostrophic
filtering, and filtering of inertia-gravity waves

Consider now the SWEs (Fig. 2.5.1), valid for an incompressible hydrostatic motion
of a fluid with a free surface &(x, y, t). “Shallow” means that the vertical depth
is much smaller than the typical horizontal depth, which justifies the hydrostatic
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d)ng[ 77
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Figure 2.5.1: Schematic of the shallow water model: a hydrostatic, incompressible
fluid with a rigid bottom /4, (x, y), a free surface h(x, y, t), and horizontal scales L
much larger than the mean vertical scale H.

approximation. These equations are not only appropriate for representing a shallow
mass of water (e.g., river flow, storm surges), but they are prototypical of the primitive
equations based on the hydrostatic approximation and are frequently used to test
numerical schemes. The shallow water horizontal momentum equations are

dv

L — _fKk -V 2.5.1
=~ fkxv=V¢ @5.1)
where
d_3 +v-V = = ui + vj =gh
i o v V=Vyg =ui+vj =g
The continuity equation is
d(@ — &)
T =—(p—¢)V-v
which can also be written as
0
L=V (6 -9V (252)

Here ¢, = ghy(x, y) and A is the bottom topography.

Exercise 2.5.1: Derive the SWE from the primitive equations assuming hydrostatic,
incompressible motion, and that the horizontal velocity is uniform in height. Is the
vertical velocity uniform in height as well?

We now derive the equation of conservation of potential vorticity: expanding the

total derivative of the momentum equation and making use of the relationship
vy Vv =V (v}/2) + sk x vy

where ¢ = k- V x vy we obtain

dg

o1 +v-Vc+¢V-v=—fV.v—v-Vf (2.5.3)
or (since df/dt =v-V )
% =—(f+¢)V-v (2.5.4)

which indicates that the absolute vorticity (f 4 ¢) of a parcel of “water” increases
with its convergence (or vertical stretching).
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Eliminating the divergence, we obtain

d (f+c)
dr <¢ - ¢s> =0 233
where
f+§>
= 2.5.6
1 <¢ - ¢s ( )

is the potential vorticity: the absolute vorticity divided by the depth of the fluid.

Exercise 2.5.2: Give a physical interpretation of the equation of conservation of
potential vorticity.

The conservation of potential vorticity is an extremely powerful dynamical con-
straint. In a multilevel primitive equation model, the isentropic potential vorticity
(the absolute vorticity divided by the distance between two surfaces of constant po-
tential temperature) is also individually conserved. If the initial potential vorticity
distribution is accurately represented in a numerical model, and the model is able to
transport potential vorticity accurately, then the forecast will also be accurate.

We now consider small perturbations on a flat bottom and a mean height ® =
gH = const. on a constant f-plane.

8 /

%ﬂrﬁka—VW (2.5.7)
and

a /

3_"; — oV (2.5.8)

(note that (2.5.7) and (2.5.8) are the same equations as in Section 2.4.5 on horizontal
sound (Lamb) waves, with gH = cs2 =y RTy, gp = p'/po).
Assume solutions of the form (u’, v', ¢)e’**~"_ Then the FDR is

v(v? — 2 — k) =0 (2.5.9)
with three solutions for v:
v = f? 4 Ok? (2.5.10)

the frequency of inertia-gravity waves, analogous to the inertia-Lamb wave, and
v = 0, the geostrophic mode. As before, this is a geostrophic, nondivergent steady
state solution %() =0,v= kaVlb, V.-v=0.

Following Arakawa (1997), we can now compare the FDR of inertia-gravity
waves in the SWE with the FDR of a three-dimensional isothermal system using
the hydrostatic approximation (2.4.4)—(2.4.6). We see that (2.5.10) is analogous to
internal inertia-gravity waves for an isothermal hydrostatic atmosphere (2.3.26) if
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we define an equivalent depth such that & = gh,,:

N?/g dIn6y/dz
oy = S (2.5.11)

and is analogous to the (external) inertia Lamb waves if we define the equivalent
depth as

hey = c2/g =y Hy (2.5.12)

25.1 Quasi-geostrophic scaling for the SWE

If we want to filter the inertia-gravity waves, as Charney did in the first successful
numerical weather forecasting experiment (Chapter 1), we can develop a quasi-
geostrophic version of the SWE. We can do it first for an f-plane (f = fp).

Assume that the atmosphere is in quasi-geostrophic balance: v = v, + v, = v, +
ev’ where we assume that the typical size of the ageostrophic wind is much smaller
(order ¢ = U/f L, the Rossby number) than the geostrophic wind ev’ << v,, and
that the same is true for their time derivatives £dv'/dr << 9v,/dt. The geostrophic
wind is given by

1
ve=—-kx V¢ (2.5.13)
f
Plugging these into the perturbation equations (2.5.7) and (2.5.8) we obtain
8Vg ov’ / /
E—l—sE:—Vd)—kavg—skav =—cfkxv (2.5.14)

In this equation, the dominant terms (pressure gradient and Coriolis force on the
geostrophic flow) cancel each other (geostrophic balance), so that the smaller effect
of the Coriolis force acting on the ageostrophic flow is left to balance the time
derivative. From (2.5.8),

99

== —®V v, —edV -V = -0V -V (2.5.15)

Here the geostrophic wind is nondivergent, so that the time derivative of the pressure
is given by the divergence of the smaller ageostrophic wind.

From (2.5.14) and (2.5.15) we can conclude that 0v, /0t and d¢ /9t are of order
&, 1.e., the geostrophic flow changes slowly (it is almost stationary compared with
other types of motion), and that 9v,, /0t = £9Vv’/dt, which is smaller than dv, /9, is
of order &2. With quasi-geostrophic scaling we neglect terms of O(e?) and we obtain
the linearized quasi-geostrophic SWE:

9
% =~V — fkxV=—fKX Vg (2.5.16a)
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3
B_‘f = OV v=—dV v, (2.5.16b)

Ve =1/fkx V¢ (2.5.16¢)

Note that in (2.5.16) there is only one independent time derivative because of the
geostrophic relationship (we lost the other two time derivatives when we neglected
the term dv,,/0t). Physically, this means that we only allow divergent motion to exist
as required to maintain the quasi-geostrophic balance, and eliminate the degrees of
freedom necessary for the propagation of gravity waves.

We can rewrite (2.5.16) as

du 3
e =20 = fu (2.5.17a)
dv 8¢
b ==t fu=— fu (2.5.17b)
¢ ou v gy  OUgg
90 _ (M L VY _ g (Hag | OVag 2.5.17
ot (ax + 8y> < ox | ay ) (2.5.17¢)
19 1
uy =22, 100 (2.5.17d)

Ty T Fox
We can compute the equation for the geostrophic vorticity evolution from (2.5.17)
by taking the y-derivative of (2.5.17b) minus the x-derivative of (2.5.17a):

8{ ou dv
- _ 2.5.18
i fo ( 8y> Bv ( )
where the last term in (2.5.18) appears if we are on a -plane: f = fy + By. Then

we can eliminate the (ageostrophic) divergence between (2.5.18) and (2.5.17¢) and
obtain the linear quasi-geostrophic potential vorticity equation on a 8-plane:

d(s _o\__B9
(% _ 5) - (2.5.19)
or, since { = V2¢/fo,
V¢ ¢\_ B (2.5.20)
2T e) T f2ox .

Note that there is a single independent variable (¢) so that there is a single solution
for the frequency. If we neglect the B-term (i.e., assume an f-plane) and allow for
plane-wave-type solutions ¢ = Fe'**~V)the only solution of the FDR in (2.5.20)
is v = 0, the geostrophic mode. This confirms that by eliminating the time derivative
of the ageostrophic (divergent) wind v,,, we have eliminated the inertia-gravity
wave solution. If we assume a §-plane, i.e., keep the 8 term in (2.5.20), the quasi-
geostrophic FDR becomes

_ﬂk

e (2.5.21)
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The Rossby waves are the essential “weather waves”, and as shown in Table 2.4.1,
have rather large amplitudes (up to 50 hPa). The ageostrophic flow associated with
these waves is responsible for the upward motion that produces precipitation ahead
of the troughs.

In a multilevel model, the FDR (2.5.21) can be used with the equivalent depths
(2.5.11), (2.5.12) applied to the baroclinic (internal) and barotropic Rossby waves,
respectively. With these definitions, we can say that the waves in the atmosphere are
analogous to the SWE waves. However, because ., appears as a separation constant
in the definition of the normal modes of the atmosphere, the equivalent depth depends
on the vertical wavenumber, and on the type of wave considered (Lamb or inertia-
gravity waves).

Exercise 2.5.3: Show that the quasi-geostrophic PVE (potential vorticity equation)
for nonlinear SWE is

3 B 3\ (Ve ¢\ B3
(oot (77 - 8) =~ Te e

using similar scaling arguments.
Exercise 2.5.4: Allow for abasic flow ugotary = U + g Vgtotary = Vg, in (2.5.22).

Exercise 2.5.5: Estimate the initial time derivative for typical values of the horizontal
wavenumber, the external (barotropic) vertical mode for Rossby waves and inertia-
gravity waves that Richardson would have observed.

Exercise 2.5.6: Derive the formula for group velocity in the x-direction for Rossby
waves.

Exercise 2.5.7: Using typical values of long and short synoptic waves (e.g., horizon-
tal wavelengths of 8000 km and 2000 km respectively), calculate the phase speed and
the group velocity of Rossby waves for the barotropic mode and the first baroclinic
mode (H ~ 10 km and 1 km respectively).

252 Inertia-gravity waves in the presence of a basic flow

As we just saw, the SWEs are a simple version of the primitive equations, and are
widely used to understand numerical and dynamical processes in primitive equations.
As we noted in Chapter 1, filtered quasi-geostrophic models have been substituted
by primitive equation models for NWP, because the quasi-geostrophic filtering is not
an accurate approximation (it assumes that the Rossby number U/fL is much smaller
than 1). Recall that quasi-geostrophic filtering was introduced by Charney et al.
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(1950) in order to eliminate the problem of gravity waves (which requires a small
time step) whose high frequencies produced a huge time derivative in Richardson’s
computation, masking the time derivative of the actual weather signal.

An alternative way to deal with the presence of fast gravity waves without resorting
to quasi-geostrophic filtering is the use of semi-implicit time schemes (to be discussed
in Chapter 3). Consider small perturbations in the SWE including a basic flow U in
the x-direction. Then the total linearized time derivative becomes

d 9 LU 0

dt  at dx
In that case, when we assume solutions of the form Ae'**—v0, d/dt =i(—v +kU).
Therefore the FDR remains the same except that v is replaced by v — kU. The FDR

for small perturbations in the SWE with a basic flow U is therefore
v —kU)[(v —kU)* — f2 —®k*1 =0 (2.5.23)

As noted before, this has three solutions, quasi-geostrophic flow (which is steady
state, except for the uniform translation with speed U) and two solutions for the
inertia-gravity waves, modified by the basic flow translation:
(vg — kU) = 0 (geostrophic mode)
[((vigw — kU)? — f* — ®k?] = 0 (inertia gravity waves, modified
by the basic flow U)
The phase speed of the inertia-gravity wave is given by

v 2
crow = ’ZW =U=+ ,/i—z +® (2.5.24)

Finally, we note that for the Lamb wave (as well as for the external gravity
wave), the phase speed of the inertia-gravity wave is dominated by the term
V@ ~ /g x 10km ~ 300 m/s. As we will see in Section 3.2.5, it is possible to
avoid using costly small time steps by means of a semi-implicit time scheme. An
implicit time scheme has no constraint on the time step. Therefore, in a semi-implicit
scheme, the terms that give rise to the fast gravity waves, namely the horizontal di-
vergence and the horizontal pressure gradient are written implicitly, while the rest of
the SWE terms can be written explicitly. The terms generating the gravity wave are
underlined in the following nonlinear SWE:

au n au n du hlo} +f
—tu—4v—=—-—— v
at ax dy ox

av n ov n av d¢ f
—tu—+v—=——7—fu
91 ax dy (2.5.25)

¢ n ¢ n ¢ ® ou N v ¢ — @) ou n v
—dtu—+v—=- — 4+ — ) —(¢ - — 4+ —
at ax dy y dx  dy
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26  Primitive equations and vertical coordinates

As Charney (1951) foresaw, most NWP modelers went back to using the primitive
equations, with the hydrostatic approximation, but without quasi-geostrophic filter-
ing. Quasi-geostrophic models are now reserved for simple problems where the main
motivation is the understanding of atmospheric or ocean dynamics.

Exercise 2.6.1: Give two or more reasons why using the primitive equations, with
the hydrostatic approximation but without quasi-geostrophic filtering was a desirable
goal.

So far we have used z as the vertical coordinate. When we make the hydrostatic
approximation, as in the primitive equations, the use of pressure vertical coordinates
becomes very advantageous. We can also use any arbitrary variable ¢ (x, y, z, ¢) as
the vertical coordinate as long as it is a monotonic function of z (Kasahara, 1974).
The most commonly used vertical coordinates are height z, pressure p, a normalized
pressure o (Phillips, 1957), potential temperature 6 (Eliassen, 1949), and several
kinds of hybrid coordinates (e.g., Simmons and Burridge, 1981, Johnson et al., 1993,
Purser, pers. comm., Bleck and Benjamin 1993).

2.6.1 General vertical coordinates

When we transform the vertical coordinate, a variable A(x,y,z,f) becomes
A(x,y,¢(x,y,2z,t),t). The horizontal coordinates and time remain the same. Let s
represent x, y, or ¢. Then, from Fig. 2.6.1(a)

D-B C-B D-C Az
= +

As As Az E
so that
dA JdA JdA 0
) = (L) + () (2 2.6.1)
as /. ds /., 9z )4 \0s /.
and
9A _ 8A Bz
ac 9z O¢
or
0A 0A D
94 _ 9498 2.6.2)
0z d¢ 0z

Substituting (2.6.2) in (2.6.1), we get

2AN | (94) | (94) (95 (02
(50)-(5) -G () (E), s
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As

Az

Ap=AMg

Ay

Ax

(b)

61

Figure 2.6.1: (a) Schematic showing the relationship between the derivatives of A at
constant ¢ and at constant Z. The points B and D represent values of A on a ¢ -surface
and B and C those on a constant z surface. (b) Schematic of a parcel of air in a

hydrostatic system, where Ap is proportional to the change in mass per unit area AM.

From this relationship (for s = x, y) we can get an expression for the horizontal

gradient of a scalar A in ¢ coordinates:

g (M) (2%
vaamvas (1) (%)

and for the horizontal divergence of a vector B:

_ 9B\ (3¢
aes (2) ()

The total derivative of A(x, y, ¢, t) is given by

dA d0A dA
et _ (22 VoA 4+ e——
dt (8t)§+v ¢ +§8g

(2.6.4)

(2.6.5)

(2.6.6)
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The horizontal pressure gradient is therefore

1 1 ap a¢
g, -1 () (°< 2.6.
s iP=g [Vgp (8§) <3Z> ng} @oD

which becomes, using the hydrostatic equation dp/d¢ = —p,

1 1
o P
In summary the horizontal momentum equations become
dv
E:—avgp—vgqb—kav—i-F (2.6.9)

and the hydrostatic equation dp/dz = —pg becomes

op dg
dc 9z
or
3 3
o __,0 (2.6.10)
dg dg

The continuity equation can be derived from the conservation of mass for an infinites-
imal parcel: the hydrostatic equation indicates that the mass of a parcel is proportional
to the increase in pressure from the top to the bottom of the parcel (Fig. 2.6.1(b)):

gAM = AxAyAp (2.6.11)

Now, Ap = (dp/ds)Ac, so that taking a logarithmic total derivative, and noting
that
1 dAx ou
— % —
Ax dt ox
and the same with the other space variables, we obtain
d ap a¢

—|In— . — =0 2.6.12
dt<n8§>+V VH+8§ ( )

The thermodynamic equation is as before
T dé c dT dp 0
—_—— = _——_—— =

"o dt P dt dt

The kinematic lower boundary condition is that the surface of the earth is a material

surface: the flow can only be parallel to it, not normal. This means that once a parcel
touches the surface it is “stuck” to it. This can be expressed as

d(g - S-x)
dt

Cc (2.6.13)

=0 at § = Gs
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or
ds  9gs
dr ot
This kinematic boundary condition is well defined although in practice it may not be
accurate, for example, when there is subgrid-scale orography.
Atthe top, unfortunately, the boundary condition is not so well defined: As z — oo,
p — 0, butin general there is no satisfactory way to express this condition for a finite
vertical resolution model. Most models assume a simple condition of a “rigid top”
(i.e., making the top surface a material surface)

+v-Vg, at ¢=g¢; (2.6.14)

dg
— =0at¢c = 2.6.15
7 at¢ =gr ( )

but this is an artificial boundary condition that introduces spurious effects. For ex-
ample, Kalnay and Toth (1996) showed that a rigid top introduces artificial “upside-
down” baroclinic instabilities in the NCEP global model, and similar observations
were made by Hartmann et al. (1997) with the ECMWF model. If the top of the
model is sufficiently high, and there is enough vertical resolution, the upward mov-
ing perturbations are damped in the model (as they are in nature), and the spurious
interaction with the artificial top may remain small. Alternatively, radiation condi-
tions enforcing the condition that energy can only propagate upwards can be used,
but they are not simple to implement.

2.62 Pressure coordinates

These coordinates are a natural choice for a hydrostatic atmosphere (Eliassen,
1949). They greatly simplify the equations of motion: the horizontal pressure gra-
dient becomes irrotational, and the continuity equation becomes simply zero three-
dimensional divergence, a diagnostic linear equation.

As aresult the geostrophic wind relationship is also simpler: v, = (1/f)k x V¢.
For this reason, rawinsonde measurements have been made in pressure coordinates
since the early 1950s.

In pressure coordinates, dp/d¢ = 1, the total derivative operator (2.6.6) is given

by

where the vertical velocity in pressure coordinates is w = dp/dt. The primitive
equations become:

d
d—::—Vpgb—kav—i—F (2.6.16)
3
9 _ _, (2.6.17)

ap



64 2 The continuous equations

V, v+ —=0 2.6.18
r VT3 D ( )
and the thermodynamic equation (2.6.13) is unchanged.
The geostrophic and thermal wind relationships are especially simple in pressure

coordinates:
1 9 R
ve=—kxVp and E=_kxVT (2.6.19)
f ap fp

On the other hand, the bottom boundary condition is not simple in pressure coordi-
nates because the pressure surfaces intersect the surface:

otV Ve a p=p (2.6.20)

This requires knowing the rate of change of p;:

o]

+v-Vp, = —/ V, vdp (2.6.21)
0

ot

This complication of the surface boundary condition in pressure coordinates led
Phillips (1957) to the invention of sigma coordinates (next subsection).

Instead of the horizontal momentum equations, we can use the prognostic equa-
tions for the vorticity ¢ and divergence §, obtained by applying the operators k - Vx
and V- to the momentum equations. In pressure coordinates these equations are

dg
ot
26 26 ov

— 4+ V- V- V40— +Vo-—+V-(fkxV+ V=0 (2623)
ot ap ap

0 ov
+V-V(f+g)+w£+(f+§)V~V+k-Va)><5:0 (2.6.22)

263 Sigma and eta coordinates

Because of the complication of the bottom boundary conditions, Phillips (1957)
introduced “normalized pressure” or “sigma” coordinates, where o = p/p, and
ps(x, y,t) is the surface pressure. These are by far the most widely used vertical
coordinates. At the surface, 0 = 1, and at p = 0, o = 0, so that the top and bottom
boundary conditions are 6 = 0. More generally, allowing for a rigid top at a finite
pressure pr = const.,

o=2"Pr _PP1 (2.6.24)

Ps — Pr ys
with 6 =0 at o =0, 1.
The continuity equation is

o omo
—=-V_. - 2.6.25
ot V) = S5 (2.6.25)
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The surface pressure tendency equation is:

1

am aps

2 __v. d 2.6.26

” ) v /(ﬂv) o ( )
0

Substituting back into the continuity equation, one can determine ¢ diagnostically
from the horizontal wind field v.

Exercise 2.6.2: Derive (2.6.25) and (2.6.26)

Despite their popularity, sigma coordinates have a serious disadvantage: the pressure
gradient becomes the difference between two terms:

dv

i —aV,p—Vs¢p— fkxv+F (2.6.27)
where the first term, if sigma surfaces are steep, may not have the information that
went into the finite difference calculation of the second. To avoid the resulting errors,
Mesinger (1984) introduced a step-mountain coordinate denoted “eta” (used in the

Eta model at NCEP, e.g., Mesinger et al. (1988), Janjic (1990), Black (1994)):

=P P (2.6.28)
ps 1000 mb

The first factor is the standard sigma coordinate, the second is a scaling factor, with
Po(z) the pressure in the standard atmosphere. Mountains are defined as boxes, whose
tops have to coincide with a model eta level (Fig. 2.6.2). As a result of the scaling, the
eta surfaces are almost horizontal, and the pressure gradient is computed accurately.
At NCEP, the Eta model has proven to be very skillful especially in predicting storms.

etan.4

etans

— —  eta»

etan-1

etay

Figure 2.6.2: Schematic of the eta coordinate.
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264 Isentropic coordinates

The fact that under adiabatic motion, potential temperature is individually conserved
suggested long ago that it could be used as a vertical coordinate. The main advantage,
which makes it an almost ideal coordinate, is that “vertical” motion 6 is approximately
zero in these coordinates (except for diabatic heating). This reduces finite difference
errors in areas such as fronts, where pressure or z-coordinates tend to have large
errors associated with poorly resolved vertical motion.

Hydrostatic equation: from the definition of potential temperature, and using the
hydrostatic and state equations, we get

d9 dT Rdp dT 1 dé
Z_= L %2 (2.6.29)
¢ T C,p T C,T
If we define the Exner function I1 = C,7/6 = C,(p/po)®/¢», and the Montgomery
potential M = C,T + ¢, we see from the previous equation that

M
Nl (2.6.30)
30

The horizontal pressure gradient becomes very simple, so that for ¢ = 6 the mo-
mentum equation is

dv

n =—-VyM — fkxv+F (2.6.31)
The continuity equation is

d  op a0

—In—+Vy- — =0 2.6.32

ai a0 VY T g (2.6.32)

The potential vorticity is conserved for adiabatic, frictionless flow (Ertel’s theo-
rem). This general property can be posed in its simplest formulation in isentropic
coordinates:

dq

— =0 2.6.33

T ( )
where ¢ = (f + k- Vy x v)960/dp, and integrating between two isentropic sur-
faces, the potential vorticity is

(f+k-Vyxv)
q:—

2.6.34
Ap ( )

which is similar to the SWE potential vorticity.

Although the isentropic coordinates have many advantages, they have also two
main disadvantages: The first is that isentropic surfaces intersect the ground (as do
other vertical coordinates except for sigma-type coordinates). In practice this implies
that it is difficult to enforce strict conservation of mass, and this is important for long
(climate) integrations. For this reason, hybrid sigma—theta coordinates have been used
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(e.g., Johnson et al., 1993). Other approaches have been those of Bleck and Benjamin
(1993) for the operational RUC/MAPS model, and that of Arakawa and Konor (1996).
The second disadvantage is that only statically stable solutions are allowed, since the
vertical coordinate has to vary monotonically with height. There are situations, e.g.,
over hot surfaces, where this is not true even at a grid scale. Moreover, in regions of
low static stability, the vertical resolution of isentropic coordinates can be poor.

