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Interaction-induced chaos in a two-electron quantum dot system
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A quasi-one-dimensional quantum dot containing two interacting electrons is analyzed in search of signa-
tures of chaos. The two-electron energy spectrum is obtained by diagonalization of the Hamiltonian including
the exact Coulomb interaction. We find that the level-spacing fluctuations closely follow a Wigner-Dyson
distribution, which indicates the emergence of quantum signatures of chaos due to the Coulomb interaction in
an otherwise nonchaotic system. In general, the Poinosaps of a classical analog of this quantum-
mechanical problem can exhibit a mixed classical dynamics. However, for the range of energies involved in the
present system, the dynamics is strongly chaotic, aside from small regular regions. The system we study
models a realistic semiconductor nanostructure, with electronic parameters typical of gallium arsenide.
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In a many-body system, it is possible for signatures oftrons in a quasi-one-dimensional semiconductor quantum
quantum chaos to appear due solely to the interactiongdot. We show that the Coulomb interaction between the elec-
among its particles. During the last decade, such interactiorirons induces an unambiguous transition from a regular spec-
induced signatures of quantum chaos have been investigatdfm to a spectrum that follows closely the predictions of
for examp|e, in spin_fermion mode}sn the extended Hub- RMT fOI’ SyStemS whose classical analog exhibit chaotic
bard model in a ring geometfyin the compound nuclear dynamics.
state with 12 particles in thed shell® and in the heavy In order to fully characterize the emergence of chaos due
rare-earth atom of ceriuthin those studies, evidence of !0 interactions in this simple system, we also study the dy-
quantum signatures of chaos found in level-spacing statistic§iamics of its classical analog. The Poincaneps that de-
the response to arbitrary perturbations, or the statistical progscribe the classical system show a stron@iibeit mixed
erties Of the wave functions were Considered to be Conc|ucha0tic behaVior due to the inClUSion Of the true Coulomb
sive. This conclusion is not entirely surprising, since all ofinteraction in the system. _
those systems, having relatively large numbers of particles We assume that the quantum dot has a narrow parabolic
(>10), are similar to the Comp|ex nuclear Systems that moconfln.ement n the transvers&+y dlmenS|0nS,. so that the
tivated the introduction of the ideas of random matrix theoryenergies associated with those modes are high compared to
(RMT) in the first place’. On the other hand, it is not obvious the energies of the remaining degree of freedge Born
a priori whether the inclusion of the interaction in few-body @pproximation. The two-electron wave function can then be
systems, like, for example, currently available semiconductoW'tt€n as

uantum dots, also leads to signatures of quantum chaos. In _
g recent study, the effect of elgctronic inte?actions was con- Y (r1.r2) = ¢(x) (1) $02) (y2) P (21.22), - (1)
sidered in a parabolically confined three-electron systéiin.  where ¢(x) is the lowest harmonic-oscillator energy eigen-
is well known that three is the lowest number of interactingstate. The energy eigenstates satisfy
electrons necessary to break the integrability in a parabolic
quantum dop. In thgt study, the cross?)ver fr){)m regpular to [Ho(z1)+Ho(z2) +Vio(|22~22)1®(21.2,)
irregular spectra as a function of the interaction strength was =E®d(z1,2,), 2
found to be incomplete, possibly due to the existence of hid- . .
den symmetries not taken into account in the statistica\"’he_re HO(Z)_: —_(ﬁ2/2n_1*)(92/(9224_—V(z) is the single-
analysis. Therefore, the question of the emergence of sign&a'ticle Hamyltomfn', withv(2) being the quantum dot de-
tures of quantum chaos due to interparticle interactions iiniNg potential.m* is the effective mass, andyp is the
systems of very few particles remains open. Coulomb interaction given by

Closely related to the issue of characterizing the dynami- v/, (|2, z,|)
cal properties of simple interacting systems is the problem of
quantum control with external fields. The manipulation of a e22(X1) p(Y1) pA(X2) pA(Y2)
few particles(electrons and holg¢sn semiconductor quan- :J dx; dy;dxzdy, :
tum dots is a potentially important technological problem
that is receiving increasing attentibriln this context, recent ©)
theoretical studies have shown interesting effects of singlewe use the values of the dielectric constant 13.1 and
electron turnstile behavior, and localization and correlationsn* =0.067m, corresponding to gallium arsenide. We choose
in systems of quantum dots with two interacting electrons into work with a quasi-one-dimensional semiconductor quan-
them® In the present paper we investigate the signatures afum dot confined in 15 A in the-y plane, and a width of
guantum chaos in a similar system, i.e., two interacting elec800 A in thez direction.
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(2) exactly. We also take into account the symmetry of the
spectrum due to the parity of the confining potential and the
interaction potential. Therefore, in order to compute the NNS
distribution we use eigenstates of a given parity and spin.
This kind of decomposition is a standard procedure followed
in the analysis of spectral properties of quantum systems
whenever the Hamiltonian of the system possesses a discrete
symmetry'® After unfolding the spectrum the NNS distribu-

