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Interaction-induced chaos in a two-electron quantum dot system

A. J. Fendrik, M. J. Sa´nchez, and P. I. Tamborenea
Departamento de Fı´sica, J. J. Giambiagi Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

(1428) Buenos Aires, Argentina
~Received 30 August 2000; published 1 March 2001!

A quasi-one-dimensional quantum dot containing two interacting electrons is analyzed in search of signa-
tures of chaos. The two-electron energy spectrum is obtained by diagonalization of the Hamiltonian including
the exact Coulomb interaction. We find that the level-spacing fluctuations closely follow a Wigner-Dyson
distribution, which indicates the emergence of quantum signatures of chaos due to the Coulomb interaction in
an otherwise nonchaotic system. In general, the Poincare´ maps of a classical analog of this quantum-
mechanical problem can exhibit a mixed classical dynamics. However, for the range of energies involved in the
present system, the dynamics is strongly chaotic, aside from small regular regions. The system we study
models a realistic semiconductor nanostructure, with electronic parameters typical of gallium arsenide.
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In a many-body system, it is possible for signatures
quantum chaos to appear due solely to the interact
among its particles. During the last decade, such interact
induced signatures of quantum chaos have been investig
for example, in spin-fermion models,1 in the extended Hub-
bard model in a ring geometry,2 in the compound nuclea
state with 12 particles in thesd shell,3 and in the heavy
rare-earth atom of cerium.4 In those studies, evidence o
quantum signatures of chaos found in level-spacing statis
the response to arbitrary perturbations, or the statistical p
erties of the wave functions were considered to be con
sive. This conclusion is not entirely surprising, since all
those systems, having relatively large numbers of partic
(.10), are similar to the complex nuclear systems that m
tivated the introduction of the ideas of random matrix theo
~RMT! in the first place.5 On the other hand, it is not obviou
a priori whether the inclusion of the interaction in few-bod
systems, like, for example, currently available semiconduc
quantum dots, also leads to signatures of quantum chao
a recent study, the effect of electronic interactions was c
sidered in a parabolically confined three-electron system.9 ~It
is well known that three is the lowest number of interacti
electrons necessary to break the integrability in a parab
quantum dot.! In that study, the crossover from regular
irregular spectra as a function of the interaction strength
found to be incomplete, possibly due to the existence of h
den symmetries not taken into account in the statist
analysis. Therefore, the question of the emergence of si
tures of quantum chaos due to interparticle interactions
systems of very few particles remains open.

Closely related to the issue of characterizing the dyna
cal properties of simple interacting systems is the problem
quantum control with external fields. The manipulation o
few particles~electrons and holes! in semiconductor quan
tum dots is a potentially important technological proble
that is receiving increasing attention.6,7 In this context, recent
theoretical studies have shown interesting effects of sin
electron turnstile behavior, and localization and correlatio
in systems of quantum dots with two interacting electrons
them.8 In the present paper we investigate the signature
quantum chaos in a similar system, i.e., two interacting e
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trons in a quasi-one-dimensional semiconductor quan
dot. We show that the Coulomb interaction between the e
trons induces an unambiguous transition from a regular sp
trum to a spectrum that follows closely the predictions
RMT for systems whose classical analog exhibit chao
dynamics.

In order to fully characterize the emergence of chaos
to interactions in this simple system, we also study the
namics of its classical analog. The Poincare´ maps that de-
scribe the classical system show a strongly~albeit mixed!
chaotic behavior due to the inclusion of the true Coulom
interaction in the system.

We assume that the quantum dot has a narrow parab
confinement in the transversalx-y dimensions, so that the
energies associated with those modes are high compare
the energies of the remaining degree of freedom~the Born
approximation!. The two-electron wave function can then b
written as

C~r1 ,r2!5f~x1!f~y1!f~x2!f~y2!F~z1 ,z2!, ~1!

wheref(x) is the lowest harmonic-oscillator energy eige
state. The energy eigenstates satisfy

@H0~z1!1H0~z2!1V1D~ uz12z2u!#F~z1 ,z2!

5EF~z1 ,z2!, ~2!

where H0(z)52(\2/2m* )]2/]z21V(z) is the single-
particle Hamiltonian, withV(z) being the quantum dot de
fining potential.m* is the effective mass, andV1D is the
Coulomb interaction given by

V1D~ uz12z2u!

5E dx1dy1dx2dy2

e2f2~x1!f2~y1!f2~x2!f2~y2!

eur12r2u
.

~3!