Exercise 2.6.3: Derive (2.6.31) from (2.6.9) for ¢ = 6, and (2.6.32) from the log-
arithmic derivative of

9
AM = £ CAG - Ax - Ay (2.6.35)

where AM is proportional to the mass of a parcel in isentropic coordinates



Numerical discretization of the equations
of motion

3.1 Classification of partial differential equations (PDEs)

3.1.1 Reminder about PDEs

Second order linear PDE
82u+ﬁ82u n 82u+288u+2 8u+ 0
o— _— — — &— U=
0x2 dxdy Y dy? ox ax 7

Second order linear partial differential equations are classified into three types de-
pending on the sign of B> — ay (e.g., Courant and Hilbert, 1962). Equations are
hyperbolic, parabolic or elliptic if the sign is positive, zero, or negative, respectively.
The simplest (canonical) examples of these equations are

3%u ) 9%u

@ — =c"— Wave equation (hyperbolic).
012 dx2 T .
Example: vibrating string.
a 02
(b) a_u = aa—b; Diffusion equation (parabolic).
g . Example: heated rod.
%u  9%u , . . L
(©) Fys) + 75 = 0 (or f(x,y)) Laplace’s or Poisson’s equations (elliptic).
X Yy

Examples: steady state temperature of a
plate, streamfunction/vorticity
relationship.

The behavior of the solutions, the proper initial and/or boundary conditions, and the
numerical methods that can be used to find the solutions depend essentially on the type

68
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of PDE that we are dealing with. Although nonlinear multidimensional PDEs cannot
in general be reduced to these canonical forms, we need to study these prototypes
of the PDEs to develop an understanding of their properties, and then apply similar
methods to the more complicated NWP equations.

9 3
(d) 8—”; = —ca—” Advection equation, with solution u(x, 1) = u(x — ct, 0).
X

The advection equation is a first order PDE, but it can also be classified as a hyperbolic,
since its solutions satisfy the wave equation (a), and the latter is usually written as
the system

0
du_\u
ot 0x

where
ou
ot
ou
c—
0x

and

0 ¢ . .
A= 0 or an equivalent transformation
c

3.12  Well-posedness, initial and boundary conditions

A well-posed initial/boundary condition problem has a unique solution that depends
continuously on the initial/boundary conditions. Clearly, the specification of proper
initial conditions and boundary conditions for a PDE is essential in order to have a
well-posed problem. If too many initial/boundary conditions are specified, there will
be no solution. If too few are specified, the solution will not be unique. If the number
of initial/boundary conditions is right, but they are specified at the wrong place or
time, the solution will be unique, but it will not depend smoothly on initial/boundary
conditions, i.e., small errors in the initial/boundary conditions will produce huge
errors in the solution. In any of these cases we have an ill-posed problem. And we
can never find a numerical solution of a problem that is ill posed: the computer will
show its disgust by “blowing up”.
We briefly discuss well-posed initial/boundary conditions:

m Second order elliptic equations require one boundary condition on each point
of the spatial boundary. These are “boundary value”, time-independent
problems, and the methods used to solve them are introduced in Section 3.4.
The boundary conditions may be on the value of the function (Dirichlet
problem), as when we specify the temperature in the borders of a plate, or on
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its normal derivative (Neumann problem), as when we specify the heat flux.
We could also have a mixed “Robin” boundary condition, involving a linear
combination of the function and its derivative.

m Linear parabolic equations require one initial condition at the initial time and
one boundary condition at each point of the spatial boundaries (if they exist).

m Linear hyperbolic equations require as many initial conditions as the number
of characteristics that come out of every point in the surface t = 0, and as
many boundary conditions as the number of characteristics that cross a point
in the (space) boundary pointing inwards (into the spatial domain). For
example: to solve du/dt = —cdu/dx for x > 0, t > 0; characteristics:
solutions of dx/dt = c; space boundary: x = 0 (see Fig. 3.1.1(a),(b)). If
¢ > 0, we need the initial condition u(x, 0) = f(x) and the boundary
condition u(0, ) = g(¢). If ¢ < 0, we need the initial condition
u(x,0) = f(x) but no boundary conditions.

For nonlinear equations, no general statements can be made, but physical insight
and local linearization can help to determine proper initial/boundary conditions. For
example, in the nonlinear advection equation du/d¢t = —udu/dx, the characteristics
are dx /dt = u, and since we don’t know a priori the sign of u at the boundary, and
whether the characteristics will point inwards or outwards, we have to estimate the
value of u from the nearby solution, and define the boundary condition accordingly.

(a) Figure 3.1.1: Schematic of
the characteristics of the

t advection equation
odu/dt = —cou/dx for
(a) positive and (b) negative
velocity ¢ and the
corresponding well-posed
BC: initial/boundary conditions
(IC/BO).

\

No BC:
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One method of solving simple PDEs is the method of separation of variables, but
unfortunately in most cases it is not possible to use it (hence the need for numerical
models!). Nevertheless, it is useful to try to solve some simple PDE’s analytically.

Exercise 3.1.1: Solve by the method of separation of variables these prototype PDEs:

(1) Pu U cx<l 0<y<I
R— —_— x
ax2 = 0y? - - =Y=

Boundary condition: u(x, 0) = f(x), u(x, 1) = u(0, y) = u(l, y) =

Assume
o0

f@) =) acsinkmx with Yk |a;| < oo

k=1 k=1
Find the solution

sinhkm (1 — y)
, k
u(x,y) = Z aG—————— Sinh o sinkm x

2 == 0u 0O<x<1 1>0
8t_08x2 =r=0 0=

Boundary condition: u(0, ) = u(1,¢) =0
Initial condition: u(x, 0) = f(x) = > -, a sinkmx
Find
ol 2.2
u(x,t) = Zake*"k Tt sinkmwx
k=1
Note that the higher the wavenumber, the faster it goes to zero, i.e., the
solution is smoothed as time goes on.
9%u 2 9%u

Boundary condition: (0, ) = u(1,¢) =0
oo

Initial condition: u(x, 0) = f(x) = Z ay sinkmx;
k=1

du o )
E(X’ 0)=gx) = Zbk sinkmx

(4) Same as (3), but now, instead of two initial conditions, we give an initial and a
“final” condition:

Boundary condition: u(0, ) = u(1,¢) =0
Initial condition: u(x, 0) = f(x); “final condition” u(x, 1) = g(x)

In other words, we try to solve a hyperbolic (wave) equation as if it was a boundary
value problem. Show that the solution is unique but it does not depend continuously
on the boundary conditions, and therefore it is not a well-posed problem.
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Conclusion: Before trying to solve a problem numerically, make sure that it is
well posed: it has a unique solution that depends continuously on the data that define
the problem.

Exercise 3.1.2: Lorenz showed that the atmosphere has a finite limit of predictability:
even if the models and the observations were perfect, “the flapping of a butterfly in
Brazil (not taken into account in the model) will result in a completely different
forecast over the US after a couple of weeks”. Does this mean that the problem of
NWP is not well posed?

32 Initial value problems: numerical solution

Hyperbolic and parabolic PDEs are initial value or marching problems: The solution
is obtained by using the known initial values and marching or advancing in time.
If boundary values are necessary, they are called “mixed initial-boundary value
problems”. Again, the simplest prototypes of these initial value problems are:

0 0
am_ o (3.2.1)
ot 0x

the wave or advection equation, with solution u(x, t) = u(x — ct, 0), a hyperbolic

equation, and

ou 0%u

the diffusion equation, a parabolic equation.

32.1 Finite difference method

We take discrete values for x and #: x; = jAx, t, = nAt. The solution of the fi-
nite difference equation is also defined at the discrete points (jAx, nAf): U} =
U(jAx,nAt). We will use a small u to denote the solution of the PDE (continuous)
and capital U to denote the solution of the finite difference equation (FDE), a discrete
solution.

Consider again the advection equation (3.2.1). Suppose that we choose to approx-
imate this PDE with the following FDE (called an “upstream scheme”):

n+1
vt -up U U
At Ax

Note that both differences are noncentered with respect to the point (j Ax, nAt). We
should now ask two fundamental questions:

(1) Is the FDE consistent with the PDE?

(2) For any given time ¢t > 0, will the solution U of the FDE converge to u as
Ax — 0, At — 0?

=0 (3.2.3)

Let us now clarify these questions.
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322 Truncation errors and consistency

We say that the FDE is consistent with the PDE if, in the limit Ax — 0, At — 0
the FDE coincides with the PDE. Obviously, this is a first requirement that the FDE
should fulfill if its solutions are going to be good approximations of the solutions
of the PDE. The difference between the PDE and the FDE is the discretization
error or local (in space and time) truncation error. Consistency is rather simple to
verify: Substitute U by u in the FDE, and evaluate all terms using a Taylor series
expansion centered on the point (j, n), and then subtract the PDE from the FDE. If
the difference (or local truncation error t) goes to zero as Ax — 0, At — 0, then
the FDE is consistent with the PDE.

Example 3.2.1: We verify the consistency of (3.2.3) with (3.2.1) by a Taylor series
expansion:

n
M;H_l = <u+uIAt—|—unATr2+>
J
2 ) (3.2.4)
u;%71 = (u_uxAx+ux.xATx+"'>
J

Substitute the series (3.2.4) in the FDE (3.2.3)

At Ax "
u,—i—u”?+--~+cux—cu”7+~-~ =0 3.2.5)
J

and when we subtract the PDE (3.2.1) we get the (local) truncation error

At Ax .
T = u,,7 — cuxx? + higher order terms = O(At?) 4+ 0(Ax) (3.2.6)

so that lima,—.0 ax—0 T — 0. Therefore the FDE is consistent. Note that both the
time and the space truncation errors are of first order, because the finite differences
are uncentered in both space and time. Truncation errors for centered differences are
second order, and therefore centered differences are more accurate than uncentered
differences (see Fig. 3.2.1(a) and the leapfrog scheme, based on centered differences
in space and in time, later in this section).

323 Convergence and stability criteria

The second question posed in Section 3.2.1 was whether the solution of the
FDE converges to the PDE solution, i.e., whether U(jAx, nAt) — u(x,t) when
jAx — x,nAt — t, Ax — 0, At — 0. This is of evident practical importance, but
can only be answered after considering another problem, that of computational sta-
bility. Consider again the PDE (3.2.1), which has the solution u(x, t) = u(x — ct, 0),
shown schematically in Fig. 3.2.1(b) (the initial shape of u translates with velocity c).
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u(t) forward Figure 3.2.1: (a) Schematic
of centered (du/dt), ~
(Uny1 — uy-1)/ A1),
centered forward (du/dt), ~
(tns1 — uy)/At, and
backward (du/dt), ~
(u, — u,_1)/ At finite
differences estimating the
time derivative du /0t at
time ¢, = nAt. The three
estimates are consistent
with du/dt since they all
converge to du /0t as

! ! T At — 0. However, the

’ slope calculated from
(@) centered differences is
much closer to the exact
derivative because its

t truncation errors are second
order. (b) Schematic of the
solution of the wave
equation.

X
(b)
The FDE (3.2.3) can be written as
Uit = (1 = wUj + pU;, (3.2.7)

where u = cAt/Ax is the Courant number. Assume that 0 < u = cAt/Ax < 1, as
in Fig. 3.2.2(a). Then the FDE solution at the new time level U ;7“ is interpolated
between the values U j” and U j’-‘_l. In this case the advection scheme works the way
it should, because we know the true solution is in between those values. However,
if this condition is not satisfied, and & = cAt/Ax > 1 (as in Fig. 3.2.2(b)) or u =
cAt/Ax < 0 (as in Fig. 3.2.2(c)), then the value of U’}“ is extrapolated from the
values U} and U}_,. The problem with extrapolation is that the maximum absolute
value of the solution U} increases with each time step. Taking absolute values of
(3.2.7) and letting U" = max |U_]’-‘|, we get

U < U1l =l + (UL | Il
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t Figure 3.2.2: Schematic of
the relationship between

; Ax, At, and ¢ leading to

| interpolation of the solution

A S -
(a)0<c< % " i ' at time level n + 1 (case (a)),
T “I? 'L or to extrapolation (cases
i (b) and (c)) depending on

the value of the Courant
number u = cAt/Ax.

tyer
(o< &<e
ty
t
O —
()e<o< 2 |
o FE—

so that
U™ < {11 — | + |ul}U”

Then U"*! < U" ifand only if 0 < pu < 1.

If the condition 0 < u < 1 is not satisfied, then the solution is not bounded and
it grows with n. If we let Az, Ax — 0 with u = const., it only makes things worse,
because then n — oo. In practice, if the condition 0 < u < 1 is not satisfied, the
FDE “blows up” in a few time steps, faster for nonlinear problems. We define now
computational stability: we say that an FDE is computationally stable if the solution
of the FDE at a fixed time ¢ = nA¢ remains bounded as At — 0. The condition on
the Courant number of being less than 1 in absolute value is usually known as the
Courant-Friedrichs—Lewy or CFL condition.

We can now state the fundamental Lax—Richtmyer theorem: Given a properly
posed linear initial value problem, and a finite difference scheme that satisfies the
consistency condition, then the stability of the FDE is the necessary and sufficient
condition for convergence.
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The theorem is useful because it allows us to establish convergence by examining
separately the easier questions of consistency and stability. We are interested in
convergence not because we want to let Az, Ax — 0, but because we want to make
sure that if Af, Ax are small, then the errors u(jAx,nAt) — U 7 (accumulated or
global truncation errors at a finite time) are acceptably small.

To determine the necessary condition for stability of the FDE (3.2.3) we used
the “criterion of the maximum” method. We can also use it to study the stability
condition of the following FDE, which approximates the parabolic diffusion equation
u/dt = 00%u/ox>:

n+1 n n n n
Uim ~U _ U m 20 U

= N (3.2.8)

The verification of consistency is immediate. Note that, because the differences are
centered in space but forward in time, the truncation error is first order in space and
second order in time O(Af) + O(Ax)>.

We can write (3.2.8) as

Uit = pUjy, + (= 2w)Uf + nU;-,
where i = o At/Ax?. If we take absolute values, and let U”" = max; U7, we get
U™ < (Il 4 11 = 2p] + [ yU” (3.2.9)

So we obtain a condition 0 < < 1/2 to insure that the solution remains bounded
as n — o0, i.e., as the necessary condition for stability of the FDE.

Exercise 3.2.1: The condition on the wave equation 0 < u < 1 for the upstream
FDE is interpreted as “the time step should be chosen so that a signal cannot travel
more than one grid size in one time step.” Give a physical interpretation of the
stability condition and the equivalent “Courant number” i = o (At/Ax?) < 1/2 for
the diffusion equation.

Unfortunately, the criterion of the maximum, which is intuitively very clear, can
only be applied in very few cases. In most FDEs some coefficients of the equations
analogous to (3.2.9) are negative, and the criterion cannot be applied.

Another stability criterion that has much wider application is the von Neu-
mann stability criterion: Assume that the boundary conditions allow expansion
of the solution of the FDE in an appropriate set of eigenfunctions. For sim-
plicity we will assume an expansion into Fourier series (e.g., periodic boundary
conditions):

Ux,t) = Z Ze'® X (3.2.10)
k
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The space variable, x, and the wavenumber k can be multidimensional, e.g., x =
(x1, x2, x3), kK = (k1, k2, k3). The dependent variable U can also be a vector for a
system of equations.

Letx; = jAx (orx; = (ji1Axy, jpAxs, j3Ax3)). We define p as the wavenumber
for the finite Fourier series: p = kAx or p = (kj Axy, ko Ax;, ks Axs). Lett, = nAt.
Then the Fourier expansion is

Ul =Y Zhe (3.2.11)
P

(where for multiple dimensions p - j = p1ji1 + p2j2 + p3j3).
When we substitute this Fourier expansion into a linear FDE, we obtain a system
of equations

n+1 __ n
M =G,z"

G is an “amplification” matrix that, when applied to the pth Fourier component of
the solution at time n At “advances” it to the time (n + 1)At; G depends on p, At
and Ax. If we know the initial conditions

UY = Z Z0e (3.2.12)
)4

then the solution of the FDE in (3.2.11) is
n _ ,n 0
zZ,=G,Z, (3.2.13)

Therefore, stability, i.e., boundedness of the solution for any permissible initial con-
dition at any fixed time, is guaranteed if the matrix G" is bounded for all p when
At — 0and n — oo. So, we must have ||G"|| < M for all p,asn — oo. Here ||A]|
is a norm or measure of the “size” of a matrix A. If o (G) is the spectral radius of G,
i.e., 0(G) = max; |;|, where A; are the eigenvalues of G, then it can be shown that
for any norm,

(@I = IG"I = 1IGI" (3.2.14)

The equal sign is valid if G is normal, i.e., if GG* = G*G, where G™ is the transpose-
conjugate of G, but in general the amplification matrices arising from FDEs are not
normal.
Thus a necessary condition for stability of an FDE, and therefore a necessary
condition for convergence, is that
lim [o(G)]" = finite = ™" (3.2.15)

At—0,nAt—t

Then

a(G) < [O'(G)"]l/” < QCOML/N — COnSLAL/T ] M
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or
o(G) < 1+ O(AD) (3.2.16)

the von Neumann necessary condition for computational stability.

The term O(At) allows bounded growth with time if this growth is “legitimate”,
i.e., if it arises from a physical instability present in the PDE. If the exact solution
grows with time, then the FDE cannot both satisfy o(G) < 1 and be consistent with
the PDE.

Sufficient conditions are very complicated, and are known only for special cases.
In practice it is generally observed that eliminating the equal sign in (3.2.16) is enough
to ensure computational stability.

In principle this method can also be used to study the stability of the boundary
conditions, if they are appropriately included in the amplification matrix. In practice
this is complicated, and computational stability of the boundary conditions is usually
obtained by ensuring well-posedness, and testing the stability experimentally. For
simple equations, and without considering the effect of boundary conditions, the von
Neumann criterion can be simplified by assuming solutions with an amplification
factor p rather than a matrix. The solution for the amplification factor p then coincides
with the eigenvalues of the amplification matrix, and the von Neumann stability
criterion is p < 1 4+ O(Ar).

Example 3.2.2:
pDE: 24 4 2
—4c— =
0 0x
vitt—ur - ur-ur,
FDE: +c =0 (upstream scheme) (3.2.17)
At Ax

We have already studied consistency, and used the criterion of the maximum to get
a sufficient condition for stability. Let us now apply the von Neumann criterion:
Assume

U = D736 = 3 e
p

p

We substitute in (3.2.17) and eliminate Ae’” and obtain

n+1

Pt —ph +C,0§(1 —eP)

At Ax
The amplification factor p is the same as the 1 x 1 amplification matrix G, and
therefore the same as its spectral radius o (G), and the stability condition is |p| < 1
for all wavenumbers p. We need to estimate the maximum value of the spectral radius
(or amplification factor in this case):

=0 forallp (3.2.18)

p=1—pu(l—e?)y=1—pu(l —cos p+isinp) (3.2.19)
lp1? = (1 — u(1 — cos p))* + p*sin® p (3.2.20)
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We make use of the trigonometrical relationships

cos p = cos? L sin’ L sin p = ZSiHBCOSB
2 2 2 2
and obtain
lpl> =1 —4u( — p)sin® g (3.2.21)

Now consider the sin®p/2 term: The shortest wave that can be present in the fi-
nite difference solution is L = 2Ax, therefore the maximum value that p = kAx =
27 Ax /L can take is p = m, and the maximum value of sin®p/2 is therefore 1. The
other factor, (1 — w), is a parabola whose maximum value is 0.25 when p© = 0.5.
So the amplification factor squared will remain less than or equal to 1 as long as
0 < u < 1. This coincides with the condition we obtain from the criterion of the
maximum (and also with the notion that we should not extrapolate but interpolate
the new values at time level r = (n 4 1)At, cf. Fig. 3.2.2).

It is important to note that the amplification factor p indicates how much the
amplitude of each wavenumber will decrease or increase with each time step.
The upstream scheme decreases the amplitude of all Fourier wave components of
the solution, since, if 0 < < 1, p < 1. This is therefore a very dissipative FDE: it
has strong “numerical diffusion.” Fig. 3.2.3 shows the decrease in amplitude when
using the upstream scheme after one time step and after 100 time steps for each

o
o

Ubstrearﬁ

Amplitude

o
~
T

100i steps

I E N - A— A— S —

0
0 0.39 079 118 157 196 236 275 3.14
p=k'delta x

L=infinity L=8"deltax L=4"deltax L =2*delta x

Figure 3.2.3: Amplification factor of wave components of the wave equation using
either the “upstream” FDE, and the Matsuno or Euler-backward schemes with

u = 0.1; L is the wavelength in units of Axpgz = [1 — u?sin® p 4+ u*sin* p]'/? and
PuUpxy = [1T- 4#(1 - /'L) SiIl2 p]1/2.
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wavenumber p using a Courant number u = 0.1, a typical value for advection given
the presence of fast gravity waves. Since its truncation errors are large (of first order),
the upstream scheme is in general not recommended except for special situations (e.g.,
for outflow boundary conditions, or when modified in such a way that the dissipation
rate becomes lower). An alternative, less damping scheme known as the Matsuno or
Euler-backward scheme, frequently used in combination with the leapfrog scheme
is also shown. Note that a “downstream” scheme (Fig. 3.2.2(c)) is unstable.

Example 3.2.3: Leapfrog scheme for the wave equation

ou ou
PDE: — +c¢c— =0
ot aIx
R N R
FDE : —Z T I 4¢ f+‘2Ax L (3.2.22)

This is the most popular of all schemes used for hyperbolic equations.

Exercise 3.2.2: Find that the leapfrog scheme is consistent, and the local truncation
error is of second order in space and time.

Stability: Assume U} =) Zhe'™ =" Apre”
» »

Substitute in the FDE
pn+] _ pnfl pn(eip _ e*ip)
=0 3.2.23
2ar T 2ax (3-2.23)
Therefore
o> +2ipsinpp—1=0 (3.2.24)

Because we have three, not two, time levels /o”+l , p", and p”_l, we have a quadratic
equation and two solutions for the amplification factor p:

p = (—ipsin p) £/(—pu?sin® p + 1) (3.2.25)

Since the last term in the quadratic equation (3.2.24) is —1, and this is the product
of the roots, the term inside the root (—u?sin’ p + 1) must be real, since otherwise
the roots would be purely imaginary, and one of them would be larger than 1, which
violates the stability criterion. In order for v/(—u2sin> p + 1) to be real for all p, we
must have 1> < 1. The stability condition for the leapfrog scheme therefore becomes

-1l <cAt/Ax <1 (3.2.26)
Exercise 3.2.3: Draw a schematic like Fig. 3.2.2, and explain why the sign of the

Courant number does not matter for its stability criterion, unlike the sign of the
upstream scheme. Why did the term O(At) not appear in the stability condition?
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We can actually find the exact solution of the leapfrog FDE (3.2.22), as well as of the
PDE. Recall that the PDE 0u /9t 4+ cdu/dx = 0 has plane wave solutions of the form
Ae*—ct) = peitkr=on) gince the exact solution is of the form u(x, t) = u(x — ct, 0).
The FDR w = kc gives the exact frequency of the PDE.

By analogy we try to find solutions of the FDE of the form A ,¢/"/ =" where 6 =
VAt represents the computational frequency v multiplied by Az (the computational
frequency v is in general different than the exact frequency w). Substituting in the
FDE and dividing by e/?/=0" we get

(efiQ _ eie) + ’u(eip _ efip) =0
or
sinf = psin p (3.2.27)

the FDR for the leapfrog scheme. Because sin6 = sin(w — 6), the two solutions for
the finite difference FDR are

01 = arcsin(j sin p) } (3.2.28)

0, = m — arcsin(u sin p)

Substituting into the FDR, and assuming that the initial amplitude for the wave-
number p is 1, we obtain that the solution of the FDE is a sum of two terms corre-
sponding to 8; and 6, respectively:

UJn — Apei(ﬂj—en) +(1 - Ap)ei(l’j+9”)(_])” (3.2.29)

where A = arcsin(u sin p), and /™ = —1. (This can also be obtained by noting that
when we assume solutions of the form ¢!(”/=%", they imply an amplification fac-
tor p =e % =cos® —isinf = —ipsinp £+/1 — u?sin’ p, i.e., sin@ = wsin p,
with two solutions as indicated above.)

