
1.1:         km 61.1cm 10km 1.incm54.2ftin. 12mift5280mi 1 5   
Although rounded to three figures, this conversion is exact because the given conversion 
from inches to centimeters defines the inch. 
 

1.2:  .in9.28
cm54.2

in1
L1
cm1000  L473.0 3
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1.3: The time required for light to travel any distance in a vacuum is the distance 
divided by the speed of light; 

ns.103.33s1033.3
sm103.00

m 10 36
8

3




  

 

1.4:  .
m
kg1013.1

m1
cm100

g1000
kg1

cm
g3.11 3

4
3
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1.5:       L. 36.5cm 1000L 1incm54.2in 327 33 3   
 
 

1.6: .
.oz16

bottle1
gal1

.oz128
L788.3

gal1
m1

L1000m1 3
3


































  

bottles2112bottles9.2111   
 
The daily consumption must then be 

  .
da

bottles78.5
da24.365

yr1
yr

bottles1011.2 3 







  

 
1.7:     .hrkm 2330mikm 61.1hrmi 1450   

    s.m 648s 3600hr 1kmm 10hrkm2330 3   
 
 

1.8:  .
h
mi67

h24
day1

day14
fortnight1

furlongs8
mile1

fortnight
furlongs000,180 


























  

 
 

1.9: .
gal
mi3.35

gal 1
L 788.3

km 1.609
mi 1

L
km0.15 














  

 



1.10:  a) 
s
ft88

mi1
ft 5280 

s3600
h1 

hr
mi60 






















  

 

b) 22 s
m8.9

cm 100
m 1 

ft1
cm48.30 

s
ft32 






















  

 
 

c) 3
3

3

3 m
kg10

g 1000
kg 1 

m 1
cm 100 

cm
g 1.0 





















  

 
 
 
1.11: The density is mass per unit volume, so the volume is mass divided by density. 

    333 cm 3077cmg5.19g1060 V   

Use the formula for the volume of a sphere, ,
3
4 3rV   

to calculate   cm0.943: 3/1  Vrr  
 
 
 
1.12:  %58.0100)s10(3.16s)10πs1016.3( 777   
 
 

1.13: a) %.101.1
m 10890

m 10 3
3




 

 
b) Since the distance was given as 890 km, the total distance should be 890,000 

meters. 
To report the total distance as 890,010 meters, the distance should be given as 
890.01 km. 

 
 
1.14: a)     2mm 72mm 98.5mm 12   (two significant figures). 
 b) mm 12

mm 98.5  = 0.50 (also two significant figures). 
c) 36 mm (to the nearest millimeter). 
d) 6 mm. 
e) 2.0. 

 
 
 



1.15: a) If a meter stick can measure to the nearest millimeter, the error will be about 
%.13.0 b) If the chemical balance can measure to the nearest milligram, the error will be 

about %.103.8 3  c) If a handheld stopwatch (as opposed to electric timing devices) can 
measure to the nearest tenth of a second, the error will be about %.108.2 2  
 
 
 
1.16: The area is 9.69  0.07 cm2, where the extreme values in the piece’s length and 

width are used to find the uncertainty in the area.  The fractional uncertainty in the 
area is 2

2

cm 69.9
cm 07.0  = 0.72%, and the fractional uncertainties in the length and width are 

cm 5.10
cm 01.0  = 0.20% and cm 1.9

cm 0.01  = 0.53%. 
 
 
 
 
 
1.17: a) The average volume is  

    3
2

cm 8.2cm 050.0
4
cm 50.8

π   

(two significant figures) and the uncertainty in the volume, found from the extreme 
values of the diameter and thickness, is about 3cm 3.0 , and so the volume of a 
cookie is .cm 3.08.2 3  (This method does not use the usual form for progation of errors, 
which is not addressed in the text.  The fractional uncertainty in the thickness is so much 
greater than the fractional uncertainty in the diameter that the fractional uncertainty in the 
volume is %10 , reflected in the above answer.) 
 
b) .2017005.

50.8   
 
1.18: (Number of cars   miles/car.day)/mi/gal = gallons/day 
(2 108 cars   10000 mi/yr/car   1 yr/365 days)/(20 mi/gal) = 2.75   108 gal/day 

 
 
1.19: Ten thousand;  if it were to contain ten million, each sheet would be on the order 
of a millionth of an inch thick.  
 
 
1.20: If it takes about four kernels to fill 1 cm3, a 2-L bottle will hold about 8000 
kernels. 
 
 



1.21: Assuming the two-volume edition, there are approximately a thousand pages, and 
each page has between 500 and a thousand words (counting captions and the smaller 
print, such as the end-of-chapter exercise and problems), so an estimate for the number of 
words is about 610 . 
 
 
1.22: Assuming about 10 breaths per minutes, 6024  minutes per day, 365 days per 
year, and a lifespan of fourscore (80) years, the total volume of air breathed in a lifetime 
is about 35 m102 . This is the volume of a room m20m100m100  , which is kind of 
tight for a major-league baseball game, but it’s the same order of magnitude as the 
volume of the Astrodome. 
 
 
1.23:  This will vary from person to person, but should be of the order of 5101 . 
 
 
1.24: With a pulse rate of a bit more than one beat per second, a heart will beat 105 
times per day.  With 365 days in a year and the above lifespan of 80 years, the number of 
beats in a lifetime is about 9103 . With 

20
1  L (50 cm3) per beat, and about 

4
1  gallon per 

liter, this comes to about 7104  gallons. 
 
 
1.25: The shape of the pile is not given, but gold coins stacked in a pile might well be in 
the shape of a pyramid, say with a height of m 2  and a base m 3m 3  .  The volume of 
such a pile is 3m 6 , and the calculations of Example 1-4 indicate that the value of this 
volume is .106$ 8   
 
 
1.26: The surface area of the earth is about 2142 m1054 R , where R is the radius of 
the earth, about m106 6 , so the surface area of all the oceans is about 214 m104 . An 
average depth of about 10 km gives a volume of 324318 cm104m104  . Characterizing 
the size of a “drop” is a personal matter, but 25 3cmdrops  is reasonable, giving a total of 

2610  drops of water in the oceans. 
 
 
1.27: This will of course depend on the size of the school and who is considered a 
"student''.  A school of thousand students, each of whom averages ten pizzas a year 
(perhaps an underestimate) will total 104 pizzas, as will a school of 250 students 
averaging 40 pizzas a year each. 
 
 



1.28: The moon is about mm104m104 118   away.  Depending on age, dollar 
bills can be stacked with about 2-3 per millimeter, so the number of bills in a stack 
to the moon would be about 1012.  The value of these bills would be $1 trillion (1 
terabuck). 
 
 
 
1.29:     .bills ofnumber  billArea USAof Area   
   

.inhabitantmillion $3.6  sinhabitant 10  5.2bills 109
bills 109cm 10m 1cm 6.7cm 6.15kmm 10km 571,372,9

814

142422262




 

 
 
1.30:   

 
   
 
1.31: 

 
                              

east ofnorth   38 km, 8.7   



1.32:  

 
 
 
a) 11.1 m @ o6.77  
b) 28.5 m @ o202  
c) 11.1 m @ o258  
d) 28.5 m @ o22  
 

 
1.33: 

 
 

 
 west.ofsouth  41 m, 144   

 
 



1.34: 

 
 
 
 
1.35:     m. 6.937.0 cos m 0.12 m, 2.737.0 sinm 0.12;  


yx AAA  

   
    m. 2.560.0sin  m 0.6 m, 0.360.0 cosm 0.6;

m. 6.940.0sin  m 0.15 m, 5.1140.0 cosm 0.15;
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1.36: 500.0
m 2.00
m 00.1 tan           (a) 




X

y

A
A
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2076.26180500.0tan                 

500.0
m 2.00
m 00.1  tan           (d)

1536.26180500.0tan                 

500.0
m 2.00

m 00.1 tan           )(

6.26500.0tan                

500.0
m 2.00
m 00.1 tan           (b)

3336.26360500.0tan                 
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1

1
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1.37: Take the +x-direction to be forward and the +y-direction to be upward.  Then the 
second force has components N4334.32cos22  FF x and N.2754.32sin22  FF y   
The first force has components .0 and N725 11  yx FF  

N115821  xxx FFF  and N27521  yyy FFF  
 
The resultant force is 1190 N in the direction 13.4 above the forward direction. 
 