We use the values of the dielectric constante513.1 and
m* 50.067me corresponding to gallium arsenide. We choo
to work with a quasi-one-dimensional semiconductor qu
tum dot confined in 15 Å in thex-y plane, and a width of
800 Å in thez direction.
©2001 The American Physical Society13-1
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In the absence of the interaction term in Eq.~2!, the
Hamiltonian is a sum of two single-particle one-dimensio
Hamiltonians, whose classical counterpart is obviously in
grable. The main question we seek to answer is whether
Coulomb interaction between the electrons introduces ch
in the system.

In order to look for signatures of quantum chaos, we f
low a standard statistical analysis of the energy spectr
which consists of the following steps. First we calculate
exact spectrum$En% by diagonalization of the Hamiltonian
matrix. The level spectrum is used to obtain the smoot
counting functionNav(E) which gives the cumulative num
ber of states below an energyE. In order to analyze the
structure of the level-fluctuation properties, one ‘‘unfolds
the spectrum by applying the well-known transformationxn
5Nav(En).10 From the unfolded spectrum one calculates
nearest-neighbor spacing~NNS! distribution P(s), wheresi
[xi 112xi is the NNS.

We first consider the spectral properties of the nonin
acting two-electron problem whose Hamiltonian isH0(z1)
1H0(z2). Its eigenstates can be classified by their total s
in singlets and triplets. To compute the NNS distribution
use eigenstates of a given spin. In the inset of Fig. 1 we s
the obtained NNS noninteracting distributionPNI(s) ~histo-
gram!, which follows a Poisson distribution~characteristic of
an uncorrelated sequence of energy levels! given by PP(s)
5e2s and shown for comparison as a solid thin line. Due
the finite dimension of the Hilbert space,Nav(E) saturates in
the highest-energy region. Therefore, we compute the N
distribution using the lowest;1000 eigenvalues.11 The ob-
tained Poisson distribution is an expected signature of m
quantum two-dimensional systems whose classical coun
parts are integrable.12

To analyze the interacting spectrum, we diagonalize

FIG. 1. NNS distribution obtained for the interacting tw
electron system described in the text. The solid thick line~dashed
line! is PIS(s)@PIT(s)#. The Wigner surmisePW(s) is plotted as a
thin solid line in order to compare it to the obtained distribution
Inset: NNS distributionPNI(s) for the noninteracting two-electron
system described in the text~thick line!, together with the Poisson
distributionPP(s) ~thin line!.
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~2! exactly. We also take into account the symmetry of t
spectrum due to the parity of the confining potential and
interaction potential. Therefore, in order to compute the N
distribution we use eigenstates of a given parity and sp
This kind of decomposition is a standard procedure follow
in the analysis of spectral properties of quantum syste
whenever the Hamiltonian of the system possesses a dis
symmetry.10 After unfolding the spectrum the NNS distribu
tion is computed for the even-parity states. Again, we c
sider ;1000 eigenstates of the interacting Hamiltoni
~whose eigenenergies are lower than the energy of the
transversal mode, for compatibility with the Born approx
mation!.

Since the singlet is the ground state of the two-elect
system, we first concentrate on the subspace of spatial w
functions that are symmetric under particle exchange. T
interaction affects very clearly the spectrum, resulting in
strong level repulsion: the NNS distribution is in accordan
with the predictions of RMT.13 As a consequence, the ob
tained NNS distributionPIS(s) ~the histogram shown by the
thick solid line in Fig. 1! is well described by the Wigne
surmise13 PW(s)5 1

2 p s exp(2ps2/4), shown for comparison
by the thin solid line.

For the triplet states, due to the antisymmetry of the s
tial wave functions, it is reasonable to expect that the t
dency of the two electrons to avoid each other results i
weaker level mixing. Nevertheless, although some diff
ences with the singlet case would appear for other statis
measures~that are not possible to perform with the numb
of levels at hand!, those differences are not qualitatively vi
ible on the computed NNS distributionPIT(s), shown as a
dashed line in Fig. 1. Again, the obtained histogram fits
predictions of RMT quite well.

