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Towards an analytical formula for the eigenvalues
of the Aharonov–Bohm annular billiard

A. J. Fendrik and M. J. Sáncheza)
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We derive an asymptotic formula for the eigenvalues of the Aharonov–Bohm
annular billiard~ABAB ! that improves and corrects previous estimates. Employing
semiclassical arguments we relate the limitations of the procedure to the topology
of the classical phase space of the system. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1341235#

I. INTRODUCTION

In recent years, the interest in quantum billiards has increased considerably. Owing
vances in nanotechnology, it has been possible to fabricate small devices in which the carr
mainly scattered by the boundaries of the sample.1 The high resemblance between these syste
commonly referred to as quantum dots, and the quantum billiards, it is very appealing to stu
transport properties of ballistic samples employing quantum billiards as models.

Quantum billiards threaded by a magnetic fluxf are suitable configurations to model pro
lems related to persistent currents.2,3 These equilibrium currents are a consequence of the natu
the eigenfunctions’ flux sensitivity, which is strictly of the Aharonov–Bohm type.4,5 The current,
at zero temperature, carried by the levelEn is I}]En /]f. The first theoretical works on persiste
currents have been in one-dimensional~1D! ring geometries,6 in two-dimensional~2D! the com-
putations have been performed employing discrete models or cylindrical geometries.7,8 In the last
case, the mathematical description of the problem is essentially the same as for the ring geo
because the eigenenergies are pure quadratic forms of the two quantum numbers with a fun
dependence on the flux that is identical to 1D systems.

To describe the real ‘‘rings’’ employed in the experiments on persistent currents,9 it seems to
be more suitable to consider the 2D Aharonov–Bohm annular billiard~ABAB ! depicted in Fig. 1.
The eigenenergies for this system can be numerically determined from the zeros of the
products of Bessel functions, but a closed analytical formula for the eigenvalues does not

In a recent paper Samandra and Healy introduced an asymptotic formula for the eigen
of a charged particle confined in an annular shell in which there was a cylindrically symm
static magnetic field inside the inner cylinder.10 This configuration is equivalent to thread th
annular shell by an static magnetic fluxf and, therefore, equivalent to the ABAB. In this artic
we present an asymptotic analytical formula for the eigenenergies of the ABAB that correc
improves the previous one.10 Moreover, we will show that the eigenenergies obtained in Ref.
fail to describe quantum states that are present at all the energy scales, even in the semic
limit. These states are associated with classical orbits that do not hit the inner radius of the
and cannot be described by the asymptotic expansion presented in Ref. 10. We find th
eigenenergies for these states can be obtained, under certain conditions, through the D
expansion for the zeros of the Bessel functions of first kind.

The paper is organized as follows. In Sec. II we introduce the system and summari
results concerning the solutions of the Schro¨dinger equation. In Sec. III we obtain the asympto
expansion for the eigenenergies and compare it to the one obtained in Ref. 10. Part of this

a!Electronic mail: majo@df.uba.ar
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is devoted to a detailed discussion about the limitations of the analytical results. We pres
Sec. IV the numerical results and in Sec. V the concluding remarks.

II. THE AHARONOV–BOHM ANNULAR CAVITY

In this section we introduce the ABAB and the relevant equations involved in the prob
The annular shell is defined in terms of the polar coordinates~r, u!. The radial coordinater varies
betweenr andR and the azimutal angle 0<u<2p ~see Fig. 1!. We take the area equal top and
we define the parameterl5R/r , such thatR5l/Al221 and r 51/Al221. Whenl→1 the
system resembles a 1D ring, while forl.1 it is an annular cavity.

We fix the gaugeA5f/(2pr) û, whereû is the azimutal unit vector, and there is no magne
field piercing the body of the annulus.

The single particle spectrum results from the eigenvalue equation

DC1
2ia

r2

]C

]u
2

a2

r2 C1k2C50, ~2.1!

where D is the Laplacian in polar coordinates. We define the scaled fluxa5f/f0 with f0

5hc/e the flux quantum. We use units such\2/2m51, so the energy isE5k2.
We apply Dirichlet boundary conditions atr5r andr5R and periodic boundary condition in

the azimutal direction. The Eq.~2.1! is separable in polar coordinates and we factorizeC(r,u)
5F(r)exp(imu) with m50,61,62,... the orbital quantum number. The wave numberskn,n result
from the solution of the equation

Jn~zl!Nn~z!2Jn~z!Nn~zl!50, n[m2a, ~2.2!

where we have definedz[kr and n51,2..., is the radial quantum number.Jn and Nn are the
Bessel functions of the first and second kind, respectively. The corresponding eigenfun
C(r,u) are

Cn,n~r,u!5An,n exp~ imu!@Jn~kn,nr!Nn~kn,nr !2Jn~kn,nr !Nn~kn,nr!#, ~2.3!

whereAn,n is the normalization constant.