 
1.38: (The figure is given with the solution to Exercise 1.31). 
 
 The net northward displacement is (2.6 km) + (3.1 km) sin 45o = 4.8 km, and the 

net eastward displacement is (4.0 km) + (3.1 km) cos 45o = 6.2 km.  The 
magnitude of the resultant displacement is 22 )km2.6()km8.4(   = 7.8 km, and 
the direction is arctan  2.6

8.4  = 38o north of east. 

 
    
 



1.39: Using components as a check for any graphical method, the components of B


are 
m 4.14xB and m, 8.10yB A


has one component, m 12xA . 

a) The -x  and -y components of the sum are 2.4 m and 10.8 m, for a magnitude 

of     m, 1.11m 8.10m 2.4 22  , and an angle of .6.77
2.4

10.8 





  

b) The magnitude and direction of A + B are the same as B + A. 
c) The x- and y-components of the vector difference are – 26.4 m and 

m, 8.10 for a magnitude of m 28.5 and a direction arctan   .2024.26
8.10 

  Note that 
180 must be added to     22arctanarctan 4.26

8.10
4.26
8.10 

  in order to give an angle in the 
third quadrant. 
 

d) .ˆm 8.10ˆm 4.26ˆm 0.12ˆm 8.10ˆm 4.14 jiijiAB 


 

    .2.22
26.4
10.8arctan of angle andat  m 5.28m 8.10m 26.4  Magnitude 22 






  

 
 
1.40: Using Equations (1.8) and (1.9), the magnitude and direction of each of the given 

vectors is: 
 
 a) 22 )cm20.5()cm6.8(   = 10.0 cm, arctan  60.8

20.5
  = 148.8o (which is 

180o – 31.2o). 
 
 b) 22 )m45.2()m7.9(  = 10.0 m, arctan  7.9

45.2

  = 14o + 180o = 194o. 

 
 c) 22 )km70.2()km75.7(  = 8.21 km, arctan  75.7

7.2  = 340.8o (which is 
360o – 19.2o). 
 
 



1.41: 

 
 

 
The total northward displacement is km, 75.1km 50.1km 3.25  , and the total 

westward displacement is km 4.75 . The magnitude of the net displacement is 

    km. 06.5km 75.4km 1.75 22   The south and west displacements are the same, so 
The direction of the net displacement is 69.80 West of North.  
 
 
1.42: a)  The x- and y-components of the sum are 1.30 cm + 4.10 cm = 5.40 cm,  

2.25 cm + (–3.75 cm) = –1.50 cm. 
 

b) Using Equations (1-8) and (1-9), 
 

22 )cm50.1()cm04.5(  = 5.60 cm, arctan  40.5
50.1


  = 344.5o ccw. 

 
c) Similarly, 4.10 cm – (1.30 cm) = 2.80 cm, –3.75 cm – (2.25 cm) = –6.00 cm. 

 
d)  22 )cm0.6()cm80.2(   = 6.62 cm, arctan  80.2

00.6  = 295o (which is 360o – 65
 
 



1.43: a) The magnitude of BA


  is 

    
    

cm 48.2
60.0sin  cm 90.10.60sin cm 2.80    

60.0 cos cm 90.160.0 cos cm 80.2
2

2






















 

and the angle is  
   
   







18
0.60coscm 90.160.0 cos cm 2.80
0.60sincm 90.160.0sin  cm 2.80arctan 









  

 
 b) The magnitude of BA


 is 

    
    

cm 10.4
60.0sin  cm 90.10.60sin cm 2.80    

60.0 cos cm 90.160.0 cos cm 80.2
2

2























 

and the angle is  
   
   







84
0.60coscm 90.160.0 cos cm 2.80
0.60sincm 90.160.0sin  cm 2.80arctan 









  

 c)    .26418084 is angle  theand cm 4.10 is magnitude  the; 


 BAAB  
 

 
 
 

1.44: 


A  = (–12.0 m) î .  More precisely, 
 

      .180 sinm 012180 cosm 012 jiA


 ..   
 

          jijiB ˆm 8.10ˆm 4.14ˆ37 sinm 018ˆ37 cosm 018  


..  
 

 
1.45:         jijiA ˆm 6.9ˆm 2.7ˆ37.0 cos m 0.12ˆ37.0 sinm 0.12  


 

       
        jijiC

jijiB
ˆm 2.5ˆm 0.3ˆ60.0sin  m 0.6ˆ60.0 cosm 0.6

ˆm 6.9ˆm 5.11ˆ40.0sin  m 0.15ˆ40.0 cosm 0.15












 

 
 



1.46:  a)         jijiA ˆm 38.3ˆm 23.1ˆ0.70sinm 60.3ˆ0.70cosm 60.3  


 
              jijiB ˆm 20.1ˆm 08.2ˆ30.0sin  m 40.2ˆ30.0 cos m 40.2  


 

b)  
   BAC


00.4 00.3   

    
           
    ji

jiji
ˆ94.14ˆm 01.12

ˆm 20.100.4ˆm 08.200.4ˆm 38.300.3ˆm 23.100.3




 

 
  (Note that in adding components, the fourth figure becomes significant.) 

c) From Equations (1.8) and (1.9), 

    2.51
m 12.01
m 14.94arctan  m, 17.19m 94.14m 01.12 22 





C  

 
 

1.47: a)         39.500.200.5  ,00.500.300.4 2222  BA  
 
b)          jijiBA ˆ00.5ˆ00.1ˆ00.200.5ˆ00.300.4 


 

c)      3.101
1.00-
5.00arctan    ,10.500.51.00 22 






  

 
d) 

 
  
 
 



1.48: a) 13111ˆˆˆ 222  kji  so it is not a unit vector 

 
b)   222

zyx AAA A


 

 
If any component is greater than + 1 or less than –1, 1A


, so it cannot be a unit 

vector. A


can have negative components since the minus sign goes away when the 
component is squared. 
 
 

c)  

   
125

1 0.40.3

1

2

2222







a

aa

A


 

 

   20.0
0.5

1
a  

 
 
1.49: a) Let ,ˆˆ jiA yx AA 


  .ˆˆ jiB yx BB 


 

   
    jiAB

jiBA
ˆˆ

ˆˆ

yyxx

yyxx

ABAB

BABA








 

 
Scalar addition is commutative, so ABBA


  

 

yyxx

yyxx

ABAB

BABA





AB

BA




 

 
Scalar multiplication is commutative, so ABBA


  

 
b)      kjiBA ˆ ˆˆ xyyxzxxzyzzy BABABABABABA 


 

       ˆ ˆˆ kjiAB xyyxzxxzyzzy ABABABABABAB 


 
Comparison of each component in each vector product shows that one is the 

negative of the other. 
 
 



1.50: Method 1:  θ cos magnitudes ofoduct Pr   

 
 
 
  2

2

2

m 5.71187 cos m 6m 12 cos AC
m 6.1580 cos m 6m 15 cos BC

m 4.993 cos m 15m 12 cos AB













θ
θ
θ

 

 
 Method 2:  (Sum of products of components) 

 

 

2

2

2

m 5.71)20.5(9.58)()0.3()22.7(
m 6.15)20.59.64)(()0.311.49)((
m 4.99.64)(9.58)((11.49) 22.7







CA
CB
BA

 

 
 
 
1.51: a) From Eq.(1.21), 

 
      .00.1400.200.300.500.4 BA


 

 
b)        .7.58.5195arccos 39.500.500.14 arccos  so , cos AB  θθBA  
 
 
1.52: For all of these pairs of vectors, the angle is found from combining Equations 

(1.18) and (1.21), to give the angle  as 
 

   .arccosarccos 






 








 


AB
BABA

AB
yyxxBA



  

 
 In the intermediate calculations given here, the significant figures in the dot 

products and in the magnitudes of the vectors are suppressed. 
 
 a) ,13,40,22  BABA


and so 

 

    165
1340

22arccos 






 
 . 

 

 b) ,136,34,60  BABA


 28
13634

60arccos 







 . 

 
 c) .90,0  BA


 

 
 



1.53: Use of the right-hand rule to find cross products gives (a) out of the page and b) 
into the page. 
 
