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This comprehensive text and reference work on numerical weather prediction
covers for the first time, not only methods for numerical modeling, but also the
important related areas of data assimilation and predictability.

It incorporates all aspects of environmental computer modeling including an
historical overview of the subject, equations of motion and their approximations,
a modern and clear description of numerical methods, and the determination of
initial conditions using weather observations (an important new science known
as data assimilation). Finally, this book provides a clear discussion of the
problems of predictability and chaos in dynamical systems and how they can be
applied to atmospheric and oceanic systems. This includes discussions of
ensemble forecasting, El Niño events, and how various methods contribute to
improved weather and climate prediction. In each of these areas the emphasis is
on clear and intuitive explanations of all the fundamental concepts, followed by
a complete and sound development of the theory and applications.

Professors and students in meteorology, atmospheric science, oceanography,
hydrology and environmental science will find much to interest them in this
book which can also form the basis of one or more graduate-level courses. It will
appeal to professionals modeling the atmosphere, weather and climate, and to
researchers working on chaos, dynamical systems, ensemble forecasting and
problems of predictability.
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Foreword

During the 50 years of numerical weather prediction the number of textbooks dealing
with the subject has been very small, the latest being the 1980 book by Haltiner and
Williams. As you will soon realize, the intervening years have seen impressive devel-
opment and success. Eugenia Kalnay has contributed significantly to this expansion,
and the meteorological community is fortunate that she has applied her knowledge
and insight to writing this book.

Eugenia was born in Argentina, where she had exceptionally good teachers. She
had planned to study physics, but was introduced to meteorology by a stroke of fate;
her mother simply entered her in a competition for a scholarship from the Argentine
National Weather Service! But a military coup took place in Argentina in 1966 when
Eugenia was a student, and the College of Sciences was invaded by military forces.
Rolando Garcia, then Dean of the College of Sciences, was able to obtain for her
an assistantship with Jule Charney at the Massachusetts Institute of Technology.
She was the first female doctoral candidate in the Department and an outstanding
student. In 1971, under Charney’s supervision, she finished an excellent thesis on the
circulation of Venus. She recalls that an important lesson she learned from Charney
at that time was that if her numerical results did not agree with accepted theory it
might be because the theory was wrong.

What has she written in this book? She covers many aspects of numerical weather
prediction and related areas in considerable detail, on which her own experience
enables her to write with relish and authority. The first chapter is an overview that
introduces all the major concepts discussed later in the book. Chapter 2 is a pre-
sentation of the standard equations used in atmospheric modeling, with a concise

xi



xii Foreword

but complete discussion of filtering approximations. Chapter 3 is a roadmap to nu-
merical methods providing a student without background in the subject with all
the tools needed to develop a new model. Chapter 4 is an introduction to the pa-
rameterization of subgrid-scale physical processes, with references to specialized
textbooks and papers. I found her explanations in Chapter 5 of data assimilation
methods and in Chapter 6 on predictability and ensemble forecasting to be not only
inclusive but thorough and well presented, with good attention to historical devel-
opments. These chapters, however, contain many definitions and equations. (I take
this wealth as a healthy sign of the technical maturity of the subject.) This complex-
ity may be daunting for many readers, but this has obviously been recognized by
Eugenia. In response she has devised many simple graphical sketches that illustrate
the important relations and definitions. An added bonus is the description in an ap-
pendix of the use of Model Output Statistics by the National Weather Service, its
successes, and the rigid constraints that it imposes on the forecast model. She also
includes in the appendices a simple adaptive regression scheme based on Kalman
filtering and an introduction to the generation of linear tangent and adjoint model
codes.

Before leaving the National Centers for Environmental Prediction in 1998 as
Director of the Environmental Modeling Center, Eugenia directed the Reanalysis
Project, with Robert Kistler as Technical Manager. This work used a 1995 state-of-
the-art analysis and forecast system to reanalyze and reforecast meteorological events
from past years. The results for November 1950 were astonishing. On November 24
of that year an intense snowstorm developed over the Appalachians that had not
been operationally predicted even 24 hours in advance. This striking event formed
a test situation for the emerging art of numerical weather prediction in the years
immediately following the first computations in 1950 on the ENIAC computer dis-
cussed in Chapter 1. In 1953, employing his baroclinic model, and with considerable
“tuning” Jule Charney finally succeeded in making a 24-hour forecast starting on
November 23 1950 of a cyclonic development, which, however, was still located
some 400 kilometers northeast of the actual location of the storm. This “prediction”
played a major role in justifying the creation of the Joint Numerical Weather Pre-
diction Unit in 1955 (Chapter 1). By contrast, in the Reanalysis Project, this event
was forecast extremely well, both in intensity and location – as much as three days
in advance. (Earlier than this the associated vorticity center at 500 mbs had been
located over the Pacific Ocean, even though at that time there was no satellite data!)
This is a remarkable demonstration of the achievements of the numerical weather
prediction community in the past decades, achievements that include many by our
author.

After leaving NCEP in 1998, Eugenia was appointed Lowry Chair in the School
of Meteorology at the University of Oklahoma, where she started writing her book.
She returned to Maryland in 1999 to chair the Department of Meteorology, where
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she continues to do research on a range of topics, including applications of chaos to
ensemble forecasting and data assimilation. We look forward to future contributions
by Professor Kalnay.

Norman Phillips
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1

Historical overview of numerical
weather prediction

1.1 Introduction

In general, the public is not aware that our daily weather forecasts start out as initial-
value problems on the major national weather services supercomputers. Numerical
weather prediction provides the basic guidance for weather forecasting beyond the
first few hours. For example, in the USA, computer weather forecasts issued by the
National Center for Environmental Prediction (NCEP) in Washington, DC, guide
forecasts from the US National Weather Service (NWS). NCEP forecasts are per-
formed by running (integrating in time) computer models of the atmosphere that
can simulate, given one day’s weather observations, the evolution of the atmosphere
in the next few days.1 Because the time integration of an atmospheric model is an
initial-value problem, the ability to make a skillful forecast requires both that the
computer model be a realistic representation of the atmosphere, and that the initial
conditions be known accurately.

NCEP (formerly the National Meteorological Center or NMC) has performed
operational computer weather forecasts since the 1950s. From 1955 to 1973, the
forecasts included only the Northern Hemisphere; they have been global since 1973.
Over the years, the quality of the models and methods for using atmospheric obser-
vations has improved continuously, resulting in major forecast improvements.

1 In this book we will provide many examples mostly drawn from the US operational numerical
center (NCEP), because of the availability of long records, and because the author’s experience
in this center facilitates obtaining such examples. However, these operational NCEP examples
are only given for illustration purposes, and are simply representative of the evolution of
operational weather forecasting in all major operational centers.

1



2 1 Historical overview of numerical weather prediction

Figure 1.1.1(a) shows the longest available record of the skill of numerical weather
prediction. The “S1” score (Teweles and Wobus, 1954) measures the relative error
in the horizontal gradient of the height of the constant pressure surface of 500 hPa
(in the middle of the atmosphere, since the surface pressure is about 1000 hPa) for
36-h forecasts over North America. Empirical experience at NMC indicated that
a score of 70% or more corresponds to a useless forecast, and a score of 20% or
less corresponds to an essentially perfect forecast. This was found from the fact
that 20% was the average S1 score obtained when comparing analyses hand-made
by several experienced forecasters fitting the same observations over the data-rich
North American region.

Figure 1.1.1(a) shows that current 36-h 500-hPa forecasts over North America
are close to what was considered essentially “perfect” 40 years ago: the computer
forecasts are able to locate generally very well the position and intensity of the large-
scale atmospheric waves, major centers of high and low pressure that determine the
general evolution of the weather in the 36-h forecast. The sea level pressure forecasts
contain smaller-scale atmospheric structures, such as fronts, mesoscale convective
systems that dominate summer precipitation, etc., and are still difficult to forecast
in detail (although their prediction has also improved very significantly over the
years) so their S1 score is still well above 20% (Fig. 1.1.1(b)). Fig. 1.1.1(a) also
shows that the 72-h forecasts of today are as accurate as the 36-h forecasts were
10–20 years ago. This doubling (or better) of skill in the forecasts is observed for
other forecast variables, such as precipitation. Similarly, 5-day forecasts, which had
no useful skill 15 years ago, are now moderately skillful, and during the winter of
1997–8, ensemble forecasts for the second week average showed useful skill (defined
as anomaly correlation close to 60% or higher).

The improvement in skill of numerical weather prediction over the last 40 years
apparent in Fig.1.1.1 is due to four factors:

the increased power of supercomputers, allowing much finer numerical
resolution and fewer approximations in the operational atmospheric models;

the improved representation of small-scale physical processes (clouds,
precipitation, turbulent transfers of heat, moisture, momentum, and radiation)
within the models;

the use of more accurate methods of data assimilation, which result in
improved initial conditions for the models; and

the increased availability of data, especially satellite and aircraft data over the
oceans and the Southern Hemisphere.

In the USA, research on numerical weather prediction takes place in the national
laboratories of the National Oceanic and Atmospheric Administration (NOAA), the
National Aeronautics and Space Administration (NASA) and the National Center
for Atmospheric Research (NCAR), and in universities and centers such as the
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Figure 1.1.1: (a) Historic evolution of the operational forecast skill of the NCEP
(formerly NMC) models over North America (500 hPa). The S1 score measures the
relative error in the horizontal pressure gradient, averaged over the region of interest.
The values S1 = 70% and S1 = 20% were empirically determined to correspond
respectively to a “useless” and a “perfect” forecast when the score was designed.
Note that the 72-h forecasts are currently as skillful as the 36-h were 10–20 years ago
(data courtesy C.Vlcek, NCEP). (b) Same as (a) but showing S1 scores for sea level
pressure forecasts over North America (data courtesy C.Vlcek, NCEP). It shows
results from global (AVN) and regional (LFM, NGM and Eta) forecasts. The LFM
model development was “frozen” in 1986 and the NGM was frozen in 1991.



4 1 Historical overview of numerical weather prediction

Center for Prediction of Storms (CAPS). Internationally, major research takes place
in large operational national and international centers (such as the European Center
for Medium Range Weather Forecasts (ECMWF), NCEP, and the weather services
of the UK, France, Germany, Scandinavian and other European countries, Canada,
Japan, Australia, and others). In meteorology there has been a long tradition of sharing
both data and research improvements, with the result that progress in the science of
forecasting has taken place on many fronts, and all countries have benefited from
this progress.

In this introductory chapter, we give an overview of the major components and
milestones in numerical forecasting. They will be discussed in detail in the following
chapters.

1.2 Early developments

Jule G. Charney (1917–1981) was one of the giants in the history of numerical
weather prediction. In his 1951 paper “Dynamical forecasting by numerical process”,
he introduced the subject of this book as well as it could be introduced today. We
reproduce here parts of the paper (with emphasis added):

As meteorologists have long known, the atmosphere exhibits no periodicities of
the kind that enable one to predict the weather in the same way one predicts the
tides. No simple set of causal relationships can be found which relate the state
of the atmosphere at one instant of time to its state at another. It was this realization
that led V. Bjerknes (1904) to define the problem of prognosis as nothing less than
the integration of the equations of motion of the atmosphere.2 But it remained for
Richardson (1922) to suggest the practical means for the solution of this problem.
He proposed to integrate the equations of motion numerically and showed exactly
how this might be done. That the actual forecast used to test his method was
unsuccessful was in no way a measure of the value of his work. In retrospect it

2 The importance of the Bjerknes (1904) paper is clearly described by Thompson (1990), another
pioneer of NWP, and the author of a very inspiring text on NWP (Thompson, 1961a). His paper
“Charney and the revival of NWP” contains extremely interesting material on the history of
NWP as well as on early computers:

It was not until 1904 that Vilhelm Bjerknes – in a remarkable manifesto and testament of
deterministic faith – stated the central problem of NWP. This was the first explicit, coherent
recognition that the future state of the atmosphere is, in principle, completely determined by its
detailed initial state and known boundary conditions, together with Newton’s equations of
motion, the Boyle–Charles–Dalton equation of state, the equation of mass continuity, and the
thermodynamic energy equation. Bjerknes went further: he outlined an ambitious, but logical
program of observation, graphical analysis of meteorological data and graphical solution of the
governing equations. He succeeded in persuading the Norwegians to support an expanded
network of surface observation stations, founded the famous Bergen School of synoptic and
dynamic meteorology, and ushered in the famous polar front theory of cyclone formation.
Beyond providing a clear goal and a sound physical approach to dynamical weather prediction,
V. Bjerknes instilled his ideas in the minds of his students and their students in Bergen and in
Oslo, three of whom were later to write important chapters in the development of NWP in the
US (Rossby, Eliassen and Fjörtoft).
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becomes obvious that the inadequacies of observation alone would have doomed
any attempt, however well conceived, a circumstance of which Richardson
was aware. The real value of his work lay in the fact that it crystallized
once and for all the essential problems that would have to be faced by future
workers in the field and it laid down a thorough groundwork for their solution.

For a long time no one ventured to follow in Richardson’s footsteps. The
paucity of the observational network and the enormity of the computational task
stood as apparently insurmountable barriers to the realization of his dream that
one day it might be possible to advance the computation faster than the weather.
But with the increase in the density and extent of the surface and upper-air
observational network on the one hand, and the development of large-capacity
high-speed computing machines on the other, interest has revived in
Richardson’s problem, and attempts have been made to attack it anew.

These efforts have been characterized by a devotion to objectives more
limited than Richardson’s. Instead of attempting to deal with the atmosphere in
all its complexity, one tries to be satisfied with simplified models approximating
the actual motions to a greater or lesser degree. By starting with models
incorporating only what it is thought to be the most important of the
atmospheric influences, and by gradually bringing in others, one is able to
proceed inductively and thereby to avoid the pitfalls inevitably encountered
when a great many poorly understood factors are introduced all at once.

A necessary condition for the success of this stepwise method is, of course,
that the first approximations bear a recognizable resemblance to the actual
motions. Fortunately, the science of meteorology has progressed to the point
where one feels that at least the main factors governing the large-scale
atmospheric motions are well known. Thus integrations of even the linearized
barotropic and thermally inactive baroclinic equations have yielded solutions
bearing a marked resemblance to reality. At any rate, it seems clear that the
models embodying the collective experience and the positive skill of the forecast
cannot fail utterly. This conviction has served as the guiding principle in the
work of the meteorology project at The Institute for Advanced Study [at
Princeton University] with which the writer has been connected.

As indicated by Charney, Richardson performed a remarkably comprehensive
numerical integration of the full primitive equations of motion (Chapter 2). He used
a horizontal grid of about 200 km, and four vertical layers of approximately 200 hPa,
centered over Germany. Using the observations at 7 UTC (Universal Coordinate
Time) on 20 May 1910, he computed the time derivative of the pressure in central
Germany between 4 and 10 UTC. The predicted 6-h change was 146 hPa, whereas in
reality there was essentially no change observed in the surface pressure. This huge
error was discouraging, but it was due mostly to the fact that the initial conditions
were not balanced, and therefore included fast-moving gravity waves which masked
the initial rate of change of the meteorological signal in the forecast (Fig. 1.2.1).
Moreover, if the integration had been continued, it would have suffered “computa-
tional blow-up” due to the violation of the Courant–Friedricks–Lewy (CFL) condition
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About one day

Figure 1.2.1: Schematic of a forecast with slowly varying weather-related variations
and superimposed high-frequency gravity waves. Note that even though the forecast
of the slow waves is essentially unaffected by the presence of gravity waves, the
initial time derivative is much larger in magnitude, as obtained in the Richardson
(1922) experiment.

(Chapter 3) which requires that the time step should be smaller than the grid size
divided by the speed of the fastest traveling signal (in this case horizontally moving
sound waves, traveling at about 300 m/s).

Charney (1948, 1949) and Eliassen (1949) solved both of these problems by
deriving “filtered” equations of motion, based on quasi-geostrophic (slowly varying)
balance, which filtered out (i.e., did not include) gravity and sound waves, and were
based on pressure fields alone. Charney points out that this approach was justified by
the fact that forecasters’ experience was that they were able to predict tomorrow’s
weather from pressure charts alone:

In the selection of a suitable first approximation, Richardson’s discovery that
the horizontal divergence was an unmeasurable quantity had to be taken into
account. Here a consideration of forecasting practice gave rise to the belief that
this difficulty could be surmounted: forecasts were made by means of
geostrophic reasoning from the pressure field alone – forecasts in which the
concept of horizontal divergence played no role.

In order to understand better Charney’s comment, we quote an anecdote from
Lorenz (1990) on his interactions with Jule Charney:

On another3 occasion when our conversations had turned closer to scientific
matters, Jule was talking again about the early days of NWP. For a proper

3 The previous occasion was a story about an invitation Charney received to appear on the
“Today” show, to talk about how computers were going to forecast the weather. Since the show
was at 7 am, Charney, a late riser, had never watched it. “He told us that he felt that he ought to
see the show at least once before agreeing to appear on it, and so, one morning, he managed to
pull himself out of bed and turn on the TV set, and the first person he saw was a chimpanzee.



1.2 Early developments 7

perspective, we should recall that at the time when Charney was a student, pressure
was king. The centers of weather activity were acknowledged to be the highs and
lows. A good prognostic chart was one that had the isobars in the right locations.
Naturally, then, the thing that was responsible for the weather changes was the
thing that made the pressure change. This was readily shown to be the divergence
of the wind field. The divergence could not be very accurately measured, and a
corollary deduced by some meteorologists, including some of Charney’s advisors,
was that the dynamic equations could not be used to forecast the weather.

Such reasoning simply did not make sense to Jule. The idea that the wind
field might serve instead of the pressure field as a basis for dynamical
forecasting, proposed by Rossby, gave Jule a route to follow.4 He told us,
however, that what really inspired him to develop the equations that later became
the basis for NWP was a determination to prove, to those who had assured him
that the task was impossible, that they were wrong.

Charney, R. Fjørtoft, and J. von Neuman (1950) computed a historic first one-day
weather forecast using a barotropic (one-layer) filtered model. The work took place
in 1948–9. They used one of the first electronic computers (the Electronic Numerical
Integrator and Computer, ENIAC), housed at the Aberdeen Proving Grounds of the
US Army in Maryland. It incorporated von Neuman’s idea of “stored programming”
(i.e., the ability to perform arithmetic operations over different operands (loops)
without having to repeat the code). The results of the first forecasts were quite
encouraging: Fig. 1.2.2, reproduced from Charney (1951) shows the 24-h forecast and
verification for 30 January 1949. Unlike Richardson’s results, the forecast remains
meteorological, and there is a pattern correlation between the predicted and the
observed pressure field 24-h changes.

It is remarkable that in his 1951 paper, just after the triumph of performing the
first successful forecasts with filtered models, Charney already saw that much more
progress would come from the use of the primitive (unfiltered) equations of motion
as Richardson had originally attempted:

The discussion so far has dealt exclusively with the quasi-geostrophic
equations as the basis for numerical forecasting. Yet there has been no intention
to exclude the possibility that the primitive Eulerian equations can also be used
for this purpose. The outlook for numerical forecasting would be indeed dismal
if the quasi-geostrophic approximation represented the upper limit of attainable
accuracy, for it is known that it applies only indifferently, if at all, to many of the
small-scale but meteorologically significant motions. We have merely indicated
two obstacles that stand in the way of the applications of the primitive equations:

He decided he could never compete with a chimpanzee for the public’s favor, and so he
gracefully declined to appear, much to the dismay of the computer company that had
engineered the invitation in the first place” (Lorenz, 1990).

4 The development of the “Rossby waves” phase speed equation c = U − βL2/π 2 based on the
linearized, non-divergent vorticity equation (Rossby et al., 1939, Rossby, 1940), and its success
in predicting the motion of the large-scale atmospheric waves, was an essential stimulus to
Charney’s development of the filtered equations (Phillips, 1990b, 1998).
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(a) (b)

(c) (d)

Figure 1.2.2: Forecast of 30 January 1949, 0300 GMT: (a) contours of observed z
and ζ + f at t = 0; (b) observed z and ζ + f at t = 24 h; (c) observed (continuous
lines) and computed (broken lines) 24-h height change; (d) computed z and ζ + f at
t = 24 h. The height unit is 100 ft and the unit of vorticity is 1/3× 10−4 s–1.
(Reproduced from the Compendium of Meteorology, with permission of the
American Meteorological Society.)

First, there is the difficulty raised by Richardson that the horizontal divergence
cannot be measured with sufficient accuracy. Moreover, the horizontal
divergence is only one of a class of meteorological unobservables which also
includes the horizontal acceleration. And second, if the primitive Eulerian
equations are employed, a stringent and seemingly artificial bound is imposed on
the size of the time interval for the finite difference equations. The first obstacle
is the most formidable, for the second only means that the integration must
proceed in steps of the order of fifteen minutes rather than two hours. Yet the
first does not seem insurmountable, as the following considerations will indicate.

He proceeded to describe an unpublished study in which he and J.C. Freeman
integrated barotropic primitive equations (i.e., shallow water equations, Chapter 2)
which include not only the slowly varying quasi-geostrophic solution, but also fast
gravity waves. They initialized the forecast assuming zero initial divergence, and
compared the result with a barotropic forecast (with gravity waves filtered out).
The results were similar to those shown schematically in Fig. 1.2.1: they observed
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that over a day or so the gravity waves subsided (through a process that we call
geostrophic adjustment) and did not otherwise affect the forecast of the slow waves.
From this result Charney concluded that numerical forecasting could indeed use the
full primitive equations (as eventually happened in operational practice). He listed in
the paper the complete primitive equations in pressure coordinates, essentially as they
are used in current operational weather prediction, but without heating (nonadiabatic)
and frictional terms, which he expected to have minor effects in one- or two-day
forecasts. Charney concluded this remarkable paper with the following discussion,
which includes a list of the physical processes that take place at scales too small
to be resolved, and are incorporated in present models through “parameterizations
of the subgrid-scale physics” (condensation, radiation, and turbulent fluxes of heat,
momentum and moisture, Chapter 4):

Nonadiabatic and frictional terms have been ignored in the body of the
discussion because it was thought that one should first seek to determine how
much of the motion could be explained without them. Ultimately they will have to
be taken into account, particularly if the forecast period is to be extended to
three or more days.

Condensational phenomena appear to be the simplest to introduce: one has
only to add the equation of continuity for water vapor and to replace the dry by
the moist adiabatic equation. Long-wave radiational effects can also be provided
for, since our knowledge of the absorptive properties of water vapor and carbon
dioxide has progressed to a point where quantitative estimates of radiational
cooling can be made, although the presence of clouds will complicate the
problem considerably.

The most difficult phenomena to include have to do with the turbulent
transfer of momentum and heat. A great deal of research remains to be done
before enough is known about these effects to permit the assignment of even
rough values to the eddy coefficients of viscosity and heat conduction. Owing to
their statistically indeterminate nature, the turbulent properties of the atmosphere
place an upper limit to the accuracy obtainable by dynamical methods of
forecasting, beyond which we shall have to rely upon statistical methods. But it
seems certain that much progress can be made before these limits can be reached.

This paper, which although written in 1951 has not become dated, predicted
with almost supernatural vision the path that numerical weather forecasting was to
follow over the next five decades. It described the need for objective analysis of
meteorological data in order to replace the laborious hand analyses. We now refer
to this process as data assimilation (Chapter 5), which uses both observations and
short forecasts to estimate initial conditions. Note that at a time at which only one-day
forecasts had ever been attempted, Charney already had the intuition that there was an
upper limit to weather predictability, which Lorenz (1965) later estimated to be about
two weeks. However, Charney attributed the expected limit to model deficiencies
(such as the parameterization of turbulent processes), rather than to the chaotic nature
of the atmosphere, which imposes a limit of predictability even if the model is perfect
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(Lorenz, 1963b; Chapter 6). Charney was right in assuming that in practice model
deficiencies, as well as errors in the initial conditions, would limit predictability. At
the present time, however, the state of the art in numerical forecasting has advanced
enough that, when the atmosphere is highly predictable, the theoretically estimated
limit for weather forecasting (about two weeks) is occasionally reached and even
exceeded through techniques such as ensemble forecasting (Chapter 6).

Following the success of Charney et al. (1950), Rossby moved back to Sweden,
and was able to direct a group that reproduced similar experiments on a powerful
Swedish computer known as BESK. As a result, the first operational (real time)
numerical weather forecasts started in Sweden in September 1954, six months before
the start-up of the US operational forecasts5 (Döös and Eaton, 1957, Wiin-Nielsen,
1991, Bolin, 1999).

1.3 Primitive equations, global and regional models,
and nonhydrostatic models

As envisioned by Charney (1951, 1962) the filtered (quasi-geostrophic) equations,
although very useful for understanding of the large-scale extratropical dynamics of
the atmosphere, were not accurate enough to allow continued progress in NWP, and
were eventually replaced by primitive equation models (Chapter 2). The primitive
equations are conservation laws applied to individual parcels of air: conservation
of the three-dimensional momentum (equations of motion), conservation of energy
(first law of thermodynamics), conservation of dry air mass (continuity equation),
and equations for the conservation of moisture in all its phases, as well as the equation
of state for perfect gases. They include in their solution fast gravity and sound waves,
and therefore in their space and time discretization they require the use of smaller
time steps, or alternative techniques that slow them down (Chapter 3). For models
with a horizontal grid size larger than 10 km, it is customary to replace the vertical
component of the equation of motion with its hydrostatic approximation, in which
the vertical acceleration is considered negligible compared with the gravitational
acceleration (buoyancy). With this approximation, it is convenient to use atmospheric
pressure, instead of height, as a vertical coordinate.

The continuous equations of motions are solved by discretization in space and in
time using, for example, finite differences (Chapter 3). It has been found that the ac-
curacy of a model is very strongly influenced by the spatial resolution: in general, the
higher the resolution, the more accurate the model. Increasing resolution, however, is
extremely costly. For example, doubling the resolution in the three space dimensions
also requires halving the time step in order to satisfy conditions for computational

5 Anders Persson (1999 personal communication) kindly provided the notes on the historical
development of NWP in the USA and Sweden reproduced in Appendix A.
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stability. Therefore, the computational cost of doubling the resolution is a factor of
24 (three space and one time dimensions). Modern methods of discretization attempt
to make the increase in accuracy less onerous by the use of semi-implicit and semi-
Lagrangian time schemes. These schemes (pioneered by Canadian scientists under
the leadership of Andre Robert) have less stringent stability conditions on the time
step, and more accurate space discretization. Nevertheless, there is a constant need for
higher resolution in order to improve forecasts, and as a result running atmospheric
models has always been a major application of the fastest supercomputers available.

When the “conservation” equations are discretized over a given grid size (typi-
cally from a few to several hundred kilometers) it is necessary to add “sources and
sinks” terms due to small-scale physical processes that occur at scales that cannot
be explicitly resolved by the models. As an example, the equation for water vapor
conservation on pressure coordinates is typically written as

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
+ ω

∂q

∂p
= E − C + ∂ω′q ′

∂p
(1.3.1)

where q is the ratio between water vapor and dry air mass, x and y are horizontal
coordinates with appropriate map projections, p is pressure, t is time, u and v are
the horizontal air velocity (wind) components, ω = dp/dt is the vertical velocity
in pressure coordinates, and the product of primed variables represents turbulent
transports of moisture on scales unresolved by the grid used in the discretization, with
the overbar indicating a spatial average over the grid of the model. It is customary
to call the left-hand side of the equation, the “dynamics” of the model, which is
computed explicitly (Chapter 3).

The right-hand side represents the so-called “physics” of the model. For the mois-
ture equation, it includes the effects of physical processes such as evaporation and
condensation E − C , and turbulent transfers of moisture which take place at small
scales that cannot be explicitly resolved by the “dynamics”. These subgrid-scale
physical processes, which are sources and sinks for the equations, are then “parame-
terized” in terms of the variables explicitly represented in the atmospheric dynamics
(Chapter 4).

Two types of models are in use for NWP: global and regional models (Chapter 5).
Global models are generally used for guidance in medium-range forecasts (more than
2 d), and for climate simulations. At NCEP, for example, the global models are run
through 16 d every day. Because the horizontal domain of global models is the whole
earth, they usually cannot be run at high resolution. For more detailed forecasts it is
necessary to increase the resolution, and this can only be done over limited regions
of interest.

Regional models are used for shorter-range forecasts (typically 1–3 d), and are
run with a resolution two or more times higher than global models. For example,
the NCEP global model in 1997 was run with 28 vertical levels, and a horizontal
resolution of 100 km for the first week, and 200 km for the second week. The regional
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(Eta) model was run with a horizontal resolution of 48 km and 38 levels, and later in
the day with 29 km and 50 levels. Because of their higher resolution, regional models
have the advantage of higher accuracy and the ability to reproduce smaller-scale
phenomena such as fronts, squall lines, and much better orographic forcing than
global models. On the other hand, regional models have the disadvantage that, unlike
global models, they are not “self-contained” because they require lateral boundary
conditions at the borders of the horizontal domain. These boundary conditions must
be as accurate as possible, because otherwise the interior solution of the regional
models quickly deteriorates. Therefore it is customary to “nest” the regional models
within another model with coarser resolution, whose forecast provides the boundary
conditions. For this reason, regional models are used only for short-range forecasts.
After a certain period, which is proportional to the size of the model, the information
contained in the high-resolution initial conditions is “swept away” by the influence
of the boundary conditions, and the regional model becomes merely a “magnifying
glass” for the coarser model forecast in the regional domain. This can still be
useful, for example, in climate simulations performed for long periods (seasons to
multiyears), and which therefore tend to be run at coarser resolution. A “regional
climate model” can provide a more detailed version of the coarse climate simulation
in a region of interest. Several other major NWP centers in Europe (United
Kingdom (http://www.met-office.gov.uk/), France (http://www.meteo.fr/), Germany
(http://www.dwd.de/)), Japan (http://www.kishou.go.jp/), Australia (http://www.
bom.gov.au/nmoc/ab nmc op.shtml), and Canada (http://www.ec.gc.ca/) also have
similar global and regional models, whose details can be obtained at their web
sites.

More recently the resolution of some regional models has been increased to just
a few kilometers in order to resolve better storm-scale phenomena. Storm-resolving
models such as the Advanced Regional Prediction System (ARPS) cannot use the
hydrostatic approximation which ceases to be accurate for horizontal scales of the
order of 10 km or smaller. Several major nonhydrostatic models have been devel-
oped and are routinely used for mesoscale forecasting. In the USA the most widely
used are the ARPS, the MM5 (Penn State/NCAR Mesoscale Model, Version 5),
the RSM (NCEP Regional Spectral Model) and the COAMPS (US Navy’s Coupled
Ocean/Atmosphere Mesoscale Prediction System). There is a tendency towards the
use of nonhydrostatic models that can be used globally as well.

1.4 Data assimilation: determination of the initial
conditions for the computer forecasts

As indicated previously, NWP is an initial-value problem: given an estimate of
the present state of the atmosphere, the model simulates (forecasts) its evolution.
The problem of determination of the initial conditions for a forecast model is very
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important and complex, and has become a science in itself (Daley, 1991). In this
section we introduce methods that have been used for this purpose (successive cor-
rections method or SCM, optimal interpolation or OI, variational methods in three
and four dimensions, 3D-Var and 4D-Var, and Kalman filtering or KF). We discuss
this subject in more detail in Chapter 5, and refer the reader to Daley (1991) as a
much more comprehensive text on atmospheric data analysis.

In the early experiments, Richardson (1922) and Charney et al. (1950) performed
hand interpolations of the available observations to grid points, and these fields
of initial conditions were manually digitized, which was a very time consuming
procedure. The need for an automatic “objective analysis” quickly became apparent
(Charney, 1951), and interpolation methods fitting data to grids were developed
(e.g., Panofsky, 1949, Gilchrist and Cressman, 1954, Barnes, 1964, 1978). However,
there is an even more important problem than spatial interpolation of observations to
gridded fields: the data available are not enough to initialize current models. Modern
primitive equations models have a number of degrees of freedom of the order of
107. For example, a latitude–longitude model with a typical resolution of 1◦ and
20 vertical levels would have 360× 180× 20 = 1.3× 106 grid points. At each grid
point we have to carry the values of at least four prognostic variables (two horizontal
wind components, temperature, moisture), and the surface pressure for each column,
giving over 5 million variables that need to be given an initial value. For any given
time window of ±3 hours, there are typically 10–100 thousand observations of the
atmosphere, two orders of magnitude less than the number of degrees of freedom
of the model. Moreover, their distribution in space and time is very nonuniform
(Fig. 1.4.1), with regions like North America and Eurasia which are relatively data-
rich, while others much more poorly observed.

For this reason, it became obvious rather early that it was necessary to use addi-
tional information (denoted background, first guess or prior information) to prepare
initial conditions for the forecasts (Bergthorsson and Döös, 1955). Initially clima-
tology was used as a first guess (e.g., Gandin, 1963), but as the forecasts became
better, a short-range forecast was chosen as the first guess in the operational data
assimilation systems or “analysis cycles”. The intermittent data assimilation cycle
shown schematically in Fig. 1.4.2 is continued in present-day operational systems,
which typically use a 6-h cycle performed four times a day.

In the 6-h data assimilation cycle for a global model, the background field is a
model 6-h forecast xb (a three-dimensional array). To obtain the background or first
guess “observations”, the model forecast is interpolated to the observation location,
and if they are different, converted from model variables to observed variables yo

(such as satellite radiances or radar reflectivities). The first guess of the observations
is therefore H (xb), where H is the observation operator that performs the neces-
sary interpolation and transformation from model variables to observation space.
The difference between the observations and the model first guess yo − H (xb) is
denoted “observational increments” or “innovations”. The analysis xa is obtained by
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Figure 1.4.1: Typical distribution of observations in a ±3-h window.
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Figure 1.4.2: Flow diagram of a typical intermittent (6-h) data assimilation cycle.
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adding the innovations to the model forecast (first guess) with weights W that are
determined based on the estimated statistical error covariances of the forecast and
the observations:

xa = xb +W[yo −H(xb)] (1.4.1)

Different analysis schemes (SCM, OI, 3D-Var, and KF) are based on (1.4.1) but
differ by the approach taken to combine the background and the observations to pro-
duce the analysis. Earlier methods such as the SCM (Bergthorsson and Döös, 1955,
Cressman, 1959, Barnes, 1964) were of a form similar to (1.4.1), with weights deter-
mined empirically. The weights are a function of the distance between the observation
and the grid point, and the analysis is iterated several times. In OI (Gandin, 1963)
the matrix of weights W is determined from the minimization of the analysis errors
at each grid point. In the 3D-Var approach one defines a cost function proportional
to the square of the distance between the analysis and both the background and the
observations (Sasaki, 1970). The cost function is minimized directly to obtain the
analysis. Lorenc (1986) showed that OI and the 3D-Var approach are equivalent if
the cost function is defined as:

J = 1

2
{[yo − H (x)]T R−1[yo − H (x)]+ (x− xb)T B−1(x− xb)} (1.4.2)

The cost function J in (1.4.2) measures the distance of a field x to the observations (the
first term in the cost function) and the distance to the first guess or background xb (the
second term in the cost function). The distances are scaled by the observation error
covariance R and by the background error covariance B respectively. The minimum
of the cost function is obtained for x = xa , which is defined as the “analysis”. The
analysis obtained in (1.4.1) and (1.4.2) is the same if the weight matrix in (1.4.1) is
given by

W = BHT (HBHT + R−1)−1 (1.4.3)

The difference between OI (1.4.1) and the 3D-Var approach (1.3) is in the method
of solution: in OI, the weights W are obtained for each grid point or grid volume,
using suitable simplifications. In 3D-Var, the minimization of (1.4.2) is performed
directly, allowing for additional flexibility and a simultaneous global use of the data
(Chapter 5).

More recently, the variational approach has been extended to four dimensions, by
including within the cost function the distance to observations over a time interval
(assimilation window). A first version of this considerably more expensive method
was implemented at ECMWF at the end of 1997 (Bouttier and Rabier, 1997). Re-
search on the even more advanced and computationally expensive KF (e.g., Ghil et al.,
1981), and ensemble KF (Evensen, 1994, Houtekamer and Mitchell, 1998) is dis-
cussed in Chapter 5. That chapter also includes a discussion about the problem of
enforcing a balance in the analysis so that the presence of gravity waves does not
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mask the meteorological signal, as happened to Richardson (1922) (Fig. 1.2.1). The
method used for many years to solve this “initialization” problem was “nonlinear
normal mode initialization” (Machenhauer, 1977, Baer and Tribbia, 1977). The bal-
ance in the initial conditions is usually obtained by either adding a constraint to the
cost function (1.4.2) (Parrish and Derber, 1992), or through the use of a digital filter
(Lynch and Huang, 1992, Chapter 5).

In the analysis cycle, no matter which analysis scheme is employed, the use of
the model forecast is essential in achieving “four-dimensional data assimilation”
(4DDA). This means that the data assimilation cycle is like a long model integration,
in which the model is “nudged” by the observational increments in such a way that
it remains close to the real atmosphere. The importance of the model cannot be
overemphasized: it transports information from data-rich to data-poor regions, and
it provides a complete estimation of the four-dimensional state of the atmosphere.
Figure 1.4.3 presents the rms difference between the 6-h forecast (used as a first
guess) and the rawinsonde observations from 1978 to the present (in other words, the
rms of the observational increments for 500-hPa heights). It should be noted that the
rms differences are not necessarily forecast errors, since the observations also contain
errors. In the Northern Hemisphere the rms differences have been halved from about
30 m in the late 1970s, to about 13 m in 2000, equivalent to a mean temperature
error of about 0.65 K, similar to rawinsonde observational errors. In the Southern
Hemisphere the improvements are even larger, with the differences decreasing from
about 47 m to about 12 m. The improvements in these short-range forecasts are a
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Figure 1.4.3: Rms observational increments (differences between 6-h forecast and
rawinsonde observations) for 500-hPa heights (data courtesy of Steve Lilly, NCEP).



1.5 Operational NWP and the evolution of forecast skill 17

reflection of improvements in the model, the analysis scheme used to assimilate the
data, and the quality and quality control of the data (Chapter 5).

1.5 Operational NWP and the evolution of forecast skill

Major milestones of operational numerical weather forecasting include the paper
by Charney et al. (1950) with the first successful forecast based on the primitive
equations, and the first operational forecasts performed in Sweden in September
1954, followed 6 months later by the first operational (real time) forecasts in the
USA. We describe in what follows the evolution of NWP at NCEP, but as mentioned
before, similar developments took place at several major operational NWP centers:
in the UK, France, Germany, Japan, Australia and Canada.

The history of operational NWP at the NMC (now NCEP) has been reviewed by
Shuman (1989) and Kalnay et al. (1998). It started with the organization of the Joint
Numerical Weather Prediction Unit (JNWPU) on 1 July 1954, staffed by members of
the US Weather Bureau (later the National Weather Service, NWS), the Air Weather
Service of the US Air Force, and the Naval Weather Service.6 Shuman pointed out that
in the first few years, numerical predictions could not compete with those produced
manually. They had several serious flaws, among them overprediction of cyclone
development. Far too many cyclones were predicted to deepen into storms. With
time, and with the joint work of modelers and practising synopticians, major sources
of model errors were identified, and operational NWP became the central guidance
for operational weather forecasts.

Shuman (1989) included a chart with the evolution of the S1 score (Teweles
and Wobus, 1954), the first measure of error in a forecast weather chart which,
according to Shuman (1989), was designed, tested, and modified to correlate well
with expert forecasters’ opinions on the quality of a forecast. The S1 score measures
the average relative error in the pressure gradient (compared to a verifying analysis
chart). Experiments comparing two independent subjective analyses of the same
data-rich North American region made by two experienced analysts suggested that a
“perfect” forecast would have an S1 score of about 20%. It was also found empirically
that forecasts with an S1 score of 70% or more were useless as synoptic guidance.

Shuman pointed out some of the major system improvements that enabled NWP
forecasts to overtake and surpass subjective forecasts. The first major improvement
took place in 1958 with the implementation of a barotropic (one-level) model, which
was actually a reduction from the three-level model first tried, but which included bet-
ter finite differences and initial conditions derived from an objective analysis scheme
(Bergthorsson and Döös, 1955, Cressman, 1959). It also extended the domain of the

6 In 1960 the JNWPU reverted to three separate organizations: the National Meteorological
Center (National Weather Service), the Global Weather Central (US Air Force) and the Fleet
Numerical Oceanography Center (US Navy).
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model to an octagonal grid covering the Northern Hemisphere down to 9–15◦ N.
These changes resulted in numerical forecasts that for the first time were competitive
with subjective forecasts, but in order to implement them JNWPU had to wait for the
acquisition of a more powerful supercomputer, an IBM 704, to replace the previous
IBM 701. This pattern of forecast improvements which depend on a combination of
the better use of the data and better models, and would require more powerful super-
computers in order to be executed in a timely manner has been repeated throughout
the history of operational NWP. Table 1.5.1 (adapted from Shuman (1989)) summa-
rizes the major improvements in the first 30 years of operational numerical forecasts
at the NWS. The first primitive equations model (Shuman and Hovermale, 1968) was
implemented in 1966. The first regional system (Limited Fine Mesh or LFM model,
Howcroft, 1971) was implemented in 1971. It was remarkable because it remained
in use for over 20 years, and it was the basis for Model Output Statistics (MOS).
Its development was frozen in 1986. A more advanced model and data assimilation
system, the Regional Analysis and Forecasting System (RAFS) was implemented as
the main guidance for North America in 1982. The RAFS was based on the multiple
Nested Grid Model (NGM, Phillips, 1979) and on a regional OI scheme (DiMego,
1988). The global spectral model (Sela, 1980) was implemented in 1980.

Table 1.5.2 (from Kalnay et al., 1998 and P. Caplan, personal communication,
2000) summarizes the major improvements implemented in the global system starting

Table 1.5.1. Major operational implementations and computer acquisitions at
NMC between 1955 and 1985 (adapted from Shuman, 1989)

Year Operational model Computer

1955 Princeton three-level quasi-geostrophic model
(Charney, 1954). Not used by the forecasters

IBM 701

1958 Barotropic model with improved numerics, objective
analysis initial conditions, and octagonal domain.

IBM 704

1962 Three-level quasi-geostrophic model with improved
numerics

IBM 7090 (1960)
IBM 7094 (1963)

1966 Six-layer primitive equations model (Shuman and
Hovermale, 1968)

CDC 6600

1971 LFM model (Howcroft, 1971) (first regional model at
NMC)

1974 Hough functions analysis (Flattery, 1971) IBM 360/195
1978 Seven-layer primitive equation model (hemispheric)
1978 OI (Bergman,1979) Cyber 205
Aug 1980 Global spectral model, R30/12 layers (Sela, 1980)
March 1985 Regional Analysis and Forecast System based on the

NGM (Phillips, 1979) and OI (DiMego, 1988)
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Table 1.5.2. Major changes in the NMC/NCEP global model and data assimilation
system since 1985 (adapted from Kalnay et al. 1998 and P. Caplan, pers. comm.,
2000)

Year Operational model Computer

April 1985 GFDL physics implemented on the global spectral
model with silhouette orography, R40/18 layers

Dec 1986 New OI code with new statistics

1987 2nd Cyber 205
Aug 1987 Increased resolution to T80/18 layers,

Penman–Montieth evapotranspiration and other
improved physics (Caplan and White, 1989, Pan,
1990)

Dec 1988 Implementation of hydrostatic complex quality
control (CQC) (Gandin, 1988)

1990 Cray YMP/8cpu/
32 megawords

Mar 1991 Increased resolution to T126 L18 and improved
physics, mean orography. (Kanamitsu et al.,
1991)

June 1991 New 3D-Var (Parrish and Derber, 1992, Derber
et al., 1991)

Nov 1991 Addition of increments, horizontal and vertical OI
checks to the CQC (Collins and Gandin, 1990)

7 Dec 1992 First ensemble system: one pair of bred forecasts at
00Z to 10 days, extension of AVN to 10 days
(Toth and Kalnay, 1993, Tracton and Kalnay,
1993)

Aug 1993 Simplified Arakawa–Schubert cumulus convection
(Pan and Wu, 1995). Resolution T126/28 layers

Jan 1994 Cray C90/16cpu/
128 megawords

March 1994 Second ensemble system: five pairs of bred
forecasts at 00Z, two pairs at 12Z, extension of
AVN, a total of 17 global forecasts every day to
16 days

10 Jan 1995 New soil hydrology (Pan and Mahrt, 1987),
radiation, clouds, improved data assimilation.
Reanalysis model

25 Oct 1995 Direct assimilation of TOVS cloud-cleared
radiances (Derber and Wu, 1998). New planetary
boundary layer (PBL) based on nonlocal
diffusion (Hong and Pan, 1996). Improved CQC

Cray C90/16cpu/
256 megawords
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Table 1.5.2. (cont.)

Year Operational model Computer

5 Nov 1997 New observational error statistics. Changes to
assimilation of TOVS radiances and addition of
other data sources

13 Jan 1998 Assimilation of noncloud-cleared radiances
(Derber et al., pers.comm.). Improved physics.

June 1998 Resolution increased to T170/40 layers (to
3.5 days). Improved physics. 3D ozone data
assimilation and forecast. Nonlinear increments
in 3D-Var. Resolution reduced to T62/28levels
on Oct. 1998 and upgraded back in Jan. 2000

IBM SV2 256
processors

June 2000 Ensemble resolution increased to T126 for the
first 60 h

July 2000 Tropical cyclones relocated to observed position
every 6 h

in 1985 with the implementation of the first comprehensive package of physical pa-
rameterizations from GFDL (Geophysical Fluid Dynamics Laboratory). Other major
improvements in the physical parameterizations were made in 1991, 1993, and 1995.
The most important changes in the data assimilation were an improved OI formu-
lation in 1986, the first operational 3D-Var in 1991, the replacement of the satellite
retrievals of temperature with the direct assimilation of cloud-cleared radiances in
1995, and the use of “raw” (not cloud-cleared) radiances in 1998. The model resolu-
tion was increased in 1987, 1991, and 1998. The first operational ensemble system
was implemented in 1992 and enlarged in 1994. The resolution of the ensembles was
increased in 2000.

Table 1.5.3 contains a summary of the regional systems used for short-range
forecasts (up to 48 h). The RAFS (triple nested NGM and OI) were implemented
in 1985. The Eta model, designed with advanced finite differences, step-mountain
coordinates, and physical parameterizations, was implemented in 1993, with the same
80-km horizontal resolution as the NGM. It was denoted “early” because of a short
data cut-off. The resolution was increased to 48 km, and a first “mesoscale” version
with 29 km and reduced coverage was implemented in 1995. A cloud prognostic
scheme was implemented in 1995, and a new land-surface parameterization in 1996.
The OI data assimilation was replaced by a 3D-Var in 1998, and at this time the
early and meso-Eta models were unified into a 32-km/45-level version. Many other
less significant changes were also introduced into the global and regional operational
systems and are not listed here for the sake of brevity. The Rapid Update Cycle (RUC),
which provides frequent updates of the analysis and very-short-range forecasts over
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Table 1.5.3. Major changes in the NMC/NCEP regional modeling and data
assimilation since 1985 (from compilations by Fedor Mesinger and Geoffrey
DiMego, pers. comm., 1998)

Year Operational model Computer

March 1985 RAFS based on triply NGM (Phillips, 1979) and
OI (DiMego, 1988). Resolution: 80 km/16
layers.

Cyber 205

August 1991 RAFS upgraded for the last time: NGM run with
only two grids with inner grid domain doubled
in size. Implemented Regional Data
Assimilation System (RDAS) with three-hourly
updates using an improved OI analysis using all
off-time data including Profiler and Aircraft
Communication Addressing and Reporting
System (ACARS) wind reports (DiMego et al.,
1992) and CQC procedures (Gandin et al.,
1993).

Cray YMP
8 processors
32 megawords

June 1993 First operational implementation of the Eta model
in the 00Z & 12Z early run for North America
at 80-km and 38-layer resolution (Mesinger
et al., 1988, Janjic, 1994, Black et al., 1993)

September 1994 The RUC (Benjamin et al., 1996) was
implemented for CONUS domain with
three-hourly OI updates at 60-km resolution on
25 hybrid (sigma-theta) vertical levels.

Cray C-90
16 processors
128 megawords

September 1994 Early Eta analysis upgrades (Rogers et al., 1995)
August 1995 A mesoscale version of the Eta model (Black,

1994) was implemented at 03Z and 15Z for an
extended CONUS domain, with 29-km and
50-layer resolution and with NMC’s first
predictive cloud scheme (Zhao and Black,
1994) and new coupled land-surface–
atmosphere package (two-layer soil).

Cray C-90
16 processors
256 megawords

October 1995 Major upgrade of early Eta runs: 48-km
resolution, cloud scheme and Eta Data
Assimilation System (EDAS) using
three-hourly OI updates (Rogers et al., 1996)

January 1996 New coupled land-surface–atmosphere scheme
put into early Eta runs (Chen et al., 1997,
Mesinger, 1997)

July–August 1996 Nested capability demonstrated with twice-daily
support runs for Atlanta Olympic Games with
10-km 60-layer version of Meso Eta.
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Table 1.5.3. (cont.)

Year Operational model Computer

February 1997 Upgrade package implemented in the early and
Meso Eta runs.

February 1998 Early Eta runs upgraded to 32 km and 45 levels
with four soil layers. OI analysis replaced by
3D-Var with new data sources. EDAS now
partially cycled (soil moisture, soil temperature,
cloud water/ice & turbulent kinetic
energy).

April 1998 RUC (three-hourly) replaced by hourly RUC II
system with extended CONUS domain, 40-km
and 40-level resolution, additional data sources
and extensive physics upgrades.

June 1998 Meso runs connected to early runs as a single
4/day system for North American domain at
32-km and 45-level resolution, 15Z run moved
to 18Z, added new snow analysis. All runs
connected with EDAS, which is fully cycled for
all variables.

IBM SV2
256 processors

continental USA (CONUS), developed at NOAA’s Forecast System Labora-
tory, was implemented in 1994 and upgraded in 1998 (Benjamin et al., 1996).

The 36-h S1 forecast verification scores constitute the longest record of forecast
verification available anywhere. They were started in the late 1940s for subjective
surface forecasts, before operational computer forecast guidance, and for 500 hPa in
1954, with the first numerical forecasts. Figure 1.1.1(a) includes the forecast scores
for 500 hPa from 1954 until the present, as well as the scores for the 72-h forecasts. It
is clear that the forecast skill has improved substantially over the years, and that the
current 36-h 500-hPa forecasts are close to a level that in the 1950s would have been
considered “perfect” (Shuman, 1989). The 72-h forecasts have also improved, and are
now as accurate as the 36-h forecasts were about 15 years ago. This doubling of the
skill over 10–20 years can be observed in other types of forecasts verifications as well.

As indicated at the beginning of this chapter, the 36-h forecasts of 500 hPa showing
the position and intensity of the large-scale atmospheric waves and centers of high and
low pressure are generally excellent, as suggested by the nearly “perfect” S1 score.
However, sea level pressure maps are more affected by mesoscale structures, such as
fronts and convective systems which are still difficult to forecast in detail, and hence
they have a poorer S1 score (Fig. 1.1.1(b)). The solid line with circles starts in 1947
with scores from subjectively made surface forecasts, then barotropic and baroclinic
quasi-geostrophic models (Table 1.5.1), the LFM model and since 1983, the global
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Figure 1.5.1: Threat scores (day 1 and day 2 for 0.5′ and 1′ 24-h accumulation,
annual average) of human forecasters at NCEP (data courtesy of J. Hoke).

spectral model (denoted Aviation or AVN). Other model forecasts are also presented
separately on Fig. 1.1.1(b). Note that the AVN model and the Eta model, which con-
tinue to be developed, show the most improvement. The development of the LFM was
“frozen” in 1986, and that of the NGM in 1991, when more advanced systems were
implemented, and therefore their forecasts show no further improvement with time
(except for the effect of improved global forecasts used as a first guess for the LFM).

Fig. 1.5.1 shows threat scores for precipitation predictions made by expert fore-
casters from the NCEP Hydrometeorological Prediction Center (HPC, the Meteoro-
logical Operations Division of the former NMC). The threat score (TS) is defined as
the intersection of the predicted area of precipitation exceeding a particular threshold
(P), in this case 0.5 inches in 24 h, and the observed area (O), divided by the union
of the two areas: TS = (P ∩ O)/(P ∪ O). The bias (not shown) is defined by P/O .
The TS, also known as critical success index (CSI) is a particularly useful score for
quantities that are relatively rare. Fig. 1.4.2 indicates that the forecasters skill in pre-
dicting accumulated precipitation has been increasing with time, and that the current
average skill in the 2-d forecast is as good as the 1-d forecasts were in the 1970s.
Beyond the first 6–12 h, the forecasts are based mostly on numerical guidance, so that
the improvement reflects to a large extent improvements of the numerical forecasts,
which the human forecasters in turn improve upon based on their knowledge and
expertise. The forecasters also have access to several model forecasts, and they use
their judgment in assessing which one is more accurate in each case. This constitutes
a major source of the “value-added” by the human forecasters.
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Figure 1.5.2: Hughes data: comparison of the forecast skill in the medium-range
from NWP guidance and from human forecasters.

The relationship between the evolution of human and numerical forecasts is clearly
shown in a record compiled by the late F. Hughes (1987), reproduced in Fig. 1.5.2.
It is the first operational score maintained for the “medium-range” (beyond the first
two days of the forecasts). The score used by Hughes was a standardized anomaly
correlation (SAC), which accounted for the larger variability of sea level pressure at
higher latitudes compared to lower latitudes. Unfortunately the SAC is not directly
comparable to other scores such as the anomaly correlation (discussed in the next
section). The fact that until 1976 the 3-day forecast scores from the model were
essentially constant is an indication that their rather low skill was more based on
synoptic experience than on model guidance. The forecast skill started to improve
after 1977 for the 3-day forecast, and after 1980 for the 5-day forecast. Note that
the human forecasts are on the average significantly more skillful than the numerical
guidance, but it is the improvement in NWP forecasts that drives the improvements
in the subjective forecasts.

1.6 Nonhydrostatic mesoscale models

The hydrostatic approximation involves neglecting vertical accelerations in the ver-
tical equation of motion, compared to gravitational acceleration. This is a very good
approximation, even in stratified fluids, as long as horizontal scales of motion are
larger than the vertical scales. The main advantage of the hydrostatic equation (Chap-
ter 2) is that it filters sound waves (except those propagating horizontally, or Lamb
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waves). Because of the problem of computational instability, the absence of sound
waves allows the use of larger time steps (the Lamb waves are handled generally
with semi-implicit time schemes, discussed in Section 3.3).

The hydrostatic approximation is very accurate if the horizontal scales are much
larger than the vertical scales. For atmospheric models with horizontal grid sizes of
the order of 100 km, the hydrostatic equation is very accurate and convenient. Fur-
thermore, for quasi-geostrophic (slow) motion, the hydrostatic equation is accurate
even if the horizontal scales are of the same order as the vertical scales, i.e., the
hydrostatic approximation can be used even in mesoscale models with grid sizes of
the order of 10 km or larger without introducing large errors.

However, in order to represent smaller-scale phenomena such as storms or con-
vective clouds which have vertical accelerations that are not negligible compared
to buoyancy forces, it is necessary to use the equations of motion without the hy-
drostatic approximation. In the last decade a number of nonhydrostatic models have
been developed in order to simulate mesoscale phenomena in North America. They
include the Penn State/NCAR Mesoscale Model (e.g., Dudhia, 1993), the CAPS
Advanced Regional Prediction System (Xue et al., 1995), NCEP’s Regional Spectral
Model (Juang et al., 1997), the Mesoscale Compressible Community (MCC) model
(Laprise et al., 1997), the CSU RAMS (Tripoli and Cotton 1980), the US Navy
COAMPS (Hodur, 1997). In Europe and Japan several other nonhydrostatic models
have been developed as well.

Sound waves, which are generally of no consequence for atmospheric flow but
would require the use of very small steps, require a special approach in nonhydrostatic
models in order to maintain a reasonable computational efficiency. Sound waves
depend on compressibility (three-dimensional divergence) for their propagation. For
this reason, some nonhydrostatic models use the quasi-Boussinesq or “anelastic”
equations, where the atmosphere is assumed to be separated into a hydrostatic basic
state and perturbations, and where the density perturbations are neglected everywhere
except in the buoyancy terms (Ogura and Phillips, 1962, Klemp and Wilhelmson,
1978). Other approaches are the use of artificial “divergence damping” in the pressure
gradient terms (e.g., Xue et al., 1995, Skamarock and Klemp, 1992), and the use of
implicit time schemes for the terms affecting sound waves that are unconditionally
stable (Durran and Klemp, 1983, Laprise et al., 1997).

Nonhydrostatic models with an efficient (e.g., semi-implicit) treatment of sound
waves are computationally competitive with hydrostatic models, and future genera-
tions of models may become nonhydrostatic even in the global domain.

1.7 Weather predictability, ensemble forecasting,
and seasonal to interannual prediction

In a series of remarkable papers, Lorenz (1963a,b, 1965, 1968) made the fundamental
discovery that even with perfect models and perfect observations, the chaotic nature
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of the atmosphere would impose a finite limit of about two weeks to the predictability
of the weather. He proved this by running a simple atmospheric model, introducing
(by mistake) exceedingly small perturbations in the initial conditions, and running the
model again. With time, the small difference between the two forecasts became larger
and larger, until after about two weeks, the forecasts were as different as two randomly
chosen states of the model. In the 1960s Lorenz’s discovery, which started the theory
of chaos, was “only of academic interest” and not relevant to operational weather
forecasting, since at that time the skill of even two-day operational forecasts was low.
Since then, however, computer-based forecasts have improved so much that Lorenz’s
limit of predictability is starting to become attainable in practice, especially with
ensemble forecasting. Furthermore, skillful prediction of longer lasting phenomena
such as El Niño is becoming feasible (Chapter 6).

Because the skill of the forecasts decreases with time, Epstein (1969) and Leith
(1974) suggested that instead of performing “deterministic” forecasts, stochastic
forecasts providing an estimate of the skill of the prediction should be made. The
only computationally feasible approach in order to achieve this goal is through “en-
semble forecasting” in which several model forecasts are performed by introducing
perturbations in the initial conditions or in the models themselves.

After considerable research on how to most effectively perturb the initial con-
ditions, ensemble forecasting was implemented operationally in December 1992 at
both NCEP and ECMWF (Tracton and Kalnay, 1993, Toth and Kalnay, 1993, Palmer
et al., 1993, Molteni et al., 1996, Toth and Kalnay, 1997). Since 1994 NCEP has
been running 17 global forecasts per day, each out to 16 days, with initial pertur-
bations obtained using the method of breeding growing perturbations. This ensures
that the initial perturbations contain naturally growing dynamical perturbations in
the atmosphere, which are also present in the analysis errors. The length of the fore-
casts allows the generation of “outlooks” for the second week. The NCEP ensemble
forecasts can be accessed through the world-wide web at the EMC home page
(nic.fb4.noaa.gov:8000), and linking to the ensemble home page. At ECMWF, the
perturbation method is based on the use of singular vectors, which grow even faster
than the bred or Lyapunov vector perturbations. The ECMWF ensemble contains
50 members (Chapter 6).

Ensemble forecasting has accomplished two main goals: the first one is to provide
an ensemble average forecast that beyond the first few days is more accurate than
individual forecasts, because the components of the forecast that are most uncertain
tend to be averaged out. The second and more important goal is to provide forecasters
with an estimation of the reliability of the forecast, which because of changes in
atmospheric predictability, varies from day to day and from region to region.

The first goal is illustrated in Fig. 1.7.1, prepared at the Climate Prediction Center
(CPC, the Climate Analysis Center of the former NMC) for the verification of the
NCEP ensemble during the winter of 1997–8. This was an El Niño winter with major
anomalies in the atmospheric circulation, and the operational forecasts had excellent
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Figure 1.7.1: Anomaly correlation of the ensembles during the winter of 1997–8
(controls, T126 and T62, and ten perturbed ensemble forecasts). (Data courtesy Jae
Schemm, of NCEP.)

skill. The control “deterministic” forecast (circles) had an “anomaly correlation”
(AC, pattern correlation between predicted and analyzed anomalies) in the 5-day
forecast of 80%, which is quite good. The ten perturbed ensemble members have
individually a poorer verification with an average AC of about 73% at 5 days. This is
because, in the initial conditions, the control starts from the best estimate of the state
of the atmosphere (the analysis), but growing perturbations are added to this analysis
for each additional ensemble member. However, the ensemble average forecast tends
to average out uncertain components, and as a result, it has better skill than the control
forecast starting at day 5. Note that the ensemble extends by one day the length of the
useful forecast (defined as an AC greater than 60%) from about 7 days in the control
to about 8 days in the ensemble average.

The second goal of the ensemble forecasting, to provide guidance on the uncer-
tainty of each forecast, is accomplished best by the use of two types of plots. The
“spaghetti” plots show a single contour line for all 17 forecasts, and the probabilistic
plots show, for example, what percentage of the ensemble predicts 24-h accumulated
precipitation of more than 1 inch at each grid point (for probabilistic Quantitative
Precipitation Forecasts or pQPF). Both of them provide guidance on the reliability
of the forecasts in an easy-to-understand way. The use of the ensembles has provided
the US NWS forecasters with the confidence to issue storm forecasts 5–7 days in ad-
vance when the spaghetti plots indicate good agreement in the ensemble. Conversely,
the spaghetti plots also indicate when a short-range development may be particularly
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difficult to predict, so that the users should be made aware of the uncertainty of the
forecast. Fig. 1.7.2(a) shows an example of the 5-day forecast for 15 November 1995,
the first East Coast winter storm of 1995–6: the fact that the ensemble showed good
agreement provided the forecasters with the confidence to issue a storm forecast these
many days in advance. By contrast, Fig. 1.7.2(b) shows a 2.5-day forecast for a storm
with verification time 21 October 1995, and it is clear that even at this shorter range,
the atmosphere is much less predictable and there is much more uncertainty about
the location of the storm.

The use of ensembles has also led to another major development, the possibility
of an adaptive or targeted observing system. As an example, consider a case in
which the lack of agreement among the ensemble members indicates that a 3-day
forecast in a certain region is exceedingly uncertain, as in Fig. 1.7.2(b). Several new
techniques have been developed to trace such a region of uncertainty backward in
time, for example 2 days. These techniques will point to a region or regions where
additional observations would be especially useful. The additional observations could
be dropwinsondes launched from a reconnaissance or a pilotless airplane, additional
rawinsondes, or especially intensive use of satellite data such as a Doppler Wind
Lidar. If additional observations are available 24 h after the start of the originally
critically uncertain 3-day forecast, they can increase substantially the usefulness
of the 2-day forecast. Similarly, a few additional rawinsondes could be launched
where short-range ensemble forecasts (12–24 h) indicate that they are most needed.
Preliminary tests of this approach of targeted observations have been successfully
performed within an international Fronts and Storm Track Experiment (FASTEX)
in the North Atlantic during January and February 1997, and in the North Pacific
Experiment (NORPEX) in January and February 1998 (Szunyogh et al., 2000).

Ensemble forecasting also provides the basic tool to extend forecasts beyond
Lorenz’s 2-week limit of weather predictability (Chapter 6). Slowly varying surface
forcing, especially from the tropical ocean and from land-surface anomalies, can
produce atmospheric anomalies that are longer lasting and more predictable than
individual weather patterns. The most notable of these is the El Niño–Southern Os-
cillation (ENSO) produced by unstable oscillations of the coupled ocean–atmosphere
system, with a frequency of 3–7 years. Because of their long time scale, the ENSO
oscillations should be predictable a year or more in advance (in agreement with the
chaos theory). The first successful experiments in this area were made by Cane et al.
(1986) with a simple coupled atmosphere–ocean model. The warm phases of ENSO
(El Niño episodes) are associated with warm sea surface temperature (SST) anomalies

Caption for Figure 1.7.2: (a) Spaghetti plot for the 5-day forecast for 15 Nov 1995,
a case of a very predictable storm over eastern USA. (Figure courtesy of R. Wobus,
NCEP.) (b) Spaghetti plot for the 2.5-day forecast for 21 Oct 1995, the case of a very
unpredictable storm over the USA. (Courtesy of R. Wobus, NCEP.) Dashes indicate
the control forecast.
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in the equatorial central and eastern Pacific Ocean, and cold phases (La Niña episodes)
with cold anomalies. NCEP started performing multiseasonal predictions with cou-
pled comprehensive atmosphere–ocean models in 1995, and ECMWF did so in 1997.

A single atmospheric forecast forced with the SST anomalies would not be use-
ful beyond the first week or so, when unpredictable weather variability would mask
the forced atmospheric anomalies. Ensemble averaging many forecasts made with
atmospheric models forced by SST anomalies (and by other slowly varying anoma-
lies over land such as soil moisture and snow cover) allows the filtering out of the
unpredictable components of the forecast, and the retention of more of the forced
predictable components. This filtering is reflected in the fact that the ensemble aver-
age for the second week of the forecasts for the winter of 1997–8 (Fig. 1.7.1) had a
high AC of 57%, much higher than previously obtained. Researchers at the Japanese
Meteorological Agency have performed forecasts for the 28-day average and also
found that ensemble averaging substantially increased the information on the second
week and the last 2 weeks of the forecast. The very successful operational forecasts
of the ENSO episode of 1997–8 performed at both NCEP and ECMWF have been
substantially based on the use of ensembles to extract the useful information on the
impact of El Niño from the “weather noise”.

1.8 The future

The last decades have seen the expectations of Charney (1951) fulfilled, and an
amazing improvement in the quality of the forecasts based on NWP guidance. From
the active research taking place, one can envision that the next decade will continue
to bring improvements, especially in the following areas:

detailed short-range forecasts, using storm-scale models able to provide
skillful predictions of severe weather;

more sophisticated methods of data assimilation able to extract the maximum
possible information from observing systems, especially remote sensors such
as satellites and radars;

development of adaptive observing systems, in which additional observations
are placed where ensembles indicate that there is rapid error growth (low
predictability);

improvement in the usefulness of medium-range forecasts, especially through
the use of ensemble forecasting;

fully coupled atmospheric–hydrological systems, where the atmospheric
model precipitation is appropriately downscaled and used to extend the length
of river flow prediction;

more use of detailed atmosphere–ocean–land coupled models, in which
long-lasting coupled anomalies such as SST and soil moisture anomalies lead
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to more skillful predictions of anomalies in weather patterns beyond the limit
of weather predictability (about two weeks);

more guidance to governments and the public on subjects such as air
pollution, ultraviolet radiation and transport of contaminants, which affect
health;

an explosive growth of systems with emphasis on commercial applications of
NWP, from guidance on the state of highways to air pollution, flood
prediction, guidance to agriculture, construction, etc.



2

The continuous equations

2.1 Governing equations

V. Bjerknes (1904) pointed out for the first time that there is a complete set of seven
equations with seven unknowns that governs the evolution of the atmosphere:

Newton’s second law or conservation of momentum (three equations for the
three velocity components);

the continuity equation or conservation of mass;

the equation of state for ideal gases;

the first law of thermodynamics or conservation of energy;

a conservation equation for water mass.

To these equations we have to add appropriate boundary conditions at the bottom
and top of the atmosphere.

In this section we briefly derive the governing equations. The reader may refer to
other texts, such as Haltiner and Williams (1980), or James (1994) for more details.

Newton’s second law or conservation of momentum:
On an inertial frame of reference, the absolute acceleration of a parcel of air in three
dimensions is given by

dava

dt
= F/m (2.1.1)

On a rotating frame of reference centered at the center of the earth, the absolute
velocity va is given by the sum of the relative velocity v plus the velocity due to the

32
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rotation with angular velocity Ω:

va = v+Ω× r (2.1.2)

where r is the position vector of the parcel. This is a particular case (forA= r) of the
general formula relating the total time derivative of any vector on a rotating frame
dA/dt to its total derivative in an inertial frame daA/dt :

daA
dt
= dA

dt
+Ω× A (2.1.3)

We can also apply this formula to A = va , giving

dava

dt
= dva

dt
+Ω× va (2.1.4)

Substituting (2.1.2) into (2.1.4) we obtain that the accelerations in an inertial (abso-
lute) and a rotating frame of reference are related by

dava

dt
= dv

dt
+ 2Ω× v+Ω× (Ω× r) (2.1.5)

This equation indicates that on a rotating frame of reference there are two apparent
forces per unit mass: the Coriolis force (second term on the right-hand side) and the
centrifugal force (third term).

The left-hand side of (2.1.5) represents the real forces acting on a parcel of air,
i.e., the pressure gradient force −α∇p, the gravitational acceleration ge = −∇φe,
and the frictional force F. Therefore in a rotating frame of reference moving with the
earth, the apparent acceleration is given by

dv
dt
= −α∇p −∇φe + F− 2Ω× v−Ω× (Ω× r) (2.1.6)

Here α = 1/ρ is the specific volume (the inverse of the density ρ), p is the pressure,
φe is the Newtonian gravitational potential of the earth, and, as indicated before,
the last two terms are the apparent accelerations, denoted the Coriolis force and
centrifugal force respectively. We have not included the tidal potential, whose effects
are negligible below about 100 km.