FIG. 1. Aharonov–Bohm annular billiard~ABAB ! threaded by a magnetic fluxf. The inner and outer radii are denotedr
andR, respectively.
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All the eigenstates and all the equilibrium physical properties of the system are pe
functions of the flux with periodf0 . Moreover, as the energy spectrum is symmetric with resp
to f5f0/2, in the following the parametera will take values between 0 and 1/2. ForaÞ0, the
states withm and2m are, in general, not degenerate.

We remark that the eigenenergiesEn,n cannot be written down as simple functions of t
numbersn andn as it happens, for example, in the case of the cylindrical geometries wher
eigenenergies are pure quadratic functions of both quantum numbers. Moreover, there i
closed analytical expression for the eigenenergies of the Aharonov–Bohm annular cavity.

III. THE ASYMPTOTIC EXPANSION FOR THE EIGENENERGIES

To derive an estimate for the eigenenergiesEn,n , we begin rewriting the asymptotic expan
sion of thenth zero of Eq.~2.2! that appears in Ref. 11, in such a way that the dependencen,
that is hidden in the expression given in Ref. 11 becomes explicit:

kn,n'np
Al221

l21
1

~l21!Al221

2npl
n22

~l21!Al221

8npl

1
~l21!3Al221

n3p3 Q1
~l21!5Al221

n5p5 P, ~3.1!

with

Q[n4S 16f ~l!2
1

4l2D1n2S 1

8l22104f ~l! D225f ~l!2
1

64l2 ,

P[2
f ~l!~22514n2!~2114n2!2

2l
1

~2114n2!3

256l3

1
~211l5!~2114n2!

5120~l21!l5 ~10732456n2116n4!. ~3.2!

As Eq. ~3.1! is asymptotic in 1/n, the symbol' comes from neglecting all the terms o
O(1/n7) and higher. We have defined for convenience

f ~l![~l321!/~384l3~l21!!.

Equation~3.1! contains terms in ordersO(1/n), O(1/n3), andO(1/n5) that must be taken into
account for smalln and values ofl*1. One can solve by numerical methods Eq.~2.2! to obtain
the ~exact! eigenvalues of the ABAB. This will be done in the next section. Nevertheless, we
want to stress that for fixed values ofl andn.1, the accuracy of the expansion Eq.~3.1! to the
exact eigenvalues depends, not only onn, but also on the other quantum numberm throughn.

We expand Eq.~3.1! explicitly as a function of both quantum numbersm andn. Keeping the
terms up to ordera2 ~this is not a crude approximation taking into account thata varies between
0 and 1/2! we obtain the corresponding eigenenergies

En,n[Em,n~a!'Aa21Ba1C1O~a3!, ~3.3!

with A, B, andC polynomials in the quantum numberm

A[a01a2m21a4m41a6m61a8m81a10m
10, ~3.4!

B[b1m1b3m31b5m51b7m71b9m9, ~3.5!

C[c01c2m21c4m4. ~3.6!
ed 27 Feb 2001 to 128.165.23.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html
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In the Appendix we write down the explicit formulae for the coefficientsai which although rather
cumbersome, will be useful in the following. They are analytic functions of the parameterl and
the radial quantum numbern.

The second-order approximation Eq.~3.3! is not the Taylor expansion ina of the eigenener-
gies. The coefficients in Eqs.~3.4!–~3.6! have been obtained from the asymptotic expansion
~3.1! that, when the radial quantum numbern&m, does not work. This important fact has not be
taken into account in Ref. 10. Moreover, even in the limitn@m the results of Ref. 10 are, in
general, very poor estimates of the eigenenergies. To clarify this point we compare Eq.~3.3! to the
equation obtained in Ref. 10 for the eigenenergies, that we have rewritten in the form of Eq~3.3!

Ẽm,n~a!5Ãa21B̃a1C̃, ~3.7!

with

Ã[
l221

l
,

B̃[2S l221

l D2m, ~3.8!

C̃[n2p2S l11

l21D1
~l221!

l
~m221/4!.