 
1.54: a) From Eq. (1.22), the magnitude of the cross product is 
 
         2m13037180sinm0.18m0.12    
 
The right-hand rule gives the direction as being into the page, or the – z-direction. Using  

Eq. (1.27), the only non-vanishing component of the cross product is 
 
         2m13037sinm0.18m12  

yxz BAC  
 

b) The same method used in part (a) can be used, but the relation given in Eq. 
(1.23) gives the result directly:  same magnitude (130 m2), but the opposite 
direction (+z-direction). 

 
 
 
1.55: In Eq. (1.27), the only non-vanishing component of the cross product is 
 

      ,00.2300.500.300.200.4  xyyxz BABAC   

so   ,ˆ00.23 kBA 


 and the magnitude of the vector product is 23.00. 
 
 
 



1.56:    a) From the right-hand rule, the direction of BA


 is into the page (the – 
z-direction). The magnitude of the vector product is, from Eq. (1.22), 

 
   .cm61.4120sincm90.1cm80.2sin 2 AB  

Or, using Eq. (1.27) and noting that the only non-vanishing component is 
 

  
   
   

2cm61.4
0.60coscm90.10.60sincm80.2

60sincm90.10.60coscm80.2













xyyxz BABAC

 

    
gives the same result. 
 

b) Rather than repeat the calculations, Eq. (1-23) may be used to see that 
AB


  has magnitude 4.61 cm2 and is in the +z-direction (out of the page). 
 

 
 
 
1.57: a) The area of one acre is ,mi mi mi 2

640
1

80
1

8
1  so there are 640 acres to a square 

mile. 
 

b)     2
22

ft 560,43
mi 1

ft 5280
acre 640

mi 1acre 1 














  

 
(all of the above conversions are exact). 
 

c)  (1 acre-foot)   gal, 1026.3
ft 1

gal 477.7ft 560,43 5
3

3 





  

which is rounded to three significant figures. 
 
 
1.58: a)   .m12$mft7710)ft43560acre1(acres)102000,950,4($ 2222  .  

b) .in008$.)cm100m1(in)cm54.2()m12$( 2222   
c) parcel. sized stamp postagefor 007$.)in87in1(in008$. 2   

 
 
 



1.59: a) To three significant figures, the time for one cycle is 
 

s. 1004.7
Hz 10420.1

1 10
9




 

 

   b) 
h

cycles 1011.5
h 1

s 3600
s

cycles 101.420 129 












   

 
   c) Using the conversion from years to seconds given in Appendix F, 

    .1006.2y 10600.4
y 1

s 10156.3Hz 101.42 269
7

9 






 
    

  
   d)    s. 104.60by  off be dclock woul  theso ,y 1000.1104.60y 104.600 4549   
 
 
1.60: Assume a 70-kg person, and the human body is mostly water.  Use Appendix D to 
find the mass of one H2O molecule:  18.015 u   1.661   10–27 kg/u = 2.992   10–26 
kg/molecule.  (70 kg/2.992   10–26 kg/molecule) = 2.34   1027 molecules.  (Assuming 
carbon to be the most common atom gives 3   1027 molecules. 
 
 
1.61: a) Estimate the volume as that of a sphere of diameter 10 cm: 

343 m102.5
3
4  rV   

Mass is density times volume, and the density of water is 3mkg 1000 , so 
    kg 5.0m102.5mkg 100098.0 343  m  

 
b) Approximate as a sphere of radius m25.0 µr   (probably an over estimate) 

3203 m105.6
3
4  rV   

    g106kg106m105.6mkg 100098.0 -14173203  m  
 

c) Estimate the volume as that of a cylinder of length 1 cm and 
radius 3 mm: 

    g3.0kg103m108.2mkg 100098.0

m108.2
4373

372








m
lrV 

 

 
 



1.62: a)  
ρ

MV
V
Mρ   so,  

  

cm 2.94m1094.2

m1054.2
kg/m 1086.7
kg 200.0 

2

35
33

3












x

x
 

 

b)  
cm 1.82m1082.1

m1054.2
3
4 

2

353









R

R  

 
 
1.63: Assume each person sees the dentist twice a year for checkups, for 2 hours. Assume 
2 more hours for restorative work. Assuming most dentists work less than 2000 hours per 
year, this gives dentist.per  patients 500 patient per  hours  4hours 2000  Assuming only 
half of the people who should go to a dentist do, there should be about 1 dentist per 1000 
inhabitants. Note: A dental assistant in an office with more than one treatment room 
could increase the number of patients seen in a single dental office. 
 
 

1.64: a) atoms.106.2
1014
100.6

)kg100.6( 50

mole
kg3
mole
atoms23

24 











   

 
b) The number of neutrons is the mass of the neutron star divided by the 

mass of a neutron: 
 

neutrons.104.2
)neutronkg107.1(

)kg100.2()2( 57
27

30





  

c) The average mass of a particle is essentially 3
2  the mass of either the proton or 

the neutron, 27107.1   kg.  The total number of particles is the total mass divided by this 
average, and the total mass is the volume times the average density.  Denoting the density 
by  (the notation introduced in Chapter 14). 

 

.102.1
)kg107.1(

)mkg10()m105.1()2(

3
2

3
4

79
27

318311

p

3

ave








 

m

R

m
M

 
Note the conversion from g/cm3 to kg/m3. 

 
 
 



1.65: Let D


 be the fourth force. 
 

 

N90.310.53sin   N,07.240.53cos

N28.690.30cos  N,00.400.30sin

N00.500.30cos    N,6.860.30cos
  so,0

















CCCC

BBBB

AAAA

yx

yx

yx

CBADDCBA

 

Then N34.87        N,53.22  yx DD  

N; 2.9022  yx DDD  

 
53.22/34.87/tan  xy DDα  

54.75α  
axis- from ckwisecounterclo ,256180 xαφ    

 
1.66: 
 

 
  
 

   

344.0
km 311.5
km 2.107tan

km 330km 2.107km 5.311

km 2.10748sin  km) 230(68 cos km) 170(

km 5.31148 cos km) 230(68sin  km) 170(

2222









x

y
R

yx

yyy

xxx

R
R

θ

RRR

BAR
BAR





 

 
east ofsouth  19Rθ  

 
 



1.67: a)  

 
 

 
b)  Algebraically, are  of components  theso and , ABCA


  

 
   
    cm. 10.863.0sin  cm 40.622.0sin  cm 40.6

cm 03.363.0 cos cm 40.622.0 cos cm 40.6








yyy

xxx

BCA
BCA

 

 

    5.69
cm 3.03
cm 8.10arctan   cm, 65.8cm 10.8cm 03.3     c) 22 






A  

 
 



1.68:a) xxxx CBAR 

 

           

           
m. 3.5

60180sinm 0.640sinm 00.153790 sinm 0.12

and  m, 7.15
60180cosm 0.640cosm 00.153790 cosm 0.12













yyyy CBAR  

    
 The magnitude of the resultant is  m 6.1622  yx RRR , and the direction from 

the positive x-axis is arctan   6.187.15
3.5  . Keeping extra significant figures in the 

intermediate calculations gives an angle of ,49.18   which when considered as a 
positive counterclockwise angle from the positive x-axis and rounded to the 
nearest degree is 342 . 

 
 

        
 

b)   m; 14.5m 58.9m 64.9m 20.5
m; 71.21m 49.11m 22.7m 00.3





y

x

S
S

 

   3.13
)71.21(
)14.5(arctan 










θ  

m 3.22)m14.5()m71.21( 22 S  
 
 

     
 
 
 
 



1.69: 

 
 

Take the east direction to be the -x direction and the north direction to be the 
-y direction. The x- and y-components of the resultant displacement of the 

first three displacements are then 
  

     
    m, 0.9430 cos m 28045 cos m 210

m, 10830sin  m 28045sin  m 210m 180







 

 
keeping an extra significant figure.  The magnitude and direction of this net displacement 
are 

    .9.40
m 108
m 94arctan    m, 144m 0.94m 108 22 






  

The fourth displacement must then be 144 m in a direction 9.40 south of west. 
 
 
 
 
 
 
 



1.70: 

 
    
 
 The third leg must have taken the sailor east a distance 
 

      km 33.1km 00.245 cos km 50.3km 80.5    
 
 and a distance north 
 

   km 47.245sinkm 5.3   
 The magnitude of the displacement is 
 

km 81.2)km47.2()km33.1( 22   
 
 and the direction is arctan  33.1

47.2 = 62  north of east, which is  286290 east 
of north.  A more precise answer will require retaining extra significant figures in 
the intermediate calculations. 