Of the two terms in the solution, the first one is the “legitimate” solution, which
approximates the PDE solution. Note that the second term changes sign every time
step, and it moves in the wrong direction: for this reason this unphysical term is
called “computational mode”. It arises because the leapfrog scheme has three time
levels, rather than two, giving rise to an additional spurious solution. Although the
leapfrog scheme is simple and accurate, its three-time level character gives rise to
two problems that need to be dealt with.

The first problem is that the leapfrog scheme needs a special initial step to get
to the first time level U! from the initial conditions U°, before it can be started
(Fig. 3.2.4). This can be done in several simple ways:

(a) Simply set U' = U°. Since u' = u® + u; At + - - -, this introduces errors of
order O(At), and is not recommended.

(b) Use for the first time step a forward time scheme. The forward scheme has
truncation errors of order O(A¢), but since the time step is only used once, its
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ANV VYN

<>
At

Figure 3.2.4: Schematic of the leapfrog scheme with a half time step starting step.

contribution to the global error is multiplied by At, so that the total error is
still of O(At)?. For the same reason, the computational instability is not a
significant problem. Alternatively, use an Euler-backwards (Matsuno) scheme
for the first time step (see Table 3.2.1).

(c) Use half (or a quarter, eighth, etc.) of the initial time step for the forward time
step (Fig. 3.2.4), followed by leapfrog time steps. This will halve (or reduce
by a quarter, eighth, etc.) the error introduced in the unstable first step.

The second problem is that for nonlinear examples, the leapfrog scheme has a ten-
dency to increase the amplitude of the computational mode with time, separating the
space dependence in a checkerboard fashion between the even and odd time steps.
This can be solved by restarting every 50 steps or so, or by applying a Robert—Asselin
time filter.

Exercise 3.2.4: Show that a forward time scheme is unstable for hyperbolic equa-
tions.

Robert-Asselin time filter (Robert, 1969, Asselin, 1972)
After the leapfrog scheme is used to obtain the solution at t = (n 4+ 1)At, a slight
time smoothing is applied to the solution at time nAt:

ﬁn . +Ol(Un+l —2U" _I_ﬁ"—l) (3230)

replacing the solution at time 7. Note that the added term is like smoothing in time,
an approximation of an ideally time-centered smoother:

U"=U"+aU" —20"+U"" (3.2.31)

which cannot be carried out without knowing the complete unsmoothed series.

The smoother (3.2.31) is centered in time, and reduces the amplitude of different
frequencies v by a factor (1 — 4o sin*(vAz/2)). The computational mode, whose
period is 2At, is reduced by (1 —4«) every time step. Because the field at ¢ =
(n — 1)At is replaced by the already filtered value, the filter (3.2.30) introduces a
slight distortion of the centered filter (Asselin, 1972). This filter is widely used with
the leapfrog scheme, with « of the order of 1%.

Exercise 3.2.5: Integrate the linear wave equation using values typical of large scale
models. You can write your own FORTRAN or MATLAB program.

ou ou

— =—C
ot 0x
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Table 3.2.1. Time schemes for initial value problems dU/dt = F(U) (schemes

(a)—(i)); dU/dt = F1(U) +F,(U) (schemes (j)—(k))

Un+1 _ Un—l
—— = FU"
(a) AT "
Un+1 _Un—l
) S = F(U");
(@) AT (%)

ﬁn =" +O{(Un+1 —_2Uun _’_ﬁnfl)

Un+1_Un
b) ———— = FU"
(b) A7 wam

(C) Un+l —_yn _F <Un + Un+l>

At 2
Un+l —_y" U 1— Un+l
c)——~ =F pUT+A =P : B <05
At 2
Un+1 _yn
d — — —F Un+l
(d) A7 ( )
U* —U" Un+1 _yn
—— =FU"); ———— = F(U*
(e) A7 (%) A7 (%)
u*-ur
—— = F(U");
® A ")
Un+l _yn unr + U*
- - _Fl=——=
At ( 2 )
urtt —un 3 |
-~ =—F(zu--Uu"
® =5 (2 2 )
Un+1/2* —_yn
hy ——— = F{U");
(h) A2 w")
n+1/2% _ yrn
U U — F(Un+1/2*),
At/2 ’
n+1* n n+1 n
Ut Ut gy U U
At At
1 .
= 6[F(U") +2FU™T

+2F(Un+l/2**) + F(UI’H-I*)]

Leapfrog (good for hyperbolic
equations, unstable for
parabolic equations)

Leapfrog smoothed with the
Robert—Asselin time filter;
o~ 1%

Euler (forward, good for
diffusive terms, unstable for
hyperbolic equations)

Crank—Nicholson or centered
implicit
Implicit, slightly damping

Fully implicit or backward

Euler-backward or Matsuno:
good for damping high
frequency waves

Another predictor—corrector
scheme (Heun)

Adams—Bashford (second
order in time).

Runge—Kutta (fourth order)
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Table 3.2.1. (cont.)

() a=0; b=1/At
U* < (aU* + F(U")/b
U" < U" + U*
a<a—1/(NAt; b < b—1/(NAD)

N-times Lorenz’s N-cycle,
N = multiple of 4; Nth order

Un+1 _ Unfl Un+l + Unfl

6) Toar nUNY+ R (f) Semi-implicit
U* —y" Un+l —_U*

(3] A = Fi(U™); QA = F,(U*) Fractional steps

Boundary conditions: periodic
Initial conditions: u(x, 0) = ¢ + A sin(kx)
¢ =20m/s, A = 10m/s, Ax = 200km, k = 27 /L with L = 10Ax

(a) Choose two time steps, one of which satisfies the CFL condition and one
which violates it. How long does it take to “blow up”?

(b) Compare with the exact solution, compute the rms error R and the
relative error RE.
Repeat with A = 25 m/s.
Repeat with L = 4Ax.

(c) Prepare a table that summarizes R and RE.

Exercise 3.2.6: Modify the equation and the program used before to integrate a
nonlinear wave equation using values typical of large scale models:

ou ou
a0

Boundary conditions: periodic

Initial conditions: u(x, 0) = A sin(kx)

¢ =20m/s, A = 10m/s, Ax = 200km, k = 27w /L with L = 10Ax
Choose two time steps, one of which satisfies the CFL condition and one which
violates it. How long does it take to “blow up”? Compare with the linear equation
results.

Repeat with A = 25 m/s.

Repeat with L = 4Ax.
Compute a nonlinear solution with high resolution, taking it as “truth,” and then
prepare a table summarizing R and RE.
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Example 3.2.4:
du 0%u

This is the heat or diffusion equation with a “source of growth” bu.

n+1 n n n n
e R N U Ry

FDE
At Ax?

+bU? (3.2.33)

Exercise 3.2.7: Show that the amplification factor is

AL P L bAr <14 0(An (3.2.34)
(Ax)? 2 - -

p:

Therefore the stability criterion is still 0 Az/Ax? < 1/2, as we obtained with the
criterion of the maximum.

Exercise 3.2.8: Explain physically why the term b At does not influence the stability
criterion.

324 Implicit time schemes

In these schemes the advection or diffusion terms are written in terms of the new
time level variables.

Example 3.2.5:
PDE du + ou 0
t—tc—=
ot ox
n+1 n n+1 n
rop. 2~ Yi U — U
: 2At
a(Ur, —UM) + (1 —a) (U] — Ut
. (Ui, =Uh) +( (U - Ui -0 (3.2.35)

Ax

il

The factor o determines the weight of the “old” time values compared with the “new’
time values in the right-hand side of the FDE. Using the von Neumann method, we
substitute U} = Ap"e™ = Ae/P/=%" into (3.2.35).

Note that the scheme is centered in time (if @ = 1/2) at the point U;’fll//zz . For this
reason, we multiply by e~"/2, and obtain the amplification factor:

cos L i2puo sin P
2 2

o= (3.2.36)

cosg +i2u(l — @) sing
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t Figure 3.2.5: Schematic of
an implicit scheme. The dot
represents the value being
updated and the stars the
values that influence it.
Note that with the implicit
scheme there is no
extrapolation, and allows no
limit to the size of At.

tn+1

th

or

1 + 4p%a? tan? %

o? = (3.237)

14 4p2(1 — a)? tan? g
This implies that p < 1 if ¢ < 0.5, i.e., if the new values are given at least as much
weight as the old values in computing the RHS. In this case there is no restriction on
the size that At can take! This result (absolute stability, independent of the Courant
number) is typical of implicit time schemes. In Fig. 3.2.5 we show that in an implicit
scheme, a point at the new time level is influenced by all the values at the new
level, which avoids extrapolation, and therefore is absolutely stable. Note also that
if @ < 0.5 the implicit time scheme reduces the amplitude of the solution: it is an
example of a damping scheme. This property is useful for solving some problems
such as spuriously growing mountain waves in semi-Lagrangian schemes.
In summary, if we consider a marching equation

v = F) (3.2.38)
dt o
explicit methods such as the forward scheme
Un+1 —_yn
—F— =FU" 3.2.39
A7 ") ( )
or the leapfrog scheme
Un+1 _ Unfl
— = FU" 3.2.40
AT wr) ( )

are either conditionally stable (when there is a condition on the Courant number or
the equivalent stability number for parabolic equations) or absolutely unstable.
A fully implicit scheme
Un+1 —_y"
At
and a centered implicit scheme (Crank—Nicholson)
Un+1 —_y"r _F U" + Un+1
At N 2

= F(U") (3.2.41)

(3.2.42)



3.2 Initial value problems: numerical solution 87

are absolutely stable. The latter scheme is attractive because it is centered in time
(around #,41/2), and it can be written with centered space differences, which makes it
second order in space and in time. Also, it only has two time levels so it does not have
a computational mode. But, like all implicit schemes, it also has a great disadvantage.
Since U"*! appears on the left- and on the right-hand sides, the solution for U"*!,
unlike explicit schemes, in general requires the solution of a system of equations.
If it involves only tridiagonal systems, this is not an obstacle, because there are fast
methods to solve them. There are also methods, such as fractional steps (with each
spatial direction solved successively), where one space dimension is considered at
a time, that allow taking advantage of the large time steps permitted by implicit
schemes without paying a large additional computational cost.

Moreover, we will see in the next section that the possibility of using a time step
with a Courant number much larger than 1 in an implicit scheme does not imply
that we will obtain accurate results economically. The implicit scheme maintains
stability by slowing down the solutions, so that the slower waves do satisfy the CFL
condition. For this reason implicit schemes are only useful for those modes (such as
the Lamb wave or vertical sound waves) that are very fast but of little meteorological
importance (semi-implicit schemes, see next section).

Notes
(1) It is easy to check the properties of the time schemes in Table 3.2.1 when
applied to hyperbolic equations by testing them with a simple harmonic
equation:
U

5 = —ivU (3.2.43)

with solution U (¢) = U(0)e~""". After one time step, the exact solution is

U((n + DAL) = UnAne "2 (3.2.44)
which indicates that the exact magnification factor is e V4,

In (3.2.43), v is the computational frequency for a wave equation for a
given space discretization. For example, if we were using second order
centered differences in space, v = (sinkAx/Ax) c, for a spectral scheme,
v = kc. For the fully implicit time scheme (d), the amplification factor is

1 _ 1 —ivAt
L+ivAt 14 (vAr)?

Since the exact amplification factor has an amplitude equal to 1, this shows
that the implicit scheme is dissipative; similarly, comparing the imaginary
components of the exact and approximate amplification factors, it is clear that
the implicit solution is slowed down by a factor of about 1/[1 + (vA?)?].
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Exercise 3.2.9: Show that the Crank—Nicholson scheme significantly slows down
the angular speed of the solution by deriving the magnification factor for this
scheme, and comparing it with the exact magnification factor e V4!, Determine
the limit of the Crank—Nicholson amplification factor for the Courant number
VAt — o0.

U™ =U"pcy (3.2.45)

(2) Equations with damping terms (such as the parabolic equation) can also be
simply represented by the equation:

U _ v (3.2.46)
ar M -

In (2.46), u can be considered as the computational rate of damping. For
example, for the diffusion equation, using centered differences in space,
40 ., kAx

> Sin
(Ax) 2

I,L =
Exercise 3.2.10: Show that the leapfrog scheme is unstable for a damping term.

Exercise 3.2.11: Write a numerically stable scheme for the equation with both wave-
like and damping terms dU /9t = —(iv + p)U using a three-time level scheme.

Exercise 3.2.12: Show that for a wave equation the forward time scheme with cen-
tered differences in space is absolutely unstable. Note that this scheme shows that
the “no extrapolation” rule is a necessary but not a sufficient condition for stability
of wave equations.

325 Semi-implicit schemes

Consider the SWEs that we discussed in Section 2.4.1:
du n du n du R0} +f
—Fu—+tv— =—-—— v
at dax dy ox

av n dv n Jdv d¢ f

¢ n ¢ n ad ® ou n av @ — ) ou n av
—tu—+v—=-P| —4+— ) —(¢p — — + —
ot ax ay dx  dy dx  dy

As indicated in that section, the phase speed of the inertia-gravity wave is given by

2
cigw = VIZW ZUi,/%+CD%U:I:3OOm/s
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and the terms that give rise to the fast gravity waves are underlined. This means
that the Courant number u = ¢;gw At/Ax is dominated by the speed of external
inertia-gravity waves (equivalent to the Lamb waves, horizontal sound waves), and
an explicit scheme would therefore require a time step an order of magnitude smaller
than that required for advection. For this reason, Robert (1969) introduced the use
of semi-implicit schemes to slow down the gravity waves. We write such a scheme
using the compact finite difference notation for differences and averages:

5. f = fivi2 = fi—1p2
Ax (3.2.48)
5= fimp+ fim12)/2

and similarly for differences in y or #. With this notation, assuming uniform resolution,

- _ Jiri— fiar
Sonf =8, " =
wf =0 =T (3.2.49)

2 =i+ fin)/2
Using this compact finite difference notation we can write the leapfrog semi-implicit
SWE as

Sortt + Uyt + v8ryu = —8: 0% + fu

82V + U v + V82,0 = —82,0% — fu

—

8 + U2 + V82 = — BB + 52,0) — (§ — B) (ot + 83,0)

(3.2.50)

Everything that does not have a time average involves only terms evaluated explicitly
at the nth time step. We can rewrite the FDEs (3.2.50) as

un+l _ un—l | |
N = _82x(¢n+ + ¢n— )/2 + R,
vn+1 " 1 il o
IR —&y(@"T + 9" )/2+ R,
¢11+1 _ ¢nfl
Z—At — _®[62x(un+l + ul‘t*l)/z_’_ Szy(U"H + vnfl)/z] + R¢

(3.2.51)

where the “R” terms are the “rest” of the terms evaluated at the center time nAt. For
example, R, = fv — udy.u — véryu, and similarly for R, and Ry.

From these three equations we can eliminate »"*!, v"*! and obtain an elliptic
equation for ¢"*1:

1 n 1 n—
<8§x +83, — CDAt2>¢ +1_ (52x +83, + <I>Az2)¢ |

2 n—1 2 F"
+2(62xRu + 5Zva) + A_l((SZx + 82\) ) - ER i,j (3252)
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Note that the right-hand side of this elliptic equation is evaluated at t = nAt or
(n — 1)At, so that it is known. Solving this elliptic equation provides ¢"*!, and once
this is known, it can be plugged back into the first two equations of (3.2.51), and thus
(™!, v"*t1) can be obtained.

The elliptic operator in brackets in the left-hand side of (3.2.52), is a finite differ-
ence equivalent to (V2 — A?),

1
Git2,j +bi2j+ i jr2+ Gij2— |4+ — | bij
2 2 1 K
GRECIryve R 4A2

(3.2.53)

where we have assumed for simplicity that Ax = Ay = A, and u?> = ®A?/A? is
the square of the Courant number for gravity waves. Since u?> = ®Ar?/A? >> 1,
the semi-implicit scheme distorts the gravity wave solution, slowing the gravity wave
down until they satisfy the von Neumann criterion. This is an acceptable distortion
since we are interested in the slower “weather-like” processes, and since the slower
modes satisfy the CFL (von Neumann) stability criterion, and they are written ex-
plicitly, they are not slowed down or distorted in a significant way.

In the same way that the terms giving rise to gravity waves can be written semi-
implicitly, the terms giving rise to sound waves can also be written semi-implicitly
(Robert, 1982). They are the three-dimensional divergence in the continuity equation
(Sections 2.3.2, 2.3.3). This has allowed the use of nonhydrostatic models without the
use of the anelastic approximation or the hydrostatic approximation. André Robert
(1982) created a model that can be considered the “ultimate” atmospheric model. It
treats the terms generating sound waves (anelastic terms, i.e., three-dimensional di-
vergence), and the terms generating gravity waves (pressure gradient and horizontal
divergence) semi-implicitly, and it uses a three-dimensional semi-Lagrangian scheme
for all advection terms. This model, denoted the “Mesoscale Compressible Commu-
nity” (MCC) model, is a “universal” model designed so that it can tackle accurately
atmospheric problems from the planetary scale through mesoscale, convective and
smaller (Laprise et al., 1997).

There is another approach followed by several major nonhydrostatic models (e.g.,
MMS5 and ARPS): the use of fractional steps (see Table 3.2.1, scheme (k)), with the
sound-wave terms integrated with small time steps. In addition, the ARPS model uses
a semi-implicit scheme for vertically propagating sound waves (Xue et al., 1995).

Exercise 3.2.13: Consider the diffusion equation du/dt = od*u/dx* with initial
conditions u = x for x < 0.5 and ¥ = 1 — x for x > 0.5. Compute the first two
time steps using an explicit scheme (forward in time, centered in space) with five
points between x = Oandx = 1, and a time step such that r = o At/(Ax)? is equal
tor = 0.1, 0.5, 1.0. Repeat using Crank—Nicholson’s scheme.
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33 Space discretization methods

33.1 Space truncation errors. Computational phase speed.
Second and fourth order schemes.

It is convenient to separate the truncation errors in a discretized model into space
truncation errors and time truncation errors. For explicit finite difference models,
the errors introduced by space truncation tend to dominate the total forecast errors
because for “weather waves” the time step and the Courant number used are much
smaller than would be required to physically resolve the frequency. Let’s neglect
for the moment time truncation errors and consider the wave equation aU/dt =
—cdU/dx discretized only in space.
If we approximate dU /dx using space centered differences, we get

sou, = D —Uin g A A or
2.X j - ZAX - X 6 XXX 120 XXXXX
=U, + AAX> + BAx* + -+ (3.3.1)

If instead of the closest neighboring points j + 1, j — 1, we use the points j + 2,
Jj — 2, we get
Ujr2 — Uj

84y U; = sz = U, +4AAX2 + 16BAX* + - - (3.3.2)

This is also a second order scheme, but the truncation errors are four times as large.
We can now eliminate from (3.3.1) and (3.3.2) the term AAx2, and obtain

4 1
382U = 380U; = U = 4BAX* +--- (3.3.3)

Now (3.3.3) is a fourth order approximation of the space derivative. So

dUu;
d—t’ = —c6U; (3.3.4)
is a second order FDE and
dU; 4 1
7 = —C 382xUj — §S4XU]‘ (335)
is a fourth order FDE.
Assume solutions of the form
Uj(t) = A0 = Ae!®u—vo (3.3.6)

where ¢’ is the computational phase speed, and v’ the computational frequency, so
that dU; /dt = —iv'U;. Making use of 8,,U; =i (sinkAx/Ax) U;, and replacing
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in (3.3.4) and (3.3.5) we find that for second order differences,

, _ sinkAx (33.7)
Q=i ¢ 3.

and for fourth order differences,

(3.3.8)

, _ (4sinkAx 1 sin2kAx
“=\37kax T3 2kAx

Note that (3.3.7) and (3.3.8) imply that the phase speed is always underestimated by
space finite differences. For the smallest possible wavelength, L = 2Ax, kAx = m,
the computational phase speed is zero for both second and fourth order differences:
the shortest waves don’t move at all (Fig. 3.3.1)! For L = 4Ax, kAx = /2, amuch
more accurate approximation is obtained with fourth order than with second order
differences: ¢} = 0.64c, c; = 0.85¢, and the fourth order advantage becomes even
better for longer waves: for L = 8Ax, ¢;, = 0.90c, ¢, = 0.99c.
We can also compute the computational group velocity 9v'/dk, where

inkA
W =k = 2B (3.3.9)
Ax
for second order differences. Then,
W coskA (3.3.10)
Y ccoskAx 3.

for second order differences. Therefore, for the shortest waves, L = 2Ax, kAx = 7,
with both second and fourth order differences the energy moves in the oppo-
site direction to the real group velocity (equal to the phase speed ¢): ¢, = —c,.
Figure. 3.3.1 shows the computational phase speed and group velocity for second
and fourth order differences. As a result of the negative group velocity, space cen-
tered FDEs of the wave equation tend to leave a trail of short-wave computational
noise upstream of where the real perturbation should be. This problem is greatly
reduced using more advanced recent schemes such as those of Takacs (1985) and
Smolarkiewicz and Grawoski (1990).

A second type of fourth order finite difference scheme, known as the compact or
implicit fourth order scheme, can be obtained by again making use of (3.3.1) but re-
placing the third derivative in the truncation error for the centered differences by its fi-
nite difference approximation Uyyyj ~ (Uyj11 — 2Uyj + Uyj—1)/ (Ax)2 + 0 (Ax)z.
The new fourth order scheme then becomes

Ujit1 —Uj

Uyjt1 +4U; + Ui =6 A

(3.3.11)

It is called “compact” because it involves only the point j and its closest neighbors,
and “implicit” because (3.3.11) results in a system of (tridiagonal) equations for the
x-derivative, rather than an explicit estimate such as (3.3.4) or (3.3.5).
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Figure 3.3.1: Ratio of the computational to the physical phase speed and group
velocity for a simple wave equation, neglecting time truncation errors, for second
order, fourth order explicit and implicit and spectral schemes.

With this scheme, the finite difference space derivative for a given wavenumber is

given by

N isinkAx 6
T Ax  4+42coskAx

so that
dU; U i sinkAx 6 o' U
— = —ic'U; = —iv j
dt 7 Ax 44 2coskAx e
and the computational phase speed becomes
, sinkAx 6
(3.3.12)

Ca1 = ¢
kAx 44+ 2coskAx

and for L = 4Ax, kAx = 7 /2, the phase speed is ¢}, = 0.955¢, which is consider-
ably better even than the regular fourth order differences phase speed.
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The group velocity for this scheme,

vy _ |: 6 cos kAx 2sin’ kAx ]c (3.3.13)

ok 4 4+ 2coskAx + (4 +2coskAx)?

is already positive for L = 3Ax (Fig. 3.3.1). For implicit schemes where one is
already solving a tri-diagonal equation (see Section 3.4.2), this compact fourth order
scheme, which has an accuracy equivalent to linear finite elements, is very accurate
and involves little additional computational cost. The compact scheme is similar to
Galerkin finite element approximation to space derivatives (Durran, 1999).

332 Galerkin and spectral space representation

The use of spatial finite differences, as we saw in the previous section, introduces
errors in the space derivatives, resulting in a computational phase speed slower than
the true phase speed, especially for short waves.

