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Confinement and surface roughness (SR) effects on the magnitude of the persistent current are analyzed
for ballistic bidimensional metallic samples. Depending on the particular geometry, localized border
states can show up at half-filling. These border states contribute coherently to the persistent current and
its magnitude is enhanced with respect to their value in the absence of confinement. A linear scaling of
the typical current Iy, with the number of conduction channels M is obtained. This result is robust with
respect to changes in the relevant lengths of the samples and to the SR. Possible links of our results to

experiments are also discussed.

PACS numbers: 73.23.Ra

In recent years, advances in nanotechnology made it
possible to design mesoscopic samples in which the car-
riers are confined and mainly scattered by the boundaries
of the system [1]. In this situation, where the elastic mean
free path is much larger than the system size, the sample
can be considered in the ballistic regime in order to com-
pute the relevant transport quantities. In addition, the po-
tential that confines the carriers into the mesoscopic device
is not perfectly controlled in experiments. Therefore, even
when the bulk disorder is absent, surface roughness (SR)
is present, and as a consequence the carriers are irregularly
scattered at the borders of the sample.

When the sample is threaded by a magnetic flux, persis-
tent currents originate [2,3]. Persistent currents (PC) have
been studied [4—-6] in confined bidimensional cylindrical
systems without SR.

Without reference to PC, a discrete lattice has been con-
sidered recently in order to take into account SR in metallic
systems [7]. In the latter model, a kind of superficial disor-
der was introduced through the absence of hopping to and
from L sites chosen at random among the L? sites defining
the lattice.

Alternatively, in the present model SR emerges naturally
after imposing boundary conditions with a different topol-
ogy from that of the underlying lattice. In this Letter we
study the PC for circular (centered and noncentered) and
square bidimensional loops on a discrete square lattice in
which the confinement breaks completely the translational
symmetry. This introduces a qualitative difference with re-
spect to cylindrically shaped systems, in which the trans-
lational symmetry is preserved in the azimuthal direction
and the 2 degrees of freedom are decoupled. In addition,
the samples studied by us have the geometry of those con-
sidered in the experiment of Ref. [8].

Although much work has been done concerning the in-
fluence of bulk disorder on persistent currents [9], less is
known about the ballistic regime. Our goal is to charac-
terize the effect of the confinement and the SR on the mag-
nitude of the persistent current in clean metallic samples.
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Confinement effects in the context of orbital magnetism
were previously considered for semiconductor devices [10].

The total current can be calculated at zero temperature
as | = —9E/d¢, with E the total energy of the system
and ¢ the magnetic flux. The current is a periodic func-
tion of ¢ with fundamental period ¢pg = h/e. As a func-
tion of the normalized flux o = ¢ /¢y, the typical current
Iyp =/ [, 01 I? d a depends on the number of open channels
present in the system, M. For free electron models with
unbounded energy spectrum it is known that /iy, ~ VM
[4,10]. This behavior can be understood taking into ac-
count the properties of the crossings (or quasicrossings)
that appear in the spectrum when the flux is varied and
frustrate the coherent increase of the current [11]. As ex-
pected, the same scaling with M holds for tight binding
models away from half-filling [5].

We consider a N X N cluster on a square lattice. The
Hamiltonian is H = >, €mIm){m| + >t m+1/m) X
(m + 1] + c.c., where (m,n) = m labels the coordinates
of the sites in the lattice and 1 is a vector that points from
the site m to any of its four nearest neighbors. All the
lengths are given in units of the lattice constant a. The vec-
tor potential is A and fmy m+1 = ¢ exp(i fﬂ“ A - dl), where
the phase is measured in units of the quantum flux ¢y.

With the on-site energies, €y, we simulate the confining
potential in order to get the required profile of the sample.
We will first focus on the circular centered geometry. As
the confining potential and the underlying lattice have dif-
ferent symmetry, SR is present in these samples but the
rotational symmetry in 77 /2 is preserved. The lattice pa-
rameter a represents a cutoff for the allowed wavelengths
and therefore the SR will be relevant near half-filling, that
is, in the metallic regime. The two length scales are cho-
sen as the internal radius » and the width of the sample W.
While the second determines M, the ratio s = W/r con-
trols the strength of SR. For s > 1 and for carriers with
a wavelength of the order of a, two successive scattering
events by the inner and outer boundaries of the sample are
almost uncorrelated. On the other hand, for s << 1 those
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events are strongly correlated. Therefore the eigenstates
corresponding to these particular wavelengths will evolve
from generic extended ones to strongly localized as the
value of s is reduced.