 
 
 
1.71: a) 

        
 
b) The net east displacement is 
      km, 37.122 cos km 30.330 cos km 40.745sin  km 80.2    and the net north 

displacement is       km, 48.022.0sin  km 30.330sin  km 40.745 cos km 80.2    

and so the distance traveled is     km. 45.1km 48.0km 1.37 22    
 
 



1.72: The eastward displacement of Manhattan from Lincoln is 
 
       km 3.34235sinkm 166167sin  km 10685sinkm 147    
 and the northward displacement is 
 
        km 7.185235coskm 166167 cos km 10685coskm 147     
 
 (A negative northward displacement is a southward displacement, as indicated in 

Fig. (1.33).  Extra figures have been  kept in the intermediate calculations.) 
 
 a)  km 189)km7.185()km3.34( 22   
 

b) The direction from Lincoln to Manhattan, relative to the north, is 
 

arctan 5.169
km7.185

km3.34











 

  
 and so the direction to fly in order to return to Lincoln is  5.3491805.169  . 
 

      
 
 



1.73: a) Angle of first line is   .42tan 10210
202001  

θ  Angle of 
second line is .723042    Therefore 

8772 cos 25010  X  
25872sin  25020  Y  

 
for a final point of (87,258). 
b) The computer screen now looks something like this: 
 

 
 
 

The length of the bottom line is     13625820087210 22   and its direction is 
  25tan 87210

2002581 
 below straight left. 

 
 



1.74: a) 

 
  

 
b) To use the method of components, let the east direction be the x-direction 

and the north direction be the y-direction.  Then, the explorer’s net x-
displacement is, in units of his step size, 

 
    7.1160 cos8045cos40    

 
 and the y-displacement is 
 
        .6.475060 sin8045sin40     
 
 The magnitude and direction of the displacement are 
 

    ,49)6.47()7.11( 22    arctan 104
7.11

6.47










. 

(More precision in the angle is not warranted, as the given measurements are to 
the nearest degree.)  To return to the hut, the explorer must take 49 steps in a 
direction  1490104   east of south. 

 
 



1.75: Let +x be east and +y be north.  Let A


be the displacement 285 km at 0.40  north 
of west and let B


be the unknown displacement. 

 

km. 380

km. 2.183 km, 333.3Then 

0 km, 115

km 2.18340.0sin   km, 3.2180.40cos

 

east  km, 115  where,

22

,
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east ofsouth  ,8.28

km 3.333km2.183tan




α

BBα xy  

 
 
1.76:  

 

N 960
0.35 sin

N550
sin

                    

sin                 c)(

cos                 b)(

sin                  (a)

0
par

par

perp

par












ω
ω

ωω
ωω
ωω

 

 
 



1.77:  

  exerts. biceps  theforce  theis B


 
 

N;160

N2.37N,2.158Then 
N5.132 ,0

N7.16943 cos  N, 2.15843sin

    ,
upward. is and N 5.132  where,

exerts. elbow  theforce  theis 

22 
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yx

yx

yx

yyyxxx

EEE

EE
RR

BBBB

BREBRE
R







RBE
E

 

 

   
horizontal below ,13

2.1582.37tan




α

EEα xy  

 
 
 



1.78: (a) Take the beginning of the journey as the origin, with north being the y-
direction, east the x-direction, and the z-axis vertical. The first displacement is then 

,ˆ30k  the second is ĵ15 , the third is m) 200  km 2.0( ̂200 i , and the fourth is ĵ100 . 
Adding the four:  
 

kjijijk ˆ30ˆ85ˆ200ˆ100ˆ200ˆ15ˆ30   
 
 (b) The total distance traveled is the sum of the distances of the individual segments: 30 
+ 15 + 200 + 100 = 345 m. The magnitude of the total displacement is:  
 

  m2193085200 222222  zyx DDDD  
 
 
1.79: Let the displacement from your camp to the store be .A


 

 

062sin  48sin  32sin   so  ,0

062 cos 48 cos 32 cos  so  ,0
 

north be  andeast  be Let 
 westofsouth  62 is  and west ofsouth  32 is 

east ofsouth  32 m, 240























CBACBA

CBACBA

yx

A

yyy

xxx

0CBA

CB

 

A is known so we have two equations in the two unknowns B and C.  Solving gives 
B = 255 m and C = 70 m. 
 
 
1.80: Take your tent's position as the origin. The displacement vector for Joe's tent is 
    .̂205.8ˆ33.19ˆ23sin  21ˆ23 cos 21 jiji    The displacement vector for Karl's tent is 
    jiji ˆ26.19ˆ56.25ˆ37sin  32ˆ37 cos 32   . The difference between the two 
displacements is: 
 

    jiji ˆ46.27ˆ23.6ˆ25.19205.8ˆ56.2533.19  . 
 
The magnitude of this vector is the distance between the two tents:  
 

    m 2.2846.2723.6 22 D  
 
 



1.81: a) becomes (1.22) Eq.,0With  zz BA  
     

 
 
 cos 

cos
sinsincoscos

sin sin cos Bcos 

AB
θθAB

θθθθAB
θBθAθθABABA

BA

BABA

BABAyyxx








 

 
where the expression for the cosine of the difference between two angles has been used 
(see Appendix B). 
 
b) With zzzz CCCBA   and ˆ   ,0 kC


. From Eq. (1.27), 

     

 
sin

sin

cossinsincos

 cos sin   cos  cos 

AB
θθAB

θθθθAB

θBθAθBθA

BABAC

AB

BABA

AABA

xyxx











 

 
       

1.82: a) The angle between the vectors is ,14070210    and so Eq. (1.18) gives 
   2m 62.6140 cos m 40.2m 60.3  


BA  Or, Eq. (1.21) gives 

         
2m 62.6

210sin  m 4.270 sinm 6.3210 cosm 4.270cosm 60.3








yyxx BABABA

 

 
b) From Eq. (1.22), the magnitude of the cross product is 

 
   2m 55.5140sin  m 40.2m 60.3  , 

  
 and the direction, from the right-hand rule, is out of the page (the  

+z-direction).  From Eq. (1-30), with the z-components of BA


and  
vanishing, the z-component of the cross product is 

 
   

   
2m 55.5

210 cosm 40.270sinm 60.3                       

210sinm 40.270 cosm 60.3









xyyx BABA

 

 
 



1.83: a) ABC  triangleof area 2  area ramParallelog   

      
     

θBA
θ

sin  area mParellogra
sin A B21heightbase21 area Triangle




 

  b) 90  
 
 
1.84: With the +x-axis to the right, +y-axis toward the top of the page, and +z-axis out 

of the page,       .0,cm9.68,cm8.87 22  zyx BABABA


 
 
 
 

1.85: a)       .39.500.400.300.2 222 A  

      .36.400.300.100.3 222 B  
 

   b)  
     
     kji

kjiBA
ˆ00.7ˆ00.2ˆ00.5

ˆˆˆ



 zzyyxx BABABA


 

 
      ,83.800.700.25.00   c) 222   

 
and this will be the magnitude of AB


 as well. 

 
 
1.86: The direction vectors each have magnitude 3 , and their dot product is (1) (1) + 
(1) (–1) + (1) (–1) = –1, so from Eq. (1-18) the angle between the bonds is arccos 
=  

33
1 = arccos   1093

1  . 
 
 
 



1.87: The best way to show these results is to use the result of part (a) of  Problem 1-65, 
a restatement of the law of cosines.  We know that 
 

,cos 2222 ABBAC   
where   is the angle between A


 and B


. 

 
a) If ,0 cos ,222  BAC and the angle between A


and B


is 90 (the vectors are 

perpendicular). 
 
b) If ,0cos ,222  BAC  and the angle between A


and B


is greater than 90 . 

c) If ,0cos ,222  BAC and the angle between A


and B


is less than 90 . 
 