We now turn to the dynamics of the classical counterp
of the two-electron quantum dot system. We consider
classical interaction potential given byVcl(uz12z2u)
5a/A(d21uz12z2u2), where the parametersa and d have
been obtained from the best fit to the Coulomb interact
V1D(uz12z2u) @Eq. ~3!#. ~The fit is very good at all distances
down to the resolution of the spatial grid used in our nume
cal calculations.! The classical single-particle confining po
tentialVC(z) is a square well of lengthL, and we restrict the
analysis to bounded motion within this box. In this situatio
the effect of the confining potential is to reflect the partic
elastically off the boundaries in each bounce, breaking
translational symmetry of the problem. As a consequen
the center-of-mass momentum is not preserved. Never
less, in the absence of interaction each single-particle en
is a constant of motion, and therefore the classical problem
integrable. On the other hand, the inclusion of the Coulo
interaction breaks the conservation of the single-particle
ergies, and can induce an irregular dynamics in the confi
system.

For a total energyE5E* [a/d there is a separatrix in the
classical dynamics. That is, forE,E* the particles never
cross each other and the sign of the relative coordinatez2
2z1 never changes, while forE.E* it can change.

Denotinge[E/E* , we write

.
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e5
v18

2

2
1

v28
2

2
1VC~z18!1VC~z28!1

d*

Ad* 21uz182z28u
2

,

~4!

where we have defined

v i85v i

Am* d

Aa
, zi85

zi

L
, d* 5

d

L
, ~5!

with i 51 and 2. In this way, for a given value of the rescal
energye, the classical dynamics depends only on the para
eterd* . Taking into account thatL5800 Å and the best fit
with the quantum Coulomb termV1D gives d58 Å , we
obtaind* 50.01.

In Fig. 2~a!, for e50.9 we show the Poincare´ surface of
sectionv28 versusz28 , for the motion of one of the particles
taken at times when the other particle bounces off the
boundary of the well~the topology of the Poincare´ section
does not depend on which particle is selected!. The motion is
chaotic over most of the accessible phase space for the g
energy shell. Figure 3~a! shows another Poincare´ section for
e516. Again, except for small regions of regular motion, t
dynamics is fully chaotic.

Although the two Poincare´ sections look qualitatively
similar, the trajectories in the planez28 versusz18 are quite
different as can be seen in Figs. 2~b! and 3~b!. Figure 2~b!
@3~b!# shows, fore50.9 (e516), a piece of a trajectory in
thez28 versusz18 plane corresponding to an initial condition
the chaotic region. In Fig. 2~b! the trajectory never crosse
the straight line defined byz285z18 , because fore50.9 z28
.z18 always. In Ref. 14 the authors performed a class
analysis of the emergence of chaos due to the inclusion o
interparticle screened Coulomb interaction in an infin

FIG. 2. ~a! Poincare´ surface of sectionv28 vs z28 for a rescaled
energye50.9. ~b! For the same value ofe, a piece of a trajectory
in the z28 vs z18 plane corresponding to an initial condition in th
chaotic region.
ys
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well. The classical motion of such a system is qualitative
similar to our classical model, only fore,1.

From the roughly 1000 eigenstates employed to comp
the NNS distribution displayed in Fig. 1, only the lowest 5
have eigenenergies that correspond toe,1. The eigenener-
gies of the remaining states correspond to values ofe rang-
ing from 1 to 16, for which, as we have shown, the classi
dynamics is chaotic over most part of the energy sh
Therefore the NNS distribution computed from these sta
results in a remarkable quantum signature of the underly
classical chaotic dynamics.

For energiese@1 the classical regular regions in th
Poincare´ maps should become predominant over the cha
ones, because in such a limit the Coulomb term can be c
sidered as a perturbation of the noninteracting two-elect
Hamiltonian. Nevertheless, values ofe@1 are not realistic
for quantum wells describing semiconductor nanostructu

In conclusion, we show that the Coulomb interaction
responsible for the chaotic dynamics in a quasi-o
dimensional two-electron quantum dot, both from quant
and classical points of view. We show a clean Wigner-Dys
statistics for two interacting electrons, arising from the int
particle interaction.15 We believe that the present results m
put constraints to models of semiconductors nanostruct
in which the interaction among particles is modeled, fo
finite number of particles, as a capacitive term in the form
a constant interaction. The inclusion of a constant interac
gives an interacting Hamiltonian whose spectral proper
are those of the noninteracting one. In other words, a Pois
NNS distribution will remain Poissonian after considerin
the interaction in the constant interaction model.

This work was partially supported by UBACYT~TW35!,
PICT97 03-00050-01015, Fundacio´n Antorchas, and
CONICET.

FIG. 3. ~a! Poincare´ surface of sectionv28 vs z28 for a rescaled
energye516. ~b! For the same value ofe, a piece of a trajectory in
the z28 vs z18 plane corresponding to an initial condition in the ch
otic region.
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