The Galerkin approach to ameliorate this problem is to perform the space dis-
cretization using a sum of basis functions U(x, t) = Z,le Ar(t)pr(x). Then, the
residual (error) R(U) = oU/dt + F(U) of the original PDE du/dt + F(u) = 0 is
required to be orthogonal to the basis functions ¢(x). The space derivatives are com-
puted directly from the known d¢(x)/dx. This procedure leads to a set of ordinary
differential equations for the coefficients A, (). If the basis functions chosen for the
discretization are orthogonal and satisfy the boundary conditions, the derivation be-
comes simpler. The use of local basis functions (e.g., ¢; (x) a piecewise linear function
equal to 1 at a grid point i and zero at the neighboring points) gives rise to the finite
element method, with accuracy similar to that of the compact fourth order scheme.
Another popular type of Galerkin approach is the use of a global spectral expansion
for the space discretization, which allows the space derivatives to be computed an-
alytically rather than numerically. In one dimension, periodic boundary conditions
suggest the use of complex Fourier series as a basis.

Consider a periodic domain of length L, with a number of grid points J,,,,, = JM,
and scale x by 2w /L. If we use discrete complex Fourier series truncated to include
wavenumbers up to K, the spectral representation is:

K
Uxj.t)= Y At)e™ (3.3.14)
k=—K

where A_i(t) = Aj(t), and the star represents the complex conjugate.
Alternatively, (3.3.14) can be written using real Fourier series as

K K
Uxj, 1) = ao + Zak cos(kx) + Z by sin(kx) (3.3.15)
k=1 k=1
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where
Ay =% % 0 Ay =a
2 2
There are 2K + 1 distinct real coefficients that are determined by

1 JM—1 .
A = o > Uy, e ™ (3.3.16)
Jj=0

Here we have used the orthogonality property

M- :
RS el — 5 — 1 ifk=I

JM =0 0 otherwise

(3.3.17)

If JM = 2K + 1, the grid representation (left-hand side of (3.3.14)) and the spectral
representation (right-hand side of (3.3.14)) contain the same number of degrees of
freedom, and the same information.

Then, in the wave equation U /9t = —cdU /dx, we can discretize U in space as
in (3.3.14) and compute the space derivative analytically:

AU (x, t K A
W1 _ Y kA (3.3.18)
0x P

If we neglect the time discretization errors, as before, and assume solutions of the
form U (x, t) = Ae'*c—¢D we find that ¢’ = ¢, i.e., the computational phase speed is
equal to the true speed (Fig. 3.3.1). The space discretization based on a spectral rep-
resentation is extremely accurate (the space truncation errors are of “infinite” order).
This is because the space derivatives are computed analytically, not numerically, as
done in finite differences.

If the PDE is nonlinear, forexample 0U /0t = —U dU /dx, then both the grid-point
(“physical space”) representation and the spectral representation are very useful:
derivatives are computed efficiently and accurately in spectral space, whereas non-
linear products are computed efficiently in physical space. This leads to the so-called
transform method used for spectral models: the space derivative is computed in spec-
tral space, then U is transformed back into grid space, and the product U; (9U /9x) ;is
computed locally in grid space. We will see later that in order to avoid nonlinear in-
stability introduced by aliasing of wavenumbers beyond K that appear in quadratic
terms, the grid representation requires about 3/2 as many points as the minimum
number of points required for a linear transform (JM = 2K + 1). For this reason the
new values of U at time (n + 1)At¢ are usually stored in their spectral representation,
which is more compact.

We can use von Neumann’s criterion to determine the maximum time step allowed
for stability using, for example, the leapfrog time scheme. The FDE is

Un+l _ Un—l

T = ikeU" (3.3.19)
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Assuming solutions for the wave equation of the form U” = p"e'**, we obtain that the
amplification factor is p = —ikcAtr /1 — k?c?Ar?, and in order to have |p| < 1

we need to satisfy the stability condition
(keAr)? <1 (3.3.20)

Since the highest wavenumber present corresponds to L = 2Ax, the stability cri-
terion for spectral models is therefore cAf/Ax < 1/m. So, the stability criterion is
more restrictive for spectral models than for finite difference models, but this is com-
pensated by the fact that the accuracy, especially for shorter waves, is much higher,
and therefore fewer short waves need to be included (Fig. 3.3.1).

The basis functions used in spectral methods are usually the eigensolutions of
the Laplace equation. In a rectangular domain, they are sines and cosines (e.g., the
Regional Spectral Model (RSM), Juang et al., 1997). On a circular plate, one would
instead use Bessel functions.

Global atmospheric models use as basis functions spherical harmonics, which are
the eigenfunctions of the Laplace equation on the sphere:

Gy L[ L v 1 Y™
= — — | cos
" a?|costg 9Ar  cosg g ¢ A

—n(n+ 1
_ 2t Dym (33.21)

a2

The spherical harmonics are products of Fourier series in longitude and associated
Legendre polynomials in latitude:

Y7 (h, @) = P (e (3.3.22)

where p = sing, m is the zonal wavenumber and n is the “total” wavenumber in
spherical coordinates (as suggested by the Laplace equation (3.3.21)). P)" are the
associated Legendre polynomials in ;4 = sin¢ = cos 8, where § = w — ¢ is the co-
latitude. For example, the P{) = 1; P = cos0; P} = sin®; P = 1/2(3cos’ 6 — 1);
P} =3sinfcosh; P =3sin’6;. ..

Using “triangular” truncation

N »n
U, p.t)=Y_ Y UMDY 9) (3.3.23)
n=0 m=—n
the spatial resolution is uniform throughout the sphere. This is a major advantage
over finite differences based on a latitude—longitude grid, where the convergence of
the meridians at the poles requires very small time steps. Although there are solu-
tions for this “pole problem” for finite differences, the natural approach to solve the
pole problem for global models is the use of spherical harmonics. Williamson and
Laprise (1998) provide a comprehensive description of numerical methods for global
models.
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Figure 3.3.2: Illustration of the characteristics of spherical harmonics, adapted from
Williamson and Laprise (1998). (a) Depiction of three spherical harmonics with total
wavenumber n = 6. Left, zonal wavenumber m = 0; center, m = 3; right, m = 6.
Note that 7 is associated with the total wavelength (twice the distance between a
maximum and a minimum), which is the same for the three figures. (b) and (c)
Amplitude of Legendre polynomials for different combinations of m and n showing
how high zonal wavenumbers are suppressed near the poles, so that the horizontal
resolution is uniform when using a spectral representation with triangular truncation.

Fig. 3.3.2(a) shows the shape of three spherical harmonics with total wavenum-
ber n = 6, and zonal wavenumber m = 0, 3 and 6. Note that the distance between
neighboring maxima and minima is similar for the three harmonics, and is associated
with the “total” (two-dimensional) wavenumber n. Figures 3.3.2(b) and (c) show that
the amplitude of the Legendre polynomials for high zonal wavenumbers are indeed
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Figure 3.3.2: (cont.)

20 r T T T

1.0 F

00 F i
: P HE
r V| i
F —— n=m \l : .-"{\:

10 — — p=m+2 v U
- S N
r ——- n=m+4 ]
[ s n=m+8 ]
E —-— n=m+16 1

_op L . ! | ! ! ] 1 I 1
90 60 30 0

Latitude
(©

suppressed near the poles. This suppression eliminates the need for small time steps
due to the convergence of the meridians in the poles, which are not singular points
spectral models.

333 Semi-Lagrangian schemes

Another numerical method that has become very popular in NWP models is the
semi-Lagrangian scheme. The equations of motion, as we have seen, can in general
be written as conservation equations

d—u = Su) (3.3.24)
dt

where the left-hand side of the equation represents a total time derivative (following
an individual parcel) of the vector of dependent variables u. The total time derivative
(also known as individual, substantial or Lagrangian time derivative) is conserved
for a parcel, except for the changes introduced by the source or sink S.

In a truly Lagrangian scheme, one would follow individual parcels (transporting
them with the three-dimensional fluid velocity), and then add the source term at the
right time. This is not practical in general because one has to keep track of many
individual parcels, and with time they may “bunch up” in certain areas of the fluid,
and leave others without parcels to track.

The semi-Lagrangian scheme avoids this problem by using a regular grid as in
the previous schemes discussed (which are denoted Eulerian, because the partial
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Figure 3.3.3: Schematic of the semi-Lagrangian scheme. The circles represent the
arrival point AP at the new time level (a point) and the departure point DP at the
previous time level. The thick arrow represents the advection from DP to AP. The
value of the variables at AP is equal to their value at DP, which is obtained by
interpolation between neighboring points. Because there is no extrapolation, the
semi-Lagrangian schemes are absolutely stable.

derivative du /0t is estimated instead of the total derivative). At every new time step
we find out where the parcel arriving at a grid point (denoted arrival point or AP)
came from in the previous time step (denoted departure point or DP). The value of
u at the DP is obtained by interpolating the values of the grid points surrounding
the departure point. Figure 3.3.3 suggests that, because there is no extrapolation, the
semi-Lagrangian scheme is absolutely stable with respect to advection, which can be
confirmed by doing a von Neumann criterion check (Bates and McDonald, 1982).
The semi-Lagrangian scheme can then be written using two or three time levels.
In a three-level time scheme, for example, if MP is the middle point between the DP
and AP, the scheme can be written as
(U, p = W" Hpp + 28U mp (3.3.25)

J

In a two-time level scheme it could be written as
At
n+1 n n n+1
(U) ,p = WMpp + 7[5(0 )or +S(UTF )ar

In general, for nonlinear equations dq/dt = —u dq/dx + S(g), so the semi-
Lagrangian scheme for the quantity ¢ can be written as

gap = qpp + S(qup) (3.3.26)

However, the DP has to be determined from the trajectory dx/dt = u integrated
between the DP and AP, for example as

At
Xpp = Xap — T(UDP + Uap) (3.3.27)

Since u evolves with time, Usp and Upp are not known until the DP has been
determined, this is an implicit equation that needs to be solved iteratively. For three-
level semi-Lagrangian schemes, the approximation

Xpp = Xap — 2AtUyp (3.3.28)
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also has to be solved iteratively for Uy, p, but this is simpler than for the two-level
time scheme.

The accuracy of the semi-Lagrangian scheme depends on the accuracy of the de-
termination of the DP, and on the determination of the value of Upp and the other
conserved quantities ¢ by interpolation from the neighboring points. A linear inter-
polation between neighboring points results in excessive smoothing, especially for
the shortest waves. For this reason cubic interpolation is preferred (Williamson and
Laprise, 1998). This is a costly overhead of semi-Lagrangian schemes. Despite the
additional costs, in practice this scheme has been found to be accurate and efficient
(see the general review of semi-Lagrangian methods by Staniforth and C6té (1991)).
A “cascade” method has been proposed that results in a very efficient high order inter-
polation between the distorted Lagrangian grid and the regular Eulerian grid (Purser
and Leslie, 1991, Leslie and Purser, 1995). This allowed Purser and Leslie to suggest
a forward trajectory semi-Lagrangian approach instead of the conventional back-
ward trajectory that we have so far described, which has additional advantages. (See
Staniforth and C6té (1991), Bates et al. (1995), Purser and Leslie (1996), Williamson
and Laprise (1998) for further details.) Combining the semi-Lagrangian approach
with a semi-implicit treatment of gravity waves (Section 3.2.5), as first suggested by
Robert (1982) and Robert et al. (1985), increases its efficiency. Laprise et al. (1997)
have documented a “mesoscale compressible community” model, which is nonhy-
drostatic, three-level semi-Lagrangian, and uses the semi-implicit approach for both
the elastic terms (three-dimensional divergence) and the gravity wave terms. As such,
it is a flexible and accurate model that can be used for a wide range of scales.

334 Nonlinear computational instability. Quadratically
conservative schemes. The Arakawa Jacobian

In 1957 Phillips published the first “climate” or “general circulation” simulation ever
made with a numerical model of the atmosphere. He started with a baroclinically
unstable zonal flow using a two-level quasi-geostrophic model, added small random
perturbations, and was able to follow the baroclinic growth of the perturbations,
and their nonlinear evolution. He obtained very realistic solutions that contributed
significantly to the understanding of the atmospheric circulation in mid-latitudes.
However, his climate simulation only lasted for about 16 days: the model “blew
up” despite the fact that care had been taken to satisfy the von Neumann criterion
for linear computational instability. In 1959, Phillips pointed out that this instabil-
ity, which he named nonlinear computational instability (NCI), was associated with
nonlinear terms in the quasi-geostrophic equations, in which products of short waves
create new waves shorter than 2Ax. Since these waves cannot be represented in
the grid, they are “aliased” into longer waves. The shortest wave that can be repre-
sented with a grid (with a wavelength 2Ax) corresponds to the maximum computa-
tional wavenumber p,,,, = 27 /L, Ax = . However, quadratic terms with Fourier
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Figure 3.3.4: (a) Schematic of the effect of aliasing: the waves above p = 7

(solid line) become folded back (dashed line) and are added to the original spectrum,
producing a spurious maximum in the energy spectrum at the cut-off wavelength
(dotted line). (b) Schematic showing that if we use a grid with 3/2 as many grid points
as the original grid, the total spectrum in the Fourier transform of a quadratic product
is increased by 3/2 (i.e., pmax = 37/2). Then aliasing of wavenumbers between 37 /2
and 27 occurs outside the original spectrum and it is avoided within the range O to 7.

components will generate higher wavenumbers: e*71 e*iP2 = ¢*i(P1£p2) doubling the
maximum wavenumber. The new shorter waves, with wavenumbers p = 7 + §, can-
not be represented in the grid, and become folded back (aliased) into p’ = 7 — §,
leading to a spurious accumulation of energy at the shortest range (Fig. 3.3.4).

The effect of NCI can be seen clearly in the following simple example: consider
the nonlinear (quasi-linear) PDE 0u/dt = —udu/dx and the corresponding FDE
o0U;/ot = —U;(Uj41 — Uj_1)/2Ax. Suppose that at a given time ¢ we have U; =
0, Uy >0, Us <0, Uy =0. Then oU,/dt =0, dU,/9t > 0,0U3/0t < 0,9Us/
at = 0,1.e., U, and U will grow without bound and the FDE will blow up. In fact this
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will happen even for a linear model du /0t = —a(x)du/dx ifa; = 0,a, > 0,a3 < 0,
a4 = 0.Onthe other hand, if a(x) is always of the same sign, and we use the same FDE

8U _ AUj-‘rl_Uj—l

L= (3.3.29)

we can show that

2
LI Rl
ot 7 aj

i.e., that the solution will remain bounded. Numerical experiments show that nonlin-

ear computational instability arises only when there are changes in sign in the velocity.

Exercise 3.3.1: Prove that the above solution will remain bounded.

There are basically two approaches for dealing with the problem of nonlinear com-
putational instability.

(a) Filtering out high wavenumbers.

Phillips (1959) proposed transforming the grid-space solution into Fourier series
(with sine and cosine wavenumbers from 0 to 1), and chopping the upper half of the
spectrum (wavenumbers above 7/2). Since the maximum wavenumber generated in
a quadratic term is twice the original wavenumber, this avoids spurious aliasing, and,
indeed, Phillips found that the model could then be run indefinitely. However, the
procedure is rather inefficient, since half of the spectrum is not used.

For grid-point models, complete Fourier filtering of the high wavenumbers has
been found to be an unnecessarily strong measure to avoid nonlinear computational
instability. Some models filter high wavenumbers but only enough to maintain com-
putational stability. Experience shows that as long as the amplitude of the highest
wavenumbers is not allowed to acquire finite amplitude, nonlinear computational
stability can be avoided. For example, Kalnay-Rivas et al. (1977) combined the use
of an energy-conserving fourth order model with a sixteenth order filter (similar to
the eighth power of the horizontal Laplacian (Shapiro, 1970)). This efficiently filtered
out the shortest waves (mostly between 2Ax and 3Ax) without affecting waves of
wavelength 4 Ax or longer, and resulted in an accurate and economic model.!

1 The Shapiro filter of order n of a field U; is a simple and efficient operator given by
7/-2" = [1 — (=D)"]U;, where the “diffusion” operator DU; = (U, —2U; + U;_,)/4is
applied to the original field n times. For a Fourier component e¢'” with wavenumber
p = 27 Ax /L, the response of the operator is De”’ = —(sin’p/2)e’”/so that the second order
Shapiro ﬁlterU2 = [1 — (=D)|U; = +(U;s1 + 2U; + U;_;) has a response
U?r=(1- sin® p /2)U;. This is a strong filter that zeroes out the highest wavenumber
(L = 2Ax), and reduces the amplitude of even the longer waves. A higher order filter, for
example 2n = 16, however, has the following desirable response: U; U = (1 —sin'® p/2)U;,
which still filters out 2Ax waves, dampens waves shorter than 4Ax, and essentially leaves
longer waves unaffected.
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Spectral models with a wavenumber cut-off of M (i.e., with 2M + 1 degrees
of freedom) require at least 2M + 1 grid points to be transformed into equivalent
solutions in grid space. Orszag (1971) showed that if they are transformed into
3M + 1 grid points before a quadratic term is computed in physical space, then
aliasing is avoided. In other words, it is not necessary to perform the space transform
into 4M points. The reason for this is shown schematically in Fig. 3.3.4(b): even if
there is aliasing, it only occurs on the part of the spectrum (above p = ) that is
eliminated anyway on the back transformation into spectral space. For this reason, in
two horizontal dimensions, spectral models use “quadratic grids” with about (3/2)?
as many grid points as spectral degrees of freedom, and therefore spectral models
are “alias-free” for quadratic computations. Triple products in spectral models still
suffer from aliasing, but this is generally not a serious problem.

(b) Using quadratically conserving schemes
Lilly (1965) showed that it is possible to create a spatial finite difference scheme
that conserves both the mean value and its mean square value when integrated over
a closed domain. Quadratic conservation will generally ensure that catastrophic NCI
does not take place. Arakawa (1966) created a numerical scheme for the vorticity
equation that conserves the mean vorticity, the mean square vorticity (enstrophy),
and the kinetic energy. This ensures that the mean wavenumber is also conserved (as
it is in the continuous equation), and therefore that even in the absence of diffusion
the solution remains realistic. Arakawa and Lamb (1977) showed how an equivalent
“Arakawa Jacobian” can be written for primitive equation models.

Consider first a conservation equation for the SWE written in advective form (as
an example relevant to primitive equations):

9
a_a +v-Va=0
! (3.3.30)

oh oh
— +v-VAi+hV . v=—+V - -hv=0
at at

If we multiply the first equation by % and the second by «, we can write the conser-
vation equations in flux form:

ah
MYV hva =0

a?f (3.3.31)
— +V . -hv=0

a1

Note that from the continuity equation written in flux form (second form), the total
mass is conserved in time (Exercise 3.3.2).
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Exercise 3.3.2: Show that from the continuity equation written in flux form, the total
mass is conserved in time:

0
— hdxdy =0
at// ray

Now, consider any function of G(«). Multiply the conservation equation by g(«) =
dG/da and integrate over a closed domain (i.e., a domain bounded by walls with
zero normal velocities or by periodic boundary conditions). It is easy to show that
the mean value of G(«) will be conserved in time:

%//hG(a)dxdy =0 (3.3.32)

Therefore the mass weighted mean and the mean squared value of « (as well as all
its higher moments) will be conserved. With finite differences, we can only enforce
two independent conservation properties (Arakawa and Lamb, 1977). We discuss
now how to enforce mean and quadratic conservation, as suggested by Lilly (1965).
The simplest approach is to write first the FDE continuity equation in flux form. This
constitutes the backbone of a quadratically conservative scheme, and it is also similar
to the simplest finite volume schemes (Section 3.3.6).

Exercise 3.3.3: Consider any function G(«) and multiply the conservation equation
by g(«) = dG/da and integrate over a closed domain. Show that the mean value of
G () will be conserved as in (3.3.32).

Consider Fig. 3.3.5, which shows a typical grid element with the value of « defined in
the center, and estimates of the normal mass fluxes at its boundaries (e.g., (hu)i1/2,
at the right wall). These estimates are used for casting the continuity FDE and for
constructing a quadratically conservative FDE for «. The continuity FDE in flux form
is

dhij 4 (hu)ig1y2,j — (hu)i—12,; . (hv)i jr12 — (M) j_12

=0 (3333
at Ax Ay ( )

It is easy to check that this FDE will conserve total mass (d/dt) Zi_j
hi jAx; jAy; j = 0 since the mass flux into one grid box will cancel the mass flux
out of the neighboring element. We now write the FDE for « using any consistent
estimate of « at the normal walls of the grid box:

ohjja n (hu)iv1y2,j(@)ig1/2,j — (hu)i—iy2,j(@)i—1/2,j
ot Ax

+(hv)i,j+1/2(a)i,j+1/2 — (hv); j—10(@)i j—12
Ay

=0 (3.3.34)



3.3 Space discretization methods 105

Figure 3.3.5: (a) A typical
grid element with the value
of « defined in the center,
and estimates of the normal
fluxes at its boundaries.
(Pt % (Nisrr These estimates are used for
casting the continuity FDE
and for constructing a
(a) — ()yge —— quadratically §or}s§wative
FDE for « (primitive
equation model). (b) Grid
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—_— (hv)/‘,j+1/2

v — g
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Again it is easy to check that this FDE will conserve the total (mass weighted) value
of a: (0/01) I; jh; joy jAx; jAy; j = 0. This is a general property of FDEs written
in flux form.

Finally, we choose to estimate the value of « at the walls of the grid-cells as an av-
erage between the two contiguous cells (a)i41/2,j = (o j + ®i41,7)/2, and similarly
for the other walls. With this particular choice, we obtain:

Ohi ja; ;i (hu)iyip, (@i + i) — (hu)i—1p (@ +o1,5)
_l’_
Jt 2Ax
(hv)i jr12(e j + g jv1) — (V)i jo1 (e j + i j—1)
+ =
2Ay

0 (3.3.35)

We can show that this scheme is quadratically conservative. First note that we can
construct a mass weighted quadratic conservation equation for o from either the
advection of the flux form prognostic equation for « and the continuity equation
(prognostic equation for A):

o2
alh—
< 2) _(xzah I oa o? dh oha

(3.3.36)

a1 D Ty T T T

The second equality suggests how to test quadratic conservation of «. Multiply
the FDE continuity equation (3.3.33) by «; ;2/2 and subtract it from the flux form
prognostic equation (3.3.35) multiplied by «; ;. If we do this, we find that (because of
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cancellations of mass weighted fluxes of ¢; ; on the grid-box walls), there is indeed
quadratic conservation:

0 1
5 Zhi,jiai,jzAxi,jAyi,j =0 (3337)
iJ

Note that this is true no matter how the FDE for the continuity equation is written. We
could choose several finite difference formulations, and as long as the flux form of
the FDE for h« is consistent with the continuity equation, and as long as we estimate
« at the walls by a simple average, we have quadratic conservation and the danger
of NCI is small.

Exercise 3.3.4: Show that the FDE (3.3.33) will conserve total mass.

Exercise 3.3.5: Show that the FDE (3.3.34) will conserve the total mass weighted
value of «.

Exercise 3.3.6: Prove from (3.3.36) that there is quadratic conservation.

Exercise 3.3.7: Write two different FDEs for the continuity equation, i.e., two dif-
ferent estimates of the normal mass fluxes at the walls, (hu);41/2,;, etc.

Finally we consider the vorticity equation, which is representative of much of the
dynamics of the real atmosphere:

O V= -V ) = —J(W.0) (3.3.38)

ot

where . =k-V xv= Vzlll, v =k x VW. The flow is nondivergent, so that the
continuity equation is simply V - v = 0.