 



1.88:  a) This is a statement of the law of cosines, and there are many ways to 
derive it.  The most straightforward way, using vector algebra, is to assume the linearity 
of the dot product (a point used, but not explicitly mentioned in the text) to show that 
the square of the magnitude of the sum BA


 is 

 

   

   

cos2
2

2

22

22

ABBA
BA









BA

BABBAA

BBABBAAABABA







 

    
Using components, if the vectors make angles A and B with the x-axis, the components 
of the vector sum are A cos A + B cos B and A sin A + B sin B, and the square of the 
magnitude is 
  
   22 sinsin  cos cos BABA θBθAθBθA 

   
 

 




 cos 2

cos 2

sinsincoscos2                                      
sincos sincos                                   

22

22

222222

ABBA
θABBA

θθθθAB
θθBθθA

BA

BABA

BBAA








 

    
where  = A – B is the angle between the vectors. 
 

b) A geometric consideration shows that the vectors BA


,  and the sum BA




must be the sides of an equilateral triangle.  The angle between BA


and,  is 
120o, since one vector must shift to add head-to-tail.  Using the result of part 
(a), with ,BA   the condition is that  cos2 2222 AAAA  , which solves 
for 1 = 2 + 2 cos , cos  = ,2

1  and  = 120o. 
c) Either method of derivation will have the angle    replaced by 180o – , so 

the cosine will change sign, and the result is .cos222 ABBA   
d) Similar to what is done in part (b), when the vector difference has the same 

magnitude, the angle between the vectors is 60o.  Algebraically,  is obtained 
from 1 = 2 – 2 cos , so cos  = 2

1  and  = 60o. 
 

 
 



1.89:  Take the length of a side of the cube to be L, and denote the vectors from a to b, a 
to c and a to d as DCB


 and ,, . In terms of unit vectors, 

  ,k̂B L


       ,ˆˆ kjC  L


   .ˆˆˆ kjiD  L


 
 
 
 
 
Using Eq. (1.18), 

    ,7.54
3 

 arccos arccos
2





















 
LL
L

BD
DB  

    .3.35
3 2

2 arccos arccos
2





















 
LL

L
CD

DC  

 
 
1.90: From Eq. (1.27),  the cross product is 
 

 .ˆ
00.13
00.11ˆ

00.13
00.6ˆ)00.1(13ˆ)00.11(ˆ)00.6(ˆ)00.13( 















 kjikji  

 
The magnitude of the vector in square brackets is ,93.1  and so a unit vector in this 

direction (which is necessarily perpendicular to both )and BA


 is 
 

    






 
93.1

ˆ)1300.11(ˆ)00.1300.6(ˆ)00.1( kji . 

 
 The negative of this vector, 
 

    






 
93.1

ˆ)1300.11(ˆ)00.1300.6(ˆ)00.1( kji , 

 
 is also a unit vector perpendicular to BA


and . 

 
 
 



1.91: A


and C


are perpendicular, so 0,   .0  yyxx CACACA


, which gives 
.05.65.0  yx CC  

 0.150.75.3so ,0.15  yx CCCB


 
We have two equations in two unknowns xC  and yC . Solving gives 

.1.6 and 0.8  yx CC  
 
 
1.92:  θAB sin  BA


 

   
   5984.0

00.300.3
00.200.5

sin 
22








AB

θ
BA


 

  8.365984.0sin 1  θ  
 
 
1.93: a) Using Equations (1.21) and (1.27), and recognizing that the vectors 

CBA


 and,, do not have the same meanings as they do in those equations,  
  
        

.

ˆˆˆ

zxyzyxyzxyxzxyzxzy

xyyxzxxzyzzy

CBACBACBACBACBACBA
BABABABABABA


 CkjiCBA


 

A similar calculation shows that 
 

  xyzyxzzxyxzyyzxzyx CBACBACBACBACBACBA  CBA


 
and a comparison of the expressions shows that they are the same. 
 
b) Although the above expression could be used, the form given allows for ready 
compuation of BA


   the magnitude is   37.0sin  20.00sin  AB and the direction 

is, from the right-hand rule, in the +z-direction, and so 
 

      .2.7200.637.0sin  20.00  


CBA  
 
 



1.94: a) The maximum and minimum areas are 
 
  (L + l) (W + w) = LW + lW + Lw,   (L – l) (W – w) = LW – lW – Lw, 
 
 where the common terms wl have been omitted.  The area and its 

uncertainty are then WL  (lW + Lw), so the uncertainty in the area is  
a = lW  + Lw. 

 
   b)  The fractional uncertainty in the area is 

 

,W
w

L
l

WL
WllW

A
a




  

 the sum of the fractional uncertainties in the length and width. 
 
   c)  The similar calculation to find the uncertainty v in the volume will involve 
neglecting the terms lwH, lWh and Lwh as well as lwh; the uncertainty in the volume is v 
= lWH + LwH + LWh, and the fractional uncertainty in the volume is 

 

,
H
h

W
w

L
l

HLW
LWhLwHlWH

V
v




  

 
the sum of the fractional uncertainties in the length, width and height. 
 

 
 
 
 
1.95: The receiver's position is 
 
        .ˆ0.28ˆ0.16ˆ0.180.40.110.5ˆ0.120.60.90.1 jiji   
 
The vector from the quarterback to the receiver is the receiver's position minus the 
quarterback's position, or     ji ˆ0.35ˆ0.16  , a vector with magnitude 

    ,5.380.350.16 22  given as being in yards.  The angle is   6.24arctan 0.35
0.16  to the 

right of downfield. 
 
 



1.96: a)  
   

 
 

b)  i)   In AU, 22 )9329.0()3182.0(   = 0.9857. 

ii) In AU, 222 )0414.()4423.()3087.1(   = 1.3820 
iii) In AU, 
 

222 )0414.0())4423.(9329.0())3087.1(3182.0(   = 1.695. 
 

c) The angle between the directions from the Earth to the Sun and to 
Mars is obtained from the dot product.  Combining Equations (1-18) 
and (1.21), 

 

)695.1)(9857.0(
)9329.04423.0)(9329.0()3182.03087.1)(3182.0(arccos 



 


 
    d)  Mars could not have been visible at midnight, because the Sun-Mars angle is less 
than 90o. 
 



1.97: a)  

  
 
The law of cosines (see Problem 1.88) gives the distance as  
 
       ly, 2.764.154cosly 77ly 1382ly 77ly 138 22    

 
where the supplement of 6.25 has been used for the angle between the direction 
vectors. 
b) Although the law of cosines could be used again, it's far more convenient to use the 
law of sines (Appendix B), and the angle is given by 
 

,1295.51180,5.51ly 138
ly 76.2

25.6sin arcsin 










  

where the appropriate angle in the second quadrant is used. 
 
 
1.98:  Define kjiS ˆˆˆ CBA 


 

 

    
CzByAx

CBAzyx


 )ˆˆˆ()ˆˆˆ( kjikjiSr


 

      
 If the points satisfy Ax + By + Cz = 0, then 0 Sr


 and all points r  are 

perpendicular to S


. 
 

       



2.1:  a) During the later 4.75-s interval, the rocket moves a distance 
m63m1000.1 3  , and so the magnitude of the average velocity is 

.sm197
s754

m63m1000.1 3




.
 

       b)  sm 169s 5.90
m 1000.1 3
  

 
 
2.2: a) The magnitude of the average velocity on the return flight is 
 

    .sm42.4
)das400,86()da5.13(

)m105150( 3


  

 
The direction has been defined to be the –x-direction ).ˆ( i  
 
      b)  Because the bird ends up at the starting point, the average velocity for the round 
trip is 0. 

 
 
2.3: Although the distance could be found, the intermediate calculation can be avoided 
by considering that the time will be inversely proportional to the speed, and the extra time 
will be  

min.701
hrkm70
hrkm105min)140( 








  

 
2.4:    The eastward run takes )sm5.0m200(  = 40.0 s and the westward run takes 

)sm4.0m280(  = 70.0 s. a) (200 m + 280 m)/(40.0 s + 70.0 s) = sm4.4  to two 
significant figures. b) The net displacement is 80 m west, so the average velocity is 

)s 110.0m80(  = sm73.0  in the –x-direction ).ˆ( i  
 

 
2.5: In time t the fast runner has traveled 200 m farther than the slow runner: 

s286 so ,s)m(6.20m200s)m50.5(  ttt .  
Fast runner has run m.1770)sm20.6( t   
Slow runner has run m.1570)sm50.5( t  
 
 



2.6: The s-waves travel slower, so they arrive 33 s after the p-waves. 
 

km250

s33
5.65.3

s33

s33

s
km

s
km

ps

ps











d

dd
v
d

v
d

v
dtvtd

tt

 

 
 
2.7: a) The van will travel 480 m for the first 60 s and 1200 m for the next 60 s, for a 
total distance of 1680 m in 120 s and an average speed of .sm0.14   b) The first stage of 
the journey takes s30sm 8.0

m 240   and the second stage of the journey takes 

,s12s)m20m240(   so the time for the 480-m trip is 42 s, for an average speed of 
.sm11.4  c) The first case (part (a));  the average speed will be the numerical average 

only if the time intervals are the same. 
 
