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Towards an analytical formula for the eigenvalues
of the Aharonov—Bohm annular billiard
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We derive an asymptotic formula for the eigenvalues of the Aharonov—Bohm
annular billiard(ABAB) that improves and corrects previous estimates. Employing
semiclassical arguments we relate the limitations of the procedure to the topology
of the classical phase space of the system.2@1 American Institute of Physics.
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I. INTRODUCTION

In recent years, the interest in quantum billiards has increased considerably. Owing to ad-
vances in nanotechnology, it has been possible to fabricate small devices in which the carriers are
mainly scattered by the boundaries of the samifiae high resemblance between these systems,
commonly referred to as quantum dots, and the quantum billiards, it is very appealing to study the
transport properties of ballistic samples employing quantum billiards as models.

Quantum billiards threaded by a magnetic flgpare suitable configurations to model prob-
lems related to persistent curreAtsThese equilibrium currents are a consequence of the nature of
the eigenfunctions’ flux sensitivity, which is strictly of the Aharonov—Bohm typ&he current,
at zero temperature, carried by the leiglis 1 «<9E,/d¢. The first theoretical works on persistent
currents have been in one-dimensiofteD) ring geometrie$,in two-dimensional2D) the com-
putations have been performed employing discrete models or cylindrical geométhiethe last
case, the mathematical description of the problem is essentially the same as for the ring geometries
because the eigenenergies are pure quadratic forms of the two quantum numbers with a functional
dependence on the flux that is identical to 1D systems.

To describe the real “rings” employed in the experiments on persistent curtérgeems to
be more suitable to consider the 2D Aharonov—Bohm annular bil(iaBAB) depicted in Fig. 1.

The eigenenergies for this system can be numerically determined from the zeros of the cross
products of Bessel functions, but a closed analytical formula for the eigenvalues does not exist.

In a recent paper Samandra and Healy introduced an asymptotic formula for the eigenvalues
of a charged particle confined in an annular shell in which there was a cylindrically symmetric
static magnetic field inside the inner cylind8rThis configuration is equivalent to thread the
annular shell by an static magnetic fldxand, therefore, equivalent to the ABAB. In this article
we present an asymptotic analytical formula for the eigenenergies of the ABAB that corrects and
improves the previous orf8.Moreover, we will show that the eigenenergies obtained in Ref. 10
fail to describe quantum states that are present at all the energy scales, even in the semiclassical
limit. These states are associated with classical orbits that do not hit the inner radius of the ABAB
and cannot be described by the asymptotic expansion presented in Ref. 10. We find that the
eigenenergies for these states can be obtained, under certain conditions, through the Debye’s
expansion for the zeros of the Bessel functions of first kind.

The paper is organized as follows. In Sec. Il we introduce the system and summarize the
results concerning the solutions of the Sctinger equation. In Sec. Il we obtain the asymptotic
expansion for the eigenenergies and compare it to the one obtained in Ref. 10. Part of this section
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FIG. 1. Aharonov—Bohm annular billiatd\BAB) threaded by a magnetic fluk The inner and outer radii are denoted
andR, respectively.

is devoted to a detailed discussion about the limitations of the analytical results. We present in
Sec. IV the numerical results and in Sec. V the concluding remarks.

II. THE AHARONOV-BOHM ANNULAR CAVITY

In this section we introduce the ABAB and the relevant equations involved in the problem.
The annular shell is defined in terms of the polar coordingigé). The radial coordinatp varies
betweernr andR and the azimutal angle96<2x (see Fig. 1L We take the area equal teand
we define the parameter=R/r, such thatR=A/\A?—1 andr=1/A?—1. When\—1 the
system resembles a 1D ring, while for>1 it is an annular cavity.

We fix the gauge\ = ¢/(2p) 8, whered is the azimutal unit vector, and there is no magnetic
field piercing the body of the annulus.