Comparing Eqs.~3.4!–~3.6! @and the Eq.~A1! for ai# to Eq. ~3.8! we conclude that, even in th
limit n@m, it is only for l511e(e!1) that the Eqs.~3.7! and~3.8! give satisfactory values fo
the eigenenergies of the ABAB. In this case the annulus resembles a thin cylindrical surf
height (l21)/Al2215R2r . Let us remark that for a cylindrical surface of areaL3Ly , the
exact eigenenergies are parabolas as a function ofa. The corresponding coefficients are:A
5(2p/L)2 ~without any dependence on the quantum numbers! for the quadratic term,B
52m(2p/L)2 ~depending only on the orbital quantum numberm! for the linear term, and the
constant termC5(np/Ly)

2 which is a function only of the transverse quantum numbern.
On the contrary, Eqs.~3.4!–~3.6! are valid for larger values ofl. As an example, Fig. 2 show

a plot of the coefficientsA @Eq. ~3.4!# andÃ as a function of the quantum numberm for l510 and
n530. In the same figure the empty circles are the exact numerical values for this coef
~obtained following the prescription that will be describe in the next section!. Whereas the coef-
ficient Ã only gives the constant value form50, the behavior ofA is quite satisfactory for values
of m&10. Nevertheless, form&n the coefficients given in Eqs.~3.4!–~3.6! do not reproduce the
actual values obtained in the numerical computations. The inclusion of additional terms in
equations does not give a better approximation to the eigenenergies. Under the present co
Eqs. ~3.4!–~3.6! are not perturbative becauseum/nu*1, and any truncation of the expansion
misleading.

The difficulty to obtain a uniform perturbative expansion for the eigenenergies of the A
is related to the very different characteristics of the eigenstates as a function of the qu
numbers. This fact can be understood through semiclassical arguments. Since the pro
integrable, the classical phase space is foliated by tori that are labeled by the values of the
I i( l ,E),i 51,2, with l andE the angular momentum and the energy, respectively.12 Moreover, this
kind of system can be quantized through the E.B.K rule that establishes a correspondence b
each eigenstate and a classical torus labeled byI i5(ki1a i /4)\, whereki is an integer anda i is
the Maslov index that depends on the topology of the classical orbits of the system.13

Given the values ofl andE, and according to the ratioh[ lA(l221)/E, we can distinguish
two type of classical orbits: Those that do not hit the inner circle (h.1), and orbits that hit the
inner circle (h,1). The special value ofhc51 corresponds to orbits that are tangent to the in
ed 27 Feb 2001 to 128.165.23.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html
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circle. The parameterh is the ratio between the radius of the caustic of the classical orbit for a
of radiusR5l/A(l221) and the inner radius of the ABAB,r 51/A(l221).

According to the preceding remarks, given two values of the quantum numbersm andn the
classical motion associated to the quantized torus will correspond either toh.1 or to h,1.
Therefore, two kind of eigenstates are expected according to the value ofh. Equation~3.3! is valid
for quantum states such thath,1 and becomes a better approximation ash decreases.

For h.1, the classical motion on the ABAB is indistinguishable from that on a disk of ra
R. Therefore, one would expect that analytical expressions for the eigenvalues correspon
such a quantum states could be obtained from the Debye’s asymptotic expansions for the
functions of the first kind.11

However, it is well-known that the Debye’s expansions fail to describe states localized o
whispering gallery modes.14 In terms on the parametere[AE/(l221)l/ l the whispering gallery
modes correspond toe→1. Ase increases from 1 the Debye’s expansion improves. Therefore
Debye’s expansion will be useful to describe states in the ABAB if the conditionsh.1 ande
.1 are simultaneously satisfied. Ash•e5l, the fraction of such states increases withl.

Figure 3 shows in thek-l plane the two critical lines labeledL1 andL2 defined, respectively
by the equationshc51 andec51 for l510. The states lying on the shadowed region in betw
L1 andL2 can be approximated by the Debye expansion. As a consequence, while forh,1 the
eigenenergies for the ABAB are given by Eq.~3.1!, for h.1 they could be obtained through th
Debye’s approximation. In the next section we will explore this approach.

It is important to emphasize that the nature of the failure of the Debye’s expansion is
different from that of the expansion Eq.~3.1!. While the former is originated by the pathologic
behavior of the semiclassical approximation when the classical motion exhibits caustics14 the
second one is due to the impossibility of the perturbative expansion Eq.~3.1! to cross the sepa
ratrix defined byh5hc . In the next section we will show how this separatrix affects the ac
eigenenergies.