We can now combine the centrifugal force with the gravitational force, since
−Ω× (Ω× r) = Ω2l =∇(�2l2/2),where l is the position vector from the axis of
rotation to the parcel. Therefore we can define as the “geopotential”φ = φe −�2l2/2,
and the apparent gravity is given by

−∇φ = g = ge +�2l (2.1.7)

We define the geographic latitude ϕ to be perpendicular to the geopotential φ. At
the surface of the earth, the geographic latitude and the geocentric latitude differ by
less than 10 minutes of a degree of latitude. Therefore, Newton’s law on the rotating
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frame of the earth is written as

dv
dt
= −α∇ p − ∇φ + F− 2Ω× v (2.1.8)

Continuity equation or equation of conservation of mass
This can be derived as follows: Consider the mass of a parcel of air of density ρ

M = ρ�x�y�z (2.1.9)

If we follow the parcel in time, it conserves its mass, i.e., the total time derivative
(also called the substantial, individual or Lagrangian time derivative) is equal to zero:
d M/dt = 0. If we take a logarithmic derivative of the mass

1

M

d M

dt
= 0

in (2.1.9) we obtain the continuity equation:

1

ρ

dρ

dt
+∇3 · v = 0 (2.1.10)

since

1

�x

d�x

dt
= ∂u

∂x

and similarly for the other directions y, z.
Now, the total derivative of any function f (x, y, z, t), following a parcel, can be

expanded as

d f

dt
= ∂ f

∂t
+ ∂ f

∂x

dx

dt
+ ∂ f

∂y

dy

dt
+ ∂ f

∂z

dz

dt
= ∂ f

∂t
+ v ·∇ f (2.1.11)

Equation (1.11) indicates that the total (or Lagrangian or individual) time derivative
of a property is given by the local (partial, Eulerian) time derivative (at a fixed point)
plus the changes due to advection. If we expand dρ/dt in (2.1.10) using (2.1.11) we
obtain an alternative form of the continuity equation, usually referred to as “in flux
form”:

∂ρ

∂t
= −∇ · (ρv) (2.1.12)

Equation of state for perfect gases
The atmosphere can be assumed to be a perfect gas, for which the pressure p, specific
volume α (or its inverse ρ, density), and temperature T are related by

pα = RT (2.1.13)

where R is the gas constant for air. This equation indicates that given two thermody-
namic variables, the others are determined.
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Thermodynamic energy equation or conservation of energy equation
This equation expresses that if heat is applied to a parcel at a rate of Q per unit mass,
this heat can be used to increase the internal energy CvT and/or to produce work of
expansion:

Q = Cv

dT

dt
+ p

dα

dt
(2.1.14)

The coefficients of specific heat at constant volume Cv and at constant pressure Cp

are related by Cp = Cv + R. We can use the equation of state (2.1.13) to derive
another form of the thermodynamic equation:

Q = Cp
dT

dt
− α

dp

dt
(2.1.15)

The rate of change of the specific entropy s of a parcel is given by ds/dt = Q/T ,
i.e., the diabatic heating divided by the absolute temperature. We now define potential
temperature by θ = T (p0/p)R/Cp , where p0 is a reference pressure (1000 hPa). With
this definition, it is easy to show that the potential temperature and the specific entropy
are related by

ds

dt
= Cp

1

θ

dθ

dt
= Q

T
(2.1.16)

This shows that potential temperature is individually conserved in the absence of
diabatic heating.

Equation for conservation of water vapor mixing ratio q
This equation simply indicates that the total amount of water vapor in a parcel is
conserved as the parcel moves around, except when there are sources (evaporation E)
and sinks (condensation C):

dq

dt
= E − C (2.1.17)

Conservation equations for other atmospheric constituents can be similarly written
in terms of their corresponding sources and sinks. If we multiply (2.1.17) by ρ,
expand the total derivative dq/dt = ∂q/∂t + v ·∇q, and add the continuity equation
(2.1.12) multiplied by q , we can write the conservation of water in an alternative “flux
form”:

∂ρq

∂t
= −∇ · (ρvq)+ ρ(E − C) (2.1.18)

The flux form of the time derivative is very useful in the construction of models.
The first term of the right-hand side of (2.1.18) is the convergence of the flux of q.
Note that we can include similar conservation equations for additional tracers such
as liquid water, ozone, etc., as long as we also include their corresponding sources
and sinks.
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We now have seven equations with seven unknowns: v = (u, v, w), T, p, ρ or α,

and q. For convenience we repeat the governing equations, which (when written
without friction F) are sometimes referred to as “the Euler equations”:

dv
dt
= −α∇p −∇φ + F− 2Ω× v (2.1.19)

∂ρ

∂t
= −∇ · (ρv) (2.1.20)

pα = RT (2.1.21)

Q = Cp
dT

dt
− α

dp

dt
(2.1.22)

∂ρq

∂t
= −∇ · (ρvq)+ ρ(E − C) (2.1.23)

2.2 Atmospheric equations of motion
on spherical coordinates

Since the earth is nearly spherical, it is natural to use spherical coordinates. Near
the earth, gravity is almost constant, and the ellipticity of the earth is very small, so
that one can accurately approximate scale factors by those appropriate for true spher-
ical coordinates (Phillips, 1966, 1973, 1990a). The three velocity components are
then

u = zonal (positive eastward) = r cosϕ
dλ

dt

v = meridional (positive northward) = r
dϕ

dt

w = vertical (positive up) = dr

dt




(2.2.1)

Note that v = ui+ vj+ wk, where i, j, k are the unit vectors in the three orthogonal
spherical coordinates. When the acceleration (total derivative of the velocity vector)
is calculated, the rate of change of the unit vectors has to be included. For example,
geometrical considerations show that

dk
dt
= u

r cosϕ

∂k
∂λ
+ v

r

∂k
∂ϕ
= ui

r
+ vj

r

Exercise 2.2.1: Use spherical geometry to derive this equation, and

di
dt
= u

r cosϕ
( j sinϕ − k cosϕ)

dj
dt
= u

r cosϕ
(−i sinϕ − k cosϕ)

When we include these time derivatives, take into account that Ω = � sinϕk+
� cosϕj, and expand the momentum equation (2.1.19) into its three components, we
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obtain

du

dt
= − α

r cosϕ

∂p

∂λ
+ Fλ +

(
2�+ u

r cosϕ

)
(v sinϕ − w cosϕ)

dv

dt
= −α

r

∂p

∂ϕ
+ Fϕ −

(
2�+ u

r cosϕ

)
u sinϕ − vw

r

dw

dt
= −α ∂p

∂r
− g + Fr +

(
2�+ u

r cosϕ

)
u cosϕ + v2

r




(2.2.2)

The terms proportional to u/r cosϕ are known as “metric terms”.
A “traditional approximation” (Phillips, 1966) has been routinely made in NWP,

since most of the atmospheric mass is confined to a few tens of kilometers. This
suggests that in considering the distance of a point to the center of the earth r = a + z,
one can neglect z and replace r by the radius of the earth a = 6371 km, replace ∂/∂r
by ∂/∂z, and neglect the metric and Coriolis terms proportional to cosϕ. Then the
equations of motion in spherical coordinates become

du

dt
= − α

a cosϕ

∂p

∂λ
+ Fλ +

(
2�+ u

a cosϕ

)
v sinϕ

dv

dt
= −α

a

∂p

∂ϕ
+ Fϕ −

(
2�+ u

a cosϕ

)
u sinϕ

dw

dt
= −α ∂p

∂z
− g + Fz




(2.2.3)

which possess the angular momentum conservation principle

d

dt
[(u +�a cosϕ)a cosϕ] = a cosϕ

(
− α

a cosϕ

∂p

∂λ
+ Fλ

)
(2.2.4)

With the “traditional approximation” the total time derivative operator in spherical
coordinates is given by

d( )

dt
= ∂( )

∂t
+ u

a cosϕ

∂( )

∂λ
+ v

a

∂( )

∂ϕ
+ w

∂( )

∂z
(2.2.5)

and the three-dimensional divergence that appears in the continuity equation by

∇3 · v = 1

a cosϕ

(
∂u

∂λ
+ ∂v cosϕ

∂ϕ

)
+ ∂w

∂z
(2.2.6)

2.3 Basic wave oscillations in the atmosphere

In order to understand the problems in Richardson’s result in 1922 (Fig. 1.2.1) and
the effect of the filtering approximations introduced by Charney et al. (1950), we
need to have a basic understanding of the characteristics of the different types of
waves present in the atmosphere. The characteristics of these waves, (sound, gravity,
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and slower weather waves) have also profound implications for the present use of
hydrostatic and nonhydrostatic models. The three types of waves are present in
the solutions of the governing equations, and different approximations such as the
hydrostatic, the quasi-geostrophic, and the anelastic approximations are designed to
filter out some of them.

To simplify the analysis we make a tangent plane or “ f -plane” approximation.
We consider motions with horizontal scales L smaller than the radius of the earth.
On this tangent plane we can approximate the spherical coordinates (Section 2.2) by

1

a cosϕ 0

∂

∂λ
≈ ∂

∂x

1

a

∂

∂ϕ
≈ ∂

∂y
, f ≈ 2� sinϕ 0

and ignore the metric terms, since u/(a tanϕ) is small compared with �.
The governing equations on an f -plane (rotating with the local vertical component

of the earth rotation) are:

du

dt
= + f v − 1

ρ

∂p

∂x
(2.3.1a)

dv

dt
= − f u − 1

ρ

∂p

∂y
(2.3.1b)

dw

dt
= − 1

ρ

∂p

∂z
− g (2.3.1c)

dρ

dt
= −ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
(2.3.1d)

ds

dt
= Q

T
; s = Cp ln θ (2.3.1e)

p = ρRT (2.3.1f)

Consider a basic state at rest u0 = v0 = w0 = 0. From (2.3.1a) and (2.3.1b), we see
that p0 does not depend on x ,y, p0 = p0(z). From (2.3.1c), ρ0 and therefore the other
basic state thermodynamic variables also depend on z only.

Assume that the motion is adiabatic and frictionless, Q = 0, F = 0. Consider
small perturbations p = p0 + p′, etc. so that we can linearize the equations (ne-
glect terms which are products of perturbations). For convenience, we define
u∗ = ρ0u′; v∗ = ρ0v

′;w∗ = ρ0w
′; s∗ = ρ0s ′. The perturbation equations are then

∂u∗

∂t
= + f v∗ − ∂p′

∂x
(2.3.2a)

∂v∗

∂t
= − f u∗ − ∂p′

∂y
(2.3.2b)

∂w∗

∂t
= −∂p′

∂z
− ρ ′g (2.3.2c)

∂ρ ′

∂t
= −

(
∂u∗

∂x
+ ∂v∗

∂y
+ ∂w∗

∂z

)
(2.3.2d)
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∂s∗

∂t
= −w∗ ds0

dz
(2.3.2e)

p′

p0
= ρ ′

ρ0
+ T ′

T0
(2.3.2f)

where

s∗ = ρ0Cp
θ ′

θ0
= ρ0Cp

(
T ′

T0
− R

Cp

p′

p0

)
= Cp

(
p′

γRT0
− ρ ′

)
(2.3.2g)

Exercise 2.3.1: Derive (2.3.2a)–(2.3.2g), recalling that p = ρRT, θ =
T (p0/p)R/Cp , Cp = R + Cv , γ = Cp/Cv = 1.4, and c2

s = γ RT ≈ (320 m/s)2 is
the square of the speed of sound.

2.3.1 Pure types of plane wave solutions

We first consider special cases with pure wave type solutions. They exist in their pure
form only under very simplified assumptions. However, if we understand their basic
characteristics, we will understand their role in the full nonlinear models, and the
methodology used for filtering some of the waves out. We will be assuming plane
wave solutions aligning the x-axis along the horizontal direction of propagation:

(u∗, v∗, w∗, p′) = (U, V, W, P)ei(kx+mz−νt) (2.3.3)

Here k = 2π/Lx and m = 2π/Lz are horizontal and vertical wavenumbers, re-
spectively, ν = 2π/T is the frequency, and U, V, W, and P are constant am-
plitudes. We will aim to derive the frequency dispersion relationship (FDR)
ν = f (k,m, parameters) for each type of wave by substituting the plane wave for-
mulation (2.3.3) into the linear equation, and eliminating variables. The FDR gives
us not only the frequency, but also the phase speed components (ν/k, ν/m) as well
as the group velocity components (∂ν/∂k,∂ν/∂m). The phase speed is the speed of
individual wave crests and valleys, and the group velocity is the speed at which wave
energy propagates in the horizontal and vertical directions. A pure type of wave
occurs under idealized conditions, such as no rotation, no stratification for sound
waves, but its basic characteristics are retained even if the ideal conditions are not
valid (sound waves are still present but slightly modified in the presence of rotation
and stratification).

2.3.1.1 Pure sound waves

We neglect rotation, stratification and gravity: f = 0 , g = 0, ds0/dz = 0. From
(2.3.2e), we have s∗ = 0 (recall that s∗ is a perturbation, and if it was constant, we
would have included its value into the basic state s0). Therefore p′ = c2

sρ
′, and (2.3.2)
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reduce to

∂u∗

∂t
= −∂p′

∂x
(2.3.4a)

∂v∗

∂t
= −∂p′

∂y
(2.3.4b)

∂w∗

∂t
= −∂p′

∂z
(2.3.4c)

1

c2
s

∂p′

∂t
= −

(
∂u∗

∂x
+ ∂v∗

∂y
+ ∂w∗

∂z

)
(2.3.4d)

These show that sound waves occur through adiabatic expansion and contraction
(three-dimensional divergence), and that the pressure perturbation is proportional to
the density perturbation.

Assuming plane wave solutions (2.3.3), with the x-axis along the horizontal di-
rection of the waves, and substituting into (2.3.4), we get

−iνU = −ik P (2.3.5a)

−iνV = 0 (2.3.5b)

−iνW = −im P (2.3.5c)

−iνP = −c2
s (ikU + imW ) (2.3.5d)

From (2.3.5b) V = 0, and substituting U and W from (2.3.5a) and (2.3.5c) into
(2.3.5d), we get the FDR:

ν2 = c2
s (k2 + m2) (2.3.6)

These are sound waves that propagate through air compression or three-dimensional
divergence. The components of the phase velocity are (ν/k, ν/m) and the total phase
velocity is

ν√
k2 + m2

= ±cs

2.3.1.2 Lamb waves (horizontally propagating sound waves)

We now neglect rotation and assume that there is only horizontal propagation (no
vertical velocity), but we allow for the fluid to be gravitationally stratified. With
f = 0 and w∗ = 0, we again have s∗ = 0, and from (2.3.2f) p′ = c2

sρ
′, but from

(2.3.2c) the flow is now hydrostatic: ∂p′/∂z = −ρ ′g. If we insert the same type of
plane wave solutions (2.3.3) into (2.3.2), we find that p′ = Pe−(g/c2

s )zei(kx−νt), i.e.,
the vertical wavenumber is imaginary m = ig/c2

s , and the phase speed is ν2/k2 = c2
s .

Since the vertical wavenumber is imaginary, there is no vertical propagation, and the
waves are external.

Therefore, a Lamb wave is a type of external horizontal sound wave, which is
present in the solutions of models even when the hydrostatic approximation is made.
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This is very important because it means primitive equation models (which make the
hydrostatic approximation) contain these fast moving horizontal sound waves. We
will see that Lamb waves are also equivalent to the gravity waves in a shallow water
model. Note also that the FDR is such that ν/k = ±c2

s , so that the phase speed does
not depend on the wavenumber. This implies that the group velocity ∂ν/∂k = ±c2

s . It
is also independent of the wavenumber, and as a result Lamb waves without rotation
are nondispersive, so that a package of waves will move together and not disperse.

2.3.1.3 Vertical gravitational oscillations

Now we neglect rotation and pressure perturbations, f = p′ = 0, so that there is no
horizontal motion, but allow for vertical stratification. Equations (2.3.2) become

∂w∗

∂t
= −ρ ′g (2.3.7a)

∂ρ ′

∂t
= w∗

Cp

ds0

dz
= w∗

d ln θ0

dz
(2.3.7b)

From these two equations we get

∂2w∗

∂t2
+ N 2w∗ = 0 (2.3.8)

and from the continuity equation we obtain

∂ρ ′

∂t
= −∂w∗

∂z
(2.3.9)

Substituting the plane wave solution (2.3.3) into (2.3.8) we obtain ν2 = N 2, where
N 2 = gd ln θ0/dz is the square of the Brunt–Vaı̈sälä frequency. A typical value of N
for the atmosphere is N ∼ 10−2 s−1. A parcel displaced in a stable atmosphere will
oscillate vertically with frequency N . Equations (2.3.7b) and (2.3.9) show that the
amplitude of w∗ will decrease with height as e−(d ln θ/dz)z .

2.3.1.4 Inertia oscillations

Inertia oscillations are horizontal and are due to the basic rotation. We now assume
that p′ = 0, ds0/dz = 0, and there are no pressure perturbations and no stratification.
Then s∗ = 0, and, therefore, ρ ′ = 0 and the horizontal equations of motion become

∂v∗

∂t
= − f k× v∗ or

∂2v∗

∂t2
= f k× ( f k× v∗) = − f 2v∗ (2.3.10)

As indicated by (2.3.10), the frequency of inertia oscillations is ν = ± f , with the
acceleration perpendicular to the wind, corresponding to a circular wind oscillation.
In the presence of a basic flow, there is also a translation, and the trajectories look
like Fig. 2.3.1.
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Figure 2.3.1: Schematic of
an inertial oscillation in the
presence of a basic flow to
the right.

2.3.1.5 Lamb waves in the presence of rotation and geostrophic modes:

We now consider the same case as in Section 2.3.1.2 of horizontally propagating
Lamb waves, but without neglecting rotation, i.e., f �= 0, but the vertical velocity is
still zero. From w∗ = 0 and (2.3.2c) we have again p′ = c2

sρ
′, and the hydrostatic

balance in (2.3.2g) then implies ∂p′/∂z = −γ RT0. Therefore the three-dimensional
perturbations can be written as p′(x, y, z, t) = p′(x, y, 0, t)e−z/γ H , where
γ H = c2

s /g.
The system of equations (2.3.2) becomes

∂v∗

∂t
= − f k× v∗ −∇p′

∂p′

∂t
= −c2

s ∇ · v∗


 (2.3.11)

This system is completely analogous to the linearized shallow water equations (SWE)
which are widely used in NWP as the simplest primitive equations model:

∂v
∂t
= − f k× v−∇φ′

∂φ′

∂t
= −�∇ · v

where φ = �+ φ′




(2.3.12)

If we assume plane wave solutions of the form (u∗, v∗, p′) = (U, V, P)e−i(kx−νt),
and substitute in (2.3.11) we obtain:

−iνU = f V − ik P

−iνV = − f U

−iνP = −c2
s ikU




(2.3.13)

Therefore the FDR is

ν(ν2 − f 2 − c2
s k2) = 0 (2.3.14)

Note that this FDR contains two types of solution: one type is ν2 = f 2 + c2
s k2,

Lamb waves modified by inertia (rotation), or inertia Lamb waves. In the SWE
analog, these are inertia-gravity waves (external gravity waves modified by inertia),
ν2 = f 2 +�k2. Note that in the presence of rotation the phase speed and group
velocity depend on the wavenumber: rotation makes Lamb waves dispersive (and
this helps with the problem of getting rid of noise in the initial conditions as in
Fig. 1.2.1).
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The second type of solution (and for us the more important!) is the steady state so-
lution ν = 0. This means that ∂()/∂t = −iν() = 0 for all variables. Without the pres-
ence of rotation, this steady state solution would be trivial: u∗ = v∗ = w∗ = p′ = 0.
But with rotation, an examination of (2.3.13) or (2.3.12) shows that this is the
geostrophic mode: U = 0,∇ · v∗ = ∂U/∂x = 0, but V = ik P/ f , i.e.,

v∗ = 1

f

∂p′

∂x

This is a steady state, but nontrivial, geostrophic solution. If we add a dependence of
f on latitude, the geostrophic solution becomes the Rossby waves solution, which
is not steady state, but is still much slower than gravity waves or sound waves.

2.3.2 General wave solution of the perturbation equations
in a resting, isothermal atmosphere

So far we have been making drastic approximations to obtain “pure” elementary
waves (sound, inertia and gravity oscillations). We now consider a more general
case, including all waves simultaneously. We consider again the equations for small
perturbations (2.3.2), and assume a resting, isothermal basic state in the atmosphere:
T0(z) = T00, a constant. Then

N 2 = g
d ln θ

dz
= −gκ

d ln p0

dz
(2.3.15)

where κ = R/Cp = 0.4. Since the basic state is hydrostatic,

N 2 = gκ
ρ0g

p0
= gκ

g

RT0
= gκ

H
(2.3.16)

These equations show that for an isothermal atmosphere, both N 2 and the scale height
H = RT/g are constant.

We continue considering an f -plane, a reasonable approximation for horizontal
scales L small compared to the radius of the earth: L << a. If L were not small
compared with the radius of the earth, we would have to take into account the vari-
ation of the Coriolis parameter with latitude, and spherical geometry. With some
manipulation, assuming that the waves propagate along the x-axis, and there is no
y-dependence, the perturbation equations (2.3.2) become

∂u∗

∂t
= + f v∗ − ∂p′

∂x
(2.3.17a)

∂v∗

∂t
= − f u∗ (2.3.17b)

α
∂w∗

∂t
= −∂p′

∂z
− ρ ′g (2.3.17c)

β
∂ρ ′

∂t
= −

(
∂u∗

∂x
+ ∂w∗

∂z

)
(2.3.17d)
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g

Cp

∂s∗

∂t
= −w∗N 2 (2.3.17e)

s∗ = Cp

(
p′

c2
s

− ρ ′
)

(2.3.17f)

In these equations we have introduced two constants α and β as markers for the
hydrostatic and the quasi-Boussinesq approximations respectively. They can take the
value 1 or 0. If we make α = 0, it indicates that we are making the hydrostatic ap-
proximation, i.e., neglecting the vertical acceleration in (2.3.17c). If we make β = 0,
it indicates that we are making the anelastic or quasi-Boussinesq approximation, i.e.,
assuming that the mass weighted three-dimensional divergence is zero. Otherwise
the markers take the value 1. These markers will be used in the next section, where
we discuss filtering approximations.

We now try plane wave solutions, where the basic state is a function of z of the
form

(u∗, v∗, w∗, p′, ρ ′) = (U (z), V (z), W (z), P(z), R(z))ei(kx−νt) (2.3.18)

Instead of assuming a z-dependence of the form ei(mz), we will determine
it explicitly. If the horizontal scale is not small compared with the radius
of the earth, L ∼ a, then the solutions are of the form (u∗, v∗, w∗, p′, ρ ′) =
(U (z), V (z), W (z), P(z), R(z))A(ϕ)ei(sλ−νt), and the equation obtained for A(ϕ) is
the Laplace tidal equation.

Substituting the assumed form of the solution (2.3.18) into (2.3.17) we get

−iνU = −ik P + f V (2.3.19a)

−iνV = − f U (2.3.19b)

−iναW = −Rg − d P

dz
(2.3.19c)

−iνβR = −ikU − dW

dz
(2.3.19d)

−iν

(
P

c2
s

− R

)
= −W

N 2

g
(2.3.19e)

From (2.3.19a) and (2.3.19b)

U = kν

ν2 − f 2
P (2.3.19f)

From (2.3.19d) and (2.3.19f)

βR = k2

ν2 − f 2
P − i

ν

dW

dz
(2.3.19g)

From (2.3.19c) and (2.3.19e)

d P

dz
+ g

c2
s

P = i

ν
(ν2α − N 2)W (2.3.19h)
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From (2.3.19e) and (2.3.19g)

dW

dz
+ β

N 2

g
W = iν

c2
s

[
β(ν2 − f 2)− c2

s k2

ν2 − f 2

]
P (2.3.19i)

From (2.3.19h) and (2.3.19i)(
d

dz
+ g

c2
s

)(
d

dz
+ β

N 2

g

)
W = − 1

c2
s

[
(β(ν2 − f 2)− c2

s k2)(ν2α − N 2)

ν2 − f 2

]
W

(2.3.20)

or a similar equation for P . This last equation is of the form

d2W

dz2
+ A

dW

dz
+ BW = 0

In order to eliminate the first derivative, we try a substitution of the form W = eδz�,
and obtain d2�/dz2 + C� = 0. This requires that we choose δ = −A/2, and in that
case C = B − A2/4.

From (2.3.20), the variable substitution, and additional sweat, we finally obtain

d2�

dz2
+ n2� = 0 (2.3.21)

where

n2 = (β(ν2 − f 2)− c2
s k2)(ν2α − N 2)

c2
s (ν2 − f 2)

− 1

4

(
β

N 2

g
+ g

c2
s

)2

(2.3.22)

This is the frequency dispersion relationship for waves in an atmosphere with an
isothermal basic state. Given a horizontal structure of the wave (k), and its frequency
(ν), (2.3.22) determines the vertical structure (n) of � (and W ), and vice versa.
The same FDR would have been obtained making the substitution Q = e−δz P , and
solving for Q.

Equation (2.3.22) indicates that depending on the sign of n2 we can have either
external or internal wave solutions.

2.3.2.1 External waves

If n2 < 0, the vertical wavenumber n is imaginary, n = im. The solution of (2.3.21)
is then � = Aemz + Be−mz , or, going back to the vertical velocity,

w∗(x, z, t) = ei(kx−νt)e−
1
2

(
β N 2

g + g
c2
s

)
z(Aemz + Be−mz

)
(2.3.23)

These are external waves (the waves do not oscillate in the vertical, and therefore do
not propagate vertically). If the boundary condition at the ground is that the vertical
velocity is zero, then � = Aemz + Be−mz = 0 at z = 0, so that A + B = 0, and

w∗(x, z, t) = ei(kx−νt)e−
1
2

(
β N 2

g + g
c2
s

)
z 2A sinh(mz)
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Figure 2.3.2: Schematic of
density weighted internal
(vertically propagating)
waves.

which has an exponential behavior in z. Since sinh(mz) cannot be zero above the
ground, an upper boundary condition of a rigid top can only be satisfied if A = 0.
In other words, we cannot have external waves with rigid top and bottom boundary
conditions: external waves require a free surface at the top (or at the bottom).

2.3.2.2 Internal waves

If n2 > 0, the vertical wavenumber n is real:

w∗(x, z, t) = ei(kx−νt)(Aeinz + Be−inz)e−
1
2

(
β N 2

g + g
c2
s

)
z (2.3.24)

A, B are determined from the boundary conditions. Now there is both vertical and
horizontal propagation. For example, if there is a rigid bottom, we have again A +
B = 0, and the solution becomes

w∗(x, z, t) = A
(
ei(kx+nz−νt) − ei(kx−nz−νt)

)
e−

1
2 (β N 2

g + g
c2
s

)z

The shape of internal waves in the vertical is shown schematically in Fig. 2.3.2.

2.3.3 Analysis of the FDR of wave solutions in a resting,
isothermal atmosphere

We will now plot the general FDR equation (2.3.22). We assume T00 = 250 K and
f = 2� sin 450 ≈ 10−4 s−1. Then, the speed of sound is c2

s = γ RT ≈ 105 m2/s2,
or cs ≈ 320 m/s, the scale height is H = RT/g = 7.3 km = 7300 m, and the Brunt–
Vaı̈sälä frequency is N 2 = gd(ln θ0)/dz = gκ/H for the isothermal atmosphere, or
about 4× 10−4 s−2. Note that the frequency associated with inertial oscillations is
much lower than the frequency associated with gravitational oscillations.

f ∼ 10−4 s−1 << N ∼ 10−2 s−1 (2.3.25)

We first plot in Fig. 2.3.3 the FDR (2.3.22), with α = β = 1, i.e., without making
either the hydrostatic or the quasi-Boussinesq approximations. Note that this equation
contains four solutions for the frequency ν, plus an additional solution ν = 0, the
geostrophic mode that satisfies nontrivially (2.3.19).
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Figure 2.3.3: Schematic of the frequencies of small perturbations in an isothermal
resting atmosphere as a function of k, the horizontal wavenumber (the horizontal
scale is its inverse), and the vertical wavenumber n. Shaded regions represent n2 < 0,
external waves.

2.4 Filtering approximations

When we neglect the time derivative of one of the equations of motion, we convert
it from a prognostic equation into a diagnostic equation, and eliminate with it one
type of solution. Physically, we eliminate a restoring force that supports a certain
type of wave. We call this a “filtering approximation”. Use of the quasi-geostrophic
filtering approximation that eliminates both sound and gravity waves made possible
the successful forecast of Charney et al. (1950). Currently most global models and
some regional models use the hydrostatic approximation, which filters sound waves.
In this section we explore the effect of the filtering approximations.

2.4.1 Quasi-geostrophic approximation

As we have already seen, without rotation, if we assume a steady state, the solution
of (2.3.19) would be a trivial solution: all perturbations would be equal to zero.
However, with rotation, if we assume steady state solutions, and neglect all time
derivatives ν = 0, we obtain from the perturbed equations (2.3.17), the geostrophic



48 2 The continuous equations

mode, a nontrivial solution:

V = ik P/ f

U = 0

d P

dz
= −Rg

dW

dz
= 0

P = c2
s R




(2.4.1)

For the continuous perturbation equations (2.3.17), this means:

f v∗ = −∂p′

∂x
(geostrophically balanced flow)

∂v∗

∂t
= 0 (steady state flow)

0 = −∂p′

∂z
− ρ ′g (hydrostatically balanced flow)

w∗ = 0
∂w∗

∂z
= ∂u∗

∂x
= 0 (horizontal, nondivergent flow)

s∗ = Cp

(
p′

c2
s

− ρ ′
)
= 0 (pressure perturbations are propor-

tional to density perturbations multi-
plied by the speed of sound squared,
which is true whenever the hydrostatic
equation is valid)




(2.4.2)

This is the “ultimate” filtering approximation: it filters out sound waves, inertia and
gravity oscillations.

For large horizontal scales we have to include the effects of varying rotation,
and the f -plane becomes a β-plane: f = f0 + βy. When horizontal advection by
the basic flow is included, the stationary geostrophic flow solution becomes quasi-
stationary (slowly varying). The waves corresponding to the geostrophic mode are
Rossby-type waves with a frequency small compared with the Coriolis or inertial
frequency ν ≈ Uk − β/k ∼ 10−5 − 10−6 s−1. Rossby waves are quasi-geostrophic
(ν2 << f 2), hydrostatically balanced, and the flow is quasi-horizontal (w∗/H <<

U ∗/L), and therefore quasi-nondivergent (∇ · vh ≈ 0).
Note that this type of quasi-geostrophic solution, fundamental for NWP, is still

present in the general equations of motion, and survives as a solution when we
make either the anelastic or the hydrostatic approximation in order to filter out sound
waves.
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2.4.2 Quasi-Boussinesq or anelastic approximation
(Ogura and Phillips, 1962)

We now substitute β = 0 in (2.3.19d). This means that we neglected the time
derivative ∂ρ ′/∂t compared with ∇H · v∗, ∂w∗/∂z in the continuity equation. With
this approximation, the equations become “anelastic”, i.e., they do not allow the
presence of sound waves, which require three-dimensional divergence and con-
vergence for their propagation. Consider the terms that are neglected in the FDR
(2.3.22):

(1) ν2 − f 2 << c2
s k2, i.e., the frequency of retained solutions is much smaller

than that of sound waves, therefore this also filters out the Lamb waves, i.e.,
horizontally propagating sound waves.

(2) N 2/g << g/c2
s . This approximation is justified if

N 2

g
= 1

θ0

dθ0

dz
<<

g

γ RT0
, i.e.,

γ H

θ0

dθ0

dz
<< 1

In other words, the deep anelastic approximation is justified for a model for
which the potential temperature does not change too much within the depth
γ RT/g ∼ 10 km. This is a reasonable approximation for the standard
troposphere (not for deep flow into the stratosphere), since for the
troposphere: �θ0/θ0 ∼ 30 K/300 K ∼ 0.1.

For models that are so shallow that not only�θ0/θ0 << 1, but also�T0/T0 << 1,
we can also neglect ∂ρ0/∂z in the continuity equation, and assume ∇3 · v′ = 0, not
just ∇3 · v∗ = 0. In this case we treat the atmosphere as if it was an incompressible
fluid. This approximation is only accurate for very shallow atmospheric models (less
than 1 km depth), but is very appropriate for ocean models, since water is well
approximated as an incompressible fluid.

Fig 2.4.1 schematically shows the FDR when we make the anelastic approxima-
tion. From (2.3.22), and letting β = 0 (with α = 1), we can derive the frequency of
inertia-gravity waves with the anelastic approximation:

ν2 = f 2 n2 + p2

n2 + p2 + k2
+ N 2 k2

n2 + p2 + k2
(2.4.3)

where p is like the inverse of a vertical wavelength

p = 1

2

g

c2
s

∼ 1

20
km

From (2.4.3) we see that, for internal (n2 > 0) inertia-gravity waves, f 2 < ν2 < N 2,
the frequency ν is between the Coriolis and Brunt–Vaı̈sälä frequencies. Note from
Fig. 2.4.1 that for these waves, ∂ν2/∂k2 > 0, but ∂ν2/∂n2 < 0. This implies (since we
can assume without loss of generality that k > 0) that the horizontal group velocity
for gravity waves ∂ν/∂k has the same sign as the phase velocity (the energy of gravity
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Figure 2.4.1: Schematic of the frequencies of small perturbations in an isothermal
resting atmosphere when the quasi-Boussinesq or anelastic approximation is made
(β = 0).

waves moves in the same direction as the phase speed in the horizontal). In the
vertical the opposite is true: if the group velocity is upwards, which happens for
example when gravity waves are generated by mountain forcing, the phase velocity
is downwards.

Because the anelastic equation filters out acoustic internal waves (as well as the
Lamb wave) it is widely used for problems in which the hydrostatic approximation
cannot be made, as is the case for convection. For example, the ARPS model is based
on deep anelastic equations. The FDR with the quasi-Boussinesq approximation is
shown schematically in Fig. 2.4.1.

2.4.3 Hydrostatic approximation

If we neglect the vertical acceleration ∂w∗/∂t in the vertical momentum equation
(2.3.17c), letting α = 0 (with β = 1), we get the FDR

n2 = −(ν2 − f 2 − c2
s k2)N 2

c2
s (ν2 − f 2)

− 1

4

(
N 2

g
− g

c2
s

)2

(2.4.4)
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This FDR has two solutions: the horizontally propagating external sound wave (Lamb
wave) solution, which unfortunately is retained:

ν2 = f 2 + c2
s k2, n2 = −1/4(N 2/g − g/c2

s )2 (2.4.5)

and inertia-gravity waves. From (2.4.4) we can derive the following relationship for
inertia-gravity waves: using N 2 = κg/H, H = RT/g, c2

s = γ RT

n2 = N 2k2

ν2 − f 2
− 1

4H 2
, or ν2 = f 2 + N 2k2

n2 + 1

4
H 2

(2.4.6)

Fig. 2.4.2 shows the relationship between frequency and horizontal and vertical
wavenumbers with the hydrostatic equation.

Exercise 2.4.1: Derive (2.4.6) from (2.4.5).

When are we justified in using the hydrostatic equation? By taking α = 0, we ne-
glected the time derivative of the vertical velocity compared to ρ ′/ρ0g. Note that it is
not enough to find dw/dt << g to make the hydrostatic approximation: the vertical
acceleration is small compared to gravity even for strong vertical motions, as in a

10-1

N ~ 10-2

10-3

f ~ 10-4

ν=0

104 103 102 10 1 Horiz. scale (km)
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Figure 2.4.2: Schematic of the frequencies of small perturbations in an isothermal
resting atmosphere when the hydrostatic approximation is made (α = 0).
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cumulus cloud. The hydrostatic approximation requires that the vertical acceleration
be small compared with the buoyancy (ρ ′/ρ0)g, or gravitational acceleration within
the fluid. It can be shown by scale analysis that the hydrostatic approximation is valid
as long as we are dealing with shallow flow (H/L << 1). For quasi-geostrophic flow,
the condition for hydrostatic balance is valid even if H/L ∼ 1. This implies that the
hydrostatic approximation is very accurate for models with grid sizes of the order
of 100 km or larger, and still quite acceptable for quasi-geostrophic flow, even when
the horizontal grid size of the model approaches 10 km. However, the hydrostatic
equation is not valid for models with grid sizes of the order of 10 km that attempt
to resolve explicitly cumulus convection. Fig. 2.4.2 shows that for high frequencies
ν ∼ N or larger, or small horizontal scales the hydrostatic approximation distorts the
original FDR (compare with Fig. 2.3.3).

Exercise 2.4.2: Show by scale analysis that as long as we are dealing with shallow
flow (H/L << 1) the hydrostatic approximation is valid.

Exercise 2.4.3: Show that the condition for quasi-geostrophic balance, the hydro-
static approximation is valid even if H/L ∼ 1.

We now summarize in Table 2.4.1 the characteristics of the different types of waves
and the approximations that can be used to filter them out. For more details about
Rossby waves and the filtering of inertia gravity waves, see Section 2.5, where these
topics are discussed in the context of the SWEs.

Notes
(1) In normal mode analysis of large-scale (hydrostatic) motion, or of

atmospheric models, it is customary to find a horizontal structure equation
and a vertical structure equation, associated by a separation constant h, where
h is denoted as “equivalent depth” (e.g., Williamson and Temperton, 1981).
In our simple f -plane case, the horizontal structure equation for the inertia
gravity waves (2.4.6) is

ν2 − f 2

k2
= gh (2.4.7)

and the vertical structure equation

n2 = 1

H 2

(
κH

h
− 1

4

)
(2.4.8)

where we have used N 2 = κg/H .
The reason h is called the equivalent depth is that internal modes are

governed by equations similar to the SWEs with depth h. However, h is not a
constant but a function of vertical wavenumber, and therefore the analogy is
only approximate.
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Table 2.4.1. Summary of wave characteristics and the filtering approximations
(adapted from Zhang, personal communication, 1996).

Type of wave Filtering
(typical amplitude) Phase speed Restoring force approximations

Acoustic (less than
0.1 hPa, noise
level)

√
γ RT (320 m/s) Compression Hydrostatic

anelastic quasi-
geostrophic

External gravity
(if initial
conditions are
not balanced,
10 hPa)

√
gH (320 m/s for
H = 10 km)

Gravity No free surface at
the top or the
bottom, or no
net column mass
convergence

Internal gravity
(0.1–1 hPa) ∼ 1

k

√
N 2k2

k2 + n2
∼ N/k

(50 m/s for L =
30 km)

Buoyancy
(gravitational
acceleration
within fluid)

Neutral
stratification
(N = 0), or
∂∇ · vH

∂t
= 0

Inertia f/k (15 m/s for
L = 1000 km)

Coriolis force ( f ) No rotation
( f = 0)

Rossby (20 hPa) U − β/k2 (relative
phase speed ∼ 20–
50 m/s depending
on L)

Variation of f with
latitude (β effect)
dς/dt = −βv

Constant f
(β = 0)

(2) With the hydrostatic approximation, the geopotential energy gz and the
internal energy CvT of an air column are related to each other,
since∫∞zs

ρgz dz = ∫∞zs
−(∂p/∂z)z dz = [−pz]∞zs

+ ∫∞zs
pdz =

pszs + ∫∞zs
ρRT dz. Here the subscript s represents the earth’s surface, and

limz→∞ pz = 0 is assumed. So, when zs = 0, the ratio of the potential to the
internal energy of a column is equal to R/Cv = 0.4. When zs is not constant,
the total potential energy (Lorenz, 1955) is given by∫ ∞

zs

ρ(gz + CvT )dz = pszs +
∫ ∞

zs

ρCpT dz

2.5 Shallow water equations, quasi-geostrophic
filtering, and filtering of inertia-gravity waves

Consider now the SWEs (Fig. 2.5.1), valid for an incompressible hydrostatic motion
of a fluid with a free surface h(x, y, t). “Shallow” means that the vertical depth
is much smaller than the typical horizontal depth, which justifies the hydrostatic
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φ = gh

φs = ghs

Φ = gH

Figure 2.5.1: Schematic of the shallow water model: a hydrostatic, incompressible
fluid with a rigid bottom hs(x, y), a free surface h(x, y, t), and horizontal scales L
much larger than the mean vertical scale H .

approximation. These equations are not only appropriate for representing a shallow
mass of water (e.g., river flow, storm surges), but they are prototypical of the primitive
equations based on the hydrostatic approximation and are frequently used to test
numerical schemes. The shallow water horizontal momentum equations are

dv
dt
= − f k× v−∇φ (2.5.1)

where

d

dt
= ∂

∂t
+ v ·∇ v = vH = ui+ vj φ = gh

The continuity equation is

d(φ − φs)

dt
= −(φ − φs)∇ · v

which can also be written as

∂φ

∂t
= −∇ · [(φ − φs)v] (2.5.2)

Here φs = ghs(x, y) and hs is the bottom topography.

Exercise 2.5.1: Derive the SWE from the primitive equations assuming hydrostatic,
incompressible motion, and that the horizontal velocity is uniform in height. Is the
vertical velocity uniform in height as well?

We now derive the equation of conservation of potential vorticity: expanding the
total derivative of the momentum equation and making use of the relationship

vH ·∇vH =∇(
v2

H/2
)+ ς k× vH

where ς = k ·∇× vH we obtain

∂ς

∂t
+ v ·∇ς + ς∇ · v = − f ∇ · v− v ·∇ f (2.5.3)

or (since d f/dt = v ·∇ f )

d( f + ς)

dt
= −( f + ς)∇ · v (2.5.4)

which indicates that the absolute vorticity ( f + ς ) of a parcel of “water” increases
with its convergence (or vertical stretching).
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Eliminating the divergence, we obtain

d

dt

(
f + ς

φ − φs

)
= 0 (2.5.5)

where

q =
(

f + ς

φ − φs

)
(2.5.6)

is the potential vorticity: the absolute vorticity divided by the depth of the fluid.

Exercise 2.5.2: Give a physical interpretation of the equation of conservation of
potential vorticity.

The conservation of potential vorticity is an extremely powerful dynamical con-
straint. In a multilevel primitive equation model, the isentropic potential vorticity
(the absolute vorticity divided by the distance between two surfaces of constant po-
tential temperature) is also individually conserved. If the initial potential vorticity
distribution is accurately represented in a numerical model, and the model is able to
transport potential vorticity accurately, then the forecast will also be accurate.

We now consider small perturbations on a flat bottom and a mean height � =
gH = const. on a constant f -plane.

∂v′

∂t
= − f k× v′ −∇φ′ (2.5.7)

and

∂φ′

∂t
= −�∇ · v′ (2.5.8)

(note that (2.5.7) and (2.5.8) are the same equations as in Section 2.4.5 on horizontal
sound (Lamb) waves, with gH = c2

s = γ RT0, gφ = p′/ρ0).
Assume solutions of the form (u′, v′, φ′)ei(kx−νt). Then the FDR is

ν(ν2 − f 2 −�k2) = 0 (2.5.9)

with three solutions for ν:

ν2 = f 2 +�k2 (2.5.10)

the frequency of inertia-gravity waves, analogous to the inertia-Lamb wave, and
ν = 0, the geostrophic mode. As before, this is a geostrophic, nondivergent steady
state solution ∂

∂t () = 0, v = k×∇φ

f , ∇ · v = 0.
Following Arakawa (1997), we can now compare the FDR of inertia-gravity

waves in the SWE with the FDR of a three-dimensional isothermal system using
the hydrostatic approximation (2.4.4)–(2.4.6). We see that (2.5.10) is analogous to
internal inertia-gravity waves for an isothermal hydrostatic atmosphere (2.3.26) if
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we define an equivalent depth such that � = gheq :

heq = N 2/g

n2 + 1

4H 2
0

= d ln θ0/dz

n2 + 1

4H 2
0

(2.5.11)

and is analogous to the (external) inertia Lamb waves if we define the equivalent
depth as

heq = c2
s /g = γ H0 (2.5.12)

2.5.1 Quasi-geostrophic scaling for the SWE

If we want to filter the inertia-gravity waves, as Charney did in the first successful
numerical weather forecasting experiment (Chapter 1), we can develop a quasi-
geostrophic version of the SWE. We can do it first for an f -plane ( f = f0).

Assume that the atmosphere is in quasi-geostrophic balance:v = vg + vag = vg +
εv′ where we assume that the typical size of the ageostrophic wind is much smaller
(order ε = U/ f L , the Rossby number) than the geostrophic wind εv′ << vg, and
that the same is true for their time derivatives ε∂v′/∂t << ∂vg/∂t . The geostrophic
wind is given by

vg = 1

f
k×∇φ (2.5.13)

Plugging these into the perturbation equations (2.5.7) and (2.5.8) we obtain

∂vg

∂t
+ ε

∂v′

∂t
= −∇φ − f k× vg − ε f k× v′ = −ε f k× v′ (2.5.14)

In this equation, the dominant terms (pressure gradient and Coriolis force on the
geostrophic flow) cancel each other (geostrophic balance), so that the smaller effect
of the Coriolis force acting on the ageostrophic flow is left to balance the time
derivative. From (2.5.8),

∂φ

∂t
= −�∇ · vg − ε�∇ · v′ = −ε�∇ · v′ (2.5.15)

Here the geostrophic wind is nondivergent, so that the time derivative of the pressure
is given by the divergence of the smaller ageostrophic wind.

From (2.5.14) and (2.5.15) we can conclude that ∂vg/∂t and ∂φ/∂t are of order
ε, i.e., the geostrophic flow changes slowly (it is almost stationary compared with
other types of motion), and that ∂vag/∂t = ε∂v′/∂t , which is smaller than ∂vg/∂t , is
of order ε2. With quasi-geostrophic scaling we neglect terms of O(ε2) and we obtain
the linearized quasi-geostrophic SWE:

∂vg

∂t
= −∇φ − f k× v = − f k× vag (2.5.16a)
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∂φ

∂t
= −�∇ · v = −�∇ · vag (2.5.16b)

vg = 1/ f k×∇φ (2.5.16c)

Note that in (2.5.16) there is only one independent time derivative because of the
geostrophic relationship (we lost the other two time derivatives when we neglected
the term ∂vag/∂t). Physically, this means that we only allow divergent motion to exist
as required to maintain the quasi-geostrophic balance, and eliminate the degrees of
freedom necessary for the propagation of gravity waves.

We can rewrite (2.5.16) as

∂ug

∂t
= −∂φ

∂x
+ f v = fvag (2.5.17a)

∂vg

∂t
= −∂φ

∂y
+ f u = − fuag (2.5.17b)

∂φ

∂t
= −�

(
∂u

∂x
+ ∂v

∂y

)
= �

(
∂uag

∂x
+ ∂vag

∂y

)
(2.5.17c)

ug = − 1

f

∂φ

∂y
; vg = 1

f

∂φ

∂x
(2.5.17d)

We can compute the equation for the geostrophic vorticity evolution from (2.5.17)
by taking the y-derivative of (2.5.17b) minus the x-derivative of (2.5.17a):

∂ζ

∂t
= − f0

(
∂u

∂x
+ ∂v

∂y

)
− βv (2.5.18)

where the last term in (2.5.18) appears if we are on a β-plane: f = f0 + βy. Then
we can eliminate the (ageostrophic) divergence between (2.5.18) and (2.5.17c) and
obtain the linear quasi-geostrophic potential vorticity equation on a β-plane:

∂

∂t

(
ζ

f0
− φ

�

)
= − β

f 2
0

∂φ

∂x
(2.5.19)

or, since ζ =∇2φ/ f0,

∂

∂t

(
∇2φ

f 2
0

− φ

�

)
= − β

f 2
0

∂φ

∂x
(2.5.20)

Note that there is a single independent variable (φ) so that there is a single solution
for the frequency. If we neglect the β-term (i.e., assume an f -plane) and allow for
plane-wave-type solutions φ = Fei(kx−νt), the only solution of the FDR in (2.5.20)
is ν = 0, the geostrophic mode. This confirms that by eliminating the time derivative
of the ageostrophic (divergent) wind vag, we have eliminated the inertia-gravity
wave solution. If we assume a β-plane, i.e., keep the β term in (2.5.20), the quasi-
geostrophic FDR becomes

ν = −βk

k2 + f 2
0 /�

(2.5.21)
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The Rossby waves are the essential “weather waves”, and as shown in Table 2.4.1,
have rather large amplitudes (up to 50 hPa). The ageostrophic flow associated with
these waves is responsible for the upward motion that produces precipitation ahead
of the troughs.

In a multilevel model, the FDR (2.5.21) can be used with the equivalent depths
(2.5.11), (2.5.12) applied to the baroclinic (internal) and barotropic Rossby waves,
respectively. With these definitions, we can say that the waves in the atmosphere are
analogous to the SWE waves. However, because heq appears as a separation constant
in the definition of the normal modes of the atmosphere, the equivalent depth depends
on the vertical wavenumber, and on the type of wave considered (Lamb or inertia-
gravity waves).

Exercise 2.5.3: Show that the quasi-geostrophic PVE (potential vorticity equation)
for nonlinear SWE is

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y

)(∇2φ

f 2
0

− φ

�

)
= − β

f 2
0

∂φ

∂x
(2.5.22)

using similar scaling arguments.

Exercise 2.5.4: Allow for a basic flow ug(total) = U + ug; vg(total) = vg, in (2.5.22).

Exercise 2.5.5: Estimate the initial time derivative for typical values of the horizontal
wavenumber, the external (barotropic) vertical mode for Rossby waves and inertia-
gravity waves that Richardson would have observed.

Exercise 2.5.6: Derive the formula for group velocity in the x-direction for Rossby
waves.

Exercise 2.5.7: Using typical values of long and short synoptic waves (e.g., horizon-
tal wavelengths of 8000 km and 2000 km respectively), calculate the phase speed and
the group velocity of Rossby waves for the barotropic mode and the first baroclinic
mode (H ∼ 10 km and 1 km respectively).

2.5.2 Inertia-gravity waves in the presence of a basic flow

As we just saw, the SWEs are a simple version of the primitive equations, and are
widely used to understand numerical and dynamical processes in primitive equations.
As we noted in Chapter 1, filtered quasi-geostrophic models have been substituted
by primitive equation models for NWP, because the quasi-geostrophic filtering is not
an accurate approximation (it assumes that the Rossby number U/f L is much smaller
than 1). Recall that quasi-geostrophic filtering was introduced by Charney et al.
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(1950) in order to eliminate the problem of gravity waves (which requires a small
time step) whose high frequencies produced a huge time derivative in Richardson’s
computation, masking the time derivative of the actual weather signal.

An alternative way to deal with the presence of fast gravity waves without resorting
to quasi-geostrophic filtering is the use of semi-implicit time schemes (to be discussed
in Chapter 3). Consider small perturbations in the SWE including a basic flow U in
the x-direction. Then the total linearized time derivative becomes

d

dt
= ∂

∂t
+U

∂

∂x

In that case, when we assume solutions of the form Aei(kx−νt), d/dt = i(−ν + kU ).
Therefore the FDR remains the same except that ν is replaced by ν − kU . The FDR
for small perturbations in the SWE with a basic flow U is therefore

(ν − kU )[(ν − kU )2 − f 2 −�k2] = 0 (2.5.23)

As noted before, this has three solutions, quasi-geostrophic flow (which is steady
state, except for the uniform translation with speed U ) and two solutions for the
inertia-gravity waves, modified by the basic flow translation:

(νG − kU ) = 0 (geostrophic mode)
[(νIGW − kU )2 − f 2 −�k2] = 0 (inertia gravity waves, modified

by the basic flow U )
The phase speed of the inertia-gravity wave is given by

cI GW = νIGW

k
= U ±

√
f 2

k2
+� (2.5.24)

Finally, we note that for the Lamb wave (as well as for the external gravity
wave), the phase speed of the inertia-gravity wave is dominated by the term√
� ≈ √g × 10 km ≈ 300 m/s. As we will see in Section 3.2.5, it is possible to

avoid using costly small time steps by means of a semi-implicit time scheme. An
implicit time scheme has no constraint on the time step. Therefore, in a semi-implicit
scheme, the terms that give rise to the fast gravity waves, namely the horizontal di-
vergence and the horizontal pressure gradient are written implicitly, while the rest of
the SWE terms can be written explicitly. The terms generating the gravity wave are
underlined in the following nonlinear SWE:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂φ

∂x
+ fv

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂φ

∂y
− fu

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= −�

(
∂u

∂x
+ ∂v

∂y

)
− (φ −�)

(
∂u

∂x
+ ∂v

∂y

)




(2.5.25)
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2.6 Primitive equations and vertical coordinates

As Charney (1951) foresaw, most NWP modelers went back to using the primitive
equations, with the hydrostatic approximation, but without quasi-geostrophic filter-
ing. Quasi-geostrophic models are now reserved for simple problems where the main
motivation is the understanding of atmospheric or ocean dynamics.

Exercise 2.6.1: Give two or more reasons why using the primitive equations, with
the hydrostatic approximation but without quasi-geostrophic filtering was a desirable
goal.

So far we have used z as the vertical coordinate. When we make the hydrostatic
approximation, as in the primitive equations, the use of pressure vertical coordinates
becomes very advantageous. We can also use any arbitrary variable ζ (x, y, z, t) as
the vertical coordinate as long as it is a monotonic function of z (Kasahara, 1974).
The most commonly used vertical coordinates are height z, pressure p, a normalized
pressure σ (Phillips, 1957), potential temperature θ (Eliassen, 1949), and several
kinds of hybrid coordinates (e.g., Simmons and Burridge, 1981, Johnson et al., 1993,
Purser, pers. comm., Bleck and Benjamin 1993).

2.6.1 General vertical coordinates

When we transform the vertical coordinate, a variable A(x, y, z, t) becomes
A(x, y, ζ (x, y, z, t), t). The horizontal coordinates and time remain the same. Let s
represent x , y, or t . Then, from Fig. 2.6.1(a)

D − B

�s
= C − B

�s
+ D − C

�z
· �z

�s

so that (
∂ A

∂s

)
ζ

=
(
∂ A

∂s

)
z

+
(
∂ A

∂z

)
s

(
∂z

∂s

)
ζ

(2.6.1)

and

∂ A

∂ζ
= ∂ A

∂z

∂z

∂ζ

or

∂ A

∂z
= ∂ A

∂ζ

∂ζ

∂z
(2.6.2)

Substituting (2.6.2) in (2.6.1), we get(
∂ A

∂s

)
ς

=
(
∂ A

∂s

)
z

+
(
∂ A

∂ς

)(
∂ς

∂z

)(
∂z

∂s

)
ς

(2.6.3)
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D

C
B

z

s (x, y, or t)

(a)

∆s

∆z

�

∆p=∆Mg

∆x

∆y

(b)

Figure 2.6.1: (a) Schematic showing the relationship between the derivatives of A at
constant ζ and at constant Z . The points B and D represent values of A on a ζ -surface
and B and C those on a constant z surface. (b) Schematic of a parcel of air in a
hydrostatic system, where �p is proportional to the change in mass per unit area �M .

From this relationship (for s = x, y) we can get an expression for the horizontal
gradient of a scalar A in ζ coordinates:

∇ζ A =∇z A +
(
∂ A

∂ζ

)(
∂ζ

∂z

)
∇ζ z (2.6.4)

and for the horizontal divergence of a vector B:

∇ζ · B =∇z · B+
(
∂B
∂ζ

)
·
(
∂ζ

∂z

)
∇ζ z (2.6.5)

The total derivative of A(x, y, ζ, t) is given by

d A

dt
=
(
∂ A

∂t

)
ς

+ v ·∇ς A + ς̇
∂ A

∂ς
(2.6.6)



62 2 The continuous equations

The horizontal pressure gradient is therefore

1

ρ
∇z p = 1

ρ

[
∇ς p −

(
∂p

∂ς

)(
∂ς

∂z

)
∇ς z

]
(2.6.7)

which becomes, using the hydrostatic equation ∂p/∂φ = −ρ,

1

ρ
∇z p = 1

ρ
∇ζ p +∇ζ φ (2.6.8)

In summary the horizontal momentum equations become

dv
dt
= −α∇ς p −∇ςφ − f k× v+ F (2.6.9)

and the hydrostatic equation ∂p/∂z = −ρg becomes

∂p

∂ς

∂ς

∂z
= −ρg

or

∂p

∂ς
= −ρ ∂φ

∂ς
(2.6.10)

The continuity equation can be derived from the conservation of mass for an infinites-
imal parcel: the hydrostatic equation indicates that the mass of a parcel is proportional
to the increase in pressure from the top to the bottom of the parcel (Fig. 2.6.1(b)):

g�M = �x�y�p (2.6.11)

Now, �p = (∂p/∂ς )�ς , so that taking a logarithmic total derivative, and noting
that

1

�x

d�x

dt
→ ∂u

∂x

and the same with the other space variables, we obtain

d

dt

(
ln

∂p

∂ς

)
+∇ · vH + ∂ς̇

∂ς
= 0 (2.6.12)

The thermodynamic equation is as before

Cp
T

θ

dθ

dt
= Cp

dT

dt
− α

dp

dt
= Q (2.6.13)

The kinematic lower boundary condition is that the surface of the earth is a material
surface: the flow can only be parallel to it, not normal. This means that once a parcel
touches the surface it is “stuck” to it. This can be expressed as

d(ς − ςs)

dt
= 0 at ς = ςs
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or

dς

dt
= ∂ςs

∂t
+ v ·∇ςs at ς = ςs (2.6.14)

This kinematic boundary condition is well defined although in practice it may not be
accurate, for example, when there is subgrid-scale orography.

At the top, unfortunately, the boundary condition is not so well defined: As z →∞,
p→ 0, but in general there is no satisfactory way to express this condition for a finite
vertical resolution model. Most models assume a simple condition of a “rigid top”
(i.e., making the top surface a material surface)

dς

dt
= 0 at ς = ςT (2.6.15)

but this is an artificial boundary condition that introduces spurious effects. For ex-
ample, Kalnay and Toth (1996) showed that a rigid top introduces artificial “upside-
down” baroclinic instabilities in the NCEP global model, and similar observations
were made by Hartmann et al. (1997) with the ECMWF model. If the top of the
model is sufficiently high, and there is enough vertical resolution, the upward mov-
ing perturbations are damped in the model (as they are in nature), and the spurious
interaction with the artificial top may remain small. Alternatively, radiation condi-
tions enforcing the condition that energy can only propagate upwards can be used,
but they are not simple to implement.

2.6.2 Pressure coordinates

These coordinates are a natural choice for a hydrostatic atmosphere (Eliassen,
1949). They greatly simplify the equations of motion: the horizontal pressure gra-
dient becomes irrotational, and the continuity equation becomes simply zero three-
dimensional divergence, a diagnostic linear equation.

As a result the geostrophic wind relationship is also simpler: vg = (1/ f )k×∇φ.
For this reason, rawinsonde measurements have been made in pressure coordinates
since the early 1950s.

In pressure coordinates, ∂p/∂ς ≡ 1, the total derivative operator (2.6.6) is given
by

d

dt
= ∂

∂t
+ v ·∇+ ω

∂

∂p

where the vertical velocity in pressure coordinates is ω = dp/dt . The primitive
equations become:

dv
dt
= −∇pφ − f k× v+ F (2.6.16)

∂φ

∂p
= −α (2.6.17)
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∇p · v+ ∂ω

∂p
= 0 (2.6.18)

and the thermodynamic equation (2.6.13) is unchanged.
The geostrophic and thermal wind relationships are especially simple in pressure

coordinates:

vg = 1

f
k×∇φ and

∂vg

∂p
= − R

f p
k×∇T (2.6.19)

On the other hand, the bottom boundary condition is not simple in pressure coordi-
nates because the pressure surfaces intersect the surface:

ω = ∂ps

∂t
+ v ·∇ps at p = ps (2.6.20)

This requires knowing the rate of change of ps :

∂ps

∂t
+ v ·∇ps = −

∞∫
0

∇p · vdp (2.6.21)

This complication of the surface boundary condition in pressure coordinates led
Phillips (1957) to the invention of sigma coordinates (next subsection).

Instead of the horizontal momentum equations, we can use the prognostic equa-
tions for the vorticity ζ and divergence δ, obtained by applying the operators k ·∇x
and ∇· to the momentum equations. In pressure coordinates these equations are

∂ς

∂t
+ v ·∇( f + ς)+ ω

∂ς

∂p
+ ( f + ς )∇ · v+ k ·∇ω × ∂v

∂p
= 0 (2.6.22)

∂δ

∂t
+∇ · (v ·∇v)+ ω

∂δ

∂p
+∇ω · ∂v

∂p
+∇ · ( f k× v)+∇2φ = 0 (2.6.23)

2.6.3 Sigma and eta coordinates

Because of the complication of the bottom boundary conditions, Phillips (1957)
introduced “normalized pressure” or “sigma” coordinates, where σ = p/ps and
ps(x, y, t) is the surface pressure. These are by far the most widely used vertical
coordinates. At the surface, σ = 1, and at p = 0, σ = 0, so that the top and bottom
boundary conditions are σ̇ = 0. More generally, allowing for a rigid top at a finite
pressure pT = const .,

σ = p − pT

pS − pT
= p − pT

π
(2.6.24)

with σ̇ = 0 at σ = 0, 1.
The continuity equation is

∂π

∂t
= −∇ · (πv)− ∂πσ̇

∂σ
(2.6.25)
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The surface pressure tendency equation is:

∂π

∂t
= ∂pS

∂t
= −∇ ·

1∫
0

(πv)dσ (2.6.26)

Substituting back into the continuity equation, one can determine σ̇ diagnostically
from the horizontal wind field v.

Exercise 2.6.2: Derive (2.6.25) and (2.6.26)

Despite their popularity, sigma coordinates have a serious disadvantage: the pressure
gradient becomes the difference between two terms:

dv
dt
= −α∇σ p −∇σφ − f k× v+ F (2.6.27)

where the first term, if sigma surfaces are steep, may not have the information that
went into the finite difference calculation of the second. To avoid the resulting errors,
Mesinger (1984) introduced a step-mountain coordinate denoted “eta” (used in the
Eta model at NCEP, e.g., Mesinger et al. (1988), Janjic (1990), Black (1994)):

η = p

pS

po(z )

1000 mb
(2.6.28)

The first factor is the standard sigma coordinate, the second is a scaling factor, with
po(z) the pressure in the standard atmosphere. Mountains are defined as boxes, whose
tops have to coincide with a model eta level (Fig. 2.6.2). As a result of the scaling, the
eta surfaces are almost horizontal, and the pressure gradient is computed accurately.
At NCEP, the Eta model has proven to be very skillful especially in predicting storms.

etaN

etaN-1

etaN-2

etaN-3

etaN-4

Figure 2.6.2: Schematic of the eta coordinate.
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2.6.4 Isentropic coordinates

The fact that under adiabatic motion, potential temperature is individually conserved
suggested long ago that it could be used as a vertical coordinate. The main advantage,
which makes it an almost ideal coordinate, is that “vertical” motion θ̇ is approximately
zero in these coordinates (except for diabatic heating). This reduces finite difference
errors in areas such as fronts, where pressure or z-coordinates tend to have large
errors associated with poorly resolved vertical motion.

Hydrostatic equation: from the definition of potential temperature, and using the
hydrostatic and state equations, we get

dθ

θ
= dT

T
− R

Cp

dp

p
= dT

T
− 1

Cp

dφ

T
(2.6.29)

If we define the Exner function � = CpT/θ = Cp(p/p0)R/Cp , and the Montgomery
potential M = CpT + φ, we see from the previous equation that

∂M

∂θ
= � (2.6.30)

The horizontal pressure gradient becomes very simple, so that for ζ = θ the mo-
mentum equation is

dv
dt
= −∇θ M − f k× v+ F (2.6.31)

The continuity equation is

d

dt
ln

∂p

∂θ
+∇θ · v+ ∂θ̇

∂θ
= 0 (2.6.32)

The potential vorticity is conserved for adiabatic, frictionless flow (Ertel’s theo-
rem). This general property can be posed in its simplest formulation in isentropic
coordinates:

dq

dt
= 0 (2.6.33)

where q = ( f + k ·∇θ × v) ∂θ/∂p, and integrating between two isentropic sur-
faces, the potential vorticity is

q = ( f + k ·∇θ × v)

�p
(2.6.34)

which is similar to the SWE potential vorticity.
Although the isentropic coordinates have many advantages, they have also two

main disadvantages: The first is that isentropic surfaces intersect the ground (as do
other vertical coordinates except for sigma-type coordinates). In practice this implies
that it is difficult to enforce strict conservation of mass, and this is important for long
(climate) integrations. For this reason, hybrid sigma–theta coordinates have been used
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(e.g., Johnson et al., 1993). Other approaches have been those of Bleck and Benjamin
(1993) for the operational RUC/MAPS model, and that of Arakawa and Konor (1996).
The second disadvantage is that only statically stable solutions are allowed, since the
vertical coordinate has to vary monotonically with height. There are situations, e.g.,
over hot surfaces, where this is not true even at a grid scale. Moreover, in regions of
low static stability, the vertical resolution of isentropic coordinates can be poor.

Exercise 2.6.3: Derive (2.6.31) from (2.6.9) for ζ = θ , and (2.6.32) from the log-
arithmic derivative of

�M = ∂p

∂θ
·�θ ·�x ·�y (2.6.35)

where �M is proportional to the mass of a parcel in isentropic coordinates
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Numerical discretization of the equations
of motion

3.1 Classification of partial differential equations (PDEs)

3.1.1 Reminder about PDEs

Second order linear PDE

α
∂2u

∂x2
+ β

∂2u

∂x∂y
+ γ

∂2u

∂y2
+ 2δ

∂u

∂x
+ 2ε

∂u

∂x
+ ϕu = 0

Second order linear partial differential equations are classified into three types de-
pending on the sign of β2 − αγ (e.g., Courant and Hilbert, 1962). Equations are
hyperbolic, parabolic or elliptic if the sign is positive, zero, or negative, respectively.
The simplest (canonical) examples of these equations are

(a)
∂2u

∂t2
= c2 ∂

2u

∂x2
Wave equation (hyperbolic).

Example: vibrating string.

(b)
∂u

∂t
= σ

∂2u

∂x2
Diffusion equation (parabolic).

Example: heated rod.

(c)
∂2u

∂x2
+ ∂2u

∂y2
= 0 (or f (x, y)) Laplace’s or Poisson’s equations (elliptic).

Examples: steady state temperature of a
plate, streamfunction/vorticity
relationship.

The behavior of the solutions, the proper initial and/or boundary conditions, and the
numerical methods that can be used to find the solutions depend essentially on the type

68
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of PDE that we are dealing with. Although nonlinear multidimensional PDEs cannot
in general be reduced to these canonical forms, we need to study these prototypes
of the PDEs to develop an understanding of their properties, and then apply similar
methods to the more complicated NWP equations.

(d)
∂u

∂t
= −c

∂u

∂x
Advection equation, with solution u(x, t) = u(x − ct , 0).

The advection equation is a first order PDE, but it can also be classified as a hyperbolic,
since its solutions satisfy the wave equation (a), and the latter is usually written as
the system

∂u
∂t
= A∂u

∂x

where

u =




∂u

∂t

c
∂u

∂x




and

A =
[

0 c
c 0

]
or an equivalent transformation

3.1.2 Well-posedness, initial and boundary conditions

A well-posed initial/boundary condition problem has a unique solution that depends
continuously on the initial/boundary conditions. Clearly, the specification of proper
initial conditions and boundary conditions for a PDE is essential in order to have a
well-posed problem. If too many initial/boundary conditions are specified, there will
be no solution. If too few are specified, the solution will not be unique. If the number
of initial/boundary conditions is right, but they are specified at the wrong place or
time, the solution will be unique, but it will not depend smoothly on initial/boundary
conditions, i.e., small errors in the initial/boundary conditions will produce huge
errors in the solution. In any of these cases we have an ill-posed problem. And we
can never find a numerical solution of a problem that is ill posed: the computer will
show its disgust by “blowing up”.

We briefly discuss well-posed initial/boundary conditions:

Second order elliptic equations require one boundary condition on each point
of the spatial boundary. These are “boundary value”, time-independent
problems, and the methods used to solve them are introduced in Section 3.4.
The boundary conditions may be on the value of the function (Dirichlet
problem), as when we specify the temperature in the borders of a plate, or on
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its normal derivative (Neumann problem), as when we specify the heat flux.
We could also have a mixed “Robin” boundary condition, involving a linear
combination of the function and its derivative.

Linear parabolic equations require one initial condition at the initial time and
one boundary condition at each point of the spatial boundaries (if they exist).

Linear hyperbolic equations require as many initial conditions as the number
of characteristics that come out of every point in the surface t = 0, and as
many boundary conditions as the number of characteristics that cross a point
in the (space) boundary pointing inwards (into the spatial domain). For
example: to solve ∂u/∂t = −c∂u/∂x for x > 0, t > 0; characteristics:
solutions of dx/dt = c; space boundary: x = 0 (see Fig. 3.1.1(a),(b)). If
c > 0, we need the initial condition u(x, 0) = f (x) and the boundary
condition u(0, t) = g(t). If c < 0, we need the initial condition
u(x, 0) = f (x) but no boundary conditions.

For nonlinear equations, no general statements can be made, but physical insight
and local linearization can help to determine proper initial/boundary conditions. For
example, in the nonlinear advection equation ∂u/∂t = −u∂u/∂x , the characteristics
are dx/dt = u, and since we don’t know a priori the sign of u at the boundary, and
whether the characteristics will point inwards or outwards, we have to estimate the
value of u from the nearby solution, and define the boundary condition accordingly.

t

(b)

t

(a)

BC:

IC: x

No BC:

IC: x

Figure 3.1.1: Schematic of
the characteristics of the
advection equation
∂u/∂t = −c∂u/∂x for
(a) positive and (b) negative
velocity c and the
corresponding well-posed
initial/boundary conditions
(IC/BC).
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One method of solving simple PDEs is the method of separation of variables, but
unfortunately in most cases it is not possible to use it (hence the need for numerical
models!). Nevertheless, it is useful to try to solve some simple PDE’s analytically.

Exercise 3.1.1: Solve by the method of separation of variables these prototype PDEs:

(1)
∂2u

∂x2
+ ∂2u

∂y2
= 0 0 ≤ x ≤ 1 0 ≤ y ≤ 1

Boundary condition: u(x, 0) = f (x), u(x, 1) = u(0, y) = u(1, y) = 0

Assume

f (x) =
∞∑

k=1

ak sin kπx with
∞∑

k=1

k2 |ak | <∞

Find the solution

u(x, y) =
∞∑

k=1

ak
sinh kπ (1− y)

sinh kπ
sin kπx

(2)
∂u

∂t
= σ

∂2u

∂x2
0 ≤ x ≤ 1 t ≥ 0

Boundary condition: u(0, t) = u(1, t) = 0
Initial condition: u(x, 0) = f (x) =∑∞

k=1 ak sin kπx

Find

u(x, t) =
∞∑

k=1

ake
−σk2π2t sin kπx

Note that the higher the wavenumber, the faster it goes to zero, i.e., the
solution is smoothed as time goes on.

(3)
∂2u

∂t2
= c2 ∂

2u

∂x2
0 ≤ x ≤ 1 0 ≤ t ≤ 1

Boundary condition: u(0, t) = u(1, t) = 0

Initial condition: u(x, 0)= f (x)=
∞∑

k=1

ak sin kπx ;

∂u

∂t
(x, 0) = g(x) =

∞∑
k=1

bk sin kπx

(4) Same as (3), but now, instead of two initial conditions, we give an initial and a
“final” condition:

Boundary condition: u(0, t) = u(1, t) = 0

Initial condition: u(x, 0) = f (x); “final condition” u(x, 1) = g(x)

In other words, we try to solve a hyperbolic (wave) equation as if it was a boundary
value problem. Show that the solution is unique but it does not depend continuously
on the boundary conditions, and therefore it is not a well-posed problem.
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Conclusion: Before trying to solve a problem numerically, make sure that it is
well posed: it has a unique solution that depends continuously on the data that define
the problem.