In this case a simple scheme that conserves the mean vorticity and its mean
square (i.e., an enstrophy conserving scheme) can be written following the recipe
given above (Kalnay-Rivas and Merkine, 1981). The continuity equation is (cf.
Fig. 3.3.5(b))

Wit — Wiz W2 — Wij-12

0= — (3.3.39)
2Ax 2Ay
where the normal velocity estimates are obtained from
Wirin;  Wiipiein—Brein
ui+1/2’j - _ i+1/2,j ~ i+1/2,j+1/2 i+1/2,j—-1/2 (3340)
dy Ay

and similarly for the other velocities. Note that this satisfies the continuity equation
automatically. Then we write the forecast equation for the vorticity in a way consistent
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with the continuity equation, thus ensuring conservation of the mean vorticity and
enstrophy (mean square vorticity).

i Wig1y2,jGij + Givrj) = @iz12,(Gij + Giz1j)
or 2Ax
W12+ i) = W12 + Gij-1)
2Ay

(3.3.41)

After a new vorticity field is obtained att = (n 4+ 1) At using, for example, leapfrog,
we have to determine the new streamfunction . This is done by solving the elliptic
equation { = VZ‘IJ, which in finite differences can be written as

Wipr,; =2W;; + Wiy n Wi jp1 =2V + W
Ax? Ay?

=& (3.3.42)

In Section 3.4 we will discuss how to solve this boundary value problem.

Once we obtain v; ; we can obtain Wiy /2,j+1/2 by averaging the corresponding
four surrounding values of v; ;. This is probably the simplest FDE model of the
barotropic atmosphere devoid of nonlinear computational instability that we can
construct.

Before we discuss the Arakawa Jacobian, let’s note that the continuous vorticity
equation conserves total (kinetic) energy as well as enstrophy. Multiply the vorticity
equation by the streamfunction:

W = WY )= V) 4 v VY (33.43)

The last term on the right-hand side vanishes because v is perpendicular to VW. The
left-hand side can be shown to be the time derivative of the kinetic energy:

9 AV.-VU  gVVY.VU VW
vE — g - VY.
o1 o1 o1 o1
v - av-v/2  d|v[*/2 IKE
_vy vz a2 (3.3.44)
o1 o1 o1 o1

Therefore, integrating (3.3.43) over the domain, the mean kinetic energy is conserved.
The simple scheme described above conserves vorticity and squared vorticity but not
kinetic energy.

Arakawa (1966) introduced a Jacobian that conserves all three properties: it
is based on the FDE corresponding to these three equivalent formulations of the
Jacobian:

JW,)=Ni=h=U (3.3.45)
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where
j_ v v
dx dy  dy ox
P i(ﬁi) _ i(ﬁi) (3.3.46)
ax ay ay ox
=5 ()2
) ay ax ax ay

The Arakawa Jacobian is the finite difference Jacobian corresponding to J4 = (J; +
J> + J3)/3 and it conserves kinetic energy and enstrophy. Arakawa and Lamb (1977)
showed how the Arakawa Jacobian could also be approximately constructed for
primitive equation models.

Exercise 3.3.8: Derive the finite difference equivalent of J;, J, and J3

The ratio of enstrophy to kinetic energy is proportional to the mean square of the
wavenumber, and this quantity is conserved by the continuous frictionless vorticity
equation. Therefore, the Arakawa conservation ensures that a long model run will
conserve the mean square of the wavenumber, and generally look realistic (i.e., not
become dominated by small scale noise) even without horizontal diffusion. In the real
atmosphere, however, turbulent dissipation acts as a control on the amplitude of the
smallest waves, and leaks their energy out of the system, so that strict conservation
is not truly relevant. For this reason, there is no consensus among the community of
modelers on whether the use of strictly conserving FDEs is an essential requirement.
On the one hand, some models are based on schemes that are as conservative as pos-
sible (remember that the continuous equations conserve all moments of the quantities
being advected, whereas the FDEs can only conserve one or two moments). Other
modelers prefer to use less conservative but more accurate and simpler schemes.
They include dissipation acting at the highest wavenumbers that mimics the leakage
of energy that takes place in reality. Experience shows that an energy-conserving
scheme, for example, combined with a small amount of high-order horizontal diffu-
sion, in practice also behaves very realistically, approximately conserving enstrophy.
This is because a catastrophic loss of enstrophy occurs only when energy is allowed
to accumulate in the shortest waves and they acquire large amplitudes. The dispute as
to whether it is more important to have conservative FDEs or accurate (higher order
or semi-Lagrangian) FDEs that are not conservative but avoid NCI has thus not been
resolved.

335 Staggered grids

So far all the variables we have used (e.g. &, u, v) have been defined at the
same location in a grid cell. This means that in order to compute centered space
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(a) Figure 3.3.6: Staggered
b h b, grids: (a) example of
- + . .
| uj ) | uj | u//.H | x unstaggered grid in one
Vi1 vi Vist dimension; (b) example of
staggered grid in one
dimension.
(b)
| U/-1|/2 UITVZ 5 |
h; j+1 X
I i Vj-1l/2 ! Vj+|1/2 ’ l

differences at a point j, for example, we need to go to j + 1, and j — 1, and the
differences are computed over a distance of 2Ax (Fig. 3.3.6(a)). If we use instead
a staggered grid, certain differences (such as the pressure gradient for the u equa-
tion and the horizontal convergence term for the / equation) can be computed
over just 1Ax, and, for those terms, it is equivalent to doubling the horizontal res-
olution. (Fig. 3.3.6(b)). However, the advection terms still have to be computed
over 2Ax (or 2d, where d is the distance between closest grid points of the same
class).
Let’s consider again the SWE in two dimensions:

oh [ (0u dv oh oh

—=—|h|l—+ =) |—u——v—

at | \dx 3y ox ay

ou [ oh +f ou u (3.3.47)
— =—|g— v|—u— —v— 3.

o |Sox ax oy

v [ 9k v v

—=—|g——fu|l-u——v—

at L~ 0y ax ay

The terms in square brackets in (3.3.47) are the dominant terms for the geostrophic
and the inertia-gravity wave dynamics. These terms are computed in different ways
depending on the type of grid we use. The advective terms are less affected by the
choice of alternative (staggered) grids.

In two dimensions there are several possibilities for staggered grids (Arakawa
and Lamb, 1977), which are shown schematically in Fig. 3.3.7. Grid A (unstag-
gered) has several advantages and disadvantages. The advantages are its simplicity,
and, because all variables are available at all the grid points, it is easy to construct
a higher order accuracy scheme. Grid A tends to be favored by proponents of the
philosophy “accuracy is more important than conservation”. Its main disadvantage is
that all differences occur on distances 2d, and that neighboring points are not coupled
for the pressure and convergence terms. This can give rise in time to a horizontal
uncoupling (checkerboard pattern), which needs to be controlled by using a high
order diffusion (e.g., Janjic, 1974, Kalnay-Rivas et al., 1977).

Grid C has the advantage that the convergence and pressure terms in square brack-
etsin (3.3.47) are computed over a distance of only 1d, which is equivalent fo doubling
the resolution of grid A. For this reason geostrophic adjustment (the dispersion of
gravity waves generated when the fields are not in geostrophic balance, see Chapter 5)
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Figure 3.3.7: Staggered

grids in two horizontal
Unstaggered grid A dimensions: Arakawa and

Lamb (1977) classification.

Staggered grid B
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Staggered grid D

Suv Staggered grid E

is computed much more accurately (Arakawa, 1997). The Coriolis acceleration terms,
on the other hand, require horizontal averaging, making the inertia-gravity waves less
accurate. This makes grid C less attractive for situations in which the length of the
Rossby radius of deformation R; = +/gH /f is not large compared to the grid size
d. The equivalent depth, H, is about 10 km for the external mode, so that R; is
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Figure 3.3.8: The Eliassen

u h v h : .
grid, staggered in both
space and time.
v h v u u
u h v h
Even time steps Odd time steps

about 3000 km (Chapter 6), but H is an order of magnitude smaller for the second
vertical mode, and it becomes much smaller for higher vertical modes. Therefore,
some atmospheric models use grid B, where the minimum distance for horizontal
differences is v/2d , rather than 14 as in grid C, but where u and v are available at the
same locations. The NCEP Eta model is defined on a grid B rotated by 45°, denoted
grid E by Arakawa and Lamb (1977), see Fig. 3.3.7.

The disadvantages of staggered grids are: (a) the terms in square brackets are hard
to implement in higher order schemes, and (b) the staggering introduces considerable
complexity in, for example, diagnostic studies and graphical output.

Grid D has no particular merit, but, if also staggered in time (as suggested by
Eliassen), it becomes ideal for atmospheric flow using the leapfrog scheme (see
Fig. 3.3.8). In the Eliassen grid all differences are computed on a distance d (the
advection also requires a horizontal average over one grid length, but this is a small
drawback). Despite its apparent optimality, this grid has not been adopted in any
major model, probably because of the complications of the additional staggering,
and because it would require special procedures for starting the leapfrog scheme. Lin
and Rood (1997) have adopted a similar idea for a global atmospheric model on the
sphere.

In the vertical direction, most models have adopted a staggered grid, with the
vertical velocity defined at the boundary of layers and the prognostic variables in
the center of the layer (Fig. 3.3.9). This type of grid, introduced by Lorenz in 1960,
allows simple quadratic conservation, and the boundary conditions of no flux at
the top and the bottom are easily fulfilled. However, as pointed out by Arakawa
and Moorthi (1988), the Lorenz grid allows the development of a spurious com-
putational mode, since the geopotential in the hydrostatic equation (and therefore
the acceleration of the wind components) is insensitive to temperature oscillations
of 2Ao0 wavelength. The Lorenz grid is being replaced in some newer models by
a vertical grid similar to the one introduced by Charney and Phillips (1953) for
a two-level model. In the Charney—Phillips grid, the vertical staggering is more
consistent with the hydrostatic equation and therefore it does not have the ad-
ditional computational mode (Arakawa, 1997). A nonstaggered vertical grid, al-
lowing a simple implementation of higher order differences in the vertical, would
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Lorenz grid Charney-Phillips grid
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Figure 3.3.9: Staggering in vertical grids. (After Arakawa and Konor, 1996.)
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Figure 3.3.10: Schematic of the two-dimensional volume centered at the point 7, j
and with walls at which fluxes are computed in a finite volume method.

also be possible, but it would also have more computational modes present in the
solution.

3.3.6 Finite volume methods

We present here a brief introduction to the finite volume approach, which is discussed
in more detailed in texts such as Durran (1999), Fletcher (1988) and Gustaffson
et al. (1996). The basic idea of this method is that the governing equations are first
written in an integral form for a finite volume, and only then are they discretized.
This is in contrast to the methods we have seen so far, in which the equations in
differential form are discretized using finite differences or spectral methods. The two
approaches may or may not lead to similar discretized schemes.

Consider for example the continuity equation and a conservation equation for a
shallow water model written in flux form, as in (3.3.31), and integrate them over a
volume limited by walls AB,BC,CD, and DA (in this two-dimensional case, the
volume of integration is the horizontal area, Fig. 3.3.10).

If we integrate (3.3.31) within the volume ABC D, and apply Green’s theorem,
we obtain
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d
— | hdxd H-nds =0
dt/ xy+7§ nds

d (3.3.48)
o / hadxdy + % (Ha) -nds =0

where H is the normal flux of /& across the walls, and n is the normal vector to the
wall. These equations can be discretized, for example, as

d (—ij —i+1/2j
E (/’l AxijAyij> = —(hu

—ij+1/2

—i1)2j
VAYir125 + (hu' j)Ayi—l/Zj

12
—(hv YAXij112 + (hv Y YAX;i_12

—i+1/2j

d (—ij -
7 (oeh ijijAYij> = —(hua )Ayz+1/2, + (hua j)A)’i—l/zj

ij—1/2

+
—(hva a2 YAX;j 4172 + (hvo YAX;j_12

(3.3.49)

Here, the overbar indicates a suitable average over the grid volume or area. It is
evident that any scheme based on these finite volume equations will conserve the
average mass and average mass weighted «. There are a number of choices of how
this average can be carried out over this subgrid domain of each grid volume: one
can assume that # and « are constant within the volume, or that they vary linearly,
etc. A simple choice for the estimates of the average values at the center and at the
walls leads naturally to the quadratically conservative differences presented above in
(3.3.34) and (3.3.35):

i
R =hy

= (hij + hiv1)wij +uiv1;)/4

—i+1/2j

(3.3.50)
i+1/2]

M = ( )(au +al+lj)/2

Although in this case both methods lead to the same discretization, the finite volume
approach allows additional flexibility in the choice of discretization. For example,
Lin and Rood (1996) developed a combination of semi-Lagrangian and finite vol-
ume methods, in which the boundaries of the grid volume are transported to the
new time step, rather than the centers of the volume as is done in the conventional
semi-Lagrangian schemes (Fig. 3.3.11). Although the order of the scheme is for-
mally low, the method seems very promising, but it requires considerable care in the
detailed formulation in order both to remain conservative and to maintain the shape
of the transported tracers. Lin (1997) also developed a rather simple finite volume
expression to compute the horizontal pressure gradient force that can be applied to
any hydrostatic vertical coordinate system. It avoids the problem of having two large
terms in the pressure gradient computation that almost cancel each other, which is
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Figure 3.3.11: Schematic of the flux-form semi-Lagrangian scheme (Lin and
Rood, 1996). It differs from the regular semi-Lagrangian scheme (Fig. 3.3.3) in that
the walls of the volume are transported to the “arrival walls”. The mass weighted
average of the variables at the arrival volume is equal to the value at the departure
volume (indicated by the thick segments), ensuring mass conservation. Because
there is no extrapolation, the flux-form semi-Lagrangian scheme is still absolutely
stable.

characteristic of the sigma and other vertical coordinate systems. There are several
other variants of finite volume systems (e.g., Durran, 1999).

34  Boundary value problems

3.4.1 Introduction

Elliptic equations are boundary value problems, with either a fixed time, or a
steady state solution at long times. Two examples of such problems arising in NWP
are:
(a) Finding the new streamfunction from the vorticity after the latter has been
updated to time (n + 1)At. For example, in Section 3.3.4 we introduced the
following enstrophy-conserving numerical scheme:

fi',lfl - Ciljfl _ @iy, G+ i1 ) — Wiz, G + Giv1))
2At 2Ax

~ W12+ Gijr) — Wij—172(ij + &ij-1)
2Ay

(3.4.1)

where we used the leapfrog scheme, and the right-hand side is evaluated at time

t = nAt. After solving for ¢, we can obtain the streamfunction by solving the

iJj
elliptic equation (Laplace) valid at t = (n + 1)At:

W1, =2V + Wiy n Wi =29+ W
Ax? Ay?

= (3.4.2)

For this particular scheme, after solving for \Ill”]+1 , we obtain E?j,l /2. j+1/2 Dy averaging
from the four surrounding corners.
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(b) Solving a semi-implicit elliptic equation for the heights also at (n + 1)At
(Section 3.2.5):

1 1 -
(a%x +8 — oan M) o = <6§x TR Atz) ¢!
+2(82x Ru + 82)'Ru)

1 n— n—
+E(82xu ! +82yv 1)

2

-~ R, =F", 343
dAr T T 6.4

These linear elliptic equations are easily solved with spectral methods in which the

basis functions are eigenfunctions of the Laplace equation. For example, if we use

spherical harmonics on the globe, and make use of

Gy L[ 1 v 1 Y™

= — — [cosp—

" a?|costg 9AT  cosg g ¢ g
—nn+1)

= BT (3.4.4)
a

we can solve the semi-implicit equation for @, ¢,1)=3"_ S"_

d"(t)Y™ (A, ) simply by writing the Helmholtz linear equation VZ¢"™!' —
(1/®At?*)¢"*t! = F corresponding to (3.4.3) component by component

1
V2 (tp )Y, (hy @) — W(ﬁfn(tpﬂ)Y,f" (. @) = F,(t4)Y,)" (1, 9)
(3.4.5)
so that the solution for each spherical harmonic coefficient is given by
1 n
Fo(tp+1) (3.4.6)

Optpr1) = — w1 . I
a? DAL

(Note that in (3.4.5) and (3.4.6) we have used p instead of n for the time step to
avoid confusion with the total wavenumber 7n.) The simplicity with which the semi-
implicit scheme can be computed is a major advantage of spectral models. For finite
differences, the solution is much more involved.

The methods of solution for elliptic equations (discretized in space) are basically
of two types: direct and iterative. Here we only present some simple examples of both
types of methods, and refer the reader to texts such as Golub and van Loan (1996),
Ferziger and Peric (2001), Dahlquist and Bjork (1974) and Gustaffson et al. (1996)
for more complete discussions of direct and iterative schemes. In the last decade,
considerable work has also been done on the solution of nonsymmetric systems.
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Books on computational methods for these types of problems include Barrett et al.
(1995), Bruaset (1995), Greenbaum (1997), and Meurant (1999).

342 Direct methods for linear systems

We saw that for spectral models, the direct solution of the linear elliptic equation
arising from the semi-implicit method is trivial. For finite differences, however, direct
methods involve solving equations like (3.4.2) or (3.4.3), which can be written in
matrix form as

Ap=F 347

using any direct solver. They are related to Gaussian elimination. If the matrix A is
fixed (e.g., independent of the time step) the LU decomposition of A = LU, where
the diagonal of L are [;; = 1, allows us to perform the decomposition once and then
solve LX = F, followed by U® = X. Here L and U are lower and upper triangular
matrices.

If the matrix is tridiagonal, the direct problem is particularly easy to solve. A
tridiagonal problem can be written as:

ajUj71+bjUj+CjUj+1=dj (348)
with general boundary conditions
Uy=A U +A U;=BU;_1+ B (3.4.9)

An algorithm based on Gaussian elimination is the “double sweep”” method: Assume
that

Uj=E;Uj + F (3.4.10)

Then U;_; = E;_;U; + F;_; which can be substituted into the tridiagonal equation
(3.4.8) to obtain:

(ajEj_1+bj)Uj+chj+1:dj—aij_l 3.4.11)

From this we deduce that

—cj

Ej=—J

' GiEj i +b;
(3.4.12)

F.o— dj —Clij,l

" GiEj i+ b

So the method of solution is:

(a) use the lower boundary condition Uy = A;U; + A, to determine
Eo= Ay, Fyp = Ay;
(b) sweep forward using (3.4.12) to obtain E;, F;, j=1,...,J —1;
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(c) determine U;, U;_, from U,y = E;_U,; + F,_; and the upper boundary
condition U; = BiU;_1 + By;
(d) determine U;, j = J —2,..., 1 using (3.4.10).

Tridiagonal matrices can thus be solved very efficiently, although problems arise
when the denominator in (3.4.12) is close to zero.

343 Iterative methods for solving elliptic equations

The system A¢ = F' can be solved iteratively by transforming it into another system,
$=U—-A)p+F

or
¢p=Mp+F (3.4.13)

choosing an initial guess ¢° and then iterating (3.4.13): ¢'*! = M@’ + F. The
method converges if the spectral radius 0 (M) = max |A;| < 1, where A; are the eigen-
values of M. The asymptotic convergence rate is defined as

R = —log,[o(M)] (3.4.14)

We now give an example for a simple elliptic equation to provide an idea of how to
attack the problem. The reader is referred to the references cited in subsection 3.4.1
for a more comprehensive discussion.

For a uniform grid with Ax = Ay = A, an elliptic equation like (3.4.3) can be
written as

8¢ —adi; =g, (3.4.15)
where the finite difference Laplace operator is
82¢i ;= (Pis1j +Gio1.; + Gij1 + b j—1 — 40 ) (3.4.16)

Suppose we are in iteration v. Then
8!, —adl; = gi;+ € (3.4.17)

where €/ ; is the error in iteration v. If we assume at the point i, j

+1 _ v v
¢ =9+ ; (3.4.18)
and choose §¢;’; to make e}’fjrl: 0, we get
8¢V, —ap’. —gi i
vl _ gy Ly Ly oh) 3.4.19
¢ =l + TR (34.19)

This is the Jacobi simultaneous relaxation method. If we start at the southwest corner,
and sweep to the right and up, by the time we reach the point i,j we have already
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updated the neighboring points to the west and the south, so we can use these updated
values:

v+1 v+1
¢ 1,j +¢l+l j ¢lj 1T é NES ¢z,j — 8ij

v+l
Pij _¢’/ 4+a

(3.4.20)

This is the Gauss—Seidel or successive relaxation method.
If instead, we overcorrect by changing the sign of e”“ rather than making it equal

to zero, i.e.,

1 1
¢v+1 — ¢V + a)(blv_: J + ¢l+1 J + ¢tv_; s ¢1 j+1 ¢l,j — &i.j
Lo T 4+«

withl < <2 (3.4.21)

the rate of convergence is further increased. This is the successive overrelaxation
(SOR) method. Optimal values for @ can be obtained analytically for simple geome-
tries such as a rectangular domain. For the equation above, the spectral radius of the
Jacobi matrix M is

)\121—8

where

2 T . 2

& = sin® ———  + sin _*
2(JM + 1) 2(KM + 1)

and JM, KM are the number of intervals in the x and y directions of the problem.
Then the optimum value of the overrelaxation coefficient is

2

wopz‘:—
1+,/1—23

Since the maximum error is reduced after each Jacobi iteration by the spectral radius
A1 = (1 — €), we can define the rate of convergence as €.
The rates of convergence of the three methods are then:

& = rate of convergence of the Jacobi iteration;

2¢ = rate of convergence of the Gauss—Seidel iteration;

2+/2¢ = rate of convergence of the SOR iteration with optimum
overrelaxation.

3.4.4 Other iterative methods

We give only a simple introduction to other methods and refer the reader for further
details to the references cited in Section 3.4.1.

Alternating Direction Implicit (ADI)
An efficient fractional time steps time scheme (Table 3.2.1) is used to obtain the
solution of the elliptic equation as a steady state solution. For example, to solve the
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Laplace equation we write the parabolic equation

du u  u
—=0(—+— 3.4.22

ot O(8x2+3y2> (3422)
The asymptotic long-time solution of (3.4.22) is the solution to the Laplace equation.
Equation (3.4.22) is integrated numerically by separating it into two fractional steps
(similar to the time scheme k in Table 3.2.1)

* _ n
4 Atu =08, u*
- (3.4.23)
u —Uu
— 0_8V2un+1
At ’

Since each fractional step is implicit, large time steps can be used. And since the
solution of each fractional step involves only inverting tridiagonal matrices, it can be
performed very efficiently (see, e.g., Hageman and Young (1981)).

Multigrid methods

The speed of convergence for iterative schemes depends on the number of grid points,
and is much faster for coarser grids (see expression for A; above). Moreover, the
errors that take longest to converge correspond to long waves (i.e., they are smooth),
whereas the shortest waves are damped fastest. Multigrid methods take advantage of
this and use both coarse and fine grids (see Briggs (1987), Hackbusch (1985), Barrett
et al. (1995)). The procedure is as follows: Several steps of a basic method on the
full grid are performed in order to smooth out the error (pre-smoothing). A coarse
grid is selected from a subset of the grid points, and the iterative method is used to
solve the problem on this coarse grid. The coarse grid solution is then interpolated
back to the original grid, and the original method applied again for a few iterations
(post-smoothing). In carrying out the solution in the second step, the method can be
applied recursively to coarser grids, until the number of grid points is small enough
that a direct solution can be obtained.

The method of descending through a sequence of coarser grids and then ascending
back to the full grid is known as a V-cycle. A W-cycle results from visiting the coarse
grid twice, with some smoothing steps in between. Some multigrid methods have
an (almost) optimal number of operations, i.e., almost proportional to the number of
variables.

Krylov subspace methods
There are a number of iterative algorithms for solving the linear problem of (3.4.7)
in the Krylov subspace, defined by

K., (A, rp) = span {ro, Aro, A%rg, ..., Am_lro} (3.4.24)

where rg = F — Ay is the residual for an arbitrary initial error ¢y. The approximate
solution ¢,, lies in the space ¢g + K, (A, (). The residual after m steps has to satisfy
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certain conditions, and the choice of the condition gives rise to different types of
iterative methods (e.g., Sameh and Sarin, 1999). The requirement that the residual be
orthogonal to the Krylov subspace, F' — A¢,, LK, (A, ry) leads to the conjugate gra-
dient and the Lanczos methods. Methods like GMRES, MINRES and ORTHODIR
are obtained by requiring that the residual be minimized over the Krylov subspace.
The bi-conjugate gradient and QMR methods are derived requiring the residual to be
orthogonal to K,,(A”, rg). The discussion of these methods applicable to nonsym-
metric systems is beyond the scope of this book, but is given in the texts referred in
Section 3.4.1.