FIG. 2. CoefficientA obtained from Eq.~3.4! ~solid lined! andÃ obtained from Eq.~3.8! ~dotted-dashed line! as a function
of the quantum numberm, for n530 andl510. The empty circles correspond to the numerical valuesAmn for n530
obtained in Sec. IV. The vertical dotted line is the valuemc defined in Eq.~4.3!. The left down arrow indicates the
analytical estimateAe @Eq. ~4.4!# for values ofm.mc .
ed 27 Feb 2001 to 128.165.23.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html
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IV. NUMERICAL RESULTS AND ANALYTICAL ESTIMATES

To obtain each eigenenergyEm,n as a function of the fluxa, we have numerically solved Eq
~2.2! employing the Newton–Raphson method. For a given value ofl, we have repeated thi
procedure for six equally spaced values ofa between 0 and 1/2. Then we have fitted the numer
values with a quadratic function that minimizes the sum of the squares of the deviations fro
numerical values. Figure 4 shows a region of the energy spectrum as a function ofa for l510,
obtained by the described procedure. The dotted lines are the quadratic fits, superimposed
numerical values~circles!. In the following we will consider

Em,n5Amn~l!a21Bmn~l!a1Cmn~l!, ~4.1!

whereAmn , Bmn , andCmn have been obtained from the quadratic fit mentioned above.
To illustrate the statements of the preceding section, we will analize the coefficientAmn as a

function of both quantum numbers for two values of the parameterl. Figure 5 shows a surfac
plot of the coefficientAmn as a function ofm and n for l510. We can see a pronounced cre
separating two plateaux. One of them~labeled asI! corresponds to values of the quantum numb
m andn such thath,1. The other plateau~labeled asII ! corresponds toh.1. The values of the
coefficientAmn that correspond to eigenstates such thath'1 are launched on the crest of th
surface plot. The crest is a quantum signature of the classical separatrix previously mention
this value ofl the fraction of states on the plateauII is much greater than the fraction of those
the plateauI.

Figure 6 shows a surface plot of the coefficientAmn as a function ofm andn for l52. The
exhibited behavior is qualitatively the same as in Fig. 5. Nevertheless, opposite to the pr
case, the fraction of states on the plateauII is smaller than the fraction of those on the plateauI.

As we have mentioned in Sec. III, Fig. 2 shows a transverse section of the surface plot
for n530, together with the coefficientA evaluated forn530 @Eq. ~3.4!# and the coefficientÃ
given in Eq.~3.8! that only reproduces the plateauI ~A59.9 for the present value ofl510!. On
the other hand, the coefficientA follows quite satisfactory the numerical values up to the cres
the plot, but it fails to reproduce the behavior ofAmn in the complete range of values ofm.

FIG. 3. Critical lines labeledL1 andL2 defined, respectively, by the equationshc51 andec51 for l510. The states lying
on the shadowed region in betweenL1 andL2 can be approximated by the Debye’s expansion.
ed 27 Feb 2001 to 128.165.23.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html
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To reproduce the numerical valuesAmn in the region of the second plateauII we employ the
Debye’s approximation11 that gives the asymptotic expansion for the zeros of the Bessel func
of the first kindJn(kR). If j n,n is a zero,En,n5( j n,n /R)2 will be the eigenenergy. ExpandingEn,n

as a function of the fluxa(n5m2a) and keeping the terms up to second order ina, we finally
obtain

Em,n;
1

R2 F S p2

4
21Da212mS p2

4
21Da1p2S n21S p2

4
21Dm21

1

16D G . ~4.2!

FIG. 4. Single particle energy levels as a function of the adimensional fluxa, corresponding to the lowest region of th
spectrum for the ABAB withl510. The circles correspond to exact values obtained from the zeros of the cross pro
of Bessel functions. The small dotted lines are the quadratic fits obtained in Eq.~4.1!. See the text for details.

FIG. 5. Surface plot of the coefficientAmn as a function of the quantum numbersm andn for l510. The plateau labeled
with I corresponds to valuesh,1, whereas the plateau labeled with II toh.1.
ed 27 Feb 2001 to 128.165.23.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html
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The prefactor in the quadratic term of Eq.~4.2! gives the estimate ofAmn in the region of the
second plateauII (h.1). For l510 is R51.005 and the value of the coefficient is 1.452. Th
value is indicated in the right down part of Fig. 2 by an arrow and it agrees with the nume
values ofAmn on the plateauII .

Equation~4.2! can be used to obtain the critical conditionhc51, in then-m plane ~hc51
defines the lineL1 in k-l plane!. For a given value of the radial quantum numbern, hc51
determines a critical value for the orbital quantum numbermc given by

mcAl2

p2 112
p2

4
.n, ~4.3!

where the fact thatm[ l was used. Figure 7 shows in then-mplane the critical line defined by th

FIG. 6. Surface plot of the coefficientAmn as a function of the quantum numbersm andn for l52. The plateau labeled
with I corresponds to valuesh,1, whereas the plateau labeled with II toh.1.