In Fig. 1 we show for sample S1 (with W = 40and r =
20) the bottom [Fig. 1(a)] and the quarter filling [Fig. 1(b)]
regions of the energy spectrum as a function of the normal-
ized flux « together with a generic charge distribution for
each region. Figure 1(a) corresponds to the largest wave-
lengths that are the less sensitive to the effect of the SR.
This region of the spectrum looks qualitatively similar to
the spectrum of an integrable Aharonov-Bohm annular bil-
liard [11]. Moreover, the generic charge distribution cor-
responds to eigenstates with a well defined value of the
angular quantum number.

In the quarter-filling region the typical wavelengths are
larger than a but small enough to make the states sen-
sitive to an effective polygonal boundary. This implies
the loss of the continuous symmetry characteristic of the
very large wavelengths. Therefore, as the energy rises to-
wards half-filling, avoided crossings show up. The corre-
sponding charge distributions are quite similar to those for
a polygonal billiard and are extended states in general [see
Fig. 1(b)].

In any case, when an occupied level crosses (or quasi-
crosses) an empty one, the total current / exhibits a discon-
tinuity (or abrupt oscillation) [5]. As is shown in Fig. 2,
below half-filling, Iy, is a highly fluctuating function of
the number of particles, N,. This is a consequence of the
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FIG. 1. (a) Energy levels at the bottom of the spectrum as a

function of the rescaled magnetic flux a for sample S1 together

with a typical charge distribution. (b) Similar to (a) but for the

quarter-filling region of the spectrum.

random distribution of crossings (or quasicrossings) that
appears in these regions of the spectrum [11].

The upper region of the spectrum, close to half-filling,
is shown in Fig. 3(a) for S1. In this region of energies
the wavelengths are of the order of a. A bunch of quasi-
degenerate states appears at zero flux at half-filling which
manifests as a peak in the density of states (DOS) at zero
energy. For other circular centered samples a qualitatively
similar behavior was found.

In a bidimensional sample, a peak in the DOS at zero
energy could appear for a very specific relation between
the two relevant lengths of the sample. For example, for
a cylinder of circumference L (in units of a) and with M
transverse channels the condition is L = 2 (p/j) (M +
1) [4], where p and j are coprime integers. For a rectan-
gular sample, i.e., with Dirichlet boundary conditions in
both directions, with L X K sites the corresponding for-
mulais L +1=2(p/j) (K + 1). As a consequence,
for a square shaped sample the above relation is always
satisfied and a peak in the DOS manifests. We expect this
result to remain valid in general for the samples considered
in this work, in which Dirichlet boundary conditions are
imposed on the inner and outer borders, providing the con-
finement preserves the rotational symmetry in 77 /2. This is
confirmed by the numerical results presented in Fig. 4 for
the square loops. Therefore, independently of the number
of channels in the loop, the square and centered circular
geometries have a peak in the DOS at zero energy.

For the circular loops, as a consequence of the SR, the
states that conform the peak in the DOS have different
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FIG. 2. (a) Iy as a function of N, for sample S1. (b) Inset:
Similar to (a) for a bidimensional square loop with outer square
boundary of 20 X 20 and inner one of 6 X 6. Since the mean
perimeter of the square loop doubles the mean perimeter of S1,
the maximum value of Iy, in the inset is almost twice the value
for S1.
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FIG. 3. (a) Energy levels close to half-filling as a function
of the rescaled magnetic flux a for S1. (b) Typical charge
distributions for ALS (left side) and LBS (right side).

characteristics. Some of them are angularly localized states
(ALS) [see the left side of Fig. 3(b)]. They are not sen-
sitive to the magnetic flux and correspond to the flat lines
in the spectrum. The other types of states are mostly lo-
calized in the radial direction and look like whispering
gallery modes. We name them localized border states
(LBS). These LBS are originated by the correlated scat-
tering with the outer and inner boundaries of the sample
that allows that the charge distribution does not fill com-
pletely the loop and the state remains localized. Although
localized in one direction, the LBS go around the sample
being sensitive to the magnetic flux and carrying a finite
current. Moreover, they have a quasi-well-defined value of
the angular quantum number that characterizes the slope of
the eigenenergies as a function of the flux. The right side

1.0
08 —__W=5
——w=7
08 | — W=5 I\‘. 0.6 ———W=9
0.6
DOS
04 t
0.2
0.0 ‘ ‘ ‘
-0.2 -0.1 0.0 0.1 0.2
E

FIG. 4. DOS for square loops with different widths W. Notice
the peak presents in the DOS at half-filling. Inset: DOS for the
rectangular samples. There is no bunching of states at zero
energy in general.
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of Fig. 3(b) displays the characteristic charge distributions
for these LBS.