The single particle spectrum results from the eigenvalue equation

ap 2@ ewo 2.1

+ 7 %_ ? + =V, ( . )
where A is the Laplacian in polar coordinates. We define the scaled #lexp/ ¢y with ¢
=hc/e the flux quantum. We use units sut/2m=1, so the energy i&=k?,

We apply Dirichlet boundary conditions at=r andp=R and periodic boundary condition in

the azimutal direction. The E@2.1) is separable in polar coordinates and we facto¥zg, 6)
= F(p)exp(mé) with m=0,+1,*2,... the orbital quantum number. The wave numlgrsresult
from the solution of the equation

J,(zZ\)N,(2)—J,(2)N,(z\)=0, v=m—aq, (2.2

where we have defined=kr andn=1,2..., is the radial quantum numbek, and N, are the
Bessel functions of the first and second kind, respectively. The corresponding eigenfunctions
W(p,0) are

\PV,n(Pl 0) :Av,n eXF(ima)[JV(kV,np)Nv(kv,nr) _‘]V(kV,nr)NV(kV,np)]l (23)

whereA, , is the normalization constant.
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All the eigenstates and all the equilibrium physical properties of the system are periodic
functions of the flux with periodb,. Moreover, as the energy spectrum is symmetric with respect
to ¢= ¢o/2, in the following the parameter will take values between 0 and 1/2. Fe# 0, the
states withm and —m are, in general, not degenerate.

We remark that the eigenenergiks , cannot be written down as simple functions of the
numbersy andn as it happens, for example, in the case of the cylindrical geometries where the
eigenenergies are pure quadratic functions of both quantum numbers. Moreover, there is not a
closed analytical expression for the eigenenergies of the Aharonov—Bohm annular cavity.

lll. THE ASYMPTOTIC EXPANSION FOR THE EIGENENERGIES

To derive an estimate for the eigenenerdigs,, we begin rewriting the asymptotic expan-
sion of thenth zero of Eq.(2.2) that appears in Ref. 11, in such a way that the dependencoge on
that is hidden in the expression given in Ref. 11 becomes explicit:

W1 -, -

=1 ' 2nmn "V 8nan

+(>\—1)3\/ 2 (x—1)5\/>\?—1p
5 y

A =1
+
n3773 Q n57'r

K, n=~nm

(3.2
with

+ 12

., 1 1 1
Q=r4 16f(\)~ 72 gz 104 (N) | —25f(0) — g,

FV(=25+40%)(~1+41%)%  (—1+407)°
) 2M 256\

(—1+N\%)(—1+41?)
512QA—1)\°

(1073 4561°+ 16v%). (3.2

As Eq. (3.1 is asymptotic in I, the symbol~ comes from neglecting all the terms of
O(1/n") and higher. We have defined for convenience

fON)=(N3—1)/(38M3(\—1)).

Equation(3.1) contains terms in ordex®(1/n), O(1/n%), and®(1/n%) that must be taken into
account for smalh and values oh =1. One can solve by numerical methods E2j2) to obtain
the (exac) eigenvalues of the ABAB. This will be done in the next section. Nevertheless, we now
want to stress that for fixed values ®fandn>1, the accuracy of the expansion E§.1) to the
exact eigenvalues depends, not onlymrbut also on the other quantum numimethroughv.

We expand Eq(3.1) explicitly as a function of both quantum numbensandn. Keeping the
terms up to order? (this is not a crude approximation taking into account thatries between
0 and 1/2 we obtain the corresponding eigenenergies

E,n=Emn(@)~Aa’+Ba+C+0O(a?), (3.3

with A, B, andC polynomials in the quantum numbar

A=ay+a,m’+a,m*+agm®+agmé+a;om?°, (3.9
BEb1m+ b3m3+ b5m5+ b7m7+ bgmg, (35)
C=co+com?+c,m?. (3.6)
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In the Appendix we write down the explicit formulae for the coefficiemtsvhich although rather
cumbersome, will be useful in the following. They are analytic functions of the parameted
the radial quantum number.

The second-order approximation H&.3) is not the Taylor expansion ia of the eigenener-
gies. The coefficients in Eq$3.4)—(3.6) have been obtained from the asymptotic expansion Eq.
(3.1) that, when the radial quantum numlree m, does not work. This important fact has not been
taken into account in Ref. 10. Moreover, even in the limitm the results of Ref. 10 are, in
general, very poor estimates of the eigenenergies. To clarify this point we compaB3Etp the
equation obtained in Ref. 10 for the eigenenergies, that we have rewritten in the form(8t3q.

Em'n(a)=ﬂa2+'éa+a, (3.7
with
A A-1
=—
=22,
=-|— m, (3.9
- A+1) (A2-1)
—n22/ 2= 2_
C=nw N1 + N (m-—1/4).