 
2.8: From the expression for x(t), x(0) = 0, x(2.00 s) = 5.60 m and x(4.00 s) = 20.8 m. a)  

sm80.2s 2.00
0m 60.5   b)  sm2.5s4.00

0m 8.20    c)  sm6.7s2.00
m5.60m8.20   

 
 
2.9:  a) At 0  ,0 11  xt , so Eq (2.2) gives 

.sm0.12
s)0.10(

s)0.10)(sm120.0(s)0.10)(sm4.2( 3322

2

2
av 




t
xv  

 
     b) From Eq. (2.3), the instantaneous velocity as a function of time is 
 

,)sm360.0()sm80.4(32 2322 ttctbtvx   
 
so i)  ,0)0( xv  

    ii) ,sm0.15s)0.5)(sm360.0()s0.5)(sm80.4()s0.5( 232 xv  

and iii) .sm0.12s)0.10)(sm360.0()s0.10)(sm80.4()s0.10( 232 xv  

     c) The car is at rest when 0xv . Therefore 0)sm360.0()sm80.4( 232  tt . The 

only time after 0t  when the car is at rest is s3.133

2

sm 360.0
sm80.4 t  

 
 



2.10: a) IV:  The curve is horizontal; this corresponds to the time when she stops. b)  I:  
This is the time when the curve is most nearly straight and tilted upward (indicating 
postive velocity). c) V:  Here the curve is plainly straight, tilted downward (negative 
velocity). d) II:  The curve has a postive slope that is increasing. e) III:  The curve is still 
tilted upward (positive slope and positive velocity), but becoming less so. 
 
 
2.11: Time (s)   0 2 4 6 8 10 12 14
 16 

Acceleration (m/s2)      0      1          2          2          3          1.5  1.5       0 
 
      a) The acceleration is not constant, but is approximately constant between the times 

s4t  and s.8t  
 
 
 
2.12: The cruising speed of the car is 60 hrkm  = 16.7 sm . a) 2

s 10
sm 7.16 sm7.1  (to 

two significant figures). b) 2
s 10

sm 7.160 sm7.1 c) No change in speed, so the acceleration 
is zero. d) The final speed is the same as the initial speed, so the average acceleration is 
zero. 
 
 
2.13: a) The plot of the velocity seems to be the most curved upward near t = 5 s. 
b) The only negative acceleration (downward-sloping part of the plot) is between t = 30 s 
and t = 40 s.  c) At t = 20 s, the plot is level, and in Exercise 2.12 the car is said to be 
cruising at constant speed, and so the acceleration is zero.  d) The plot is very nearly a 
straight line, and the acceleration is that found in part (b) of Exercise 2.12, .sm7.1 2  
e) 

 
 
 

 



2.14: (a) The displacement vector is: 
 

 kjir ˆ )sm0.3()sm0.7(ˆ)sm0.10(ˆ)sm0.5()( 22 ttttt 
  

 
The velocity vector is the time derivative of the displacement vector: 
 

kjir ˆ ))sm0.3(2sm0.7(ˆ)sm0.10(ˆ)sm0.5()( 2 t
dt

td




 

 
and the acceleration vector is the time derivative of the velocity vector: 

 

kr ˆsm0.6)( 2
2

2


dt

td 

 

 
At t = 5.0 s: 
 
 
 
 

 kjir ˆ )s0.25)(sm0.3()s0.5)(sm0.7(ˆ)s0.5)(sm0.10(ˆs)05)(sm0.5()( 22 .t       
             kji ˆ)m0.40(ˆ)m0.50(ˆ)m0.25(   

  
kji

kjir

ˆ )sm0.23(ˆ)sm0.10(ˆ)sm0.5(

ˆ ))s0.5)(sm0.6(sm0.7((ˆ)sm0.10(ˆ)sm0.5()( 2




dt

td 

 

 kr ˆsm0.6)( 2
2

2


dt

td 

 

 
(b) The velocity in both the x- and the y-directions is constant and nonzero; thus 

the overall velocity can never be zero. 
(c) The object's acceleration is constant, since t does not appear in the acceleration 

vector. 
 
 



2.15: t
dt
dxvx )scm125.0(scm00.2 2  

2scm 125.0
dt

dva x
x  

     a) .scm125.0 ,scm00.2 cm,0.50,0At 2 xx avxt  
     b) s.0.16 :for  solve and 0Set  ttvx  
     c) Set  x = 50.0 cm and solve for t.  This gives s.0.32  and 0  tt  The turtle returns 
to the starting point after 32.0 s.   
     d) Turtle is 10.0 cm from starting point when x = 60.0 cm or x = 40.0 cm. 

s.8.25 and s20.6:for  solve and cm0.60Set  tttx  

.scm23.1 s,8.25At 

.scm23.1 s,20.6At 



x

x

vt
vt

 

Set cm0.40x  and solve for s4.36 : tt (other root to the quadratic equation is negative 
and hence nonphysical). 

.scm55.2  s,4.36At  xvt  
e)  

 
 
 
2.16: Use of Eq. (2.5), with t = 10 s in all cases, 

a)        2m/s0.1s10/m/s0.15m/s0.5   

b)        2m/s0.1s10/m/s0.5m/s0.15   

c)        2m/s0.3s10/m/s0.15m/s0.15  . 

 
In all cases, the negative acceleration indicates an acceleration to the left. 
 
 
2.17: a) Assuming the car comes to rest from 65 mph (29 m/s) in 4 seconds, 

.sm25.7)s4()0sm29( 2xa  
      b) Since the car is coming to a stop, the acceleration is in the direction opposite  to the 
velocity. If the velocity is in the positive direction, the acceleration is  negative; if the 
velocity is in the negative direction, the acceleration is positive. 
 
 



2.18: a) The velocity at t = 0 is 
 
   (3.00 sm ) + (0.100 3sm ) (0) = 3.00 sm , 
 
and the velocity at t = 5.00 s is 
 
   (3.00 sm ) + (0.100 3sm ) (5.00 s)2 = 5.50 sm , 
 
so Eq. (2.4) gives the average acceleration as  

    2sm50.  
)s00.5(

)sm00.3()sm50.5(


 . 

 
b) The instantaneous acceleration is obtained by using Eq. (2.5), 

 

.)sm2.0(2 3 tt
dt
dva x    

 
Then, i) at t = 0, ax = (0.2 3sm ) (0) = 0, and 
         ii) at t = 5.00 s, ax = (0.2 3sm ) (5.00 s) = 1.0 2sm . 

 
 

 
 



2.19: a) 

 
 
 
 
 
 

   b) 

 
 
 
 



2.20: a)  The bumper’s velocity and acceleration are given as functions of time by 

   562 )sm600.0()sm60.9( tt
dt
dxvx   

   .)sm000.3()sm60.9( 462 t
dt
dva x   

 
There are two times at which v = 0 (three if negative times are considered), given by   t = 
0 and t4 = 16 s4.  At t = 0, x = 2.17 m and ax = 9.60 sm  2.  When t4 = 16 s4, 

 x = (2.17 m) + (4.80 sm  2) )s16( 4 – (0.100) 6sm )(16 s4)3/2 = 14.97 m, 

  ax = (9.60 sm  2) – (3.000 6sm )(16 s4) = –38.4 sm  2. 
    b) 

 
 
 
 
2.21: a) Equating Equations (2.9) and (2.10) and solving for v0, 

.sm00.5sm0.15
s007
m)70(2)(2 0

0 



.

v
t

xxv xx  

   b) The above result for v0x may be used to find 

,sm43.1
s00.7

sm00.5sm0.15 20 






t
vva xx

x  

or the intermediate calculation can be avoided by combining Eqs. (2.8) and (2.12) to 
eliminate v0x and solving for ax, 

.sm43.1
s)007(
m0.70

s00.7
sm0.1522 2

22
0 















 


.t

xx
t

va x
x  

 
 



2.22: a) The acceleration is found from Eq. (2.13), which xv0 = 0; 
 