Exercise 3.1.2: Lorenz showed that the atmosphere has a finite limit of predictability:
even if the models and the observations were perfect, “the flapping of a butterfly in
Brazil (not taken into account in the model) will result in a completely different
forecast over the US after a couple of weeks”. Does this mean that the problem of
NWP is not well posed?

3.2 Initial value problems: numerical solution

Hyperbolic and parabolic PDEs are initial value or marching problems: The solution
is obtained by using the known initial values and marching or advancing in time.
If boundary values are necessary, they are called “mixed initial–boundary value
problems”. Again, the simplest prototypes of these initial value problems are:

∂u

∂t
= −c

∂u

∂x
(3.2.1)

the wave or advection equation, with solution u(x, t) = u(x − ct, 0), a hyperbolic
equation, and

∂u

∂t
= σ

∂2u

∂x2
(3.2.2)

the diffusion equation, a parabolic equation.

3.2.1 Finite difference method

We take discrete values for x and t: x j = j�x, tn = n�t . The solution of the fi-
nite difference equation is also defined at the discrete points ( j�x, n�t): Un

j =
U ( j�x, n�t). We will use a small u to denote the solution of the PDE (continuous)
and capital U to denote the solution of the finite difference equation (FDE), a discrete
solution.

Consider again the advection equation (3.2.1). Suppose that we choose to approx-
imate this PDE with the following FDE (called an “upstream scheme”):

Un+1
j −Un

j

�t
+ c

Un
j −Un

j−1

�x
= 0 (3.2.3)

Note that both differences are noncentered with respect to the point ( j�x, n�t). We
should now ask two fundamental questions:

(1) Is the FDE consistent with the PDE?

(2) For any given time t > 0, will the solution U of the FDE converge to u as
�x → 0,�t → 0?

Let us now clarify these questions.
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3.2.2 Truncation errors and consistency

We say that the FDE is consistent with the PDE if, in the limit �x → 0,�t → 0
the FDE coincides with the PDE. Obviously, this is a first requirement that the FDE
should fulfill if its solutions are going to be good approximations of the solutions
of the PDE. The difference between the PDE and the FDE is the discretization
error or local (in space and time) truncation error. Consistency is rather simple to
verify: Substitute U by u in the FDE, and evaluate all terms using a Taylor series
expansion centered on the point ( j, n), and then subtract the PDE from the FDE. If
the difference (or local truncation error τ ) goes to zero as �x → 0,�t → 0, then
the FDE is consistent with the PDE.

Example 3.2.1: We verify the consistency of (3.2.3) with (3.2.1) by a Taylor series
expansion:

un+1
j =

(
u + ut�t + utt

�t2

2 + · · ·
)n

j

un
j−1 =

(
u − ux�x + uxx

�x2

2 + · · ·
)n

j




(3.2.4)

Substitute the series (3.2.4) in the FDE (3.2.3)(
ut + utt

�t

2
+ · · · + cux − cuxx

�x

2
+ · · ·

)n

j

= 0 (3.2.5)

and when we subtract the PDE (3.2.1) we get the (local) truncation error

τ = utt
�t

2
− cuxx

�x

2
+ higher order terms = 0(�t)+ 0(�x) (3.2.6)

so that lim�t→0,�x→0 τ → 0. Therefore the FDE is consistent. Note that both the
time and the space truncation errors are of first order, because the finite differences
are uncentered in both space and time. Truncation errors for centered differences are
second order, and therefore centered differences are more accurate than uncentered
differences (see Fig. 3.2.1(a) and the leapfrog scheme, based on centered differences
in space and in time, later in this section).

3.2.3 Convergence and stability criteria

The second question posed in Section 3.2.1 was whether the solution of the
FDE converges to the PDE solution, i.e., whether U ( j�x, n�t)→ u(x, t) when
j�x → x, n�t → t,�x → 0,�t → 0. This is of evident practical importance, but
can only be answered after considering another problem, that of computational sta-
bility. Consider again the PDE (3.2.1), which has the solution u(x, t) = u(x − ct, 0),
shown schematically in Fig. 3.2.1(b) (the initial shape of u translates with velocity c).
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exact

centered

u(t)

tnn-1 n+1

backward

forward

(a)

x

t

∆x=c∆t

∆t

(b)

Figure 3.2.1: (a) Schematic
of centered (∂u/∂t)n ≈
(un+1 − un−1)/(2�t),
forward (∂u/∂t)n ≈
(un+1 − un)/�t , and
backward (∂u/∂t)n ≈
(un − un−1)/�t finite
differences estimating the
time derivative ∂u/∂t at
time tn = n�t . The three
estimates are consistent
with ∂u/∂t since they all
converge to ∂u/∂t as
�t → 0. However, the
slope calculated from
centered differences is
much closer to the exact
derivative because its
truncation errors are second
order. (b) Schematic of the
solution of the wave
equation.

The FDE (3.2.3) can be written as

Un+1
j = (1− µ)Un

j + µUn
j−1 (3.2.7)

where µ = c�t/�x is the Courant number. Assume that 0 ≤ µ = c�t/�x ≤ 1, as
in Fig. 3.2.2(a). Then the FDE solution at the new time level Un+1

j is interpolated
between the values Un

j and Un
j−1. In this case the advection scheme works the way

it should, because we know the true solution is in between those values. However,
if this condition is not satisfied, and µ = c�t/�x > 1 (as in Fig. 3.2.2(b)) or µ =
c�t/�x < 0 (as in Fig. 3.2.2(c)), then the value of Un+1

j is extrapolated from the
values Un

j and Un
j−1. The problem with extrapolation is that the maximum absolute

value of the solution Un
j increases with each time step. Taking absolute values of

(3.2.7) and letting Un = max j |Un
j |, we get

∣∣Un+1
j

∣∣ ≤ ∣∣Un
j

∣∣ |1− µ| + ∣∣Un
j−1

∣∣ |µ|
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t

tn+1

tn

xj -1 xj

t

tn+1

tn

xj-1 xj

t

tn+1

tn

xj -1 xj

(a) 0 ≤ c ≤  ∆t
 ∆x

(b) 0 ≤  ∆t
 ∆x

(c) c ≤ 0 ≤  ∆t
 ∆x

≤ c

Figure 3.2.2: Schematic of
the relationship between
�x,�t, and c leading to
interpolation of the solution
at time level n + 1 (case (a)),
or to extrapolation (cases
(b) and (c)) depending on
the value of the Courant
number µ = c�t/�x .

so that

Un+1 ≤ {|1− µ| + |µ|}Un

Then Un+1 ≤ Un if and only if 0 ≤ µ ≤ 1.
If the condition 0 ≤ µ ≤ 1 is not satisfied, then the solution is not bounded and

it grows with n. If we let �t,�x → 0 with µ = const., it only makes things worse,
because then n →∞. In practice, if the condition 0 ≤ µ ≤ 1 is not satisfied, the
FDE “blows up” in a few time steps, faster for nonlinear problems. We define now
computational stability: we say that an FDE is computationally stable if the solution
of the FDE at a fixed time t = n�t remains bounded as �t → 0. The condition on
the Courant number of being less than 1 in absolute value is usually known as the
Courant–Friedrichs–Lewy or CFL condition.

We can now state the fundamental Lax–Richtmyer theorem: Given a properly
posed linear initial value problem, and a finite difference scheme that satisfies the
consistency condition, then the stability of the FDE is the necessary and sufficient
condition for convergence.
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The theorem is useful because it allows us to establish convergence by examining
separately the easier questions of consistency and stability. We are interested in
convergence not because we want to let �t,�x → 0, but because we want to make
sure that if �t,�x are small, then the errors u( j�x, n�t)−Un

j (accumulated or
global truncation errors at a finite time) are acceptably small.

To determine the necessary condition for stability of the FDE (3.2.3) we used
the “criterion of the maximum” method. We can also use it to study the stability
condition of the following FDE, which approximates the parabolic diffusion equation
∂u/∂t = σ∂2u/∂x2:

Un+1
j −Un

j

�t
= σ

Un
j+1 − 2Un

j +Un
j−1

�x2
(3.2.8)

The verification of consistency is immediate. Note that, because the differences are
centered in space but forward in time, the truncation error is first order in space and
second order in time O(�t)+ O(�x)2.

We can write (3.2.8) as

Un+1
j = µUn

j+1 + (1− 2µ)Un
j + µUn

j−1

where µ = σ�t/�x2. If we take absolute values, and let Un = max j |Un
j |, we get

Un+1 ≤ {|µ| + |1− 2µ| + |µ|}Un (3.2.9)

So we obtain a condition 0 ≤ µ ≤ 1/2 to insure that the solution remains bounded
as n →∞, i.e., as the necessary condition for stability of the FDE.

Exercise 3.2.1: The condition on the wave equation 0 ≤ µ ≤ 1 for the upstream
FDE is interpreted as “the time step should be chosen so that a signal cannot travel
more than one grid size in one time step.” Give a physical interpretation of the
stability condition and the equivalent “Courant number” µ = σ (�t/�x2) ≤ 1/2 for
the diffusion equation.

Unfortunately, the criterion of the maximum, which is intuitively very clear, can
only be applied in very few cases. In most FDEs some coefficients of the equations
analogous to (3.2.9) are negative, and the criterion cannot be applied.

Another stability criterion that has much wider application is the von Neu-
mann stability criterion: Assume that the boundary conditions allow expansion
of the solution of the FDE in an appropriate set of eigenfunctions. For sim-
plicity we will assume an expansion into Fourier series (e.g., periodic boundary
conditions):

U (x, t) =
∑
k

Zke
ik · x (3.2.10)
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The space variable, x, and the wavenumber k can be multidimensional, e.g., x =
(x1, x2, x3), k = (k1, k2, k3). The dependent variable U can also be a vector for a
system of equations.

Let x j = j�x (or x j = ( j1�x1, j2�x2, j3�x3)). We define p as the wavenumber
for the finite Fourier series: p = k�x or p = (k1�x1, k2�x2, k3�x3). Let tn = n�t .
Then the Fourier expansion is

Un
j =

∑
p

Zn
peipj (3.2.11)

(where for multiple dimensions p · j = p1 j1 + p2 j2 + p3 j3).
When we substitute this Fourier expansion into a linear FDE, we obtain a system

of equations

Zn+1
p = G p Zn

p

G is an “amplification” matrix that, when applied to the pth Fourier component of
the solution at time n�t “advances” it to the time (n + 1)�t ; G depends on p,�t
and �x . If we know the initial conditions

U 0
j =

∑
p

Z0
peipj (3.2.12)

then the solution of the FDE in (3.2.11) is

Zn
p = Gn

p Z0
p (3.2.13)

Therefore, stability, i.e., boundedness of the solution for any permissible initial con-
dition at any fixed time, is guaranteed if the matrix Gn is bounded for all p when
�t → 0 and n →∞. So, we must have ||Gn|| < M for all p, as n →∞. Here ||A||
is a norm or measure of the “size” of a matrix A. If σ (G) is the spectral radius of G,
i.e., σ (G) = maxi |λi |, where λi are the eigenvalues of G, then it can be shown that
for any norm,

[σ (G)]n ≤ ||Gn|| ≤ ||G||n (3.2.14)

The equal sign is valid if G is normal, i.e., if GG" = G"G, where G" is the transpose-
conjugate of G, but in general the amplification matrices arising from FDEs are not
normal.

Thus a necessary condition for stability of an FDE, and therefore a necessary
condition for convergence, is that

lim
�t→0,n�t→t

[σ (G)]n = finite = econst. (3.2.15)

Then

σ (G) ≤ [
σ (G)n

]1/n ≤ econst./n = econst.�t/t ≈ 1+ const.�t

t
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or

σ (G) ≤ 1+ O(�t) (3.2.16)

the von Neumann necessary condition for computational stability.
The term O(�t) allows bounded growth with time if this growth is “legitimate”,

i.e., if it arises from a physical instability present in the PDE. If the exact solution
grows with time, then the FDE cannot both satisfy σ (G) ≤ 1 and be consistent with
the PDE.

Sufficient conditions are very complicated, and are known only for special cases.
In practice it is generally observed that eliminating the equal sign in (3.2.16) is enough
to ensure computational stability.

In principle this method can also be used to study the stability of the boundary
conditions, if they are appropriately included in the amplification matrix. In practice
this is complicated, and computational stability of the boundary conditions is usually
obtained by ensuring well-posedness, and testing the stability experimentally. For
simple equations, and without considering the effect of boundary conditions, the von
Neumann criterion can be simplified by assuming solutions with an amplification
factorρ rather than a matrix. The solution for the amplification factorρ then coincides
with the eigenvalues of the amplification matrix, and the von Neumann stability
criterion is ρ ≤ 1+ O(�t).

Example 3.2.2:

PDE:
∂u

∂t
+ c

∂u

∂x
= 0

FDE:
Un+1

j −Un
j

�t
+ c

Un
j −Un

j−1

�x
= 0 (upstream scheme) (3.2.17)

We have already studied consistency, and used the criterion of the maximum to get
a sufficient condition for stability. Let us now apply the von Neumann criterion:
Assume

Un
j =

∑
p

Zn
peipj =

∑
p

Aρn
peipj

We substitute in (3.2.17) and eliminate Aeipj and obtain

ρn+1
p − ρn

p

�t
+ c

ρn
p(1− e−ip)

�x
= 0 for all p (3.2.18)

The amplification factor ρ is the same as the 1 × 1 amplification matrix G, and
therefore the same as its spectral radius σ (G), and the stability condition is |ρ| ≤ 1
for all wavenumbers p. We need to estimate the maximum value of the spectral radius
(or amplification factor in this case):

ρ = 1− µ(1− e−i p) = 1− µ(1− cos p + i sin p) (3.2.19)

|ρ|2 = (1− µ(1− cos p))2 + µ2 sin2 p (3.2.20)
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We make use of the trigonometrical relationships

cos p = cos2 p

2
− sin2 p

2
sin p = 2 sin

p

2
cos

p

2

and obtain

|ρ|2 = 1− 4µ(1− µ) sin2 p

2
(3.2.21)

Now consider the sin2 p/2 term: The shortest wave that can be present in the fi-
nite difference solution is L = 2�x , therefore the maximum value that p = k�x =
2π�x/L can take is p = π , and the maximum value of sin2 p/2 is therefore 1. The
other factor, µ(1− µ), is a parabola whose maximum value is 0.25 when µ = 0.5.
So the amplification factor squared will remain less than or equal to 1 as long as
0 ≤ µ ≤ 1. This coincides with the condition we obtain from the criterion of the
maximum (and also with the notion that we should not extrapolate but interpolate
the new values at time level t = (n + 1)�t , cf. Fig. 3.2.2).

It is important to note that the amplification factor ρ indicates how much the
amplitude of each wavenumber will decrease or increase with each time step.
The upstream scheme decreases the amplitude of all Fourier wave components of
the solution, since, if 0 < µ < 1, ρ < 1. This is therefore a very dissipative FDE: it
has strong “numerical diffusion.” Fig. 3.2.3 shows the decrease in amplitude when
using the upstream scheme after one time step and after 100 time steps for each

1

0
0

p = k*delta x

L = 4*delta x

Upstream

Euler-backward

100 steps

1 step

L = 8*delta x L = 2*delta xL = infinity

A
m

pl
itu

de

0.39 0.79 1.18 1.57 1.96 2.36 2.75 3.14

0.2

0.4

0.6

0.8

Figure 3.2.3: Amplification factor of wave components of the wave equation using
either the “upstream” FDE, and the Matsuno or Euler-backward schemes with
µ = 0.1; L is the wavelength in units of �xρE B = [1− µ2 sin2 p + µ4 sin4 p]1/2 and
ρU pxy = [1− 4µ(1− µ) sin2 p]1/2.
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wavenumber p using a Courant number µ = 0.1, a typical value for advection given
the presence of fast gravity waves. Since its truncation errors are large (of first order),
the upstream scheme is in general not recommended except for special situations (e.g.,
for outflow boundary conditions, or when modified in such a way that the dissipation
rate becomes lower). An alternative, less damping scheme known as the Matsuno or
Euler-backward scheme, frequently used in combination with the leapfrog scheme
is also shown. Note that a “downstream” scheme (Fig. 3.2.2(c)) is unstable.

Example 3.2.3: Leapfrog scheme for the wave equation

PDE :
∂u

∂t
+ c

∂u

∂x
= 0

FDE :
Un+1

j −Un−1
j

2�t
+ c

Un
j+1 −Un

j−1

2�x
= 0 (3.2.22)

This is the most popular of all schemes used for hyperbolic equations.

Exercise 3.2.2: Find that the leapfrog scheme is consistent, and the local truncation
error is of second order in space and time.

Stability: Assume Un
j =

∑
p

Zn
peipj =∑

p
Aρn

peipj

Substitute in the FDE

ρn+1 − ρn−1

2�t
+ c

ρn(eip − e−ip)

2�x
= 0 (3.2.23)

Therefore

ρ2 + 2iµ sin pρ − 1 = 0 (3.2.24)

Because we have three, not two, time levels ρn+1, ρn , and ρn−1, we have a quadratic
equation and two solutions for the amplification factor ρ:

ρ = (−iµ sin p)±
√

(−µ2 sin2 p + 1) (3.2.25)

Since the last term in the quadratic equation (3.2.24) is –1, and this is the product
of the roots, the term inside the root (−µ2 sin2 p + 1) must be real, since otherwise
the roots would be purely imaginary, and one of them would be larger than 1, which
violates the stability criterion. In order for

√
(−µ2 sin2 p + 1) to be real for all p, we

must have µ2 ≤ 1. The stability condition for the leapfrog scheme therefore becomes

−1 ≤ c�t/�x ≤ 1 (3.2.26)

Exercise 3.2.3: Draw a schematic like Fig. 3.2.2, and explain why the sign of the
Courant number does not matter for its stability criterion, unlike the sign of the
upstream scheme. Why did the term O(�t) not appear in the stability condition?
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We can actually find the exact solution of the leapfrog FDE (3.2.22), as well as of the
PDE. Recall that the PDE ∂u/∂t + c∂u/∂x = 0 has plane wave solutions of the form
Aeik(x−ct) = Aei(kx−ωt), since the exact solution is of the form u(x, t) = u(x − ct, 0).
The FDR ω = kc gives the exact frequency of the PDE.

By analogy we try to find solutions of the FDE of the form Apei(pj−θn), where θ =
ν�t represents the computational frequency ν multiplied by �t (the computational
frequency ν is in general different than the exact frequency ω). Substituting in the
FDE and dividing by ei(pj−θn), we get

(e−iθ − eiθ )+ µ(eip − e−i p) = 0

or

sin θ = µ sin p (3.2.27)

the FDR for the leapfrog scheme. Because sin θ = sin(π − θ ), the two solutions for
the finite difference FDR are

θ1 = arcsin(µ sin p)
θ2 = π − arcsin(µ sin p)

}
(3.2.28)

Substituting into the FDR, and assuming that the initial amplitude for the wave-
number p is 1, we obtain that the solution of the FDE is a sum of two terms corre-
sponding to θ1 and θ2 respectively:

Un
j = Apei(pj−θn) + (1− Ap)ei(pj+θn)(−1)n (3.2.29)

where θ = arcsin(µ sin p), and eiπ = −1. (This can also be obtained by noting that
when we assume solutions of the form ei(pj−θn), they imply an amplification fac-
tor ρ = e−iθ = cos θ − i sin θ = −iµ sin p ±

√
1− µ2 sin2 p, i.e., sin θ = µ sin p,

with two solutions as indicated above.)
Of the two terms in the solution, the first one is the “legitimate” solution, which

approximates the PDE solution. Note that the second term changes sign every time
step, and it moves in the wrong direction: for this reason this unphysical term is
called “computational mode”. It arises because the leapfrog scheme has three time
levels, rather than two, giving rise to an additional spurious solution. Although the
leapfrog scheme is simple and accurate, its three-time level character gives rise to
two problems that need to be dealt with.

The first problem is that the leapfrog scheme needs a special initial step to get
to the first time level U 1 from the initial conditions U 0, before it can be started
(Fig. 3.2.4). This can be done in several simple ways:

(a) Simply set U 1 = U 0. Since u1 = u0 + ut�t + · · ·, this introduces errors of
order O(�t), and is not recommended.

(b) Use for the first time step a forward time scheme. The forward scheme has
truncation errors of order O(�t), but since the time step is only used once, its
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∆t

Figure 3.2.4: Schematic of the leapfrog scheme with a half time step starting step.

contribution to the global error is multiplied by �t , so that the total error is
still of O(�t)2. For the same reason, the computational instability is not a
significant problem. Alternatively, use an Euler-backwards (Matsuno) scheme
for the first time step (see Table 3.2.1).

(c) Use half (or a quarter, eighth, etc.) of the initial time step for the forward time
step (Fig. 3.2.4), followed by leapfrog time steps. This will halve (or reduce
by a quarter, eighth, etc.) the error introduced in the unstable first step.

The second problem is that for nonlinear examples, the leapfrog scheme has a ten-
dency to increase the amplitude of the computational mode with time, separating the
space dependence in a checkerboard fashion between the even and odd time steps.
This can be solved by restarting every 50 steps or so, or by applying a Robert–Asselin
time filter.

Exercise 3.2.4: Show that a forward time scheme is unstable for hyperbolic equa-
tions.

Robert–Asselin time filter (Robert, 1969, Asselin, 1972)
After the leapfrog scheme is used to obtain the solution at t = (n + 1)�t , a slight
time smoothing is applied to the solution at time n�t :

Un = Un + α(Un+1 − 2Un +Un−1) (3.2.30)

replacing the solution at time n. Note that the added term is like smoothing in time,
an approximation of an ideally time-centered smoother:

Un = Un + α(Un+1 − 2Un +Un−1) (3.2.31)

which cannot be carried out without knowing the complete unsmoothed series.
The smoother (3.2.31) is centered in time, and reduces the amplitude of different

frequencies ν by a factor (1− 4α sin2(ν�t/2)). The computational mode, whose
period is 2�t , is reduced by (1− 4α) every time step. Because the field at t =
(n − 1)�t is replaced by the already filtered value, the filter (3.2.30) introduces a
slight distortion of the centered filter (Asselin, 1972). This filter is widely used with
the leapfrog scheme, with α of the order of 1%.

Exercise 3.2.5: Integrate the linear wave equation using values typical of large scale
models. You can write your own FORTRAN or MATLAB program.

∂u

∂t
= −c

∂u

∂x
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Table 3.2.1. Time schemes for initial value problems dU/dt = F(U) (schemes
(a)–(i)); dU/dt = F1(U) +F2(U) (schemes (j)–(k))

(a)
Un+1 −Un−1

2�t
= F(Un) Leapfrog (good for hyperbolic

equations, unstable for
parabolic equations)

(a′)
Un+1 −Un−1

2�t
= F(Un);

Un = Un + α(Un+1 − 2Un +Un−1) Leapfrog smoothed with the
Robert–Asselin time filter;
α ∼ 1%

(b)
Un+1 −Un

�t
= F(Un) Euler (forward, good for

diffusive terms, unstable for
hyperbolic equations)

(c)
Un+1 −Un

�t
= F

(
Un +Un+1

2

)
Crank–Nicholson or centered

implicit

(c′)
Un+1 −Un

�t
= F

(
βUn + (1− β)Un+1

2

)
; β < 0.5 Implicit, slightly damping

(d)
Un+1 −Un

�t
= F(Un+1) Fully implicit or backward

(e)
U ∗ −Un

�t
= F(Un);

Un+1 −Un

�t
= F(U ∗) Euler-backward or Matsuno:

good for damping high
frequency waves

(f)
U ∗ −Un

�t
= F(Un);

Un+1 −Un

�t
= F

(
Un +U ∗

2

)
Another predictor–corrector

scheme (Heun)

(g)
Un+1 −Un

�t
= F

(
3

2
Un − 1

2
Un−1

)
Adams–Bashford (second

order in time).

(h)
Un+1/2∗ −Un

�t/2
= F(Un);

Un+1/2∗∗ −Un

�t/2
= F(Un+1/2∗ );

Un+1∗ −Un

�t
= F(Un+1/2∗∗ )

Un+1 −Un

�t

= 1

6
[F(Un)+ 2F(Un+1/2∗ )

+2F(Un+1/2∗∗ )+ F(Un+1∗ )] Runge–Kutta (fourth order)
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Table 3.2.1. (cont.)

(i) a = 0; b = 1/�t

U ∗ ← (aU ∗ + F(Un))/b

Un ← Un +U ∗

a ← a − 1/(N�t); b← b − 1/(N�t)

N -times Lorenz’s N -cycle,
N = multiple of 4; Nth order

( j)
Un+1 −Un−1

2�t
= F1(Un)+ F2

(
Un+1 +Un−1

2

)
Semi-implicit

(k)
U ∗ −Un

�t
= F1(Un);

Un+1 −U ∗

�t
= F2(U ∗) Fractional steps

Boundary conditions: periodic
Initial conditions: u(x, 0) = c + A sin(kx)
c = 20 m/s, A = 10 m/s,�x = 200 km, k = 2π/L with L = 10�x

(a) Choose two time steps, one of which satisfies the CFL condition and one
which violates it. How long does it take to “blow up”?

(b) Compare with the exact solution, compute the rms error R and the
relative error RE.
Repeat with A = 25 m/s.
Repeat with L = 4�x .

(c) Prepare a table that summarizes R and RE.

Exercise 3.2.6: Modify the equation and the program used before to integrate a
nonlinear wave equation using values typical of large scale models:

∂u

∂t
= −(u + c)

∂u

∂x

Boundary conditions: periodic
Initial conditions: u(x, 0) = A sin(kx)
c = 20 m/s, A = 10 m/s,�x = 200 km, k = 2π/L with L = 10�x

Choose two time steps, one of which satisfies the CFL condition and one which
violates it. How long does it take to “blow up”? Compare with the linear equation
results.

Repeat with A = 25 m/s.
Repeat with L = 4�x .

Compute a nonlinear solution with high resolution, taking it as “truth,” and then
prepare a table summarizing R and RE.
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Example 3.2.4:

∂u

∂t
= σ

∂2u

∂x2
+ bu (3.2.32)

This is the heat or diffusion equation with a “source of growth” bu.

FDE :
Un+1

j −Un
j

�t
= σ

Un
j+1 − 2Un

j +Un
j−1

�x2
+ bUn

j (3.2.33)

Exercise 3.2.7: Show that the amplification factor is

ρ = 1− 4σ�t

(�x)2 sin2 p

2
+ b�t ≤ 1+ O(�t) (3.2.34)

Therefore the stability criterion is still σ�t/�x2 ≤ 1/2, as we obtained with the
criterion of the maximum.

Exercise 3.2.8: Explain physically why the term b�t does not influence the stability
criterion.

3.2.4 Implicit time schemes

In these schemes the advection or diffusion terms are written in terms of the new
time level variables.

Example 3.2.5:

PDE:
∂u

∂t
+ c

∂u

∂x
= 0

FDE:
Un+1

j −Un
j +Un+1

j+1 −Un
j+1

2�t

+ c
α
(
Un

j+1 −Un
j

)+ (
1− α

)(
Un+1

j+1 −Un+1
j

)
�x

= 0 (3.2.35)

The factor α determines the weight of the “old” time values compared with the “new”
time values in the right-hand side of the FDE. Using the von Neumann method, we
substitute Un

j = Aρneipj = Aei(pj−θn) into (3.2.35).

Note that the scheme is centered in time (if α = 1/2) at the point Un+1/2
j−1/2 . For this

reason, we multiply by e−ip/2, and obtain the amplification factor:

ρ =
cos

p

2
− i2µα sin

p

2

cos
p

2
+ i2µ(1− α) sin

p

2

(3.2.36)
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t

tn+1

tn

xj-1 x xj 

Figure 3.2.5: Schematic of
an implicit scheme. The dot
represents the value being
updated and the stars the
values that influence it.
Note that with the implicit
scheme there is no
extrapolation, and allows no
limit to the size of �t .

or

|ρ|2 =
1+ 4µ2α2 tan2 p

2

1+ 4µ2(1− α)2 tan2 p

2

(3.2.37)

This implies that ρ ≤ 1 if α ≤ 0.5, i.e., if the new values are given at least as much
weight as the old values in computing the RHS. In this case there is no restriction on
the size that �t can take! This result (absolute stability, independent of the Courant
number) is typical of implicit time schemes. In Fig. 3.2.5 we show that in an implicit
scheme, a point at the new time level is influenced by all the values at the new
level, which avoids extrapolation, and therefore is absolutely stable. Note also that
if α < 0.5 the implicit time scheme reduces the amplitude of the solution: it is an
example of a damping scheme. This property is useful for solving some problems
such as spuriously growing mountain waves in semi-Lagrangian schemes.

In summary, if we consider a marching equation

dU

dt
= F(U ) (3.2.38)

explicit methods such as the forward scheme

Un+1 −Un

�t
= F(Un) (3.2.39)

or the leapfrog scheme

Un+1 −Un−1

2�t
= F(Un) (3.2.40)

are either conditionally stable (when there is a condition on the Courant number or
the equivalent stability number for parabolic equations) or absolutely unstable.

A fully implicit scheme

Un+1 −Un

�t
= F(Un+1) (3.2.41)

and a centered implicit scheme (Crank–Nicholson)

Un+1 −Un

�t
= F

(
Un +Un+1

2

)
(3.2.42)



3.2 Initial value problems: numerical solution 87

are absolutely stable. The latter scheme is attractive because it is centered in time
(around tn+1/2), and it can be written with centered space differences, which makes it
second order in space and in time. Also, it only has two time levels so it does not have
a computational mode. But, like all implicit schemes, it also has a great disadvantage.
Since Un+1 appears on the left- and on the right-hand sides, the solution for Un+1,
unlike explicit schemes, in general requires the solution of a system of equations.
If it involves only tridiagonal systems, this is not an obstacle, because there are fast
methods to solve them. There are also methods, such as fractional steps (with each
spatial direction solved successively), where one space dimension is considered at
a time, that allow taking advantage of the large time steps permitted by implicit
schemes without paying a large additional computational cost.

Moreover, we will see in the next section that the possibility of using a time step
with a Courant number much larger than 1 in an implicit scheme does not imply
that we will obtain accurate results economically. The implicit scheme maintains
stability by slowing down the solutions, so that the slower waves do satisfy the CFL
condition. For this reason implicit schemes are only useful for those modes (such as
the Lamb wave or vertical sound waves) that are very fast but of little meteorological
importance (semi-implicit schemes, see next section).

Notes
(1) It is easy to check the properties of the time schemes in Table 3.2.1 when

applied to hyperbolic equations by testing them with a simple harmonic
equation:

∂U

∂t
= −iνU (3.2.43)

with solution U (t) = U (0)e−iνt . After one time step, the exact solution is

U ((n + 1)�t) = U (n�t)e−iν�t (3.2.44)

which indicates that the exact magnification factor is e−iν�t .
In (3.2.43), v is the computational frequency for a wave equation for a

given space discretization. For example, if we were using second order
centered differences in space, ν = (sin k�x/�x) c, for a spectral scheme,
ν = kc. For the fully implicit time scheme (d), the amplification factor is

1

1+ iν�t
= 1− iν�t

1+ (ν�t)2

Since the exact amplification factor has an amplitude equal to 1, this shows
that the implicit scheme is dissipative; similarly, comparing the imaginary
components of the exact and approximate amplification factors, it is clear that
the implicit solution is slowed down by a factor of about 1/[1+ (ν�t)2].
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Exercise 3.2.9: Show that the Crank–Nicholson scheme significantly slows down
the angular speed of the solution by deriving the magnification factor for this
scheme, and comparing it with the exact magnification factor e−iν�t . Determine
the limit of the Crank–Nicholson amplification factor for the Courant number
ν�t →∞.

Un+1 = UnρC N (3.2.45)

(2) Equations with damping terms (such as the parabolic equation) can also be
simply represented by the equation:

∂U

∂t
= −µU (3.2.46)

In (2.46), µ can be considered as the computational rate of damping. For
example, for the diffusion equation, using centered differences in space,

µ = 4σ

(�x)2
sin2 k�x

2

Exercise 3.2.10: Show that the leapfrog scheme is unstable for a damping term.

Exercise 3.2.11: Write a numerically stable scheme for the equation with both wave-
like and damping terms ∂U/∂t = −(iν + µ)U using a three-time level scheme.

Exercise 3.2.12: Show that for a wave equation the forward time scheme with cen-
tered differences in space is absolutely unstable. Note that this scheme shows that
the “no extrapolation” rule is a necessary but not a sufficient condition for stability
of wave equations.

3.2.5 Semi-implicit schemes

Consider the SWEs that we discussed in Section 2.4.1:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂φ

∂x
+ f v

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂φ

∂y
− f u

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
= −�

(
∂u

∂x
+ ∂v

∂y

)
− (φ −�)

(
∂u

∂x
+ ∂v

∂y

)




(3.2.47)

As indicated in that section, the phase speed of the inertia-gravity wave is given by

cI GW = νI GW

k
= U ±

√
f 2

k2
+� ≈ U ± 300 m/s
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and the terms that give rise to the fast gravity waves are underlined. This means
that the Courant number µ = cI GW�t/�x is dominated by the speed of external
inertia-gravity waves (equivalent to the Lamb waves, horizontal sound waves), and
an explicit scheme would therefore require a time step an order of magnitude smaller
than that required for advection. For this reason, Robert (1969) introduced the use
of semi-implicit schemes to slow down the gravity waves. We write such a scheme
using the compact finite difference notation for differences and averages:

δx f = f j+1/2 − f j−1/2

�x

f x = ( f j+1/2 + f j−1/2)/2


 (3.2.48)

and similarly for differences in y or t . With this notation, assuming uniform resolution,

δ2x f = δx f x = fi+1 − fi−1

2�x
f 2x = ( fi+1 + fi−1)/2


 (3.2.49)

Using this compact finite difference notation we can write the leapfrog semi-implicit
SWE as

δ2t u + uδ2xu + vδ2yu = −δ2xφ
2t + f v

δ2tv + uδ2xv + vδ2yv = −δ2yφ
2t − f u

δ2tφ + uδ2xφ + vδ2yφ = −�(δ2xu + δ2yv)
2t − (φ −�) (δ2xu + δ2yv)




(3.2.50)

Everything that does not have a time average involves only terms evaluated explicitly
at the nth time step. We can rewrite the FDEs (3.2.50) as

un+1 − un−1

2�t
= −δ2x (φn+1 + φn−1)/2+ Ru

vn+1 − vn−1

2�t
= −δ2y(φn+1 + φn−1)/2+ Rv

φn+1 − φn−1

2�t
= −�[δ2x (un+1 + un−1)/2+ δ2y(vn+1 + vn−1)/2]+ Rφ




(3.2.51)

where the “R” terms are the “rest” of the terms evaluated at the center time n�t . For
example, Ru = f v − uδ2xu − vδ2yu, and similarly for Rv and Rφ .

From these three equations we can eliminate un+1, vn+1 and obtain an elliptic
equation for φn+1:(

δ2
2x + δ2

2y −
1

��t2

)
φn+1 = −

(
δ2

2x + δ2
2y +

1

��t2

)
φn−1

+ 2(δ2x Ru + δ2y Rv)+ 2

�t
(δ2xun−1 + δ2yv

n−1)− 2

��t
Rφ = Fn

i, j (3.2.52)
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Note that the right-hand side of this elliptic equation is evaluated at t = n�t or
(n − 1)�t , so that it is known. Solving this elliptic equation provides φn+1, and once
this is known, it can be plugged back into the first two equations of (3.2.51), and thus
(un+1, vn+1) can be obtained.

The elliptic operator in brackets in the left-hand side of (3.2.52), is a finite differ-
ence equivalent to (∇2 − λ2),

(
δ2

2x + δ2
2y−

1

��t2

)
φ =

φi+2, j +φi−2, j +φi, j+2 + φi, j−2 −
(
4+ 1

µ2

)
φi, j

4�2

(3.2.53)

where we have assumed for simplicity that �x = �y = �, and µ2 = ��t2/�2 is
the square of the Courant number for gravity waves. Since µ2 = ��t2/�2 >> 1,
the semi-implicit scheme distorts the gravity wave solution, slowing the gravity wave
down until they satisfy the von Neumann criterion. This is an acceptable distortion
since we are interested in the slower “weather-like” processes, and since the slower
modes satisfy the CFL (von Neumann) stability criterion, and they are written ex-
plicitly, they are not slowed down or distorted in a significant way.

In the same way that the terms giving rise to gravity waves can be written semi-
implicitly, the terms giving rise to sound waves can also be written semi-implicitly
(Robert, 1982). They are the three-dimensional divergence in the continuity equation
(Sections 2.3.2, 2.3.3). This has allowed the use of nonhydrostatic models without the
use of the anelastic approximation or the hydrostatic approximation. André Robert
(1982) created a model that can be considered the “ultimate” atmospheric model. It
treats the terms generating sound waves (anelastic terms, i.e., three-dimensional di-
vergence), and the terms generating gravity waves (pressure gradient and horizontal
divergence) semi-implicitly, and it uses a three-dimensional semi-Lagrangian scheme
for all advection terms. This model, denoted the “Mesoscale Compressible Commu-
nity” (MCC) model, is a “universal” model designed so that it can tackle accurately
atmospheric problems from the planetary scale through mesoscale, convective and
smaller (Laprise et al., 1997).

There is another approach followed by several major nonhydrostatic models (e.g.,
MM5 and ARPS): the use of fractional steps (see Table 3.2.1, scheme (k)), with the
sound-wave terms integrated with small time steps. In addition, the ARPS model uses
a semi-implicit scheme for vertically propagating sound waves (Xue et al., 1995).

Exercise 3.2.13: Consider the diffusion equation ∂u/∂t = σ∂2u/∂x2 with initial
conditions u = x for x ≤ 0.5 and u = 1− x for x ≥ 0.5. Compute the first two
time steps using an explicit scheme (forward in time, centered in space) with five
points between x = 0 and x = 1, and a time step such that r = σ�t/(�x)2 is equal
to r = 0.1, 0.5, 1.0. Repeat using Crank–Nicholson’s scheme.
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3.3 Space discretization methods

3.3.1 Space truncation errors. Computational phase speed.
Second and fourth order schemes.

It is convenient to separate the truncation errors in a discretized model into space
truncation errors and time truncation errors. For explicit finite difference models,
the errors introduced by space truncation tend to dominate the total forecast errors
because for “weather waves” the time step and the Courant number used are much
smaller than would be required to physically resolve the frequency. Let’s neglect
for the moment time truncation errors and consider the wave equation ∂U/∂t =
−c∂U/∂x discretized only in space.

If we approximate ∂U/∂x using space centered differences, we get

δ2xU j = U j+1 −U j−1

2�x
= Ux + �x2

6
Uxxx + �x4

120
Uxxxxx + HOT

= Ux + A�x2 + B�x4 + · · · (3.3.1)

If instead of the closest neighboring points j + 1, j − 1, we use the points j + 2,
j − 2, we get

δ4xU j = U j+2 −U j−2

4�x
= Ux + 4A�x2 + 16B�x4 + · · · (3.3.2)

This is also a second order scheme, but the truncation errors are four times as large.
We can now eliminate from (3.3.1) and (3.3.2) the term A�x2, and obtain

4

3
δ2xU j − 1

3
δ4xU j = Ux − 4B�x4 + · · · (3.3.3)

Now (3.3.3) is a fourth order approximation of the space derivative. So

dU j

dt
= −cδ2xU j (3.3.4)

is a second order FDE and

dU j

dt
= −c

(
4

3
δ2xU j − 1

3
δ4xU j

)
(3.3.5)

is a fourth order FDE.
Assume solutions of the form

U j (t) = Aeik(x j−c′t) = Aei(kx j−ν ′t) (3.3.6)

where c′ is the computational phase speed, and ν ′ the computational frequency, so
that dUj/dt = −iv′Uj . Making use of δ2xU j = i (sin k�x/�x) Uj , and replacing
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in (3.3.4) and (3.3.5) we find that for second order differences,

c′2 =
sin k�x

k�x
c (3.3.7)

and for fourth order differences,

c′4 =
(

4

3

sin k�x

k�x
− 1

3

sin 2k�x

2k�x

)
c (3.3.8)

Note that (3.3.7) and (3.3.8) imply that the phase speed is always underestimated by
space finite differences. For the smallest possible wavelength, L = 2�x , k�x = π ,
the computational phase speed is zero for both second and fourth order differences:
the shortest waves don’t move at all (Fig. 3.3.1)! For L = 4�x, k�x = π/2, a much
more accurate approximation is obtained with fourth order than with second order
differences: c′2 = 0.64c, c′4 = 0.85c, and the fourth order advantage becomes even
better for longer waves: for L = 8�x, c′2 = 0.90c, c′4 = 0.99c.

We can also compute the computational group velocity ∂ν ′/∂k, where

ν ′ = c′k = c
sin k�x

�x
(3.3.9)

for second order differences. Then,

∂ν ′

∂k
= c cos k�x (3.3.10)

for second order differences. Therefore, for the shortest waves, L = 2�x, k�x = π ,
with both second and fourth order differences the energy moves in the oppo-
site direction to the real group velocity (equal to the phase speed c): c′g = −cg.
Figure. 3.3.1 shows the computational phase speed and group velocity for second
and fourth order differences. As a result of the negative group velocity, space cen-
tered FDEs of the wave equation tend to leave a trail of short-wave computational
noise upstream of where the real perturbation should be. This problem is greatly
reduced using more advanced recent schemes such as those of Takacs (1985) and
Smolarkiewicz and Grawoski (1990).

A second type of fourth order finite difference scheme, known as the compact or
implicit fourth order scheme, can be obtained by again making use of (3.3.1) but re-
placing the third derivative in the truncation error for the centered differences by its fi-
nite difference approximation Uxxx j ≈ (Ux j+1 − 2Ux j +Ux j−1)/ (�x)2 + O (�x)2.
The new fourth order scheme then becomes

Ux j+1 + 4Ux j +Ux j−1 = 6
U j+1 −U j−1

2�x
(3.3.11)

It is called “compact” because it involves only the point j and its closest neighbors,
and “implicit” because (3.3.11) results in a system of (tridiagonal) equations for the
x-derivative, rather than an explicit estimate such as (3.3.4) or (3.3.5).
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Figure 3.3.1: Ratio of the computational to the physical phase speed and group
velocity for a simple wave equation, neglecting time truncation errors, for second
order, fourth order explicit and implicit and spectral schemes.

With this scheme, the finite difference space derivative for a given wavenumber is
given by

Ux � U
i sin k�x

�x

6

4+ 2 cos k�x

so that

dU j

dt
= −ic′U j

i sin k�x

�x

6

4+ 2 cos k�x
= −iv4I

′U j

and the computational phase speed becomes

c′4I =
sin k�x

k�x

6

4+ 2 cos k�x
c (3.3.12)

and for L = 4�x, k�x = π/2, the phase speed is c′14 = 0.955c, which is consider-
ably better even than the regular fourth order differences phase speed.
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The group velocity for this scheme,

∂ν ′4I

∂k
=
[

6 cos k�x

4+ 2 cos k�x
+ 2 sin2 k�x

(4+ 2 cos k�x)2

]
c (3.3.13)

is already positive for L = 3�x (Fig. 3.3.1). For implicit schemes where one is
already solving a tri-diagonal equation (see Section 3.4.2), this compact fourth order
scheme, which has an accuracy equivalent to linear finite elements, is very accurate
and involves little additional computational cost. The compact scheme is similar to
Galerkin finite element approximation to space derivatives (Durran, 1999).

3.3.2 Galerkin and spectral space representation

The use of spatial finite differences, as we saw in the previous section, introduces
errors in the space derivatives, resulting in a computational phase speed slower than
the true phase speed, especially for short waves.

The Galerkin approach to ameliorate this problem is to perform the space dis-
cretization using a sum of basis functions U (x, t) =∑K

k=1 Ak(t)ϕk(x). Then, the
residual (error) R(U ) = ∂U/∂t + F(U ) of the original PDE ∂u/∂t + F(u) = 0 is
required to be orthogonal to the basis functions ϕ(x). The space derivatives are com-
puted directly from the known dϕ(x)/dx . This procedure leads to a set of ordinary
differential equations for the coefficients Ak(t). If the basis functions chosen for the
discretization are orthogonal and satisfy the boundary conditions, the derivation be-
comes simpler. The use of local basis functions (e.g.,ϕi (x) a piecewise linear function
equal to 1 at a grid point i and zero at the neighboring points) gives rise to the finite
element method, with accuracy similar to that of the compact fourth order scheme.
Another popular type of Galerkin approach is the use of a global spectral expansion
for the space discretization, which allows the space derivatives to be computed an-
alytically rather than numerically. In one dimension, periodic boundary conditions
suggest the use of complex Fourier series as a basis.

Consider a periodic domain of length L , with a number of grid points Jmax = JM ,
and scale x by 2π/L . If we use discrete complex Fourier series truncated to include
wavenumbers up to K , the spectral representation is:

U (x j , t) =
K∑

k=−K

Ak(t)eikx j (3.3.14)

where A−k(t) = A∗k (t), and the star represents the complex conjugate.
Alternatively, (3.3.14) can be written using real Fourier series as

U (x j , t) = a0 +
K∑

k=1

ak cos(kx)+
K∑

k=1

bk sin(kx) (3.3.15)
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where

Ak(t) = ak

2
− i

bk

2
k > 0 A0 = a0

There are 2K + 1 distinct real coefficients that are determined by

Ak(t) = 1

JM

JM−1∑
j=0

U (x j , t)e−ikx j (3.3.16)

Here we have used the orthogonality property

1

JM

JM−1∑
j = 0

e−ikx j eilx j = δkl =
{

1 if k = l
0 otherwise

(3.3.17)

If JM = 2K + 1, the grid representation (left-hand side of (3.3.14)) and the spectral
representation (right-hand side of (3.3.14)) contain the same number of degrees of
freedom, and the same information.

Then, in the wave equation ∂U/∂t = −c∂U/∂x , we can discretize U in space as
in (3.3.14) and compute the space derivative analytically:

∂U (x, t)

∂x
=

K∑
k=−K

ik Ak(t)eikx (3.3.18)

If we neglect the time discretization errors, as before, and assume solutions of the
form U (x, t) = Aeik(x−c′t), we find that c′ = c, i.e., the computational phase speed is
equal to the true speed (Fig. 3.3.1). The space discretization based on a spectral rep-
resentation is extremely accurate (the space truncation errors are of “infinite” order).
This is because the space derivatives are computed analytically, not numerically, as
done in finite differences.

If the PDE is nonlinear, for example ∂U/∂t = −U∂U/∂x , then both the grid-point
(“physical space”) representation and the spectral representation are very useful:
derivatives are computed efficiently and accurately in spectral space, whereas non-
linear products are computed efficiently in physical space. This leads to the so-called
transform method used for spectral models: the space derivative is computed in spec-
tral space, then U is transformed back into grid space, and the product Uj (∂U/∂x) j is
computed locally in grid space. We will see later that in order to avoid nonlinear in-
stability introduced by aliasing of wavenumbers beyond K that appear in quadratic
terms, the grid representation requires about 3/2 as many points as the minimum
number of points required for a linear transform (JM = 2K +1). For this reason the
new values of U at time (n + 1)�t are usually stored in their spectral representation,
which is more compact.

We can use von Neumann’s criterion to determine the maximum time step allowed
for stability using, for example, the leapfrog time scheme. The FDE is

Un+1 −Un−1

2�t
= ikcUn (3.3.19)



96 3 Numerical discretization of the equations of motion

Assuming solutions for the wave equation of the form Un = ρneikx, we obtain that the
amplification factor is ρ = −ikc�t ±√1− k2c2�t2, and in order to have |ρ| ≤ 1
we need to satisfy the stability condition

(kc�t)2 ≤ 1 (3.3.20)

Since the highest wavenumber present corresponds to L = 2�x , the stability cri-
terion for spectral models is therefore c�t/�x ≤ 1/π . So, the stability criterion is
more restrictive for spectral models than for finite difference models, but this is com-
pensated by the fact that the accuracy, especially for shorter waves, is much higher,
and therefore fewer short waves need to be included (Fig. 3.3.1).

The basis functions used in spectral methods are usually the eigensolutions of
the Laplace equation. In a rectangular domain, they are sines and cosines (e.g., the
Regional Spectral Model (RSM), Juang et al., 1997). On a circular plate, one would
instead use Bessel functions.

Global atmospheric models use as basis functions spherical harmonics, which are
the eigenfunctions of the Laplace equation on the sphere:

∇2Y m
n =

1

a2

[
1

cos2 ϕ

∂2Y m
n

∂λ2
+ 1

cosϕ

∂

∂ϕ

(
cosϕ

∂Y m
n

∂ϕ

)]

= −n(n + 1)

a2
Y m

n (3.3.21)

The spherical harmonics are products of Fourier series in longitude and associated
Legendre polynomials in latitude:

Y m
n (λ, ϕ) = Pm

n (µ)eimλ (3.3.22)

where µ = sinϕ, m is the zonal wavenumber and n is the “total” wavenumber in
spherical coordinates (as suggested by the Laplace equation (3.3.21)). Pm

n are the
associated Legendre polynomials in µ = sinϕ = cos θ , where θ = π − ϕ is the co-
latitude. For example, the P0

0 = 1; P0
1 = cos θ ; P1

1 = sin θ ; P0
2 = 1/2 (3 cos2 θ − 1);

P1
2 = 3 sin θ cos θ ; P1

2 = 3 sin2 θ ; . . .
Using “triangular” truncation

U (λ, ϕ, t) =
N∑

n=0

n∑
m=−n

Um
n (t)Y m

n (λ, ϕ) (3.3.23)

the spatial resolution is uniform throughout the sphere. This is a major advantage
over finite differences based on a latitude–longitude grid, where the convergence of
the meridians at the poles requires very small time steps. Although there are solu-
tions for this “pole problem” for finite differences, the natural approach to solve the
pole problem for global models is the use of spherical harmonics. Williamson and
Laprise (1998) provide a comprehensive description of numerical methods for global
models.
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Figure 3.3.2: Illustration of the characteristics of spherical harmonics, adapted from
Williamson and Laprise (1998). (a) Depiction of three spherical harmonics with total
wavenumber n = 6. Left, zonal wavenumber m = 0; center, m = 3; right, m = 6.
Note that n is associated with the total wavelength (twice the distance between a
maximum and a minimum), which is the same for the three figures. (b) and (c)
Amplitude of Legendre polynomials for different combinations of m and n showing
how high zonal wavenumbers are suppressed near the poles, so that the horizontal
resolution is uniform when using a spectral representation with triangular truncation.

Fig. 3.3.2(a) shows the shape of three spherical harmonics with total wavenum-
ber n = 6, and zonal wavenumber m = 0, 3 and 6. Note that the distance between
neighboring maxima and minima is similar for the three harmonics, and is associated
with the “total” (two-dimensional) wavenumber n. Figures 3.3.2(b) and (c) show that
the amplitude of the Legendre polynomials for high zonal wavenumbers are indeed
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Figure 3.3.2: (cont.)

suppressed near the poles. This suppression eliminates the need for small time steps
due to the convergence of the meridians in the poles, which are not singular points
spectral models.

3.3.3 Semi-Lagrangian schemes

Another numerical method that has become very popular in NWP models is the
semi-Lagrangian scheme. The equations of motion, as we have seen, can in general
be written as conservation equations

du

dt
= S(u) (3.3.24)

where the left-hand side of the equation represents a total time derivative (following
an individual parcel) of the vector of dependent variables u. The total time derivative
(also known as individual, substantial or Lagrangian time derivative) is conserved
for a parcel, except for the changes introduced by the source or sink S.

In a truly Lagrangian scheme, one would follow individual parcels (transporting
them with the three-dimensional fluid velocity), and then add the source term at the
right time. This is not practical in general because one has to keep track of many
individual parcels, and with time they may “bunch up” in certain areas of the fluid,
and leave others without parcels to track.

The semi-Lagrangian scheme avoids this problem by using a regular grid as in
the previous schemes discussed (which are denoted Eulerian, because the partial
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x j -1 x j
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Figure 3.3.3: Schematic of the semi-Lagrangian scheme. The circles represent the
arrival point AP at the new time level (a point) and the departure point DP at the
previous time level. The thick arrow represents the advection from DP to AP. The
value of the variables at AP is equal to their value at DP, which is obtained by
interpolation between neighboring points. Because there is no extrapolation, the
semi-Lagrangian schemes are absolutely stable.

derivative ∂u/∂t is estimated instead of the total derivative). At every new time step
we find out where the parcel arriving at a grid point (denoted arrival point or AP)
came from in the previous time step (denoted departure point or DP). The value of
u at the DP is obtained by interpolating the values of the grid points surrounding
the departure point. Figure 3.3.3 suggests that, because there is no extrapolation, the
semi-Lagrangian scheme is absolutely stable with respect to advection, which can be
confirmed by doing a von Neumann criterion check (Bates and McDonald, 1982).

The semi-Lagrangian scheme can then be written using two or three time levels.
In a three-level time scheme, for example, if MP is the middle point between the DP
and AP, the scheme can be written as(

Un+1
j

)
AP
= (Un−1)DP + 2�t S(Un)M P (3.3.25)

In a two-time level scheme it could be written as(
Un+1

j

)
AP
= (Un)DP + �t

2

[
S(Un)DP + S

(
Un+1

j

)
AP

]
In general, for nonlinear equations ∂q/∂t = −u ∂q/∂x + S(q), so the semi-
Lagrangian scheme for the quantity q can be written as

qAP = qDP + S(qM P ) (3.3.26)

However, the DP has to be determined from the trajectory dx/dt = u integrated
between the DP and AP, for example as

xDP = xAP − �t

2
(UDP +UAP ) (3.3.27)

Since u evolves with time, UAP and UDP are not known until the DP has been
determined, this is an implicit equation that needs to be solved iteratively. For three-
level semi-Lagrangian schemes, the approximation

xDP = xAP − 2�tUM P (3.3.28)
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also has to be solved iteratively for UM P , but this is simpler than for the two-level
time scheme.

The accuracy of the semi-Lagrangian scheme depends on the accuracy of the de-
termination of the DP, and on the determination of the value of UDP and the other
conserved quantities q by interpolation from the neighboring points. A linear inter-
polation between neighboring points results in excessive smoothing, especially for
the shortest waves. For this reason cubic interpolation is preferred (Williamson and
Laprise, 1998). This is a costly overhead of semi-Lagrangian schemes. Despite the
additional costs, in practice this scheme has been found to be accurate and efficient
(see the general review of semi-Lagrangian methods by Staniforth and Côté (1991)).
A “cascade” method has been proposed that results in a very efficient high order inter-
polation between the distorted Lagrangian grid and the regular Eulerian grid (Purser
and Leslie, 1991, Leslie and Purser, 1995). This allowed Purser and Leslie to suggest
a forward trajectory semi-Lagrangian approach instead of the conventional back-
ward trajectory that we have so far described, which has additional advantages. (See
Staniforth and Côté (1991), Bates et al. (1995), Purser and Leslie (1996), Williamson
and Laprise (1998) for further details.) Combining the semi-Lagrangian approach
with a semi-implicit treatment of gravity waves (Section 3.2.5), as first suggested by
Robert (1982) and Robert et al. (1985), increases its efficiency. Laprise et al. (1997)
have documented a “mesoscale compressible community” model, which is nonhy-
drostatic, three-level semi-Lagrangian, and uses the semi-implicit approach for both
the elastic terms (three-dimensional divergence) and the gravity wave terms. As such,
it is a flexible and accurate model that can be used for a wide range of scales.

3.3.4 Nonlinear computational instability. Quadratically
conservative schemes. The Arakawa Jacobian

In 1957 Phillips published the first “climate” or “general circulation” simulation ever
made with a numerical model of the atmosphere. He started with a baroclinically
unstable zonal flow using a two-level quasi-geostrophic model, added small random
perturbations, and was able to follow the baroclinic growth of the perturbations,
and their nonlinear evolution. He obtained very realistic solutions that contributed
significantly to the understanding of the atmospheric circulation in mid-latitudes.

However, his climate simulation only lasted for about 16 days: the model “blew
up” despite the fact that care had been taken to satisfy the von Neumann criterion
for linear computational instability. In 1959, Phillips pointed out that this instabil-
ity, which he named nonlinear computational instability (NCI), was associated with
nonlinear terms in the quasi-geostrophic equations, in which products of short waves
create new waves shorter than 2�x . Since these waves cannot be represented in
the grid, they are “aliased” into longer waves. The shortest wave that can be repre-
sented with a grid (with a wavelength 2�x) corresponds to the maximum computa-
tional wavenumber pmax = 2π/Lmin�x = π . However, quadratic terms with Fourier
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Figure 3.3.4: (a) Schematic of the effect of aliasing: the waves above p = π

(solid line) become folded back (dashed line) and are added to the original spectrum,
producing a spurious maximum in the energy spectrum at the cut-off wavelength
(dotted line). (b) Schematic showing that if we use a grid with 3/2 as many grid points
as the original grid, the total spectrum in the Fourier transform of a quadratic product
is increased by 3/2 (i.e., pmax = 3π/2). Then aliasing of wavenumbers between 3π/2
and 2π occurs outside the original spectrum and it is avoided within the range 0 to π .

components will generate higher wavenumbers: e±i p1e±i p2 = e±i(p1±p2), doubling the
maximum wavenumber. The new shorter waves, with wavenumbers p = π + δ, can-
not be represented in the grid, and become folded back (aliased) into p′ = π − δ,
leading to a spurious accumulation of energy at the shortest range (Fig. 3.3.4).

The effect of NCI can be seen clearly in the following simple example: consider
the nonlinear (quasi-linear) PDE ∂u/∂t = −u∂u/∂x and the corresponding FDE
∂Uj/∂t = −Uj (Uj+1 −Uj−1)/2�x . Suppose that at a given time t we have U1 =
0, U2 > 0, U3 < 0, U4 = 0. Then ∂U1/∂t = 0, ∂U2/∂t > 0, ∂U3/∂t < 0, ∂U4/

∂t = 0, i.e., U2 and U3 will grow without bound and the FDE will blow up. In fact this
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will happen even for a linear model ∂u/∂t = −a(x)∂u/∂x if a1 = 0, a2 > 0, a3 < 0,
a4 = 0. On the other hand, if a(x) is always of the same sign, and we use the same FDE

∂U j

∂t
= −a j

U j+1 −U j−1

2�x
(3.3.29)

we can show that

∂

∂t

∑
j

U 2
j

a j
= 0

i.e., that the solution will remain bounded. Numerical experiments show that nonlin-
ear computational instability arises only when there are changes in sign in the velocity.

Exercise 3.3.1: Prove that the above solution will remain bounded.

There are basically two approaches for dealing with the problem of nonlinear com-
putational instability.

(a) Filtering out high wavenumbers.
Phillips (1959) proposed transforming the grid-space solution into Fourier series
(with sine and cosine wavenumbers from 0 to π ), and chopping the upper half of the
spectrum (wavenumbers above π /2). Since the maximum wavenumber generated in
a quadratic term is twice the original wavenumber, this avoids spurious aliasing, and,
indeed, Phillips found that the model could then be run indefinitely. However, the
procedure is rather inefficient, since half of the spectrum is not used.

For grid-point models, complete Fourier filtering of the high wavenumbers has
been found to be an unnecessarily strong measure to avoid nonlinear computational
instability. Some models filter high wavenumbers but only enough to maintain com-
putational stability. Experience shows that as long as the amplitude of the highest
wavenumbers is not allowed to acquire finite amplitude, nonlinear computational
stability can be avoided. For example, Kalnay-Rivas et al. (1977) combined the use
of an energy-conserving fourth order model with a sixteenth order filter (similar to
the eighth power of the horizontal Laplacian (Shapiro, 1970)). This efficiently filtered
out the shortest waves (mostly between 2�x and 3�x) without affecting waves of
wavelength 4�x or longer, and resulted in an accurate and economic model.1

1 The Shapiro filter of order n of a field Ui is a simple and efficient operator given by
Uj

2n = [1− (−D)n]Uj , where the “diffusion” operator DUj = (Uj+1 − 2Uj +Uj−1)/4 is
applied to the original field n times. For a Fourier component eip with wavenumber
p = 2π�x/L , the response of the operator is Deipj = −(sin2p/2)eipj so that the second order

Shapiro filter U
2

j = [1− (−D)2]Uj = 1
4
(Uj+1 + 2Uj +Uj−1) has a response

Uj
2 = (1− sin2 p/2)Uj . This is a strong filter that zeroes out the highest wavenumber

(L = 2�x), and reduces the amplitude of even the longer waves. A higher order filter, for
example 2n = 16, however, has the following desirable response: Uj

16 = (1− sin16 p/2)Uj ,
which still filters out 2�x waves, dampens waves shorter than 4�x , and essentially leaves
longer waves unaffected.
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Spectral models with a wavenumber cut-off of M (i.e., with 2M + 1 degrees
of freedom) require at least 2M + 1 grid points to be transformed into equivalent
solutions in grid space. Orszag (1971) showed that if they are transformed into
3M + 1 grid points before a quadratic term is computed in physical space, then
aliasing is avoided. In other words, it is not necessary to perform the space transform
into 4M points. The reason for this is shown schematically in Fig. 3.3.4(b): even if
there is aliasing, it only occurs on the part of the spectrum (above p = π ) that is
eliminated anyway on the back transformation into spectral space. For this reason, in
two horizontal dimensions, spectral models use “quadratic grids” with about (3/2)2

as many grid points as spectral degrees of freedom, and therefore spectral models
are “alias-free” for quadratic computations. Triple products in spectral models still
suffer from aliasing, but this is generally not a serious problem.

(b) Using quadratically conserving schemes
Lilly (1965) showed that it is possible to create a spatial finite difference scheme
that conserves both the mean value and its mean square value when integrated over
a closed domain. Quadratic conservation will generally ensure that catastrophic NCI
does not take place. Arakawa (1966) created a numerical scheme for the vorticity
equation that conserves the mean vorticity, the mean square vorticity (enstrophy),
and the kinetic energy. This ensures that the mean wavenumber is also conserved (as
it is in the continuous equation), and therefore that even in the absence of diffusion
the solution remains realistic. Arakawa and Lamb (1977) showed how an equivalent
“Arakawa Jacobian” can be written for primitive equation models.

Consider first a conservation equation for the SWE written in advective form (as
an example relevant to primitive equations):

∂α

∂t
+ v ·∇α = 0

∂h

∂t
+ v ·∇h + h∇ · v = ∂h

∂t
+∇ · hv = 0


 (3.3.30)

If we multiply the first equation by h and the second by α, we can write the conser-
vation equations in flux form:

∂hα

∂t
+∇ · hvα = 0

∂h

∂t
+∇ · hv = 0


 (3.3.31)

Note that from the continuity equation written in flux form (second form), the total
mass is conserved in time (Exercise 3.3.2).
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Exercise 3.3.2: Show that from the continuity equation written in flux form, the total
mass is conserved in time:

∂

∂t

∫ ∫
hdxdy = 0

Now, consider any function of G(α). Multiply the conservation equation by g(α) =
dG/dα and integrate over a closed domain (i.e., a domain bounded by walls with
zero normal velocities or by periodic boundary conditions). It is easy to show that
the mean value of G(α) will be conserved in time:

∂

∂t

∫ ∫
hG(α)dxdy = 0 (3.3.32)

Therefore the mass weighted mean and the mean squared value of α (as well as all
its higher moments) will be conserved. With finite differences, we can only enforce
two independent conservation properties (Arakawa and Lamb, 1977). We discuss
now how to enforce mean and quadratic conservation, as suggested by Lilly (1965).
The simplest approach is to write first the FDE continuity equation in flux form. This
constitutes the backbone of a quadratically conservative scheme, and it is also similar
to the simplest finite volume schemes (Section 3.3.6).

Exercise 3.3.3: Consider any function G(α) and multiply the conservation equation
by g(α) = dG/dα and integrate over a closed domain. Show that the mean value of
G(α) will be conserved as in (3.3.32).

Consider Fig. 3.3.5, which shows a typical grid element with the value of α defined in
the center, and estimates of the normal mass fluxes at its boundaries (e.g., (hu)i+1/2, j

at the right wall). These estimates are used for casting the continuity FDE and for
constructing a quadratically conservative FDE for α. The continuity FDE in flux form
is

∂hi j

∂t
+ (hu)i+1/2, j − (hu)i−1/2, j

�x
+ (hv)i, j+1/2 − (hv)i, j−1/2

�y
= 0 (3.3.33)

It is easy to check that this FDE will conserve total mass (∂/∂t)
∑

i, j

hi, j�xi, j�yi, j = 0 since the mass flux into one grid box will cancel the mass flux
out of the neighboring element. We now write the FDE for α using any consistent
estimate of α at the normal walls of the grid box:

∂hi jαi, j

∂t
+ (hu)i+1/2, j (α)i+1/2, j − (hu)i−1/2, j (α)i−1/2, j

�x

+ (hv)i, j+1/2(α)i, j+1/2 − (hv)i, j−1/2(α)i, j−1/2

�y
= 0 (3.3.34)
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Figure 3.3.5: (a) A typical
grid element with the value
of α defined in the center,
and estimates of the normal
fluxes at its boundaries.
These estimates are used for
casting the continuity FDE
and for constructing a
quadratically conservative
FDE for α (primitive
equation model). (b) Grid
for a simple enstrophy
conserving FDE
(quasi-geostrophic model).

Again it is easy to check that this FDE will conserve the total (mass weighted) value
of α: (∂/∂t)#i, j hi, jαi, j�xi, j�yi, j = 0. This is a general property of FDEs written
in flux form.

Finally, we choose to estimate the value of α at the walls of the grid-cells as an av-
erage between the two contiguous cells (α)i+1/2, j = (αi, j + αi+1, j )/2, and similarly
for the other walls. With this particular choice, we obtain:

∂hi, jαi, j

∂t
+ (hu)i+1/2, j (αi, j + αi+1, j )− (hu)i−1/2, j (αi, j + αi−1, j )

2�x

+ (hv)i, j+1/2(αi, j + αi, j+1)− (hv)i, j−1/2(αi, j + αi, j−1)

2�y
= 0 (3.3.35)

We can show that this scheme is quadratically conservative. First note that we can
construct a mass weighted quadratic conservation equation for α from either the
advection of the flux form prognostic equation for α and the continuity equation
(prognostic equation for h):

∂

(
h
α2

2

)
∂t

= α2

2

∂h

∂t
+ hα

∂α

∂t
= −α2

2

∂h

∂t
+ α

∂hα

∂t
(3.3.36)

The second equality suggests how to test quadratic conservation of α. Multiply
the FDE continuity equation (3.3.33) by αi, j

2/2 and subtract it from the flux form
prognostic equation (3.3.35) multiplied by αi, j . If we do this, we find that (because of
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cancellations of mass weighted fluxes of αi, j on the grid-box walls), there is indeed
quadratic conservation:

∂

∂t

∑
i, j

hi, j
1

2
αi, j

2�xi, j�yi, j = 0 (3.3.37)

Note that this is true no matter how the FDE for the continuity equation is written. We
could choose several finite difference formulations, and as long as the flux form of
the FDE for hα is consistent with the continuity equation, and as long as we estimate
α at the walls by a simple average, we have quadratic conservation and the danger
of NCI is small.

Exercise 3.3.4: Show that the FDE (3.3.33) will conserve total mass.

Exercise 3.3.5: Show that the FDE (3.3.34) will conserve the total mass weighted
value of α.

Exercise 3.3.6: Prove from (3.3.36) that there is quadratic conservation.

Exercise 3.3.7: Write two different FDEs for the continuity equation, i.e., two dif-
ferent estimates of the normal mass fluxes at the walls, (hu)i+1/2, j , etc.

Finally we consider the vorticity equation, which is representative of much of the
dynamics of the real atmosphere:

∂ζ

∂t
= −v ·∇ζ = −∇ · (vζ ) = −J ($, ζ ) (3.3.38)

where ζ = k ·∇× v =∇2$, v = k×∇$. The flow is nondivergent, so that the
continuity equation is simply ∇ · v = 0.

In this case a simple scheme that conserves the mean vorticity and its mean
square (i.e., an enstrophy conserving scheme) can be written following the recipe
given above (Kalnay-Rivas and Merkine, 1981). The continuity equation is (cf.
Fig. 3.3.5(b))

0 = − (u)i+1/2, j − (u)i−1/2, j

2�x
− (v)i, j+1/2 − (v)i, j−1/2

2�y
(3.3.39)

where the normal velocity estimates are obtained from

ui+1/2, j = −∂$ i+1/2, j

∂y
≈ −$ i+1/2, j+1/2 −$ i+1/2, j−1/2

�y
(3.3.40)

and similarly for the other velocities. Note that this satisfies the continuity equation
automatically. Then we write the forecast equation for the vorticity in a way consistent
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with the continuity equation, thus ensuring conservation of the mean vorticity and
enstrophy (mean square vorticity).

∂ζi, j

∂t
= − (u)i+1/2, j (ζi, j + ζi+1, j )− (u)i−1/2, j (ζi, j + ζi−1, j )

2�x

− (v)i, j+1/2(ζi, j + ζi, j+1)− (v)i, j−1/2(ζi, j + ζi, j−1)

2�y
(3.3.41)

After a new vorticity field is obtained at t = (n + 1)�t using, for example, leapfrog,
we have to determine the new streamfunction ψ . This is done by solving the elliptic
equation ζ =∇2$, which in finite differences can be written as

$i+1, j − 2$i, j +$i−1, j

�x2
+ $i, j+1 − 2$i, j +$i, j−1

�y2
= ζi, j (3.3.42)

In Section 3.4 we will discuss how to solve this boundary value problem.
Once we obtain ψi, j we can obtain $ i+1/2, j+1/2 by averaging the corresponding

four surrounding values of ψi, j . This is probably the simplest FDE model of the
barotropic atmosphere devoid of nonlinear computational instability that we can
construct.