Comparing Eqs(3.4—(3.6) [and the Eq(Al) for a;] to Eq. (3.8 we conclude that, even in the
limit n>m, itis only for \=1+ e(e<1) that the Eqs(3.7) and(3.8) give satisfactory values for
the eigenenergies of the ABAB. In this case the annulus resembles a thin cylindrical surface of
height (7\—1)/\/)\2—1=R—r. Let us remark that for a cylindrical surface of alexL,, the
exact eigenenergies are parabolas as a functiow.ofhe corresponding coefficients aréA:
=(2m/L)? (without any dependence on the quantum numbévs the quadratic termB
=2m(2m/L)? (depending only on the orbital quantum numiey for the linear term, and the
constant terr‘rCz(nw/Ly)2 which is a function only of the transverse quantum nuntber

On the contrary, Eq$3.4)—(3.6) are valid for larger values of. As an example, Fig. 2 shows
a plot of the coefficients [Eq. (3.4)] andA as a function of the quantum numbmarfor A =10 and
n=30. In the same figure the empty circles are the exact numerical values for this coefficient
(obtained following the prescription that will be describe in the next sectiMiereas the coef-
ficient A only gives the constant value for=0, the behavior oA is quite satisfactory for values
of m=10. Nevertheless, fan=n the coefficients given in Eq$3.4)—(3.6) do not reproduce the
actual values obtained in the numerical computations. The inclusion of additional terms in these
equations does not give a better approximation to the eigenenergies. Under the present condition,
Egs. (3.49—(3.6) are not perturbative becaug®/n|=1, and any truncation of the expansion is
misleading.

The difficulty to obtain a uniform perturbative expansion for the eigenenergies of the ABAB
is related to the very different characteristics of the eigenstates as a function of the quantum
numbers. This fact can be understood through semiclassical arguments. Since the problem is
integrable, the classical phase space is foliated by tori that are labeled by the values of the actions
1;(1,E),i=1,2, with| andE the angular momentum and the energy, respectitfeijoreover, this
kind of system can be quantized through the E.B.K rule that establishes a correspondence between
each eigenstate and a classical torus labelet byk; + «;/4)%, wherek; is an integer andy; is
the Maslov index that depends on the topology of the classical orbits of the system.

Given the values of andE, and according to the ratig=1+/(A?—1)/E, we can distinguish
two type of classical orbits: Those that do not hit the inner cireje-(), and orbits that hit the
inner circle (p<1). The special value ofi;=1 corresponds to orbits that are tangent to the inner
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FIG. 2. CoefficientA obtained from Eq(3.4) (solid lined andA obtained from Eq(3.8) (dotted-dashed lineas a function
of the quantum numbem, for n=30 and\ =10. The empty circles correspond to the numerical valugs for n=30
obtained in Sec. IV. The vertical dotted line is the valg defined in Eq.(4.3. The left down arrow indicates the
analytical estimaté\, [Eq. (4.4)] for values ofm>m, .

circle. The parametey is the ratio between the radius of the caustic of the classical orbit for a disk
of radiusR=\/\/(A?—1) and the inner radius of the ABAB=1/\/(\?—1).

According to the preceding remarks, given two values of the quantum numbansl n the
classical motion associated to the quantized torus will correspond either-tb or to n<<1.
Therefore, two kind of eigenstates are expected according to the vatudegiiation(3.3) is valid
for quantum states such that<1 and becomes a better approximationzedecreases.

For »>1, the classical motion on the ABAB is indistinguishable from that on a disk of radius
R. Therefore, one would expect that analytical expressions for the eigenvalues corresponding to
such a quantum states could be obtained from the Debye’s asymptotic expansions for the Bessel
functions of the first kind!

However, it is well-known that the Debye’s expansions fail to describe states localized on the
whispering gallery mode¥.In terms on the parameter= \/E/()\z— 1)N/1 the whispering gallery
modes correspond ©— 1. As e increases from 1 the Debye’s expansion improves. Therefore, the
Debye’s expansion will be useful to describe states in the ABAB if the conditipnd ande
>1 are simultaneously satisfied. As e=\, the fraction of such states increases with

Figure 3 shows in th&-I plane the two critical lines labeldd; andL, defined, respectively
by the equations);=1 ande.=1 for \ =10. The states lying on the shadowed region in between
L, andL, can be approximated by the Debye expansion. As a consequence, whijeZfoithe
eigenenergies for the ABAB are given by E§.1), for »>1 they could be obtained through the
Debye’s approximation. In the next section we will explore this approach.