  
   ,sm0.32

)ft307(2
)hrmi173(

)(2
2

ft 3.281
m 1

2
hrmi 1

sm 4470.0

0

2





xx

va x
x  

 
where the conversions are from Appendix E. 

 
   b)  The time can be found from the above acceleration, 

 
 

.s42.2
sm0.32

)hrmi173(
2

hrmi 1
sm 4470.0


x

x

a
vt  

 
The intermediate calculation may be avoided by using Eq. (2.14), again with v0x = 0, 

 
  
  .s42.2

)hrmi173(
ft307(2)(2

hrmi 1
sm 4470.0

ft 3.281
m 1

0 



xv
xxt  

 
 
2.23:   From Eq. (2.13), with   ,0  Taking . ,0 0max2 0

2
0   xaav xx

v
xx  

 

m.70.1
)sm250(2

))hrkms)(3.6mhr)(1km105((
2 2

2

max

2
0 

a
vx x  

 
 
 
2.24: In Eq. (2.14), with x – x0 being the length of the runway, and v0x = 0 (the plane  

starts from rest),  .sm0.7022 s 8
m 2800  

t
xx

xv  
 
 
2.25:   a) From Eq. (2.13), with ,00 xv  

.sm67.1
m)120(2

)sm20(
)(2

2
2

0

2





xx

va x
x  

 
   b) Using Eq. (2.14), s.12)sm20(m)120(2)(2 0  vxxt  
   c) m.240)sm20)(s12(   
 



2.26: a) x0  < 0, v0x < 0, ax < 0 
 

 
 

b) x0 > 0, v0x < 0, ax > 0 
 

 
 

c) x0 > 0, v0x > 0, ax < 0 
 



2.27:   a) speeding up: 
 

? s,9.19 ,0 ft,1320 00  xx atvxx  
22

2
1

00 sft67.6 gives  xxx atatvxx  
 
slowing down: 
 

 ? ,0 ,sft0.88 ft,146 00  xxx avvxx  
.sft5.26gives )(2 2

0
2
0

2  xxxx axxavv  
 
b) ?  ,sft676 ,0 ft,1320 2

00  xxx v.avxx  
.mph5.90sft133 gives )(2 0

2
0

2  xxxx vxxavv  
constant. benot must xa  

 
c) ? ,0 ,sft5.26  s,ft0.88 2

0  tvav xxx  
 s.32.3 gives 0  ttavv xxx  
 
 



2.28: a) Interpolating from the graph: 
 

left)  the(toscm3.1 ,s0.7At 
right)  the(toscm72 s,0.4At 




v
.v

 

b) 2
s0.6

s/cm0.8 scm 3.1graph - of slope  tva which is constant 
c) x area under v-t graph 

 
 

First 4.5 s: 
TriangleRectangle AAx   

    cm 5.22
s

cm6s 5.4
2
1

s
cm2s 5.4 













  

 
From 0 to 7.5 s: 

 
 
The distance is the sum of the magnitudes of the areas. 

    cm 5.25
s

cm2s 5.1
2
1

s
cm8s6

2
1














d  

 
 
d) 

 
 
 
 
 



2.29: a)  
 

 
 

 
   b) 

 
 
 
2.30: a)  

 
  



2.31: a) At t = 3 s the graph is horizontal and the acceleration is 0.  From t = 5 s to    t = 
9 s, the acceleration is constant (from the graph) and equal to 2

s4
sm20sm 45 sm3.6 . From 

t = 9 s to t = 13 s the acceleration is constant and equal to  
.sm2.11 2

s4
sm 450   

    b) In the first five seconds, the area under the graph is the area of the rectangle, (20 
m)(5 s) = 100 m.  Between t = 5 s and t = 9 s, the area under the trapezoid is (1/2)(45 m/s 
+ 20 m/s)(4 s) = 130 m (compare to Eq. (2.14)), and so the total distance in the first 9 s is 
230 m.  Between  t = 9 s and t = 13 s, the area under the triangle is 

m90s)4)(sm45)(21(  , and so the total distance in the first 13 s is 320 m. 
 
 
2.32:  
 

 
 
 
 
2.33:  a) The maximum speed will be that after the first 10 min (or 600 s), at which time 
the speed will be 
 

.skm18sm101.8s)900)(sm0.20( 42   
 
   b) During the first 15 minutes (and also during the last 15 minutes), the ship will travel 

km8100s)900)(skm18)(21(  , so the distance traveled at non-constant speed is 16,200 
km and the fraction of the distance traveled at constant speed is 

,958.0
km384,000

km200,161   

keeping an extra significant figure. 
   c) The time spent at constant speed is s1004.2 4

skm 18
km 200,16km 000,384   and the time spent 

during both the period of acceleration and deceleration is 900 s, so the total time required 
for the trip is s102.22 4 , about 6.2 hr. 
 



2.34: After the initial acceleration, the train has traveled 
 

m8.156)s0.14)(sm60.1(
2
1 22   

 
(from Eq. (2.12), with x0 = 0, v0x = 0), and has attained a speed of 
 
  .sm4.22)s0.14)(sm60.1( 2   
 
During the 70-second period when the train moves with constant speed, the train travels 
    m. 1568s 70 sm 4.22   The distance traveled during deceleration is given by Eq. 
(2.13), with sm 4.22,0 0  xx vv  and 2sm 50.3xa , so the train moves a distance 

.m68.71
)m/s3.502(

)s/m4.22(
0 2

2




xx  The total distance covered in then 156.8 m + 1568 m + 71.7 m 

= 1.8 km. 
 
In terms of the initial acceleration a1, the initial acceleration time t1, the time t2 during 
which the train moves at constant speed and the magnitude a2 of the final acceleration, 
the total distance  xT  is given by 

which yields the same result. 
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2.35: a)  

 
 
 
   b) From the graph (Fig. (2.35)), the curves for A and B intersect at t = 1 s and t = 3 s. 
 
   c)  

 
 
   d) From Fig. (2.35), the graphs have the same slope at t = 2 s .  e) Car A passes car B 
when they have the same position and the slope of curve A is greater than that of  curve B 
in Fig. (2.30);  this is at t = 3 s.  f) Car B passes car A when they have the same position 
and the slope of curve B is greater than that of curve A; this is at t = 1 s. 
 
 



2.36:  a) The truck’s position as a function of time is given by xT = vTt, with vT being the 
truck’s constant speed, and the car’s position is given by xC = (1/2) aCt2.  Equating the 
two expressions and dividing by a factor of t (this reflects the fact that the car and the 
truck are at the same place at t = 0) and solving for t yields 

s5.12
sm20.3

)sm0.20(22
2

C

T 
a
vt  

and at this time  
xT = xC = 250 m. 

 
    b) aCt = (3.20 m/s2)(12.5 s) = 40.0 m/s (See Exercise 2.37 for a discussion of why the 
car’s speed at this time is twice the truck’s speed.) 
   c) 

 
 

   d) 

 
 

 
 



2.37: a) 

 
 

The car and the motorcycle have gone the same distance during the same time, so their 
average speeds are the same.  The car's average speed is its constant speed vC, and for 
constant acceleration from rest, the motorcycle's speed is always twice its 
average, or 2vC.  b) From the above, the motorcyle's speed will be vC after half the time 
needed to catch the car.  For motion from rest with constant acceleration, the distance 
traveled is proportional to the square of the time, so for half the time 
one-fourth of the total distance has been covered, or .4d  
 
2.38:    a) An initial height of 200 m gives a speed of 60 sm  when rounded to one 
significant figure.  This is approximately 200 km/hr or approximately 150 hrmi .  
(Different values of the approximate height will give different answers; the above may be 
interpreted as slightly better than order of magnitude answers.) b) Personal experience 
will vary, but speeds on the order of one or two meters per second are reasonable. c) Air 
resistance may certainly not be neglected. 
 
 
2.39: a) From Eq. (2.13), with 0yv and ga y  , 

  ,sm94.2m)440.0)(sm80.9(2)(2 2
00  yygv y  

which is probably too precise for the speed of a flea;  rounding down, the speed is about 
sm9.2 . 

   b) The time the flea is rising is the above speed divided by g, and the total time is twice 
this; symbolically, 
 

  s,599.0
)m/s(9.80
)m440.0(22

)(2
2

)(2
2 2

00 






g

yy
g

yyg
t  

or about 0.60 s. 
 