Before we discuss the Arakawa Jacobian, let’s note that the continuous vorticity
equation conserves total (kinetic) energy as well as enstrophy. Multiply the vorticity
equation by the streamfunction:

$
∂ζ

∂t
= −$∇ · (vζ ) = −∇ · (vζ$)+ ζv ·∇$ (3.3.43)

The last term on the right-hand side vanishes because v is perpendicular to ∇$. The
left-hand side can be shown to be the time derivative of the kinetic energy:

$
∂ζ

∂t
= $

∂∇ ·∇$

∂t
= ∂∇$ ·∇$

∂t
−∇$ · ∂∇$

∂t

= ∂v · v
∂t
− ∂v · v/2

∂t
= ∂ |v|2 /2

∂t
= ∂KE

∂t
(3.3.44)

Therefore, integrating (3.3.43) over the domain, the mean kinetic energy is conserved.
The simple scheme described above conserves vorticity and squared vorticity but not
kinetic energy.

Arakawa (1966) introduced a Jacobian that conserves all three properties: it
is based on the FDE corresponding to these three equivalent formulations of the
Jacobian:

J ($, ζ ) = J1 = J2 = J3 (3.3.45)
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where

J1 = ∂$

∂x

∂ζ

∂y
− ∂$

∂y

∂ζ

∂x

J2 = ∂

∂x

(
$

∂ζ

∂y

)
− ∂

∂y

(
$

∂ζ

∂x

)

J3 = ∂

∂y

(
ζ
∂$

∂x

)
− ∂

∂x

(
ζ
∂$

∂y

)




(3.3.46)

The Arakawa Jacobian is the finite difference Jacobian corresponding to JA = (J1 +
J2 + J3)/3 and it conserves kinetic energy and enstrophy. Arakawa and Lamb (1977)
showed how the Arakawa Jacobian could also be approximately constructed for
primitive equation models.

Exercise 3.3.8: Derive the finite difference equivalent of J1, J2 and J3

The ratio of enstrophy to kinetic energy is proportional to the mean square of the
wavenumber, and this quantity is conserved by the continuous frictionless vorticity
equation. Therefore, the Arakawa conservation ensures that a long model run will
conserve the mean square of the wavenumber, and generally look realistic (i.e., not
become dominated by small scale noise) even without horizontal diffusion. In the real
atmosphere, however, turbulent dissipation acts as a control on the amplitude of the
smallest waves, and leaks their energy out of the system, so that strict conservation
is not truly relevant. For this reason, there is no consensus among the community of
modelers on whether the use of strictly conserving FDEs is an essential requirement.
On the one hand, some models are based on schemes that are as conservative as pos-
sible (remember that the continuous equations conserve all moments of the quantities
being advected, whereas the FDEs can only conserve one or two moments). Other
modelers prefer to use less conservative but more accurate and simpler schemes.
They include dissipation acting at the highest wavenumbers that mimics the leakage
of energy that takes place in reality. Experience shows that an energy-conserving
scheme, for example, combined with a small amount of high-order horizontal diffu-
sion, in practice also behaves very realistically, approximately conserving enstrophy.
This is because a catastrophic loss of enstrophy occurs only when energy is allowed
to accumulate in the shortest waves and they acquire large amplitudes. The dispute as
to whether it is more important to have conservative FDEs or accurate (higher order
or semi-Lagrangian) FDEs that are not conservative but avoid NCI has thus not been
resolved.

3.3.5 Staggered grids

So far all the variables we have used (e.g. h, u, v) have been defined at the
same location in a grid cell. This means that in order to compute centered space
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Figure 3.3.6: Staggered
grids: (a) example of
unstaggered grid in one
dimension; (b) example of
staggered grid in one
dimension.

differences at a point j , for example, we need to go to j + 1, and j − 1, and the
differences are computed over a distance of 2�x (Fig. 3.3.6(a)). If we use instead
a staggered grid, certain differences (such as the pressure gradient for the u equa-
tion and the horizontal convergence term for the h equation) can be computed
over just 1�x , and, for those terms, it is equivalent to doubling the horizontal res-
olution. (Fig. 3.3.6(b)). However, the advection terms still have to be computed
over 2�x (or 2d, where d is the distance between closest grid points of the same
class).

Let’s consider again the SWE in two dimensions:

∂h

∂t
= −

[
h

(
∂u

∂x
+ ∂v

∂y

)]
− u

∂h

∂x
− v

∂h

∂y

∂u

∂t
= −

[
g
∂h

∂x
+ f v

]
− u

∂u

∂x
− v

∂u

∂y

∂v

∂t
= −

[
g
∂h

∂y
− f u

]
− u

∂v

∂x
− v

∂v

∂y




(3.3.47)

The terms in square brackets in (3.3.47) are the dominant terms for the geostrophic
and the inertia-gravity wave dynamics. These terms are computed in different ways
depending on the type of grid we use. The advective terms are less affected by the
choice of alternative (staggered) grids.

In two dimensions there are several possibilities for staggered grids (Arakawa
and Lamb, 1977), which are shown schematically in Fig. 3.3.7. Grid A (unstag-
gered) has several advantages and disadvantages. The advantages are its simplicity,
and, because all variables are available at all the grid points, it is easy to construct
a higher order accuracy scheme. Grid A tends to be favored by proponents of the
philosophy “accuracy is more important than conservation”. Its main disadvantage is
that all differences occur on distances 2d, and that neighboring points are not coupled
for the pressure and convergence terms. This can give rise in time to a horizontal
uncoupling (checkerboard pattern), which needs to be controlled by using a high
order diffusion (e.g., Janjic, 1974, Kalnay-Rivas et al., 1977).

Grid C has the advantage that the convergence and pressure terms in square brack-
ets in (3.3.47) are computed over a distance of only 1d, which is equivalent to doubling
the resolution of grid A. For this reason geostrophic adjustment (the dispersion of
gravity waves generated when the fields are not in geostrophic balance, see Chapter 5)
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Figure 3.3.7: Staggered
grids in two horizontal
dimensions: Arakawa and
Lamb (1977) classification.

is computed much more accurately (Arakawa, 1997). The Coriolis acceleration terms,
on the other hand, require horizontal averaging, making the inertia-gravity waves less
accurate. This makes grid C less attractive for situations in which the length of the
Rossby radius of deformation Rd =

√
gH/ f is not large compared to the grid size

d. The equivalent depth, H, is about 10 km for the external mode, so that Rd is
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Figure 3.3.8: The Eliassen
grid, staggered in both
space and time.

about 3000 km (Chapter 6), but H is an order of magnitude smaller for the second
vertical mode, and it becomes much smaller for higher vertical modes. Therefore,
some atmospheric models use grid B, where the minimum distance for horizontal
differences is

√
2d, rather than 1d as in grid C, but where u and v are available at the

same locations. The NCEP Eta model is defined on a grid B rotated by 45◦, denoted
grid E by Arakawa and Lamb (1977), see Fig. 3.3.7.

The disadvantages of staggered grids are: (a) the terms in square brackets are hard
to implement in higher order schemes, and (b) the staggering introduces considerable
complexity in, for example, diagnostic studies and graphical output.

Grid D has no particular merit, but, if also staggered in time (as suggested by
Eliassen), it becomes ideal for atmospheric flow using the leapfrog scheme (see
Fig. 3.3.8). In the Eliassen grid all differences are computed on a distance d (the
advection also requires a horizontal average over one grid length, but this is a small
drawback). Despite its apparent optimality, this grid has not been adopted in any
major model, probably because of the complications of the additional staggering,
and because it would require special procedures for starting the leapfrog scheme. Lin
and Rood (1997) have adopted a similar idea for a global atmospheric model on the
sphere.

In the vertical direction, most models have adopted a staggered grid, with the
vertical velocity defined at the boundary of layers and the prognostic variables in
the center of the layer (Fig. 3.3.9). This type of grid, introduced by Lorenz in 1960,
allows simple quadratic conservation, and the boundary conditions of no flux at
the top and the bottom are easily fulfilled. However, as pointed out by Arakawa
and Moorthi (1988), the Lorenz grid allows the development of a spurious com-
putational mode, since the geopotential in the hydrostatic equation (and therefore
the acceleration of the wind components) is insensitive to temperature oscillations
of 2�σ wavelength. The Lorenz grid is being replaced in some newer models by
a vertical grid similar to the one introduced by Charney and Phillips (1953) for
a two-level model. In the Charney–Phillips grid, the vertical staggering is more
consistent with the hydrostatic equation and therefore it does not have the ad-
ditional computational mode (Arakawa, 1997). A nonstaggered vertical grid, al-
lowing a simple implementation of higher order differences in the vertical, would
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Figure 3.3.9: Staggering in vertical grids. (After Arakawa and Konor, 1996.)
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Figure 3.3.10: Schematic of the two-dimensional volume centered at the point i, j
and with walls at which fluxes are computed in a finite volume method.

also be possible, but it would also have more computational modes present in the
solution.

3.3.6 Finite volume methods

We present here a brief introduction to the finite volume approach, which is discussed
in more detailed in texts such as Durran (1999), Fletcher (1988) and Gustaffson
et al. (1996). The basic idea of this method is that the governing equations are first
written in an integral form for a finite volume, and only then are they discretized.
This is in contrast to the methods we have seen so far, in which the equations in
differential form are discretized using finite differences or spectral methods. The two
approaches may or may not lead to similar discretized schemes.

Consider for example the continuity equation and a conservation equation for a
shallow water model written in flux form, as in (3.3.31), and integrate them over a
volume limited by walls AB, BC,C D, and D A (in this two-dimensional case, the
volume of integration is the horizontal area, Fig. 3.3.10).

If we integrate (3.3.31) within the volume ABC D, and apply Green’s theorem,
we obtain
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d

dt

∫
hdxdy +

∮
H · nds = 0

d

dt

∫
hαdxdy +

∮
(Hα) · nds = 0


 (3.3.48)

where H is the normal flux of h across the walls, and n is the normal vector to the
wall. These equations can be discretized, for example, as

d

dt

(
h

i j
�xi j�yi j

)
= −(hu

i+1/2 j
)�yi+1/2 j + (hu

i−1/2 j
)�yi−1/2 j

−(hv
i j+1/2

)�xi j+1/2 + (hv
i j−1/2

)�xi j−1/2

d

dt

(
αh

i j
�xi j�yi j

)
= −(huα

i+1/2 j
)�yi+1/2 j + (huα

i−1/2 j
)�yi−1/2 j

−(hvα
i j+1/2

)�xi j+1/2 + (hvα
i j−1/2

)�xi j−1/2




(3.3.49)

Here, the overbar indicates a suitable average over the grid volume or area. It is
evident that any scheme based on these finite volume equations will conserve the
average mass and average mass weighted α. There are a number of choices of how
this average can be carried out over this subgrid domain of each grid volume: one
can assume that h and α are constant within the volume, or that they vary linearly,
etc. A simple choice for the estimates of the average values at the center and at the
walls leads naturally to the quadratically conservative differences presented above in
(3.3.34) and (3.3.35):

h
i j = hi j hu

i+1/2 j = (hi j + hi+1 j )(ui j + ui+1 j )/4

huα
i+1/2 j = (hu

i+1/2 j
)(αi j + αi+1 j )/2


 (3.3.50)

Although in this case both methods lead to the same discretization, the finite volume
approach allows additional flexibility in the choice of discretization. For example,
Lin and Rood (1996) developed a combination of semi-Lagrangian and finite vol-
ume methods, in which the boundaries of the grid volume are transported to the
new time step, rather than the centers of the volume as is done in the conventional
semi-Lagrangian schemes (Fig. 3.3.11). Although the order of the scheme is for-
mally low, the method seems very promising, but it requires considerable care in the
detailed formulation in order both to remain conservative and to maintain the shape
of the transported tracers. Lin (1997) also developed a rather simple finite volume
expression to compute the horizontal pressure gradient force that can be applied to
any hydrostatic vertical coordinate system. It avoids the problem of having two large
terms in the pressure gradient computation that almost cancel each other, which is
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Figure 3.3.11: Schematic of the flux-form semi-Lagrangian scheme (Lin and
Rood, 1996). It differs from the regular semi-Lagrangian scheme (Fig. 3.3.3) in that
the walls of the volume are transported to the “arrival walls”. The mass weighted
average of the variables at the arrival volume is equal to the value at the departure
volume (indicated by the thick segments), ensuring mass conservation. Because
there is no extrapolation, the flux-form semi-Lagrangian scheme is still absolutely
stable.

characteristic of the sigma and other vertical coordinate systems. There are several
other variants of finite volume systems (e.g., Durran, 1999).

3.4 Boundary value problems

3.4.1 Introduction

Elliptic equations are boundary value problems, with either a fixed time, or a
steady state solution at long times. Two examples of such problems arising in NWP
are:

(a) Finding the new streamfunction from the vorticity after the latter has been
updated to time (n + 1)�t . For example, in Section 3.3.4 we introduced the
following enstrophy-conserving numerical scheme:

ζ n+1
i, j − ζ n−1

i, j

2�t
= − (u)i+1/2, j (ζi, j + ζi+1, j )− (u)i−1/2, j (ζi, j + ζi−1, j )

2�x

− (v)i, j+1/2(ζi, j + ζi, j+1)− (v)i, j−1/2(ζi, j + ζi, j−1)

2�y
(3.4.1)

where we used the leapfrog scheme, and the right-hand side is evaluated at time
t = n�t . After solving for ζ n+1

i, j , we can obtain the streamfunction by solving the
elliptic equation (Laplace) valid at t = (n + 1)�t :

$i+1, j − 2$i, j +$i+1, j

�x2
+ $i, j+1 − 2$i, j +$i, j−1

�y2
= ζi, j (3.4.2)

For this particular scheme, after solving for$n+1
i, j , we obtain$n+1

i+1/2, j+1/2 by averaging
from the four surrounding corners.
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(b) Solving a semi-implicit elliptic equation for the heights also at (n + 1)�t
(Section 3.2.5):

(
δ2

2x + δ2
2y −

1

��t2

)
φn+1 = −

(
δ2

2x + δ2
2y +

1

��t2

)
φn−1

+2(δ2x Ru + δ2y Rv)

+ 1

�t
(δ2xun−1 + δ2yv

n−1)

− 2

��t
Rφ = Fn

i, j (3.4.3)

These linear elliptic equations are easily solved with spectral methods in which the
basis functions are eigenfunctions of the Laplace equation. For example, if we use
spherical harmonics on the globe, and make use of

∇2Y m
n =

1

a2

[
1

cos2 ϕ

∂2Y m
n

∂λ2
+ 1

cosϕ

∂

∂ϕ

(
cosϕ

∂Y m
n

∂ϕ

)]

= −n(n + 1)

a2
Y m

n (3.4.4)

we can solve the semi-implicit equation for φ(λ, ϕ, t) =∑N
n=0

∑n
m=−n

φm
n (t)Y m

n (λ, ϕ) simply by writing the Helmholtz linear equation ∇2φn+1 −
(1/��t2)φn+1 = F corresponding to (3.4.3) component by component

∇2φn
m(tp+1)Y m

n (λ, ϕ)− 1

��t2
φn

m(tp+1)Y m
n (λ, ϕ) = Fn

m(tp+1)Y m
n (λ, ϕ)

(3.4.5)

so that the solution for each spherical harmonic coefficient is given by

φn
m(tp+1) = − 1[

n(n + 1)

a2
+ 1

��t2

] Fn
m(tp+1) (3.4.6)

(Note that in (3.4.5) and (3.4.6) we have used p instead of n for the time step to
avoid confusion with the total wavenumber n.) The simplicity with which the semi-
implicit scheme can be computed is a major advantage of spectral models. For finite
differences, the solution is much more involved.

The methods of solution for elliptic equations (discretized in space) are basically
of two types: direct and iterative. Here we only present some simple examples of both
types of methods, and refer the reader to texts such as Golub and van Loan (1996),
Ferziger and Peric (2001), Dahlquist and Björk (1974) and Gustaffson et al. (1996)
for more complete discussions of direct and iterative schemes. In the last decade,
considerable work has also been done on the solution of nonsymmetric systems.
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Books on computational methods for these types of problems include Barrett et al.
(1995), Bruaset (1995), Greenbaum (1997), and Meurant (1999).

3.4.2 Direct methods for linear systems

We saw that for spectral models, the direct solution of the linear elliptic equation
arising from the semi-implicit method is trivial. For finite differences, however, direct
methods involve solving equations like (3.4.2) or (3.4.3), which can be written in
matrix form as

Aφ = F (3.4.7)

using any direct solver. They are related to Gaussian elimination. If the matrix A is
fixed (e.g., independent of the time step) the LU decomposition of A = LU, where
the diagonal of L are lii = 1, allows us to perform the decomposition once and then
solve LX = F , followed by U� = X . Here L and U are lower and upper triangular
matrices.

If the matrix is tridiagonal, the direct problem is particularly easy to solve. A
tridiagonal problem can be written as:

a jU j−1 + b jU j + c jU j+1 = d j (3.4.8)

with general boundary conditions

U0 = A1U1 + A2 UJ = B1UJ−1 + B2 (3.4.9)

An algorithm based on Gaussian elimination is the “double sweep” method: Assume
that

U j = E jU j+1 + Fj (3.4.10)

Then Uj−1 = E j−1Uj + Fj−1 which can be substituted into the tridiagonal equation
(3.4.8) to obtain:

(a j E j−1 + b j )U j + c jU j+1 = d j − a j Fj−1 (3.4.11)

From this we deduce that

E j = −c j

a j E j−1 + b j

Fj = d j − a j Fj−1

a j E j−1 + b j


 (3.4.12)

So the method of solution is:

(a) use the lower boundary condition U0 = A1U1 + A2 to determine
E0 = A1, F0 = A2;

(b) sweep forward using (3.4.12) to obtain E j , Fj , j = 1, . . . , J − 1;
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(c) determine UJ ,UJ−1 from UJ−1 = EJ−1UJ + FJ−1 and the upper boundary
condition UJ = B1UJ−1 + B2;

(d) determine Uj , j = J − 2, . . . , 1 using (3.4.10).

Tridiagonal matrices can thus be solved very efficiently, although problems arise
when the denominator in (3.4.12) is close to zero.

3.4.3 Iterative methods for solving elliptic equations

The systemAφ = F can be solved iteratively by transforming it into another system,

φ = (I − A)φ + F

or

φ = Mφ + F (3.4.13)

choosing an initial guess φ0 and then iterating (3.4.13): φv+1 = Mφv + F . The
method converges if the spectral radiusσ (M) = max |λi | < 1, whereλi are the eigen-
values of M . The asymptotic convergence rate is defined as

R = − log10[σ (M)] (3.4.14)

We now give an example for a simple elliptic equation to provide an idea of how to
attack the problem. The reader is referred to the references cited in subsection 3.4.1
for a more comprehensive discussion.

For a uniform grid with �x = �y = �, an elliptic equation like (3.4.3) can be
written as

δ2φi, j − αφi, j = gi, j (3.4.15)

where the finite difference Laplace operator is

δ2φi, j = (φi+1, j + φi−1, j + φi, j+1 + φi, j−1 − 4φi, j ) (3.4.16)

Suppose we are in iteration v. Then

δ2φv
i, j − αφv

i, j = gi, j+ ∈v
i, j (3.4.17)

where ∈v
i, j is the error in iteration v. If we assume at the point i, j

φv+1
i, j = φv

i, j + δφv
i, j (3.4.18)

and choose δφv
i, j to make ∈v+1

i, j = 0, we get

φv+1
i, j = φv

i, j +
δ2φv

i, j − αφv
i, j − gi, j

4+ α
(3.4.19)

This is the Jacobi simultaneous relaxation method. If we start at the southwest corner,
and sweep to the right and up, by the time we reach the point i , j we have already
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updated the neighboring points to the west and the south, so we can use these updated
values:

φv+1
i, j = φv

i, j +
φv+1

i−1, j + φv
i+1, j + φv+1

i, j−1 + φv
i, j+1 − αφv

i, j − gi, j

4+ α
(3.4.20)

This is the Gauss–Seidel or successive relaxation method.
If instead, we overcorrect by changing the sign of ∈v+1

i, j rather than making it equal
to zero, i.e.,

φv+1
i, j = φv

i, j + ω
φv+1

i−1, j + φv
i+1, j + φv+1

i, j−1 + φv
i, j+1 − αφv

i, j − gi, j

4+ α

with 1 < ω < 2 (3.4.21)

the rate of convergence is further increased. This is the successive overrelaxation
(SOR) method. Optimal values for ω can be obtained analytically for simple geome-
tries such as a rectangular domain. For the equation above, the spectral radius of the
Jacobi matrix M is

λ1 = 1− ε

where

ε = sin2 π

2(JM + 1)
+ sin2 π

2(KM + 1)

and JM, KM are the number of intervals in the x and y directions of the problem.
Then the optimum value of the overrelaxation coefficient is

ωopt = 2

1+
√

1− λ2
1

Since the maximum error is reduced after each Jacobi iteration by the spectral radius
λ1 = (1− ε), we can define the rate of convergence as ε.
The rates of convergence of the three methods are then:

ε = rate of convergence of the Jacobi iteration;

2ε = rate of convergence of the Gauss–Seidel iteration;

2
√

2ε = rate of convergence of the SOR iteration with optimum
overrelaxation.

3.4.4 Other iterative methods

We give only a simple introduction to other methods and refer the reader for further
details to the references cited in Section 3.4.1.

Alternating Direction Implicit (ADI)
An efficient fractional time steps time scheme (Table 3.2.1) is used to obtain the
solution of the elliptic equation as a steady state solution. For example, to solve the
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Laplace equation we write the parabolic equation

∂u

∂t
= σ

(
∂2u

∂x2
+ ∂2u

∂y2

)
(3.4.22)

The asymptotic long-time solution of (3.4.22) is the solution to the Laplace equation.
Equation (3.4.22) is integrated numerically by separating it into two fractional steps
(similar to the time scheme k in Table 3.2.1)

u∗ − un

�t
= σδx

2u∗

un+1 − u∗

�t
= σδy

2un+1


 (3.4.23)

Since each fractional step is implicit, large time steps can be used. And since the
solution of each fractional step involves only inverting tridiagonal matrices, it can be
performed very efficiently (see, e.g., Hageman and Young (1981)).

Multigrid methods
The speed of convergence for iterative schemes depends on the number of grid points,
and is much faster for coarser grids (see expression for λ1 above). Moreover, the
errors that take longest to converge correspond to long waves (i.e., they are smooth),
whereas the shortest waves are damped fastest. Multigrid methods take advantage of
this and use both coarse and fine grids (see Briggs (1987), Hackbusch (1985), Barrett
et al. (1995)). The procedure is as follows: Several steps of a basic method on the
full grid are performed in order to smooth out the error (pre-smoothing). A coarse
grid is selected from a subset of the grid points, and the iterative method is used to
solve the problem on this coarse grid. The coarse grid solution is then interpolated
back to the original grid, and the original method applied again for a few iterations
(post-smoothing). In carrying out the solution in the second step, the method can be
applied recursively to coarser grids, until the number of grid points is small enough
that a direct solution can be obtained.

The method of descending through a sequence of coarser grids and then ascending
back to the full grid is known as a V-cycle. A W-cycle results from visiting the coarse
grid twice, with some smoothing steps in between. Some multigrid methods have
an (almost) optimal number of operations, i.e., almost proportional to the number of
variables.

Krylov subspace methods
There are a number of iterative algorithms for solving the linear problem of (3.4.7)
in the Krylov subspace, defined by

Km(A, r0) = span
{
r0,Ar0,A2r0, . . . ,Am−1r0

}
(3.4.24)

where r0 = F − Aφ0 is the residual for an arbitrary initial error φ0. The approximate
solution φm lies in the space φ0 + Km(A, r0). The residual after m steps has to satisfy
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certain conditions, and the choice of the condition gives rise to different types of
iterative methods (e.g., Sameh and Sarin, 1999). The requirement that the residual be
orthogonal to the Krylov subspace, F − Aφm⊥Km(A, r0) leads to the conjugate gra-
dient and the Lanczos methods. Methods like GMRES, MINRES and ORTHODIR
are obtained by requiring that the residual be minimized over the Krylov subspace.
The bi-conjugate gradient and QMR methods are derived requiring the residual to be
orthogonal to Km(AT , r0). The discussion of these methods applicable to nonsym-
metric systems is beyond the scope of this book, but is given in the texts referred in
Section 3.4.1.

3.5 Lateral boundary conditions for regional models

3.5.1 Introduction

The use of regional models for weather prediction has arisen from the desire to reduce
the model errors through an increase in horizontal resolution that cannot be afforded
in a global model. Operational regional models have been embedded or “nested”
into coarser resolution hemispheric or global models since the 1970s. In the USA,
the first regional model was the LFM model (Chapter 1). The nesting of regional
models requires the use of updated lateral boundary conditions obtained from the
global model.

We have seen that for pure hyperbolic equations there should be as many boundary
conditions imposed at a given boundary as the number of characteristics moving into
the domain. Parabolic equations with second order diffusion require one boundary
condition at every point in the boundary for each prognostic equation. Second order
elliptic equations (such as Laplace, Poisson, and Helmholtz equations) also require
one boundary condition. The first forecast experiment of Charney et al. (1950) used
the barotropic vorticity equation (conservation of absolute vorticity), and already
had to deal with boundary conditions. They solved the hyperbolic equation ∂ζ/∂t =
−v ·∇(ζ + f ) followed by the Poisson (elliptic) equation ∇2∂$/∂t = ∂ζ/∂t .
Therefore, Charney et al. (1950) had to impose a boundary condition on the stream-
function at all the boundary points (needed to solve the Poisson equation) and a
boundary condition for the vorticity at the inflow points. They used persistence in
both cases: for the elliptic equation they used as boundary condition ∂$/∂t = 0
(i.e., the normal wind remains constant), and then specified that the vorticity also
remained constant (∂∇2$/∂t = 0) at the inflow points and extrapolated the vorticity
using upstream differences at the outflow points.

For the SWEs, there are three characteristics, one corresponding to a geostrophic
solution, moving with the speed of the flow U , and the other two corresponding to
inertia-gravity waves, moving with speed U ±

√
f 2k2 +�. At the boundaries, if

the speed of inertia-gravity waves is larger than U and the flow is inward, we have
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to specify two boundary conditions. If the flow is outward, we have to specify one
boundary condition (corresponding to the inertia-gravity waves moving in). If U
is greater than the speed of the inertia-gravity waves, we have to specify all three
boundary conditions at the inflow points and none at the outflow points. For parabolic
equations (with horizontal diffusion), each predicted variable has to be specified as
well at all lateral boundaries.

Oliger and Sundstrom (1978) showed that the hydrostatic primitive equations
are not purely hyperbolic (because of the loss of the time derivative of the vertical
velocity), and that they do not have a well-posed set of boundary conditions. In an
excellent review of the lateral boundary condition used in operational regional NWP
models, McDonald (1997) pointed out that with the presence of horizontal diffusion
in models there is a feeling that we can “over-specify slightly the lateral boundary
conditions and not do very much damage”.

In practice, boundary conditions are chosen pragmatically and tested numerically
to check their appropriateness. Several methods have been tried over the years, but
the most widely used is the boundary relaxation scheme introduced by Davies (1976).
Davies (1983) has a very illuminating analysis of the impact of the different types
of boundary conditions and their generation of spurious reflection using simple ex-
amples of wave equations and SWEs. He points out that an overspecifying boundary
condition scheme is satisfactory if: (a) it transmits incoming waves from the “host”
model providing boundary information without appreciable change of phase or am-
plitude, and (b) at the outflow boundaries, reflected waves do not reenter the domain
of interest with appreciable amplitude. We follow the Davies (1983) analysis and the
review by McDonald (1997) in the rest of this section. Durran (1999), Chapter 8,
is also devoted to this subject.

3.5.2 Lateral boundary conditions for one-way
nested models

The majority of regional models have “one-way” lateral boundary conditions, i.e.,
the host model, with coarser resolution, provides information about the boundary
values to the nested regional model, but it is not affected by the regional model
solution. This approach has some advantages: (a) it allows for independent develop-
ment of the regional model, and (b) the host model can be run for long integrations
without being “tainted” by problems associated with nonuniform resolution or from
the regional model. Overall, the regional one-way nesting can be considered to have
been successful, in the sense that the boundary information from the host model
is able to penetrate the regional model, and the regional model solution is able to
leave the domain without appreciable deterioration of the solutions. The success
can also be measured by the fact that there have been several attempts to perform
long-term integrations of nested regional models. In these long-term integrations, the
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initial regional information is swept out of the domain in the first day or two, and all
the additional information comes from the global model integration. This approach
is denoted “regional climate modeling”. Takle et al. (1999) discuss the Project to
Intercompare Regional Climate Systems (PIRCS). In these extended integrations,
the regional model acts as a “magnifying glass” for the global solution, allowing the
large-scale flow to interact with smaller scale forcing such as orography, variations
in soil moisture and land–sea contrast, and as a result tend to give a more realistic so-
lution. The “added value” over the global solutions empirically indicates the overall
success of the one-way boundary conditions used in different models.

There are four types of “pragmatic” boundary conditions that have been formulated
for one-way lateral boundary conditions:

(a) Pseudo-radiation boundary conditions
Orlanski (1976) proposed a finite difference approximation of the “radiation condi-
tion”, i.e., specifying well-posed boundary conditions for pure hyperbolic equations.
One assumes that the prognostic equations locally satisfy ∂u/∂t + c∂u/∂x = 0 and
then estimates the phase speed c using a finite difference equivalent of

c = −∂u

∂t

/
∂u

∂x
(3.5.1)

at the points immediately inside the boundary (denoted by b − 1). Miller and Thorpe
(1981) used first order upstream approximation

c′ = −un
b−1 − un−1

b−1

�t

/
un−1

b−1 − un−1
b−2

�x
(3.5.2)

as well as higher-order approximations. After estimating c′, if it points into the
domain, un+1

b is specified. If it points out, the upstream scheme is used: un+1
b =

un
b − c′�t/�x(un

b − un
b−1). If c′�t/�x > 1 because the space derivative of u is

small, Orlanski (1976) suggested limiting the value of c′ to c′ = �x/�t . Klemp and
Lilly (1978) pointed out reasons why the approximate “radiation schemes” are not
completely successful in avoiding spurious reflection: there can be overspecification
at the boundaries, specification of the right number of boundary conditions but not
their correct values, and errors in the estimation of c′. The radiation condition has
been used for research models (e.g., Durran et al. 1993). Klemp and Durran (1983)
and Bougeault (1983) used radiation boundary conditions at the top of the model.
Operational models generally do not use radiation boundary conditions and instead
impose the condition that the vertical velocity be zero at the top (e.g., σ̇ = 0 at
σ = σT for sigma coordinates). As a result, the presence of this artificial “rigid top”
leads to spurious wave reflections and even generates instabilities near the top (e.g.,
Kalnay and Toth, 1996, Hartman et al., 1997).
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(b) Diffusive damping in a boundary zone or “sponge layer” (Burridge, 1975,
Mesinger, 1977)

In this method the global (or host) model boundary conditions are specified for all
variables, and horizontal diffusion is added over a boundary zone to dissipate the
noisy waves generated by the boundary conditions:

∂u

∂t
+ c

∂u

∂x
=
(

∂

∂x
v
∂u

∂x

)
BZ

(3.5.3)

This would seem to be a natural choice for regional model boundary conditions since
by increasing the order of the equation to make it parabolic within a limited boundary
zone, it is possible to specify all variables at the boundary without overspecifying.
However, this approach also has clear disadvantages: it damps the incoming waves
from the global model (unless they are long compared to the width of the damping
zone). It also produces spurious reflections of outgoing waves if ν increases abruptly,
and if it increases slowly it may not be enough to damp the reflected waves. As a
result, this method is not very much in use at this time.

(c) Tendency modification scheme (Perkey and Kreitzberg, 1976)
The wave equation is replaced by

∂u

∂t
+ c

∂u

∂x
= −γ ∂(u − u)

∂t
(3.5.4)

where u is prescribed from the host model (which is assumed to be correct near the
boundary), and γ is zero in the interior and increases to large values at the boundaries.
Since the host model follows the wave equation

∂u

∂t
+ c

∂u

∂x
= 0 (3.5.5)

we can write an “error” equation for the difference u′ between the regional and the
host model:

∂u′

∂t
+ c∗

∂u′

∂x
= 0 (3.5.6)

where c∗ = c/(1+ γ ). Therefore the time tendency scheme advects the error and
slows it down to almost zero at the boundaries, thus avoiding overspecification. In
practice this scheme is also found to produce spurious reflections.

(d) Flow relaxation scheme (Davies 1976, 1983)
As indicated before, this is the most widely used scheme. The forecast equations are
modified by adding a Newtonian relaxation term over a boundary zone:

∂u

∂t
+ c

∂u

∂x
= −K (u − u) (3.5.7)
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The “error” equation is now

∂u′

∂t
+ c

∂u′

∂x
= −Ku′ (3.5.8)

indicating that the error is advected to or from the boundary and damped. At the
inflow boundaries only the differences between the regional and the host model
are damped. Therefore this scheme mitigates the effects of overspecification at the
outflow boundaries without introducing deleterious effects in the inflow boundaries.

If K increases abruptly, it can also introduce some spurious reflection. For this
reason, Kallberg (1977) proposed the use of a smoothly growing function for K . Let’s
consider a complete prognostic equation for the regional model near the boundaries

∂u

∂t
= F − K (u − u) (3.5.9)

In (3.5.9) F includes all the regular “forcing terms” in the interior time derivative
(e.g., advection, sources/sinks, etc.). We can discretize it in time, using, for example,
the leapfrog scheme for the regular terms and backward implicit scheme for the
boundary relaxation term, as

un+1 − un−1

2�t
= Fn − K

(
un+1

i − un+1) (3.5.10)

Here the overbar represents the host model, un+1 is the updated regional model,
and the subscript i indicates the regional model (internal) solution obtained before
relaxing towards the host model values un+1:

un+1
i = un−1 + 2�t Fn (3.5.11)

From (3.5.10) and (3.5.11) we can now write

un+1 = un+1
i − K 2�tun+1

i + K 2�tun+1 = (1− α)un+1
i + αun+1 (3.5.12)

Here α = 2�t K varies from 0 in the interior (K = 0), to 1 at the boundary, where
the regional model solution is specified to coincide with the host model solution.
McDonald (1997) mentioned three functions that have been proposed forα( j),where
we define j = 0, α(0) = 1 at the boundary, and assume that the boundary zone
has n points so that for j ≥ n, α( j) = 0. The first function, found to be optimal
in minimizing false reflection of both Rossby and gravity waves by Kallberg (1977),
starts gently in the interior and has the steepest slope at the boundary: α = 1−
tanh( j/2). Jones et al. (1995) used a linear profile α = 1− j/n, and McDonald
and Haugen (1992) proposed a cosine profile α = [1+ cos( jπ/n)]/2, which has the
steepest slope at the center of the boundary zone. Benoit et al. (1997) in the MC2
model used α( j) = cos2( jπ/2n) and reported good results.



3.5 Lateral boundary conditions for regional models 125

3.5.3 Other examples of lateral boundary conditions

Tatsumi (1983, 1986), following an idea of Hovermale, suggested adding an “error
diffusion” at the boundaries as well, which can also help to reduce the boundary
errors without affecting the incoming wave:

∂u

∂t
+ c

∂u

∂x
= −K (u − u)+ ∂

∂x

(
ν
∂u − u

∂x

)
(3.5.13)

This is used in the regional spectral model of the Japan Weather Service (Tatsumi,
1986).

Juang and Kanamitsu (1994) and Juang et al. (1997) also developed a RSM nested
in the NCEP global spectral model, but they cast it as a perturbation model, so that the
full RSM solution includes the global model solutions plus the regional perturbations.
They use an “implicit” variation of the tendency modification approach with

∂u

∂t
= F − µ(un+1 − un+1) (3.5.14)

where µ = α/T, T is an e-folding time (3 hours), and

un+1 = un−1 + 2�t
∂u

∂t
un+1 = un−1 + 2�t

∂u

∂t
(3.5.15)

so that for the perturbation u′ = u − u, the implicit relaxation is given by

∂u′

∂t
=

F − ∂ ū

∂t
− µu′n−1

1+ 2µ�t
(3.5.16)

They found that the orography of the regional model also has to be blended with the
global orography in the boundary zone in order to avoid spurious noise.

The Eta model at NCEP (Mesinger et al., 1988, Janjic, 1994, Black, 1994) uses an
“almost well-posed” approach. It uses boundary values from the NCEP global model
only at the outermost row. When the flow is inwards, all the prognostic variables are
prescribed from the global model. At the outflow points, the tangential velocities are
extrapolated from the interior of the integration domain. The variables in the second
row are a blend from the outermost and the third row. The “interior” is defined as the
third row inwards, but the Eta model uses an upstream advection scheme for the five
outer rows of the domain in order to minimize possible reflections at the boundary.

3.5.4 Two-way interactive boundary conditions

Finally, we note that some regional models have been developed using two-way
interaction in the boundary conditions, i.e., the (presumably more accurate) regional
solution, in turn, also affects the global solution. Although, in principle, this would
seem a more accurate approach than the one-way boundary condition, care has to be
taken that the high-resolution information does not become distorted in the coarser
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resolution regions, which can result in worse overall results, especially at longer time
scales. There are basically two types of two-way boundary condition approaches.

The first approach corresponds to a truly nested model, with abrupt changes in the
resolution, but with the inner or nested solution also used to modify the global or outer
model solution. The first operational example of this type of two-way interaction was
the NGM developed by Phillips (1979). Zhang et al. (1986) implemented two-way
boundary conditions for the nesting in the MM5 model. See also Kurihara and Bender
(1980), and Skamarock (1989).

The second approach is simpler, and it involves the use of continuously stretched
horizontal coordinates so that only the region of interest is solved with high resolution.
It is evident that with this approach, the equations in the regional high-resolution areas
do not require special boundary conditions, and that they do influence the solutions
in the regions more coarsely resolved, so that they can be considered as two-way
interactive nesting. There have been a few methods used to obtain regional high
resolution using stretched global coordinates:

(a) Uniform latitude–longitude stretching (Staniforth and Daley, 1977, Benoit
et al., 1989, Fox-Rabinovitz et al., 1997). This method is used by the
Canadian regional operational system.

(b) Stretched spherical harmonics (Courtier and Geleyn, 1988). This method is
used in the French regional operational system.

(c) A regular volume (such as a cube) projected on the sphere and then stretched
(Rancic et al., 1996, Taylor et al., 1997a). A variant of this approach is the
spherical geodesic grids explored somewhat unsuccessfully during the 1960s,
and now again in vogue (Williamson, 1968, Sadourny et al., 1968, Masuda
and Ohnishi, 1986, Heikes and Randall, 1995). The use of a regular volume to
generate the grid avoids the pole problem of the convergence of the meridians
in the latitude–longitude grid.
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Introduction to the parameterization
of subgrid-scale physical processes

4.1 Introduction

In Chapter 2 we derived the equations that govern the evolution of the atmosphere,
and in Chapter 3 we discussed the numerical discretizations that allow the numerical
integration of those equations on a computer. The discretization of the continuous
governing equation is limited by the model resolution, i.e., by the size of the smallest
resolvable scale. We have seen that in a finite difference scheme, the smallest scales
of motion that can be (poorly) resolved are those which have a wavelength of two grid
sizes. In spectral models, the motion of the smallest wave present in the solution is
more accurately computed, but for these and for any type of numerical discretization
there is always a minimum resolvable scale. Current climate models typically have
a horizontal resolution of the order of several hundred kilometers, global weather
forecast models have resolutions of 50–100 km, and regional mesoscale models of
10–50 km. Storm-scale models have even higher resolution, with grid sizes of the
order of 1–10 km. In the vertical direction, model resolution and vertical extent have
also been increased substantially, with current models having typically between 10
and 50 vertical levels, and extending from the surface to the stratosphere or even
the mesosphere. As computer power continues to increase, so does the resolution of
atmospheric models.

Despite the continued increase of horizontal and vertical resolution, it is obvious
that there are many important processes and scales of motion in the atmosphere that
cannot be explicitly resolved with present or future models. They include turbulent
motions with scales ranging from a few centimeters to the size of the model grid,
as well as processes that occur at a molecular scale, like condensation, evaporation,
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friction and radiation. We refer to all the processes that cannot be resolved explicitly
as “subgrid-scale processes”. An example of an important process that takes place at a
subgrid scale is the turbulent mixing in the planetary boundary layer. During the day-
time, the solar heating at the earth’s surface not only warms the soil but also causes the
plants to transpire and soil moisture to evaporate, thus transporting moisture into the
atmosphere. Surface heating leads to turbulent motion that is on the scale of a few me-
ters to a few hundred meters. With a horizontal grid size of 10–100 km, models cannot
resolve these motions. Yet the transport of the heat and moisture into the boundary
layer is very crucial to the development of afternoon thunderstorms and a host of
other phenomena that are important to the resolvable atmospheric fields. Another no-
table example is tropical cumulus convection. The cumulus clouds in the tropics are
known to be extremely important to the global energy balance, yet each cloud typi-
cally occupies only a few kilometers of space horizontally and vertically (Pan, 1999).

Although these processes occur at small scales, they depend on, and in turn, affect
the larger-scale fields and processes that are explicitly resolved by a numerical model.
For example, condensation of water vapor on a subgrid scale occurs if the resolved-
scale humidity field is sufficiently high, and, in turn, condensation releases latent heat
that warms the grid-scale temperature field. For this reason, it is not possible to ignore
the effect of the subgrid processes on the resolvable-scale fields without degrading
the quality of the forecast. To reproduce the interaction of the grid and subgrid-
scale processes, the subgrid-scale phenomena are “parameterized”, i.e., their effect
is formulated in terms of the resolved fields. Fig. 4.1.1, adapted from Arakawa (1997),
indicates schematically the resolved processes (usually referred to as the “dynamics
of the model”), and the processes that must be parameterized (“the model physics”),

DYNAMICAL
PROCESSES

Hydrological
processes

Cloud
processes

Boundary layer
processes

Radiation and
chemical processes

OCEAN AND LAND PROCESSES

Precipitation

Figure 4.1.1: Physical
processes in the atmosphere
and their interactions. The
dynamical processes for
resolvable scales, in bold,
are explicitly computed by
the model “dynamics”
(discussed in Chapters 2 and
3). The other subgrid-scale
processes are parameterized
in terms of the
resolved-scale fields.
(Adapted from Arakawa,
1997.)
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and their interactions. Arakawa (1997) points out that some subgrid-scale processes
can be interpreted as adjustment processes. For example, the atmosphere adjusts to
the surface conditions through boundary layer adjustment processes, which are very
efficient if the planetary boundary layer is unstable. Radiative fluxes occur because
temperature tends to adjust towards radiative equilibrium. Convective processes occur
in the presence of an unstable stratification and adjust the field towards a more
neutrally stable state. Because radiative equilibrium is convectively unstable for the
lower troposphere, radiative–convective adjustment is a dominant process controlling
the vertical thermal structure of the troposphere.

The details of the parameterizations have a profound effect on the model forecast,
especially at longer time scales, and are the subject of very intense research. In this
chapter we provide only a very elementary introduction to model parameterizations.
A short but inspiring introduction is presented in Arakawa (1997). An overview
of different subgrid processes, and their parameterizations in atmospheric models
appears in Haltiner and Williams (1980), and a more recent review, including ocean
and land models, is available in Climate system modeling edited by Trenberth (1992).
Stull (1988) and Garrart (1994) are texts on the atmospheric boundary layer processes.
Emanuel and Raymond (1993) edited a volume including detailed discussions of
a number of cumulus parameterizations. Pan (1999) discusses the philosophy that
guides modelers in the development of parameterizations. Randall (2000) has edited a
book honoring Akio Arakawa on the occasion of his retirement, which includes many
review papers on areas related to physical parameterizations (as well as numerical
modeling).

4.2 Subgrid-scale processes and Reynolds averaging

Consider the prognostic equation for water vapor written in flux form in z-coordinates
(Section 2.5):

∂ρq

∂t
= −∂ρuq

∂x
− ∂ρvq

∂y
− ∂ρwq

∂z
+ ρE − ρC (4.2.1)

In the real atmosphere, both u and q contain scales that are resolved by the grid of
the model, and smaller, subgrid scales. We write then

u = u + u′

q = q + q ′

}
(4.2.2)

where the overbar represents the spatial average over a grid, and the primes, the
subgrid-scale perturbation. We can neglect the subgrid-scale variations of ρ. By
definition, the grid-box average of all quantities linear in the perturbations is zero,
e.g., q ′ = 0, u′q = 0. Also, averaging a grid-average quantity does not change it, e.g.,
uq = uq. These are the rules for Reynolds averaging, a method originally developed



130 4 Introduction to the parameterization of subgrid-scale physical processes

by Reynolds in 1895 for use in time averages, but that we apply to grid-box averages.
We can substitute (4.2.2) in the moisture equation (4.2.1), take a grid average, and
obtain:

∂ρq

∂t
= −∂ρuq

∂x
− ∂ρvq

∂y
− ∂ρwq

∂z
− ∂ρu′q ′

∂x

−∂ρv′q ′

∂y
− ∂ρw′q ′

∂z
+ ρE − ρC (4.2.3)

The first three terms of the right-hand side are the grid-scale (resolved) advection
terms, whose numerical discretization we have studied in the Chapter 3. They are
included in the “dynamical processes” box of Fig. 4.1.1. The next three terms are the
divergences of the eddy fluxes of moisture or turbulent moisture transports. The last
two terms (evaporation and condensation) are subgrid-scale processes that occur at
a molecular scale and that we still need to parameterize. Both the molecular-scale
processes and eddy fluxes that occur at scales much larger than molecular, but smaller
than the grid resolution, are denoted collectively as “subgrid-scale processes”. As
indicated in the introduction, the impact of at least some of these physical processes
on the larger scales explicitly represented in the model must be included. Without the
parameterization of at least the most important subgrid-scale processes, the model
integrations cease to be realistic in a very short period, from a day or two for large-
scale flow, to less than an hour for storm-scale simulations.

There are several choices for the parameterization of the effect of turbulent trans-
port terms in terms of the resolved scales. Consider, for example, the vertical turbulent
flux of moisture (which, because of the strong vertical gradients, especially in the
planetary boundary layer, is by far the dominant component of the eddy fluxes). We
can choose to:

(a) Neglect the vertical turbulent flux, assuming that, in the boundary layer, the
grid-scale field is well mixed:

−ρw′q ′ = 0 (4.2.4)

This is known as a “zeroth order” closure, in which only the average
properties are sought. An example is the bulk parameterization of the mixed
boundary layer (Deardorff, 1972), in which the potential temperature, water
vapor, and wind are assumed to be well mixed, and only the depth of the layer
is forecast.

(b) Parameterize the vertical flux as a “turbulent diffusion process” in terms of q
and the other grid-scale variables (this is a first order closure, and is the most
commonly used):

−ρw′q ′ = K
∂q

∂z
(4.2.5)

This represents the effect of turbulent mixing due to parcels moving up or
down, bringing with them the moisture from their original level, and mixing
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with the environment at the new level. The main problem in “K-theory”, as
this approach is also known, is to find a suitable formulation of the eddy
diffusivity K, which also depends on the grid-average fields and the stability
of the flow.

(c) Obtain a prognostic equation for w′q ′ by multiplying the vertical equation of
motion by ρq and adding it to (4.2.1) multiplied by w. We obtain an equation
with many terms like

∂ρwq

∂t
= −∂ρuwq

∂x
− · · · (4.2.6)

We can then take its Reynolds average and subtract it from (4.2.6), and derive
a prognostic equation for the turbulent fluxes ∂ρw′q ′/∂t = · · · − ∂ρw′w′q ′/
∂z · · ·. This equation can be included as an additional model equation. Since
it contains triple products of turbulent terms, these terms, in turn, have to be
parameterized in terms of the double products:

−ρw′w′q ′ = K ′
∂ρw′q ′

∂z
(4.2.7)

This is a second order closure. Second order closure models have many
additional prognostic equations (for all the products of turbulent variables)
but are an alternative to high-resolution models to obtain an estimate of
turbulent transports (e.g., Moeng and Wyngaard, 1989). Mellor and Yamada
(1974, 1982) show how to construct a hierarchy of closures for vertical fluxes
and provide simplifying assumptions.

If an important physical process that occurs in the real atmosphere on a scale unre-
solved by the model is not parameterized, it may still appear in the model integration
“aliased” into the resolved scales. For example, primitive equation model integrations
will be ruined by dry convective instability if it is not parameterized. In the real at-
mosphere, if the potential temperature decreases with height, the unstable convective
circulation that takes place occurs at very small horizontal scales, of the same order
as the depth of the unstable layer, typically 1 km or less. Since this cannot be resolved
with horizontal grids of the order of 10–100 km, models with unstable layers develop
an unrealistic appearance of “vertical noodles”, with narrow columns moving up and
down side by side. In order to handle this problem, Manabe et al. (1965) developed
the dry convective adjustment, a simple parameterization of dry convection still used
in most present-day models. In this parameterization, when the grid-scale atmosphere
lapse rate exceeds the dry adiabatic lapse rate %d = g/Cp ≈ 10 K/km, the unstable
atmospheric column is instantaneously adjusted to an adiabatic or very slightly stable
profile, while keeping constant the layer total enthalpy. Moist (cumulus) convection
that occurs when there is grid-scale saturation and the temperature gradient exceeds
the moist adiabatic lapse rate also results in a “wet noodles” circulation. This led
to the moist convective adjustment, the first parameterization of cumulus convection
(Manabe et al., 1965), adjusting to a moist adiabatic profile. The moist convective
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adjustment was not found to be a sufficiently realistic cumulus parameterization,
and has since been replaced by other convective parameterizations by Kuo, 1974,
Arakawa and Schubert, 1974, Betts and Miller, 1986, Kain and Fritsch, 1990. See
the volume edited by Emanuel and Raymond (1993) for a detailed review of cumu-
lus parameterizations, and some updates in Randall (2000). Cumulus convection is
one of the most important parameterizations in determining the characteristics of the
model climatology (e.g., Miyakoda and Sirutis, 1977).

When a process occurs at scales not much smaller than the grid size, it presents
an additional difficulty: the resolved scales and the unresolved scales to be pa-
rameterized are not well separated. An example of a process only marginally re-
solved in present-day models, which therefore appears aliased into the shortest
waves present in the solution, is the sea-breeze circulation. A model with a grid
size of 50–100 km (or more) cannot resolve the real sea-breeze circulation that takes
place, for example, over a distance of the order of 1–20 km in the Florida penin-
sula on summer days. Therefore, in the model, the sea-breeze coastal circulation
becomes distorted into a 2�x circulation, and because the scales are not well sep-
arated, its effects on the large scales are difficult to parameterize. Similar effects
are observed near heated mountain slopes when they are not properly resolved. The
same problem of lack of scale separation complicates cumulus convection param-
eterization in models with a resolution of the order of 10 km, which is close to
the horizontal scale of the convection, but not high enough to resolve convection
explicitly.

4.3 Overview of model parameterizations

In a typical hydrostatic model on pressure coordinates, the governing equations
(Chapter 2), including subgrid-scale processes, denoted with a tilde, are written as:

dv
dt
= −∇pφ − f k × v− g

∂ τ̃

∂p
(4.3.1)

for the two horizontal equations of motion, including the effect of eddy fluxes of
momentum,

∂φ

∂p
= −α (4.3.2)

the hydrostatic equation,

∇p · v+ ∂ω

∂p
= 0 (4.3.3)
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the continuity equation,

∂ ps

∂t
+ v · ∇ ps = −

∞∫
0

∇p · vdp (4.3.4)

the rate of change of the surface pressure,

p α = RT (4.3.5)

the equation of state,

Cp
T

θ

dθ

dt
= Q̃ = Q̃rad − g

∂ F̃θ

∂p
+ L(C̃ − Ẽ) (4.3.6)

and the first law of thermodynamics, which includes radiative heating and cooling,
sensible heat fluxes and condensation and evaporation, and

dq

dt
= Ẽ − C̃ − g

∂ F̃q

∂p
(4.3.7)

the conservation equation for water vapor. Condensation takes place when the grid
average value oversaturates (stable or grid-scale condensation), or when there is
moist convective instability and cumulus convection. The condensed water falls
as precipitation, and may evaporate if the layers below are not saturated. Addi-
tional conservation equations can be written for cloud and rain water in models
with prognostic (rather than diagnostic) clouds, and for other substances such as
ozone.

In these equations the quantities with an overbar are the grid-averaged quantities
computed by the model dynamics, and the terms with the tilde represent the terms
that are parameterized. In a typical model, the vertical eddy flux of momentum
τ̃ = ρw′u′ i+ ρw′v′ j (also known as eddy stress) of sensible heat F̃T = ρCpw′T ′

and of moisture F̃q = ρw′q ′ may be represented using K-theory in the boundary
layer and neglected in the free atmosphere above the boundary layer (using K = 0
or a very small value). The vertical derivatives of the turbulent fluxes that appear in
the right-hand sides of (4.3.1), (4.3.6), and (4.3.7) introduce a requirement for lower
boundary conditions for the surface fluxes of heat, moisture, and momentum. These
surface fluxes are computed using a bulk parameterization based on the Monin–
Obukhov (1954) similarity theory. This theory concludes that the profiles of wind
and temperature in the turbulent surface layer can be described by a set of equations
that depends only on a few parameters, including the surface roughness length z0. The
hypothesis of similarity, based on many observational studies, suggests that the fluxes
of momentum and heat are nearly constant with height in the surface layer (of depth
10–100 m, which is much thinner than the planetary boundary layer). The fluxes
in the surface or constant flux layer are usually represented with bulk aerodynamic
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formulas:

τ = −ρCD|v|v
Fθ = −ρCH |v|Cp(θ − θS)
Fq = −ρCE |v|β(q − qS)


 (4.3.8)

Here, v, θ, q are the velocity, potential temperature, and mixing ratio in the surface
layer, respectively, and the variables with an S subscript are the corresponding values
at the underlying ocean or land surface (vS = 0). CD,CH , and CE are transfer coef-
ficients (CD is known as “drag coefficient”) and they depend on the stability of the
surface layer (measured by the bulk Richardson number RiB = gz

[
(θ − θS)/θ

]
/v2,

the height z and the surface roughness length). They are nondimensional and have
typical values of the order of 10−3 for stable conditions and 10−2 for unstable con-
ditions (Louis, 1979). β is a coefficient representing the degree of saturation of the
underlying surface (1 for oceans, 0–1 for land depending on the degree of saturation
in the soil moisture content). The surface layer values are either obtained through the
use of a thin (order 10 m) prognostic layer or diagnosed.

The radiative heating in (4.3.6) is determined from the vertical divergence of the
upward and downward fluxes of short- and long-wave radiation, obtained using the
radiative transfer equation. See Kiehl (1992) for a review of the parameterization of
radiation. The interaction between clouds and radiation is very complex, and is a
major area of research. Early models specified clouds climatologically (Manabe et al.,
1965). In the 1980s the cloud cover was specified diagnostically, based on relative
humidity (Slingo, 1987, Campana, 1994). More recently, cloud and rain water were
predicted using budget equations and cloud cover was deduced from the amount of
cloud water (e.g., Zhao et al., 1997). The cloud properties are also important: rather
than plane slabs, as generally assumed, clouds have a fractal structure, which effec-
tively reduces their albedo and increases atmospheric absorption of solar radiation
(Cahalan et al., 1994).

An important area of research is the effect of subgrid-scale mountains. Wallace
et al. (1983) proposed representing the blocking effect of subgrid-scale hills and
valleys by increasing the effective height of mountains above its grid average by a
factor of order one times the standard deviation of the subgrid-scale orography. This
approach has been denoted “envelope orography”. Similarly, Mesinger et al. (1988)
chose a method essentially that defines the grid mountain height by the tallest peaks
(“silhouette orography”). Lott and Miller (1997) formulated a new parameterization
using developments in the nonlinear theory of stratified flows around obstacles, pay-
ing special attention to the parameterization of the blocked flow when the effective
height of the subgrid-scale orography is high enough. They showed that this method
can duplicate the results using envelope orography. In addition to its blocking effect,
under stable conditions, small-scale orography generates internal gravity waves that
propagate upwards, increase their amplitude, and eventually break at upper levels,
depositing their low-level momentum (Lilly and Kennedy, 1973). The net result is
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a deceleration due to surface orography at upper levels. Modelers have introduced
a gravity-wave parameterization following Palmer et al. (1986), McFarlane (1987),
and Lindzen (1988). Kim and Arakawa (1995) developed a parameterization of the
drag due to gravity waves.

Other areas of research in the parameterization of subgrid processes are related
to the fact that the underlying surfaces (ocean and land) have their own evolution
and therefore provide a “longer memory” to the forecast model which cannot be
represented diagnostically. Equation (4.3.8) indicates that over ocean it is necessary
to know the surface stress τ and the SST. Short-range forecasts are performed with
observed SSTs, under the assumption that they do not change significantly with time,
but this is clearly not a reasonable assumption for medium-range or longer forecasts
(e.g., Peña et al., 2002).

For seasonal and interannual predictions, the SST is predicted using an ocean
model coupled to the atmospheric model (Ji et al., 1994, Trenberth, 1992). In addition,
the surface fluxes over the ocean depend on the surface waves, which are driven by the
wind. Currently most models use the Charnock (1955) parameterization relating an
effective roughness length to the surface stress. In an iterative procedure the stress and
the roughness length are obtained and bulk-aerodynamical formulas used to deduce
the sensible and latent heat fluxes. However, in reality, ocean waves have a memory
of their previous interactions with the atmosphere: swell (“old sea”) is smoother than
“new sea” where waves are driven by sudden changes in the wind, and, in turn, this
affects the surface stress and the fluxes of heat and moisture. To take this effect into
account, it is necessary to couple atmospheric models with ocean wave models.

Over land, similarly, the surface fluxes of heat and moisture are strongly depen-
dent on the vegetation and soil moisture. Older models followed Manabe et al. (1965)
by representing the effect of available soil moisture with a simple 15-cm “bucket”
model, whose content was reduced by evaporation and increased by precipitation,
with overflow representing river runoff. The surface temperature was obtained diag-
nostically assuming zero heat capacity for the land. Current models include coupling
the atmospheric model with multilevel soil models with prognostic equations for the
soil temperature and moisture, and include the very important controlling effect of
plants on evapotranspiration (see reviews by Sellers (1992), Dickinson (1992), Pan
(1990)).
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Data assimilation

5.1 Introduction

In previous chapters we saw that NWP is an initial/boundary value problem: given
an estimate of the present state of the atmosphere (initial conditions), and appropriate
surface and lateral boundary conditions, the model simulates (forecasts) the atmo-
spheric evolution. Obviously, the more accurate the estimate of the initial conditions,
the better the quality of the forecasts. Currently, operational NWP centers produce
initial conditions through a statistical combination of observations and short-range
forecasts. This approach has become known as “data assimilation”, whose purpose
is defined by Talagrand (1997) as “using all the available information, to determine
as accurately as possible the state of the atmospheric (or oceanic) flow.”

There are several excellent reviews of this subject, which has become an im-
portant science in itself. The book Atmospheric data analysis by Daley (1991) is
a comprehensive description of methods for atmospheric data analysis and assim-
ilation. Ghil and Malanotte-Rizzoli (1991) have written a rigorous discussion of
present data assimilation methods with special emphasis on sequential methods. Ta-
lagrand (1997) gives an elegant introductory overview of current methods of data
assimilation, and Zupanski and Kalnay (1999) also provide a short introduction to
the subject. The book Data assimilation in meteorology and oceanography: Theory
and practice (Ghil et al., editors, 1997) contains a wealth of important papers on
current methods for data assimilation. An earlier but still useful book is Dynamic
meteorology: Data assimilation methods (Bengtsson et al., editors, 1981). Thiebaux
and Pedder (1987) provided a description of spatial interpolation methods applied to

136
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meteorology. Several workshops on data assimilation have taken place at ECMWF,
and their proceedings are extremely useful.

In the early NWP experiments, Richardson (1922) and Charney et al. (1950)
performed hand interpolations of the available observations to a regular grid, and
these fields of initial conditions were then manually digitized, which was a very time
consuming procedure. The need for an automatic “objective analysis” became quickly
apparent (Charney, 1951), and interpolation methods fitting observations to a regular
grid were soon developed. Panofsky (1949) developed the first objective analysis
algorithm based on two-dimensional polynomial interpolation, a procedure that can
be considered “global” since the same function is used to fit all the observations.

Gilchrist and Cressman (1954) developed a “local polynomial” interpolation
scheme for the geopotential height (Fig. 5.1.1). A quadratic polynomial in x and
y was defined at each grid point:

z(x, y) = a00 + a10x + a01 y + a20x2 + a11xy + a02 y2 (5.1.1)

The six coefficients were determined by minimizing the mean square difference
between the polynomial and observations close to the grid point (within a radius of
influence of the grid point):

min
ai j

E = min
ai j

Kz∑
k= 1

pk
(
zo

k − z(xk, yk)
)2 +

Kv∑
k= 1

qk
{[

uo
k − ug(xk, yk)

]2

+ [
vo

k − vg(xk, yk)
]2}

(5.1.2)
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Figure 5.1.1: Schematic
of grid points (circles),
irregularly distributed
observations (squares), and
a radius of influence around
a grid point i marked with
a black circle. In 4DDA,
the grid-point analysis is a
combination of the forecast
at the grid point (first
guess) and the observational
increments (observation
minus first guess) computed
at the observational points k.
In certain analysis schemes,
like SCM, only observations
within the radius
of influence, indicated by
a circle, affect the analysis
at the black grid point.
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Here pk, qk are empirical weighting coefficients, and ug, vg are the geostrophic wind
components computed from the gradient of the geopotential height z(x, y) at the
observation point k, and K is the total number of observations within the radius of
influence. Note that although the field being analyzed is just the geopotential height,
the wind observations are useful as well because they provide additional information
about its gradient.

However, for operational primitive equation models, it is not enough to perform
spatial interpolation of observations into regular grids, because not enough data are
available to initialize current models. As pointed out in the introduction, the num-
ber of degrees of freedom in a modern NWP model is of the order of 107, whereas
the total number of conventional observations of the variables used in the mod-
els (e.g., from rawinsondes) is of the order of 104. There are many new types of
data currently available, including remotely sensed data such as satellite and radar
observations, but they do not measure directly the variables used in the models
(wind, temperature, moisture, and surface pressure). Moreover, their distribution in
space and time is very nonuniform (Fig. 1.4.1), with regions like North America
and Eurasia that are relatively data-rich, and others that are much more poorly
observed.

For this reason, it became clear rather early in the history of NWP that, in addition
to the observations, it was necessary to have a complete first guess estimate of the
state of the atmosphere at all the grid points in order to generate the initial conditions
for the forecasts (Bergthorsson and Döös, 1955). The first guess (also known as
background field or prior information) should be our best estimate of the state of the
atmosphere prior to the use of the observations. Initially climatology, or a combination
of climatology and a short forecast were used as a first guess (e.g., Gandin, 1963,
Bergthorsson and Döös, 1955). As forecasts became better, the use of short-range
forecasts as a first guess was universally adopted in operational systems in what is
called an “analysis cycle” (Fig. 5.1.2).

The analysis cycle is an intermittent data assimilation system that continues to
be used in most global operational systems, which typically use a 6-h cycle per-
formed four times a day. The model forecast plays a very important role. Over
data-rich regions, the analysis is dominated by the information contained in the
observations. In data-poor regions, the forecast benefits from the information up-
stream. For example, 6-h forecasts over the North Atlantic Ocean are very good,
even in the absence of satellite data, because of the information coming from
North America. The forecast is thus able to transport information from data-rich
to data-poor areas, and for this reason, data assimilation using a short-range fore-
cast as a first guess has become known as four-dimensional data assimilation
(4DDA).

In Section 5.2 we describe empirical analysis schemes (SCM and nudging), and
Sections 5.3 et seq. are devoted to statistical interpolation schemes.



(a)

Global analysis (statistical
interpolation) and balancing

Global forecast model

Initial conditions

Observations (+/−3 h)
Background or

first guess

6-h forecast

(Operational forecasts)

(b)

Regional analysis (statistical
interpolation) and balancing

Initial conditions

Observations (+/−30 min)
Background
or first guess

1-h forecast

Boundary conditions
from global model Regional forecast model

(Operational forecasts)

Figure 5.1.2: (a) Typical global 6-h analysis cycle performed at 00, 06, 12, and
18 UTC. The observations should be valid for the same time as the first guess. In the
global analysis this has usually meant the rawinsondes are launched mostly at the
main observing times (00 and 12 UTC), and satellite data are lumped into windows
centered at the main observing times. The observations can be direct observations of
variables used by the model, or indirect observations of geophysical parameters, such
as radiances, that depend on the variables used in the model. (b) Typical regional
analysis cycle. The main difference with the global cycle is that boundary conditions
coming from global forecasts are an additional requirement for the regional forecasts.
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5.2 Empirical analysis schemes

5.2.1 Successive corrections method (SCM)

The first analysis method used in 4DDA was based on an empirical approach known
as the SCM, developed by Bergthorsson and Doos (1955) in Sweden and by Cressman
(1959) of the US Weather Service. In SCM the first estimate of the gridded field is
given by the background (or first guess) field:

f 0
i = f b

i (5.2.1)

where f b
i is the background field evaluated at the ith grid point, and f 0

i the corres-
ponding zeroth iteration estimate of the gridded field (Fig. 5.1.1).

After this first estimate, the following iterations are obtained by “successive cor-
rections”:

f n+1
i = f n

i +

K n
i∑

k= 1

wn
ik

(
f O
k − f n

k

)
K n

i∑
k= 1

wn
ik + ε2

(5.2.2)

where f n
i is the nth iteration estimation at the grid point i, f O

k is the kth observation
surrounding the grid point i, f n

k is the value of the nth field estimate evaluated at
the observation point k (obtained by interpolation from the surrounding grid points),
and ε2 is an estimate of the ratio of the observation error variance to the background
error variance. The weights wn

ik can be defined in different ways. Cressman (1959)
defined the weights in the SCM as

wn
ik =

R2
n − r2

ik

R2
n + r2

ik

for r2
ik ≤ R2

n

wn
ik = 0 for r2

ik > R2
n


 (5.2.3)

where r2
ik is the square of the distance between an observation point rk and a grid

point at ri .
The radius of influence Rn is allowed to vary with the iteration, and K n

i is the
number of observations within a distance Rn of the grid point i . For example, in the
1980s the Swedish operational system used R1 = 1500 km, R2 = 900 km for upper
air analyses, and R1 = 1500 km, R2 = 1200 km, R3 = 750 km, R4 = 300 km for
the surface pressure analysis. The reduction of the radius of influence results in a
field that reflects the large scales after the first iteration and converges towards the
smaller scales after the additional iterations.

In the Cressman SCM, the coefficient ε2 is assumed to be zero. This results in a
“credulous” analysis that more faithfully reflects the observations, and for a very small
radius of influence the analysis converges to the observation values if the observations
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are located at the grid points. If the data are noisy (e.g., if an observation has gross
errors, or if it contains an unrepresentative sample of subgrid-scale variability), this
can lead to “bull’s eyes” (many isolines around an unrealistic grid-point value) in
the analysis. Including ε2 > 0 assumes that the observations have errors, and gives
some weight to the background field.

Barnes (1964, 1978) developed another empirical version of the SCM that has
been widely used for analyses where there is no available background or first guess
field, such as the analysis of radar data or other small-scale observations. Since we
have no information on the background field, its error variance can be considered to
be very large, so that ε2 = 0. The weights are given by wn

ik = e−r2
ik/2R2

n . The radii of
influence are changed by a constant factor at each iteration: R2

n+1 = γ R2
n . If γ = 1,

only the large scales are captured. For γ < 1 more details in the observations are
reproduced in the analysis as more iterations are performed.

Although the SCM method is empirical, it is simple and economical, and it pro-
vides reasonable analyses. Bratseth (1986) showed that if the weights are chosen
appropriately instead of using the empirical formulas presented above, the SCM can
be made to converge to a proper statistical interpolation (OI) (Section 5.3).

5.2.2 Nudging

Another empirical and fairly widely used method for data assimilation is Newtonian
relaxation or nudging (Hoke and Anthes, 1976, Kistler, 1974). This consists of adding
to the prognostic equations a term that nudges the solution towards the observations
(interpolated to the model grid). For example, for a primitive equation model, the
zonal velocity forecast equation is written as

∂u

∂t
= −v ·∇u + f v − ∂φ

∂x
+ uobs − u

τu
(5.2.4)

and similarly for the other equations.
The relaxation time scale, τ , is chosen based on empirical considerations and

may depend on the variable. If τ is very small, the solution converges towards the
observations too fast, and the dynamics do not have enough time to adjust. If τ is
too large, the errors in the model can grow too much before the nudging becomes
effective. Hoke and Anthes indicated that τ should be chosen so that the last term
is similar in magnitude to the less dominant terms. They used a very short time
scale, about 20 minutes, in their experiments. Stauffer and Seaman (1990) used
about one hour in experiments assimilating synoptic observations, and reported a
fair amount of success. Zou et al. (1992) made optimal parameter estimations of the
nudging time scale. Kaas et al. (1999) performed an interesting experiment, nudging
a model towards a 15-y reanalysis from the ECMWF, and by averaging the mean
forcing introduced by nudging, empirically determined corrections to reduce model
deficiencies.
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Although this method is not generally used for large-scale assimilation, some
groups use it for assimilating small-scale observations (e.g., radar observations) when
there are no available statistics to perform a statistical interpolation.

5.3 Introduction to least squares methods

We have described in Section 5.2 several empirical methods for data assimilation.
In this section we present methods that are based on statistical estimation theory.
According to Talagrand (1997):

Assimilation of meteorological or oceanographical observations can be
described as the process through which all the available information is used in
order to estimate as accurately as possible the state of the atmospheric or oceanic
flow. The available information essentially consists of the observations proper,
and of the physical laws that govern the evolution of the flow. The latter are
available in practice under the form of a numerical model. The existing
assimilation algorithms can be described as either sequential or variational.

5.3.1 Least squares method

In this section we give “baby examples” of both sequential and variational approaches.
The methodology and results derived from this simple case carry over to multivariate
OI, Kalman filtering, and 3D-Var and 4D-Var assimilation.