35  Lateral boundary conditions for regional models

3.5.1 Introduction

The use of regional models for weather prediction has arisen from the desire to reduce
the model errors through an increase in horizontal resolution that cannot be afforded
in a global model. Operational regional models have been embedded or “nested”
into coarser resolution hemispheric or global models since the 1970s. In the USA,
the first regional model was the LFM model (Chapter 1). The nesting of regional
models requires the use of updated lateral boundary conditions obtained from the
global model.

We have seen that for pure hyperbolic equations there should be as many boundary
conditions imposed at a given boundary as the number of characteristics moving info
the domain. Parabolic equations with second order diffusion require one boundary
condition at every point in the boundary for each prognostic equation. Second order
elliptic equations (such as Laplace, Poisson, and Helmholtz equations) also require
one boundary condition. The first forecast experiment of Charney et al. (1950) used
the barotropic vorticity equation (conservation of absolute vorticity), and already
had to deal with boundary conditions. They solved the hyperbolic equation 9¢ /9t =
—v- V(¢ + f) followed by the Poisson (elliptic) equation V?dW/dr = d¢/ot.
Therefore, Charney et al. (1950) had to impose a boundary condition on the stream-
function at all the boundary points (needed to solve the Poisson equation) and a
boundary condition for the vorticity at the inflow points. They used persistence in
both cases: for the elliptic equation they used as boundary condition W /9t =0
(i.e., the normal wind remains constant), and then specified that the vorticity also
remained constant (9 V2W /3t = 0) at the inflow points and extrapolated the vorticity
using upstream differences at the outflow points.

For the SWEs, there are three characteristics, one corresponding to a geostrophic
solution, moving with the speed of the flow U, and the other two corresponding to
inertia-gravity waves, moving with speed U + / f2k? + ®. At the boundaries, if
the speed of inertia-gravity waves is larger than U and the flow is inward, we have
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to specify two boundary conditions. If the flow is outward, we have to specify one
boundary condition (corresponding to the inertia-gravity waves moving in). If U
is greater than the speed of the inertia-gravity waves, we have to specify all three
boundary conditions at the inflow points and none at the outflow points. For parabolic
equations (with horizontal diffusion), each predicted variable has to be specified as
well at all lateral boundaries.

Oliger and Sundstrom (1978) showed that the hydrostatic primitive equations
are not purely hyperbolic (because of the loss of the time derivative of the vertical
velocity), and that they do not have a well-posed set of boundary conditions. In an
excellent review of the lateral boundary condition used in operational regional NWP
models, McDonald (1997) pointed out that with the presence of horizontal diffusion
in models there is a feeling that we can “over-specify slightly the lateral boundary
conditions and not do very much damage”.

In practice, boundary conditions are chosen pragmatically and tested numerically
to check their appropriateness. Several methods have been tried over the years, but
the most widely used is the boundary relaxation scheme introduced by Davies (1976).
Davies (1983) has a very illuminating analysis of the impact of the different types
of boundary conditions and their generation of spurious reflection using simple ex-
amples of wave equations and SWEs. He points out that an overspecifying boundary
condition scheme is satisfactory if: (a) it transmits incoming waves from the “host”
model providing boundary information without appreciable change of phase or am-
plitude, and (b) at the outflow boundaries, reflected waves do not reenter the domain
of interest with appreciable amplitude. We follow the Davies (1983) analysis and the
review by McDonald (1997) in the rest of this section. Durran (1999), Chapter 8,
is also devoted to this subject.

352 Lateral boundary conditions for one-way
nested models

The majority of regional models have “one-way” lateral boundary conditions, i.e.,
the host model, with coarser resolution, provides information about the boundary
values to the nested regional model, but it is not affected by the regional model
solution. This approach has some advantages: (a) it allows for independent develop-
ment of the regional model, and (b) the host model can be run for long integrations
without being “tainted” by problems associated with nonuniform resolution or from
the regional model. Overall, the regional one-way nesting can be considered to have
been successful, in the sense that the boundary information from the host model
is able to penetrate the regional model, and the regional model solution is able to
leave the domain without appreciable deterioration of the solutions. The success
can also be measured by the fact that there have been several attempts to perform
long-term integrations of nested regional models. In these long-term integrations, the
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initial regional information is swept out of the domain in the first day or two, and all
the additional information comes from the global model integration. This approach
is denoted “regional climate modeling”. Takle et al. (1999) discuss the Project to
Intercompare Regional Climate Systems (PIRCS). In these extended integrations,
the regional model acts as a “magnifying glass” for the global solution, allowing the
large-scale flow to interact with smaller scale forcing such as orography, variations
in soil moisture and land—sea contrast, and as a result tend to give a more realistic so-
lution. The “added value” over the global solutions empirically indicates the overall
success of the one-way boundary conditions used in different models.

There are four types of “pragmatic” boundary conditions that have been formulated
for one-way lateral boundary conditions:

(a) Pseudo-radiation boundary conditions

Orlanski (1976) proposed a finite difference approximation of the “radiation condi-
tion”, i.e., specifying well-posed boundary conditions for pure hyperbolic equations.
One assumes that the prognostic equations locally satisfy du/dt + cdu/dx = 0 and
then estimates the phase speed c using a finite difference equivalent of

ou u
c=—— [ — (3.5.1
ot 0x

at the points immediately inside the boundary (denoted by b — 1). Miller and Thorpe
(1981) used first order upstream approximation

—1 n—1 n—1
I/tn7 — I/tn7 Uy 1 — Uy
C/ = — b=l ; b 1/ b=l b=2 (3.5.2)

as well as higher-order approximations. After estimating ¢/, if it points into the
domain, uZ“ is specified. If it points out, the upstream scheme is used: qu =
uy — c'At/Ax(u, —uj_,). If ¢’At/Ax > 1 because the space derivative of u is
small, Orlanski (1976) suggested limiting the value of ¢’ to ¢’ = Ax/At. Klemp and
Lilly (1978) pointed out reasons why the approximate “radiation schemes” are not
completely successful in avoiding spurious reflection: there can be overspecification
at the boundaries, specification of the right number of boundary conditions but not
their correct values, and errors in the estimation of ¢’. The radiation condition has
been used for research models (e.g., Durran et al. 1993). Klemp and Durran (1983)
and Bougeault (1983) used radiation boundary conditions at the top of the model.
Operational models generally do not use radiation boundary conditions and instead
impose the condition that the vertical velocity be zero at the top (e.g., 6 = 0 at
o = oy for sigma coordinates). As a result, the presence of this artificial “rigid top”
leads to spurious wave reflections and even generates instabilities near the top (e.g.,
Kalnay and Toth, 1996, Hartman et al., 1997).
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b) Diffusive damping in a boundary zone or “sponge layer” (Burridge, 1975,
Mesinger, 1977)

In this method the global (or host) model boundary conditions are specified for all
variables, and horizontal diffusion is added over a boundary zone to dissipate the
noisy waves generated by the boundary conditions:

du n ou d du (3.5.3)
— c— = —v— .
ot ox ox 0dx)p,

This would seem to be a natural choice for regional model boundary conditions since
by increasing the order of the equation to make it parabolic within a limited boundary
zone, it is possible to specify all variables at the boundary without overspecifying.
However, this approach also has clear disadvantages: it damps the incoming waves
from the global model (unless they are long compared to the width of the damping
zone). It also produces spurious reflections of outgoing waves if v increases abruptly,
and if it increases slowly it may not be enough to damp the reflected waves. As a
result, this method is not very much in use at this time.

() Tendency modification scheme (Perkey and Kreitzberg, 1976)
The wave equation is replaced by
ou ou o(u —u)
e =y 354
o ox T T w G4
where u is prescribed from the host model (which is assumed to be correct near the
boundary), and y is zero in the interior and increases to large values at the boundaries.
Since the host model follows the wave equation

ou ou

— — =0 355

ot te ox ( )
we can write an “error” equation for the difference u’ between the regional and the
host model:

ou'  ,ou

-— — =0 3.5.6

ar < ox (336

where ¢* = ¢/(1 + y). Therefore the time tendency scheme advects the error and
slows it down to almost zero at the boundaries, thus avoiding overspecification. In
practice this scheme is also found to produce spurious reflections.

(d) Flow relaxation scheme (Davies 1976, 1983)
As indicated before, this is the most widely used scheme. The forecast equations are
modified by adding a Newtonian relaxation term over a boundary zone:

du ou

— —=—-Ku-—-u 3.5.7
ar T¢a; (u —u) (3.5.7)
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The “error” equation is now

u’ ca—ul =—Ku (3.5.8)
at ax
indicating that the error is advected to or from the boundary and damped. At the
inflow boundaries only the differences between the regional and the host model
are damped. Therefore this scheme mitigates the effects of overspecification at the
outflow boundaries without introducing deleterious effects in the inflow boundaries.
If K increases abruptly, it can also introduce some spurious reflection. For this
reason, Kallberg (1977) proposed the use of a smoothly growing function for K. Let’s
consider a complete prognostic equation for the regional model near the boundaries
ou _
— =F—-Ku—un) 3.5.9)
ot
In (3.5.9) F includes all the regular “forcing terms” in the interior time derivative
(e.g., advection, sources/sinks, etc.). We can discretize it in time, using, for example,
the leapfrog scheme for the regular terms and backward implicit scheme for the
boundary relaxation term, as

un-H _ un—l

_n _ n+l _ —n+l
a = F K (u] u"ty (3.5.10)

Here the overbar represents the host model, "' is the updated regional model,
and the subscript i indicates the regional model (internal) solution obtained before
relaxing towards the host model values 7" *+!:

Wit = w4 2ALF" (3.5.11)
From (3.5.10) and (3.5.11) we can now write
w' = K2A T 4+ K2A10 = (1 — a)u T Fan™™ (3.5.12)

Here o = 2A¢K varies from 0 in the interior (K = 0), to 1 at the boundary, where
the regional model solution is specified to coincide with the host model solution.
McDonald (1997) mentioned three functions that have been proposed for «(j ), where
we define j =0, x(0) =1 at the boundary, and assume that the boundary zone
has n points so that for j > n, «(j) = 0. The first function, found to be optimal
in minimizing false reflection of both Rossby and gravity waves by Kallberg (1977),
starts gently in the interior and has the steepest slope at the boundary: o = 1 —
tanh(j/2). Jones et al. (1995) used a linear profile « = 1 — j/n, and McDonald
and Haugen (1992) proposed a cosine profile @ = [1 + cos(jm/n)]/2, which has the
steepest slope at the center of the boundary zone. Benoit et al. (1997) in the MC2
model used a(j) = cos?(jm/2n) and reported good results.
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353 Other examples of lateral boundary conditions

Tatsumi (1983, 1986), following an idea of Hovermale, suggested adding an “error
diffusion” at the boundaries as well, which can also help to reduce the boundary
errors without affecting the incoming wave:

_ 9 ( du — ﬁ)
— 4+ c—=—Ku—-—-u)+ — (v (3.5.13)
by ax ax
This is used in the regional spectral model of the Japan Weather Service (Tatsumi,
1986).

Juang and Kanamitsu (1994) and Juang et al. (1997) also developed a RSM nested
in the NCEP global spectral model, but they cast it as a perturbation model, so that the
full RSM solution includes the global model solutions plus the regional perturbations.
They use an “implicit” variation of the tendency modification approach with

ad
8_Ltt — F — u@™ — @) (3.5.14)
where u = o/ T, T is an e-folding time (3 hours), and
d ou
L T YN S (A ) Vs (3.5.15)
ot ot
so that for the perturbation u’ = u — u, the implicit relaxation is given by
ou m—1
' F — TR uu
— = (3.5.16)
at 14+ 2uAt

They found that the orography of the regional model also has to be blended with the
global orography in the boundary zone in order to avoid spurious noise.

The Eta model at NCEP (Mesinger et al., 1988, Janjic, 1994, Black, 1994) uses an
“almost well-posed” approach. It uses boundary values from the NCEP global model
only at the outermost row. When the flow is inwards, all the prognostic variables are
prescribed from the global model. At the outflow points, the tangential velocities are
extrapolated from the interior of the integration domain. The variables in the second
row are a blend from the outermost and the third row. The “interior” is defined as the
third row inwards, but the Eta model uses an upstream advection scheme for the five
outer rows of the domain in order to minimize possible reflections at the boundary.

354 Two-way interactive boundary conditions

Finally, we note that some regional models have been developed using two-way
interaction in the boundary conditions, i.e., the (presumably more accurate) regional
solution, in turn, also affects the global solution. Although, in principle, this would
seem a more accurate approach than the one-way boundary condition, care has to be
taken that the high-resolution information does not become distorted in the coarser
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resolution regions, which can result in worse overall results, especially at longer time
scales. There are basically two types of two-way boundary condition approaches.

The first approach corresponds to a truly nested model, with abrupt changes in the
resolution, but with the inner or nested solution also used to modify the global or outer
model solution. The first operational example of this type of two-way interaction was
the NGM developed by Phillips (1979). Zhang et al. (1986) implemented two-way
boundary conditions for the nesting in the MM5 model. See also Kurihara and Bender
(1980), and Skamarock (1989).

The second approach is simpler, and it involves the use of continuously stretched
horizontal coordinates so that only the region of interest is solved with high resolution.
Itis evident that with this approach, the equations in the regional high-resolution areas
do not require special boundary conditions, and that they do influence the solutions
in the regions more coarsely resolved, so that they can be considered as two-way
interactive nesting. There have been a few methods used to obtain regional high
resolution using stretched global coordinates:

(a) Uniform latitude—longitude stretching (Staniforth and Daley, 1977, Benoit
et al., 1989, Fox-Rabinovitz et al., 1997). This method is used by the
Canadian regional operational system.

(b) Stretched spherical harmonics (Courtier and Geleyn, 1988). This method is
used in the French regional operational system.

(c) A regular volume (such as a cube) projected on the sphere and then stretched
(Rancic et al., 1996, Taylor et al., 1997a). A variant of this approach is the
spherical geodesic grids explored somewhat unsuccessfully during the 1960s,
and now again in vogue (Williamson, 1968, Sadourny et al., 1968, Masuda
and Ohnishi, 1986, Heikes and Randall, 1995). The use of a regular volume to
generate the grid avoids the pole problem of the convergence of the meridians
in the latitude—longitude grid.



Introduction to the parameterization
of subgrid-scale physical processes

4.1 Introduction

In Chapter 2 we derived the equations that govern the evolution of the atmosphere,
and in Chapter 3 we discussed the numerical discretizations that allow the numerical
integration of those equations on a computer. The discretization of the continuous
governing equation is limited by the model resolution, i.e., by the size of the smallest
resolvable scale. We have seen that in a finite difference scheme, the smallest scales
of motion that can be (poorly) resolved are those which have a wavelength of two grid
sizes. In spectral models, the motion of the smallest wave present in the solution is
more accurately computed, but for these and for any type of numerical discretization
there is always a minimum resolvable scale. Current climate models typically have
a horizontal resolution of the order of several hundred kilometers, global weather
forecast models have resolutions of 50—100 km, and regional mesoscale models of
10-50 km. Storm-scale models have even higher resolution, with grid sizes of the
order of 1-10 km. In the vertical direction, model resolution and vertical extent have
also been increased substantially, with current models having typically between 10
and 50 vertical levels, and extending from the surface to the stratosphere or even
the mesosphere. As computer power continues to increase, so does the resolution of
atmospheric models.

Despite the continued increase of horizontal and vertical resolution, it is obvious
that there are many important processes and scales of motion in the atmosphere that
cannot be explicitly resolved with present or future models. They include turbulent
motions with scales ranging from a few centimeters to the size of the model grid,
as well as processes that occur at a molecular scale, like condensation, evaporation,
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friction and radiation. We refer to all the processes that cannot be resolved explicitly
as “subgrid-scale processes”. An example of an important process that takes place at a
subgrid scale is the turbulent mixing in the planetary boundary layer. During the day-
time, the solar heating at the earth’s surface not only warms the soil but also causes the
plants to transpire and soil moisture to evaporate, thus transporting moisture into the
atmosphere. Surface heating leads to turbulent motion that is on the scale of a few me-
ters to a few hundred meters. With a horizontal grid size of 10—100 km, models cannot
resolve these motions. Yet the transport of the heat and moisture into the boundary
layer is very crucial to the development of afternoon thunderstorms and a host of
other phenomena that are important to the resolvable atmospheric fields. Another no-
table example is tropical cumulus convection. The cumulus clouds in the tropics are
known to be extremely important to the global energy balance, yet each cloud typi-
cally occupies only a few kilometers of space horizontally and vertically (Pan, 1999).

Although these processes occur at small scales, they depend on, and in turn, affect
the larger-scale fields and processes that are explicitly resolved by a numerical model.
For example, condensation of water vapor on a subgrid scale occurs if the resolved-
scale humidity field is sufficiently high, and, in turn, condensation releases latent heat
that warms the grid-scale temperature field. For this reason, it is not possible to ignore
the effect of the subgrid processes on the resolvable-scale fields without degrading
the quality of the forecast. To reproduce the interaction of the grid and subgrid-
scale processes, the subgrid-scale phenomena are “parameterized”, i.e., their effect
is formulated in terms of the resolved fields. Fig. 4.1.1, adapted from Arakawa (1997),
indicates schematically the resolved processes (usually referred to as the “dynamics
of the model”), and the processes that must be parameterized (“the model physics™),

Figure 4.1.1: Physical
processes in the atmosphere
and their interactions. The
A dynamical processes for
resolvable scales, in bold,
are explicitly computed by
the model “dynamics”
Cloud (discussed in Chapters 2 and

DYNAMICAL Hydrological
PROCESSES > processes

processes 3). The other subgrid-scale

processes are parameterized
in terms of the
resolved-scale fields.
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and their interactions. Arakawa (1997) points out that some subgrid-scale processes
can be interpreted as adjustment processes. For example, the atmosphere adjusts to
the surface conditions through boundary layer adjustment processes, which are very
efficient if the planetary boundary layer is unstable. Radiative fluxes occur because
temperature tends to adjust towards radiative equilibrium. Convective processes occur
in the presence of an unstable stratification and adjust the field towards a more
neutrally stable state. Because radiative equilibrium is convectively unstable for the
lower troposphere, radiative—convective adjustment is adominant process controlling
the vertical thermal structure of the troposphere.

The details of the parameterizations have a profound effect on the model forecast,
especially at longer time scales, and are the subject of very intense research. In this
chapter we provide only a very elementary introduction to model parameterizations.
A short but inspiring introduction is presented in Arakawa (1997). An overview
of different subgrid processes, and their parameterizations in atmospheric models
appears in Haltiner and Williams (1980), and a more recent review, including ocean
and land models, is available in Climate system modeling edited by Trenberth (1992).
Stull (1988) and Garrart (1994) are texts on the atmospheric boundary layer processes.
Emanuel and Raymond (1993) edited a volume including detailed discussions of
a number of cumulus parameterizations. Pan (1999) discusses the philosophy that
guides modelers in the development of parameterizations. Randall (2000) has edited a
book honoring Akio Arakawa on the occasion of his retirement, which includes many
review papers on areas related to physical parameterizations (as well as numerical
modeling).

42  Subgrid-scale processes and Reynolds averaging

Consider the prognostic equation for water vapor written in flux form in z-coordinates
(Section 2.5):
dpg _  dpuq  dpvg  dpwgq

_ E—pC 42.1
o1 ax  dy by TPETP “-2.1)

In the real atmosphere, both u and g contain scales that are resolved by the grid of
the model, and smaller, subgrid scales. We write then
u=u+u
_ 4.2.2)
q=q+gq
where the overbar represents the spatial average over a grid, and the primes, the
subgrid-scale perturbation. We can neglect the subgrid-scale variations of p. By
definition, the grid-box average of all quantities linear in the perturbations is zero,
e.g..q' =0, u'g = 0. Also, averaging a grid-average quantity does not change it, e.g.,
g = uq. These are the rules for Reynolds averaging, a method originally developed
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by Reynolds in 1895 for use in time averages, but that we apply to grid-box averages.
We can substitute (4.2.2) in the moisture equation (4.2.1), take a grid average, and
obtain:

g __dpiq _ dpvg _ dpwq _ dpu'q’

ot ax ay 9z ax
B ) P v
_eve WY E_ pC 4.2.3)
ay 9z

The first three terms of the right-hand side are the grid-scale (resolved) advection
terms, whose numerical discretization we have studied in the Chapter 3. They are
included in the “dynamical processes” box of Fig. 4.1.1. The next three terms are the
divergences of the eddy fluxes of moisture or turbulent moisture transports. The last
two terms (evaporation and condensation) are subgrid-scale processes that occur at
a molecular scale and that we still need to parameterize. Both the molecular-scale
processes and eddy fluxes that occur at scales much larger than molecular, but smaller
than the grid resolution, are denoted collectively as “subgrid-scale processes”. As
indicated in the introduction, the impact of at least some of these physical processes
on the larger scales explicitly represented in the model must be included. Without the
parameterization of at least the most important subgrid-scale processes, the model
integrations cease to be realistic in a very short period, from a day or two for large-
scale flow, to less than an hour for storm-scale simulations.

There are several choices for the parameterization of the effect of turbulent trans-
port terms in terms of the resolved scales. Consider, for example, the vertical turbulent
flux of moisture (which, because of the strong vertical gradients, especially in the
planetary boundary layer, is by far the dominant component of the eddy fluxes). We
can choose to:

(a) Neglect the vertical turbulent flux, assuming that, in the boundary layer, the
grid-scale field is well mixed:

—pw'q' =0 (4.2.4)

This is known as a “zeroth order” closure, in which only the average
properties are sought. An example is the bulk parameterization of the mixed
boundary layer (Deardorff, 1972), in which the potential temperature, water
vapor, and wind are assumed to be well mixed, and only the depth of the layer
is forecast.

(b) Parameterize the vertical flux as a “turbulent diffusion process” in terms of g
and the other grid-scale variables (this is a first order closure, and is the most
commonly used):

_ 0g
—pwg =KX (4.2.5)
0z

This represents the effect of turbulent mixing due to parcels moving up or
down, bringing with them the moisture from their original level, and mixing
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with the environment at the new level. The main problem in “K-theory”, as
this approach is also known, is to find a suitable formulation of the eddy
diffusivity K, which also depends on the grid-average fields and the stability
of the flow.

(c) Obtain a prognostic equation for w’g’ by multiplying the vertical equation of
motion by pg and adding it to (4.2.1) multiplied by w. We obtain an equation
with many terms like

dpwg  dpuwgq

4.2.6
ot ox ( )
We can then take its Reynolds average and subtract it from (4.2.6), and derive
a prognostic equation for the turbulent fluxes dpw’q’/dt = --- — dpw'w'q’/

dz - - -. This equation can be included as an additional model equation. Since
it contains triple products of turbulent terms, these terms, in turn, have to be
parameterized in terms of the double products:

apw/q/
0z

This is a second order closure. Second order closure models have many

—pw'wq =K' (4.2.7)

additional prognostic equations (for all the products of turbulent variables)
but are an alternative to high-resolution models to obtain an estimate of
turbulent transports (e.g., Moeng and Wyngaard, 1989). Mellor and Yamada
(1974, 1982) show how to construct a hierarchy of closures for vertical fluxes
and provide simplifying assumptions.