FIG. 7. Gray level density plot in them-nplane corresponding to the surface plot Fig. 5. The solid white line is the cri
line defined in Eq.~4.3! for l510.
ed 27 Feb 2001 to 128.165.23.22. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html
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Eq. ~4.3! for l510 together with the gray scale density plot of the numerical values ofAmn taken
from Fig. 5. In the present figure the crest of the surface plot Fig. 5 corresponds to the highe
level intensity region in where, as expected, the critical line Eq.~4.3! is launched. As a conse
quence of the preceding analysis, we establish the following functional form to evaluat
coefficientsAmn(l)

Ae5H A given by Eq. ~3.4!, for m<mc

S p2

4
21D ~l221!

l
, for m.mc

, ~4.4!

wheremc is given in Eq.~4.3!.

V. CONCLUDING REMARKS

In the present article we have explored the possibility to obtain an analytical expansion f
eigenenergies of the Aharonov–Bohm annular billiard valid for the whole range of values o
two relevant quantum numbers. We have shown that the well-known expansion for the ze
the cross products of Bessel functions fail to reproduce the actual behavior of the eigenener
some kind of states that are present in all regions of the spectrum~namely for quantum states suc
that the parameterh.1!. Based on semiclassical arguments we have demonstrated that
quantum states are associated with classical orbits that do not hit the inner circle of the an
These orbits, when the system is a genuine annulus (l.1), are relevant in all the energy scale
For h.1 andl.1, we have shown that the eigenenergies of the ABAB can be obtained thr
the Debye’s expansions for the zeros of the Bessel functions of first kind, if the conditione.1 is
also acomplished. Ash•e5l, the fraction of states whose eigenenergies can be approximate
the Debye’s expansion increases withl. We have illustrated our results proposing an analyti
estimateAe , that reproduces quite satisfactory the exact numerical valuesAmn(l) at both sides of
the critical line defined inm-nplane by the Eq.~4.3!, irrespective of the value of the parametere.
That is, although the Debye’s expansions fail fore→1, the numerical valuesAmn are not sensitive
to that limit. Therefore, the value predicted byAe for m.mc is valid even in the limite→1. We
should remark that doing analogous calculations to those performed in Sec. IV, it is poss
derive the analytical estimates for the numerical coefficientsBmn andCmn . This should be equiva-
lent, in view of Eq.~4.1!, to find an analytical expansion for the eigenenergies of the ABAB v
at both sides of the critical linehc51.

Last but not least, we would like to remark that the present study is far from being p
academic. The analytical expression of the eigenenergies as a function of the normalizeda
can be employed to determine the actual prefactors in the magnitude of the typical per
current for a ballistic ABAB withN carriers,I typ[A*0

1I 2da.
In a recent paper it was found thatI typ}AT /N1/4, being AT[(m,nAmn(l).3 Taking into

account the analytical expression given in Eq.~4.4! we have obtained, to leading order inN

AT5N
~l221!

l S p2

4
211

~82p2!~l21!

p~l11!A4~l21p2!2p4D 1O~N1/2!,

which gives a value ofI typ 1.4–1.5 times larger than the obtained in case of employing Eq.~3.8!.
This result could help to understand the existent discrepancy between the large experi
values of the persistent current measured in all the experiments performed up to date, and p
theoretical estimates that did not consider the corrections introduced in the present work.
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APPENDIX

In this Appendix we write down the explicit expressions for the coefficientsam of the differ-
ent powers ofm in the formula Eq.~3.4!

a05
l221

l
2

~l21!2~l221!

8l2p2n2 ,

a25
3~l21!2~l221!

2l2p2n2 2
69~l21!3~11l!

16l5p4n4 ,

a45~l21!3S 3~11l!

8l5p4n4

2110914253l13812l21450l31775l42935l51290l6

192l6p6n6 D ,

~A1!

a65
27~l21!3

720l6p6n6 ~2411377l1188l2190l31115l42155l5150l6!

1
7~l21!9

2880l8p8n8 ~242311897l12320l2!,

a85
~l21!10~l221!

512l10p10n10 @220711290l2364l212916l321611l4

12916l523621l611290l72207l8#

1
~l21!8~l221!

64l8p8n8 ~3232l2131l22249l31131l4232l513l6!,

a105
~l21!10~l221!

9600l10p10n10 @9921122l16017l2217204l3

126895l4217204l516017l611122l7199l8#.
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