It is important to emphasize that the nature of the failure of the Debye’s expansion is quite
different from that of the expansion E.1). While the former is originated by the pathological
behavior of the semiclassical approximation when the classical motion exhibits cafigties,
second one is due to the impossibility of the perturbative expansioii3EL).to cross the sepa-
ratrix defined byn= 7. In the next section we will show how this separatrix affects the actual
eigenenergies.
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D

FIG. 3. Critical lines labeledl ; andL , defined, respectively, by the equations=1 ande.=1 for A =10. The states lying
on the shadowed region in betwekpandL, can be approximated by the Debye’s expansion.

IV. NUMERICAL RESULTS AND ANALYTICAL ESTIMATES

To obtain each eigenenergy, , as a function of the fluxy, we have numerically solved Eq.
(2.2 employing the Newton—Raphson method. For a given valug, offe have repeated this
procedure for six equally spaced valuesxdietween 0 and 1/2. Then we have fitted the numerical
values with a quadratic function that minimizes the sum of the squares of the deviations from the
numerical values. Figure 4 shows a region of the energy spectrum as a functiofoiok = 10,
obtained by the described procedure. The dotted lines are the quadratic fits, superimposed on the
numerical valuescircles. In the following we will consider

Em,n:Amn()\)a2+ano\)a'l'cmn(}\)- 4.7

whereA,,, Bnn, andC,,, have been obtained from the quadratic fit mentioned above.

To illustrate the statements of the preceding section, we will analize the coeffiGjgrds a
function of both quantum numbers for two values of the paramet&igure 5 shows a surface
plot of the coefficientA,, as a function ofm andn for A=10. We can see a pronounced crest
separating two plateaux. One of thélabeled ad) corresponds to values of the quantum numbers
m andn such thatp<<1. The other platealabeled adl) corresponds te;> 1. The values of the
coefficientA,,, that correspond to eigenstates such thatl are launched on the crest of the
surface plot. The crest is a quantum signature of the classical separatrix previously mentioned. For
this value ofi the fraction of states on the plateius much greater than the fraction of those on
the platead.

Figure 6 shows a surface plot of the coefficiént, as a function oimandn for A=2. The
exhibited behavior is qualitatively the same as in Fig. 5. Nevertheless, opposite to the previous
case, the fraction of states on the platélais smaller than the fraction of those on the platéau

As we have mentioned in Sec. lll, Fig. 2 shows a transverse section of the surface plot Fig. 5
for n=230, together with the coefficie& evaluated fom=30 [Eq. (3.4)] and the coefficienf\
given in Eq.(3.8) that only reproduces the plate&d@A= 9.9 for the present value &f=10). On
the other hand, the coefficieAtfollows quite satisfactory the numerical values up to the crest of
the plot, but it fails to reproduce the behaviorAf,,, in the complete range of values ot
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FIG. 4. Single particle energy levels as a function of the adimensionakflwworresponding to the lowest region of the
spectrum for the ABAB with\ = 10. The circles correspond to exact values obtained from the zeros of the cross products
of Bessel functions. The small dotted lines are the quadratic fits obtained i Bq.See the text for details.

To reproduce the numerical valuds,, in the region of the second plateduwe employ the
Debye’s approximatioft that gives the asymptotic expansion for the zeros of the Bessel functions
of the first kindJ ,(kR). If j, ,isa zeroE, ,=(j ,,,n/R)Z will be the eigenenergy. Expandirfg, ,
as a function of the fluxx(v=m— «) and keeping the terms up to second ordewjwe finally
obtain

a2 1 2_}_1
7 m

16

1[[ w2 ) w?
Emn~ 52 I—l a+2m T—l

}. 4.2

a+t+ 772( n2+

FIG. 5. Surface plot of the coefficiedt,,, as a function of the quantum numbensandn for A =10. The plateau labeled
with | corresponds to values<1, whereas the plateau labeled with 1l 40> 1.
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FIG. 6. Surface plot of the coefficie#t,,, as a function of the quantum numbensandn for A =2. The plateau labeled
with | corresponds to valueg<1, whereas the plateau labeled with 1l 40> 1.

The prefactor in the quadratic term of Eg.2) gives the estimate d&,,, in the region of the
second plateall (»>1). ForA=10 isR=1.005 and the value of the coefficient is 1.452. This
value is indicated in the right down part of Fig. 2 by an arrow and it agrees with the numerical
values ofA,, on the plateadl.