If an important physical process that occurs in the real atmosphere on a scale unre-
solved by the model is not parameterized, it may still appear in the model integration
“aliased” into the resolved scales. For example, primitive equation model integrations
will be ruined by dry convective instability if it is not parameterized. In the real at-
mosphere, if the potential temperature decreases with height, the unstable convective
circulation that takes place occurs at very small horizontal scales, of the same order
as the depth of the unstable layer, typically 1 km or less. Since this cannot be resolved
with horizontal grids of the order of 10—100 km, models with unstable layers develop
an unrealistic appearance of “vertical noodles”, with narrow columns moving up and
down side by side. In order to handle this problem, Manabe et al. (1965) developed
the dry convective adjustment, a simple parameterization of dry convection still used
in most present-day models. In this parameterization, when the grid-scale atmosphere
lapse rate exceeds the dry adiabatic lapse rate I'y = g/C, ~ 10 K/km, the unstable
atmospheric column is instantaneously adjusted to an adiabatic or very slightly stable
profile, while keeping constant the layer total enthalpy. Moist (cumulus) convection
that occurs when there is grid-scale saturation and the temperature gradient exceeds
the moist adiabatic lapse rate also results in a “wet noodles” circulation. This led
to the moist convective adjustment, the first parameterization of cumulus convection
(Manabe et al., 1965), adjusting to a moist adiabatic profile. The moist convective
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adjustment was not found to be a sufficiently realistic cumulus parameterization,
and has since been replaced by other convective parameterizations by Kuo, 1974,
Arakawa and Schubert, 1974, Betts and Miller, 1986, Kain and Fritsch, 1990. See
the volume edited by Emanuel and Raymond (1993) for a detailed review of cumu-
lus parameterizations, and some updates in Randall (2000). Cumulus convection is
one of the most important parameterizations in determining the characteristics of the
model climatology (e.g., Miyakoda and Sirutis, 1977).

When a process occurs at scales not much smaller than the grid size, it presents
an additional difficulty: the resolved scales and the unresolved scales to be pa-
rameterized are not well separated. An example of a process only marginally re-
solved in present-day models, which therefore appears aliased into the shortest
waves present in the solution, is the sea-breeze circulation. A model with a grid
size of 50—100 km (or more) cannot resolve the real sea-breeze circulation that takes
place, for example, over a distance of the order of 1-20 km in the Florida penin-
sula on summer days. Therefore, in the model, the sea-breeze coastal circulation
becomes distorted into a 2Ax circulation, and because the scales are not well sep-
arated, its effects on the large scales are difficult to parameterize. Similar effects
are observed near heated mountain slopes when they are not properly resolved. The
same problem of lack of scale separation complicates cumulus convection param-
eterization in models with a resolution of the order of 10 km, which is close to
the horizontal scale of the convection, but not high enough to resolve convection
explicitly.

43 Overview of model parameterizations

In a typical hydrostatic model on pressure coordinates, the governing equations
(Chapter 2), including subgrid-scale processes, denoted with a tilde, are written as:
dv o7

—_ T
— = — fhkxvVv—g— 4.3.1
dt Vp¢ fkxv gap ( )

for the two horizontal equations of motion, including the effect of eddy fluxes of
momentum,

9 _ = (4.3.2)
ap

the hydrostatic equation,

V, v+ —=0 4.3.3
p V+8p ( )
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the continuity equation,

9P
at

o0
+V-Vp, = —/V,,- Vdp 4.3.4)
0

the rate of change of the surface pressure,
pa=RT (4.3.5)

the equation of state,
T < dFy I
=—=0= Qrad_gE—FL(C_E) (4.3.6)

and the first law of thermodynamics, which includes radiative heating and cooling,
sensible heat fluxes and condensation and evaporation, and
99 _ g et 4.3.7)
dt op
the conservation equation for water vapor. Condensation takes place when the grid
average value oversaturates (stable or grid-scale condensation), or when there is
moist convective instability and cumulus convection. The condensed water falls
as precipitation, and may evaporate if the layers below are not saturated. Addi-
tional conservation equations can be written for cloud and rain water in models
with prognostic (rather than diagnostic) clouds, and for other substances such as
ozone.

In these equations the quantities with an overbar are the grid-averaged quantities
computed by the model dynamics, and the terms with the tilde represent the terms
that are parameterized. In a typical model, the vertical eddy flux of momentum
# = pw'u’ i+ pw'v’ j (also known as eddy stress) of sensible heat F = pC I,W
and of moisture Fq = pw’q’ may be represented using K-theory in the boundary
layer and neglected in the free atmosphere above the boundary layer (using K = 0
or a very small value). The vertical derivatives of the turbulent fluxes that appear in
the right-hand sides of (4.3.1), (4.3.6), and (4.3.7) introduce a requirement for lower
boundary conditions for the surface fluxes of heat, moisture, and momentum. These
surface fluxes are computed using a bulk parameterization based on the Monin—
Obukhov (1954) similarity theory. This theory concludes that the profiles of wind
and temperature in the turbulent surface layer can be described by a set of equations
that depends only on a few parameters, including the surface roughness length z. The
hypothesis of similarity, based on many observational studies, suggests that the fluxes
of momentum and heat are nearly constant with height in the surface layer (of depth
10—100 m, which is much thinner than the planetary boundary layer). The fluxes
in the surface or constant flux layer are usually represented with bulk aerodynamic
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formulas:

T = —pCpl|v|v
Fy = —pCy|v|Cp(0 — 0Os) (4.3.8)
Fy = —pCgl|vIB(g — gs)

Here, v, 6, g are the velocity, potential temperature, and mixing ratio in the surface
layer, respectively, and the variables with an S subscript are the corresponding values
at the underlying ocean or land surface (vy = 0). Cp, Cy, and Cg are transfer coef-
ficients (Cp is known as “drag coefficient”) and they depend on the stability of the
surface layer (measured by the bulk Richardson number Rip = gz [(9 — 0s) /5] /v,
the height z and the surface roughness length). They are nondimensional and have
typical values of the order of 1073 for stable conditions and 10~2 for unstable con-
ditions (Louis, 1979). B is a coefficient representing the degree of saturation of the
underlying surface (1 for oceans, 01 for land depending on the degree of saturation
in the soil moisture content). The surface layer values are either obtained through the
use of a thin (order 10 m) prognostic layer or diagnosed.

The radiative heating in (4.3.6) is determined from the vertical divergence of the
upward and downward fluxes of short- and long-wave radiation, obtained using the
radiative transfer equation. See Kiehl (1992) for a review of the parameterization of
radiation. The interaction between clouds and radiation is very complex, and is a
major area of research. Early models specified clouds climatologically (Manabe et al.,
1965). In the 1980s the cloud cover was specified diagnostically, based on relative
humidity (Slingo, 1987, Campana, 1994). More recently, cloud and rain water were
predicted using budget equations and cloud cover was deduced from the amount of
cloud water (e.g., Zhao et al., 1997). The cloud properties are also important: rather
than plane slabs, as generally assumed, clouds have a fractal structure, which effec-
tively reduces their albedo and increases atmospheric absorption of solar radiation
(Cahalan et al., 1994).

An important area of research is the effect of subgrid-scale mountains. Wallace
et al. (1983) proposed representing the blocking effect of subgrid-scale hills and
valleys by increasing the effective height of mountains above its grid average by a
factor of order one times the standard deviation of the subgrid-scale orography. This
approach has been denoted “envelope orography”. Similarly, Mesinger et al. (1988)
chose a method essentially that defines the grid mountain height by the tallest peaks
(“silhouette orography”). Lott and Miller (1997) formulated a new parameterization
using developments in the nonlinear theory of stratified flows around obstacles, pay-
ing special attention to the parameterization of the blocked flow when the effective
height of the subgrid-scale orography is high enough. They showed that this method
can duplicate the results using envelope orography. In addition to its blocking effect,
under stable conditions, small-scale orography generates internal gravity waves that
propagate upwards, increase their amplitude, and eventually break at upper levels,
depositing their low-level momentum (Lilly and Kennedy, 1973). The net result is
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a deceleration due to surface orography at upper levels. Modelers have introduced
a gravity-wave parameterization following Palmer et al. (1986), McFarlane (1987),
and Lindzen (1988). Kim and Arakawa (1995) developed a parameterization of the
drag due to gravity waves.

Other areas of research in the parameterization of subgrid processes are related
to the fact that the underlying surfaces (ocean and land) have their own evolution
and therefore provide a “longer memory” to the forecast model which cannot be
represented diagnostically. Equation (4.3.8) indicates that over ocean it is necessary
to know the surface stress 7 and the SST. Short-range forecasts are performed with
observed SSTs, under the assumption that they do not change significantly with time,
but this is clearly not a reasonable assumption for medium-range or longer forecasts
(e.g., Pefia et al., 2002).

For seasonal and interannual predictions, the SST is predicted using an ocean
model coupled to the atmospheric model (Ji et al., 1994, Trenberth, 1992). In addition,
the surface fluxes over the ocean depend on the surface waves, which are driven by the
wind. Currently most models use the Charnock (1955) parameterization relating an
effective roughness length to the surface stress. In an iterative procedure the stress and
the roughness length are obtained and bulk-aerodynamical formulas used to deduce
the sensible and latent heat fluxes. However, in reality, ocean waves have a memory
of their previous interactions with the atmosphere: swell (“old sea”) is smoother than
“new sea” where waves are driven by sudden changes in the wind, and, in turn, this
affects the surface stress and the fluxes of heat and moisture. To take this effect into
account, it is necessary to couple atmospheric models with ocean wave models.

Over land, similarly, the surface fluxes of heat and moisture are strongly depen-
dent on the vegetation and soil moisture. Older models followed Manabe et al. (1965)
by representing the effect of available soil moisture with a simple 15-cm “bucket”
model, whose content was reduced by evaporation and increased by precipitation,
with overflow representing river runoff. The surface temperature was obtained diag-
nostically assuming zero heat capacity for the land. Current models include coupling
the atmospheric model with multilevel soil models with prognostic equations for the
soil temperature and moisture, and include the very important controlling effect of
plants on evapotranspiration (see reviews by Sellers (1992), Dickinson (1992), Pan
(1990)).



Data assimilation

5.1 Introduction

In previous chapters we saw that NWP is an initial/boundary value problem: given
an estimate of the present state of the atmosphere (initial conditions), and appropriate
surface and lateral boundary conditions, the model simulates (forecasts) the atmo-
spheric evolution. Obviously, the more accurate the estimate of the initial conditions,
the better the quality of the forecasts. Currently, operational NWP centers produce
initial conditions through a statistical combination of observations and short-range
forecasts. This approach has become known as “data assimilation”, whose purpose
is defined by Talagrand (1997) as “using all the available information, to determine
as accurately as possible the state of the atmospheric (or oceanic) flow.”

There are several excellent reviews of this subject, which has become an im-
portant science in itself. The book Atmospheric data analysis by Daley (1991) is
a comprehensive description of methods for atmospheric data analysis and assim-
ilation. Ghil and Malanotte-Rizzoli (1991) have written a rigorous discussion of
present data assimilation methods with special emphasis on sequential methods. Ta-
lagrand (1997) gives an elegant introductory overview of current methods of data
assimilation, and Zupanski and Kalnay (1999) also provide a short introduction to
the subject. The book Data assimilation in meteorology and oceanography: Theory
and practice (Ghil et al., editors, 1997) contains a wealth of important papers on
current methods for data assimilation. An earlier but still useful book is Dynamic
meteorology: Data assimilation methods (Bengtsson et al., editors, 1981). Thiebaux
and Pedder (1987) provided a description of spatial interpolation methods applied to
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meteorology. Several workshops on data assimilation have taken place at ECMWEF,
and their proceedings are extremely useful.

In the early NWP experiments, Richardson (1922) and Charney et al. (1950)
performed hand interpolations of the available observations to a regular grid, and
these fields of initial conditions were then manually digitized, which was a very time
consuming procedure. The need for an automatic “objective analysis” became quickly
apparent (Charney, 1951), and interpolation methods fitting observations to a regular
grid were soon developed. Panofsky (1949) developed the first objective analysis
algorithm based on two-dimensional polynomial interpolation, a procedure that can
be considered “global” since the same function is used to fit all the observations.

Gilchrist and Cressman (1954) developed a “local polynomial” interpolation
scheme for the geopotential height (Fig. 5.1.1). A quadratic polynomial in x and
y was defined at each grid point:

2(x, ¥) = doo + @i0x + ao1y + axx* + ajxy + apy’ (5.1.1)

The six coefficients were determined by minimizing the mean square difference
between the polynomial and observations close to the grid point (within a radius of
influence of the grid point):

K, K,

. - 2 2
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Here py, g are empirical weighting coefficients, and u,, v, are the geostrophic wind
components computed from the gradient of the geopotential height z(x, y) at the
observation point k, and K is the total number of observations within the radius of
influence. Note that although the field being analyzed is just the geopotential height,
the wind observations are useful as well because they provide additional information
about its gradient.

However, for operational primitive equation models, it is not enough to perform
spatial interpolation of observations into regular grids, because not enough data are
available to initialize current models. As pointed out in the introduction, the num-
ber of degrees of freedom in a modern NWP model is of the order of 107, whereas
the total number of conventional observations of the variables used in the mod-
els (e.g., from rawinsondes) is of the order of 10*. There are many new types of
data currently available, including remotely sensed data such as satellite and radar
observations, but they do not measure directly the variables used in the models
(wind, temperature, moisture, and surface pressure). Moreover, their distribution in
space and time is very nonuniform (Fig. 1.4.1), with regions like North America
and Eurasia that are relatively data-rich, and others that are much more poorly
observed.

For this reason, it became clear rather early in the history of NWP that, in addition
to the observations, it was necessary to have a complete first guess estimate of the
state of the atmosphere at all the grid points in order to generate the initial conditions
for the forecasts (Bergthorsson and Do66s, 1955). The first guess (also known as
background field or prior information) should be our best estimate of the state of the
atmosphere prior to the use of the observations. Initially climatology, or acombination
of climatology and a short forecast were used as a first guess (e.g., Gandin, 1963,
Bergthorsson and D66s, 1955). As forecasts became better, the use of short-range
forecasts as a first guess was universally adopted in operational systems in what is
called an “analysis cycle” (Fig. 5.1.2).

The analysis cycle is an intermittent data assimilation system that continues to
be used in most global operational systems, which typically use a 6-h cycle per-
formed four times a day. The model forecast plays a very important role. Over
data-rich regions, the analysis is dominated by the information contained in the
observations. In data-poor regions, the forecast benefits from the information up-
stream. For example, 6-h forecasts over the North Atlantic Ocean are very good,
even in the absence of satellite data, because of the information coming from
North America. The forecast is thus able to transport information from data-rich
to data-poor areas, and for this reason, data assimilation using a short-range fore-
cast as a first guess has become known as four-dimensional data assimilation
(4DDA).

In Section 5.2 we describe empirical analysis schemes (SCM and nudging), and
Sections 5.3 ef seq. are devoted to statistical interpolation schemes.
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Figure 5.1.2: (a) Typical global 6-h analysis cycle performed at 00, 06, 12, and

18 UTC. The observations should be valid for the same time as the first guess. In the
global analysis this has usually meant the rawinsondes are launched mostly at the
main observing times (00 and 12 UTC), and satellite data are lumped into windows
centered at the main observing times. The observations can be direct observations of
variables used by the model, or indirect observations of geophysical parameters, such
as radiances, that depend on the variables used in the model. (b) Typical regional
analysis cycle. The main difference with the global cycle is that boundary conditions
coming from global forecasts are an additional requirement for the regional forecasts.
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52 Empirical analysis schemes

52.1  Successive corrections method (SCM)

The first analysis method used in 4DDA was based on an empirical approach known
as the SCM, developed by Bergthorsson and Doos (1955) in Sweden and by Cressman
(1959) of the US Weather Service. In SCM the first estimate of the gridded field is
given by the background (or first guess) field:

=1 (5.2.1)

where fib is the background field evaluated at the ith grid point, and fl.0 the corres-
ponding zeroth iteration estimate of the gridded field (Fig. 5.1.1).

After this first estimate, the following iterations are obtained by “successive cor-
rections’:

K!

Zw 2= )

frt = g L (5.2.2)

n 2
E w; + €
k=1

where f/" is the nth iteration estimation at the grid point i, £, is the kth observation

surrounding the grid point i, f;" is the value of the nth field estimate evaluated at
the observation point k (obtained by interpolation from the surrounding grid points),
and &2 is an estimate of the ratio of the observation error variance to the background
error variance. The weights w!, can be defined in different ways. Cressman (1959)
defined the weights in the SCM as

2 _ o
wh, = —R” ik for 2,( < R2

RZ + rj (5.2.3)
wi =0 for  ri > R?

where r2 is the square of the distance between an observation point r; and a grid
point at r;.

The radius of influence R, is allowed to vary with the iteration, and K is the
number of observations within a distance R, of the grid point i. For example, in the
1980s the Swedish operational system used R; = 1500 km, R, = 900 km for upper
air analyses, and R; = 1500 km, R, = 1200 km, R; = 750 km, R4 = 300 km for
the surface pressure analysis. The reduction of the radius of influence results in a
field that reflects the large scales after the first iteration and converges towards the
smaller scales after the additional iterations.

In the Cressman SCM, the coefficient &2 is assumed to be zero. This results in a
“credulous” analysis that more faithfully reflects the observations, and for a very small
radius of influence the analysis converges to the observation values if the observations
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are located at the grid points. If the data are noisy (e.g., if an observation has gross
errors, or if it contains an unrepresentative sample of subgrid-scale variability), this
can lead to “bull’s eyes” (many isolines around an unrealistic grid-point value) in
the analysis. Including £ > 0 assumes that the observations have errors, and gives
some weight to the background field.

Barnes (1964, 1978) developed another empirical version of the SCM that has
been widely used for analyses where there is no available background or first guess
field, such as the analysis of radar data or other small-scale observations. Since we
have no information on the background field, its error variance can be considered to
be very large, so that 2 = 0. The weights are given by w, = e~"#/F:. The radii of
influence are changed by a constant factor at each iteration: RZ, | = yR2. If y = 1,
only the large scales are captured. For ¥ < 1 more details in the observations are
reproduced in the analysis as more iterations are performed.

Although the SCM method is empirical, it is simple and economical, and it pro-
vides reasonable analyses. Bratseth (1986) showed that if the weights are chosen
appropriately instead of using the empirical formulas presented above, the SCM can
be made to converge to a proper statistical interpolation (OI) (Section 5.3).

522 Nudging

Another empirical and fairly widely used method for data assimilation is Newtonian
relaxation or nudging (Hoke and Anthes, 1976, Kistler, 1974). This consists of adding
to the prognostic equations a term that nudges the solution towards the observations
(interpolated to the model grid). For example, for a primitive equation model, the
zonal velocity forecast equation is written as

8—u:—v-Vu+fv—%+—qus_u (5.24)
at 0x T,
and similarly for the other equations.

The relaxation time scale, 7, is chosen based on empirical considerations and
may depend on the variable. If T is very small, the solution converges towards the
observations too fast, and the dynamics do not have enough time to adjust. If 7 is
too large, the errors in the model can grow too much before the nudging becomes
effective. Hoke and Anthes indicated that T should be chosen so that the last term
is similar in magnitude to the less dominant terms. They used a very short time
scale, about 20 minutes, in their experiments. Stauffer and Seaman (1990) used
about one hour in experiments assimilating synoptic observations, and reported a
fair amount of success. Zou et al. (1992) made optimal parameter estimations of the
nudging time scale. Kaas et al. (1999) performed an interesting experiment, nudging
a model towards a 15-y reanalysis from the ECMWE, and by averaging the mean
forcing introduced by nudging, empirically determined corrections to reduce model
deficiencies.
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Although this method is not generally used for large-scale assimilation, some
groups use it for assimilating small-scale observations (e.g., radar observations) when
there are no available statistics to perform a statistical interpolation.

53  Introduction to least squares methods

We have described in Section 5.2 several empirical methods for data assimilation.
In this section we present methods that are based on statistical estimation theory.
According to Talagrand (1997):

Assimilation of meteorological or oceanographical observations can be
described as the process through which all the available information is used in
order to estimate as accurately as possible the state of the atmospheric or oceanic
flow. The available information essentially consists of the observations proper,
and of the physical laws that govern the evolution of the flow. The latter are
available in practice under the form of a numerical model. The existing
assimilation algorithms can be described as either sequential or variational.

53.1 Least squares method

In this section we give “baby examples” of both sequential and variational approaches.
The methodology and results derived from this simple case carry over to multivariate
OI, Kalman filtering, and 3D-Var and 4D-Var assimilation.

The best estimate of the state of the atmosphere (analysis) is obtained, as indicated
by Talagrand (1997), from combining prior information about the atmosphere (back-
ground or first guess) with observations, but in order to combine them optimally we
also need statistical information about the errors in these “pieces of information.” A
classic example of determining the best estimate of the true value of a scalar (e.g., the
true temperature 7;) given two independent observations (or pieces of information),
T, and 7>, serves as an introduction to statistical estimation:

T1=Tt+€1} 5.3.1)

L=T +s&

The observations have errors ¢; that we don’t know. Let E() represent the expected
value, i.e., the average that one would obtain if making many similar measurements.
We assume that the instruments that measure 7 and 75 are unbiased: E(T), — T;) =
E(T, — T;) = 0, or equivalently,

E(e1) = E(g2) =0 (5.3.2)
and that we know the variances of the observational errors:

E(e}) =of E(3) =03 (533)
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We also assume that the errors of the two measurements are uncorrelated:
E(g18) =0 (5.3.4)

Equations (5.3.2), (5.3.3) and (5.3.4) represent the statistical information that we
need about the actual observations. We try to estimate 7; from a linear combination
of the two observations since they represent all the information that we have about
the true value of 7':

T, =aT+al (5.3.5)
The “analysis” T, should be unbiased:

E(T,) = E(T) (5.3.6)
which implies

a +a =1 (5.3.7)

T, will be the best estimate of T, if the coefficients are chosen to minimize the mean
squared error of T:

o2 = E[(T, — T))*] = El(ai(Ty — T)) + ax(T> — T)))*] (5.3.8)

subject to the constraint (5.3.7). Substituting a; = 1 — a;, the minimization of o>
with respect to a; gives

1/012 1/(722
4= ——5e ay= 2 (53.9)
1/02 + 1)o7 /o2 + 1/0?
or
. /i (5.3.10)
1_012—1—022 2_012—1—022 o

i.e., the weights of the observations are proportional to the “precision” or accuracy of
the measurements (defined as the inverse of the variances of the observational errors).
Moreover, substituting the coefficients (5.3.10) in (5.3.8), we obtain a relationship
between the analysis variance and the observational variances:

1
—=—1+— (5.3.11)
i.e., if the coefficients are optimal, and the statistics of the errors are exact, then the

“precision” of the analysis (defined as the inverse of the variance) is the sum of the
precisions of the measurements.

Exercise 5.3.1: Derive equations (5.3.9), (5.3.10), and (5.3.11).
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532 Variational (cost function) approach

We can also obtain the same best estimate of 7; by minimizing a function of the
temperature defined as the sum of the square of the distance (or misfit) of the estimate
T to the two observations, weighted by their observational error precisions:

1 [(T -y n (T - Tz)z}

J(T) = -
™ 2 o} o3

(5.3.12)

Exercise 5.3.2: Show that the minimum of the cost function J is obtained for T = T,
defined in (5.3.5) with the same weights as in (5.3.10). Hint: 0J /0T = 0for T = T,.

One may ask the motivation for defining a cost function as in (5.3.12). We now
show that (5.3.12) can be formulated using the maximum likelihood approach, where
we ask the question: Given the two independent observations 7} and 7,, which are
assumed to have normally distributed errors with standard deviations o, and o,, what
is the most likely value of the true temperature 7'? We define the analysis as the most
likely value of T given the observations and their statistical errors.

The probability distribution of an observation 77 given a true value 7 and an
observational standard deviation o7, is given by the gaussian distribution

_@-1?