The best estimate of the state of the atmosphere (analysis) is obtained, as indicated
by Talagrand (1997), from combining prior information about the atmosphere (back-
ground or first guess) with observations, but in order to combine them optimally we
also need statistical information about the errors in these “pieces of information.” A
classic example of determining the best estimate of the true value of a scalar (e.g., the
true temperature Tt ) given two independent observations (or pieces of information),
T1 and T2, serves as an introduction to statistical estimation:

T1 = Tt + ε1

T2 = Tt + ε2

}
(5.3.1)

The observations have errors εi that we don’t know. Let E() represent the expected
value, i.e., the average that one would obtain if making many similar measurements.
We assume that the instruments that measure T1 and T2 are unbiased: E(T1 − Tt ) =
E(T2 − Tt ) = 0, or equivalently,

E(ε1) = E(ε2) = 0 (5.3.2)

and that we know the variances of the observational errors:

E
(
ε2

1

) = σ 2
1 E

(
ε2

2

) = σ 2
2 (5.3.3)
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We also assume that the errors of the two measurements are uncorrelated:

E(ε1ε2) = 0 (5.3.4)

Equations (5.3.2), (5.3.3) and (5.3.4) represent the statistical information that we
need about the actual observations. We try to estimate Tt from a linear combination
of the two observations since they represent all the information that we have about
the true value of T :

Ta = a1T1 + a2T2 (5.3.5)

The “analysis” Ta should be unbiased:

E(Ta) = E(Tt ) (5.3.6)

which implies

a1 + a2 = 1 (5.3.7)

Ta will be the best estimate of Tt if the coefficients are chosen to minimize the mean
squared error of Ta:

σ 2
a = E[(Ta − Tt )

2] = E[(a1(T1 − Tt )+ a2(T2 − Tt ))
2] (5.3.8)

subject to the constraint (5.3.7). Substituting a2 = 1− a1, the minimization of σ 2
a

with respect to a1 gives

a1 = 1/σ 2
1

1/σ 2
1 + 1/σ 2

2

a2 = 1/σ 2
2

1/σ 2
1 + 1/σ 2

2

(5.3.9)

or

a1 = σ 2
2

σ 2
1 + σ 2

2

a2 = σ 2
1

σ 2
1 + σ 2

2

(5.3.10)

i.e., the weights of the observations are proportional to the “precision” or accuracy of
the measurements (defined as the inverse of the variances of the observational errors).
Moreover, substituting the coefficients (5.3.10) in (5.3.8), we obtain a relationship
between the analysis variance and the observational variances:

1

σ 2
a

= 1

σ1
2
+ 1

σ2
2

(5.3.11)

i.e., if the coefficients are optimal, and the statistics of the errors are exact, then the
“precision” of the analysis (defined as the inverse of the variance) is the sum of the
precisions of the measurements.

Exercise 5.3.1: Derive equations (5.3.9), (5.3.10), and (5.3.11).
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5.3.2 Variational (cost function) approach

We can also obtain the same best estimate of Tt by minimizing a function of the
temperature defined as the sum of the square of the distance (or misfit) of the estimate
T to the two observations, weighted by their observational error precisions:

J (T ) = 1

2

[
(T − T1)2

σ 2
1

+ (T − T2)2

σ 2
2

]
(5.3.12)

Exercise 5.3.2: Show that the minimum of the cost function J is obtained for T = Ta

defined in (5.3.5) with the same weights as in (5.3.10). Hint: ∂ J/∂T = 0 for T = Ta .

One may ask the motivation for defining a cost function as in (5.3.12). We now
show that (5.3.12) can be formulated using the maximum likelihood approach, where
we ask the question: Given the two independent observations T1 and T2, which are
assumed to have normally distributed errors with standard deviations σ1 and σ2, what
is the most likely value of the true temperature T ? We define the analysis as the most
likely value of T given the observations and their statistical errors.

The probability distribution of an observation T1 given a true value T and an
observational standard deviation σ1, is given by the gaussian distribution

pσ1 (T1|T ) = 1√
2πσ1

e
− (T1−T )2

2σ2
1

Conversely, the likelihood (Edwards, 1984) of a true value T given an observation
T1 with a standard deviation σ1 is given by

Lσ1 (T ||T1) = pσ1 (T1|T ) = 1√
2πσ1

e
− (T1−T )2

2σ2
1

Similarly, the likelihood of a true value T given an observation T2 with a standard
deviation σ2 is

Lσ2 (T ||T2) = pσ2 (T2|T ) = 1√
2πσ2

e
− (T2−T )2

2σ2
2

Therefore the most likely value of T given the two independent measurements T1

and T2 is the one that maximizes the joint probability, i.e., their product:

max
T

Lσ1,σ2 (T ||T1, T2) = pσ1 (T1|T )pσ2 (T2|T ) = 1

2πσ1σ2
e
− (T1−T )2

2σ2
1
− (T2−T )2

2σ2
2

Since the logarithm is a monotonic function, we can take the logarithm of the likeli-
hood and obtain the same maximum likelihood temperature:

max
T

ln Lσ1,σ2 (T ||T1, T2) = max
T

[
const.− (T1 − T )2

2σ 2
1

− (T2 − T )2

2σ 2
2

]

(5.3.13)
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The standard deviations are constant so that the maximum likelihood is attained when
the cost function (5.3.12) is minimized.

Alternatively (Purser, 1984), the Bayesian derivation of (5.3.12) assumes we
made the observation T1 (the background forecast in the data assimilation prob-
lem), which implies a prior probability distribution of the truth pT1,σ1 (T ) =
(1/
√

2πσ1)e−(T1−T )2/2σ 2
1 , prior to the second observation. Then Bayes formula for

the a posteriori probability of the truth given observation T2 is

pσ2 (T |T2) = pσ2 (T2|T )pT1,σ1 (T )

pσ2 (T2)

=
1√

2πσ2

e
− (T2−T )2

2σ2
2

1√
2πσ1

e
− (T1−T )2

2σ2
1

pσ2 (T2)
(5.3.14)

The denominator

pσ2 (T2) =
∫
T ′

1√
2πσ2

e
− (T2−T ′ )2

2σ2
2 dT ′

is independent of T . The estimate of the truth that maximizes the a posteriori prob-
ability (5.3.14) is obtained by maximizing the logarithm of the numerator, and is
given, once again, by the minimum of the cost function (5.3.12).

Note that the control variable for the minimization of (5.3.12) (i.e., the variable
with respect to which we are minimizing the cost function J) is now the temperature
itself, not the weights. The equivalence between the minimization of the analysis
error variance (finding the optimal weights through a least squares approach), and
the variational cost function approach (finding the optimal analysis that minimizes
the distance to the observations weighted by the inverse of the error variance) is an
important property. This equivalence also holds true for multidimensional problems
(in which case we use the covariance matrix rather than the scalar variance), and it
indicates that OI (Gandin, 1963) and 3D-Var (e.g., Sasaki, 1970, Parrish and Derber,
1992) are solving the same problem (Lorenc, 1986).

Figure 5.3.1 illustrates the probability distribution for a simple case. Note that the
analysis (the most likely value of the truth that maximizes the joint probability of T 1

and T 2) has a probability distribution with a maximum closer to T 2, and a smaller
standard deviation (higher precision) than either observation.

5.3.3 Simplest sequential assimilation and Kalman filtering
for a scalar

This is a prototype of the full multivariate OI. Assume that one of the two pieces of
information T1 = Tb is the forecast (or any other “background” value) and the other
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Figure 5.3.1: Illustration of the properties of the probability distribution of the
analysis T, given observations T1 and T2, using either the least squares approach or
the Bayesian approach (after Purser, 1984).

is an observation T2 = To. From (5.3.5) and (5.3.10), we can write the analysis as

Ta = Tb +W (To − Tb) (5.3.15)

where (To − Tb) is defined as the observational “innovation” , i.e., the new infor-
mation brought by the observation. It is also known as the observational increment
(with respect to the background); W is the optimal weight, given by

W = σ 2
b

(
σ 2

b + σ 2
o

)−1
(5.3.16)

and the analysis error variance is, as before,

σ 2
a =

(
σ−2

b + σ−2
o

)−1
(5.3.17)

The analysis variance can in turn be written as σ 2
a = σ 2

b σ
2
o /(σ 2

b + σ 2
o ), or

σ 2
a = (1−W )σ 2

b (5.3.18)

Exercise 5.3.3: Derive equations (5.3.15)–(5.3.18).
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Equations (5.3.15)–(5.3.18) have been derived for the simplest scalar case, but they
are important for the problem of data assimilation because they have exactly the same
form as the least squares sequential estimation methods used for real multidimen-
sional problems (OI, interpolation, 3D-Var and even Kalman filtering). Therefore we
interpret these equations in detail:

Equation (5.3.15) says: “The analysis is obtained by adding to the first guess
(background) the innovation (difference between the observation and first
guess) weighted by the optimal weight.”

Equation (5.3.16) says: “The optimal weight is the background error variance
multiplied by the inverse of the total error variance (the sum of the
background and the observation error variances).” Note that the larger the
background error variance, the larger the correction to the first guess.

Equation (5.3.17) says: “The precision of the analysis (inverse of the analysis
error variance) is the sum of the precisions of the background and the
observation.”

Equation (5.3.18) says: “The error variance of the analysis is the error
variance of the background, reduced by a factor equal to one minus the
optimal weight.”

All these statements are important because they also hold true for sequential data
assimilation systems (OI and Kalman filtering) for multidimensional problems. In
these problems, in which Tb and Ta are three-dimensional fields of size order 107

and To is a set of observations (typically of size 105 or 106), we have to replace the
expression “error variance” by “error covariance matrix”, and the “optimal weight”
by an “optimal gain matrix”.

Note also from (5.3.16) that there is one essential “tuning” parameter in OI: the
ratio of the a priori estimate of the observational to the background error variances
(σo/σb)2.

Moreover, if the background is a forecast, we can use equations (5.3.15), (5.3.16),
and (5.3.18) to create a simple sequential “analysis cycle”, in which the observation is
used once at the time it appears and then discarded. Assume that we have completed
the analysis at time ti (e.g., at 12 UTC), and we want to proceed to the next cycle
(time ti+1, or 18 UTC in the example). The analysis cycle has two phases, a forecast
phase to update the background Tb and its error variance σ 2

b , and an analysis phase,
to update the analysis Ta and its error variance σ 2

a .
In the forecast phase of the analysis cycle, the background is first obtained through

a forecast:

Tb(ti+1) = M [Ta(ti )] (5.3.19)

where M represents a forecast model (which could be a dynamical model, persistence,
climatology, extrapolation, etc.). We also need to estimate the error variance of the
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background. In OI, this is done by making some suitable simple assumption, such as
that the model integration increases the initial error variance by a fixed amount, e.g.,
a factor a not much greater than 1 (such as 1.5 or 2).

σ 2
b (ti+1) = aσ 2

a (ti ) (5.3.20)

This allows the new weight W (ti+1) to be estimated using (5.3.16).
In Kalman filtering, (5.3.19) is the same as in OI, but instead of assuming a value

for σ 2
b (ti+1) as in (5.3.20) we compute the forecast error covariance using the forecast

model itself. If we applied the model (5.3.19) to update the true temperature, there
would be an error, since the model is not perfect: Tt (ti+1) = M [Tt (ti )]− εM .

The model error is assumed to be unbiased (unfortunately this is not in general a
good assumption) with an error variance Q2 = E(ε2

M ). Then,

εb,i+1 = (Tb − Tt )i+1 = M(Ta)i − M(Tt )i + εM =Mεa,i + εM (5.3.21)

whereM= ∂M/∂T is the linearized or tangent linear model operator, and the forecast
for the background error covariance at the new time level is:

σ 2
b,i+1 = E

(
ε2

b,i+1

) =M2σ 2
a,i+Q2 (5.3.22)

Exercise 5.3.4: Derive (5.3.21) and (5.3.22).

In the analysis phase of the analysis cycle (for both OI and Kalman filtering) we get the
new observation To(ti+1), and we derive the new analysis Ta(ti+1) using (5.3.15),
the estimates of σ 2

b from either (5.3.20) for OI, or (5.3.22) for Kalman filtering, and
the new analysis error variance σ 2

a (ti+1) using (5.3.18). After the analysis, the cycle
for time ti+1 is completed, and we can proceed to the next cycle.

Remarks 5.3.1
In general, we cannot directly observe the model variables that we want to ana-
lyze (i.e., temperature, moisture, wind, and surface pressure at the grid points of the
model). Instead we have rawinsondes (which were designed to provide these de-
sirable variables) but at locations which are different from the analysis grid points,
so that we have to perform horizontal and vertical interpolations. A more complex
problem is that we may have remote sensing instruments (like satellites and radars)
that measure quantities influenced by the desired variables, like radiances, reflectivi-
ties, refractivities, and Doppler shifts, rather than the variables themselves. Typically,
then, we have to use an observation operator H (Tb) (also known as an observational
forward operator) to obtain from the first guess gridded field a first guess of the
observations. The observation operator H includes spatial interpolations (or spectral
to physical space transformation) from the first guess to the location of the observa-
tions. It also includes transformations based on physical laws, such as the radiative
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transfer equations that go from a model vertical profile of temperature and moisture
to “observed” first guess satellite radiances.

Instead of using the observation operator, the operational assimilation of remotely
sensed data used to be done following the “retrieval” approach. For example, TOVS
(TIROS-N Operational Vertical Sounder) is an instrument that measures radiances
in the infrared and microwave range of the spectrum. The forward operator model
H(T,q,clouds) was inverted by first filtering the clouds and then retrieving “observed”
profiles of temperature and moisture, T (p) and q(p). The retrieved profiles (that
“looked” like rawinsonde observations) were then assimilated into the models. As
indicated in Chapter 1, the direct assimilation of radiances, using the forward obser-
vational model H to convert the first guess into “first guess TOVS radiances” and
then the assimilation of the “radiances innovations” (observed minus first guess radi-
ances) has resulted in major improvements in the forecasts in both hemispheres (e.g.,
Fig. 1.4.3). This will be discussed further in Section 5.5, but we remark here that the
improvements obtained by direct assimilation of the radiances are due basically to
two reasons:

(1) There are fewer independent radiance observations than vertical levels of T
and q in the model, which means that the problem of deriving a “retrieval”
using only radiances is underdetermined. Therefore, in order to “retrieve”
(invert the forward observational operator) it is necessary to introduce
additional and less accurate statistical information into the problem. The
introduction of this ancillary information (usually based on climatology, and
generally less accurate than a short-range forecast used as a first guess) is
unnecessary with the direct assimilation of radiance innovations.

(2) The observation error covariance of the retrieved T and q profiles is very
difficult to determine, since it involves strong error correlations among
retrievals in different latitude and longitude locations introduced by the use of
ancillary information. On the other hand, observed radiances have “cleaner”
error covariances, since they depend only on instrument errors, and not on
how the data were processed. As a result, the observational error covariance
for the radiances is usually diagonal.

5.4 Multivariate statistical data assimilation methods

We now generalize the least squares method to obtain the OI equations for vectors
of observations and background fields. These equations were derived originally by
Eliassen (1954, reproduced in Bengtsson et al., 1981). However, Gandin (1963)
derived the multivariate OI equations independently and applied them to objective
analysis in the Soviet Union. Gandin’s work had a profound influence upon the



150 5 Data assimilation

research and operational community, and OI became the operational analysis scheme
of choice during the 1980s and early 1990s. In this discussion we generally follow
the notation proposed by Ide et al. (1997) for data assimilation methods. This short
paper, although ostensibly devoted to notation, is also an excellent overview of data
assimilation. Later in this section we show that 3D-Var is equivalent to the OI method,
although the method for solving it is quite different and advantageous for operational
systems.

5.4.1 Optimal interpolation (OI)

In Section 5.3 we studied the formulation of the “optimal” analysis of a scalar at a
single point. We now consider the complete NWP operational problem of finding
an optimum analysis of a field of model variables xa , given a background field xb

available at grid points in two or three dimensions, and a set of p observations yo

available at irregularly spaced points ri (Fig. 5.1.1).
The unknown analysis and the known background can be two-dimensional fields

of a single variable like the temperature analysis Ta(x, y), or the three-dimensional
field of the initial conditions for all the model prognostic variables:x=(ps, T, q, u, v).
These model variables are ordered by grid point and by variable, forming a single
vector of length n, where n is the product of the number of points times the number of
variables. The (unknown) “truth” xt , discretized at the model points, is also a vector
of length n.

Note that we have used a different variable yo for the observations than for the
field we want to analyze. This is to emphasize that the observed variables are, in
general, different from the model variables by: (a) being located in different points,
and (b) possibly being indirect measures of the model variables. Examples of these
measurements are radar reflectivities and Doppler shifts, satellite radiances, and
global positioning system (GPS) atmospheric refractivities.

As we did in (5.3.15) for a scalar, the analysis is cast as the background plus the
innovation weighted by optimal weights which we will determine from statistical
interpolation,

xt − xb =W[yo − H (xb)]− εa =Wd− εa

εa = xa − xt
(5.4.1)

but now the truth, the analysis, and the background are vectors of length n (the total
number of grid points times the number of model variables) and the weights are given
by a matrix of dimension (n × p). The forward observational operator H converts the
background field into “first guesses of the observations.” H can be nonlinear (e.g., the
radiative transfer equations that go from temperature and moisture vertical profiles
to the satellite observed radiances). The observation field yo is a vector of length p,
the number of observations. The vector d, also of length p, is the “innovation” or
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“observational increments” vector:

d = yo − H (xb) (5.4.2)

Remarks 5.4.1
(a) The weight matrix W is also called the gain matrix K, the same matrix that

appears in Kalman filtering.

(b) An error covariance matrix is obtained by multiplying a vector error

ε =




e1

e2
...

en




by its transpose εT = [
e1 e2 . . . en

]
, and averaging over many cases, to

obtain the expected value:

P = εεT =




e1e1 e1e2 · · · e1en

e2e1 e2e2 · · · e2en
...

...
...

ene1 ene2 · · · enen


 (5.4.3)

where the overbar represents the expected value (i.e. is the same as E( )). A
covariance matrix is symmetric and positive definite. The diagonal elements
are the variances of the vector error components ei ei = σ 2

i . If we normalize
the covariance matrix, dividing each component by the product of the
standard deviations ei e j/σiσ j = corr(ei , e j ) = ρi j , we obtain a correlation
matrix

C =




1 ρ12 · · · ρ1n

ρ12 1 · · · ρ2n
...

...
...

ρ1n ρ12 · · · 1


 (5.4.4)

and if

D =



σ 2

1 0 · · · 0
0 σ 2

2 · · · 0
...

...
...

0 0 · · · σ 2
n




is the diagonal matrix of the variances, then we can write

P = D1/2CD1/2 (5.4.5)
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(c) The transpose of matrix products is given by the product of the transposes,
but in reverse order: [AB]T = BTAT ; a similar rule applies to the inverse of a
product: [AB]−1 = B−1A−1

(d) The general form of a quadratic function is F(x) = 1
2x

TAx+ dT x+ c,where
A is a symmetric matrix, d is a vector and c a scalar. To find the gradient of
this scalar function ∇xF = ∂F/∂x (a column vector) we use the following
properties of the gradient with respect to x: ∇(dT x) =∇(xTd) = d (since
∇xxT = I, the identity matrix), and ∇(xTAx) = 2Ax. Therefore,

∇F(x) = Ax+ d ∇2 F(x) = A and δF = (∇F)T δx (5.4.6)

(e) Multiple regression or best linear unbiased estimation (BLUE).
Assume we have two time series of vectors

x(t) =




x1(t)
x2(t)

...
xn(t)


 y(t) =




y1(t)
y2(t)

...
yp(t)




centered about their mean value, E(x) = 0, E(y) = 0, i.e., vectors of
anomalies. We derive now the best linear unbiased estimation of x in terms of
y, i.e., the optimal value of the weight matrix W in the multiple linear
regression

xa(t) =Wy(t) (5.4.7)

which approximates the true relationship

x(t) =Wy(t)− ε(t) (5.4.8)

Here ε(t) = xa(t)− x(t) is the linear regression (“analysis”) error, and W is
an n × p matrix that minimizes the mean squared error E(εTε). To derive W
we write the regression equation matrix components explicitly:

xi (t) =
p∑

k=1

wik yk(t)− εi (t)

Then

n∑
i=1

ε2
i (t) =

n∑
i=1

[
p∑

k=1

wik yk(t)− xi (t)

]2
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and the derivative with respect to the weight matrix components is

∂
n∑

i=1
ε2

i (t)

∂wi j
= 2

[
p∑

k=1
wik yk(t)− xi (t)

] [
y j (t)

]

= 2

[
p∑

k=1
wik yk(t)yi (t)− xi (t)y j (t)

]
(5.4.9)

In matrix form, this is

∂εT ε

∂wi j
= 2

{[
Wy(t)yT (t)

]
i j −

[
x(t)yT (t)

]
i j

}
so that if we take a long time mean, and choose W to minimize the mean
squared error, we get the normal equation

WE
(
yyT

)− E
(
xyT

) = 0

or

W = E
(
xyT

) [
E
(
yyT

)]−1
(5.4.10)

which gives the best linear unbiased estimation xa(t) =Wy(t).

Statistical assumptions
We define the background error and the analysis error as vectors of length n:

εεεb(x, y) = xb(x, y)− xt (x, y) (5.4.11a)

εεεa(x, y) = xa(x, y)− xt (x, y) (5.4.11b)

The p observations available at irregularly spaced points yo(ri ) have observational
errors

εεεoi = yo(ri )− yt (ri ) = yo(ri )− H [xt (ri )] (5.4.12)

We don’t know the truth xt , thus we don’t know the errors of the available background
and observations, but we can make a number of assumptions about their statistical
properties. The background and observations are assumed to be unbiased:

E{εεεb(x, y)} = E{xb(x, y)} − E{xt (x, y)} = 0
E{εεεo(ri )} = E{yo(ri )} − E{yt (ri )} = 0

}
(5.4.13)

If the forecasts (background) and the observations are biased, in principle we can
and should correct the bias before proceeding. Dee and Da Silva (1998) show how
the model bias can actually be estimated as part of the analysis cycle.
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We define the error covariance matrices for the analysis, background and obser-
vations respectively:

Pa = A = E
{
εεεaεεε

T
a

}
Pb = B = E

{
εεεbεεε

T
b

}
Po = R = E

{
εεεoεεε

T
o

}

 (5.4.14)

The nonlinear observation operator H that transforms model variables into observed
variables can be linearized as

H (x+ δx) = H (x)+Hδx (5.4.15)

where H is a p × n matrix, denoted the linear observation operator with elements
hi, j = ∂Hi/∂x j . We also assume that the background (usually a model forecast) is a
good approximation of the truth, so that the analysis and the observations are equal
to the background values plus small increments. Therefore, the innovation vector
(5.4.2) can be written as

d = yo − H (xb) = yo − H (xt + (xb − xt ))

= yo − H (xt )−H(xb − xt ) = εεεo −Hεεεb (5.4.16)

The H matrix transforms vectors in model space into their corresponding values in
observation space. Its transpose or adjointHT transforms vectors in observation space
to vectors in model space.

The background error covariance B (a matrix of size n × n) and the observation
error covariance R (a matrix of size p × p) are assumed to be known. In addition,
we assume that the observation and background errors are uncorrelated:

E
{
εεεoεεε

T
b

} = 0 (5.4.17)

We will now use the best linear unbiased estimation formula (5.4.10) to derive the
optimal weight matrix W in (5.4.1). xa − xb =Wd, which approximates the true
relationship xt − xb =Wd− εεεa .

From (5.4.16), d = yo − H (xb) = εεεo −Hεεεb, and from (5.4.10) the optimal
weight matrixW (also known as the gain matrixK) that minimizes εεεT

a εεεa is given by

W = E{(xt − xb)[yo − H (xb)]T }(E{[yo − H (xb)][yo − H (xb)]T })−1

= E[(−εεεb)(εεεo −Hεεεb)T ]{E[(εεεo −Hεεεb)(εεεo −Hεεεb)T ]}−1 (5.4.18)

Recall that in (5.4.17) we assumed that the background errors are not correlated with
the observational errors, i.e., that their covariance is equal to zero. Substituting the
definitions of background error covariance B and observational error covariance R
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(5.4.14) into (5.4.18) we obtain the optimal weight matrix

W = BHT (R+HBHT )−1 (5.4.19)

Finally, we derive the analysis error covariance.

Pa = E
{
εεεaεεε

T
a

} = E
{
εεεbεεε

T
b + εεεb(εεεo −Hεεεb)TWT

+W(εεεo −Hεεεb)εεεT
b +W(εεεo −Hεεεb)(εεεo −Hεεεb)TWT

}
= B− BHTWT −WHB+WRWT +WHBHTWT

and substituting (5.4.19) we obtain

Pa = (I−WH)B (5.4.20)

Exercise 5.4.1: Derive (5.4.20).

For convenience, we repeat the basic equations of OI, and express in words their
interpretation, which is similar to that for a scalar least square problem from the last
section:

xa = xb +W[yo − H (xb)] = xb +Wd (5.4.1)

W = BHT (R+HBHT )−1 (5.4.19a)

We will see in Section 5.5 (where we derive the variational approach or 3D-Var) that
the weight matrix (5.4.19) can be written in an alternative equivalent form as

W = (B−1 +HTR−1H)−1HTR−1 (5.4.19b)

(see (5.5.11) in Section 5.5)

Pa = (In −WH)B (5.4.20)

where the subscript n is a reminder that the identity matrix is in the analysis or model
space.

The interpretation of these equations is very similar to the scalar case discussed
in Section 5.3:

Equation (5.4.1) says: “The analysis is obtained by adding to the first guess
(background) the product of the optimal weight (or gain) matrix and the
innovation (the difference between the observation and the first guess).
The first guess of the observations is obtained by applying the observation
operator H to the background vector.” Also, note that from (5.4.15),
H (xb) = H (xt )+H(xb − xt ) = H (xt )+Hεεεb, where the matrix H is the
linear tangent perturbation of H .

Equation (5.4.19a) says: “The optimal weight (or gain) matrix is given by the
background error covariance in the observation space (BHT ) multiplied by
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the inverse of the total error covariance (the sum of the background and the
observation error covariances).” Note that the larger the background error
covariance compared with the observation error covariance, the larger the
correction to the first guess.

Equation (5.4.20) says: “The error covariance of the analysis is given by the
error covariance of the background, reduced by a matrix equal to the
identity matrix (n × n) minus the optimal weight matrix.”

Finally we derive an alternative formulation for the analysis error covariances show-
ing (as in the scalar case) the additive properties of the “precisions” (if all the statistical
assumptions hold true). From (5.4.1), (5.4.16), and (5.4.19b) we can show that

εεεa = εεεb + [B−1 +HTR−1H]−1HTR−1(εεε0 −Hεεεb)

= [B−1 +HTR−1H]−1[B−1εεεb +HTR−1εεεo] (5.4.21)

If we again compute Pa = E{εεεaεεε
T
a } from (5.4.21), and make use of E{εεεbεεε

T
o } =

0,Pb = B = E{εεεbεεε
T
b },Po = R = E{εεεoεεε

T
o }, we obtain

P−1
a = B−1 +HTR−1H (5.4.22)

Equation (5.4.22) says: “The analysis precision, defined as the inverse of the
analysis error covariance, is the sum of the background precision and the
observation precision projected onto the model space.”

Note that all these statements are dependent on the assumption that the statistical
estimates of the errors are accurate. If the observations and/or background error co-
variances are poorly known, if there are biases, or if the observations and background
errors are correlated, the analysis precision can be considerably worse than implied
by (5.4.20) or (5.4.22).

Remarks 5.4.2
(a) It is important to note that the observation error variances come from two

different sources: one is the instrumental error variances proper, the second is
the presence in the observations of subgrid-scale variability not represented in
the grid-average values of the model and analysis. The second type of error is
denoted “error of representativeness”. By performing a grid average similar
to the Reynolds average discussed in Chapter 4, we obtain that the
observational error variance R is the sum of the instrument error variance
Rinstr and the representativeness error variance Rrepr, assuming that these
errors are not correlated. If in addition we allow for errors in the observation
operator H with observation error covariance RH , these can also be included
in the observation error covariance (Lorenc, 1986):

R = Rinstr + Rrepr + RH (5.4.23)
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(b) The equations for Kalman filtering, discussed in detail in Section 5.5, are very
similar as those for OI. The main difference īs that the background error
covariance B, instead of being assumed to be constant in time as in OI or
3D-Var, is updated (forecasted) from the previous analysis time tn to the new
analysis time tn+1. The model forecast starts from the analysis at time
tn, xn+1

b = M(xn
a), where M is the nonlinear model. Therefore, subtracting

xn+1
t = M(xn

t )− εM from both sides,

εn+1
b =Mεn

a + εM (5.4.24)

where εM is the model error. From (5.4.24) we obtain the Kalman filter new
forecast error covariance

B = P f (tn+1) = εεεn+1
b

(
εεεn+1

b

)T =M(tn)Pa(tn)MT (tn)+Q(tn) (5.4.25)

Here Q = E(εεεmεεε
T
m) is the forecast model error covariance, M is the linear

tangent model and MT its adjoint. With this change, the weight matrix
becomes the Kalman gain matrix K. Although this is apparently a small
change from OI, the matrix multiplications by M in (5.4.20) are
approximately equivalent to integrating the forecast model n/2 times, where
n is the number of degrees of freedom of the model.

5.4.2 Approximations made in the practical
implementation of OI

We have seen that, in matrix form, the analysis is obtained from

xa = xb +W[yo − H (xb)] (5.4.26)

or if we define increments from the background as δx = x− xb, then the analysis
increment is

δxa = Wδyo (5.4.27)

The optimal weight matrix W that minimizes the analysis error covariance is given
by

W = BHT (HBHT + R)−1 (5.4.28)

If all the statistical assumptions are accurate, i.e., the background error covariance
B and the observations error covariance R are known exactly, then the formulas
(5.4.26) or (5.4.27), and (5.4.28) provide the OI analysis. In that case, the analysis
error covariance is given by

Pa = A = (I−WH)B (5.4.29)
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If, as occurs in reality, the statistics are only approximations of the true statistics, then
(5.4.26) and (5.4.28) provide a “statistical interpolation”, not necessarily “optimal
interpolation”.

OI is typically performed in physical space, either grid point by grid point (e.g.,
McPherson et al., 1979, DiMego et al., 1985) or over limited volumes (Lorenc,
1981). In the implementation of OI, (5.4.27) and (5.4.28) are solved point by point
(or volume by volume) in grid-point space. To make the formulation in physical
space clearer, we expand the matrix equations:

B =




b11 . . . b1n
...

...
bn1 . . . bnn


 H =




h11 . . . h1n
...

...
h p1 . . . h pn




R =




r11 . . . r1p
...

...
rp1 . . . rpp


 W=




w11 . . . w1p
...

...
wn1 . . . wnp







(5.4.30)

H is the linear perturbation (Jacobian) of the forward observational model H, and
HT is its transpose or adjoint. Multiplying by H on the left transforms grid-point
increments into observation increments (e.g., by linear interpolation), and HT trans-
forms from observation points back to grid points. There are n grid points, or if we
are considering several variables, n is the product of the number of grid points and the
variables. Consider a specific grid point with the subscript g. The subscripts j and k
represent particular observations affecting the grid point g, and there are p such ob-
servations. Recall that B is the background error covariance, so that the background
error is εb(x, y) = xb(x, y)− xt (x, y), and b jk = E[εb(x j , y j )εT

b (xk, yk)], and the
expected value is the average over many cases.

We can rewrite the equation for the weights (5.4.28) as

W(HBHT + R) = BHT (5.4.31)

Consider again the OI equations in matrix form:

xa = xb +W[yo − H (xb)]

where the optimal weight matrix is obtained from the system of equations (5.4.31).
As an illustration, let us write (5.4.31) for the simple case of three grid points

e, f, g, and two observations, 1 and 2 (Fig. 5.4.1).

e gf

1 2

Figure 5.4.1: Simple system with three grid points (black dots) e, f, g, and two
observation points, 1 and 2.
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In this case, xa = (xa
e , xa

f , xa
g )T , and similarly for the background xb =

(xb
e , xb

f , xb
g )T . The observation vector is yo = (yo

1 , yo
2 )T , and the background values

at the observation points are

Hxb =
(

h1e h1 f h1g

h2e h2 f h2g

)


xb
e

xb
f

xb
g


 = yb (5.4.32)

The coefficients of the observation operator H are obtained from linear or higher
order interpolation of the grid location to the observation location. We are assuming
that the observed and analyzed variables are the same, so that the coefficients of
the matrix H are simply interpolation coefficients. For example, if we used linear
interpolation, H would be

H =




x f − x1

x f − xe

x1 − xe

x f − xe
0

0
xg − x2

xg − x f

x2 − x f

xg − x f




The background error covariance matrix elements are the covariances between grid
points:

B =


 bee bef beg

b f e b f f b f g

bge bg f bgg




so that

BHT =


 be1 be2

b f 1 b f 2

bg1 bg2




is an approximation by interpolation of the background error covariances between
grid to observation points, e.g., bg2 = bgeh2e + bg f h2 f + bggh2g. Then

HBHT =
(

b11 b12

b21 b22

)

is an approximation by back interpolation of the background error covariance between
observation points. The observation error covariance for this case is

R =
(

r11 r12

r21 r22

)

It is usually a reasonable assumption that measurement errors made at different
locations are uncorrelated, in which case R is a diagonal matrix. (Measurement
errors could be correlated, but only within small groups of observations made by the
same instrument, in which case R is a block diagonal matrix, where the blocks are
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still easily invertible.) From this simple example, it is apparent that, in general, we
can write the OI equation for a particular grid point g influenced by p observations as:

xa
g = xb

g +
p∑

j=1

wg jδy j (5.4.33)

where the weights are the solution of the linear system

p∑
j=1

wg j (b jk+r jk) = bgk k = 1, . . . , p (5.4.34)

In (5.4.34), wg j is the weight that multiplies the observation increment δy j to con-
tribute to the analysis increment δxa

g , r jk is the observation error covariance between
two observation points j and k, b jk is the background error covariance between the
observation points j and k, and bgk is the background error covariance between the
grid point g and the observation point k. We are assuming that the observation
vector has already been transformed into the same type of variables as the model,
i.e., that a retrieval method is used, and the interpolation matrix H has already been
multiplied by B, generating grid-to-observation and observation-to-observation
background correlations as in the simple example above. There are equations like
(5.4.34) and (5.4.33) for each grid point, and in the case of multivariate analysis
(e.g., the geopotential height and the two horizontal wind components z, u, v), for
each variable at each grid point.

Equations (5.4.33) and (5.4.34) constitute the OI scheme written for each grid
point g. Note the fundamental role that the background error covariance plays in
the determination of the optimal weights (5.4.34). The background error covariance
determines the scale and the structure of the corrections to the background. In the prac-
tical implementation of (5.4.33) and (5.4.34), there are a number of commonly made
additional simplifications, especially in the background error covariance elements b.

Remarks 5.4.3
(a) Perhaps the most important advantage of statistical interpolation schemes

such as OI and 3D-Var over empirical schemes such as SCM is that the
correlation between observational increments is taken into account. Recall
that in SCM, the weights of the observational increments depend only on
their distance to the grid point. Therefore, in SCM all observations will be
given similar weight even if a number of them are “bunched up” in one
quadrant (Fig. 5.1.1), with just a single observation in a different quadrant. In
OI (or 3D-Var), by contrast, the isolated observational increment will be
given more weight in the analysis than observations that are close together
and therefore less independent. The fact that isolated observations have more
independent information than observations close together is a result of the
fact that the forecast error correlations b jk/

√
b j j bkk at the observation points

j , k are large if the observation points are close together.
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(b) When several observations are too close together, then the solution of (5.4.34)
becomes an ill-posed problem. In those cases, it is common to compute a
“superobservation” combining the close individual observations. This has the
advantage of removing the ill-posedness, while at the same time reducing by
averaging the random errors of the individual observations. The
superobservation should be a weighted average that takes into account the
relative observation errors of the original close observations.

In order to develop an OI-based data assimilation, we need to make actual estimates
of the prior error covariances,B andR and the observation operatorH. We saw before
that, for a simple system in which the observations are the same as the model variables,
the observation operator is simply an interpolator from the model to the observation
location. If the variables are different, it has to include not only the interpolation to the
observation location, but also the “forward model” that represents the observations
that would be obtained if the model was true. For example, if the observations are
satellite radiances, the observation operator interpolates from the model grid to the
radiance observation location, and then uses radiative transfer theory to convert a
model column of temperature and moisture as a function of pressure into synthetic
“radiances”. The observational error covariance is obtained from instrument error
estimates. If the measurements are independent, the matrix R is diagonal, which is a
major advantage. The forecast error covarianceB is the most difficult error covariance
to estimate, and has a crucial impact on the results.

Most of the rest of this section is devoted to a brief review of the methods that
were in use in the 1980s to estimate B in OI applications. They were based on esti-
mations of the horizontal and vertical correlations between forecast errors, estimated
as the differences between the short-range forecasts and the rawinsonde observations
(Thiebaux and Pedder, 1987, Hollingsworth and Lönnberg, 1986). In contrast, for
3D-Var, the method that has been almost universally adopted does not depend on
measurements at all, but on the difference between forecasts verifying at the same
time. This is known as the “NMC method” and is discussed in Section 5.4.8.

In OI it is common to standardize the background error covariance with D, the
diagonal matrix of the variances:

B = D1/2CD1/2 D =




σ 2
1 0 . . . 0

0 σ 2
2 . . . 0

...
...

...
0 0 . . . σ 2

n


 C =




µ11 µ12 . . . µ1p

µ12 µ22 . . . µ2p
...

...
...

µ1p µ2p . . . µpp



(5.4.35)

Here

µi j = bi j/(
√

bii

√
b j j ) = bi j/

(√
σ 2

i

√
σ 2

j

)
(5.4.36)
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are the correlations of the background errors at two observational points i, j, and σ 2
i

are the error variances.
It has been commonly assumed in OI implementations that the background error

correlations can be separated into the product of the horizontal correlation and the
vertical correlation. As we will see, these simplified correlations are typically defined
as functions of distance only.

We present an example of simplifications frequently made in practice by con-
sidering the two-dimensional analysis of z, u, v, at a single pressure level p, using
rawinsondes as the only observations. Since the observation errors of two separate
rawinsondes at points i and j are not correlated (although the geopotential errors
are correlated in the vertical), we can assume that the observation error covariance
matrix is a diagonal matrix:

ri j = 0 if i �= j
rii = σ 2

oi

}
(5.4.37)

We also assume that the background error variance is constant for each variable,
bii = σ 2

bg (equal to the background error variance at the grid point and assumed to
be the same for all the grid points).

With these assumptions, (5.4.34) for a grid point g becomes

p∑
j=1

wg jµ jk + ηkwgk = µgk k = 1, . . . , p (5.4.38)

Here ηk = σ 2
ok/σ

2
bg is the mean square of the relative error of observations compared

with the background error, a parameter frequently “tuned” to give more or less weight
to the observations. We can also show from (5.4.29) that the relative analysis error
at the grid point is given by:

σ 2
ag

σ 2
bg

= 1−
p∑

k=1

wgkµgk (5.4.39)

where the analysis error has been scaled by the background error variance at the grid
point. Note that (5.4.39) is the equivalent of (5.4.20) in grid-point space.

We now further assume that the background error correlation between two points
in the same horizontal surface is homogeneous and isotropic (i.e., it doesn’t change
with a rigid translation or rotation of the two points). In that case the background
error correlation of the geopotential height depends only on the distance between the
two points. Gandin (1963), Schlatter (1975), Thiebaux and Pedder (1987) and others
have used a Gaussian exponential function for the geopotential error correlation:

µi j = e−r2
i j /2L2

φ (5.4.40)

where r2
i j = (xi − x j )2 + (yi − y j )2 is the square of the distance between two points

i and j , and Lφ , typically of the order of 500 km, defines the background error
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correlation scale. Gaussian functions have also been used for the vertical correlation
functions. These assumptions are clearly crude, and only qualitatively begin to reflect
the true structure of the background error correlation. For example, in the real atmo-
sphere the background error correlation length should depend on the Rossby radius
of deformation, and therefore should be a function of latitude, with longer horizontal
error correlations in the tropics than in the extratropics (Balgovind et al., 1983, Baker
et al., 1987). It should also depend on the data density: at the boundaries between
data-rich and data-poor regions, the correlations of the forecast errors should not be
isotropic (Cohn and Parrish, 1986). We refer the reader to the discussions in Daley
(1991) and Thiebaux and Pedder (1987) for further details and references.

Another important assumption usually made in the OI analysis of large-scale
flow is that the background wind error correlations are geostrophically related to
the geopotential height error correlations. This has two advantages: it avoids having
to estimate independently the wind error correlation, and it imposes an approxi-
mate geostrophic balance of the wind and height analysis increments, and therefore
improves the balance of the analysis (see Remark 5.4.3(c)). Once a functional as-
sumption for the background error correlation of the height like (5.4.40) is made,
then the multivariate correlation between heights and winds can be obtained from the
height correlations. For example, consider the background error correlation between
two horizontal wind components:

E(δuiδv j ) = − g

fi

g

f j
E

(
∂δzi

∂yi

∂δz j

∂x j

)
(5.4.41)

Now, since the geopotential error at the point x j is independent of yi and vice versa,
we can combine the derivatives, use (5.4.40) and write

E(δuiδv j ) = − g

fi

g

f j

∂2 E(δziδz j )

∂yi∂x j
= − g

fi

g

f j

∂2bi j

∂yi∂x j

= −g2

fi

σ 2
z

f j

∂2µi j

∂yi∂x j
(5.4.42)

The standard deviation of the wind increments can also be derived from the
geostrophic relationship, E(δu2

i )1/2 = (gσz/ fi ), E(δv2
j )

1/2 = (gσz/ f j ), so that we
obtain the correlation of the increments of the two wind components by dividing
(5.4.42) by these standard deviations: ρu,v = −∂2µi j/∂yi∂x j . Similarly, we can ob-
tain the correlations between the increments of any two of the three variables at two
points i, j: ρh,h = µi j , ρh,u = − ∂µi j

∂yi
, ρu,h = − ∂µi j

∂y j
, etc.

Fig. 5.4.2 shows schematically the shape of typical wind/height correlation func-
tions used in OI (e.g., Schlatter, 1975). Note that the u–h correlations have the opposite
sign than the h–u correlations because the first and second variables correspond to the
first and second points i and j respectively. For example, a height observation leading
to a positive analysis increment of h will result in positive increments of u to its north.
Conversely, a positive increment of u will lead to negative increments of h to its north.
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Figure 5.4.2: Schematic illustration of the correlation and cross-correlation
functions for multivariate OI analysis derived using the geostrophic increment
assumption (after Gustaffson, 1981). Both x- and y-axes go from −√2Lφ to +√2Lφ .

Equations (5.4.42) are not valid at the equator, and additional approximations
have to be made in the tropics to allow for a smooth decoupling of wind and height
increments (Lorenc, 1981).

In addition, it is common to select the observations to be included in solving
the linear system for the weight coefficients (5.4.38), depending on the computer
resources available for the analysis, allowing for a maximum number of observations
affecting each grid point. Rules for the selection of the subset of observations to be
used typically depend on the distance to the grid point (within a maximum radius of
influence), the types of observations (giving priority to the most accurate) and their
distribution (trying to “cover” all quadrants, and choosing the closest stations).

Lorenc (1981) gave a comprehensive description of an OI as implemented
at the ECMWF. Although later improvements were implemented in the error
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covariances (Hollingsworth and Lönnberg, 1986, Lönnberg and Hollingsworth, 1986,
Hollingsworth, 1989) and other components of the analysis cycle, it remained the
backbone of the ECMWF analysis until its replacement by 3D-Var in 1996. A more
recent operational implementation of OI including advanced three-dimensional es-
timations of the three-dimensional background error covariance is that of Mitchell
et al. (1990) in the Canadian operational system.

5.4.3 Bratseth’s iterative method for OI

Bratseth (1986) proposed a variation of the SCM that converges to OI analysis (see
also Daley (1991), Appendix F). It is based on the convergence of the geometric
series

∞∑
k=0

(I− A)k = A−1 if (I− A)k → 0 as k →∞ (5.4.43)

The OI algorithm is written as

xa
g = xb

g + (BHT )gM
−1d (5.4.44)

where d is a correction vector which is determined by successive iterations. M is a
diagonal (and hence easily invertible) matrix which is chosen to speed convergence.

Bratseth’s algorithm consists of computing a series of corrections (without invert-
ing a matrix to determine the optimal weights, as required by OI):

d0 = δy
dν = [I− (HBHT + R)M−1]dν−1

}
(5.4.45)

Using the iteration formula (5.4.45), the corrections are

dν =
ν∑

k=0

[I− (HBHT + R)M−1]kδy (5.4.46)

The summation in (5.4.46) is a geometric series. Because M is chosen to ensure
convergence, in the limit of large j , the series converges to

d∞ = [(HBHT + R)M−1]−1δy =M(HBHT + R)−1δy (5.4.47)

After a sufficient number of iterations, the correction (5.4.47) is substituted into
(5.4.44), which results in the desired OI solution (independent of M):

xa
g = xb

g + (BHT)g (HBHT + R)−1δy (5.4.48)

Since the diagonal matrix M is arbitrary, Bratseth suggested a choice that speeds
convergence:

m j j =
p∑

k=1

|b jk + r jk | (5.4.49)
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where b jk are the elements of HBHT, and r jk the elements of R. This method is
further illustrated in the following examples.

5.4.4 One-dimensional example of OI and comparison
with Bratseth’s scheme

Consider a simple example in one-dimensional grid space, with just two geopotential
observations along the x-axis, at the points x1 = 0, and x2 = αLφ , where Lφ is the
correlation length of geopotential observations. The grid points are also on the x-axis:
xg = g�x . For each grid point we can rewrite equations (5.4.33) and (5.4.34) as

φa
g = φb

g + wg1
(
φo

1 − φb
1

)+ wg2
(
φo

2 − φb
2

)
(5.4.50)

where the weights are obtained from the solution of the linear system

(b11 + r11)wg1 + b12wg2 = b1g

b21wg1 + (b22 + r22)wg2 = b2g

}
(5.4.51)

As noted before, we have assumed that the observational errors are uncorrelated at
different points, and that they are uncorrelated with the background errors.

We assume as before that the background error correlation is Gaussian,

bi j = σ 2
φµi j = σ 2

φe−(xi−x j )2/2L2
φ (5.4.52)

and that the ratio of the observation and background error variances is

η = rii/bii = σ 2
o /σ

2
φ (5.4.53)

If one of the observations is of geopotential and the second is a wind observation v,
the term bi j can be computed as

bi j = 1

f

∂E(δφiδv j )

∂x j
= σ 2

φ

f

∂µi j

∂x j
= σ 2

φ

f

∂e−(xi−x j )2/2L2
φ

∂x j

= σ 2
φ (xi − x j )

f L2
φ

e−(xi−x j )2/2L2
φ (5.4.54)

In Exercise 5.4.2, this OI problem is solved directly. We now write Bratseth’s
iterative scheme for the same grid point and allow for more than two observations.

First we need to compute correction vector d by performing enough successive
iterations. Assume p observations are influencing the grid point g. The first iteration
is simply the vector of observational increments:

d0 =




φo
1 −φb

1
...

φo
p −φb

p



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The following iterations are given by

dν = Adν−1 + d0 (5.4.55)

The elements ai j of the matrix A are obtained as in (5.4.45), from

ai j = δi j − (bi j + δi j ri j )/m j j (5.4.56)

where δi j = 1 if i = j and zero otherwise, and the scaling diagonal matrix M−1 has
elements

m j j =
p∑

k=1

|b jk + δ jkr jk | (5.4.57)

chosen by Bratseth to speed up convergence.
Once enough iterations have been performed for d, the grid-point analysis is

obtained from

φa
g = φb

g +
(

bg1 · · · bgp

)



1/m11 0 · · · 0
0 1/m22 · · · 0
...

...
...

0 0 · · · 1/m pp






d1
...

dp


 (5.4.58)

As shown before, d converges with large ν towards

dν →M(B + R)−1d0

so that

φa
g → φb

g +
(

bg1 · · · bgp

)



b11 + r11 b12 · · · b1p

b21 b22 + r22 · · · b2p
...

...
...

bp1 bp2 · · · bpp + rpp




−1 


d1
...

dp




0

(5.4.59)

which is the OI analysis.

Exercise 5.4.2: (adapted from Bratseth, 1986)
(1) Write a FORTRAN or MATLAB code to solve an OI analysis (5.4.59) with

two observations. Assume that the background is zero, i.e., compute just the
analysis increments for the geopotential, using the following default values:
σφ = 200 m2/s2; σo = 100 m2/s2; f = 10−4 s−1; Lφ = 500 km;
�x = 50 km; distance between the observations x2 − x1 = αLφ, α = 1; the
observational increments are (φo

1 − φb
1 ) = 500 m2/s2, (φo

2 − φb
2 ) = 0.

Compute the geopotential analysis increments at all the grid points
between −2Lφ and 2Lφ .
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Plot the analysis at the grid points and the two observational points.
Compute and plot the estimated analysis error at each point.

(2) Same as (1) but varying the distance between the observations (α = 1,
√

2, 2).

(3) Do the default exercise again but change the ratio of the observation and
background error variances, η = 0.0, 0.5, 1.0, 2.0.

(4) Assume that one has a “credulous” analysis that believes that η = 0.0,
whereas the real ratio between observation and background error variance is
η = 1.0. Compare the true analysis error with the estimated analysis error.

Exercise 5.4.3: Adapt the program written in Exercise 5.4.2 to two multivariate
observations, φ1,v1; φ2,v2. Take the default values in Exercise 5.4.2, and assume(

φo
1 − φb

1

) = 500 m2/s2, vo
1 − vb

1 = 0(
φo

2 − φb
2

) = 0, vo
2 − vb

2 = 0

Perform the analysis over the grid points as in Exercise 5.4.2.(1)

Exercise 5.4.4: Perform a Bratseth iterative OI and determine how many iterations
are required to obtain a satisfactory approximation to OI (compare with the exact OI
solution obtained in Exercise 5.4.2).

5.5 3D-Var, the physical space analysis scheme (PSAS),
and their relationship to OI

We saw in Section 5.3 that there is an important equivalence between the formulation
of the optimal analysis of a scalar by minimizing the analysis error variance (finding
the optimal weights through a least squares approach) and solving the same problem
through a variational approach (finding the analysis that minimizes a cost function
measuring its distance to the background and to the observations). The same is true
when the analysis involves a full three-dimensional field, as in Section 5.4.1. In the
derivation of OI, we found the optimal weight matrix W that minimized the analysis
error covariance (a matrix). Lorenc (1986) showed that this solution is equivalent
to a specific variational assimilation problem: Find the optimal analysis xa field that
minimizes a (scalar) cost function, where the cost function is defined as the distance
between x and the background xb, weighted by the inverse of the background error
covariance, plus the distance to the observations yo,weighted by the inverse of the
observations error covariance:

2J (x) = (x− xb)TB−1(x− xb)+ [yo − H (x)]TR−1[yo − H (x)] (5.5.1)

We saw in Section 5.3.2 for the case of a simple scalar with two measurements that
the variational cost function can be derived through a maximum likelihood approach,
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i.e., the analysis is the most likely state of the atmosphere, given the two independent
measurements. Similarly we can define here the likelihood (Edwards, 1984) of the
true state given the background field (6-h forecast) and the new observations:

LB(x||xb) = pB(xb|x) = 1

(2π )n/2 |B|1/2
e−

1
2 [(xb−x)TB−1(xb−x)] (5.5.2a)

LR(x||yo) = pR(yo|x) = 1

(2π )p/2 |R|1/2
e−

1
2 [(yo−H (x))TR−1(yo−H (x))] (5.5.2b)

Since the background and new observations are independent, their joint probability
is the product of the two Gaussian probabilities. The most likely state x of the
atmosphere (analysis) maximizes the joint probability. This maximum is also attained
when the logarithm of the joint probability is maximized, which is the same as
minimizing the cost function (5.5.1).

Alternatively, the cost function (5.5.1) can also be derived based on a Bayesian
approach.1 In this case we assume that the true field is a realization of a random
process defined by the prior probability distribution function (given the background
field)

pB(x) = 1

(2π )n/2 |B|1/2
e−

1
2 [(xb−x)TB−1(xb−x)]

Bayes theorem indicates that given the new observations yo, the a posteriori proba-
bility distribution of the true field is

P(x|yo) = p(yo|x)pB(x)

p(yo)
(5.5.3)

The Bayesian estimate of the true state is the one that maximizes the a posteriori
probability (5.5.3). The denominator in (5.5.3) is the “climatological” distribution of
observations, and does not depend on the current true state x. Therefore the maximum
of the a posteriori probability is attained when the numerator is maximum, and is
given by the minimum of the cost function (5.5.1).

The minimum of J (x) in (5.5.1) is attained for x = xa , i.e., the analysis is given
by the solution of

∇x J (xa) = 0 (5.5.4)

An exact solution can be obtained in the following way. As we did in Section 5.4.1, we
can expand the second term of (5.5.1), the observational differences, assuming that
the analysis is a close approximation to the truth and therefore to the observations,
and linearizing H around the background value:

yo − H (x) = yo − H [xb + (x− xb)] = {yo − H (xb)} −H(x− xb) (5.5.5)

1 I am grateful to Peter Lyster for a discussion about this topic.
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Substituting (5.5.5) into (5.5.1) we get

2J (x) = (x− xb)TB−1(x− xb)

+ [{yo − H (xb)} −H(x− xb)]TR−1[{yo − H (xb)} −H(x− xb)]

(5.5.6)

Expanding the products, and using the rules to transpose matrix products, we then
get

2J (x) = (x− xb)TB−1(x− xb)+ (x− xb)THTR−1H(x− xb)

−{yo − H (xb)}TR−1H(x− xb)− (x− xb)THTR−1{yo − H (xb)}
+{yo − H (xb)}TR−1{yo − H (xb)} (5.5.7)

The cost function is a quadratic function of the analysis increments (x− xb) and
therefore we can use Remark 5.4.1(d): Given a quadratic function F(x) = 1

2x
TAx+

dT x+ c, where A is a symmetric matrix, d is a vector and c a scalar, the gradient is
given by ∇F(x) = Ax+ d. The gradient of the cost function J with respect to x (or
with respect to (x− xb)) is

∇J (x) = B−1(x− xb)+HTR−1H(x− xb)−HTR−1{yo − H (xb)} (5.5.8)

We now set ∇J (xa) = 0 to ensure that J is a minimum, and obtain an equation for
(xa − xb)

(B−1 +HTR−1H)(xa − xb) = HTR−1{yo − H (xb)} (5.5.9)

or

xa = xb + (B−1 +HTR−1H)−1HTR−1{yo − H (xb)} (5.5.10)

which, in incremental form, is

δxa = (B−1 +HTR−1H)−1HTR−1δyo

Formally, this is the solution of the variational (3D-Var) analysis problem, but in
practice the solution is obtained through minimization algorithms for J (x) using
iterative methods for minimization such as the conjugate gradient or quasi-Newton
methods.

Note that the control variable for the minimization (i.e., the variable with respect to
which we are minimizing the cost function J) is now the analysis, not the weights as in
OI. The equivalence between the minimization of the analysis error variance (finding
the optimal weights through a least squares approach), and the three-dimensional
variational cost function approach (finding the optimal analysis that minimizes the
distance to the observations weighted by the inverse of the error variance) is an
important property.
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5.5.1 Equivalence between the OI and 3D-Var
statistical problems

We now demonstrate the equivalence of the 3D-Var solution and the OI analysis
solution obtained in Section 5.4.1 (Lorenc, 1986). We have to show that the weight
matrix that multiplies the innovation {yo − H (xb)} = δyo in (5.5.10) is the same as
the weight matrix obtained with OI, i.e., that

W = (B−1 +HTR−1H)−1HTR−1 = (BHT )(R+HBHT )−1 (5.5.11)

This identity is a variant of the Sherman–Morrison–Woodbury formula (Golub and
Van Loan, 1996). If the variables that we are observing are the same as the model
variables, i.e., if H = HT = I, then it is rather straightforward to prove (5.5.11), using
the rules for the inverse and transpose of a matrix product. However, in general H is
rectangular, and noninvertible. The equality (5.5.11) can be proven2 by considering
the following block matrix equation:[

R H
HT −B−1

][
w
δxa

]
=
[
δyo

0

]
(5.5.12)

where w is a vector which will be discussed further in Section 5.5.2. We want to
derive from (5.5.12) an equation of the form δxa =Wδyo. Eliminating w from both
block rows in (5.5.12) we find that δxa = (B−1 +HTR−1H)−1HTR−1δyo, the 3D-Var
version of the weight matrix. On the other hand, eliminating δxa from both block
rows, we obtain an equation for the vector w, w = (R+HBHT )−1δyo. From this,
substituting w in the second block row of (5.5.12), we obtain the OI version of the
weight matrix: δxa = BHT (HBHT + R)−1δyo. This demonstrates the formal equiv-
alence of the problems solved by 3D-Var and OI. Because the methods of solution
are different, however, their results are different, and most centers have adopted the
3D-Var approach.

Exercise 5.5.1: Prove (5.5.11), using the rules for the inverse and transpose of a
matrix product assuming H = 1.

5.5.2 Physical space analysis system (PSAS)

Da Silva et al. (1995) introduced another scheme related to 3D-Var and OI, in which
the minimization is performed in the (physical) space of the observations, rather than
in the model space as in the 3D-Var scheme (spectral variables in the NCEP scheme
(Parrish and Derber, 1992)). They solved the same OI/3D-Var equation (5.5.10),

2 I am very grateful to Jim Purser for suggesting this elegant proof of (5.5.11) and for pointing
out the relationship (5.5.17).



172 5 Data assimilation

written as in the OI approach,

δxa = (BHT )(R+HBHT )−1δyo (5.5.13)

but separated it into two steps:

w = (R+HBHT )−1δyo (5.5.14)

followed by

δxa = (BHT )w (5.5.15)

The first step is the most computer intensive, and is solved by minimization of a cost
function:

J (w) = 1

2
wT (R+HBHT )w− wT [yo − H (xb)] (5.5.16)

If the number of observations is much smaller than the number of degrees of freedom
in the model, this is a more efficient method for achieving results similar to those of
3D-Var.

Exercise 5.5.1 indicates that the intermediate solution vector w is also given by

w = R−1(δyo −Hδxa) = R−1[yo − H (xa)] (5.5.17)

i.e., it is the misfit of the observations to the analysis weighted by the inverse of the
observation covariance matrix.

5.5.3 Final comments on the relative advantages
of 3D-Var, PSAS and OI

Although the three statistical interpolation methods, 3D-Var, OI, and PSAS, have
been shown to formally solve the same problem, there are important differences in
the methods of solution. As indicated before, in practice OI requires the introduction
of a number of approximations, and local solution of the analysis, grid point by grid
point, or small volume by small volume (Lorenc, 1981). This in turn requires the use
of a “radius of influence” and selection of only the stations closest to the grid point
or volume being analyzed. The background error covariance matrix also has to be
locally approximated.

Despite their formal equivalence, 3D-Var and the closely related PSAS have sev-
eral important advantages with respect to OI, because the cost function (5.5.1) is
minimized using global minimization algorithms, and as a result it makes unneces-
sary many of the simplifying approximations required by OI (Parrish and Derber,
1992, Derber et al., 1991, Courtier et al., 1998, Rabier et al., 1998, Andersson et al.,
1998):
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(a) In 3D-Var (and PSAS) there is no data selection, all available data are used
simultaneously. This avoids jumpiness in the boundaries between regions that
have selected different observations.

(b) In OI the background error covariance has been crudely obtained assuming,
for example, separability of the correlation into products of horizontal and
vertical gaussian correlations, and that the background errors are in
geostrophic balance. The background error covariance matrix for 3D-Var,
although it may still require simplifying assumptions, can be defined with a
more general, global approach, rather than the local approximations used in
OI. In particular, most centers have adopted the “NMC method” (Parrish and
Derber, 1992) for estimating the forecast error covariance:

B ≈ αE{[x f (48 h)− x f (24 h)][x f (48 h)− x f (24 h)]T } (5.5.18)

As indicated in (5.5.18), in the “NMC” (now NCEP) method, the structure of
the forecast or background error covariance is estimated as the average over
many (e.g., 50) differences between two short-range model forecasts
verifying at the same time. The magnitude of the covariance is then
appropriately scaled. In this approximation, rather than estimating the
structure of the forecast error covariance from differences with rawinsondes
(Thiebaux and Pedder, 1987, Hollingsworth and Lönnberg, 1986), the
model–forecast differences themselves provide a multivariate global forecast
difference covariance. The forecast covariance (5.5.18) strictly speaking is
the covariance of the forecast differences and is only a proxy for the structure
of forecast errors. Nevertheless, it has been shown to produce better results
than previous estimates computed from forecast minus observation estimates.
An important reason for this improvement is that the rawinsonde network
does not have enough density to allow a proper estimate of the global
structures (Parrish and Derber, 1992, Rabier et al., 1998), whereas (5.5.18)
provides a global representation of the forecast error structures. In the NCEP
system, the analysis variables are based on the spectral model forecast
variables. This allows a major simplification: the assumption of horizontal
homogeneity and isotropy of the error covariance imply that the spectral
model errors are uncorrelated, i.e., the background error covariance in
spectral space is diagonal. In the vertical, Parrish and Derber (1992) use an
empirical orthogonal function expansion of (5.5.18).

(c) The background error covariance B has a fundamental impact in determining
the characteristics of the OI analysis increment. Essentially, the analysis
increment can only occur within the subspace spanned by B.

This can be easily demonstrated if we assume that the background error covari-
ance is spanned by a single vector b, i.e., B = bbT . This assumes that the forecast
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error can take place only in the direction of b. Assume also for simplicity thatH = I,
i.e., that the model variables are observed at all the model grid points, and that
R = α2I, i.e., that the observational errors are uncorrelated and equal. Then the so-
lution of the OI problem δxa = xa − xb = BHT [HBH+ R]−1 [yo − H (xb)] can be
written exactly as δxa = bbT δyo/(bTb+ α2).

Note that the analysis increment has the direction of b, and that its magnitude is
proportional to the projection of the observational increment upon the subspace of
the vector b (a similar formula with α2 = 0 was used by Kalnay and Toth, (1994)).

If H �= I, we can write b̃ = Hb. Then Hδx = HBHT [HBH+ R]−1

× [yo − H (xb)], and from the previous formula we obtain

δxa = bbTHT [yo − H (xb)]

bTHTHb+ α2
(5.5.19)

again showing that the analysis increment takes place in the direction of b, with an
amplitude proportional to the projection of innovation onto the subspace of b.

Exercise 5.5.2: Prove (5.5.19) for a vector b of dimension 2.

If B =∑k
i=1 bi , spanning a subspace of dimension k < n, the dimension of

the model, then the 3D-Var cost function 2J (x) = (x− xb)TB−1(x− xb)+ [yo −
H (x)]TR−1[yo − H (x)] can be used to show again that the analysis increment has
to be within the k-dimensional subspace spanned by the vectors bi . This is because
outside this subspace, the inverse of the covariance matrix is infinitely large, and
therefore increments not within the k-dimensional subspace are forbidden because
they would result in large increases of the value of the cost function.

(d) It is possible to add constraints to the cost function without increasing the
cost of the minimization. For example, Parrish and Derber (1992) included a
“penalty” term in the cost function (5.5.1) forcing simultaneously the analysis
increments to approximately satisfy the linear global balance equation. In OI,
the imposition of the geostrophic constraint on the increments ensured only
an approximate balance in the analysis. In practice it was found necessary to
follow the OI analysis with a nonlinear normal mode initialization
(Section 5.7). With the global balance equation added as a weak constraint to
the cost function, the NCEP global model spin up (indicated for example by
the change of precipitation over the first 12 hours of integration) was reduced
by more than an order of magnitude compared with the results obtained with
OI. In other words, with the implementation of 3D-Var it became unnecessary
to perform a separate initialization step in the analysis cycle.
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(e) It is also possible to incorporate important nonlinear relationships between
observed variables and model variables in the H operator in the minimization
of the cost function (5.5.1) by performing “inner” iterations with the
linearized H observation operator kept constant and “outer” iterations in
which it is updated. This is harder to do in the OI approach.

(f) The introduction of 3D-Var has allowed three-dimensional variational
assimilation of radiances (Derber and Wu, 1998). In this approach, there is no
attempt to perform retrievals and, instead, each satellite sensor is taken as an
independent observation with uncorrelated errors. As a result, for each
satellite observation spot, even if some channel measurements are rejected
because of cloud contamination, others may still be used. In addition, because
all the data are assimilated simultaneously, information from one channel at a
certain location can influence the use of satellite data at a different
geographical location. The quality control of the observations becomes easier
and more reliable when it is made in the space of the observations than in the
space of the retrievals.3

(g) It is also possible to include quality control of the observations within the
3D-Var analysis (Section 5.6).

(h) Cohn et al. (1998) have shown that the observation-space form of 3D-Var
(PSAS) offers opportunities, through the grouping of data, to improve the
preconditioning of the problem in an iterative solution.

5.6 Advanced data assimilation methods with evolving
forecast error covariance

In Section 5.4 we have discussed OI, which minimizes the expected analysis error
covariance, and its practical implementations, and in Section 5.5 the closely related
3D-Var and PSAS methods, solving essentially the same problem but minimizing
a cost function. In these methods, the forecast error covariance matrix is estimated
once and for all, as if the forecast errors were statistically stationary.

From Fig. 5.6.1 we can evaluate whether this is indeed a good approximation.
It shows the 6-h forecast errors in the western and eastern thirds of the USA from

3 Joiner and Da Silva (1998) pointed out that the use of retrievals from remotely sensed
observations is a viable option within the variational analysis approach, as long as the
innovation vector is computed consistently with the use of retrievals from radiances. If Dyo is
the (linearized) retrieval algorithm applied to satellite radiances to obtain, e.g., temperature and
moisture profiles, then the innovation vector should be computed consistently as Dyo − DFxb ,
where F is the forward (linearized radiative transfer) algorithm that converts model variables
into model radiances. In other words, the forward observational operator in (5.5.13) is H = DF,
and the observational error covariance for the retrievals becomes E[(Dδyo)(Dδyo)T ] =
DE[δyoδyoT ]DT = DRDT instead of R, which is the observation error covariance when
radiances are directly assimilated. If this method is applied to OI, the weight matrix becomes
K = BFTBT (DFBFTDT + DRDT )−1.
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Figure 5.6.1: Daily variation of the rms increment between the 6-h forecast and the
analysis over two data-rich regions in the USA, from the NCEP-NCAR reanalysis
(Kistler et al., 2001): (a) 1958; (b) 1996. The average error is indicated in the box.

the NCEP/NCAR reanalysis (Kistler et al., 2001) estimated from the difference be-
tween the forecast and the analysis or analysis increments. Since in these data-rich
regions the analysis is close to the truth, the analysis increment is a good estimate
of the forecast error. Figure 5.6.1(a) corresponds to 1958 and Fig. 5.6.1(b) is calcu-
lated for 1996. The NCEP/NCAR reanalysis used a 3D-Var data assimilation system
unchanged in time, so that the difference between the figures is due only to the
changes in the observing system. Over these four decades the improvements in the
observing system in the Northern Hemisphere show a positive impact on the 6-h
forecast errors of about 20%, with the average analysis increment reduced from
about 10 m to 8 m. Note that the NCEP/NCAR reanalysis used satellite temperature
retrievals, not direct assimilation of radiances, which would probably have resulted
in larger improvements. However, the most striking result apparent in the figure is
that the day-to-day variability in the forecast error (with a time scale of a few days)
is about as large as the average error, not just in 1958 but even in 1996. This figure
emphasizes the importance of the “errors of the day” (Kalnay et al., 1997), which
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Figure 5.6.1: (cont.)

in these areas are dominated presumably by baroclinic instabilities of synoptic time
scales, and which are ignored when the forecast error covariance is assumed to be
constant.

In this section we give a brief introduction to more advanced (and much costlier)
schemes that include, at least implicitly, the evolution of the forecast error covariance.
A number of papers in Ghil et al. (1997) provide more details about the theory and
practice of some of these methods. Ide et al. (1997) is a brief but extremely clear
overview.

5.6.1 Extended Kalman filtering

As we discussed in Section 5.3 for the simple case of a scalar analysis, the Kalman
filter (KF) is formally very similar to OI, but with one major difference: the forecast
or background error covariance P f (ti ) is advanced using the model itself, rather than
estimating it as a constant covariance matrix B.

Following the notation of Ide et al. (1997), let x f (ti ) = Mi−1 [xa(ti−1)] represent
the (nonlinear) model forecast that advances from the previous analysis time ti−1
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to the current ti . The model is imperfect (in particular, it has been discretized, so
that subgrid processes are not included). Therefore, we assume that for the true
atmosphere

xt (ti ) = Mi−1[xt (ti−1)]+ η(ti−1) (5.6.1)

where η is a noise process with zero mean and covariance matrixQi−1 = E(ηi−1η
T
i−1)

(in other words, when starting from perfect initial conditions, the forecast error is
given by−ηi−1, where the negative sign is chosen for convenience). Although we are
assuming that the mean error is zero, in reality model errors have significant biases
that should be taken into account. Dee and DaSilva (1998) showed how to estimate
and remove these model biases.

In the extended Kalman filter, the forecast error covariance is obtained linearizing
the model about the nonlinear trajectory of the model between ti−1 and ti , so that if
we introduce a perturbation in the initial conditions, the final perturbation is given
by

x(ti )+ δx(ti ) = Mi−1 [x(ti−1)+ δx(ti−1)]

= Mi−1 [x(ti−1)]+ Li−1δx(ti−1)+ O(|δx|2) (5.6.2)

The linear tangent model Li−1 is a matrix that transforms an initial perturbation at
time ti−1 to the final perturbation at time ti (Lorenz, 1965). The linear tangent model
and its transpose or adjoint model LT

i−1 will be discussed in more detail in Chapter 6,
which is devoted to predictability, and in Appendix B. We point out here that if there
are several steps in a time interval t0 − ti , the linear tangent model that advances a
perturbation from t0 to ti is given by the product of the linear tangent model matrices
that advance it over each step:

L(t0, ti ) =
0∏

j=i−1

L(t j , t j+1) =
0∏

j=i−1

L j = Li−1Li−2 · · ·L0 (5.6.3)

Therefore, the adjoint model (transpose of the linear tangent model) is given by

L(ti , t0)T =
i−1∏
j=0

L(t j+1, t j )
T =

i−1∏
j=0

LT
j (5.6.4)

Equation (5.6.4) shows that the adjoint model “advances” a perturbation backwards
in time, from the final to the initial time. Adjoint models are discussed in more detail
in Chapter 6 and in Appendix B.