0.4/ | tion is computed for the even-parity states. Again, we con-
. sider ~1000 eigenstates of the interacting Hamiltonian
(whose eigenenergies are lower than the energy of the first
. transversal mode, for compatibility with the Born approxi-
! mation.

Since the singlet is the ground state of the two-electron
system, we first concentrate on the subspace of spatial wave

s functions that are symmetric under particle exchange. The

FIG. 1. NNS distribution obtained for the interacting two- interaction affects _very clearly th_e s_pe(?trum,_resulting in a
electron system described in the text. The solid thick lid@shed strong level repulsion: the NNS distribution is in accordance
line) is P,o(S)[ Py7(s)]. The Wigner surmis@,,(s) is plotted as a  With the predictions of RMT’ As a consequence, the ob-
thin solid line in order to compare it to the obtained distributions. tained NNS distributiorP,s(s) (the histogram shown by the
Inset: NNS distributiorPy(s) for the noninteracting two-electron thick solid line in Fig. 1 is well described by the Wigner
system described in the tegthick line), together with the Poisson  surmisé® P,y(s) = 3 7 s exp(— 7s?/4), shown for comparison
distribution Pp(s) (thin line). by the thin solid line.

For the triplet states, due to the antisymmetry of the spa-

In the absence of the interaction term in E@), the tial wave functions, it is reasonable to expect that the ten-
Hamiltonian is a sum of two single-particle one-dimensionaldency of the two electrons to avoid each other results in a
Hamiltonians, whose classical counterpart is obviously inteweaker level mixing. Nevertheless, although some differ-
grable. The main question we seek to answer is whether thences with the singlet case would appear for other statistical
Coulomb interaction between the electrons introduces chaaseasuregthat are not possible to perform with the number
in the system. of levels at hanyg those differences are not qualitatively vis-

In order to look for signatures of quantum chaos, we fol-ible on the computed NNS distributioR,1(s), shown as a
low a standard statistical analysis of the energy spectrundashed line in Fig. 1. Again, the obtained histogram fits the
which consists of the following steps. First we calculate thepredictions of RMT quite well.
exact spectrur{E,,} by diagonalization of the Hamiltonian We now turn to the dynamics of the classical counterpart
matrix. The level spectrum is used to obtain the smoothedf the two-electron quantum dot system. We consider the
counting functionN,,(E) which gives the cumulative num- classical interaction potential given bW (|z1—2,|)
ber of states below an enerdy In order to analyze the =a/\/(d?+|z;—2,[%), where the parameters andd have
structure of the level-fluctuation properties, one “unfolds” been obtained from the best fit to the Coulomb interaction
the spectrum by applying the well-known transformation  V,(|z;—2,|) [Eq. (3)]. (The fit is very good at all distances,
=N,,(E,).'° From the unfolded spectrum one calculates thedown to the resolution of the spatial grid used in our numeri-
nearest-neighbor spacifiNS) distribution P(s), wheres; cal calculationg. The classical single-particle confining po-
=X;j;1—X; IS the NNS. tential V(z) is a square well of length, and we restrict the