207
N 2moy

Conversely, the likelihood (Edwards, 1984) of a true value T given an observation
T, with a standard deviation o is given by

po,(Th|T) = e

@12
207

Lo (T||ITy) = po,(Th|T) =

e
W 2moy
Similarly, the likelihood of a true value 7' given an observation 7, with a standard
deviation o is

_@-1?

N 2moy

Therefore the most likely value of T given the two independent measurements T}
and T, is the one that maximizes the joint probability, i.e., their product:

Lo, (T||T2) = po,(T2|T) =

e 20

_@m=1?  (1-1)?

2 2
e 20§ 205

max Lo o,(T|T1, T2) = po,(T1|T) po,(T2|T) =
T 2010,

Since the logarithm is a monotonic function, we can take the logarithm of the likeli-
hood and obtain the same maximum likelihood temperature:
(I' =Ty (I,—-T)

207 203

mTax InLy, o,(T||T1, T2) = m;:lX [const. —

(5.3.13)
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The standard deviations are constant so that the maximum likelihood is attained when
the cost function (5.3.12) is minimized.

Alternatively (Purser, 1984), the Bayesian derivation of (5.3.12) assumes we
made the observation 7 (the background forecast in the data assimilation prob-
lem), which implies a prior probability distribution of the truth pg, ,,(T) =
(1/+/2761)e~T=T7"/29 prior to the second observation. Then Bayes formula for
the a posteriori probability of the truth given observation 75 is

sz(T2|T)pT1,01 (T)
p(rz(T2)

1 _@m-1? 1 @ -1?
P — 2022 e 2012
LY 27'[(72 LY, 27‘[01
= T (5.3.14)
a2

Po,(T|T2) =

The denominator

Po,(I2) = T/ maze > dT
is independent of 7. The estimate of the truth that maximizes the a posteriori prob-
ability (5.3.14) is obtained by maximizing the logarithm of the numerator, and is
given, once again, by the minimum of the cost function (5.3.12).

Note that the control variable for the minimization of (5.3.12) (i.e., the variable
with respect to which we are minimizing the cost function J) is now the temperature
itself, not the weights. The equivalence between the minimization of the analysis
error variance (finding the optimal weights through a least squares approach), and
the variational cost function approach (finding the optimal analysis that minimizes
the distance to the observations weighted by the inverse of the error variance) is an
important property. This equivalence also holds true for multidimensional problems
(in which case we use the covariance matrix rather than the scalar variance), and it
indicates that OI (Gandin, 1963) and 3D-Var (e.g., Sasaki, 1970, Parrish and Derber,
1992) are solving the same problem (Lorenc, 1986).

Figure 5.3.1 illustrates the probability distribution for a simple case. Note that the
analysis (the most likely value of the truth that maximizes the joint probability of 7',
and T',) has a probability distribution with a maximum closer to T';, and a smaller
standard deviation (higher precision) than either observation.

533 Simplest sequential assimilation and Kalman filtering
for a scalar

This is a prototype of the full multivariate OI. Assume that one of the two pieces of
information T} = T, is the forecast (or any other “background” value) and the other
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Figure 5.3.1: Illustration of the properties of the probability distribution of the
analysis 7, given observations 7} and 75, using either the least squares approach or
the Bayesian approach (after Purser, 1984).

is an observation 7, = T,. From (5.3.5) and (5.3.10), we can write the analysis as

T, =T, + W, —T)) (5.3.15)

where (T, — T}) is defined as the observational “innovation” , i.e., the new infor-
mation brought by the observation. It is also known as the observational increment
(with respect to the background); W is the optimal weight, given by
1

W =o;(o; +07)" (5.3.16)
and the analysis error variance is, as before,

o2 = (0,240, (5.3.17)
The analysis variance can in turn be written as 6 = 0202 /(0? + 02), or

ol =(1— W)} (5.3.18)

Exercise 5.3.3: Derive equations (5.3.15)—(5.3.18).



5.3 Introduction to least squares methods 147

Equations (5.3.15)—(5.3.18) have been derived for the simplest scalar case, but they
are important for the problem of data assimilation because they have exactly the same
form as the least squares sequential estimation methods used for real multidimen-
sional problems (OI, interpolation, 3D-Var and even Kalman filtering). Therefore we
interpret these equations in detail:

Equation (5.3.15) says: “The analysis is obtained by adding to the first guess
(background) the innovation (difference between the observation and first
guess) weighted by the optimal weight.”

Equation (5.3.16) says: “The optimal weight is the background error variance
multiplied by the inverse of the total error variance (the sum of the
background and the observation error variances).” Note that the larger the
background error variance, the larger the correction to the first guess.

Equation (5.3.17) says: “The precision of the analysis (inverse of the analysis
error variance) is the sum of the precisions of the background and the
observation.”

Equation (5.3.18) says: “The error variance of the analysis is the error
variance of the background, reduced by a factor equal to one minus the
optimal weight.”

All these statements are important because they also hold true for sequential data
assimilation systems (OI and Kalman filtering) for multidimensional problems. In
these problems, in which 7}, and T, are three-dimensional fields of size order 10’
and T, is a set of observations (typically of size 10° or 10°), we have to replace the
expression “error variance” by “error covariance matrix”, and the “optimal weight”
by an “optimal gain matrix”.

Note also from (5.3.16) that there is one essential “tuning” parameter in OI: the
ratio of the a priori estimate of the observational to the background error variances
(00/05)°

Moreover, if the background is a forecast, we can use equations (5.3.15), (5.3.16),
and (5.3.18) to create a simple sequential “analysis cycle”, in which the observation is
used once at the time it appears and then discarded. Assume that we have completed
the analysis at time #; (e.g., at 12 UTC), and we want to proceed to the next cycle
(time #;11, or 18 UTC in the example). The analysis cycle has two phases, a forecast
phase to update the background 7, and its error variance obz, and an analysis phase,
to update the analysis 7, and its error variance o2

In the forecast phase of the analysis cycle, the background is first obtained through
a forecast:

Tp(ti+1) = M [T,(1;)] (5.3.19)

where M represents a forecast model (which could be a dynamical model, persistence,
climatology, extrapolation, etc.). We also need to estimate the error variance of the
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background. In Ol this is done by making some suitable simple assumption, such as
that the model integration increases the initial error variance by a fixed amount, e.g.,
a factor a not much greater than 1 (such as 1.5 or 2).

of(tis1) = ac(t;) (5.3.20)

This allows the new weight W(#; ;) to be estimated using (5.3.16).

In Kalman filtering, (5.3.19) is the same as in OI, but instead of assuming a value
for abz(ti+ 1) as in (5.3.20) we compute the forecast error covariance using the forecast
model itself. If we applied the model (5.3.19) to update the true temperature, there
would be an error, since the model is not perfect: T;(¢;1) = M [T,(t;)] — eun-

The model error is assumed to be unbiased (unfortunately this is not in general a
good assumption) with an error variance Q% = E(¢3,). Then,

epiv1 = (T, — T))ip1 = M(T,); — M(T}); + ey =Me,; + ey (5.3.21)

where M = d M /9T is the linearized or tangent linear model operator, and the forecast
for the background error covariance at the new time level is:

0pin1 = E(e5,41) =M?0; +0° (5.3.22)
Exercise 5.3.4: Derive (5.3.21) and (5.3.22).

Inthe analysis phase of the analysis cycle (for both Ol and Kalman filtering) we get the
new observation 7,(#;11), and we derive the new analysis 7,(#;1;) using (5.3.15),
the estimates of obz from either (5.3.20) for OI, or (5.3.22) for Kalman filtering, and
the new analysis error variance o%(#;11) using (5.3.18). After the analysis, the cycle
for time #;,, is completed, and we can proceed to the next cycle.

Remarks 5.3.1

In general, we cannot directly observe the model variables that we want to ana-
lyze (i.e., temperature, moisture, wind, and surface pressure at the grid points of the
model). Instead we have rawinsondes (which were designed to provide these de-
sirable variables) but at locations which are different from the analysis grid points,
so that we have to perform horizontal and vertical interpolations. A more complex
problem is that we may have remote sensing instruments (like satellites and radars)
that measure quantities influenced by the desired variables, like radiances, reflectivi-
ties, refractivities, and Doppler shifts, rather than the variables themselves. Typically,
then, we have to use an observation operator H(T}) (also known as an observational
Sforward operator) to obtain from the first guess gridded field a first guess of the
observations. The observation operator H includes spatial interpolations (or spectral
to physical space transformation) from the first guess to the location of the observa-
tions. It also includes transformations based on physical laws, such as the radiative
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transfer equations that go from a model vertical profile of temperature and moisture
to “observed” first guess satellite radiances.

Instead of using the observation operator, the operational assimilation of remotely
sensed data used to be done following the “retrieval” approach. For example, TOVS
(TIROS-N Operational Vertical Sounder) is an instrument that measures radiances
in the infrared and microwave range of the spectrum. The forward operator model
H(T,q,clouds) was inverted by first filtering the clouds and then retrieving “observed”
profiles of temperature and moisture, 7'(p) and g(p). The retrieved profiles (that
“looked” like rawinsonde observations) were then assimilated into the models. As
indicated in Chapter 1, the direct assimilation of radiances, using the forward obser-
vational model H to convert the first guess into “first guess TOVS radiances” and
then the assimilation of the “radiances innovations” (observed minus first guess radi-
ances) has resulted in major improvements in the forecasts in both hemispheres (e.g.,
Fig. 1.4.3). This will be discussed further in Section 5.5, but we remark here that the
improvements obtained by direct assimilation of the radiances are due basically to
two reasons:

(1) There are fewer independent radiance observations than vertical levels of T
and ¢ in the model, which means that the problem of deriving a “retrieval”
using only radiances is underdetermined. Therefore, in order to “retrieve”
(invert the forward observational operator) it is necessary to introduce
additional and less accurate statistical information into the problem. The
introduction of this ancillary information (usually based on climatology, and
generally less accurate than a short-range forecast used as a first guess) is
unnecessary with the direct assimilation of radiance innovations.

(2) The observation error covariance of the retrieved T and g profiles is very
difficult to determine, since it involves strong error correlations among
retrievals in different latitude and longitude locations introduced by the use of
ancillary information. On the other hand, observed radiances have “cleaner”
error covariances, since they depend only on instrument errors, and not on
how the data were processed. As a result, the observational error covariance
for the radiances is usually diagonal.

5.4 Multivariate statistical data assimilation methods

We now generalize the least squares method to obtain the OI equations for vectors
of observations and background fields. These equations were derived originally by
Eliassen (1954, reproduced in Bengtsson et al., 1981). However, Gandin (1963)
derived the multivariate OI equations independently and applied them to objective
analysis in the Soviet Union. Gandin’s work had a profound influence upon the
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research and operational community, and OI became the operational analysis scheme
of choice during the 1980s and early 1990s. In this discussion we generally follow
the notation proposed by Ide et al. (1997) for data assimilation methods. This short
paper, although ostensibly devoted to notation, is also an excellent overview of data
assimilation. Later in this section we show that 3D-Var is equivalent to the Ol method,
although the method for solving it is quite different and advantageous for operational
systems.

54.1 Optimal interpolation (OI)

In Section 5.3 we studied the formulation of the “optimal” analysis of a scalar at a
single point. We now consider the complete NWP operational problem of finding
an optimum analysis of a field of model variables x,, given a background field x,
available at grid points in two or three dimensions, and a set of p observations y,
available at irregularly spaced points r; (Fig. 5.1.1).

The unknown analysis and the known background can be two-dimensional fields
of a single variable like the temperature analysis T,(x, y), or the three-dimensional
field of the initial conditions for all the model prognostic variables: x=(py, T, g, u, v).
These model variables are ordered by grid point and by variable, forming a single
vector of length n, where n is the product of the number of points times the number of
variables. The (unknown) “truth” x,, discretized at the model points, is also a vector
of length n.

Note that we have used a different variable y, for the observations than for the
field we want to analyze. This is to emphasize that the observed variables are, in
general, different from the model variables by: (a) being located in different points,
and (b) possibly being indirect measures of the model variables. Examples of these
measurements are radar reflectivities and Doppler shifts, satellite radiances, and
global positioning system (GPS) atmospheric refractivities.

As we did in (5.3.15) for a scalar, the analysis is cast as the background plus the
innovation weighted by optimal weights which we will determine from statistical
interpolation,

X, — X, = W[y, — HXp)l — e, = Wd — ¢,
€a =X4 —X;

(54.1)

but now the truth, the analysis, and the background are vectors of length #n (the total
number of grid points times the number of model variables) and the weights are given
by amatrix of dimension (n x p). The forward observational operator H converts the
background field into “first guesses of the observations.” H can be nonlinear (e.g., the
radiative transfer equations that go from temperature and moisture vertical profiles
to the satellite observed radiances). The observation field y, is a vector of length p,
the number of observations. The vector d, also of length p, is the “innovation” or
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“observational increments” vector:

d=y, — H(xp) (5.4.2)

Remarks 5.4.1

(a)

(b)

The weight matrix W is also called the gain matrix K, the same matrix that
appears in Kalman filtering.

An error covariance matrix is obtained by multiplying a vector error
€1
€
E =
el‘l

by its transpose €7 = [61 e ...e, ], and averaging over many cases, to
obtain the expected value:

eep eey - €16,

N exe; exep - €26,
P=ceT =| | ) . (5.4.3)

€n€l1 €epéy - €€y

where the overbar represents the expected value (i.e. is the same as E( )). A
covariance matrix is symmetric and positive definite. The diagonal elements
are the variances of the vector error components e;¢; = 0. If we normalize
the covariance matrix, dividing each component by the product of the
standard deviations e;e;/o;0; = corr(e;, e;) = p;j, we obtain a correlation
matrix

1 P12+ Pin
ez 1 - oy
C = . . . 544
| Pt P12 o1
and if
(62 0 0
p_|® @ O
0 0 o?

is the diagonal matrix of the variances, then we can write

P = DV2CD'? (5.4.5)
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(d)
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The transpose of matrix products is given by the product of the transposes,
but in reverse order: [AB]? = BT AT; a similar rule applies to the inverse of a
product: [AB]™! = B~ 'A"!

The general form of a quadratic function is F(x) = %XTAX +d"x + c,where
A is a symmetric matrix, d is a vector and c a scalar. To find the gradient of
this scalar function V4 F = 9 F /9x (a column vector) we use the following
properties of the gradient with respect to x: V(d”x) = V(x’d) = d (since
Vx!' =1, the identity matrix), and V (x” Ax) = 2Ax. Therefore,

VF(x)=Ax+d V?F(x)=A and SF=(VF)sx  (5.4.6)

Multiple regression or best linear unbiased estimation (BLUE).
Assume we have two time series of vectors

x1(t) Y1(t)

x2(1) Y2(f)
x=| ") ¥() =

Xn (1) yp(1)

centered about their mean value, E(x) = 0, E(y) = 0, i.e., vectors of
anomalies. We derive now the best linear unbiased estimation of x in terms of
y, i.e., the optimal value of the weight matrix W in the multiple linear
regression

X, (1) = Wy(r) (5.4.7)
which approximates the true relationship

x(1) = Wy(r) — &) (5.4.8)
Here e(t) = x,(t) — x(¢) is the linear regression (‘“‘analysis”) error, and W is

ann x p matrix that minimizes the mean squared error E(e” €). To derive W
we write the regression equation matrix components explicitly:

p
xi(0) =) wiye(t) — &)

k=1

Then

2
Z el(t) = Z [Z Wit Ye(t) = X; <r>}
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and the derivative with respect to the weight matrix components is

9 Z ex(t)

i=1
8w,-j

P
2 [1;1 wik Yi(1) — Xi(t):| [y, 0]

P
=2 [Z Wik Vi (£)yi () — xi(t))’j(t)i|

k=1 5.4.9)
In matrix form, this is

oele
8w,-j

=2{[Wyy 0], — [x®)y" 0]}

so that if we take a long time mean, and choose W to minimize the mean
squared error, we get the normal equation

WE (yy') - E(xy") =0
or

W=E(xy")[E (yy")]" (5.4.10)
which gives the best linear unbiased estimation x,(¢t) = Wy(z).

Statistical assumptions
We define the background error and the analysis error as vectors of length n:

&p(x, y) = Xp(x, y) — X, (x, y) (5.4.11a)
3a(x»Y)=Xa(xa y)_xl(-x7 )’) (5411b)

The p observations available at irregularly spaced points y,(r;) have observational
errors

Eoi = Yor)) — Yi(1) = Yo(r:) — H[X,(r))] (5.4.12)

We don’t know the truth x,, thus we don’t know the errors of the available background
and observations, but we can make a number of assumptions about their statistical
properties. The background and observations are assumed to be unbiased:

m%@JH=EWMJ%—Em@JH=O} 54.13)

E{eo(ri)} = E{y,(r)} — E{y,(r)} =0

If the forecasts (background) and the observations are biased, in principle we can
and should correct the bias before proceeding. Dee and Da Silva (1998) show how
the model bias can actually be estimated as part of the analysis cycle.
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We define the error covariance matrices for the analysis, background and obser-
vations respectively:

P, =A=Elec!}
P, =B = E{ee]} (5.4.14)
P, =R = E{g,e!}

The nonlinear observation operator H that transforms model variables into observed
variables can be linearized as

H(x + 8x) = H(x) + Hox (5.4.15)

where H is a p x n matrix, denoted the linear observation operator with elements
hi j = 0H;/0x;. We also assume that the background (usually a model forecast) is a
good approximation of the truth, so that the analysis and the observations are equal
to the background values plus small increments. Therefore, the innovation vector
(5.4.2) can be written as

d=y, — HXxp) =y, — HX; + (Xp — X))
=y, — Hx;) — H(x;, — x;) = &, — Hg,, (5.4.16)

The H matrix transforms vectors in model space into their corresponding values in
observation space. Its transpose or adjoint H” transforms vectors in observation space
to vectors in model space.

The background error covariance B (a matrix of size n x n) and the observation
error covariance R (a matrix of size p x p) are assumed to be known. In addition,
we assume that the observation and background errors are uncorrelated:

Ele,e[} =0 (5.4.17)

We will now use the best linear unbiased estimation formula (5.4.10) to derive the
optimal weight matrix W in (5.4.1). x, — x;,, = Wd, which approximates the true
relationship x, — x, = Wd — g,,.

From (5.4.16), d =y, — H(x;) = &, — Hg;,, and from (5.4.10) the optimal
weight matrix W (also known as the gain matrix K) that minimizes £’ g, is given by

W = E{(x, — xp)[yo — Hx»)1" NE{[y, — Hxp)Ily, — Hxp)I" D™
= El(—&,)(e, — Hep) 1{El(e, — Hep)(e, — Hep) 1) (5.4.18)

Recall that in (5.4.17) we assumed that the background errors are not correlated with
the observational errors, i.e., that their covariance is equal to zero. Substituting the
definitions of background error covariance B and observational error covariance R
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(5.4.14) into (5.4.18) we obtain the optimal weight matrix
W =BH' (R + HBH")! (5.4.19)
Finally, we derive the analysis error covariance.
P, = Ele.e]} = E{epe], + £,(e, — He,) W'
+W(e, — Hep)e, +W(e, — Hey)(e, — Hep) W'}
=B - BH'W’ — WHB + WRW’ + WHBH' W’
and substituting (5.4.19) we obtain

P,=(1—-WH)B (5.4.20)
Exercise 5.4.1: Derive (5.4.20).

For convenience, we repeat the basic equations of OI, and express in words their
interpretation, which is similar to that for a scalar least square problem from the last
section:

X, =X + W[y, — H(xp)] = x;, + Wd 641
W =BH’ (R + HBH”)™! (5.4.19a)

We will see in Section 5.5 (where we derive the variational approach or 3D-Var) that
the weight matrix (5.4.19) can be written in an alternative equivalent form as

W=B"'+H'R'H 'H'R! (5.4.19b)
(see (5.5.11) in Section 5.5)
P, = (I, — WH)B (5.4.20)

where the subscript 7 is a reminder that the identity matrix is in the analysis or model
space.

The interpretation of these equations is very similar to the scalar case discussed
in Section 5.3:

Equation (5.4.1) says: “The analysis is obtained by adding to the first guess
(background) the product of the optimal weight (or gain) matrix and the
innovation (the difference between the observation and the first guess).
The first guess of the observations is obtained by applying the observation
operator H to the background vector.” Also, note that from (5.4.15),
H(x,) = H(x,) + H(x;, — x,) = H(x,) + Hg,;,, where the matrix H is the
linear tangent perturbation of H.

Equation (5.4.19a) says: “The optimal weight (or gain) matrix is given by the
background error covariance in the observation space (BH” ) multiplied by
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the inverse of the total error covariance (the sum of the background and the
observation error covariances).” Note that the larger the background error
covariance compared with the observation error covariance, the larger the
correction to the first guess.

Equation (5.4.20) says: “The error covariance of the analysis is given by the
error covariance of the background, reduced by a matrix equal to the
identity matrix (n X n) minus the optimal weight matrix.”

Finally we derive an alternative formulation for the analysis error covariances show-
ing (as in the scalar case) the additive properties of the “precisions” (if all the statistical
assumptions hold true). From (5.4.1), (5.4.16), and (5.4.19b) we can show that

e, =¢,+ B ' +H' R 'H 'H'R '(¢¢ — He})
=B '+H' R 'H]'[B e, + H R '¢g,] (5.4.21)

If we again compute P, = E{g,e!'} from (5.4.21), and make use of E{g,e!} =
0,P, =B = E{eye]},P, = R = E{g,e!'}, we obtain

P.'=B'+H'R'H (5.4.22)

Equation (5.4.22) says: “The analysis precision, defined as the inverse of the
analysis error covariance, is the sum of the background precision and the
observation precision projected onto the model space.”

Note that all these statements are dependent on the assumption that the statistical
estimates of the errors are accurate. If the observations and/or background error co-
variances are poorly known, if there are biases, or if the observations and background
errors are correlated, the analysis precision can be considerably worse than implied
by (5.4.20) or (5.4.22).

Remarks 5.4.2

(a) Itis important to note that the observation error variances come from two
different sources: one is the instrumental error variances proper, the second is
the presence in the observations of subgrid-scale variability not represented in
the grid-average values of the model and analysis. The second type of error is
denoted “error of representativeness”. By performing a grid average similar
to the Reynolds average discussed in Chapter 4, we obtain that the
observational error variance R is the sum of the instrument error variance
R;,s;» and the representativeness error variance R,,,,, assuming that these
errors are not correlated. If in addition we allow for errors in the observation
operator H with observation error covariance Ry, these can also be included
in the observation error covariance (Lorenc, 1986):

R = Rygr + Rrepr + Ry (5423)
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(b) The equations for Kalman filtering, discussed in detail in Section 5.5, are very
similar as those for OI. The main difference is that the background error
covariance B, instead of being assumed to be constant in time as in OI or
3D-Var, is updated (forecasted) from the previous analysis time ¢, to the new
analysis time #,. The model forecast starts from the analysis at time

ta, X;*' = M(x"), where M is the nonlinear model. Therefore, subtracting

Xt = M(x!") — ey from both sides,
et =Me” +ey (5.4.24)

where ¢, is the model error. From (5.4.24) we obtain the Kalman filter new
forecast error covariance

B =P/ (t,1) =& (&™) = M1,)P. ()M (1,) + Q(t,) (5.4.25)

Here Q = E(¢g,, enTl) is the forecast model error covariance, M is the linear
tangent model and M7 its adjoint. With this change, the weight matrix
becomes the Kalman gain matrix K. Although this is apparently a small
change from OI, the matrix multiplications by M in (5.4.20) are
approximately equivalent to integrating the forecast model n/2 times, where

n is the number of degrees of freedom of the model.

542 Approximations made in the practical
implementation of OI

We have seen that, in matrix form, the analysis is obtained from
X, = Xp + W[y, — H(xp