As we did in OI and 3D-Var, observations are assumed to have random errors with
zero mean and an observational error covariance matrix Ri = E(εo

i ε
oT

i ), where

yo
i = H (xt (ti ))+ εo

i (5.6.5)

and H is the forward or observation operator.
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Note that the forecast error over a 6-h forecast depends on the initial (analysis)
error and on the errors introduced by the forecast model during that period:

ε
f
i = Mi−1

(
xt

i−1

)+ ηi − Mi−1
(
xa

i−1

) = Mi−1
(
xa

i−1 + xt
i−1 − xa

i−1

)
+ηi − Mi−1

(
xa

i−1

) ≈ Li−1ε
a
i−1 + ηi (5.6.6)

where we have neglected higher order terms.
The analysis and forecast error covariances are defined, as usual, from their cor-

responding errors at the appropriate time:

Pi = E
(
εiε

T
i

)
(5.6.7)

From these equations we can define extended Kalman filtering which consists of a
“forecast step” that advances the forecast and the forecast error covariance, followed
by an “analysis” or update step, a sequence analogous to OI. After the forecast step,
an optimal weight matrix or Kalman gain matrix is calculated as in OI, and this matrix
is used in the analysis step.

The forecast step is

x f (ti ) = Mi−1[xa(ti−1)]

P f (ti ) = Li−1Pa(ti−1)LT
i−1 +Q(ti−1)


 (5.6.8)

The analysis step is written as in OI, with

xa(ti ) = x f (ti )+Kidi

Pa(ti ) = (I−KiHi )P f (ti )


 (5.6.9)

where

di = yo
i − H [x f (ti )] (5.6.10)

is the observational increment or innovation.
The formula for the Kalman gain or weight matrix in (5.6.10), computed after

completing the forecast step, is obtained by minimizing the analysis error covariance
Pa

i . It is given by the same formula derived for OI, but with the constant background
error covariance B replaced by the evolved forecast error covariance P f (ti ):

Ki = P f (ti )HT
i [Ri +HiP f (ti )HT ]−1 (5.6.11)

The extended Kalman filter is the “gold standard” of data assimilation. Even if a
system starts with a poor initial guess of the state of the atmosphere, the extended
Kalman filter may go through an initial transient period of a week or so, after which
it should provide the best linear unbiased estimate of the state of the atmosphere and
its error covariance. However, if the system is very unstable, and the observations are
not frequent enough, it is possible for the linearization to become inaccurate, and the
extended Kalman filter may drift away from the true solution (Miller et al., 1994).
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The updating of the forecast error covariance matrix ensures that the analysis
takes into account the “errors of the day”. Unfortunately the extended Kalman filter
is exceedingly expensive, since the linear model matrix Li−1 has size n, the number
of degrees of freedom of a modern model (more than 106) and updating the error
covariance is equivalent to performing O(n) model integrations. For this reason, this
step has been replaced by the use of simplifying assumptions (e.g., a lower order
model and/or infrequent updating).

5.6.2 Ensemble Kalman filtering

One promising simplification of Kalman filtering is ensemble Kalman filtering. In
this approach, an ensemble of K data assimilation cycles is carried out simulta-
neously (Houtekamer et al., 1996, Houtekamer and Mitchell, 1998, 2001, Hamill
and Snyder, 2000, Hamill et al., 2001, Anderson, 2001). All the cycles assimilate
the same real observations, but in order to maintain them realistically independent,
different sets of random perturbations are added to the observations assimilated in
each member of the ensemble data assimilations. This ensemble of data assimila-
tion systems can be used to estimate the forecast error covariance (Evensen, 1994,
Evensen and van Leewen, 1996, Houtekamer and Mitchell, 1998, Hamill and Snyder,
2000). After completing the ensemble of analyses at time ti−1, and the K forecasts
x f

k (ti ) = Mk
i−1[xa

k (ti−1)], one can obtain an estimate of the forecast error covariance
from the K forecasts x f

k (ti ). For example one could assume

P f ≈ 1

K − 1

K∑
k=1

(
x f

k − x f )(x f
k − x f )T

where the overbar represents the ensemble average, but this would tend to underesti-
mate the variance of the forecast errors because every forecast is used to compute the
estimate of its own error covariance. Houtekamer and Mitchell (1998) and Hamill
and Snyder (2000) suggested instead to compute the forecast error covariance for
ensemble member ifrom an ensemble that excludes the forecast l:

P f
l ≈

1

K − 2

∑
k �=l

(
x f

k − x f
l

)(
x f

k − x f
l

)T
(5.6.12)

Hamill and Snyder (2000) also suggested a hybrid between 3D-Var and ensemble
Kalman filtering, where the forecast error covariance is obtained from a linear com-
bination of the (constant) 3D-Var covariance B3D-V ar :

P f (hybrid)
l = (1− α)P f

l + αB3D-V ar (5.6.13)

where α is a tunable parameter that varies from 0, pure ensemble Kalman filtering
from (5.6.12) to 1, pure 3D-Var. In (5.6.12) the ensemble Kalman filtering covariance
is estimated from only a limited sample of ensemble members K − 1, compared with
a much larger number of degrees of freedom of the model, it is rank deficient. The
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combination with the 3D-Var, computed from many estimated forecast errors (using
for example the method of Parrish and Derber (1992)) may ameliorate this sampling
problem and “fill out” the error covariance. In the experiments of Hamill and Snyder
(2000) the best results were obtained for low values of α, between 0.1 and 0.4,
indicating good impact of the use of the ensemble-evolved forecast error covariance.
They found that 25–50 ensemble members were enough to provide the benefit of
ensemble Kalman filtering (but this may be different when using a more complex
model than the quasi-geostrophic model used here).

The ensemble Kalman filtering approach has several advantages: (a) K is of the
order of 10–100, so that the computational cost (compared with OI or 3D-Var) is
increased by a factor of 10–100. Although this increased cost may seem large, it
is small compared to extended Kalman filtering, which requires a cost increase of
the order of the number of degrees of freedom of the model. (b) Ensemble Kalman
filtering does not require the development of a linear and adjoint model. (c) It does
not require the linearization of the evolution of the forecast error covariance. (d) It
may provide excellent initial perturbations for ensemble forecasting. Despite these
advantages, at the time of writing no operational center has yet implemented this
system, although Canada has plans to do so. Ott et al. (2002) proposed to do en-
semble Kalman filtering based on the bred vectors available from operations, and
taking advantage of the local low dimensionality observed by Patil et al. (2001). En-
semble Kalman filtering appears at the present time to be one of the most promising
approaches for the future.

5.6.3 4D-Var

This is an important extension of the 3D-Var which allows for observations dis-
tributed within a time interval (t0, tn) (e.g., Lewis and Derber, 1985, Courtier and
Talagrand, 1990, Derber, 1989, Daley, 1991, Zupanski, 1993, Bouttier and Rabier,
1997). The cost function includes a term measuring the distance to the background
at the beginning of the interval, and a summation over time of the cost function for
each observational increment computed with respect to the model integrated to the
time of the observation:

J [x(t0)] = 1

2
[x(t0)− xb(t0)]TB−1

0 [x(t0)− xb(t0)]

+1

2

N∑
i=0

[
H (xi )− y0

i

]T
R−1

i

[
H (xi )− yo

i

]
(5.6.14)

The control variable (the variable with respect to which the cost function is min-
imized) is the initial state of the model with the time interval x (t0), whereas the
analysis at the end of the interval is given by the model integration from the solution
x (tn) = M0 [x (t0)]. Thus, the model is used as a strong constraint (Sasaki, 1970),
i.e., the analysis solution has to satisfy the model equations. In other words, 4D-Var
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seeks an initial condition such that the forecast best fits the observations within the
assimilation interval. The fact that the 4D-Var method assumes a perfect model is a
disadvantage since, for example, it will give the same credence to older observations
at the beginning of the interval as to newer observations at the end of the interval
(Menard and Daley, 1996). Derber (1989) suggested a method of correcting for a
constant model error (a constant shape within the assimilation interval), see also
Zupanski (1993).

A variation in the cost function when the control variable x (t0) is changed by a
small amount δx(t0) is given by

δ J = J [x(t0)+ δx(t0)]− J [x(t0)] ≈
[

∂ J

∂x(t0)

]T

· δx(t0) (5.6.15)

where the gradient of the cost function [∂ J/∂x(t0)] j = ∂ J/∂x j (t0) is a column vector.
As suggested by (5.6.15), iterative minimization schemes require the estimation of
the cost function gradient. In the simplest scheme, the steepest descent method, the
change in the control variable after each iteration is chosen to be opposite to the
gradient δx(t0) = −a∇x(t0) J = −a ∂ J/∂x(t0). Other, more efficient methods, such
as the conjugate gradient or quasi-Newton (Navon and Legler, 1987) method, also
require the use of the gradient, so that in order to solve this minimization problem
efficiently, we need to be able to compute the gradient of J with respect to the elements
of the control variable.

As we saw in Sections 5.4 and 5.5, given a symmetric matrix A and a functional
J = 1

2x
TAx, the gradient is given by ∂ J/∂x = Ax. If J = yTAy, and y = y(x), then

∂ J

∂x
=
[
∂y
∂x

]T

Ay (5.6.16)

where [∂y/∂x]k,l = ∂yk/∂xl is a matrix.
We can write (5.6.14) as J = Jb + Jo, and from the rules discussed above,

the gradient of the background component of the cost function Jb = 1
2 [x(t0)−

xb(t0)]TB−1
0 [x(t0)− xb(t0)] with respect to x (t0) is given by

∂ Jb

∂x(t0)
= B−1

0 [x(t0)− xb(t0)] (5.6.17)

The gradient of the second term of (5.6.14) Jo = 1
2

∑N
i=0[H (xi )−

yo
i ]TR−1

i [H (xi )− yo
i ] is more complicated because xi = Mi [x(t0)]. If we introduce

a perturbation to the initial state, then δxi = L(t0, ti )δx0, so that

∂
(
H (xi )− yo

i

)
∂x(t0)

= ∂H

∂xi

∂M

∂xo
= HiL(t0, ti ) = Hi

0∏
j=i−1

L(t j , t j+1) (5.6.18)

As indicated by (5.6.18), the matrices Hi , Li are the linearized Jacobians
∂H/∂xi , ∂M/∂xo. Therefore, from (5.6.16) and (5.6.18) the gradient of the
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Figure 5.6.2: Schematic of the computation of the gradient of the observational
cost function for a period of 12 h, observations every 3 h and the adjoint model that
integrates backwards within each interval.

observation cost function is given by

[
∂ Jo

∂x (t0)

]
=

N∑
i=0

L(ti , t0)THT
i R
−1
i

[
H (xi )− yo

i

]
(5.6.19)

Equation (5.6.19) shows that every iteration of the 4D-Var minimization requires
the computation of the gradient, i.e., computing the increments [H (xi )− yo

i ] at the
observation times ti during a forward integration, multiplying them by HT

i R
−1
i and

integrating these weighted increments back to the initial time using the adjoint model.
Since parts of the backward adjoint integration are common to several time intervals,
the summation in (5.6.19) can be arranged more conveniently. Assume, for example
that the interval of assimilation is from 00 Z to 12 Z, and that there are observations
every 3 h (Fig. 5.6.2). We compute during the forward integration the weighted neg-
ative observation increments di = HT

i R
−1
i [H (xi )− yo

i ] = −HT
i R
−1
i di . The adjoint

model LT (ti , ti−1) = LT
i−1 applied on a vector “advances” it from ti to ti−1. Then we

can write (5.6.19) in the example shown in Fig. 5.6.2 as

∂ Jo

∂xo
= do + LT

0

{
d1 + LT

1

[
d2 + LT

2

(
d3 + LT

3 d4
)]}

(5.6.20)

From (5.6.17) plus (5.6.19) or (5.6.20) we obtain the gradient of the cost function,
and the minimization algorithm modifies appropriately the control variable x(t0).
After this change, a new forward integration and new observational increments are
computed and the process is repeated.

4D-Var can also be written in an incremental form with the cost function defined
by

J (δx0) = 1

2
(δx0)TB−1

0 (δx0)

+1

2

N∑
i=0

[
HiL(t0, ti )δx0 − do

i

]T
R−1

i

[
HiL(t0, ti )δx0 − d0

i

]
(5.6.21)

and the observational increment defined as in (5.6.10). Within the incremental for-
mulation, it is possible to choose a “simplification operator” that solves the problem
of minimization in a lower dimensional space w than that of the original model
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variables x:

δw = Sδx

S is meant to be rank deficient (as would be the case, for example, if a lower resolution
spectral truncation was used for w than for x), so that its inverse doesn’t exist, and
we have to use a generalized inverse S−I = [SST ]−1ST . Then the minimum of the
problem is obtained for

J (δw), xb
0 = xg

0 + S−I δw0

and a new “outer iteration” at the full model resolution can be carried out (Lorenc,
1997).

The iteration process can also be accelerated through the use of “pre-condition-
ing”, a change of control variables that makes the cost function more “spherical”, and
therefore each iteration can get closer to the center (minimum) of the cost function
(e.g., Parrish and Derber, 1992, Lorenc, 1997).

The most important advantage of 4D-Var is that if we assume that: (a) the model
is perfect, and (b) the a priori error covariance at the initial time B0 is correct, it can
be shown that the 4D-Var analysis at the final time is identical to that of the extended
Kalman filter (Lorenc, 1986, Daley, 1991). This means that implicitly 4D-Var is able
to evolve the forecast error covariance fromB0 to the final time (Thepaut et al., 1993).
Unfortunately, this implicit covariance is not available at the end of the cycle, and
neither is the new analysis error covariance. In other words, 4D-Var is able to find the
best linear unbiased estimation but not its error covariance. To mitigate this problem,
a simplified Kalman filter algorithm has been proposed to estimate the evolution of
the analysis errors in the subspace of the dynamically most unstable modes (Fischer
and Courtier, 1995, Cohn and Todling, 1996).

5.6.4 Method of representers

Finally, we mention that Bennett (1992), Bennett et al. (1997) and Egbert et al.,
(1994) developed a variational method with a weak constraint, rather than a strong
constraint, thus accounting for the existence of model errors in the evolution of the
forecast and the forecast error covariance. The forecast errors appear as random
forcings on the dynamics, with an a priori forecast error covariance matrix Q. The
cost function therefore becomes

J [x(t0)] = 1

2
[x(t0)− xb(t0)]TB−1

0 [x(t0)− xb(t0)]

+1

2

M∑
m,m ′=0

[xm+1 − Mm(xm)]TQm,m ′
−1[xm ′+1 − Mm ′ (xm ′ )]

+1

2

N∑
i=0

[
H (xi )− yo

i

]T
R−1

i

[
H (xi )− y0

i

]
(5.6.22)



5.7 Dynamical and physical balance in the initial conditions 185

where the second term accounts for the model errors. In principle this cost function
makes the problem equivalent to Kalman filtering. However, the solution is made
feasible using the method of representers within the observational space (Bennett,
1992, Egbert and Bennett, 1994).

Formally, the representer method can be written as a four-dimensional OI

x(tN ) = xb(tN )+W[yo − H (xb)]

where the weight matrix and the observational and background vectors in d(ti ) =
[yo − H (xb)] are defined not only in space but also in time (at the time of the obser-
vations). The details of the method of solution are described in Egbert et al. (1994),
Bennett et al. (1996), and Uboldi and Kamachi (2000). Uboldi and Kamachi (2000)
showed how it is applied to the nonlinear Burger equation, and how the “represen-
ters”, which are the a posteriori error covariance functions for each observation,
influence the solution beyond the time of observation.

5.7 Dynamical and physical balance
in the initial conditions

We saw in Chapter 1 that Richardson’s (1922) experiment resulted in a disastrous
estimation of the initial surface pressure tendency (a forecast of a change of
146 hPa in 6 h, whereas the actual pressure remained almost unchanged) be-
cause of noisy data and the presence of fast inertia-gravity waves in the solu-
tion of the primitive equations. If there are fast and slow waves in the solution
of a model, ωfast >> ωslow , and u = Uslowe−iωslowt +Ufaste−iωfastt , then ∂u/∂t =
−iωslowUslowe−iωslowt − iωfastUfaste−iωfastt . As shown schematically in Fig. 1.2.1 it is
clear that, unless the amplitude of the fast waves component is made very small, the
fast waves will dominate the initial tendency.

We saw in Section 2.5 that in the SWEs, the simplest example of primitive equa-
tions, there are two types of wave solutions: (a) steady or slowly evolving, quasi-
geostrophically balanced “weather” modes, satisfying ω ≈ 0, and (b) fast inertia-
gravity waves with a frequency dispersion relationship ω2 ≈ f 2 + gD(k2 + l2),
where k, l are the horizontal wavenumbers, and D is the mean depth of the model. For
the external mode, with about 10 km equivalent depth, inertia-gravity waves travel at
a speed of about 300 m/s, and unless they are filtered out of the initial conditions, they
can indeed produce a very noisy forecast. After a while, though, the inertia-gravity
waves subside as the solution evolves towards quasi-geostrophic balance (a process
known as geostrophic adjustment), so that, unless they interact nonlinearly with the
slower “weather waves”, the inertia-gravity waves do not necessarily ruin the forecast.

In this section we first consider the geostrophic adjustment process that takes place
within a linear SWE system. This also allows us to assess what types of observations
are most useful for NWP. We then consider the nonlinear case and describe the non-
linear normal mode initialization method, which was used for many years to reduce
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the imbalance in the initial conditions. Finally we describe a more recently introduced
type of dynamical initialization, denoted digital filtering, which is simple and very
effective. We should note that if the analysis is out of balance, all of the initial infor-
mation that projects on inertia-gravity waves will be lost, whether the inertia-gravity
waves are filtered out during the model integration through geostrophic adjustment, or
through the other initialization methods. For this reason it is preferable to enforce bal-
ance within the analysis as done in 3D-Var, since this reduces the loss of information.

5.7.1 Geostrophic adjustment and the relative importance
of different observations

If the initial conditions of a model are not in quasi-geostrophic balance, the balanced
portion of the initial field will project on the quasi-geostrophic mode, and the unbal-
anced portion will project onto inertia-gravity waves. These waves have large horizon-
tal divergence and propagate horizontally, dispersing quite fast. Because of horizontal
dispersion, after a while the amplitude of the inertia-gravity waves becomes much
smaller, and the leftover fields remain in quasi-geostrophic balance. Rossby (1936,
1938) first described this process of “geostrophic adjustment.” The time scale for
geostrophic adjustment is of the order of f −1 (about 12 h). Arakawa (1997) provided
an analytic solution of the linear geostrophic adjustment problem for the SWEs.

In Section 2.4 we showed that the potential vorticity is conserved for individual
parcels:

d

dt

∇2ψ + f

�
= 0 (5.7.1)

Consider small perturbations on a basic state of rest. The linearized SWE potential
vorticity is obtained assuming that the relative vorticity ∇2ψ is small compared with
the Coriolis parameter and that the total geopotential height � = gD + φ, where the
perturbations to the free surface are small compared to the mean depth of the fluid.
In that case, the conservation of potential vorticity becomes

d

dt
η = d

dt

(
f +∇2ψ − f0

gD
φ

)
= 0 (5.7.2)

Parcels will evolve conserving their initial potential vorticity η(0) = f +∇2ψ −
( fo/gD)φ even as they undergo the geostrophic adjustment process. This important
conservation property allows us to assess how much of the initial mass and wind
increments will project on the slow modes, and be “remembered” by the model
after geostrophic adjustment, and how much information will be lost through inertia-
gravity waves. If we introduce a perturbation δψ(0), δφ(0) in the initial conditions
through data assimilation, the perturbation in potential vorticity will remain in the
solution even after geostrophic adjustment: δηg = δη(0).Recall that after geostrophic
adjustment, the winds become geostrophic, so that ψg = φg/ f0.
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Assume that within a univariate analysis, the introduction of observations results in
an analysis increment field associated with either mass observations δφ(x, y) or wind
observations δψ(x, y). After about 12–24 h the initial unbalanced field will disperse
away as inertia-gravity waves, and the remaining increments will be in geostrophic
balance:

δφ→ δφg, δψ → δψgwith δψg = δφg/ fo (5.7.3)

Assume that the analysis increment field was of the form δφ = Aei(kx+ly), with
k2 + l2 = n2 = (2π/L)2. From (5.7.2), the final increment of potential vorticity after
geostrophic adjustment is equal to the initial analysis increment δηg(x, y) = δη(x, y).
Consider the effect of introducing only mass observations (performing a univariate
analysis). They will result in an analysis increment δφ, and the potential vorticity
initial (and final) increments are then

δη = − f0

gD
δφ =∇2δψg − f0

gD
δφg = −n2δψg − f0

gD
δφg (5.7.4)

The impact of the mass observation after geostrophic adjustment is therefore

δφg = 1

n2 R2 + 1
δφ (5.7.5)

where R =
√

gD/ f 2
0 is the Rossby radius of deformation, the natural quasi-

geostrophic horizontal scale given a rotation rate and mean depth. Equation (5.7.5)
indicates that the response depends strongly on whether the waves are short or long
compared with R. For long waves, for which n2 R2 � 1, the model “remembers” the
mass data: δφg ≈ δφ, i.e., it retains it after geostrophic adjustment. For short waves,
for which n2 R2  1, on the other hand, the model “forgets” the mass information:
δφg ≈ 0.

The situation is reversed for a univariate analysis of only wind data, leading to an
analysis increment δψ . After geostrophic adjustment,

δψg = n2 R2

n2 R2 + 1
δψ (5.7.6)

so that for long waves, n2 R2 � 1, the model “forgets” the wind data: δψg ≈ 0,
whereas wind information is retained in short waves: δψg ≈ δψ .

Now we have to determine which waves are “short” and which “long”. In mid-
latitudes, with f0 ∼ 10−4, for the external or barotropic mode D ∼10 km, so that

short waves are those for which n2 R2  1 or L �
√

4π2gD/ f 2
0 ≈ 20000 km, i.e.,

all but planetary waves are very short. This implies that the model essentially will
ignore surface pressure data, which is the mass data corresponding to the external
mode, and it will adjust its surface pressure to the barotropic component of the wind.
For the first internal mode D ∼ 1 km, and waves are “short” if shorter than about
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6000 km. In other words, most of the energy in the mid-latitude atmosphere is actually
in short waves. In the tropics, where f is an order of magnitude smaller, the statement
that “most waves are short” applies even more strongly. For this reason, winds tend to
be more effective in providing initial conditions for an NWP model than mass data,
but temperature data are more important for shallower vertical modes, for which the
wind will adjust to the temperature observations.

The “acceptance” of wind and/or mass data is enhanced by the use of multivariate
analysis schemes, because the geostrophic correlation assumed in the background
error covariance enforces an approximate geostrophic balance in the analysis incre-
ments. However, even with multivariate analysis, because nonlinearities do not allow
for a perfect balance, wind observations still have the strongest impact on the skill
of a forecast in modern data assimilation systems. The full impact of an observing
system depends on the extent to which they contribute to define the potential vorticity,
as discussed above, and on other factors:

(a) Precision
Assume we observe winds and mass, and in a multivariate scheme we combine them
optimally, in which case their precisions (inverse of the error variances) are additive.
This allows a simple estimation of the relative contributions to the analysis precision
of mass and wind measurements. If we observe heights φ = f0ψ

mass with an error
δφob = gδzob, and winds v = k×∇ψwind with an error |δvob|, they both contribute
to the streamfunction. If we combine them optimally, the analysis error precision
will be

1

|δψ |2 =
f 2
o

g2|δzob|2 +
n2

|δvob|2 (5.7.7)

suggesting that the wind field contributes more accuracy to the analysis for short
waves or in the tropics. The higher accuracy of winds for short waves is a result
of the fact that they measure a gradient field, and is independent of the geostrophic
adjustment argument.

(b) Data coverage, both in the horizontal and in the vertical
Obviously, the denser an observing system is, the more it will contribute to the
accuracy of the analysis. This is true in the horizontal as well as in the vertical, so that
vertical profiles of winds, temperature, or moisture are found to be more useful than
single level observations. An observing system will also contribute more to the skill of
the forecasts in the absence of other observing systems. For example, in the Northern
Hemisphere, which has a relatively good network of rawinsondes, the contribution
of satellite data to the improvement of NWP forecasts is much lower than in the
Southern Hemisphere, where rawinsondes are much fewer.
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(c) Physical model adjustments and model spin-up
In the same way that mass and wind initial fields undergo a dynamical adjustment
towards geostrophic balance, other variables quickly evolve towards thermal and
hydrological balance within the model. For example, because of the low heat capacity
of the surface layer, surface air temperatures (at 2 m) adjust very rapidly towards
equilibrium with the sea or land surface temperatures. As a result, it is difficult to
effectively use surface air temperature observations since the model will tend to
“forget” them (replace them by model adjusted values). Similarly, if the moisture
analysis profiles are wetter or drier than what the model hydrological equilibrium
would require (i.e., the model has a wet or dry bias), the analysis moisture profiles
are quickly replaced by model adjusted profiles. Therefore, a model with a dry
climatological bias will produce excessive rain during the analysis cycle, as the initial
conditions bring in higher observed moisture profiles every 6 h, and the model rains
out what it perceives as “excessive moisture”. This adjustment process, which is also
affected by other physical parameterizations such as surface fluxes and radiation, is
known as the “spin-up” or “spin-down” of the model, depending on whether there is
an initial increase or decrease in the precipitation. The spin-up process is strongest
immediately after the analysis and takes between 12 and 36 h before reaching model
balance. It can be reduced by “physical initialization” or assimilation of precipitation,
in which temperature and moisture profiles are modified so that the model during the
analysis cycle is forced to produce precipitation similar to the observed precipitation
(e.g., Krishnamurti et al., 1988, Treadon, 1996, Falkovich et al., 2000).

Fig. 5.7.1 shows the results of a comparison of different 5-day forecasts performed
every 12 h for February 1998 using the 2000 operational NCEP data assimilation
system (courtesy of Michiko Masutani and Stephen Lord). The forecasts are based
on different data assimilation experiments, in which: (a) all available data was as-
similated (ALL); (b) the satellite radiances were not assimilated (No TOVS 1B);
(c) the rawinsonde temperatures were not assimilated (No RAOB Temp); and (d) the
rawinsondes winds were not assimilated (No RAOB Wind). The results illustrate
several conclusions, in agreement with the discussion above:

If every statistical assumption about errors was perfect, the ALL experiments
should have the best forecasts. This is generally but not always true.

In the Northern Hemisphere where the rawinsonde network is fairly
abundant, the forecasts from the assimilation without satellite data No TOVS
1B, are, on the average, slightly worse than the ALL data experiments.

Eliminating the rawinsonde winds from the data assimilation has a much
larger negative impact than eliminating the rawinsonde temperatures in the
Northern Hemisphere.

In the Southern Hemisphere, where there are relatively few rawinsondes, the
satellite radiances are the backbone of the information needed in the data
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Figure 5.7.1: Verification (anomaly correlation) for the 5-day forecasts performed
every 12 h with the NCEP data assimilation system with different combinations of
data: crosses, all data; open circles, no TOVS radiances; open squares: no rawinsonde
winds; full circles, no rawinsonde temperatures. (Courtesy of M. Masutani.)

assimilation. Without satellite radiances, the forecasts in the Southern
Hemisphere substantially deteriorate.

We should also note that there is substantial day-to-day variability in the
5-day forecast skill. This can be attributed to the changes in atmospheric
predictability, i.e., on some days the atmosphere is simply easier to predict
than on others. This will be studied in detail in Chapter 6.

5.7.2 Normal modes initialization

Because atmospheric motion is nonlinear, a simple linear geostrophic balance as
discussed in the previous section is not enough to ensure balanced initial conditions.
An approach that has been widely used to improve the initial imbalance is that of
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nonlinear normal modes initialization, introduced by Machenhauer (1977) and by
Baer and Tribbia (1977). As indicated by its name, it requires the determination of
the (linear) normal modes of a model as a first step. Daley (1991), Temperton and
Williamson (1981), and others give a complete discussion about how this procedure
is carried out in a three-dimensional model. Here we only illustrate how it would be
applied to a simple SWE model on a periodic f-plane model. The SWEs are written
separating them into their linear terms (on the left-hand sides) and the nonlinear
terms (on the right-hand sides):

∂u

∂t
− fv+ ∂φ

∂x
= Ru

∂v

∂t
+ fu+ ∂φ

∂y
= Rv

∂φ

∂t
+ gD

(∂u

∂x
+ ∂v

∂y

)
= Rφ




(5.7.8)

For the SWEs the nonlinear terms Ru, Rv, Rφ are

Ru = −u
∂u

∂x
− v

∂u

∂y

Rv = −u
∂v

∂x
− v

∂v

∂y

Rφ = −u
∂φ

∂x
− v

∂φ

∂y




(5.7.9)

Note that the left-hand sides contain linear terms about a basic state of rest.
The first step is to determine the (linear) normal modes, and for this purpose we

find the eigensolutions or normal modes of (5.7.8) setting Ru = Rv = Rφ = 0. In the
case of a doubly periodic domain the normal modes are simply of the form

Ukl

Vkl

Fkl


 ei(kx+ly)e−iωt = Xkle

−iωt (5.7.10)

In a three-dimensional model there would be an additional functional dependence
on the vertical, which can be represented by a vertical wavenumber. If we plug
(5.7.10) into (5.7.8) with zero on the right-hand side, we obtain three solutions for
the frequency:

ωS = 0

(ωF )2 = f 2 + gD(k2 + l2)


 (5.7.11)

where the subscripts S and F refer to the slow (quasi-geostrophic) and the fast (inertia-
gravity wave) modes. Because the equations are homogeneous, (U, V, F) are related
to each other and the amplitude of the normal mode is arbitrary. For the slow modes,
the relationship is UklS = −il FklS/ f, VklS = ikFklS/ f (geostrophic balance). For



192 5 Data assimilation

the fast modes, a similar but more complicated relationship exists which, if f 2 �
gD(k2 + l2) reduces to

U±kl F = ± kF±kl F√
gD(k2 + l2)

V±kl F = ± l F±kl F√
gD(k2 + l2)

The normal modes in (5.7.10) can therefore be written as a set of slow (Ykl) and fast
(Zkl) modes:Xklm = (Ykl, Zkl) where the subscript m is S for slow modes and F for
fast modes. The normal modes Xklm constitute a complete orthonormal basis if we
normalize them by their total energy:∫

x

∫
y

[gD(Uklm
2 + Vklm

2)+ Fklm
2]dxdy = 1 (5.7.12)

Any time-dependent field of winds and heights can be expanded in terms of the
normal modes:

u(x, y, t)
v(x, y, t)
φ(x, y, t)


 =∑

k

∑
l

∑
m=S,F

aklm(t)


Ukl

Vkl

Fkl




m

ei(kx+ly) (5.7.13)

where the (time-dependent) coefficients can be determined from a back Fourier trans-
form of (5.7.13):

aklm(t) =
∫
x

∫
y

[gD(uUklm + vVklm)+ φFklm]e−i(kx+ly)dydx (5.7.14)

Now we return to the full nonlinear SWE (5.7.8), multiply the three equations by

gDUklme−i(kx+ly)e+iωklm t

gDVklme−i(kx+ly)e+iωklm t

Fklme−i(kx+ly)e+iωklm t




(5.7.15)

respectively, add them and integrate over the domain to obtain the nonlinear equations
for the amplitudes of the slow and fast modes:

daklS

dt
+ iωklSaklS = RklS

dakl F

dt
+ iωkl Fakl F = Rkl F


 (5.7.16)

Here we have separated slow and fast modes. Rklm(Y, Z ) is the result of applying
this operation to the right-hand side nonlinear terms and depends on both the vector
Y of slow modes coefficients and on the vector Z of fast modes coefficients. Recall
(5.7.11) that for this simple geometry, ωklS = 0.

dakl F

dt
+ iωkl Fakl F = 0 (5.7.17)

is the linear equation for the fast modes.
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We can choose to perform a linear normal mode initialization by zeroing out the
initial amplitude of the fast modes: akl F (t) = akl F (0)e−iωkl F t = 0 in (5.7.17). This
will make the linear time derivative of the fast modes equal to zero. But (5.7.16)
shows that this initialization, which is equivalent to a perfect geostrophic balance,
is not accurate enough for the realistic nonlinear case. The presence of nonlinear
forcing will generate fast oscillations even if the basic state is geostrophic. Therefore
Machenhauer (1977) suggested instead to zero out the time derivative of the fast
modes in the nonlinear equation for the fast modes in (5.7.16), whose right-hand side
depends on both slow and fast modes. Therefore, from

daFkl

dt
+ iωFklaFkl = RFkl(Y (0), Z (0)) (5.7.18)

we obtain the nonlinear normal mode initialization condition:

aFkl(0) = RFkl(Y (0), Z (0))

iωFkl
(5.7.19)

Since the coefficient akl F (0) appears both in the left- and right-hand sides of (5.7.19)
in a component of the vector of fast coefficients Z, Machenauer (1977) suggested
iterating equation (5.7.19) until convergence.

Nonlinear normal mode initialization (NLNMI) has been widely used in many op-
erational data assimilation systems, since it is quite effective in substantially reducing
the amplitude of the inertia-gravity waves from the initial conditions, much better
than a simple geostrophic balance. It requires the determination of the linear normal
modes of a model, but Temperton (1988) derived a formulation denoted “implicit
NLNMI” without this requirement.

NLNMI has some problems, however:

(a) In the tropics, diabatic heating plays a fundamental role, essentially balancing
the vertical advection of static stability. Therefore, diabatic forcing has to be
included in the nonlinear terms, and this requires estimating the heating from
short-term forecasts (Wergen, 1988).

(b) There is some arbitrariness in defining which “fast” modes need to be
initialized. For example, inertia-gravity waves with high vertical
wavenumbers are quite slow (see the discussion in the previous subsection),
so that only the first few vertical modes are usually initialized. On the other
hand, NLNMI eliminates the high-frequency but real atmospheric tides from
the solution, since they appear as fast modes. This requires a special handling
of these modes.

(c) NLNMI is only an approximation of the true slow evolution of the
atmosphere: if we apply NLNMI to a model that has been running for a day or
longer, ideally it should not modify it, since it has already reached slow modes
equilibrium. However, NLNMI will change the initial fields significantly.

Ballish et al. (1992) developed a modification of the procedure denoted incremen-
tal NLNMI, in which the initialization is applied to the analysis increments, rather
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than to the full analysis field. This procedure is able to substantially solve the three
problems indicated above.

In recent years the use of NLNMI after the analysis step has become less popular
because of the development of three alternative approaches. The first one is the use
of 3D-Var, which allows the introduction within the cost function of a term that
penalizes the lack of balance. Parrish and Derber (1992) included a penalty term
based on the global linear balance equation applied on the analysis increments. They
found that this, combined with the use of a more realistic global background error
covariance based on differences between 24- and 48-h forecasts verifying at the
same time, yielded an analysis that was well balanced. As a result, the NLNMI step
became unnecessary in the NCEP system. This is a major advantage of 3D-Var over
the standard OI procedure followed by NLNMI. It eliminates the artificial separation
of the analysis step, which produces fields that are close to the observations but out
of balance, and the initialization step, which produces fields that are balanced but
further away from the observations.

Another method that seems to achieve similar balanced results and minimize the
spin-up problems is the incremental analysis update (Bloom et al., 1996), in which
the analysis increment is added in small “drips” throughout the 6-h forecast rather
than once as a large change at the analysis time. Assume that there are n time steps
in the 6-h forecast. In the incremental analysis update the analysis increments are
computed at the analysis time. Then the forecast at the analysis time minus 3 h
is integrated for 6 h adding at each time step the analysis increment divided by
n, until the forecast reaches the analysis time plus 3 h. At that time a preliminary
3-h integration of the model without analysis increments is performed until the next
analysis time is reached, and the cycle is repeated. The overhead of this method is
only the additional preliminary integration of the model during the second half of
the interval between analysis times.

A third development is the introduction of digital filter initialization, a variation
of dynamic initialization that has proven to be very simple and efficient.

5.7.3 Dynamic initialization using digital filters

Some numerical schemes, like the Euler-backwards or Matsuno scheme, damp high
frequencies, and this property has been used in order to reduce the accumulation of
high-frequency noise within an assimilation cycle. Assume we have an equation

du

dt
= −iωu (5.7.20)

The Matsuno scheme is a predictor–corrector type of scheme (see Table 3.2.1) where

ũ = un − iω�tun

un+1 = un − iω�t ũ

}
(5.7.21)
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so that un+1 = ρun, where the amplification factor is ρ = (1− ω2�t2)− iω�t .
Therefore

|ρ|2 = (1− ω2�t2 + ω4�t4) (5.7.22)

It is evident from (5.7.22) that as long as the CFL stability condition |ωmax�tC F L | ≤ 1
is satisfied, high frequencies are damped at every Matsuno time step. This has been
found to be reasonably satisfactory for avoiding excessive accumulation of noise in
the analysis cycle (e.g., Halem et al., 1982), but the damping is slow except for high
frequencies close to 1/�t . Using a damping time scheme does not balance the initial
fields; rather the balance is achieved only after integrating the model for a while
(e.g., 6 h in the analysis cycle). Several dynamical initialization methods using for-
ward/backward integrations were suggested to balance the initial field (e.g., Nitta and
Hovermale, 1969, Okamura, 1969). Grant (1975) suggested a more efficient dynamic
initialization based on linear combinations of forward/backward integrations, with
combinations of time steps some of which are longer than allowed by the CFL condi-
tion. Dynamic initialization never became widely used, despite its simplicity, because
it is not efficient, requiring many forward/backward iterations to substantially reduce
medium frequency waves.

Exercise 5.7.1: Show that the net damping at t = 0 after the application of a Matsuno
time step followed by another Matsuno time step integrating backwards in time
(changing the sign of �t) is given by (5.7.22).

Exercise 5.7.2: Find the damping of the Okamura scheme: u+ = un(1+ iω�t);
u− = u+(1− iω�t); un+1 = 2un − u−. The Okamura–Rivas scheme is the same
except that the time step cycles over three iterations: �t = �tC F L ; 1.4�tC F L ;
2�tC F L , resulting in an even faster damping (Grant, 1975).

The introduction of dynamic initialization based on digital filtering by Lynch and
Huang (1992) and Lynch (1997) has changed this situation substantially, and es-
sentially eliminated the need for NLNMI. In a digital filter, the model is integrated
forward and backward in time between−tM and tM , as in regular dynamic initializa-
tion. The difference is that the model fields are used at every time step to compute a
weighted average valid at the initial time t = 0, and the weights are optimally chosen
in order to damp high frequencies, rather than simply using a damping time scheme.

The idea of a digital filter is to choose the filtering weights in such a way that for
low frequencies ω � ωs the amplitude of the solution with that frequency remains
mostly unchanged, whereas for high frequencies ω ≥ ωs the amplitude is substan-
tially reduced. Given a time step �t and the corresponding threshold computational
frequency θs = ωS�t , low frequencies are characterized by 0 ≤ |θ | � θs , and the
high frequencies that we want to filter by θs ≤ |θ | ≤ π .



196 5 Data assimilation

One digital filter approach (Lynch, 1997) is based on a Dolph–Tchebychev filter,
which is close to optimal, using the properties of Tchebychev polynomials:

Tn(x) =
{

cos(n cos−1 x) if |x | ≤ 1
cosh(n cosh−1 x) if |x | > 1

(5.7.23)

from which T0(x) = 1 and T1(x) = x . The higher polynomials can be obtained from
the recurrence relationship

Tn(x) = 2xTn−1(x)− Tn−2(x) n ≥ 2 (5.7.24)

The following function is ideal for such damping:

H (θ) = T2M [x0 cos(θ/2)]

T2M (x0)
(5.7.25)

where x0 = 1/ cos(θS/2), since for the low-frequency range, H (θ ) falls from 1 to
r = 1/T2M (x0) as |θ | goes from 0 to θs , and for the high frequency range θS ≤ |θ | ≤
π , H (θ ) oscillates within ±r (e.g., see Fig. 5.7.2).

From the definition of the Tchebychev polynomials it can be shown that

H (θ) =
+M∑

n=−M
hneinθ (5.7.26)
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Figure 5.7.2: Comparison of the damping of high frequencies using a
Dolph–Tchebychev filter with θs = π/3, M = 3, and a forward/backward Matsuno
dynamical initialization.
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where the coefficients are

hn = 1

2M + 1

[
1+ 2r

M∑
m=1

T2M

(
x0 cos

θm

2

)
cos mθn

]
(5.7.27)

The solution of the model, integrated from −tM to tM , is weighted averaged:

u(0) =
M∑

n=−M
hnun (5.7.28)

so that at the end of this procedure the amplitude of each frequency in u is modulated
by H (θ ). The parameters are chosen in the following way: Choose a period τS such
that waves with periods shorter than this are to be filtered. The cut-off frequency is
then given by θs = 2π�t/τs . The time span of the integration Ts = 2tM = 2M�t
gives a filter of order N = 2M + 1.

In practice, Lynch (1997) recommended to first perform a backward integra-
tion with just the dry adiabatic dynamics (since they are reversible), from t = 0 to
t = −TS . An application of the weighted average (5.7.28) gives a filtered field
centered at t = −TS/2. Then a forward integration from t = −TS/2 to t = +TS/2
using the full model with physics results in a field centered at t = 0, filtered for the
second time including filtering of the effects of irreversible diabatic processes. In the
high resolution-limited area model, with a time step of half an hour, and a filtering
period of 3 h, the time span is also half an hour, with N = 2M = 7. The double filter
gives a reduction in energy of the high frequencies of more than 99%.

Figure 5.7.2 shows the response of dynamic initialization for this case, using the
Dolph–Tchebychev filter with �t = 30 min, θs = π/3 (filtering periods shorter than
3 h) and M = 3. It compares this with the result of using one and three iterations of
the forward/backward Matsuno time step.

Another digital filter is based on the Lanczos filter, which is widely used to filter
out high frequencies from time series (Duchon, 1979, Lynch and Huang, 1992).
The filter is similar to the Dolph–Tchebychev one, but now the Lanczos weights in
(5.7.28) are given by

hn = sin(nθcri t�t)

πn

sin(nπ/M)

nπ/M
(5.7.29)

Fig. 5.7.3 compares the responses of the Dolph–Tchebychev and Lanczos filters re-
quiring the same number of time steps (6), since for the Lanczos filter the coefficients
for n = 4 and 5 are zero. The response for the Lanczos filter with θcri t = π/4, M = 5
is competitive with the Dolph–Tchebychev filter.

In summary, initialization using digital filtering is a very simple process that avoids
the determination of the model normal modes and the need of NLNMI. Most im-
portantly, it dampens the high-frequency solutions according to their actual model-
determined frequency rather than from an arbitrary separation into inertia-gravity
waves and quasi-geostrophic modes. It does not make any additional approximation
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Figure 5.7.3: Comparison of the responses of the Dolph–Tchebychev filter, with
θs = π/3, M = 3, and the Lanczos filter, with θcri t = π/3, M = 4 and
θcri t = π/4, M = 5. All the choices require six time integrations and are therefore
computationally comparable.

and it can include the full diabatic and nonreversible effects to determine the classi-
fication of slow and fast modes.

Exercise 5.7.3: Is it better to achieve balance within 3D-Var or to apply a digital
filter afterwards?

5.8 Quality control of observations

The reported atmospheric observations used in data assimilation are not perfect; they
contain several kinds of errors, including instrumental errors and errors of human
origin. The reported observations may also contain “errors of representativeness”,
i.e., actually correct observations may reflect the presence of a subgrid-scale at-
mospheric phenomenon that cannot be resolved by the model or the analysis. The
representativeness error indicates the observation is not representative of the areally
averaged measurement required by the model grid. The instrumental and represen-
tativeness errors can be systematic or random. Systematic errors and biases should
be determined by calibration or other means such as time averages. Random errors
are generally assumed to be normally distributed.

In addition to randomly distributed errors, the reported observations may contain
errors that are so large that the observations have no useful information content and
should be tossed out. Frequently, these rough or gross errors are of human origin,
and take place during the computation or the transmission of the observation. There
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are other sources of observation errors (wrong date, time or location, uncalibrated
instruments, etc.). The use of an observation with a rough error can cause a dispro-
portionally big error in the analysis, so there has been a tendency to use observations
conservatively (“when in doubt, throw it out”). In recent years, however, quality con-
trol systems have become more sophisticated and many observations that would have
been thrown out in the past are now corrected, resulting in an improvement in the
initial conditions, and hence in the forecasts. Newer quality control systems allow for
a continuous weighting of the observation suspected of having a gross error, rather
than a “yes or no” decision to toss it out.

Quality control is based on a comparison between observations and some kind
of expected value (which could be based on climatology, an average of nearby ob-
servations, or the first guess). The difference between the expected value and the
reported observation is denoted the “residual”. If the residual is very large (measured
in standard deviations of the estimate), the observation may be considered to be erro-
neous. The more sophisticated the estimate of the expected value (i.e., the smaller its
expected standard deviation with respect to the true value), the more discriminating
the quality control algorithm will be, i.e., the better it will be able to distinguish be-
tween observations with large errors, which should not be given credence, and correct
observations reporting unusual states of the atmosphere, such as very low pressures
or unusually high winds reported within an area affected by a tropical cyclone. In
the latter case it is important to keep the observation in order to improve the initial
conditions of the forecast.

Earlier quality control systems were based on several checks performed in series
(one after another) before the analysis. For example DiMego et al. (1985) compared
each observation with a climatological distribution to see whether it was within a
reasonable range (“gross check”). If the reported value was outside a prescribed
range, or differed from the climatological mean by more than, for example, five
standard deviations, the observation was tossed out. If the observation survived this
test, it was then compared to the average of nearby observations, and again tossed
out if outside a reasonable range. This check (called a “buddy check”, comparing
the observations with their “buddies”) could also salvage an observation previously
tossed out even if it was quite different from the expected climatological value.

An analysis is, in principle, more accurate than either the first guess or the ob-
servation. This led to the development of an “OI” quality control: each observation
is compared with a simple OI value that would be obtained at the observation lo-
cation using the first guess (background) field and nearby observations, but without
including the observation being checked (Lorenc, 1981, Woollen, 1991). When the
residual (difference between the observed and analyzed value) is larger than a certain
number of analysis error standard deviations, it is tossed out. The analysis is iterated
so some observations may be salvaged after first being tossed out.

Gandin (1988) introduced the idea of complex quality control (where the word
“complex” means that it uses several tests simultaneously rather than in series).
The basic idea is to estimate several independent residuals and then apply a decision
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making algorithm based on the information provided by all the independent residuals,
rather than performing decisions either in a sequential order, or as a single OI quality
control check using all the information at once. Collins and Gandin (1990) and
Collins (1998) applied this approach to rawinsonde heights and temperatures with
great success. The power of this method lies in the fact that several independent
checks can support each other and reduce the level of uncertainty. Furthermore, if
the residuals are large and agree reasonably well with each other, they provide the
basis for a correction of the observation.

The independent residuals obtained from the different checks used at NCEP for
the complex quality control of rawinsondes temperature and heights are: (1) Incre-
mental check (the residual is the increment between the reported observation and
the 6-h forecast) (2) Horizontal check based on a simple OI horizontal analysis of
the increments, using one observation per quadrant, and only observations within
1000 km of the reported observation. The horizontal residual is the difference be-
tween the increment at the observation location and the horizontally interpolated
value. (3) Vertical check: the vertical residual is the difference between the observed
increment and the increment interpolated vertically from the nearest data points for
the same station, one above and one below. (4) Hydrostatic check, the most powerful
of the checks since it takes advantage of the redundancy between temperature and
height information reported in rawinsonde observations. The hydrostatic residual is
the difference between the values of the thickness of a layer between mandatory
level heights, calculated using the reported heights, and the thickness calculated in-
dependently from the reported virtual temperatures. (5) Baseline check computed by
making a hydrostatic computation downward, from the first mandatory level above
the surface with complete heights and temperatures, to the reported surface pressure.
The baseline residual is the difference between the station elevation, given by the
report, and the hydrostatically determined height at the surface pressure. Another
possible check used at NCEP is based on a temporal interpolation of observations
at the same station 12 or 24 h before and after the observation time. This check is
particularly useful for isolated stations within a “reanalysis” mode. It is also possible
to perform a check of the stability of the lapse rate.

Collins and Gandin (1990) and Collins (1998) developed a sophisticated decision
making algorithm that makes generally confident decisions correcting computation
or communication errors of human origin. They assumed that human errors have a
simple structure: a single digit or a sign is wrong or missing. The following example
of such error detected at a single level in the heights is typical:

Example of CQC and the decision making algorithm correction of gross
errors (Collins and Gandin, 1998)

Reported 1000 hPa height: 8 m

Computed residuals:

Incremental residual: −72 m;

Vertical residual: −66 m;
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Hydrostatic residual (using significant levels): 60 m;

Hydrostatic (using only mandatory levels): 65 m;

Baseline residual: −58 m.

With this information, the decision making algorithm concluded that a simple
correction changing one digit (adding 60 m to make the observation 68 m instead of
the reported 8 m) could be confidently made.

The NCEP global system has also an OI-based complex quality control for all
other data (winds, moisture, satellite retrievals) that makes the first three checks
discussed above and rejects observations with large residuals but does not attempt
to make corrections, since the strong redundancy of the hydrostatic check is not
available for variables other than rawinsonde temperatures and heights (Woollen,
1991).

The effect of modern quality control systems is difficult to gauge, but Kistler
et al. (2001) showed an impressive example of the positive impact from the mod-
ern approach compared with the quality control that was operational at NCEP in
the 1970s. They pointed out that in 1974 NMC (now NCEP) introduced a modern
observation formatting system (known as Office Note 29, ON29), which later be-
came the basis of the official World Meteorological Organization (WMO) Binary
Universal Format Representation system for the encoding of observations. ON29 in-
cluded more information about the observation than previously used encoders. This
change in formatting required a complete overhaul of the NMC decoding system,
and errors must have been introduced during this complex reprogramming process.
The NMC operational forecast skill actually went down and it took a few years
before it recovered to the pre-1974 error levels (Kalnay et al., 1998). During the
production of the NCEP/NCAR reanalysis (Kalnay et al., 1996), both the com-
plex quality control for rawinsonde heights and temperatures and the OI quality
control for other observations were used to screen observations. The complex qual-
ity control found and corrected an unusually large number of rawinsondes errors
starting in 1974, and, presumably as a result of this correction and the OI qual-
ity control screening of the other information, the benefit of using the more ad-
vanced formatting system ON29 became realized. In the reanalysis, the forecast
skill increased substantially in 1974, rather than deteriorating as in the operational
forecasts.

Another approach that has also become popular is variational quality control
performed within 3D-Var or 4D-Var, rather than before the analysis, like OI and
complex quality controls (Purser, 1984, Lorenc and Hammon, 1988, Ingleby and
Lorenc, 1993, Andersson and Jarvinen, 1999, Collins, 2001a,b). It has the advan-
tage that it is performed as part of the analysis itself, rather than as a preprocess-
ing step like OI quality control, but because it computes a single (iterative) resid-
ual for each observation, it is not able to correct observations like complex quality
control.
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The variational quality control approach is based on modifying the observational
component Jo of the variational cost function J = Jb + Jo to take into account the
possibility of gross errors. Note that in the variational analysis approach, the gradient
∇yo Jo of the cost function with respect to an observation yo determines how quickly
the analysis estimate x will shift towards that observation (Fig. 5.8.1(b)).
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Figure 5.8.1: (a) Probability density function for an observation with a given scaled
residual, without gross errors (normal distributions) and with gross errors.
A = 0.05, d = 5. (b) Observational cost function derived from the logarithm of the
error distributions in (a). (c) Weight factor applied to the gradient of the cost function
for different values of the a priori probability of gross errors A and the width of the
flat distribution.
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Figure 5.8.1: (cont.)

Consider the cost function term for a single uncorrelated observation yo without
allowing for gross errors:

Jo
N = 1

2

[
yo − H (x)

σo

]2

with ∇Jo
N =

[
yo − H (x)

σ 2
o

]
(5.8.1)

where x is a close approximation of the true value (analysis). In variational quality
control one assumes that there is an a priori probability A of having a gross error, esti-
mated from past statistics. 1− A is then the a priori probability of not having a gross
error, in which case the observation is assumed to have random errors with a Gaussian
distribution. Without gross errors (A = 0), the probability that an observation yo, if
H (x) is the true value, is given by the normal distribution is

p(yo) = N = 1√
2πσo

e−J N
o (5.8.2)

where (as discussed in Section 5.3) J N
o = − ln N + const. (Fig. 5.8.1(a), full line)

and the constant is chosen arbitrarily to make J N (0) = 0.
If there are gross errors with an a priori probability A (let’s say, 0.05), then the

probability of an observation yo (Fig. 5.8.1(a), bold dashes) is modified:

pQC (yo) = (1− A)N + AF (5.8.3)

where F is a flat (uniform) distribution for the gross errors:

F =



1

2dσo
if |yo − H (x)| < dσo

0 otherwise
(5.8.4)
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Here d is the maximum number of standard deviations allowed for gross errors (e.g.,
d = 5). If |yo − H (x)| > dσo, it is assumed that the observation was so obviously
wrong that it was eliminated in a preliminary check against climatology or the back-
ground. The integral of F is therefore equal to 1.

We can then modify the contribution to the cost function made by the obser-
vation by including the probability of gross errors: J QC

o = − ln pQC (yo) + const.
(Fig. 5.8.1(a), full line). Since the flat probability distribution of gross errors does
not depend on the value yo, the modified gradient of the cost function is:

∇yo J QC
o = ∇[− ln pQC (yo)] = 1− A

pQC (yo)
N∇J N

o

= (1− A)N

(1− A)N + AF
∇J N

o = (1− P) ∇J N
o (5.8.5)

where

P = AF

(1− A)N + AF
(5.8.6)

is the a posteriori probability of having a gross error (after making the observation
yo). In other words, the gradient of the cost function including variational quality
control is the gradient without variational quality control multiplied by a weight

W QC = (1− A)N

(1− A)N + AF
(5.8.7)

(the probability of NOT having a gross error), which is close to 1 for
|yo − H (x)|/σo < d and goes to zero for |yo − H (x)|/σo ≥ d. Figure 5.8.1(c) shows
that the weights are not very sensitive to the choice of parameters. A small value for
the a priori probability of gross errors A will result in a steeper reduction of weights.
Because of the shape of the normal probability function, the weights are not too
sensitive to d unless the value chosen is rather small (e.g., d = 1 in the graph).

Because H (x) is assumed to be close to the truth, at ECMWF variational quality
control is not turned on (i.e., the weight multiplying the gradient during the mini-
mization is W = 1) during the first 40 iterations of the 4D-Var algorithm, while the
solution starts to converge towards the analysis. It is then turned on (W = W QC ) for
the last 30 iterations of the 4D-Var, thus giving less weight to observations that are
likely to contain gross errors (Andersson and Jarvinen, 1999).
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Atmospheric predictability and
ensemble forecasting

6.1 Introduction to atmospheric predictability

In his 1951 paper on NWP, Charney indicated that he expected that even as models
improved there would still be a limited range to skillful atmospheric predictions, but
he attributed this to inevitable model deficiencies and finite errors in the initial condi-
tions. Lorenz (1963a,b) discovered the fact that the atmosphere, like any dynamical
system with instabilities, has a finite limit of predictability (which he estimated to be
about two weeks) even if the model is perfect, and even if the initial conditions are
known almost perfectly. He did so by performing what is now denoted an “identical
twin” experiment: he compared two runs made with the same model but with initial
conditions that differed only very slightly. Just from round-off errors, he found that
after a few weeks the two solutions were as different from each other as two random
trajectories of the model.

Lorenz (1993) described how this fundamental discovery took place: His original
goal had been to show that statistical prediction could not match the accuracy at-
tainable with a nonlinear dynamical model, and therefore that NWP had a potential
for predictive skill beyond that attainable purely through statistical methods. He had
acquired a Royal-McBee LGP-30 computer, with a memory of 4K words and a speed
of 60 multiplications per second, which for the late 1950s was very powerful. He
developed and programmed in machine language a “low-order” atmospheric model
(i.e., a model whose evolution was described by only 12 variables) driven by external
heating and damped by dissipation. During 1959 he changed parameters in the model
for several months trying to find a nonperiodic solution (since a periodic solution
would be perfectly predictable from past statistics, and that would have defeated his

205
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purpose). He submitted a preliminary title, “The statistical prediction of solutions of
dynamical equations”, to the NWP conference that was going to take place during
1960 in Tokyo, gambling that he would indeed be able to find, for the first time in
history, a nonperiodic numerical solution. After making the external heating a func-
tion of both latitude and longitude, he finally found the nonperiodic behavior that
he was seeking. He rounded off and printed the evolution of the variables with three
significant digits, which seemed sufficient to define the state of the model with plenty
of accuracy. After running the model for several simulated years and satisfying him-
self that the solution had no periodicities, he decided to repeat part of an integration
in more detail. When he came back from a coffee break, Lorenz found that the new
solution was completely different from the original run. Before calling service for
the computer, he checked the results and found that at the beginning the new run did
coincide with the original printed numbers, but that after a few days the last digit
became different, and then the next one, and after about two months any resemblance
with the original integration disappeared (Lorenz, 1993):

The initial round-off errors were the culprits; they were steadily amplifying until
they dominated the solution. In today’s terminology, there was chaos. . . . It soon
struck me that, if the real atmosphere behaved like the simple model, long-range
forecasting would be impossible. . . . In due time I convinced myself that the
amplification of small differences was the cause of the lack of periodicity. Later,
when I presented my results at the Tokyo meeting, I added a brief description of
the unexpected response of the equations to the round-off errors.

Lorenz (1963a,b) thus discovered the fundamental theorem of predictability: Un-
stable systems have a finite limit of predictability, and conversely, stable systems are
infinitely predictable (since they are either stationary or periodic), as suggested by
the schematic Fig. 6.1.1.

In his 1972 talk “Predictability: does the flap of a butterfly’s wings in Brazil set off a
tornado in Texas?” Lorenz further reviewed basic ideas on atmospheric predictability
(Lorenz, 1993):

. . . I am proposing that over the years minuscule disturbances neither increase
nor decrease the frequency of occurrence of various weather events such as
tornadoes; the most that they can do is to modify the sequence in which these
events occur. The question which really interests us is whether they can even do
this – whether, for example, two particular weather situations differing by as
little as the immediate influence of a single butterfly will generally after
sufficient time evolve into two situations differing by as much as the presence of
a tornado. In more technical language, is the behavior of the atmosphere
unstable with respect to perturbations of small amplitude?1

1 Gleick (1987) pointed out that the concept of a “butterfly effect” existed in some form from
literary sources long before Lorenz’s work. There is a short story by Ray Bradbury which deals
with this nearly as well as Lorenz does, right down to the butterfly. In this story, A Sound of
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(a)

(b)

Figure 6.1.1: Schematic
illustrating trajectories of:
(a) a dynamical system with
instabilities, which no
matter how close they
initially are, inevitably drift
apart, and (b) a stable
system with stationary or
periodic orbits: after a
possible transient stage, the
trajectories stay close to
each other, i.e., they become
infinitely predictable.

The connection between this question and our ability to predict the weather is
evident. Since we do not know how many butterflies there are, nor whether they
are all located, let alone which ones are flapping their wings at any instant, we
cannot, if the answer to our question is affirmative, accurately predict the
occurrence of tornadoes at a sufficient distant future time. More significantly,
our general ability to detect systems as large as thunderstorms when they slip
between weather stations may impair our ability to predict the general weather
pattern even in the near future. . . .

. . . The evidence [that the answer to the question whether the atmosphere is
unstable is affirmative] is overwhelming. The most significant results are the
following:

1. Small errors in the coarser structure of the weather pattern – those features
which are readily resolved by conventional observing networks – tend to
double in about three days.2 As the errors become larger the growth rate
subsides. This limitation alone would allow us to extend the range of
acceptable prediction by three days every time we cut the observation error in

Thunder, some time-travelers go back to the prehistoric era and are very careful not to touch
anything lest they alter the future to which they wish to return. When they return to the present,
they find everything altered (for the worse it seems to them). It turns out one of them had
accidentally stepped on a butterfly. ‘ “Not a little thing like that! Not a butterfly!” cried Eckels.
It fell to the floor, an exquisite thing, a small thing that could upset balances and knock down a
line of small dominoes and then big dominoes and then gigantic dominoes, all down the years
across Time. Eckels’ mind whirled. It couldn’t change things. Killing one butterfly couldn’t be
that important! could it?’. This story was first published in 1952. (Courtesy of Bill Martin, pers.
comm. 1998.)

2 Current estimates are that small errors in synoptic (coarser) scales double even faster, in about
2 days (e.g., Simmons et al., 1995, Dalcher and Kalnay, 1987, Toth and Kalnay, 1993).
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half, and would offer the hope of eventually making good forecasts several
weeks in advance.

2. Small errors in the finer structure – e.g. the positions of individual clouds –
tend to grow much more rapidly, doubling in hours or less. This limitation
alone would not seriously reduce our hopes for extended-range forecasting,
since ordinarily we do not forecast the finer structure at all.

3. Errors in the finer structure, having attained appreciable size, tend to produce
errors in the coarser structure. This result, which is less firmly established
than the previous ones, implies that after a day or so there will be appreciable
errors in the coarser structure, which will thereafter grow just as if they had
been present initially. Cutting the observations in the finer structure in half – a
formidable task – would extend the range of acceptable prediction of even the
coarser structure only by hours or less. The hopes for predicting two weeks or
more in advance are thus greatly diminished.

4. Certain special quantities such as weekly average temperatures and weekly
total rainfall may be predictable at a range at which entire weather patterns
are not.

Since the early days of Lorenz’s momentous discovery, which gave impetus to
the new science of chaos,3 additional progress has been made, but his findings have
not been changed in any fundamental way. In NWP, substantial progress has been
made through the realization that the chaotic behavior of the atmosphere requires
the replacement of single “deterministic” forecasts by “ensembles” of forecasts
with differences in the initial conditions and in the model characteristics that re-
alistically reflect the uncertainties in our knowledge of the atmosphere. This real-
ization led to the introduction of operational ensemble forecasting at both NCEP
and ECMWF in December 1992. It also led to work on extending the usefulness
of NWP forecasts through a systematic exploitation of the chaotic nature of the
atmosphere.

6.2 Brief review of fundamental concepts
about chaotic systems

Lorenz (1963a) introduced a three-variable model that is a prototypical example of
chaos theory. These equations were derived as a simplification of Saltzman’s (1962)
nonperiodic model for convection. Like Lorenz’s (1962) original 12-variable model,
the three-variable model is a dissipative system. This is in contrast to Hamiltonian

3 It should be noted that Poincaré (1897, see Alligood et al., 1997) had already discovered that
the planetary system is chaotic, i.e., that the orbits of the planets cannot be predicted well
beyond a certain number of (millions of) years. He showed this for the simplest three-body
problem of two stars with circular orbits moving on a plane around their center of mass, and a
third “asteroid” with negligible mass in comparison with the first two, moving in the same
plane. He found that the motion of the third body was sensitively dependent on the initial
conditions, the hallmark of chaos (Alligood et al., 1997).
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systems, which conserve total energy or some other similar property of the flow. The
system isnonlinear (it contains products of the dependent variables) butautonomous
(the coefficients are time-independent). Sparrow (1982) wrote a whole book on the
Lorenz three-variable model that provides a nice introduction to the subject of chaos,
bifurcations and strange attractors. Lorenz (1993) is a superbly clear introduction
to chaos with a very useful glossary of the nomenclature used in today’s literature.
Alligood et al. (1997) is also a very clear introduction to dynamical systems and
chaos. In this section we use bold type to introduce some of the words used in the
dynamical system vocabulary.

The Lorenz (1963a) equations are

dx

dt
= σ (y − x)

dy

dt
= r x − y − xz

dz

dt
= xy − bz




(6.2.1)

The solution obtained by integrating the differential equations in time is called a
flow. The parameters σ, b, r are kept constant within an integration, but they can
be changed to create a family of solutions of the dynamical system defined by the
differential equations. The particular parameter values chosen by Lorenz (1963a),
σ = 10, b = 8/3, r = 28, result in chaotic solutions (sensitively dependent on the
initial conditions), and since this publication they have been widely used in many
papers. The solution of a time integration from a given initial condition defines
a trajectory or orbit in phase space. The coordinates of a point in phase space
are defined by the simultaneous values of the independent variables of the model,
x(t), y(t), z(t). The dimension of the phase space is equal to the number of inde-
pendent variables (in this case three). The dimension of the subspace actually visited
by the solution after an initial transient period (i.e., the dimension of the attractor)
can be much smaller than the dimension of the phase space. A volume in phase space
can be defined by a set of points in phase space such as a hypercube V = δxδyδz, a
hypersphere V = {δr; |δr| ≤ ε}, etc.

The fact that the Lorenz system (6.2.1) is dissipative can be seen from the diver-
gence of the flow:

∂ ẋ

∂x
+ ∂ ẏ

∂y
+ ∂ ż

∂z
= −(σ + b + 1) (6.2.2)

which shows that an original volume V contracts with time to V e−(σ+b+1)t . This
proves the existence of a bounded globally attracting set of zero volume (i.e., an
attractor of dimension smaller than n, the dimension of the phase space). A solu-
tion may start from a point away from the attracting set but it will eventually settle
on the attractor. This initial portion of the trajectory is known as a transient. The
attracting set (the set of points approached again and again by the trajectories after



210 6 Atmospheric predictability and ensemble forecasting

the transients are over) is called the attractor of the system. The attractor can have
several components: stationary points (equilibrium or steady state solutions of the
dynamical equations), periodic orbits, and more complicated structures known as
strange attractors (which can also include periodic orbits). The different compo-
nents of the attractor have corresponding basins of attraction in the phase space,
which are all the initial conditions that will evolve to the same attractor. The fact
that any initial volume in phase space contracts to zero with time is a general prop-
erty of dissipative bounded systems, including atmospheric models with friction.
Hamiltonian systems, on the other hand, are volume-conserving.

If we change the parameters of a dynamical system (in this example σ, b, r )
and obtain families of solutions, we find that there is a point at which the behavior
of the flow changes abruptly. The point at which this sudden change in the charac-
teristics of the flow occurs is called a bifurcation point. For example in Lorenz’s
equations the origin is a stable, stationary point for r < 1, as can be seen by investi-
gating the local stability at the origin. The local stability of a point can be studied
by linearizing the flow about the point and computing the eigenvalues of the lin-
ear flow. For r < 1 the stationary point is stable: all three eigenvalues are negative.
This means that all orbits near the origin tend to get closer to it. At r = 1 there is
a bifurcation, and for r > 1 two new additional stationary points C± are born, with
coordinates (x, y, z)± = (±√b(r − 1),±√b(r − 1), r − 1). For r > 1 the origin be-
comes nonstable: one of the three eigenvalues becomes positive (while the other
two remain negative), indicating that the flow diverges locally from the origin in one
direction. For 1 < r < 24.74. . . , C+ and C− are stable, and at r = 24.74. . . there
is another bifurcation so that above that critical value C+ and C− also become
unstable. As discussed by Lorenz (1993), a ubiquitous phenomenon is the occur-
rence of bifurcations of periodic motion leading to period doubling, and sequences
of period doubling bifurcations leading to chaotic behavior (see Sauer et al.,
1991).

A solution of a dynamical system can be defined to be stable if it is bounded,
and if any other solution once sufficiently close to it remains close to it for all times.
This indicates that a bounded stable solution must be periodic (repeat itself exactly)
or at least almost periodic, since once the trajectory approaches a point in its past
history, the trajectories will remain close forever (Fig. 6.1.1(b)). A solution that is
not periodic or almost periodic is therefore unstable: two trajectories that start very
close will eventually diverge completely (Fig. 6.1.1(a)).

The long-term stability of a dynamical system of n-variables is characterized by the
Lyapunov exponents. Consider a point in a trajectory, and introduce a (hyper)sphere
of small perturbations about that point. If we apply the model to evolve each of those
perturbations, we find that after a short time the sphere will be deformed into a
(hyper)ellipsoid. In an unstable system, at least one of the axes of the ellipsoid
will become larger with time, and once nonlinear effects start to be significant the
ellipsoid will be deformed into a “banana” (Fig. 6.2.1). Consider the linear phase,



6.2 Brief review of fundamental concepts about chaotic systems 211

(a) Initial volume: a small
hypersphere

(c) Nonlinear phase: folding needs
to take place in order for the
solution to stay within the bounds

(d) Asymptotic evolution to a
strange attractor of zero volume
and fractal structure. All
predictability is lost

(b) Linear phase: a hyper
ellipsoid

Figure 6.2.1: Schematic of the evolution of a small spherical volume in phase space
in a bounded dissipative system. Initially (during the linear phase) the volume is
stretched into an ellipsoid while the volume decreases. The solution space is bounded,
and a bound is schematically indicated in the figure by the hypercube. The ellipsoid
continues to be stretched in the unstable directions, until (because the solution phase
space is bounded) it has to fold through nonlinear effects. This stretching and folding
continues again and again, evolving into an infinitely foliated (fractal) structure. This
structure, of zero volume and fractal dimension, is called a “strange attractor.” The
attractor is the set of states whose vicinity the system will visit again and again (the
“climate” of the system). Note that in phases (a), (b), and (c), there is predictive
knowledge: we know where the original perturbations generally are. In (d), when the
original sphere has evolved into the attractor, all predictability is lost: we only know
that each original perturbation is within the climatology of possible solutions, but we
don’t know where, or even in which region of the attractor it may be.

during which the sphere evolves into an ellipsoid. We can maintain the linear phase for
an infinitely long period by taking an infinitely small initial sphere, or, alternatively,
by periodically scaling down the ellipsoid dimensions dividing all its dimensions by
the same scalar. Each axis j of the ellipsoid grows or decays over the long term by
amounts given by eλ j t , where theλ j s are the Lyapunov exponents ordered by sizeλ1 ≥
λ2 ≥ . . . ≥ λn . The total volume of the ellipsoid will evolve like V0e−(λ1+λ2+···λn )t .
Therefore, a Hamiltonian (volume-conserving) system is characterized by a sum
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of Lyapunov exponents equal to zero, whereas for a dissipative system the sum is
negative.