We first consider the spectral properties of the noninteranalysis to bounded motion within this box. In this situation,
acting two-electron problem whose HamiltonianHg(z;) the effect of the confining potential is to reflect the particles
+Ho(z,). Its eigenstates can be classified by their total spirelastically off the boundaries in each bounce, breaking the
in singlets and triplets. To compute the NNS distribution wetranslational symmetry of the problem. As a consequence,
use eigenstates of a given spin. In the inset of Fig. 1 we showhe center-of-mass momentum is not preserved. Neverthe-
the obtained NNS noninteracting distributi®q (s) (histo- less, in the absence of interaction each single-particle energy
gram), which follows a Poisson distributioftharacteristic of is a constant of motion, and therefore the classical problem is
an uncorrelated sequence of energy levgisen by Pp(s) integrable. On the other hand, the inclusion of the Coulomb
=e " ® and shown for comparison as a solid thin line. Due tointeraction breaks the conservation of the single-particle en-
the finite dimension of the Hilbert spadé,,(E) saturates in  ergies, and can induce an irregular dynamics in the confined
the highest-energy region. Therefore, we compute the NNSystem.
distribution using the lowest-1000 eigenvalues: The ob- For a total energf = E* = «/d there is a separatrix in the
tained Poisson distribution is an expected signature of mostlassical dynamics. That is, f&<<E* the particles never
guantum two-dimensional systems whose classical countectoss each other and the sign of the relative coordiagate
parts are integrabl¥. —Zz; never changes, while f&E>E* it can change.

To analyze the interacting spectrum, we diagonalize Eq. Denotinge=E/E*, we write
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FIG. 2. (a) Poincaresurface of sectiow, vs z, for a rescaled FIG. 3. (a) Poincaresurface of sectiom, vs z, for a rescaled

energye=0.9. (b) For the same value of, a piece of a trajectory energye=16. (b) For the same value &, a piece of a trajectory in
in the z; vs z; plane corresponding to an initial condition in the the z; vs z; plane corresponding to an initial condition in the cha-

chaotic region. otic region.
2 2 . well. The classical motion of such a system is qualitatively
=1 2y, (2))+Ve(Zh)+ d similar to our classical model, only far<1.
2 2 R N 12— 2%’ From the roughly 1000 eigenstates employed to compute

(4) the NNS distribution displayed in Fig. 1, only the lowest 5%
have eigenenergies that correspon&+ol. The eigenener-

where we have defined gies of the remaining states correspond to values @fng-
ing from 1 to 16, for which, as we have shown, the classical
, Jm*d ! z; g* d ®) dynamics is chaotic over most part of the energy shell.
Ui =Uj i=T =7

\/; ' Therefore the NNS distribution computed from these states
results in a remarkable quantum signature of the underlying
with i=1 and 2. In this way, for a given value of the rescaledclassical chaotic dynamics.
energye, the classical dynamics depends only on the param- For energiese>1 the classical regular regions in the
eterd*. Taking into account thdt=800 A and the best fit Poincaremaps should become predominant over the chaotic
with the quantum Coulomb terw,, givesd=8 A, we ones, because in such a limit the Coulomb term can be con-
obtaind* =0.01. sidered as a perturbation of the noninteracting two-electron
In Fig. 2a), for e=0.9 we show the Poincamsurface of Hamiltonian. Nevertheless, values ef>1 are not realistic
sectionv, versusz,, for the motion of one of the particles, for quantum wells describing semiconductor nanostructures.
taken at times when the other particle bounces off the left In conclusion, we show that the Coulomb interaction is
boundary of the wellthe topology of the Poincarsection responsible for the chaotic dynamics in a quasi-one-
does not depend on which particle is selegtd@the motionis  dimensional two-electron quantum dot, both from quantum
chaotic over most of the accessible phase space for the giveimd classical points of view. We show a clean Wigner-Dyson
energy shell. Figure(8) shows another Poincasection for  statistics for two interacting electrons, arising from the inter-
e€=16. Again, except for small regions of regular motion, theparticle interactiort> We believe that the present results may
dynamics is fully chaotic. put constraints to models of semiconductors nanostructures
Although the two Poincaresections look qualitatively in which the interaction among particles is modeled, for a
similar, the trajectories in the plarg versusz; are quite finite number of particles, as a capacitive term in the form of
different as can be seen in FiggbRand 3b). Figure 2b) a constant interaction. The inclusion of a constant interaction
[3(b)] shows, fore=0.9 (e=16), a piece of a trajectory in dives an interacting_ Hamilt.onian whose spectral prope.rties
the z, versusz, plane corresponding to an initial condition in @re those of the noninteracting one. In other words, a Poisson
the chaotic region. In Fig.(B) the trajectory never crosses NNS distribution will remain Poissonian after considering
the straight line defined by,=z,, because foe=0.9 z the interaction in the constant interaction model.

>z, always. In Ref. 14 the authors performed a classical This work was partially supported by UBACY({TW35),
analysis of the emergence of chaos due to the inclusion of aRICT97 03-00050-01015, Fundanio Antorchas, and
interparticle screened Coulomb interaction in an infiniteCONICET.
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