Equation(4.2) can be used to obtain the critical conditig=1, in then-m plane (7.=1
defines the lineL; in k-l plane. For a given value of the radial quantum numimersn.=1
determines a critical value for the orbital quantum numgrgiven by

A T
me ?'f'l— Tzn, (4.3

where the fact than=1| was used. Figure 7 shows in than plane the critical line defined by the

FIG. 7. Gray level density plot in the-n plane corresponding to the surface plot Fig. 5. The solid white line is the critical
line defined in Eq(4.3) for A=10.
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Eq. (4.3 for A =10 together with the gray scale density plot of the numerical valuég,qftaken

from Fig. 5. In the present figure the crest of the surface plot Fig. 5 corresponds to the highest gray
level intensity region in where, as expected, the critical line @) is launched. As a conse-
quence of the preceding analysis, we establish the following functional form to evaluate the

coefficientsAp(N)
A given by Eq.(3.4), for msm,
A=1 [ 7? (A\%—1) , (4.4
(T_ )T for m>m,

wherem, is given in Eq.(4.3).

V. CONCLUDING REMARKS

In the present article we have explored the possibility to obtain an analytical expansion for the
eigenenergies of the Aharonov—Bohm annular billiard valid for the whole range of values of the
two relevant quantum numbers. We have shown that the well-known expansion for the zeros of
the cross products of Bessel functions fail to reproduce the actual behavior of the eigenenergies for
some kind of states that are present in all regions of the spe¢tramely for quantum states such
that the parameter;>1). Based on semiclassical arguments we have demonstrated that these
quantum states are associated with classical orbits that do not hit the inner circle of the annulus.
These orbits, when the system is a genuine annwusl(), are relevant in all the energy scales.

For »>1 and\>1, we have shown that the eigenenergies of the ABAB can be obtained through
the Debye’s expansions for the zeros of the Bessel functions of first kind, if the conelitibns

also acomplished. Ag- e=\, the fraction of states whose eigenenergies can be approximated by
the Debye’s expansion increases withWe have illustrated our results proposing an analytical
estimateA., that reproduces quite satisfactory the exact numerical va@liyg6\) at both sides of

the critical line defined im-n plane by the Eq(4.3), irrespective of the value of the parameter
That is, although the Debye’s expansions fail éex 1, the numerical value&,,, are not sensitive

to that limit. Therefore, the value predicted By for m>m_ is valid even in the limite— 1. We
should remark that doing analogous calculations to those performed in Sec. IV, it is possible to
derive the analytical estimates for the numerical coefficiBntsandC,,,. This should be equiva-
lent, in view of Eq.(4.1), to find an analytical expansion for the eigenenergies of the ABAB valid
at both sides of the critical ling.= 1.

Last but not least, we would like to remark that the present study is far from being purely
academic. The analytical expression of the eigenenergies as a function of the normalized flux
can be employed to determine the actual prefactors in the magnitude of the typical persistent
current for a ballistic ABAB withN carriers,ly,= \/fOII “da.

In a recent paper it was found thay,=Ar/N", being A;==,, /Ann(\).> Taking into
account the analytical expression given in E44) we have obtained, to leading orderih

(N2=1) [ m? 1+ (8—72)(A—1)
Y 4 77()\+1)\/4()\7+ 772)—774

which gives a value ofy,, 1.4-1.5 times larger than the obtained in case of employing&E&§.
This result could help to understand the existent discrepancy between the large experimental
values of the persistent current measured in all the experiments performed up to date, and previous
theoretical estimates that did not consider the corrections introduced in the present work.
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APPENDIX
In this Appendix we write down the explicit expressions for the coefficiaptef the differ-
ent powers ofm in the formula Eq(3.4)
AM—=1 (A—1)2(A\%-1)
A 8\%m?n?

a():

_3(\ - 1)2(>\2—1)_ 69N —1)3(1+N)

BTN’ 16\°7*n®
4 3(1+N\) —1109+ 4253\ + 38122+ 45003+ 775" — 935\ >+ 290\ °
as=(\—1) 8N5 402 192\6776n° '
(A1)
—7(n—1)3

— _ 2 3 4 _ 5 6
g W( 41+ 377+ 188\ “+ 90N>+ 115\*— 155\ >+ 50\ °)

_1\9
+ % (—423+ 1897\ +232Q\2),
2880\%7°n

(-1

8g=—g15 1010710~ [~ 207+ 1290\~ 364 2%+2916\°—1611\*

+2916:°— 36216+ 1290\ " — 207\ 8]

A—1)8(\%-1

W(s—w\—131>\2—249>\3+131>\4—32>\5+3>\6),
—()\_1)10()\2_1) 99— 1122 + 6017\ 2— 172043

alO_—Wo\l 71001 [99- + -

+26895.*— 17204 °+ 6017+ 11227+ 99\ 8].
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