Because the attractor of a dissipative system is bounded (the trajectories are en-
closed within some hyperbox), if the first Lyapunov exponent is greater than zero, at
least one of the axes of the ellipsoid keeps getting longer with time. The ellipsoid will
eventually be distorted into a banana shape: it has to be folded in order to continue
fitting into the box. The banana will be further stretched along the unstable axis and
then necessarily folded again and again onto itself in order to continue fitting into the
box. Since the volume of the ellipsoid eventually goes to zero for a dissipative system,
the repeated stretching and folding of the ellipsoid of a chaotic system eventually
converges to a zero-volume attractor with an infinitely foliated structure (a process
similar to the stretching and folding used to make “phyllo” dough!). This structure is
known as “strange attractor” (Ruelle, 1989). It has a fractal structure: a dimension
which in general is not an integer and is smaller than the original space dimension
n, estimated by Kaplan and Yorke (1979) to be

d = k + (λ1 + · · · + λk)/|λk+1| (6.2.3)

where the sum of the first k Lyapunov exponents is positive, and the sum of the first
k + 1 exponents is negative. If the system is Hamiltonian, its invariant manifold has
the same dimension as the phase space.

In summary, a stable system has all Lyapunov exponents less than or equal to zero.
A chaotic system has at least one Lyapunov exponent greater than zero: if at least
λ1 > 0 chaotic behavior will take place because at least one axis of the ellipsoid
will be continuously stretched, leading to the separation of orbits originally started
closely along that axis. Note that a chaotic bounded flowmust also have a Lyapunov
exponent equal to zero, with the corresponding local Lyapunov vector parallel to an
orbit. This can be understood by considering two initial conditions such that the
second is equal to the first after applying the model for one time step. The solutions
corresponding to these initial conditions will remain close together, since the second
orbit will always be the same as the first orbit shifted by one time step, and on the
average, the distance between the solutions will remain constant. If we add a tiny
perturbation, though, the second solution will diverge from the first one because there
is a positive Lyapunov exponent.

6.3 Tangent linear model, adjoint model, singular
vectors, and Lyapunov vectors

In 1965 Lorenz published another paper based on a low-order model that behaved
like the atmosphere. It was a quasi-geostrophic two-level model in a periodic chan-
nel, with a “Lorenz” vertical grid (velocity and temperature variables defined at the
same two levels, see Section 3.3), and a spectral (Fourier) discretization in longitude
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and latitude. By keeping only two Fourier components in latitude and three in lon-
gitude, and choosing appropriate values for the model parameters, he was able to
find a model able to reproduce baroclinic instability and nonlinear wave interactions
with just 28 variables. In this fundamental paper, Lorenz introduced for the first time
(without using their current names) the concepts of the tangent linear model, adjoint
model, singular vectors, and Lyapunov vectors for the low-order atmospheric model,
and their consequences for ensemble forecasting. He also pointed out that the pre-
dictability of the model is not constant with time: it depends on the stability of the
evolving atmospheric flow (the basic trajectory or reference state). In the following
introduction to these subjects we follow Lorenz (1965), Szunyogh et al. (1997) and
Pu et al. (1997b).

6.3.1 Tangent linear model and adjoint model

Consider a nonlinear model. Once it has been discretized in space using, for example,
finite differences or a spectral expansion leading to n independent variables (or
degrees of freedom), the model can be written as a set of n nonlinear coupled ordinary
differential equations:

dx
dt
= F(x) x =




x1
...

xn


 F =




F1
...

Fn


 (6.3.1)

This is the model in differential form. Once we choose a time-difference scheme
(e.g., Crank–Nicholson, see Table 3.2.1), it becomes a set of nonlinear-coupled dif-
ference equations. Typically, an atmospheric model consists of one such system of
difference equations which, for example, using a two-time level Crank–Nicholson
scheme would be of the form

xn+1 = xn +�tF
(
xn + xn+1

2

)
(6.3.2)

A numerical solution of (6.3.1) starting from an initial time t0 can be readily
obtained by integrating the model numerically using (6.3.2) between t0 and a final
time t (i.e., “running the model”). This gives us a nonlinear model solution that
depends only on the initial conditions:

x(t) = M[x(t0)] (6.3.3)

where M is the time integration of the numerical scheme from the initial condition
to time t . A small perturbation y(t) can be added to the basic model integration x(t):

M[x(t0)+ y(t0)] = M[x(t0)]+ ∂M

∂x
y(t0)+ O[y(t0)2]

= x(t)+ y(t)+ O[y(t0)2]
(6.3.4)
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At any given time, the linear evolution of the small perturbation y(t) will be given by

dy
dt
= Jy (6.3.5)

where J = ∂F/∂x is the Jacobian of F.
This system of linear ordinary differential equations is the tangent linear model

in differential form. Its solution between t0 and t can be obtained by integrat-
ing (6.3.5) in time using the same time difference scheme used in the nonlinear
model (6.3.3):

y(t) = L(t0, t)y(t0) (6.3.6)

HereL(t0, t) = ∂M/∂x is an (n × n) matrix known as the resolvent or propagator
of the tangent linear model: it propagates an initial perturbation at time t0 into the
final perturbation at time t . Because it is linearized over the flow from t0 to t, L
depends on the basic trajectory x(t) (the solution of the nonlinear model), but it
does not depend on the perturbation y. (The original nonlinear model is autonomous
since F(x) depends on x(t) but not explicitly on time, but the linear tangent model is
nonautonomous). Lorenz (1965) introduced the concept of the tangent linear model
of an atmospheric model, but he actually obtained it directly from (6.3.4), neglecting
terms quadratic or higher order in the perturbation y:

M[x(t0)]+ L(t0, t)y(t0) = x(t)+ y(t) ≈ M[x(t0)+ y(t0)] (6.3.7)

He did so by creating as initial perturbations a “sphere” of small perturbations of
size ε along the n unit basis vectors yi (t0) = εei and applying (6.3.7) to each of
these perturbations. With this choice of initial perturbations, subtracting (6.3.3) he
obtained the matrix that defines the tangent linear model:

L(t0, t)[εe1, . . . , εen] = εL(t0, t) = [y1(t), . . . , yn(t)] (6.3.8)

The Euclidean norm of a vector is the inner product of the vector with itself:

‖y‖2 = yT y = 〈y, y〉 (6.3.9)

The Euclidean norm of y(t) is therefore related to the initial perturbation by

‖y(t)‖2 = (Ly(t0))TLy(t0) = 〈Ly(t0),Ly(t0)〉 = 〈LTLy(t0), y(t0)〉 (6.3.10)

The adjoint of an operator K is defined by the property 〈x,Ky〉 ≡ 〈KT x, y〉. In this
case of a model with real variables, the adjoint of the tangent linear model L(t0, t) is
simply the transpose of the tangent linear model.

Now assume that we separate the interval (t0, t) into two successive time intervals.
For example, if t0 < t1 < t ,

L(t0, t) = L(t1, t)L(t0, t1) (6.3.11)
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Since the adjoint of the tangent linear model is the transpose of the TLM, the
property of the transpose of a product is also valid:

LT (t0, t) = LT (t0, t1)LT (t1, t) (6.3.12)

Equation (6.3.11) shows that the tangent linear model can be cast as a product of
the tangent linear model matrices corresponding to short integrations, or even single
time steps. Equation (6.3.12) shows that the adjoint of the model can also be separated
into single time steps, but they are executed backwards in time, starting from the last
time step at t , and ending with the first time step at t0. For low-order models the
tangent linear model and its adjoint can be constructed by repeated integrations of
the nonlinear model for small perturbations, as done by Lorenz (1965), equation (3.7),
and by Molteni and Palmer (1993) with a global quasi-geostrophic model.

For large NWP models this approach is too time consuming, and instead it is
customary to develop the linear tangent and adjoint codes from the nonlinear model
code following some rules discussed in Appendix B. An example of a FORTRAN
code for a nonlinear model, and the corresponding tangent linear model and adjoint
models are also given in Appendix B.

6.3.2 Singular vectors

Recall that for a given basic trajectory and an interval (t0, t1) the tangent linear model
is a matrix that when applied to a small initial perturbation y(t0) produces the final
perturbation y(t1):

y(t1) = L(t0, t1)y(t0) (6.3.13)

Singular value decomposition theory (e.g., Golub and Van Loan, 1996) indicates
that for any matrix L there exist two orthogonal matrices U, V such that

UTLV = S (6.3.14)

where

S =




σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

0 0 · · · σn




and

UUT = I VVT = I (6.3.15)

S is a diagonal matrix whose elements are the singular values of L.
If we left multiply (6.3.14) by U, we obtain

LV = US i.e., L(v1, . . . , vn) = (σ1u1, . . . , σnun) (6.3.16)
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where vi are the columns of V and ui the columns of U. This implies that

Lvi = σiui (6.3.17)

Equation (6.3.17) defines the vi s as the right singular vectors of L, hereafter
referred to as initial singular vectors, since they are indeed valid at the beginning of
the optimization interval over which L is defined.

We now right multiply (6.3.14) by VT and obtain:

UTL = SVT (6.3.18)

Transposing (6.3.18), we obtain

LTU = VS i.e., LT (u1, . . . ,un) = (σ1v1, . . . , σnvn) (6.3.19)

so that

LTui = σivi (6.3.20)

The ui s are the left singular vectors of L and will be referred to as final (or evolved)
singular vectors, since they correspond to the end of the interval of optimization.

From (6.3.17) and (6.3.20) we obtain

LTLvi = σiLTui = σ 2
i vi (6.3.21)

Therefore the initial singular vectors can be obtained as the eigenvectors of LTL,
a normal matrix whose eigenvalues are the squares of the singular values. SinceU, V
are orthogonal matrices, the vectors vi and ui that form them constitute orthonormal
bases, and any vector can be written in the following form:

y(t0) =
n∑

i=1

〈y0, vi〉vi (6.3.22a)

y(t1) =
n∑

i=1

〈y1,ui〉ui (6.3.22b)

where 〈x, y〉 is the inner product of two vectors x, y. Therefore, using (6.3.22a) and
(6.3.17)

y(t1) = L(t0, t1)y(t0) =
n∑

i=1

〈y0,vi〉σiui (6.3.23)

If we now take the inner product of (6.3.23) with ui we obtain

〈y(t1),ui 〉 = σi 〈y(t0), vi 〉 (6.3.24)

This indicates that by applying the tangent linear model L each initial vector vi

component will be stretched by an amount equal to the singular value σi (or contracted
if σi < 1), and the direction will be rotated to that of the evolved vector ui . Similarly
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applying the adjoint of the tangent linear model, LT , each final vector ui will be
stretched by an amount equal to the singular valueσi and rotated to the initial vectorvi .

Exercise 6.3.1: Use (6.3.20) and (6.3.22b) to show that 〈y(t0), vi 〉 = σi 〈y(t1),ui 〉.

If we consider all the perturbations y(t0) of size 1, from (6.3.24) we obtain that
for each of them

n∑
i=1

〈y(t),ui 〉
σi

=
n∑

i=1

〈y(t0), vi 〉 = ‖y(t0)‖2 = 1 (6.3.25)

so that an initial sphere of radius 1 becomes a hyperellipsoid of semiaxes σi . The first
initial singular vector v1 is also called an “optimal vector” since it gives the direction
in phase space (i.e., the shape in physical space) of the perturbation that will attain
maximum growth σ1 in the interval (t0, t1) (Fig. 6.3.1).

Note that applying L is the same as running the tangent linear model forward in
time, from t0 to t1. Applying LT is like running the adjoint model backwards, from
t1 to t0. From (6.3.21) we see that if we apply the adjoint model to a sphere of final
perturbations of size 1 (expanded on the basis formed by the evolved or left singular
vectors), they also become stretched and rotated into a hyperellipsoid of semiaxes in
the directions of the vi with length σi (Fig. 6.3.2).

Therefore, if we apply LTL (i.e., run the tangent linear model forward in time,
and then the adjoint backwards in time, the first initial singular vector will grow by a
factor σ 2

1 (see Fig. 6.3.3), and the other initial singular vectors will grow or decay by
their corresponding singular value squared σ 2

i . In other words, the (initial) singular
vectors vi are the eigenvectors of LTL with singular values σ 2

i . Conversely, if we
apply the adjoint model first (integrate the adjoint model backwards from the final
to the initial time), followed by the tangent linear model (integrate forward to the
final time), the final singular vectors ui will grow both backward and forward, by a

v1

v2

�1u1

�2u2

L Figure 6.3.1: Schematic of
the application of the
tangent linear model to a
sphere of perturbations of
size 1 for a given interval
(t0, t1).

LT

�2v2

�1v1

u2

u2

Figure 6.3.2: Schematic of
the application of the
adjoint of the tangent linear
model to a sphere of
perturbations of size 1 at the
final time.
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L 

L  L T

v1
�1u1

�1
2 v

1

Figure 6.3.3: Schematic of
the application of the
tangent linear model
forward in time followed by
the adjoint of the tangent
linear model to a sphere of
perturbations of size 1 at the
initial time.

u1

�1v1

LT

LLT

�1
2u1

Figure 6.3.4: Schematic of
the application of the
adjoint of the tangent linear
model backward in time
followed by the tangent
linear model forward to a
sphere of perturbations of
size 1 at the final time.

total factor also equal to σ 2
i (Figure 6.3.4). In other words, the final singular vectors

are the eigenvectors of LLT , and again they have eigenvalues equal to the square of
the singular values of L. Alternatively, once the initial singular vectors are obtained
using, for example, the Lanczos algorithm, the final singular vectors can be derived
by integrating the tangent linear model ((6.3.17)).

If we apply LTL repeatedly over the same interval (t0, t), we obtain the leading
initial singular vector, or first optimal vector. Additional leading singular vectors can
be obtained by a generalization of the power method (Lanczos algorithm, Golub and
Van Loan, 1996), which requires running the tangent linear model and its adjoint
about three times the number of singular vectors required. For example, to get the
leading 30 singular vectors optimized for t1 − t0 = 36 h, the ECMWF performed
100 iterations, equivalent to running the tangent linear model for about 300 days
(Molteni et al., 1996).

It is important to note that the adjoint model and the singular vectors are defined
with respect to a given norm. So far we have used an Euclidean norm in which the
weight matrix that defines the inner product is the identity matrix:

‖y‖2 = yT y = 〈y, y〉 (6.3.26)

The leading (initial) singular vectors are the vectors of equal size (initial norm
equal to one ‖y(t0)‖2 = y(t0)T y(t0) = 〈y(t0), y(t0)〉 = 1), that grow fastest during the



6.3 Tangent linear and adjoint models, singular and Lyapunov vectors 219

optimization period (t0, t1), i.e., the initial vectors that maximize the norm at the final
time:

J (y(t0)) ≡ ‖y(t1)‖2 = [Ly(t0)]TLy(t0) = 〈LTLy(t0), y(t0)〉 (6.3.27)

If we define a norm using any other weight matrix W applied to y, then the
requirement that the initial perturbations be of equal size implies:

‖y(t0)‖2 = (Wy(t0))TWy(t0) = y(t0)TWTWy(t0) = 1 (6.3.28)

We can use a different norm to define the size of the perturbation to be maximized
at the final time than the norm W used for the initial time (6.3.28). For example
the final norm could be a projection operator P at the end of the interval. Then the
function that we want to maximize is, instead of (6.3.27):

J (y(t0)) = [PLy(t0)]TPLy(t0) = y(t0)TLTPTPLy(t0) (6.3.29)

subject to the strong constraint (6.3.28).
From the calculus of variations, the maximum of (6.3.29) subject to the strong

constraint (6.3.28) can be obtained by the unconstrained maximum of another
function:

K (y(t0)) = J (y(t0))+ λ[1− y(t0)TWTWy(t0)]

= y(t0)TLTPTPLy(t0)+ λ[1− y(t0)TWTWy(t0)]
(6.3.30)

where the λ are the Lagrange multipliers multiplying the square brackets (equal to
zero due to the constraint (6.3.28)).

The unconstrained minimization of K is obtained by computing its gradient with
respect to the control variabley(to) and making it equal to zero. From Remark 5.4.1(d),
we can compute this gradient as:

∇y(t0)K = LTPTPLy(t0)− λWTWy(t0) = 0 (6.3.31)

It is convenient, given the constraint (6.3.28), to change variables:

Wy(t0) = ŷ(t0) or y(t0) =W−1ŷ(t0) (6.3.32)

Then, (6.3.31) becomes

(W−1)TLTPTPLW−1ŷ(t0) = λŷ(t0) (6.3.33)

subject to the constraint

ŷT (t0)ŷ(t0) = 1 (6.3.34)

Therefore, the transformed vectors ŷ(t0) are the eigenvectors of the matrix
(W−1)TLTPTPLW−1 in (6.3.33), with eigenvalues equal to the Lagrange multi-
pliers λi . After the leading eigenvectors ŷ(t0) are obtained (using, for example, the
Lanczos algorithm), the variables are transformed back to y(t0) using (6.3.32). The
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eigenvalues of this problem are the square of the singular values of the tangent linear
model: λi = σ 2

i .
This allows great generality (as well as arbitrariness4) in the choice of initial norm

and final projection operator. Errico and Vukicevic (1992), showed that the singular
vectors are very sensitive to both the choice of norm and the length of the optimization
interval (the interval from t0 to t1). In another example, Palmer et al. (1998) tested
different weight matrices W defining the initial norm. They used “streamfunction,”
“enstrophy,” “kinetic energy,” and “total energy” norms, which measured, as the
“initial size” the square of the perturbation streamfunction, vorticity, wind speed and
weighted temperature, wind and surface pressure, respectively. They found that the
use of different initial norms resulted in extremely different initial singular vectors,
and concluded that the total energy was the norm of choice for ensemble forecasting.
In 1995, ECMWF included in their ensemble system a projection operator P that
measures only the growth of perturbations north of 30◦ N, i.e., a matrix that multiplies
variables that correspond to latitudes greater than or equal to 30◦ N by the number 1,
and by 0 otherwise) (Buizza and Palmer, 1995). One could use any other pair of initial
W and final P weights (norms) to answer the related question of forecast sensitivity.
An example of a forecast sensitivity problem is: “What is the optimal (minimum size)
initial perturbation (measured by the square of the change in surface pressure over
the states of Oklahoma and Texas) that produces the maximum final change after a
1-day forecast (measured by the change in vorticity between surface and 500 hPa
over the eastern USA)?” ECMWF has been routinely carrying out experiments to
find out “What is the change in the initial conditions from 3 days ago that would lead
to the best verification of today’s analysis?” (see Errico (1997), Rabier et al. (1996),
Pu et al. (1997a,b) for more details).

6.3.3 Lyapunov vectors

As we saw in Section 6.2, if we start a set of perturbations on a sphere of very small
size, it will evolve into an ellipsoid. The growth of the axis of the hyperellipsoid after
a finite interval s is given by the singular values σi (t0 + s). The (global) Lyapunov
exponents describe the linear long-term growth of the hyperellipsoid:

λi = lim
s→∞

1

s
ln[σi (t0 + s)] (6.3.35)

4 Jon Ahlquist (2000, pers. communication) showed, given a linear operator L, a set of arbitrary
vectors xi , and a set of arbitrary nonnegative numbers σi arranged in decreasing order, how to
construct an inner product and a norm such that the σi and the xi are ith singular values and
singular vectors of L. He pointed out that “Because anything not in the null space can be a
singular vector, even the leading singular vector, one cannot assign a physical meaning to a
singular vector simply because it is a singular vector. Any physical meaning must come from an
additional aspect of the problem. Said in another way, nature evolves from initial conditions
without knowing which inner products and norms the user wants to use.”
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In other words, the Lyapunov exponents describe the long-term average exponential
rate of stretching or contraction in the attractor. (We call the Lyapunov exponents
“global” to distinguish them from the finite time or “local” Lyapunov exponents which
are useful in predictability applications.) There are as many Lyapunov exponents as
the dimension of the model (number of independent variables or degrees of freedom).
If the model has at least one λi greater than zero, then the system can be called chaotic,
i.e., there is exponential separation of trajectories. In other words, there is at least one
direction of the ellipsoid that continues to be stretched, and therefore two trajectories
will diverge in time and eventually become completely different. Conversely, a system
with all negative Lyapunov exponents is stable, and will remain predictable at all
times. The first Lyapunov exponent can be estimated by running the tangent linear
model for a long time starting from any randomly chosen initial perturbation y(t0).
During a long integration the growth rate of any random perturbation will converge
to the first Lyapunov exponent:

λ1 = lim
s→∞

1

s
ln

[‖y(t0 + s)‖
‖y(t0)‖

]
(6.3.36)

which is independent of the norm. In practice, the first Lyapunov exponent is ob-
tained by running the tangent linear model for a long period from random initial
conditions, and renormalizing the perturbation vector periodically in order to avoid
computational overflow.

When we are dealing with atmospheric predictions, we are not really interested in
the global growth properties, which correspond to the atmosphere’s attractor (clima-
tology), i.e., relevant average properties over many decades. Instead, in predictability
problems we are interested in the growth rate of perturbations at a given time and
space: we need to know the local stability properties in space and time, which are
related to our ability to make skillful forecasts. We can define the leading local
Lyapunov vector (LLV) at a certain time t , as the vector towards which all random
perturbations y(t − s) started a long time s before t will converge (Fig. 6.3.5).

l1(t) = lim
s→∞L(t − s, t)y(t − s) (6.3.37)

Once a perturbation has converged to the leading LLV l1(t), the leading local Lya-
punov exponent can be computed from the rate of change of its norm. In practice,
the local leading Lyapunov exponent, also known as finite time Lyapunov exponent,
can be estimated over a finite period τ :

l1 ≈ 1

τ
ln

[‖l1(t + τ )‖
‖l1(t)‖

]
(6.3.38)

The argument of the logarithm is defined as the amplification rate A(t, τ ).
ThefirstLLV is independent of thedefinitionofnorm, and represents the direction

in which maximum sustainable growth (or minimum decay) can occur in a system
without external forcing. In fact, after a finite transition period T takes place, every
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perturbations
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Figure 6.3.5: Schematic of how all perturbations will converge towards the leading
LLV.

initial perturbation will turn in the direction of the LLV at every point of the trajectory.
This also includes the final singular vectors ui for a sufficiently long optimization
interval.

Trevisan and Legnani (1995) introduced the notion of the leading LLV. Additional
LLVs can be obtained by Gramm–Schmidt orthogonalization, and this would seem
to indicate that they are norm-dependent. However, Trevisan and Pancotti (1998)
showed that it is also possible, at least in theory, to define additional LLVs (denoted
characteristic vectors by Legras and Vautard, 1996) without the use of norms. The
LLVs are therefore a fundamental characteristic of dynamical systems. It should be
noted that regrettably, at this time, there is not a universally accepted nomenclature
for LLVs. Legras and Vautard (1996) call the LLVs “backward Lyapunov vectors”,
since they were started an infinitely long time in the past. Unfortunately, this name
is extremely confusing, since they represent forward evolution rather than backward
evolution as this name would imply. The LLVs are also the final singular vectors
optimized for an infinitely long time, i.e., the eigenvectors (valid at time t) of L(t −
T, t)LT (t − T, t) for T →∞. Similarly, Legras and Vautard define as “forward
Lyapunov vectors” the initial singular vectors obtained from a very long backward
integration with the adjoint of the model, i.e., they are the eigenvectors (valid at
time t) of LT (t, t + T )L(t, t + T ) for very large T .

Legras and Vautard (1996) showed (as did Trevisan and Pancotti (1998)) that
a complete set of LLVs (which they denote characteristic Lyapunov vectors) can
be defined from the intersection of the subspaces spanned by the “forward” and
“backward” Lyapunov vectors. The (characteristic) LLVs are therefore independent
of the norm, and grow in time with a rate given by the local Lyapunov exponents. As
such, they are a fundamental characteristic of dynamical systems.

Several authors have shown that the leading (first few) LLVs of low-dimensional
dynamical systems span the attractor, i.e., they are parallel to the hypersurface in
phase space that the dynamical system visits again and again (“realistic solutions”).
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Leading singular vectors, on the other hand, have very different properties. They can
grow much faster than the leading LLVs, but are initially off the attractor: they point
to areas in the phase space where solutions do not naturally occur (e.g., Legras and
Vautard, 1996, Trevisan and Legnani, 1995, Trevisan and Pancotti, 1998, Pires et al.,
1996), see also next section.

For ensemble forecasting, Ehrendorfer and Tribbia (1997) showed that if V is the
initial analysis error covariance (which unfortunately we don’t know and can only
estimate), then the initial singular vectors defined with the norm W = V−1/2 evolve
into the eigenvectors of the evolved error covariance matrix. This implies that the
leading singular vectors, defined using the initial error covariance, are optimal in
describing the forecast errors at the end of the optimization period. The initial error
covariance norm yields singular vectors quite different from those derived using the
energy norm. Barkmeijer et al. (1998) used the ECMWF estimated 3D-Var error
covariance as the initial norm (instead of the total energy norm) and obtained initial
perturbations with structures closer to the bred vectors (i.e., leading LLVs) used at
NCEP (see Section 6.5.1).

6.3.4 Simple examples of singular vectors and eigenvectors

In order to get a more intuitive feeling of the relationship between singular vectors
and Lyapunov vectors, we consider a simple linear model in two dimensions:

[
x1(t + T )
x2(t + T )

]
=MT [x(t)] =

[
2x1(t)+ 3x2(t)+ 7

0.5x2(t)− 4

]
(6.3.39)

We compute the two-dimensional tangent linear model, constant in time:

L =




∂M1

∂x1

∂M1

∂x2

∂M2

∂x1

∂M2

∂x2


 =

[
2 3
0 0.5

]
(6.3.40)

The propagation or evolution of any perturbation (difference between two solutions)
over a time interval (t , t + T) is given by

δx(t + T ) = Lδx(t) (6.3.41)

Note that the translation terms in (6.3.39) do not affect the perturbations. The eigen-
vectors of L (which for this simple constant tangent linear model are also the
Lyapunov vectors) are proportional to

l1 =
(

1
0

)
l2 =

(−2
1

)
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corresponding to the eigenvalues λ1 = 2, λ2 = 0.5, respectively, which in this case
are the two Lyapunov numbers (their logarithms are the Lyapunov exponents). If we
normalize them, so that they have unit length, the Lyapunov vectors are

l1 =
(

1
0

)
l2 =

(−0.89
0.45

)
(6.3.42)

The Lyapunov vectors are not orthogonal, they are separated by an angle of 153.4◦

(Fig. 6.3.6(a)). We will see that because they are not orthogonal it is possible to
find linear combinations of the Lyapunov vectors that grow faster than the leading
Lyapunov vector. We will also see that the leading Lyapunov vector is the attractor
of the system, since repeated applications of L to any perturbation makes it evolve
towards l1.

t=0

v1

l2
l1

v2

t=T
u1=Lv1

0.5l2
2l1

u2=Lv2

t=2T
Lu1

Lu2 4l1

(a)

(b)

(c)

Figure 6.3.6: Schematic of the evolution of the two nonorthogonal Lyapunov vectors
(thin arrows l1 and l2), and the corresponding two initial singular vectors (thick
arrows v1(0)and v2(0)), optimized for the interval (0, T ), for the tangent linear model

L =
[

2 3
0 0.5

]

with eigenvalues 2 and 0.5. (a) Time t = 0, showing the initial singular vectors v1(0)
and v2(0), as well as the Lyapunov vectors l1 and l2. (b) Time t = T, evolved singular
vectors, u1(T ) = Lv1(0), u2(T ) = Lv2(0) at the end of the optimization period; the
Lyapunov vectors have grown by factors of 2 and 0.5 respectively, whereas the
leading singular vector has grown by 3.63. The second evolved singular vector has
grown by 0.275, and is still orthogonal to the first singular vector. (c) Time t = 2T .
Beyond the optimization period T , the evolved singular vectors u1(t + 2T ) =
Lu1(t + T ), u2(2T ) = Lu2(T ) are not orthogonal and they approach the leading
Lyapunov vector with similar growth rates.
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Applying first L and then its transpose LT we obtain the symmetric matrix

LTL =
[

4 6
6 9.25

]
(6.3.43)

whose eigenvectors are the initial singular vectors, and whose eigenvalues are the
squares of the singular values. The initial singular vectors (eigenvectors of LTL) are

v1 =
(

0.55
0.84

)
v2 =

(
0.84
−0.55

)
(6.3.44)

with eigenvalues σ 2
1 = 13.17, σ 2

2 = 0.076. As indicated before, the singular values
of L are the square roots of the eigenvalues of LTL, i.e., σ1 = 3.63, σ2 = 0.275.
Note that this implies that during the optimization period (0, T ) the leading singular
vector grows almost twice as fast as the leading Lyapunov vector (3.63 vs. 2). The
angle that the leading initial singular vector has with respect to the leading Lyapunov
vector is 56.82◦, whereas the second initial singular vector is perpendicular to the
first one (Fig.6.3.6(a)).

The final or evolved SVs at the end of the optimization period (0, T ) are the eigen-
vectors of

LLT =
[

13 1.5
1.5 0.25

]
(6.3.45)

and after normalization, they are

u1 =
(

0.99
0.12

)
u2 =

(
0.12
−0.99

)
(6.3.46)

Note again that the operators LTL and LLT are quite different, and the final
singular vectors are different from the initial singular vectors, but they have the same
singular values σ 2

1 = 13.17, σ 2
2 = 0.076.

Alternatively, the evolved singular vectors at the end of the optimization period can
also be obtained by applyingL to the initial singular vectors, which is computationally
inexpensive. In this case,

u1(T ) = Lv1(0) =
[

3.6
0.42

]
u2(T ) = Lv2(0) =

[
0.03
−0.27

]

which is the same as (6.3.46) but without normalization.
The final leading singular vector has strongly rotated towards the leading Lyapunov

vector: at the end of the optimization period the angle between the leading singular
vector and the leading Lyapunov vector is only 6.6◦ (Fig. 6.3.6(b)), and because the
singular vectors have been optimized for this period, the final singular vectors are
still orthogonal.
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To obtain the evolution of the singular vectors beyond the optimization period (0,
T ) we apply L again to the evolved singular vector valid at t = T and obtain

u1(t + 2T ) = Lu1(t + T ) =
[

3.6
0.42

]
u2(2T ) = Lu2(T ) =

[
0.03
−0.27

]

During the interval (T , 2T ) the leading singular vector grows by a factor of just 2.33,
which is not very different from the growth rate of the leading Lyapunov vector. At
the end of this second period (Fig. 6.3.6(c)) the angle with the leading Lyapunov
vector is only 1.41◦. The angle of the second evolved singular vector at time T , after
applying the linear tangent model L and the leading Lyapunov vector is also quite
small (10.24o), and because it was further away from the attractor, the second singular
vector (whose original, transient, singular value was 0.5), grows by a factor of 2.79.
This example shows how quickly all perturbations, including all singular vectors,
evolve towards the leading Lyapunov vector, which is the attractor of the system. It is
particularly noteworthy that during the optimization period (0, T ), the first singular
vector grows very fast as it rotates towards the attractor, but once it gets close to the
leading Lyapunov vector, its growth returns to the normal leading Lyapunov vector’s
growth.

Let us now choose as the tangent linear model another matrix

L =
[

2 30
0 0.5

]

with the same eigenvalues 2 and 0.5, i.e., with eigenvectors (Lyapunov vectors) that
still grow at a rate of 2/T and 0.5/T respectively. However, now the angle between
the first and the second Lyapunov vector is 177◦, i.e. the Lyapunov vectors are almost
antiparallel. In this case, the first singular vector grows by a factor of over 30 during
the optimization period, but beyond the optimization period it essentially continues
evolving like the leading Lyapunov vector.

These results do not depend on the fact that one Lyapunov vector grows and the
other decays. As a third example, we choose

L =
[

2 3
0 1.5

]

with two Lyapunov vectors growing with rates 2/T and 1.5/T . The Lyapunov vectors
are almost parallel, with an angle of 170◦, and the leading singular vector grows during
the optimization period by a factor of 3.83. Applying the tangent linear model again
to the evolved singular vectors we obtain that at time 2T the leading singular vector
has grown by a factor of 2.9 and its angle with respect to the leading Lyapunov
vector is 1◦. Because it is not decaying, the second Lyapunov vector is also part of
the attractor, but only those perturbations that are exactly parallel to it will remain
parallel, all others will move towards the first Lyapunov vector.
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These examples illustrate the fact that the fast growth of the singular vectors during
the optimization period depends on the lack of orthogonality between Lyapunov
vectors. A very fast “supergrowth” of singular vectors is associated with the presence
of almost parallel Lyapunov vectors, and it takes place when the initial singular
vector, which is not in the attractor, rotates back towards the attractor. At the end of
the optimization period, the leading singular vector tends to be much closer to the
attractor, more parallel to the leading Lyapunov vector. The second (trailing) singular
vector is also moving towards the leading Lyapunov vector.

Finally, we point out that this introductory discussion is appropriate for relatively
low-dimensional systems. For extremely high-dimensional systems like the atmo-
sphere, there may be multiple sets of Lyapunov exponents corresponding to different
types of instabilities. For example, as pointed out by Toth and Kalnay (1993), con-
vective instabilities have very fast growth but small amplitudes, whereas baroclinic
instabilities have slower growth but much larger amplitudes, and each of these can
lead to different types of Lyapunov vectors. If we are interested in the predictability
characteristics associated with baroclinic instabilities, then the analysis of growth
rates of infinitesimally small Lyapunov vectors over infinitely long times may not be
appropriate for the problem (Lorenz, 1996). In that case, it may be better to consider
the finite amplitude, finite time extension of Lyapunov vectors introduced by Toth
and Kalnay (1993, 1997) as bred vectors. Bred vectors are discussed in Section 6.5.1,
and their relationship to Lyapunov vectors in Kalnay et al. (2002).

6.4 Ensemble forecasting: early studies

We saw in previous sections that Lorenz (1963a,b,1965) showed that the forecast skill
of atmospheric models depends not only on the accuracy of the initial conditions and
on the realism of the model (as it was generally believed at the time), but also on the
instabilities of the flow itself. He demonstrated that any nonlinear dynamical system
with instabilities, like the atmosphere, has a finite limit of predictability. The growth
of errors due to instabilities implies that the smallest imperfection in the forecast
model or the tiniest error in the initial conditions, will inevitably lead to a total loss of
skill in the weather forecasts after a finite forecast length. Lorenz estimated this limit
of weather predictability as about two weeks. With his simple model he also pointed
out that predictability is strongly dependent on the evolution of the atmosphere itself:
some days the forecasts can remain accurate for a week or longer, and on other days
the forecast skill may break down after only 3 days. This discovery made inevitable
the realization that NWP needs to account for the stochastic nature of the evolution
of the atmosphere (Fig. 6.4.1). As previously discussed, Lorenz (1965) studied the
error growth of a complete “ensemble” of perturbed forecasts, with the ensemble
size equal to the dimension of the phase space (one perturbation for each of the
28 model variables). In this paper he introduced for the first time concepts related
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Deterministic Stochastic

A
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Figure 6.4.1: Schematic of ensemble prediction, with individual trajectories drawn
for forecasts starting from a representative set of perturbed initial conditions within a
circle representing the uncertainty of the initial conditions (ideally the analysis error
covariance) and ending within the range of possible solutions. For the shorter range,
the forecasts are close to each other, and they may be considered deterministic, but
beyond a certain time, the equally probable forecasts are so different that they must
be considered stochastic. The transition time is of the order of 2–3 days for the
prediction of large-scale flow, but can be as short as a few hours for mesoscale
phenomena like the prediction of individual storms. The transition time is shorter for
strongly nonlinear parameters: even for large-scale flow, precipitation forecasts show
significant divergence faster than the 500-hPa fields. The forecasts may be clustered
into subsets A and B. (Adapted from Tracton and Kalnay, 1993.)

to singular vectors and LLVs discussed in the previous section. This was followed by
several early approaches to the problem of accounting for the variable predictability
of the atmosphere reviewed in this section.

6.4.1 Stochastic-dynamic forecasting

Historically, the first forecasting method to explicitly acknowledge the uncertainty
of atmospheric model predictions was developed by Epstein (1969), who introduced
the idea of stochastic-dynamic forecasting. He derived a continuity equation for the
probability densityϕ(X ; t) of a model solution X of a dynamical model Ẋ = G(X (t)),
where the model has dimension D:

∂ϕ

∂t
+∇D · (Ẋϕ) = 0 (6.4.1)

This equation indicates that in an ensemble of forecast solutions, “no member of
the ensemble may be created or destroyed”. An ensemble starting from an infi-
nite number of perturbed integrations spanning the analysis uncertainty gives the
“true” probability distribution (with all its moments), but even for a simple low-order
model, the integration of (6.4.1) is far too expensive. Therefore Epstein introduced an
approximation to predict only the first and second moments of the probability distri-
bution (expected means and covariances) rather than the full probability distribution.
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Epstein assumed that the model equations are of the form

ẋi =
∑
j,k

aijkx j xk −
∑

j

bijx j + ci (6.4.2)

The forecast equations for the expected first and second moments are

µ̇i = E(ẋi )

ρ̇ij = E(xi ẋ j + ẋi x j )


 (6.4.3)

The covariances ρij are related to the second order moments by σi j = E[(xi −
µi )(x j − µ j )]. Substituting (6.4.2) into (6.4.3) gives rise to forecast equations
for µ̇ and σ̇ that contain triple moments (xi x j xk). As done in turbulence mod-
els with a second order closure for the triple products (Chapter 4), Epstein in-
troduced a closure assumption for the third order moments around the mean
τijk = E[(xi − µi )(x j − µ j )(xk − µk)]. He assumed that #kla jklτikl + aiklτ jkl = 0,
which then gives a closed set of equations for the means and covariances:

µ̇i =
∑

jk

aijk(σjk + µ jµk)−
∑

j

bijµ j + ci

σ̇i j =
∑

kl

a jkl(µkσil + µlσik)+ aikl(µkσ jl + µlσ jk)

−
∑

k

(bikσ jk+b jkσik)




(6.4.4)

Epstein tested these “approximate” stochastic equations for a Lorenz three-variable
model. The “true” probability distribution was computed from a Monte Carlo ensem-
ble of 500 members, and the comparison indicated good agreement, at least for several
simulated days. Note that in his case, the number of ensemble members was much
larger than the number of degrees of freedom of the model, a situation that would be
impossible to replicate with current models with millions of degrees of freedom. In
his paper, Epstein also introduced the idea of using stochastic-dynamic forecasting
in the analysis cycle, with the background forecast and error covariance provided
by stochastic-dynamic forecasts combined with observations that also contain errors
(cf. Sections 5.3–5.5).

Unfortunately, although the stochastic-dynamic forecasting method was intro-
duced as a shortcut to an “infinite” Monte Carlo ensemble, in a model with N degrees
of freedom, it requires N (N + 1)/2+ N forecast equations, equivalent to making
about (N+ 3)/2 model forecasts. Although this was practical with a three-variable
model, it is completely unfeasible for a modern model, with millions of degrees of
freedom.

6.4.2 Monte Carlo forecasting

In 1974, Leith proposed the idea of performing ensemble forecasting with a limited
number m of ensemble members instead of the conventional single (deterministic)
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control forecast. He also proposed performing an “optimal estimation” of the ver-
ification using linear regression on the dynamical forecasts, with optimal weights
determined from forecast error covariances (cf. Sections 5.3–5.5). Since forecasts
lose their skill at longer lead times, and individual forecasts eventually are further
away from the verification than the climatology (cf. eqs. (6.4.5) and (6.4.6)), optimal
estimation of the verification is equivalent to tempering (i.e., hedging the forecast
towards climatology).

He cast his analysis using, instead of model variables, their deviationuwith respect
to climatology (also known as forecast anomalies). The true state of the atmosphere
is denoted u0, and û then denotes an unbiased estimate of u0, whose expected value
(average over many forecasts, represented by the angle brackets) is equal to zero:
〈û〉 = 0.

We can compute the expected error covariance of a climatological forecast (i.e.,
a forecast of zero anomaly):

〈(0− u0)(0− u0)T 〉 = 〈u0uT
0 〉 = U (6.4.5)

A single (deterministic) forecast û, on the other hand, has, on average, an error
covariance given by

〈(û− u0)(û− u0)T 〉 = 〈ûûT + u0uT
0 − ûuT

0 − u0ûT 〉 −→
t→∞ 2U (6.4.6)

This limit occurs because the last two terms in the second angle brackets go to zero
as the forecasts become decorrelated with the true atmosphere at long lead times,
and we assume that the model covariance is also unbiased. This indicates that for
long lead times an individual deterministic forecast has twice the error covariance
of a climatological forecast. Therefore, a “regressed” forecast, tempered towards
climatology, must be better than a single deterministic forecast (in a least square
error sense), with an error covariance that asymptotes to U, and not 2U.

A regressed forecast û0 = ûA is obtained by linear regression, minimizing the
square of the regressed error εT ε = 〈(u0 − ûA)T (u0 − ûA)〉 with respect to the ele-
ments of the matrix of constant regression coefficientsA. As we did in the derivation
of the optimal weight matrix for the observational increments in Section 5.4, we make
use of the linear regression formulas: if the linear prediction equation is ŷ = xA, then
the error is given by ε = y− xA. The matrix of the derivatives of the (scalar) squared
error εT ε with respect to each element ofA is given by ∂εT ε/∂A = −2xT (y− xA) =
0, which gives the normal equation xT y = xT xA, or A = (xT x)−1(xT y). Applying
this to the regressed forecast we obtain 〈ûT (u0 − ûA)〉 = 0, or

A = 〈ûT û〉−1〈ûTu0〉 (6.4.7)

Estimating the required forecast statistics in (6.4.7) involves considerable work.
The size of the regression matrix is usually large compared to the size of the sample
available to estimate it, and in order to reduce the number of parameters to be
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estimated additional approximations are needed (e.g., by parameterizing error
growth, Hoffman and Kalnay, 1983).

Now, instead of regression let’s consider an ensemble of m forecasts computed
from perturbations ri to the initial best estimate (analysis) û. Ideally, the perturbations
should be chosen so that their outer product is a good estimate of the initial error co-
variance (i.e., the analysis error covariance 〈rrT 〉 = Pa , as suggested in Fig. 6.4.1). In
practice, however, the analysis error covariance can only be approximately estimated
(e.g., Barkmeijer et al., 1998).

If u = (1/m)#m
i=1ui is the average of an ensemble of m forecasts, then its error

covariance evolves like

〈(u− u0)(u− u0)T 〉 = 〈uuT + u0uT
0 − uuT

0 − u0uT 〉 −→
t→∞

(
1+ 1

m

)
U

(6.4.8)

since the last two terms in the second angle brackets go to zero at long time leads,
and the first one evolves like

〈uuT 〉 = 1

m

m∑
i=1

ui
1

m

m∑
j=1

uT
j −→t→∞

m

m2
U (6.4.9)

Equation (6.4.8) shows that averaging a Monte Carlo ensemble of forecasts ap-
proximates the tempering of the forecasts towards climatology, without the need to
perform regression. It suggests that such tempering may be substantially achieved
with a relatively small number of ensemble members (compare (6.4.8) with (6.4.5)
and (6.4.6)). Leith (1974) used an analytical turbulence model to test this hypothe-
sis, and concluded that a Monte Carlo forecasting procedure represents a practical,
computable approximation to the stochastic-dynamic forecasts proposed by Epstein
(1969). He suggested that adequate accuracy would be obtained for the best estimate
of the forecast (i.e., the ensemble mean) with sample sizes as small as 8, but that
the estimation of forecast errors may require a larger number of ensemble mem-
bers. Monte Carlo forecasting is thus a feasible approach for ensemble forecasting,
requiring only a definition of the initial perturbations and m forecasts.

6.4.3 Lagged average forecasting

In 1983, Hoffman and Kalnay proposed lagged average forecasting (LAF) as an al-
ternative to Monte Carlo forecasting, in which the forecasts initialized at the current
initial time, t = 0, as well as at previous times, t = −τ, −2τ, . . . ,−(N − 1)τ are
combined to form an ensemble (see Fig. 6.4.2). In an operational set up, τ is typically
6, 12 or 24 hours, so that the forecasts are already available, and the perturbations
are generated automatically from the forecast errors. Since the ensemble comprises
forecasts of different “age”, Hoffman and Kalnay (1983) weighted them according
to their expected error, which they estimated by parameterizing the observed error
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Figure 6.4.2: Schematic time evolutions of Monte Carlo forecasts (a) and lagged
average forecasts (b). The abscissa is forecast time t , and the ordinate is the value of
a forecast variable X. The crosses represent analyses obtained at time intervals τ, and
the dots, randomly perturbed initial conditions; tf is a particular forecast time. The
initial “perturbation” for the lagged average forecast is the previous forecasts’ error
at the initial time. (Adapted from Hoffman and Kalnay, 1983.)

covariance growth. They compared the lagged average forecasting and Monte Carlo
forecasting methods within a simulation system, using a primitive equations model
as “nature”, and a quasi-geostrophic model to perform the “forecasts”. In this way
they allowed for model errors, unlike the previous “identical twin” experiments
that assumed a perfect model. They “observed” the required variables and intro-
duced random “observation errors” every 6 hours and performed many ensemble
forecast experiments separated by 50 days of integration. They compared the re-
sults of single forecasts (ordinary dynamical forecasts), Monte Carlo forecasting,
lagged average forecasting and tempered ordinary dynamical forecasts, as well as
persistence-climatology forecast (the most skillful baseline forecast).

Hoffman and Kalnay looked at the error growth of individual forecasts (Fig. 6.4.3).
Note in this figure that the individual forecast errors grow slowly and then at a certain
time there is a rapid error growth until nonlinear saturation takes place (only the period
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Figure 6.4.3: Time evolution of D, the individual forecast errors scaled by the
climatological forecast error, plotted only during the period the forecast error crossed
D = 0.5. Also plotted are two measures of average forecast error. (Adapted from
Hoffman and Kalnay, 1983.)

of rapid growth is plotted). Note also that the forecast errors saturate around
√

2 of
the climatological variability, as indicated by (6.4.6).

In these simulated forecasts, like in real weather forecasts, the forecast skill ex-
hibits a lot of day-to-day variability. The rapid growth takes place at a time that varies
from a minimum of 5 days to a maximum of 20 days. Hoffman and Kalnay tested
the ability of the ensemble to predict the time at which the forecast error crossed
50% of the climatological standard deviation. They used as the predictor the spread
of the ensembles (standard deviation with respect to their mean). They found that
the lagged average forecasting ensemble average forecast was only slightly better
than the Monte Carlo forecasting, but the advantage of lagged average forecasting
in predicting forecast skill was much more apparent, with the correlation between
predicted and observed time of crossing the 50% level being 0.68 for Monte Carlo
forecasting and 0.79 for lagged average forecasting.

The advantages of lagged average forecasting over Monte Carlo forecasting are
probably due to the fact that lagged average forecasting perturbations in the initial
conditions were not randomly chosen errors like in Monte Carlo forecasting but
included dynamical influences and therefore contained “errors of the day”. This is
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because the perturbations are generated from actual forecast errors and therefore they
are influenced by the evolution of the underlying background large-scale flow.

Lagged average forecasting has been frequently used for experimental ensemble
forecasting, both for medium-range and climate prediction. However, the statistics
required to estimate the weights of the members of the lagged average forecasting
ensemble according to their “age” are very hard to obtain, so that except for the
study by Dalcher et al. (1988), all the lagged average forecasting members have
been generally given equal weight. The advantages of lagged average forecasting
are: (a) some of the forecasts are already available in operational centers; (b) it is
very simple to perform and does not require special generation of perturbations; and
(c) the perturbations contain “errors of the day” (Lyapunov vectors). Lagged average
forecasting has also major disadvantages: (a) a large LAF ensemble would have to
include excessively “old” forecasts; (b) without the use of optimal weights, the lagged
average forecasting ensemble average may be tainted by the older forecasts.

Ebisuzaki and Kalnay (1991) introduced a variant of lagged average forecasting
denoted scaled lagged average forecasting (SLAF) that reduces these two disad-
vantages. The perturbations are obtained by computing the forecast error of fore-
casts started at t = − jτ, j = 1, . . . , N − 1, and multiplying these errors by ±1/j .
This assumes that the errors grow approximately linearly with time during the first
2–3 days, and that the perturbations can be subtracted from and not just added to
the analysis. The advantages of scaled lagged average forecasting are: (a) the ini-
tial perturbations of the ensemble members are all of approximately the same size
(this can be enforced using a more sophisticated rescaling than linear growth), and
(b) their number is doubled with respect to lagged average forecasting, so that only
shorter-range forecasts are needed to create scaled lagged average forecasting. In
practice, it has been observed that pairs of initial perturbations with opposite sign,
as used in scaled lagged average forecasting, yield better ensemble forecasts, pre-
sumably because the Lyapunov vectors within the analysis errors can have either
sign, whereas lagged average forecasting tends to maintain a single sign in the error.
Experiments with the NCEP global model showed that scaled lagged average fore-
casting ensembles were better than lagged average forecasting ensembles (Ebisuzaki
and Kalnay, 1991). This method is also easier to implement in regional ensemble
forecasts, since it generates boundary condition perturbations consistent with the
interior perturbations (Hou et al., 2001).

6.5 Operational ensemble forecasting methods

Figure 6.5.1(a) shows the elements of a typical ensemble forecasting system: (1) the
control forecast (labeled C) starts from the analysis (denoted by a cross), i.e., from
the best estimate of the initial state of the atmosphere; (2) two perturbed ensemble
forecasts (labeled P+ and P−) with initial perturbations added and subtracted from
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Figure 6.5.1:(a) Schematic of the components of a typical ensemble: (1) the control
forecast (labeled C) which starts from the analysis (denoted by a cross), which is the
best estimate of the true initial state of the atmosphere; (2) two perturbed ensemble
forecasts (labeled P+ and P−) with initial perturbations added and subtracted from
the control; (3) the ensemble average denoted A; and (4) the “true” evolution of the
atmosphere labeled T. This is a “good” ensemble since the “truth” appears as a
plausible member of the ensemble. Note that because of nonlinear saturation, the
error of the ensemble member initially further away from the truth (in this case P+)
tends to grow more slowly than the error of the member initially closer to the truth.
This results in a nonlinear filtering of the errors: the average of the ensemble
members tends to be closer to the truth than the control forecast (Toth and Kalnay,
1997, also compare with Fig. 1.7.1). (b) Schematic of a “bad” ensemble in which the
forecast errors are dominated by system errors (such as model deficiencies). In this
case, the ensemble is not useful for forecasting, but it helps to identify the fact that
forecast errors are probably due to the presence of systematic errors, rather than to
the chaotic growth of errors in the initial conditions.
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the control; (3) the ensemble average labeled A, and (4) the true evolution of the
atmosphere (not known in real time), labeled T. This is an example of a “good”
ensemble since the true evolution appears to be a plausible member of the ensemble.
Figure 6.5.1(b) shows an example of a “bad” ensemble, in which the forecast errors
are dominated by problems in the forecasting system (such as model deficiencies)
rather than the chaotic growth of initial errors. In this case, the true evolution is
quite different from the members of the ensemble, but the ensemble is still useful in
identifying the presence of a deficiency in the forecasting system, which, with a single
forecast, could not be distinguished from the growth of errors in the initial conditions.

Ensemble forecasting has essentially three basic goals. The first is to improve the
forecast by ensemble averaging. The improvement is a result of the tendency of the
ensemble average to filter out the components of the forecast that are uncertain (where
the members of the ensemble differ from each other) and to retain those components
that show agreement among the members of the ensemble. The filtering can take place
only during the nonlinear evolution of the perturbations: if the perturbations are added
to and subtracted from the analysis, the ensemble average forecast is equal to the
control while the perturbations remain linear. The improvement of the ensemble av-
erage with respect to the control, shown schematically in Fig 6.5.1(a), is noticeable in
Fig. 1.7.1 after a few days of forecasts with the NCEP global ensemble. The second
goal is to provide an indication of the reliability of the forecast: if the ensemble
forecasts are quite different from each other, it is clear that at least some of them are
wrong, whereas if there is good agreement among the forecasts, there is more reason
to be confident about the forecast (cf. e.g., Fig. 1.7.2(a) and (b)). The quantitative
relationship between the ensemble spread and the forecast error (or conversely, be-
tween the forecast agreement and the forecast skill) has yet to be firmly established,
but is now routinely taken into consideration by human forecasters. The third goal of
ensemble forecasting is to provide a quantitative basis for probabilistic forecasting.
In the example in Fig. 6.4.1, one could claim that the ensemble indicates a 40%
probability of cluster A and 60% for cluster B.

An ensemble forecasting system requires the definition of the initial amplitude
and the horizontal and vertical structure of the perturbations. Typically, the initial
amplitude is chosen to be close to the estimated analysis error. The amplitude of the
analysis uncertainty depends on the distribution of the observations. Its statistical
distribution can be estimated from the analysis error covariance (Chapter 5), which
depends on the accuracy of the statistical assumptions, or empirically, from the rms
differences between independent analysis cycles (Fig. 6.5.2).

Ensemble forecasting methods differ mostly in the way the initial perturbations are
generated, and can be classified into essentially two classes: those that have random
initial perturbations, and those where the perturbations depend on the dynamics of
the underlying flow. In the first class, which we can denote Monte Carlo forecasting,
the initial perturbations are chosen to be “realistic”, i.e., they have horizontal and
vertical structures statistically similar to forecast errors, and amplitudes compatible
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Figure 6.5.2: Estimation of the 500-hPa geopotential height analysis uncertainty
obtained from running two independent analysis cycles, computing their rms
difference, and using a filter to retain the planetary scales. The units are arbitrary.
Note the minima over and downstream of rawinsonde-rich land regions and the
maxima over the oceans (Courtesy I. Szunyogh, University of Maryland.)

with the estimated analysis uncertainty. In the Monte Carlo ensembles, the amplitudes
are realistic but the perturbations themselves are chosen randomly, without regard to
the “dynamics of the day”. For example, Errico and Baumhefner (1987) and Mullen
and Baumhefner (1994) developed a Monte Carlo method that results in realistic
perturbations compatible with the average estimated analysis error. However, by
construction, this type of Monte Carlo forecast does not include finite-size “growing
errors of the day” which are almost certainly present in the analysis. The experiments
of Hollingsworth (1980), Hoffman and Kalnay (1983), and Kalnay and Toth (1996)
suggest that random initial perturbations do not grow as fast as the real analysis
errors, even if they are in quasi-geostrophic balance. A second class of methods which
includes errors of the day has been developed, tested, and implemented at several
operational centers. The first two methods of this class implemented operationally
are known as “breeding” and “singular vector” (or optimal perturbations) methods. In
contrast to Monte Carlo forecasting, they are characterized by including in the initial
perturbations growing errors that depend on the evolving underlying atmospheric
flow. Two other methods in this class that are also very promising are based on
ensembles of data assimilations, and ensembles based on operational systems from
different centers, combining different models and data assimilations.

6.5.1 Breeding

Ensemble experiments performed at NCEP during 1991 showed that initial ensemble
perturbations based on lagged average forecasting, scaled lagged average forecasting
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and on the forecast differences between forecasts verifying at the same initial time,
grew much faster than Monte Carlo perturbations with the same overall size and
statistical distribution (Kalnay and Toth, 1996). It was apparent that the differences
in the growth rate were due to the fact that the first group included perturbations
that, by construction, “knew” about the evolving underlying dynamics. Toth and
Kalnay (1993, 1996, 1997) created a special operational cycle designed to “breed”
fast growing “errors of the day” (Fig. 6.5.3(a)). Given an evolving atmospheric flow
(either a series of atmospheric analyses, or a long model run), a breeding cycle is
started by introducing a random initial perturbation (“random seed”) with a given
initial size (measured with any norm, such as the rms of the geopotential height or the
kinetic energy). It should be noted that the random seed is introduced only once. The
same nonlinear model is integrated from the control and from the perturbed initial
conditions. From then on, at fixed time intervals (e.g., every 6 hours or every 24 hours),
the control forecast is subtracted from the perturbed forecast. The difference is scaled
down so that it has the same amplitude (defined using the same arbitrary norm) as
the initial perturbation, and then added to the corresponding new analysis or model
state. It was found that beyond an initial transient period of 3–4 days after random
perturbations were introduced, the perturbations generated in the breeding cycle
(denoted bred vectors), acquired a large growth rate, faster than the growth rate
for Monte Carlo forecasting or even scaled lagged average forecasting and forecast
differences.

Toth and Kalnay (1993, 1997) also found that (after the transient period of
3–4 days) the shape or structure of the perturbation bred vectors did not depend
on either the norm used for the rescaling or the length of the scaling period. The bred
vectors did depend on the initial random seed in the sense that regional bred vector
perturbations would have the same shape but different signs, and that in many areas
two or more “competing bred vectors” appeared in cycles originated from different
random seeds. The breeding method is a nonlinear generalization of the method used
to construct Lyapunov vectors (performing two nonlinear integrations and obtaining
the approximately linear perturbation from their difference). Since the bred vectors
are related to Lyapunov vectors localized in both space and time, it is not surpris-
ing that they share their lack of dependence on the norm or on the scaling period.
Toth and Kalnay (1993) have argued that breeding is similar to the analysis cycle. In
the analysis cycle (represented schematically in Fig. 6.5.3(b)) errors are evolved in
time through the forecast used as background, and they are only partially corrected
through the use of noisy data. Therefore, Toth and Kalnay argued that the analysis
errors should project strongly on bred vectors. Corazza et al. (2002) compared bred
vectors and background errors for a quasi-geostrophic model data assimilation sys-
tem developed by Morss et al. (2001) Plate 1 shows a typical comparison, depicting
that in fact there is a strong resemblance between the structure of the errors of the
forecast used as a first guess and the bred vectors valid at the same time (Corazza et al.,
2002). Since the analysis errors are dominated by the background errors, especially
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Figure 6.5.3:(a) Schematic of a breeding cycle run on an unperturbed (control)
model integration. The initial growth after introducing a random initial perturbation
is usually very small, but with time, the perturbation is more dominated by growing
errors. The initial transient with slow growth lasts about 3–5 days. The difference of
the complete perturbed (dashed line) and control (full line) forecasts is scaled back
periodically (e.g., every 6 or every 24 hours) to the initial amplitude. The rescaling is
done by dividing all the forecast differences by the same observed growth (typically
about 1.5/day for mid-latitudes). In operational NWP, the unperturbed model
integration is substituted by short-range control forecasts started from consecutive
analysis fields. The breeding cycle is a nonlinear, finite-time, finite-amplitude
generalization of the method used to obtain the leading Lyapunov vector. (Adapted
from Kalnay and Toth, 1996.) (b) Schematic of the 6-h analysis cycle. Indicated on
the vertical axis are differences between the true state of the atmosphere (or its
observational measurements, burdened with observational errors). The difference
between the forecast and the true atmosphere (or the observations) increases with
time in the 6-h forecast because of the presence of growing errors in the analysis.
(Adapted from Kalnay and Toth, 1996.)
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Figure 6.5.4: Schematic of a self-breeding pair of ensemble forecasts used at NCEP.
Every day, the 1-day forecast from the negative perturbation is subtracted from the
1-day forecast from the positive perturbation. This difference is divided by 2, and
then scaled down (by dividing all variables by the 1-day growth), so that difference is
of the same size as the initial perturbation. The scaled difference is then added and
subtracted from the new analysis, generating the initial conditions for the new pair of
forecasts. This self-breeding is part of the extended ensemble forecast system, and
does not require computer resources to generate initial perturbations beyond running
the ensemble forecasts. (Adapted from Toth and Kalnay, 1997.)

when they are large, this resemblance indicates that the forecast and analysis errors
do indeed project strongly on the bred vectors.

Figure 6.5.4 shows a schematic of how breeding cycles are self-propagated from
the ensemble forecasts. The bred perturbations are defined every day from the dif-
ference between the one-day positive and the negative perturbation forecasts divided
by 2, they are scaled down by their growth during that day, and added and subtracted
to the new analysis valid at the time. This provides the initial positive and negative
perturbations for the ensemble forecasts at no additional cost beyond that of com-
puting the ensemble forecasts. Separate breeding cycles differ only in the choice of
random initial perturbations (performed only once). It has been found empirically
that for the atmosphere the finite amplitude bred vectors do not converge to a single
“leading bred vector” (Kalnay et al., 2002).

Figures 6.5.5(a) and (b) show two out of five operational bred perturbations cor-
responding to 5 March 2000 at 00UTC. Figure 6.5.5(c) presents an estimate of the
effective local dimension of the subspace of the five perturbations using the bred vec-
tor dimension defined in Patil et al. (2001).5 Only the areas where the local dimension
has collapsed from the original five independent directions (shapes or structure of the

5 The local bred vector dimension is obtained as ψ(σ1, . . . , σk ) = (
#k

i=1σi

)2
/#k

i=1σ
2
i , where σi

are the singular values corresponding to the k bred vectors within a region of about 106 m by
106 m, and it defines the effective local dimensionality. For example, if four out of five bred
vectors lie along one direction, and one lies along a second direction, the bred vector dimension
would be ψ(

√
4, 1, 0, 0, 0) = 1.8, less than 2 because one direction is more dominant than the

other in representing the original data (Patil et al., 2001).
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(a) (b) 

(c) 

Figure 6.5.5: Examples of bred vectors (500-hPa geopotential height field
differences, without plotting the zero contour) from the NCEP operational ensemble
system valid at 5 March 2000: (a) bred vector 1; (b) bred vector 5. Note that over large
parts of the eastern Pacific Ocean and western North America, the two perturbations
have shapes that are very similar but of opposite signs and/or different amplitudes. In
other areas the shape of the perturbations is quite different. (c) The bred-vector-local
dimension of the five perturbations subspace (Patil et al., 2001). Only dimensions
less than or equal to 3 are contoured with a contour interval 0.25. In these areas the
five independent bred vectors have aligned themselves into a locally low-dimensional
subspace with an effective dimension less than or equal to 3. (Courtesy of D. J. Patil.)

bred vectors) to three or less are contoured. Note that these are the areas where the
independently bred vectors aligned themselves into a smaller subspace. The collapse
of the perturbations into fewer dimensions is what one could expect if there are locally
growing dominant Lyapunov vectors expressing the regional dominant instability of
the underlying atmospheric flow. These low-dimensional areas are organized into
horizontal and vertical structures and have a lifetime of 4–7 days, similar to those of
baroclinic developments (Patil et al., 2002).

The breeding ensemble forecasting system was introduced operationally in
December 1992 at NCEP, with two pairs of bred vectors (Tracton and Kalnay, 1993).
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In 1994, seven pairs of self-breeding cycles replaced the original four perturbed
forecasts. In addition, a regional rescaling was introduced that allowed larger per-
turbation amplitudes over ocean than over land proportionally to the estimate of the
analysis uncertainty, Fig. 6.5.2 (Toth and Kalnay, 1997).

Toth and Kalnay (1993) found that when the initial amplitude was chosen to be
within the range of estimated analysis errors (i.e., between 1 m and 15 m for the 500-
hPa geopotential height) the bred vectors developed faster in strong baroclinic areas.
Their horizontal scale was that of short baroclinic waves, and their hemispherical
average growth rate was about 1.5/day (similar to the estimated growth of analysis
errors). However, if the initial amplitude was chosen to be much smaller than the es-
timated analysis errors (10 cm or less), then a different type of bred vector appeared,
associated with convective instabilities, which grew much faster than baroclinic insta-
bilities (at a rate of more than 5/day). The faster instabilities saturated at amplitudes
much smaller than the analysis error range (Fig. 6.5.6). Toth and Kalnay (1993)
suggested that the use of nonlinear perturbations in breeding has the advantage of
filtering Lyapunov vectors associated with fast growing but energetically irrelevant
instabilities, like convection. This was confirmed by Lorenz (1996), who performed
experiments with a low-order model containing large amplitude but slowly grow-
ing modes coupled with fast growing modes with very small amplitudes. Lorenz
found that the use of breeding using finite amplitudes yielded the Lyapunov vectors
of the large amplitude, slowly growing vectors, as desired, whereas for very small

Amplitude
(% of climate
variance)

1
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100

1 hour 1 day 1 week

Baroclinic modes

Convective modes

Analysis errors

Figure 6.5.6: Schematic of the time evolution of the rms amplitude of high-energy
baroclinic modes and low-energy convective modes. Note that although initially
growing much faster than the baroclinic modes, convective modes saturate at a
substantially lower level. These modes are therefore insignificant in the
analysis/ensemble perturbation problem, since the errors in the analysis (dashed
line) are much larger than the convective saturation level. (Adapted from Toth and
Kalnay, 1993.)
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amplitudes the Lyapunov vectors of the fast system were recovered. In a complex
system like the atmosphere, with multiple-scale instabilities, using breeding may
thus be more appropriate than using Lyapunov vectors, which, in a model including
all atmospheric instabilities, would yield vectors associated with Brownian motion,
which are the fastest, though clearly irrelevant, instabilities present in the system
(Kalnay et al., 2002). The nonlinear saturation of irrelevant fast growing modes is
an advantage that suggests the use of breeding for other problems. For example, for
seasonal and interannual forecasting using a coupled ocean–atmosphere system, the
slower growing (but very large energy amplitude) coupled ENSO instabilities could
perhaps be captured, while eliminating through nonlinear saturation the irrelevant
details of weather perturbations (Cai et al., 2002).

Figure 1.7.2 shows two examples of one of the ways information on ensemble
forecasts are presented to the users, the “spaghetti plots”, or plots showing one contour
line for each forecast. In one case, a 5-day forecast verifying on 15 November 1995,
the agreement in intensity and location of the contours indicated to the forecasters
that this was a very predictable snowstorm (see also the book cover). In the second
case, a 2.5-day forecast verifying on 21 October 1995, the ensemble members show
unusually strong divergence in the location of a winter storm, warning the human
forecasters that this situation is intrinsically unpredictable. Note that although the
ensemble forecasts show a wide divergence in the location of the storm, this is also
a case in which, in perturbation space, there is very low dimensionality, since the
perturbations align themselves along the same basic shape (the perturbations for the
winter storm are a one-parameter family so that the local dimension is about 1).

The second example shows the potential value of ensembles in a new area of
research: targeted observations. In cases like this in which the ensemble indicates a
region of large uncertainty in the short-term forecasts, it should be possible to find
the area that originated this region of uncertainty in time to launch new observations
for the next analysis cycle, and thus decrease significantly the forecast error. Finding
the area where the observations should be launched can be done through several
approaches. They are the adjoint sensitivity approach, the use of singular vectors
(Rabier et al., 1996, Langland et al., 1999, Pu et al., 1998, and others), the use of
the quasiinverse of the tangent linear model (Pu et al., 1998), and ensemble-based
singular value decomposition (Bishop and Toth, 1999). These methods were tested
during FASTEX (Jan–Feb 1997 in the Atlantic) and NORPEX (winter of 1997–1998
in the North Atlantic (Langland et al., 1999, Pu and Kalnay, 1999)). The experience in
the North Pacific has been so successful that targeted observations are now performed
operationally over the Gulf of Alaska every winter (Szunyogh et al., 2000).

Plate 2 shows another example of how the massive amount of information con-
tained in the ensemble forecast can be conveyed to the forecasters. It shows a proba-
bilistic presentation of a 1-day and a 7-day forecast of precipitation above a threshold
of 5 mm in 24 h. The probabilities are simply computed as a percentage of the en-
semble members with accumulated precipitation at least as large as the indicated
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threshold. They both verify on 6 April 2001. Note that the short-range forecast has
many areas with probabilities equal to zero or above 95%, indicating that all the
ensemble members agree that there will be no precipitation or at least 5 mm accu-
mulated precipitation respectively. In the 7-day forecast, the areas with maximum
probability of precipitation are generally in agreement with the short-range forecast,
indicating the presence of skill. However, by this time there are few areas of consen-
sus on either rain or no rain among the forecasts, since their solutions have dispersed
significantly over a week.

6.5.2 Singular vectors

ECMWF developed and implemented operationally in December 1992 an ensemble
forecasting system based on initial perturbations that are linear combinations of the
singular vectors of the 36-h tangent linear model (Molteni et al., 1996, Molteni and
Palmer, 1993, Buizza, 1997, Buizza et al., 1997).

As discussed in Section 6.3, the singular vectors yi (t0) used to create the initial
perturbations at the time t0 are obtained as the leading eigenvectors ŷi (t0) of

(W−1)TLTPTPLW−1ŷ(t0) = σ 2ŷ(t0) (6.5.1)

subject to

ŷT (to)ŷ(to) = 1 and y(to) =W−1ŷ(to) (6.5.2)

ECMWF used as the projection operator P, a symmetric projector operator that
includes only forecast perturbations north of 30◦ N, and as the initial norm the total
energy normW−1. The linear tangent modelL and its adjointLT are computed for the
36-h forecasts (and more recently for the 48-h forecast), which determine the length
of the “optimization interval” (Section 6.3). Barkmeijer et al. (1998) tested the use of
the analysis error covariance as the initial norm instead of the energy norm with good
results. The singular vectors obtained with this norm were closer to bred vectors than
those obtained with the total energy norm. They also found that the use of evolved
vectors (also closer to Lyapunov or bred vectors) resulted in improved results. More
recent experiments with a simplified Kalman filter also resulted in promising results
(Fischer et al., 1998).

From (6.5.1) and (6.5.2), the initial singular vectors yi (t0) are the perturbations
with maximum energy growth north of 30◦ N, for the time interval 0–36 h (Buizza,
1994), or more recently, 0–48 h. The method used to obtain the singular vectors is the
Lanczos algorithm (Golub and Van Loan, 1996), which requires integrating forward
with L for a period t (36 or 48 h), and backward with LT . This forward–backward
integration has to be performed about three times the number of singular vectors
desired. Figure 6.5.7 shows an example of the horizontal structure corresponding to
the initial and final singular vectors #1, 3 and 6. Figure 6.5.8 shows the corresponding
initial and evolved vertical energy structure (Buizza, 1997). Singular vectors defined
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Figure 6.5.7: Singular vectors numbers 1 (top panels), 3 (middle panels), and 6
(bottom panels) at initial (left panels) and optimization time (right panels). Each panel
shows the singular vector streamfunction at model level 11 (approximately 500 hPa),
superimposed to the trajectory 500-hPa geopotential height field. Streamfunction
contour interval is 0.5× 10−8 m2 s−1 for left panels and 20 times larger for the right
panels; geopotential height contour interval is 80 m (from Buizza, 1997).
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Figure 6.5.8: Total energy
(m2 s−2) vertical profile of
the (a) first, (b) third, and
(c) sixth singular vector of
5 November 1995, at the
initial (dashed line, values
multiplied by 100) and
optimization (solid line)
times. Note that singular
vectors are normalized to
have unit initial total energy
norm. (From Buizza, 1997.)

with the total energy norm tend to have a maximum initial energy at low levels
(about 700 hPa), and their final (evolved) energy at the tropopause level. In 1996,
when they were using 36-h forecasts for the linear tangent model, ECMWF used
16 singular vectors selected from 38 leading singular vectors. This required a daily
integration equivalent to about 3× 36× 2× 38 hours of model integration with
either L or LT to create the perturbations. For this reason, the computation was done
with a lower resolution (T42/19 level) than the operational model. A second set
of perturbations was added for the Southern Hemisphere, which originally had no
perturbations, requiring additional computations.