Opposite to what happens for systems with diagonal
disorder, in the present model the localization is obtained
without introducing an additional scale of energy. Only
the scale defined by the kinetic energy remains. At zero
flux, the energy of the localized states will be very close
to zero as a consequence of the symmetry and the finite
character of the spectrum. Therefore, the existence of
localized states in the system is manifested as a peak in
the DOS that is equivalent to a finite gap in the spectrum
of eigenergies. Before estimating the magnitude of the
gap we note that since the eigenenergies are degenerate at
a = 0 but with quite different values of their slopes, each
of the LBS must belong to a different conduction channel.
Being LBS, these states are quasi-one dimensional and the
energy gap is estimated as A, = (JE/dk)Ak = (yA)~!,
where Ak is the inverse of the mean radius of the ring and
v is a finite fraction of W which measures the degree of
spatial localization of the state. In order to check the above
result we have done numerical calculations for samples
with the same area A, obtaining the same value of A,.
The gap has an important consequence on the values of Iy,
close to half-filling. As is shown in Fig. 2, I,y, increases
monotonically with the number of occupied levels (number
of particles) N,.

Some comments must be made in connection to the
noncentered circular loops. Although in this case the SR
does not preserve the symmetry in 77 /2, it affects the inner
and outer boundaries of the samples in the same way. This
allows the correlated scattering between the inner and outer
borders, and therefore ALS and LBS also raise up at half-
filling, as it is illustrated in the spectrum of Fig. 5.
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FIG. 5. (a) DOS for a noncentered circular loop of W = 9.
(b) Energy spectrum as a function of the flux for the same
sample. Flat lines at zero energy are associated with ALS. Flux
depending eigenvalues beginning at zero energy are associated
with LBS. The number of the latter (former) increases (de-
creases) with W.
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FIG. 6. Linear scaling of Iy, with the number of channels M,
at half-filling, for square loops with the same mean perimeter.

In the case of the square loops, although the results
are qualitatively similar to those obtained for the circu-
lar samples, some important differences must be noticed:
(i) The square loops do not have SR and therefore there
are not avoided crossings in the spectrum as a function of
the flux. (ii) LBS carrying a finite current were also found.
Therefore Iy, increases coherently near half-filling as it is
shown in the inset of Fig. 2. (iii) As a consequence of the
absence of SR, ALS do not exist at half-filling (notice the
absence of the plateau in /iy, at half-filling).

For rectangular samples LBS could occur for very spe-
cific relations between its lengths, and in general the spec-
trum has no bunching of states at zero energy. In other
words, a peak in the DOS is not expected at half-filling for
the rectangular geometry, as is shown in the inset of Fig. 4.

We also find, in general, that when the localized bor-
der states that carry a finite current become dominant over
the angularly localized states the scaling of Iy, with M
at half-filling is substantially enhanced with respect to the
known scaling law out of half-filling ({iy, ~ VM). Fig-
ure 6 shows the actual scaling law obtained for the square
loops. Notice that the linear increase of Iy, with M is
consistent with the fact that each of the localized states
bunched at zero energy belongs to a different conduction
channel.

The effect described in the present Letter can help to
understand some puzzles about PC in metallic rings. This
is the case of the experiment of Ref. [8] in which the PC
of isolated Au rings was measured to be a factor of 30 to
100 times larger than the theoretical estimates. Our results,
without providing a definitive explanation of the discrep-

ancies between theory and experiment, are in line with the
strong enhancement of the current reported in it. Hav-
ing in mind that the LBS responsible for the enhanced PC
in the clean system are less sensitive to bulk disorder, it
seems reasonable to expect that they will not be substan-
tially modified in the diffusive regime. Therefore, even
after considering the corrective diffusive factor [12], the
actual value of the PC will be larger than other previous
theoretical estimates. Also in that experiment the reported
value of the signal for the circular loop was 5 times larger
than for the rectangular loop (although the predicted theo-
retical values were roughly the same). In fact, as we pre-
viously described, for the circular loop we obtained a peak
in the DOS and therefore the enhancement of the PC. On
the other hand, as we already discussed, for the rectangu-
lar sample the enhancement is not expected in general. As
a last point, we note that the enhancement of the current
predicted in this work does not have a critical dependence
on the dimensions and on the SR of the samples, making
their experimental realization feasible.
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