The selection of 16 singular vectors is such that the first four are always selected,
and from the fifth on, each subsequent singular vector is selected if 50% of its
energy is located outside the regions where the singular vectors already selected are
localized. Once the 16 singular vectors are selected, an orthogonal rotation in phase
space and a final rescaling are performed to construct the ensemble perturbations.
The purpose of the phase-space rotation is to generate perturbations that have the
same globally averaged energy as the singular vectors but smaller local maxima and
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more uniform spatial distribution. The rotated singular vectors are characterized by
having similar growth rates (at least to the period of optimization). The rotation
is defined to minimize the local ratio between the perturbation amplitude and the
amplitude of the analysis error estimate of the ECMWF OI analysis. The rescaling
allows local amplitudes up to

√
1.5 larger than the OI error.

The 16 rotated perturbations are three-dimensional fields of temperature, vortic-
ity, divergence, and surface pressure (no moisture, since the propagator L is “dry”,
although there has been more recent work to include physical processes in the tan-
gent linear model and adjoint). They are added and subtracted to the control initial
conditions to create 33 initial conditions (32 + control), from which the ensemble
forecast is run with the nonlinear model at T63 resolution.

In 1997 ECMWF changed the system to an ensemble of 50 members (plus control)
run at a resolution of T156 (with a linear Gaussian grid, since their use of a semi-
Lagrangian scheme allows the use of a more efficient linear rather than quadratic
grid). This increase in resolution had a major positive effect on the quality of the
ECMWF ensemble forecasting system. In March 1998 ECMWF added to the initial
perturbations the evolved (or final) singular vectors from 48 h before the analysis
time, which also resulted in improved results. The 2-day evolved singular vectors are
much closer to the Lyapunov vectors (or bred vectors) (Barkmeijer et al., 1998).

Initially both NCEP and ECMWF considered in their ensembles only the errors
generated by uncertainties in the initial conditions, and neglected the additional errors
due to the models themselves. This is a reasonable (but not perfect) assumption only
for the extratropics (Reynolds et al., 1994). In 1998 ECMWF tested an innovative
way to account for the fact that the model has deficiencies (Buizza et al., 1999). The
time derivatives of the physical parameterizations are multiplied by Gaussian random
numbers with a mean of 1.0 and a standard deviation of 0.2, which have a time lag
correlation of several hours and horizontal correlation of a few hundred kilometers.
This introduction of randomness in the “physics” had a very good impact on the
ensemble. It increased the ensemble spread to levels similar to those of the control
forecast error, which is a necessary condition if “nature” (the verifying analysis) is
to be a plausible member of the ensemble (Toth and Kalnay, 1993).

6.5.3 Ensembles based on multiple data assimilation

Houtekamer et al. (1996) and Houtekamer and Mitchell (1998) have developed a
very promising ensemble forecasting system based on running an ensemble of data
assimilation systems to create the initial conditions. In their different data assimila-
tion systems they add random errors to the observations (in addition to the original
observational errors) and include different parameters in the physical parameteriza-
tions of the model in different ensembles. This is a promising approach, related to but
more general than breeding. One novel approach introduced by Houtekamer et al.
(1996) is the use of perturbations in the physical parameterizations in the models
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used in different analysis cycles. Through a careful combination of changes in major
parameterizations, it is possible to use the ensemble forecasts to isolate the impact
of particular parameterizations. As indicated by the results of Miller et al. (1994),
the introduction of uncertainty in the model should improve the efficiency of the
ensemble.

Hamill et al. (2000a) have shown in a quasi-geostrophic system that the multi-
ple data assimilation ensemble system performs better than the singular vector or
breeding approaches. The computational cost of creating the initial perturbations is
comparable to that of the singular vector approach, whereas in the breeding method
the perturbations are obtained as a by-product of the ensemble forecasts themselves
and are therefore cost-free.

6.5.4 Multisystem ensemble approach

The ensemble forecasting approach should replicate in the initial perturbations the
statistical uncertainty in the initial conditions: ideally, the initial perturbations should
be the leading eigenvectors of the analysis error covariance (Ehrendorfer and Tribbia,
1997). Moreover, it should also reflect model imperfections and our uncertainty about
model deficiencies. In the standard approaches discussed so far the uncertainty in the
initial conditions is introduced through perturbations added to the control analysis,
which is the best estimate of the initial conditions. As a result, the perturbed ensemble
forecasts are, on the average, somewhat less skillful than the control forecast (see,
e.g., Fig. 1.7.1). Similarly, when perturbations are introduced upon the control model
parameterizations (Buizza et al., 1999, Houtekamer et al., 1996), the model is made
slightly worse, since the control model has been tuned to best replicate the evolution
of the atmosphere.

A different approach that has become more popular recently is that of a multi-
system ensemble. It has long been known that an ensemble average of operational
global forecasts from different operational centers is far more skilful than the best
individual forecast (e.g., Kalnay and Ham, 1989, Fritsch et al., 2000, and references
therein). More recently, it has been shown that this is true also for shorter-range
ensembles of regional models (Hou et al., 2001), and that the use of multisystems can
therefore extend the utility of ensemble forecasting to the short-range. Krishnamurti
et al. (2000) have shown that if the multisystem ensemble includes correction of
the systematic errors by regression, the quality of the ensemble system is further
significantly improved. Krishnamurti et al. (2000) call this multiple system approach
a “superensemble”.

The advantages of a multisystem ensemble are not surprising. Instead of adding
perturbations to the initial analysis, and introducing perturbations into the control
model parameterizations, the multisystem approach takes the best (control) initial
conditions and the best (control) model estimated at different operational centers
that run competitive state-of-the-art operational analyses and model forecasts. Thus
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the multisystem probably samples the true uncertainty in both the initial conditions
and the models better than any perturbation introduced a posteriori into a single
operational system. The statistical correction of systematic errors introduced by Kr-
ishnamurti et al. (2000) is an added benefit of the method which can be considered an
ideal “poor person’s” approach to ensemble forecasting (Wobus and Kalnay, 1995).

6.6 Growth rate of errors and the limit of predictability
in mid-latitudes and in the tropics

Lorenz (1963a, 1982) suggested that the limit of deterministic predictability was
about 2 weeks. He obtained this empirical estimate from the doubling time of small
errors derived from identical-twin model experiments, and from the rate of separation
in time of atmospheric analogs (atmospheric states initially very similar to each other).
Two weeks continues to be a good estimate of the limit of predictability despite the
fact that different models provided different estimates (Charney et al., 1966). The
analog method cannot give a precise answer because it would take an exceedingly
long time to find atmospheric analogs close enough to estimate the growth of small
errors (Van den Dool, 1994).

As indicated in the introduction to this chapter, the doubling time for small errors
in the mid-latitude synoptic (weather) scales, for which the dominant instability is
baroclinic, was estimated in the 1960s to be 3 days or longer. Modern models have
much more resolution and are less sluggish than the early primitive equation models.
Identical-twin experiments with these models and measurements of actual numerical
forecast error growth have lowered the estimate of the doubling time of small errors
from 3 days to about 2 days (Lorenz, 1982, Dalcher and Kalnay, 1987, Simmons
et al., 1995, Toth and Kalnay, 1993).

Lorenz (1982) suggested a simple way to parameterize the evolution of small
errors in a perfect model, in which the only source of errors is the unstable growth
of small errors in the initial conditions, using the logistic equation:

dε

dt
= aε(1− ε) (6.6.1)

Here, ε represents the rms average forecast error scaled so that at long forecast leads
ε→ 1, i.e., it is the rms forecast error divided by the square root of twice the variance
of the atmosphere (cf. Section 6.4). Equation (6.6.1) indicates that very small errors
grow exponentially with a growth rate a. When they reach finite amplitude, the error
growth rate is lowered by the last factor on the right-hand side, which slows it down
until it saturates at ε ≈ 1. The solution of the logistic equation (6.6.1) is

ε(t) = ε0eat

1+ ε0(eat − 1)
(6.6.2)

where ε0 is the initial error.
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Exercise 6.6.1: Derive eq (6.6.2) using separation of variables.

Figure 6.6.1 shows the solution for two values of the initial error, 10% and
1%, and an error growth rate a = 0.35/day, corresponding to a doubling time of
about 2 days. The analysis error in the 500-hPa geopotential heights in current
operational systems is of the order of 5–15 m, and the natural variability about
100 m, so that the current level of error in the initial conditions is ∼10% or less.
The upper limit for the best initial error achievable from data assimilation can be
reasonably estimated to be no less than 1%. This is because, as pointed out by
Lorenz, even if the observing system was essentially perfect at synoptic scales,
errors in much smaller, unresolved scales would grow very fast and through non-
linear interactions quickly introduce finite errors in the initial synoptic scales of the
model. The solution of the logistic equation for initial errors of 10% and 1% (Fig.
6.6.1) suggests that 2 weeks is indeed a reasonable estimate of the time at which the
forecast errors become so large that the ability to predict weather in mid-latitudes is
lost. The range between the two curves can be taken as a simple upper estimate of
how much forecasts could be improved by improving the initial conditions.

However, this is only an estimate of the average predictability in a perfect model.
The actual predictability is quite variable and depends on the “atmospheric instabil-
ities of the day”. The 2-week “limit”, which seemed huge during the 1960s when
2-day forecasts had little skill, is no longer large compared with what can be occa-
sionally attained with current models. For example, during a very predictable period
in December 1995, several numerical weather forecasts remained skillful for 15 days,
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Figure 6.6.1: Time evolution of the rms forecast error divided by the square root of
twice the climatological variance. It assumes that the forecast error growth satisfies
the logistic equation (6.6.1), and that the growth rate of small errors is about
0.35/day, corresponding to a doubling of small errors in 2 days. Analysis errors in the
initial conditions are estimated to be about 10% or less, but not smaller than 1%.
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with a pattern correlation between the forecast and observed anomalies (known as
anomaly correlation) of more than 70% for the Northern Hemisphere extratropics
(Toth and Kalnay, 1996). There are also periods in which the atmospheric predictabil-
ity is much lower than average, as indicated by the fact that different operational
global forecasts tend to show large dips in the medium-range forecast skill on the
same days. Because of the day-to-day variability of atmospheric predictability, it is
important to use forecast ensembles. They provide a tool for estimating the day-to-
day variations in predictability and allow human forecasters to extend the range of
the forecasts provided to the public during periods of high predictability. Ensembles
based on multiple models have proven to be especially useful to the forecasters.

From (6.6.2) it is clear that the limit of predictability depends on the rate of error
growth, which is the inverse of the e-folding or exponential time scale. Generally
the time scales of instabilities are related to their spatial scales, so that small-scale
instabilities grow much faster than those with larger scales. For this reason short
synoptic waves are typically less predictable than longer waves (e.g., Dalcher and
Kalnay, 1987), and mesoscale phenomena, such as fronts, squall lines, mesoscale
convective systems and tornadoes, are intrinsically predictable for shorter time scales,
of the order of a day or less (e.g., Droegemeir, 1997). Convection is a typical example
of a short time scale phenomenon: cumulus clouds grow with an exponential time
scale of the order of 10 minutes or so. It is therefore impossible to predict the
precipitation associated with an individual thunderstorm for more than about an
hour. Nevertheless, if convective activity is organized or forced by the larger scales,
then convective precipitation can remain predictable much longer than individual
thunderstorms. For example, summer convective precipitation is notoriously difficult
to predict. However, when summer mesoscale convection is forced by a synoptic scale
system, convection can be predicted to occur when and where forced by the larger
scales, and therefore becomes predictable well beyond its own short predictability
time scale. Similarly, mesoscale phenomena forced by the interaction of synoptic
scales with surface topography have a much longer predictability than when they are
not subjected to this organizing influence from the larger scales.

Two types of surprisingly regular progression of smaller scale phenomena have
been discovered. As indicated above, mesoscale summer convection in the USA,
when “unforced” by upward motion associated with synoptic-scale waves, is ex-
tremely difficult to predict. However, an examination of the Doppler radar reflectiv-
ities has shown that the area of maximum convection has a tendency to propagate
eastward with considerable regularity, and with its intensity modulated by the diurnal
cycle. The individual maxima of this wave-like propagation can be traced on radar
reflectivities for 1–3 days (Carbone et al., 2000). This surprising discovery implies
that such unforced convective activity, in principle, should be predictable for a day
or two. Another example of regular propagation of convection is the Madden and
Julian (1971, 1972) oscillation (MJO). The MJO has a zonal wavenumber 1 with
maximum amplitude in the deep tropics, and it moves eastward around the Equator
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with a period of 30–60 days. The MJO is not always present, but there are periods of
several months in which it is very prominent (Weickman et al., 1985). Although cur-
rent models are not yet able to reproduce well the intensity and speed of propagation
of the MJO, its regularity indicates that, in principle, there should be predictability
in the convective precipitation associated with the MJO that could be exploited by
dynamical or statistical methods for time scales of a month or longer.

Both of these are examples of small-scale convection organized into a regular,
longer lasting propagation. It may take many years before dynamical models are able
to fully reproduce the observed quasi-regular motion. In the mean time, a combination
of statistical and dynamical methods may be the best way to exploit this latent longer
time scale predictability.

So far we have mostly discussed the predictability of weather in mid-latitudes.
The dynamics of mid-latitudes is dominated by synoptic-scale baroclinic instabilities
(Holton, 1992), and the limit of deterministic weather predictability is a reflection of
their baroclinic instability rates of growth.

In the tropics, the situation is quite different. Baroclinic instability is generally neg-
ligible in the tropics, and barotropic and convective instabilities, and their interactions,
are more dominant. Phenomena like easterly waves are a reflection of barotropic in-
stability, and are less intense than baroclinic instabilities. Easterly waves are strongly
modulated by convective precipitation, whereas in mid-latitudes, large-scale precip-
itation has a smaller effect on the evolution of the synoptic waves. Moreover, global
atmospheric models are less accurate in the tropics, because their ability to parameter-
ize realistically the subgrid scale processes such as convection, which are dominant
in the tropics, is not as good as the numerical representation of the resolved baroclinic
dynamics, which is dominant in the extratropics. In the tropics, the assumption of a
perfect model is therefore much less justified than in the extratropics.

Equation (6.6.1) describes reasonably well error growth in a perfect model (an
identical-twin experiment). The growth rates of random errors in an imperfect model
have been parameterized by Dalcher and Kalnay (1987) and Reynolds et al. (1994)
fitting operational forecast errors with an extension of the logistic equation (6.6.1)
which includes growth of errors due not only to the presence of errors in the initial
conditions but also to model deficiencies:

dv

dt
= (bv + s)(1− v) (6.6.3)

Here v is the variance of the random error (systematic or time averaged errors having
been separated beforehand), b is the growth rate for small error variances due to
instabilities (“internal” source) and s is an “external” source of random error variance
due to model deficiencies. The solution of (6.6.3) is given by

v(t) = 1− 1+ s

1+ µ
(6.6.4)
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Figure 6.6.2: Parameterization of scaled forecast error variance in the presence of
model deficiencies with values of the growth rate due to model deficiencies s and to
instabilities b appropriate for mid-latitudes ( (b = 0.4, s = 0.05) and the tropics
(b = 0.1, s = 0.1). (From Reynolds et al., 1994.)

where

µ = v(0)+ s/b

1− v(0)
e(b+s)t

Reynolds et al. (1994) found that (6.6.4) fits observed errors fairly well, and estimated
that the internal error growth rate is given by about 0.4/day in mid-latitudes and
0.1/day in the tropics. The external growth rate due to model deficiencies was found
to be small, about 0.05/day in mid-latitudes, and considerably larger, about 0.1–
0.2/day, in the tropics (Fig. 6.6.2). Although these estimates, which were obtained
from fitting observed error growth, are only valid to the extent that the error variance
growth for an imperfect model follows (6.6.3), they do reflect qualitatively the notion
that in the tropics the synoptic scales are less unstable than in the extratropics, because
of the absence of baroclinic instabilities. At the same time, the tropics are much harder
to model, because of the difficulties associated with parameterizations of cumulus
convection, which is much more influential in the tropics than in the extratropics.
These results suggest that if convection did not play such a dominant role in the
tropics, tropical weather forecasts would be skillful for longer periods than mid-
latitudes predictions. In reality, the dominant role of tropical convection and the
difficulties of its parameterization lead to the fact that currently tropical forecasts
maintain useful skill only for about 3–5 days, whereas in the extratropics forecasts
remain skillful on the average for 7 days or so.
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6.7 The role of the oceans and land in monthly, seasonal,
and interannual predictability

It is well known that there is considerable atmospheric variability not only in the
day-to-day weather but also in longer time scales, such as weekly, monthly, seasonal,
interannual, and even decadal averages. For example, the atmospheric circulation
averaged for January 1987 (an El Niño year) was substantially different than that
of January 1989 (a La Niña year). Similarly, July 1987, during El Niño, was quite
different from July 1988, during La Niña. In this case, it is clear that the differences
were strongly influenced by the ENSO, a much longer lasting phenomenon than
individual weather events. However, seasonal and interannual atmospheric variability
can also take place due to unpredictable weather “noise”, not just to longer-lasting
surface forcings such as ocean SST anomalies, soil moisture or snow cover anomalies.
The monthly or seasonally averaged atmospheric anomalies due to weather noise
(e.g., a monthly averaged cold and wet January in the eastern USA because of the
passage of two or three very strong cyclones) are unpredictable beyond the first two
weeks because weather itself is not predictable. On the other hand, the variability due
to long-lasting surface anomalies, of which SST anomalies are the most important,
is predictable, if we can predict the SST anomaly. Potential predictability beyond the
limit of deterministic weather predictability can be defined as the difference between
the total variance of the anomalies averaged over a month or a season, minus the
variance that can be attributed to weather noise (Madden, 1989). The predictability
associated with information within the initial conditions is sometimes referred to as
“predictability of the first kind”, whereas that associated with information contained
in the slowly evolving boundary conditions is referred to as “predictability of the
second kind”.

In a paper based on global model simulations of the growth of perturbations in
the presence of SST anomalies, Charney and Shukla (1981) pointed out that the
tropics have a shorter limit of weather predictability than the extratropics due to the
factors discussed in the previous section. At the same time they found that the tropics
are much more responsive to the long-lasting ocean SST anomalies than the mid-
latitudes. As a result, the potential predictability for the tropics at long time scales
due to long-lasting ocean anomalies is much larger than that of the extratropics.
The conclusions of this fundamental paper have been confirmed by many simulation
experiments and actual dynamical and statistical forecasts.

This led to the search for methods to exploit the potential predictability associated
with longer lasting lower boundary conditions, especially those associated with El
Niño events. A major breakthrough occurred with the first successful prediction of
El Niño by Cane et al. (1986), with a simplified coupled ocean–atmosphere model
(Zebiak and Cane, 1987). ENSO is a complex interannual tropical oscillation due to
the unstable coupling of the ocean and the atmosphere that has a profound effect in
the global circulation even away from the tropics. As reviewed by Philander (1990),
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there are several unstable coupled modes in the tropical Pacific, which can explain
the different ways El Niño (warm central and eastern Pacific events) and La Niña
(cold central and eastern Pacific events) occur.

Fig. 6.7.1(a) shows a schematic of the interaction of the tropical Pacific ocean and
atmosphere during “normal” years. On the average, the trade winds (easterlies) in
the tropics produce westward advection of warm temperatures, so that the SSTs are
much warmer in the tropical western Pacific than in the eastern Pacific. For the same
reason, the thermocline (an ocean layer of strong vertical gradients of temperature
that separates the warm upper ocean from the colder lower layers) is also much
deeper in the western Pacific. In the eastern Pacific the colder deeper layer below the
thermocline may even surface close to the American continent. The surface easterlies
also produce a cold equatorial tongue due to “Ekman pumping” at the Equator, where
the Coriolis force acting on westward currents creates a poleward acceleration in both
hemispheres, producing horizontal divergence and strong upwelling of cold water.
The strongest atmospheric convection takes place in the “warm pool” of water close to
the Indonesian region. This convection drives the east–west atmospheric circulation
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known as the Walker circulation, after Sir Gilbert Walker, who discovered a strong
negative correlation between the sea level pressure in Darwin, Australia, and in Tahiti,
in the mid-Pacific. He named this relationship the “Southern Oscillation” (Walker,
1928). Bjerknes (1969) discovered that El Niño and the Southern Oscillation were
part of a single, coupled ocean–atmosphere phenomenon.

During an El Niño (or warm event, Fig. 6.7.1(b)), a weakening of the easter-
lies (westerly anomaly) will result in an eastward advection of warm SST by the
eastward oceanic currents driven by the westerly atmospheric anomalies. The warm
waters propagate eastward and in turn produce atmospheric low-level convergence,
strengthening the warm anomaly depth and its eastward propagation. On other occa-
sions the opposite effect occurs: La Niña (or cold event) takes place when the surface
easterlies are stronger than normal, and because of this the central equatorial Pacific
is colder than normal (not shown). The equatorial region’s SST and surface winds, as
measured with TOGA (Tropical Ocean, Global Atmosphere) buoys deployed in the
equatorial Pacific are shown in Plate 3 for normal, El Niño and La Niña conditions.
Both the actual fields and their anomalies are shown for each case, demonstrating
the complexity of the coupling.

An explanation of why the ENSO episodes alternate between warm and cold events
was offered by Schopf and Suarez (1988), Suarez and Schopf (1988), and by Battisti
and Hirst (1989), who independently suggested the “delayed oscillator” mechanism
for simple coupled models. In this mechanism, a westerly/warm anomaly in the
equatorial central Pacific deepens because of the unstable coupling, and in the process
of adjustment the anomaly generates Rossby waves moving westward (Gill, 1980).
The Rossby waves elevate the thermocline in the western region. When they reach the
western boundary of the equatorial Pacific, the Rossby waves are reflected as eastward
moving Kelvin waves, which also elevate the thermocline. When the Kelvin waves
reach the central Pacific, they counteract the effect of the thermocline deepening by
the unstable coupling. When this delayed negative feedback becomes sufficiently
strong, it reverses the sign of the anomaly, and a cold (La Niña) episode starts. The
process then starts again with the opposite sign.6

However, the observed ENSO episodes are much more complex, and are not well
represented by a simple model. There are different “flavors” of El Niño, with some

6 The delayed oscillator mechanism has been illustrated with the simple equation Ṫ = T − T 3

−rT (t − d). Here T (t) would represent the SST anomaly in the central equatorial Pacific, and
the left-hand side is its rate of change. The first term on the right-hand side represents the
unstable coupling with the atmosphere. The second term represents damping effects due to
dissipation. The last term on the right-hand side represents the negative feedback of the
thermocline elevation, delayed by the time it takes the Rossby waves generated by the anomaly
T to reach the western boundary and return as Kelvin waves. This mechanism clearly dominates
the Zebiak and Cane (1987) model used for the first successful ENSO forecasts (Cane et al.,
1986). Cai et al. (2002) performed breeding experiments and showed that the perturbations of
the forecasts grow fastest during the transitions between cold and warm episodes, and grow
slowly or decay during the maxima of the warm and cold episodes, as would be expected from
the linearized version of the delayed oscillator equation δṪ = (1− 3T 2)δT − rδT (t − d). This
suggests that the transitions between the ENSO episodes are the least predictable, at least for
the Zebiak–Cane model.
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propagating the SST warm anomaly eastward, and others propagating it westward
(Philander, 1990). Much research is taking place to understand and model these
differences in the evolution of the coupled system better. Despite these difficulties, the
fact that there are coupled oscillations that have time scales of 3–7 years provides us
with the hope that the interannual variability of the tropical climate, dominated by the
interactions of the tropical ocean with the tropical atmosphere, could be predictable
for seasons through years. Moreover, numerical experiments and analysis of past
observations have indicated that the tropical anomalies, especially the anomalous
location of major centers of precipitation, have a profound influence on the extra-
tropical circulation (e.g., Horel and Wallace, 1981). A scientific program, TOGA
was created to study this problem. Wallace et al. (1998) reviewed the results of the
first decade of the TOGA research.

The hope that long-time scale coupling could form the basis for seasonal to inter-
annual prediction has begun to become a reality. A number of “hindcast” experiments
using observed (not predicted) SST forcing of the global atmosphere have been made.
They are usually known as AMIP experiments, since this was the setup used in the
Atmospheric Models Intercomparison Project (Gates et al., 1999). In principle, they
should give an upper limit to the predictability associated with SST anomalies, since
the latter are “perfect”. However, it is possible that the fact that uncoupled atmo-
spheric runs using perfect SST do not include feedbacks from the atmosphere to the
ocean may actually reduce the optimality of such an approach, since the atmosphere
clearly has a profound effect on the oceans, especially in mid-latitudes (Peña et al.,
2002).

The AMIP experiments show that, indeed, in most models the tropical SST anoma-
lies produce a reasonably realistic atmospheric response, especially during El Niño
or La Niña years. In the extratropics, the situation is more complicated. There are
regions, such as Europe, where there is generally little predictability due to ENSO,
and others, like the winter northern extratropical Pacific and North America, where
the response is stronger, indicating significant potential predictability (Shukla et al.,
2000). It should be noted that tropical ocean models, driven with observed surface
wind stress, also give fairly realistic oceanic El Niño responses. The fact that both
the tropical atmosphere and the tropical ocean respond realistically to one-way ob-
served forcings (SST and wind stress, respectively), further corroborates that ENSO
oscillations are the result of coupled ocean–atmosphere modes, either unstable, or
marginally stable, forced by atmospheric stochastic noise due to the atmospheric
weather or perhaps the MJO.

Two coordinated experiments with ensembles of global general circulation mod-
els were carried out in the late 1990s: PROVOST in Europe and Dynamical Sea-
sonal Prediction (DSP) in the USA, both using “perfect” SSTs. Their results have
been presented in a number of papers (Shukla et al., 2000, Fischer and Navarra-
Giotto, 2000, Brankovic and Palmer, 2000). Kobayashi et al. (2000) present the
results obtained with similar experiments in Japan. Volume 126, No 567 of The



258 6 Atmospheric predictability and ensemble forecasting

Quarterly Journal of the Royal Meteorological Society was dedicated to this topic
and also contains papers on statistical predictions. These papers, and the special
issue of the Journal of Geophysical Research (Volume 107, Issue C7, 1998) ded-
icated to the TOGA program contain a wealth of descriptions of the (late 1990s)
state-of-the-art understanding and ability to predict atmospheric anomalies beyond
2 weeks.

Several operational and research centers have started issuing seasonal to interan-
nual forecasts based on these ideas (Barnston et al., 1994, Ji et al., 1996, Latif et al.,
1994, 1998). At NCEP operational seasonal to interannual forecasts are based on
coupled model integrations to predict SST anomalies, followed by ensembles of at-
mospheric forecasts forced with the predicted SST anomalies in the tropical Pacific,
and with statistical predictions of SST in other oceans. NCEP also uses statistical
prediction schemes (e.g., Van Den Dool, 1994). The final “official forecast’ is sub-
jectively determined from both the dynamical and the statistical predictions. The
ECMWF predictions are computed with coupled global ocean–atmosphere models,
and run every week for 6 months. Several of these forecasts are available on the web
(http://www.cpc.ncep.noaa.gov/, http://www.ecmwf.int/services/seasonal/, http://
iri.ldeo.columbia.edu/climate/forecasts/, http://grads.iges.org/nino/, and others).

In addition to the coupling of the atmosphere with the ocean, it is possible to have
extended regional predictability from the coupling of the land and the atmosphere.
The positive feedback within this coupling can be quite large (e.g., low precipita-
tion results in low soil moisture, and this anomaly, in turn, reduces evaporation and
precipitation during the spring and summer months). In subtropical regions associ-
ated with strong gradients in precipitation this mechanism can lead to long-lasting
anomalies as large or larger than those due to SST anomalies (Koster et al., 2000).
Because of this, it should be in principle possible to predict the long-lasting nature
of these anomalies for several months (e.g., Atlas et al., 1993, Hong and Kalnay,
2000).

6.8 Decadal variability and climate change

We conclude this chapter by pointing out that in addition to interannual variability,
there is also considerable climate variability in the decadal and longer time scales.
Climate variability may be due to either natural causes or to long-term changes that
can be attributed to anthropogenic sources of pollution or changes in the land surface.
The impact of mankind on our environment (usually referred to as “global warming”)
is quite complex. Among the clearest examples of human impacts are the observed
decreases of total ozone in Antarctic regions, and more recently in the Arctic regions,
and the increase of CO2 and other greenhouse gases to levels much higher than those
reached in the past. The changes and expected impacts on climate change in the next
decades have been reviewed by the International Panel on Climate Change (IPCC), a
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body of experts from many countries, which has in 2001 issued its Third Assessment
Report (Intergovernmental Panel on Climate Change, 2001).

Plate 4 shows the variations of the earth’s surface temperature over the last
140 years and over the last millennium. It is clear that there is climate variability
at many time scales, and that the variability observed before the Industrial Revolu-
tion that took place last century is of natural and not of anthropogenic origin. Among
the natural oscillations that would take place even in the absence of human forc-
ings on long time scales are the North Atlantic Oscillation (NAO), associated with
the Arctic Oscillation (AO), the Pacific Decadal Oscillation (PDO), the Antarctic
Oscillation, and the Atlantic Subtropical Dipole.

We have seen that the variability associated with El Niño (ENSO) has a limit of
predictability of the order of a few years, because the oscillations are the result of the
chaotic dynamics of the coupled ocean–atmosphere with time scales of several years.
Because of the long oceanic time scales associated with slow transports, it is possible
that long-term coupling with the oceans may dominate decadal variability in, for
example, the NAO. If this is true, then the NAO may be somewhat predictable, and
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Figure 6.8.1: Simulation of the evolution of the annual global mean surface
temperature and comparison with observations for different external forcings.
The gray represents the range of four different runs with the same model. (a) Only
natural forcings (solar variations and volcanic activity), (b) only anthropogenic
forcings (greenhouse gases and an estimate of sulfate aerosols), (c) both.
(From Intergovernmental Panel on Climate Change, 2001.)
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its prediction will depend on the specification of the initial conditions of the ocean, and
the ability of the models to reproduce the relevant physical mechanisms that dominate
its coupled evolution. Rapid climate changes associated with transitions into ice ages
may be completely unpredictable since they may be the result of unpredictable small
changes, such as volcanic activity, resulting in major climate shifts.

Climate change of human origin is also predictable, but in a different sense than
ENSO variability, which depends on the initial conditions of the coupled ocean–
atmosphere. Anthropogenic climate change depends on an “external” forcing, such
as the increase in greenhouse gases, rather than on the internal chaotic dynamics and
the initial conditions. When the external forcing is known, the forced response of the
climate change can be “predicted” fairly well with present-day models. Figure 6.8.1
shows the response of the global surface temperature to natural forcings (solar vari-
ations and volcanic activity), anthropogenic forcings (greenhouse gases and sulfate
aerosols) and to both natural and anthropogenic forcings. It shows that some climate
models are able to reproduce quite well the large-scale response to volcanic eruptions,
and that the addition of greenhouse gas forcings results in fairly good agreement with
observations. The fact that different climate models reproduce the global scale of the
impact of increased greenhouse gases in a similar way suggests that their effects are
to some extent predictable if we can predict the human forcing and its feedbacks on
the environmental system. The impacts of climate change on regional scales are much
harder to reproduce, because of the local influence of chaotic weather and climate
dynamics. This is an area of research beyond the range of the subjects covered by
this chapter.
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The early history of NWP

Notes written from memory by Anders Persson (ECMWF) on 16 September 1999.
The reader is encouraged to read P. D. Thompson’s paper “Charney and the Revival
of Numerical Weather Prediction”, reproduced, together with Charney’s letters to
Thompson in Lindzen et al., (1990).

History of NWP

In late 1945 Vladimir Zworykin, the “Father of Television”, who worked at RCA,
joined with John von Neumann, the “Father of the Computer”, to suggest the use
of the computer in meteorology. Zworykin’s interest was in weather modification,
and von Neumann’s was in fluid dynamics. They also had the dream of connecting
the TV and the computer into something we today know as a PC or Workstation.
Their dream came partially true in Sweden in around 1955 when for the first time a
forecast map that was made directly and automatically without any human interven-
tion was produced on a screen (oscilloscope) (see Bergthorsson and Döös, (1955),
Bergthorsson et al., (1955), also the Rossby Memorial Volume).

In early 1946 von Neumann contacted Rossby’s group. They told von Neumann
why a zonally averaged dynamical model would not work, and instead suggested
a barotropic model which had been manually tested by Victor Starr in his 1941
book on weather forecasting for a 72-h forecast at 700 hPa. Von Neumann was not
satisfied with the simple barotropic approach and in speeches in the spring of 1946
presented more ambitious plans. Von Neumann and Zworykin also appeared at the
annual meeting of the AMS (see Bulletin of AMS (1946)).
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In the summer of 1946 the Princeton meeting took place. Few if any had any idea
of what should be done. Not even the normally optimistic Rossby could see a solution
to the problem. A working group was set up with Albert Cahn and Phil Thompson,
with Hans Panofsky and Bernhard Haurwitz acting as advisors. By the autumn of
1946, there was still no clear idea of what to do. Cahn left meteorology to become a
successful real estate agent in California, leaving Phil Thompson in despair. It was
at this crucial state that Jule Charney moved to Chicago (on his way to Norway).
Charney had attended the Princeton meeting, where he had offered some obscure
ideas about having the whole atmosphere represented by a few singular levels.

In early 1947, Charney, now in Oslo, wrote to Phil Thompson that he indeed
saw light at the end of the tunnel taking a completely new approach. It is important
to realize that the practical (political/psychological) impact of L. F. Richardson’s
1922 book was essentially to convince the meteorological community that NWP
was impossible. This was further supported by the experience Phil Thompson and
others had while trying to make use of Jack Bjerknes “tendency equation” (which
was as much in vogue then as potential vorticity is today!).

For the 1948–50 events, I refer to the well-known literature.

Why Sweden?

The first real-time, operational NWP was run in Sweden in September 1954 (to 72 h
at 500 hPa), half a year before the USA.

Two reasons:

(1) For a short period in 1954 the Swedes were in possession of the world’s most
powerful computer, BESK. In 1950 they had already constructed a more basic
one, BARK. One must again realize the thinking at that time: even among the
most radical, it was felt that having just one computer in Sweden for the
coming 20–30 years was sufficient. Even in the USA they thought that four or
five computers would be more than enough for the foreseeable future. The
“explosion” only came in 1955 when IBM launched their first machine.

(2) Rossby moved to Sweden and wanted to repeat the ENIAC success of 1950
in his homeland. In this endeavor he was supported by: (a) the Swedish
Airforce and other national institutions (but not the Meteorological Service!);
(b) young enthusiastic scientists who worked at or visited his institutions,
both Swedish and foreign; (c) the US Air Force and Woods Hole.

(See articles by Wiin-Nielsen in Tellus, 1991, and Bolin in Tellus, 1999).
The Swedish project was hampered or complicated by an internal political conflict.

In 1954 a new Director of SMHI (the Swedish Meteorological Office) was to be
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elected by the government. Rossby would have been the obvious choice, but he was
seen as a troublemaker. The “official” candidate was Alf Nyberg, who had taken
a very skeptical attitude towards Rossby’s project. Against him, Rossby lobbied
Herrlin, head of the Military Meteorological Service. Unfortunately the run-up to the
selection of new Director coincided with the launch of the first real-time operational
NWP, 29 Sep–2 Oct 1954. Those who supported Nyberg took a negative attitude;
those who supported Rossby took a positive one. In the end, the government chose
Nyberg. SMHI began slowly to support NWP 5 day/week barotropic forecasts to
72 h at 500 hPa started in early December 1954. The US operational NWP started in
May 1955, but it was not until 1958 that they reached the same quality standard as
the Swedish. Japan started in 1959 along the same lines as Sweden.

More provocative ideas

Between 1950 (the first ENIAC run) and 1955 (the start of operational NWP) there
was a long lapse of 5 years. Why? To what extent was the delay due to computer
resources? To what degree to skepticism about NWP? Charney’s presentation in his
1954 National Academy of Sciences paper is very political. My feeling from this
paper and other sources is that he and the meteorological community were under
strong pressure to present results, in particular with respect to the Thanksgiving
Storm of 1950. The set up of the committee for NWP with George Cressman as Head
seems to have been done in great haste. The Swedes were known to be progressing
towards operational NWP.

During the “Dark Years” 1956–57 some influential persons relying on Norbert
Wiener suggested that computers should be used for statistical forecasting of weather
patterns. Ed Lorenz at MIT was given the task of finding out if nonlinear dynamic
evolutions could be reproduced or simulated by statistical means. His report, of which
I have a copy, was guardedly optimistic! If Phillips and Cressman in 1957–58 had not
managed to develop a functioning NWP system, things might really have developed
along other lines. . . . It was during this or related work that Lorenz discovered the
Butterfly Effect.

As mentioned by Phillips in his 1990 monograph about energy dispersion (Phillips
1990a), if Charney et al. had run the ENIAC forecasts on a small area, the whole
experiment would have had a severe setback, similar to Richardson’s 1922 work. It
is not commonly known that the UKMO lost 15 years (1950–65) by trying to run a
(good) baroclinic model on an area that was too small.
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Coding and checking the tangent linear
and the adjoint models

We have seen in Chapters 5 and 6 that given a nonlinear model x(t) = M[x(t0)]
integrated between t0 and t , if we introduce a perturbation in the initial conditions
δx(t0), neglecting terms of order O[δx(t0)]2, then

x(t)+ δx(t) = M[x(t0)+ δx(t0)] ≈ M(x(t0))+ ∂M

∂x
δx(t0) (B.1.1)

so that the initial perturbation evolves like

δx(t) ≈ Lδx(t0) (B.1.2)

The JacobianL = ∂M/∂x is the tangent linear model that propagates the perturbation
from t0 to t . It is a matrix that for nonlinear models depends on the basic solution
x(t). If there are n time steps between t0 and tn = t , this matrix is equal to the product
of matrices corresponding to each time step:

L(t0, tn) = L(tn−1, tn) · · ·L(t1, t2)L(t0, t1) (B.1.3)

The adjoint model LT is frequently introduced in the context of 4D-Var (Chapter 5),
with a cost function measuring the misfit of the model solution to observations:

J (x(t0)) = 1
2

N∑
i=0

{
H [x(ti )]− yo

i

}T
R−1

i

{
H [x(ti )]− yo

i

}
(B.1.4)

Here the observation error covarianceRi at a given time ti is assumed to be symmetric.
The control variables (which we vary in order to find the minimum of the cost
function) are the initial conditions x(t0) = x0. If we take an increment in the initial
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conditions δx(t0), then (cf. Remark 5.4.1(d))

δ J = (∇x J (x0), δx(t0)) =
N∑

i=0

(
R−1

i

{
H [x(ti )]− yo

i

})T
H[δx(ti )] (B.1.5)

Now, at a time ti

δxi = L(t0, ti )δx(t0) (B.1.6)

Therefore

δ J = [∇x J (x0)]T δx(t0) =
N∑

i=0

(
LTHTR−1

i

{
H [x(ti )]− yo

i

})T
δx(t0) (B.1.7)

and the gradient of the cost function with respect to the initial conditions is

∇x J (x0) =
N∑

i=0

LT (ti , t0)
(
HTR−1

i

{
H [x(ti )]− yo

i

})
(B.1.8)

As we saw in Chapters 5 and 6, the transpose LT (ti , t0) of the matrix of the tangent
linear model is the adjoint model. If the tangent linear model matrix is complex, then
the adjoint is the complex conjugate of the transpose of the tangent linear model.
The observational increments are “forcings” of the adjoint model in computing the
gradient of the cost function for 4D-Var.

In addition to 4D-Var (Chapter 5), the adjoint model has several other important
applications such as computing the vectors that grow fastest in a period of optimiza-
tion. These are the leading singular vectors, i.e., the leading eigenvectors of LTL
(Chapter 6). The adjoint of a model can also be used to find optimal parameters in a
model, e.g., the diffusion coefficient that produces forecasts closest to a verification
field (e.g., Caccuci, 1981, Zou et al., 1992). All these applications require the defini-
tion of a norm, with respect to which the gradient is computed, and the choice of the
appropriate control variables. In the case of singular vectors and 4D-Var, the control
variables are the vectors of initial conditions; in the problem of finding an optimal
parameter, the control variable is the parameter itself.

We now discuss briefly the rules for generating adjoint codes. More detailed
discussions are available in Talagrand (1991), Talagrand and Courtier (1987), Navon
et al. (1992), Yang and Navon (1995), and Giering and Kaminski (1998). There
are presently two compilers available for the automatic generation of tangent linear
and adjoint codes, given the FORTRAN code of the forward nonlinear model.
(Odyssee, Rostaing et al., 1996, and the Tangent and Adjoint Model Compiler
(TAMC), Giering, 1994, Giering and Kaminski, 1998). TAMC is available on the
web (http://puddle.mit.edu/∼ralf/tamc/tamc.html) and has been widely used in
recent years.

Taking the transpose of (B.1.3), we obtain that the adjoint model is

LT (tn, t0) = LT (t1, t0) · · ·LT (tn−1, tn−2)LT (tn, tn−1) (B.1.9)
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Within a time step, the TLM code is also composed by a number of subcodes or steps
applied in succession:

L(ti−1, ti ) = S1 · · ·Sm−1Sm (B.1.10)

For example S1 could be initialization of the new time step, S2–S7 could be the
computation of the time tendencies coming from horizontal advection, vertical ad-
vection, convection, large-scale precipitation, S8 radiation, etc., and S9 the update of
the model variables for the next time step. Each of these steps may contain several
DO loops.

In constructing the adjoint, because of the transposition, these steps (and the DO
loops within the step) are also reversed:

LT (ti , ti−1) = Sm · · ·S2S1 (B.1.11)

We give now a simple example to illustrate the rules for constructing the adjoint
from a nonlinear forward model. In the construction of the adjoint it is important to
determine which are the “active” variables updated in the model.

Consider the simple forward model of the diffusion equation (in this case a linear
model):

∂u

∂t
= σ

∂2u

∂x2
(B.1.12)

It would be possible to derive first the analytic adjoint of this equation and then
discretize it, but it is preferable to first discretize the original equation, code it, and
then create the tangent linear model and adjoint of the code directly. This is because
the adjoint of a discretized code is not necessarily identical to the discretization of
the adjoint operator. We discretize (B.1.12) using finite differences and a scheme
forward in time, centered in space, as discussed in Chapter 3:

u j+1
i = u j

i + α
(
u j

i+1 − 2u j
i + u j

i−1

)
(B.1.13)

where α = σ�t/(�x)2, xi = i�x, i = 1, . . . , I , and t j = j�t . If we assume u =
ub + δu, where ub(t) is the basic solution, then the tangent linear model is

δu j+1
i = δu j

i + α
(
δu j

i+1 − 2δu j
i + δu j

i−1

)
= (1− 2α)δu j

i + αδu j
i+1 + αδu j

i−1 (B.1.14)

or in matrix form

δu j+1
i =

(
1− 2α α α

) δu j
i

δu j
i−1

δu j
i+1


 i = 1, . . . , I (B.1.15)

In this computation, there are four “active” variables δu j+1
i , δu j

i , δu j
i+1, δu j

i−1 but
only one of them has been modified. In preparation for the computation of the adjoint it
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is necessary to indicate explicitly that the other three active variables are not modified.
The tangent linear model step is then


δu j

i−1

δu j
i

δu j
i+1

δu j+1
i


 =




1 0 0 0
0 1 0 0
0 0 1 0
α 1− 2α α 0






δu j
i−1

δu j
i

δu j
i+1

δu j+1
i


 i = 1, . . . , I (B.1.16)

Equation (B.1.16) is the same as (B.1.15) but includes the additional identities (no
modification) needed for the adjoint model. The adjoint model is the transpose of the
tangent linear model matrix acting on the adjoint variables, so that this step becomes


δ∗u j

i−1

δ∗u j
i

δ∗u j
i+1

δ∗u j+1
i


=




1 0 0 α

0 1 0 1− 2α
0 0 1 α

0 0 0 0






δ∗u j
i−1

δ∗u j
i

δ∗u j
i+1

δ∗u j+1
i


 i = I, . . . , 1 (B.1.17)

where the stars represent adjoint variables.
This can be written line by line as

δ∗u j
i−1 = δ∗u j

i−1 + αδ∗u j+1
i

δ∗u j
i = δ∗u j

i + (1− 2α)δ∗u j+1
i

δ∗u j
i+1 = δ∗u j

i+1 + αδ∗u j+1
i

δ∗u j+1
i = 0

i = I, . . . , 1




(B.1.18)

Note that the equation for the adjoint variable on the left-hand side of (B.1.15) is
executed last.

A second example is adapted form Giering and Kaminski (1998). Consider the
nonlinear nth step of the following algorithm:

zn = xn−1 sin[(yn−1)2] (B.1.19)

where x, y, z are active variables. Using the chain rule, the tangent linear algorithm
for this step is

δzn = sin[(yn−1)2]δxn−1 + xn−1 cos[(yn−1)2]2yn−1δyn−1 (B.1.20)

or in matrix form
 δx

δy
δz




n

=


 1 0 0

0 1 0
sin[(yn−1)2] xn−1 cos[(yn−1)2]2yn−1 0




 δx

δy
δz




n−1

(B.1.21)

The adjoint operator is the transposed matrix of (B.1.21) acting on the adjoint vari-
ables: 

 δ∗x
δ∗y
δ∗z




n−1

=


1 0 sin[(yn−1)2]

0 1 xn−1 cos[(yn−1)2]2yn−1

0 0 0




 δ∗x

δ∗y
δ∗z




n

(B.1.22)
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The FORTRAN statement for the nonlinear forward step is:
Z=X" SIN(Y""2)
The TLM FORTRAN statement is
DZ=(SIN(Y""2))"DX+(X"COS(Y""2)"2"Y)"DY,
and the adjoint FORTRAN statements for this step are
ADX=ADX+ (SIN(Y""2))"ADZ
ADY=ADY+ (X"COS(Y""2)"2"Y)"ADZ
ADZ=0.0

B.1 Verification

Finally, we discuss how to verify the correctness of the tangent linear and adjoint
codes (Navon et al., 1992). The verification of the tangent linear model is straightfor-
ward: for small increments in the initial conditions, the tangent linear model should
reproduce the difference between two nonlinear integrations with quadratic errors:

δx(t) = Lδx(0) = M[x0 + δx(0)]− M(x0)+ O(|| δx ||2) (B.1.23)

Therefore, Navon et al. (1992) suggested computing the pattern correlation of the left-
and right-hand sides of (B.1.23), as well as the relative error, using an appropriate
norm. For sufficiently small perturbation amplitudes, the relative error should be
proportional to the amplitude of the initial perturbation.

To verify the correctness of the adjoint code, Navon et al. used the identity

(Lδx0)T (Lδx0) = (δx0)TLT (Lδx0) (B.1.24)

This check can be applied to every single subroutine or DO loop:

(AQ)T (AQ) = Q∗T [AT (AQ)] (B.1.25)

Here Q represents the input of the original code, A represents either a single DO loop
or a subroutine. The left-hand side involves only the TLM, whereas the right-hand side
also involves the adjoint code. In practice, if the adjoint code is correct with respect
to the tangent linear model, the identity (B.1.25) holds true up to machine accuracy.

B.2 Example of FORTRAN code

The codes for a complete model for the nonlinear Burgers equation, its tangent linear
model and adjoint model, kindly provided by Seon Ki Park, are presented at the end
of the appendix. The forward model uses the leapfrog scheme for the advection term
and the DuFort–Frankel scheme for the diffusion. The continuous Burgers equation is

∂u

∂t
= −u

∂u

∂x
+ 1

R

∂2u

∂x2
(B.2.26)
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and the finite differences used in the code start with a single forward step followed
by the leapfrog/DuFort–Frankel scheme:

u j+1
i = u j−1

i − �t

�x

[
u j

i

(
u j

i+1 − u j
i−1

)]
+ 2�t

�x2

[
u j

i+1 −
(
u j+1

i + u j−1
i

)+ u j
i

]
(B.2.27)

Here the index j represents the time step and i represents space (x). Note that in the
adjoint code, the order of the substeps and all the DO loops is reversed.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c c
c Viscous BURGERS' Equation solved with Leap c
c Frog/DuFort−Frankel scheme (see Anderson c
c et. al. 1984). c
c c
c Leap Frog scheme has truncation erorr of c
c O[(dt)**2, (dx)**2]. Since the truncation error c
c contains only odd derivative terms (lead by third c
c order derivative term), the solution will exhibit c
c dispersion errors but no dissipation errors. The c
c stability condition is that the Courant number c
c (nu = c*dt/dx) be less than or equal to 1. c
c When nu = 1, there is no dispersion error. c
c c
c DuFort−Frankel scheme for diffusion process has c
c truncation erorr of O[(dt)**2, (dx)**2, c
c (dt/dx)**2]. The truncation error has even terms c
c and thus the solution will have dissipation c
c errors. But this error depends on r= c
c (1/R)*(dt/dx**2) and beta=k*dx. When we set r c
c and beta small, the dissipation error is not c
c significant. c
c c
c Author: Seon Ki Park (03/24/98) c
c c
c Reference: c
c c
c Anderson, D.A., J.C., Tannehill, R.H. Pletcher, c
c 1984: Computational Fluid Mechanics and Heat c
c Transfer. McGraw-Hill Book Company, 599 pp. c
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c c
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c

SUBROUTINE BURGER(nx,n,ui,ub,uob,u,cost)
c
c This subroutine integrates the model from a given
c initial condition xinit.
c

integer nx ! Number of grid points
integer n ! Number of time steps
real cost ! Cost function
real uob(nx,n) ! Observations
real ub(nx,n) ! Basic states (u)
real u(nx,n) ! Model solutions (u)
real ui(nx) ! Initial conditions

real dx ! Space increment
real dt ! Time increment
real R ! Reynolds number (reciprocal of

diffusion coefficient)
c

common /com-param/ dtdx, c1, c0
real dtdx, c0, c1

c
R = 1000.

c
dx = 1.0
dt = 0.1
dtdx = dt/dx
dtdxsq = dt/(dx""2)

c
c1 = (2./R)"dtdxsq
c0 = 1./(1.+c1)

c
c Initialize the cost function:
c

cost=0.
c
c Set the initial conditions:
c

do i=1, nx
u(i,1)=ui(i)

enddo
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c
c Set the boundary conditions:
c

do j=1, n
u(1,j) = 0.
u(nx,j)= 0.

enddo
c
c Integrate the model numerically:
c
c.... FTCS for first time step integration
c

do i=2,nx−1
u(i,2)=u(i,1)−0.5"dtdx"u(i,1)"(u(i+1,1)−u(i−1,1))

% +0.5"c1"(u(i+1,1)−2."u(i,1)+u(i−1,1))
enddo

c
c.... Leap Frog/DuFort-Frankel afterwards
c

do j=3, n
do i=2,nx−1
u(i,j) = c0"(u(i,j−2) + c1"(u(i+1,j−1)−u(i,j−2)

% +u(i−1,j−1)) − dtdx"u(i,j−1)"(u(i+1,j−1)
% −u(i−1,j−1)))
enddo

enddo
c
c Cost function:
c

do j = 1,n
do i = 1,nx
cost = cost + 0.5"(u(i,j)−uob(i,j))""2

enddo
enddo

c
c Save nonlinear solutions to the basic fields:
c

do j=1, n
do i=1,nx
ub(i,j)=u(i,j)

enddo
enddo
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c
return
end

c
SUBROUTINE BURGER-TLM(nx,n,ui,ubasic,u)

c
c The tangent linear model of the burger's equations.
c

real ubasic(nx,n) ! Basic states
real u(nx,n) ! TLM solutions
real ui(nx) ! Initial conditions
common /com-param/ dtdx, c1, c0
real dtdx, c0, c1

c
c Set the initial conditions:
c

do i=1,nx
u(i,1)=ui(i)

enddo
c
c Set the bundary conditions:
c

do j=1, n
u(1,j) = 0.
u(nx,j)= 0.

enddo
c
c Integrate the model numerically:
c
c.... FTCS for first time step integration
c

do i=2,nx−1
u(i,2) = u(i,1)

% − 0.5"dtdx"(u(i,1)"(ubasic(i+1,1)
% −ubasic(i−1,1)) + ubasic(i,1)"(u(i+1,1)
% −u(i−1,1)))
% + 0.5"c1"(u(i+1,1)−2."u(i,1) +u(i−1,1))
enddo

c
c.... Leap Frog/DuFort-Frankel afterwards
c

do j=3, n
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do i=2,nx−1
u(i,j) = c0"(u(i,j−2) + c1"(u(i+1,j−1)−u(i,j−2)

% +u(i−1,j−1)) − dtdx"(u(i,j−1)
% "(ubasic(i+1,j−1)−ubasic(i−1,j−1))
% + ubasic(i,j−1)"(u(i+1,j−1)−u(i−1,j−1))))
enddo

enddo
c
c Set the final value of u in ui:
c

do i=1,nx
ui(i)=u(i,n)

enddo
c

return
end

c
SUBROUTINE BURGER-ADJ(iforcing,nx,n,ui,ubasic,uob,u)

c
c The adjoint model of the burger's equations.
c

real ubasic(nx,n) ! Basic states
real uob(nx,n) ! Observations
real u(nx,n) ! Model solutions
real ui(nx) ! Initial conditions
real dt ! Time increment
real dx ! Space increment.
integer iforcing ! Index for forcing in the adjoint
common /com-param/ dtdx, c1, c0
real dtdx, c0, c1

c
c Initialize adjoint variables:
c

do j = 1, n
do i = 1, nx
u(i,j) = 0.

enddo
enddo

c
c Set the final conditions:
c

if (iforcing.eq.0) then
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do i=1, nx
u(i,n)=ui(i)
ui(i) = 0.

enddo
else ! Add Cost Function Part as a Forcing
do i=1, nx
u(i,n)=ubasic(i,n)−uob(i,n)
ui(i) = 0.

enddo
endif

c
c Adjoint of Leap Frog/Dufort-Frankel
c

do j = n, 3, −1
do i=nx−1, 2, −1
u(i−1,j−1) = u(i−1,j−1) + c0"(c1+dtdx"ubasic(i,

% j−1))"u(i,j)
u(i+1,j−1) = u(i+1,j−1) + c0"(c1−dtdx"ubasic(i,

% j−1))"u(i,j)
u(i,j−1) = u(i,j−1) − c0"dtdx"(ubasic(i+1,j−1)

% −ubasic(i−1, j−1))"u(i,j)
u(i,j−2) = u(i,j−2) + c0"(1.−c1)"u(i,j)

c u(i,j) = 0.
enddo
if (iforcing.eq.1) then
do i=1,nx
u(i,j−1) = u(i,j−1)+ubasic(i,j−1)−uob(i,j−1)

enddo
endif

enddo
c
c Adjoint of FTCS
c

do i = nx−1, 2, −1
u(i−1,1)=u(i−1,1)+0.5"(c1+dtdx"ubasic(i,1))"u(i,2)
u(i+1,1)=u(i+1,1)+0.5"(c1−dtdx"ubasic(i,1))"u(i,2)
u(i,1)=u(i,1)+u(i,2)"(1.−c1

% −0.5"dtdx"(ubasic(i+1,1)−ubasic(i−1,1)))
c u(i,2)=0.

enddo
c

if (iforcing.eq.1) then
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do i=1,nx
u(i,1) = u(i,1) + ubasic(i,1) − uob(i,1)

enddo
endif

c
c Set the boundary conditions:
c

do i=1, n
u(1,i) = 0.
u(nx,i)= 0.

enddo
c
c Set the final value of u in ui:
c

do i=1,nx
ui(i) =ui(i) + u(i,1)

enddo
c

return
end
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Post-processing of numerical model output
to obtain station weather forecasts

If the numerical model forecasts are skillful, the forecast variables should be strongly
related to the weather parameters of interest to the “person in the street” and for other
important applications. These include precipitation (amount and type), surface wind,
and surface temperature, visibility, cloud amount and type, etc. However, the model
output variables are not optimal direct estimates of local weather forecasts. This is
because models have biases, the bottom surface of the models is not a good represen-
tation of the actual orography, and models may not represent well the effect of local
forcings important for local weather forecasts. In addition, models do not forecast
some required parameters, such as visibility and probability of thunderstorms.

In order to optimize the use of numerical weather forecasts as guidance for human
forecasters, it has been customary to use statistical methods to “post-process” the
model forecasts and adapt them to produce local forecasts. In this appendix we
discuss three of the methods that have been used for this purpose.

C.1 Model Output Statistics1 (MOS)

This method, when applied under ideal circumstances, is the gold standard of NWP
model output post-processing (Glahn and Lowry, 1972, Carter et al., 1989). MOS
is essentially multiple linear regression, where the predictors hnj are model forecast
variables (e.g., temperature, humidity, or wind at any grid point, either near the surface

1 I am grateful to J. Paul Dallavalle of the National Weather Service for information about MOS
and Perfect Prog. The NWS homepage for statistical guidance is in http://www.nws.noaa.gov/
tdl/synop/index.html
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or in the upper levels), and may also include other astronomical or geographical
parameters (such as latitude, longitude and time of the year) valid at time tn . The
predictors could also include past observations. The predictand yn is a station weather
observation (e.g., maximum temperature or wind speed) valid at the same time as
the forecast. Here, as in any statistical regression, the quality of the results improves
with the quality and length of the training data set used to determine the regression
coefficients b j .

The dependent data set used for determining the regression coefficients is

yn = y(tn) n = 1, . . . , N
hnj = h j (tn) n = 1, . . . , N ; j = 1, . . . , J

}
(C.1.1)

where we consider one predictand yn as a function of time tn and J predictors hnj .
The linear regression (forecast) equation is

ŷn = b0 +
J∑

j=1

b j hnj =
J∑

j=0

b j hnj (C.1.2)

where for convenience the predictors associated with the constant term b0 are defined
as hn0 ≡ 1. In linear regression the coefficients b j are determined by minimizing the
sum of squares of the forecast errors over the training period (e.g., Wilks, 1995). The
sum of squared errors is given by:

SSE =
N∑

n=1

(yn − ŷn)2 =
N∑

n=1

e2
n (C.1.3)

Taking the derivatives with respect to the coefficients b j and setting them to zero we
obtain:

∂SSE

∂b j
= 0 =

N∑
n=1

(yn −
J∑

l=0

blhnl)hnj j = 0, 1, . . . , J (C.1.4)

or

N∑
n=1

[
hT

jn yn − hT
jn

J∑
l=0

hnlbl

]
= 0 j = 0, . . . , J (C.1.5)

where hT
jn = hnj . Equations (C.1.5) are the “normal” equations for multiple linear re-

gression that determine the linear regression coefficients b j , j = 0, . . . , J . In matrix
form, they can be written as

HTHb = HT y or b = (
HTH

)−1
HT y (C.1.6)
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where

H =




1 h11 . . . h1J

1 h21 . . . h2J
...

... hnj
...

1 hN1 . . . hNJ


 b =




b0

b1
...

bJ


 y =




y1

y2
...

yN


 (C.1.7)

are, respectively, the dependent sample predictor matrix (model output variables,
geographical and astronomical parameters, etc.), the vector of regression coefficients,
and the vector of predictands in the dependent sample.

&

y = Hb, e = y−Hb are the
linear predictions and the prediction error, respectively, in the dependent sample. The
dependent estimate of the error variance of the prediction is s2

e = SSE/(N − J − 1)
since the number of degrees of freedom is N − J − 1. This indicates that one should
avoid overfitting the dependent sample by ensuring that N >> J . For independent
data, the expected error can be considerably larger than the dependent estimate s2

e

because of the uncertainties in estimating the coefficients b j . The best way to estimate
the skill of MOS (or any statistical prediction) that can be expected when applied
to independent data is to perform cross-validation. This can be done by reserving a
portion (such as 10%) of the dependent data, deriving the regression coefficients from
the other 90%, and then applying it to the unused 10%. The process can be repeated
10 times with different subsets of the dependent data to increase the confidence of
the cross-validation, but this also increases the computational cost.

It is clear that for a MOS system to perform optimally, several conditions must be
fulfilled:

(a) The training period should be as long as possible (at least several years).

(b) The model-based forecasting system should be kept unchanged to the
maximum extent possible during the training period.

(c) After training, the MOS system should be applied to future model forecasts
that also use the same unchanged model system.

These conditions, while favorable for the MOS performance, are not favorable for
the continued improvement of the NWP model, since they require “frozen” models.
The main advantage of MOS is that if the conditions stated above are satisfied, it
achieves the best possible linear prediction. Another advantage is that it naturally
takes into account the fact that forecast skill decreases with the forecast length, since
the training sample will include, for instance, the information that a 1-day model
prediction is on the average considerably more skillful than a 3-day prediction. The
main disadvantage of MOS is that it is not easily adapted to an operational situation
in which the model and data assimilation systems are frequently upgraded.

Typically, MOS equations have 10–20 predictors chosen by forward screening
(Wilks, 1995). In the US NWS, the same MOS equations are computed for a few
(4–10) relatively homogeneous regions in order to increase the size of the develop-
mental database. In order to stratify the data into few but relatively homogeneous
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time periods, separate MOS equations are developed for the cool season (October–
March) and the warm season (April–September). As shown in Table C.3.1, MOS can
reduce very substantially the errors in the NWP model forecasts, especially at short
lead times. At long lead times, the forecast skill is lost, so that the MOS forecast
becomes a climatological forecast and the MOS forecast error variance asymptotes
to the climatology error. The error variance of an individual NWP forecast, on the
other hand, asymptotes to twice the climatological error variance, plus the square of
the model bias (see Section 6.5).

Figure C.1.1 shows the evolution of the error in predicting the maximum temper-
ature by the statistical guidance (MOS) and by the local human forecasters (LCL).
The human forecasters skill in the 2-day forecast is now as good as the one-day
forecast was in the 1970s. The human forecasters bring added value i.e., make better
forecasts than the MOS statistical guidance, which in turn is considerably better than
the direct NWP model output. Nevertheless, the long-term improvements are driven
mostly by the improvements in the NWP model and data assimilation systems, as
discussed in Chapter 1.

In summary, the forecast statistical guidance (and in particular MOS) adds value
to the direct NWP model output by objectively interpreting model output to remove
systematic biases and quantifying uncertainty, predicting parameters that the model
does not predict, and producing site-specific forecasts. It assists forecasters provid-
ing a first guess for the expected local conditions, and allows convenient access to
information on local model and climatology conditions.

C.2 Perfect Prog

Perfect Prog is an approach similar to MOS, except that the regression equations are
derived using as predictors, observations or analyses (rather than forecasts) valid at
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the prediction time, as if the forecasts were perfect. If station observations are used
as predictors in the dependent sample, it is not possible to use the same variable
for a predictor as for the predictand (e.g., Boston’s observed maximum surface tem-
perature could not be used as predictor for the maximum temperature in Boston).
However, if model analyses are used as “perfect” forecasts, one can use like variables
as predictors. For obvious reasons, Perfect Prog has not been much used except for
very short forecasts. Perhaps it would be possible now to use the long homogeneous
reanalyses that have been completed (Kistler et al., 2001, Kalnay et al., 1996, Gibson
et al., 1997) to derive very long and robust Perfect Prog statistics between model
output and station data. After the regression between the reanalysis and station data
is completed, the prediction of surface parameters could be done in two steps. In
the first step, multiple regression would be used to predict the reanalysis field from
model forecasts, which should be easier to achieve than predicting the station data
directly, since a few parameters would be enough to represent the model bias and the
decay of skill with time. In the second step, the Perfect Prog equations would be used
to translate the predicted analysis into station weather parameters. In this approach,
the disadvantage of Perfect Prog of not including the effective loss of skill associated
with longer forecast lengths would be handled in the first step discussed above. This
approach has yet to be thoroughly explored.

C.3 Adaptive regression based on a simple Kalman
filter approach2

Adaptive regression based on Kalman filtering has also been widely used as a post-
processor. In MOS and in other statistical prediction methods such as nonlinear
regression or neural networks, the regression coefficients are computed from the
dependent sample, and are not changed as new observations are collected until a
new set of MOS equations are derived every 5 or 10 years. Because the regression
coefficients are constant, the order of the observations is irrelevant in MOS, so that
older data have as much influence as the newest observations used to derive the
coefficients.

In adaptive regression, the Kalman filter equations (Section 5.6) are applied in
a simple, sequential formulation to the multiple regression coefficients bk = b(tk),
whose values are updated every time step, rather than keeping them constant as in
(C.1.2):

ŷk =
J∑

j=0

b j (tk)hkj =
[

1 hk1 . . . hk J

]



b0

b1

. . .

bJ




k

= hT
k bk (C.3.1)

2 I am very grateful to Joaquim Ballabrera for insightful comments and suggestions that
improved this section.
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If we compare this equation with those in Chapter 5, we see that it has the form of a
forecast of observations, y f

k = Hkbk , so that we can use the Kalman filter formulation
with an “observation operator” H = hT

k , a row vector in (C.1.7) corresponding to
the time tk . Recall that Kalman filtering consists of two steps (see (5.6.8)–(5.6.11)).
In the first step, starting from the analysis at time tk−1, we forecast the values of the
model variables (in this case the coefficients bk) and their error covariance at time
tk . In the second step, the Kalman weight matrix is derived, and, after obtaining the
observations at time tk , the model variables and error covariance are updated, giving
the analysis at time tk . In adaptive regression, the “forecast” or first guess of the
regression coefficients at tk is simply that they are the same as the (analysis) coeffi-
cients at tk−1, and their error covariance is the same as that estimated in the previous
time step, plus an additional error introduced by this “regression forecast model”:

b f
k = ba

k−1

P f
k = Pa

k−1 +Qk−1

}
(C.3.2)

Here Qk = qkqT
k is the “regression model” error covariance (a matrix of tunable

coefficients that is diagonal if we assume that the errors of the different coefficients
are not correlated).

The Kalman gain or weight vector for adaptive regression is given by

kk = P f
k hk

(
hT

k P
f
k hk + rk

)−1
(C.3.3)

Note that for a single predictand, the forecast error covariance hT
k P

f
k hk and the

observational error covariance Rk = rk are both scalars, and computing the Kalman
gain matrix does not require a matrix inversion.

At time tk the observed forecast error or innovation ek = yo
k − hT

k b
f
k is used to

update the regression coefficients:

ba
k = b f

k + kk
(
yo

k − hT
k b

f
k

)
Pa

k =
(
I− kkhT

k

)
P f

k

}
(C.3.4)

In summary, the adaptive regression algorithm based on Kalman filtering can be
written as:

y f
k = hT

k b
a
k−1

P f
k = Pa

k−1 +Qk−1

ek = yo
k − y f

k

wk = hT
k P

f
k hk + rk

kk = P f
k hkw

−1
k

ba
k = ba

k−1 + kkek

Pa
k = P f

k − kkwkkT
k




(C.3.5)
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Table C.3.1. rms error in the forecast of the surface temperature at 00Z averaged
for eight US stations. In dependent regression and Kalman filtering, the only
predictor used was the direct model prediction of the temperature interpolated to
the station. The MOS prediction has more than ten predictors and several years of
training.

NWP (Aviation model) Dependent Regression Adaptive Regression MOS

5.36 K 2.67 K 3.07 K 2.29 K

where wk is a temporary scalar defined for convenience. The two tuning parameters
in the algorithm are rk , the observational error covariance (a scalar), and Qk , the
“regression model” error covariance (a diagonal matrix with one coefficient for the
variance of each predictor if the errors are uncorrelated). Unlike regression, MOS, or
neural networks, adaptive regression is sequential, and gives more weight to recent
data than to older observations. The largerQk , the faster older data will be forgotten.
It also allows for observational errors rk . This method can be generalized to several
predictands, in which case the observation error covariance matrix may also include
observational error correlations.

Table C.3.1 compares a simple Kalman filtering applied to the 24-h surface tem-
perature forecasts for July and August 1997 at 00Z, averaged for eight different US
stations, using as a single predictor the global model output for surface temperature
interpolated to each individual station. It was found that after only a few days of
spin-up, starting with a climatological first guess, and with minimal tuning, the adap-
tive regression algorithm was able to reach a fairly steady error level substantially
better than the numerical model error, and not much higher than regression on the
dependent sample. Not surprisingly, MOS, using many more predictors and several
years of training, provides an even better forecast than this simple AR.

In summary, Kalman filtering provides a simple algorithm for adaptive regression.
It requires little training so that it is able to adapt rather quickly to changes in the
model, and to long-lasting weather regimes. It is particularly good in correcting model
biases. However, in general it is not as good as regression based on long dependent
samples.
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Plate 1 Comparison between the 12-h forecast error used as background (contours) and
a randomly chosen bred vector for a data assimilation simulation system. The first
image at the center level of the model. The second is a vertical cross-section (from
Corazza et al, 2002).



Plate 2 Example of a probabilistic forecast of accumulated precipitation greater 
than 5 mm. The probabilities are computed simply as the number of ensemble members
with at least the indicated threshold of accumulated precipitation divided by the total
number of ensemble forecasts. Both the 24-h and the 7-day forecast verify on 6 April
2001. Courtesy of NCEP/NWS.



Plate 3 Equatorial Pacific SST and surface winds from TOGA TAO buoys during
December 1993 (considered to be normal), December 1997 (during El Niño) and
December 1998 (during La Niña). The top panels shows the fields and the bottom 
panels the anomalies. Courtesy of NOAA/PMEL. Adapted from IPCC (2002) .



Plate 4 Variation of the surface temperature over: (a) the last 140 years and (b) the last 
millennium. In (a) the red bars represent the annual average for the globe based on 
thermometer data, and the whiskers the 95% confidence range, including uncertainties
due to coverage, biases and urbanization. The black line is a 10-year moving average. In
(b) the blue line represents proxy data.
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