 
2.40:  Using Eq. (2.13), with downward velocities and accelerations being positive, 2

yv  = 

(0.8 sm )2 + 2(1.6 2sm )(5.0 m) = 16.64 22 sm  (keeping extra significant figures), so vy 
= 4.1 sm . 
 
 



2.41: a) If the meter stick is in free fall, the distance d is related to the reaction time t by 
2)21( gtd  , so .2 gdt   If d is measured in centimeters, the reaction time is 

  .cm)1(s)1052.4(
scm980

22 2
2 ddd

g
t   

 
    b) Using the above result, s.190.017.6s)1052.4( 2    
 
2.42: a)  m.6.30s)5.2)(sm80.9)(21()21( 222 gt  

b)  sm.5.24s)5.2)(sm80.9( 2 gt . 
c) 

 
 

 
 



2.43: a) Using the method of Example 2.8, the time the ring is in the air is 

)sm80.9(
)m0.12()sm80.9(2s)m00.5(s)m00.5(

)(2

2

22

0
2
00







g
yygvv

t yy

 

  s,156.2  
keeping an extra significant figure.  The average velocity is then sm57.5s 2.156

m 0.12  , down. 
As an alternative to using the quadratic formula, the speed of the ring when it hits the 
ground may be obtained from )(2 0

2
0

2 yygvv yy  , and the average velocity found 

from 2
0 yy vv  ;  this is algebraically identical to the result obtained by the quadratic formula. 

   b) While the ring is in free fall, the average acceleration is the constant acceleration due 
to gravity, 2s/m80.9 down. 

 

   c)    2
00 2

1 gttvyy y    

   22 )sm8.9(
2
1)sm(5.00m0.120 tt   

Solve this quadratic as in part a) to obtain t = 2.156 s. 
 
  d)  )m0.12)(sm8.9(2)sm(5.00)(2 22

0
2
0

2  yygvv yy  

       sm1.16yv  
 
  e)  

 
 

 



2.44: a) Using ay = –g, v0y = 5.00 sm  and y0 = 40.0 m in Eqs. (2.8) and (2.12) gives  
i)  at  t = 0.250 s, 

 y = (40.0 m) + (5.00 sm )(0.250 s) – (1/2)(9.80 2sm )(0.250 s)2 = 40.9 m,  
vy = (5.00 sm ) – (9.80 2sm )(0.250 s) = 2.55 sm   

 
and ii) at t = 1.00 s,  

 
y = (40.0 m) + (5.00 m/s)(1.00 s) – (1/2)(9.80 m/s2)(1.00 s)2 = 40.1 m, 

 vy = (5.00 sm ) – (9.80 2sm )(1.00 s) = – 4.80 sm . 
 

b) Using the result derived in Example 2.8, the time is 
 

t = 
)sm80.9(

)m0.400)(sm80.9(2)sm00.5()sm00.5(
2

22 
= 3.41 s. 

 
   c) Either using the above time in Eq. (2.8) or avoiding the intermediate calculation by 
using Eq. (2.13), 

,sm809)m0.40)(sm80.9(2)sm00.5()(2 2222
0

2
0

2  yygvv yy  
vy = 28.4 sm . 

 
    d)   Using vy = 0 in Eq. (2.13) gives 
 

.m 2.41m 0.40
)sm80.9(2

)sm00.5(
2 2

2

0

2
0  y
g

vy  

 
   e) 

 
  

 



2.45:  a) ,sm6.25s)00.2)(sm80.9()sm00.6( 2
0  gtvv yy  so the speed is 

sm6.25 . 

   b) m,6.31s)00.2)(sm80.9(
2
1s)00.2)(sm00.6(

2
1 222

0  gttvy y with the 

minus sign indicating that the balloon has indeed fallen. 
   c) 

m2.15so,sm232m)0.10)(sm80.9(2s)m00.6()(2 2222
0

2
0

2  yyy vyygvv
 
2.46: a) The vertical distance from the initial position is given by  

 

;
2
1 2

0 gttvy y   

   
solving for v0y, 
 

 .sm5.14)s00.5)(sm80.9(
2
1

)s00.5(
)m0.50(

2
1 2

0 


 gt
t
yv y  

 
    b)  The above result could be used in  ,2 0

2
0

2 yygvv yy   with v = 0, to solve for y 
– y0  = 10.7 m (this requires retention of two extra significant figures in the calculation 
for v0y).  c) 0  d) 9.8 2sm , down. 
 
   e) Assume the top of the building is 50 m above the ground for purposes of graphing: 
 

 
  
 



2.47: a) .sm249s)9.0()sm224( 2   b) .4.252

2

sm 9.80
sm 249    c) The most direct way to 

find the distance is m.101s)9.0)(2)sm224((ave tv     

   d) 22 sm39240butsm202)s40.1()sm283(  g , so the figures are not consistent. 
 
 
2.48: a) From Eq. (2.8), solving for t gives (40.0 sm  – 20.0 sm )/9.80 2sm  = 2.04 s. 
    b) Again from Eq. (2.8), 
 

.s12.6
sm80.9

)sm0.20(sm0.40
2 


 

    
    c) The displacement will be zero when the ball has returned to its original vertical 
position, with velocity opposite to the original velocity.  From Eq. (2.8), 

 

.s16.8
sm80.9

)sm40(sm40
2 


 

 
(This ignores the t = 0 solution.) 
    d) Again from Eq. (2.8), (40 sm )/(9.80 2sm ) = 4.08 s.  This is, of course, half the 
time found in part (c). 
    e) 9.80 2sm , down, in all cases. 
    f)  

 
 
 



2.49: a) For a given initial upward speed, the height would be inversely proportional to 
the magnitude of g, and with g one-tenth as large, the height would be ten times higher, 
or 7.5 m.  b) Similarly, if the ball is thrown with the same upward speed, it would go ten 
times as high, or 180 m.  c) The maximum height is determined by the speed when hitting 
the ground; if this speed is to be the same, the maximum height would be ten times as 
large, or 20 m. 
 
 
 
 
 
 
 
 



2.50: a) From Eq. (2.15), the velocity v2 at time t 
 

         
t

t
dtαtvv

1
12   

 

    )(
2

2
1

2
1 ttv 

  

   22
11 22

ttv 
  

   = (5.0 sm ) – (0.6 3sm )(1.0 s)2 + (0.6 3sm ) t2 
   = (4.40 sm ) + (0.6 3sm ) t2. 
 
At t2 = 2.0 s, the velocity is v2 = (4.40 sm ) + (0.6 3sm )(2.0 s)2 = 6.80 m/s, or 6.8 sm  
to two significant figures. 
    b) From Eq. (2.16), the position x2 as a function of time is 

 
      dtvxx x

t
t112   

 dttt
t ))s/m6.0()s/m40.4(()m0.6( 23
1

  

 ).(
3

)sm6.0())(sm40.4()m0.6( 3
1

3
3

1 tttt   

At t = 2.0 s, and with t1 = 1.0 s, 
 

x = (6.0 m) + (4.40 sm )((2.0 s) – (1.0 s)) + (0.20 3sm )((2.0 s)3 – (1.0 s)3)  
   = 11.8 m. 

 
  c) 

 
  
 



2.51: a) From Eqs. (2.17) and (2.18), with v0=0 and x0=0, 
 

343322

0

2 )sm040.0()sm75.0(
32

)( tttBtAdtBtAtv
t

x    

.)sm010.0()sm25.0(
12632

443343

0

32 tttBtAdttBtAx
t







    

  
 
      b) For the velocity to be a maximum, the acceleration must be zero; this occurs at t=0 
and s5.12 B

At . At t=0 the velocity is a minimum, and at t=12.5 s the velocity is 
 

s.m1.39s)5.12)(sm040.0(s)5.12)(sm75.0( 3423 xv  
 
 



2.52:  a) ms3.1for  0Slope  ta  
      b)  graphunder Areamax tvh   
                  RectangleTriangle AA   

      )scm133)(ms3.1ms5.2(
s

cm133)ms3.1(
2
1







  

      cm25.0  
 

 
      c) a = slope of v– t graph 
 

25 scm100.1
ms3.1

scm133)ms0.1()ms5.0(  aa  

zero. is slope  thebecause0)ms5.1( a  
 
      d) h = area under v– t graph 
 

cm100.5)scm100)(ms0.1(
2
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1)ms5.0(
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cm 0.11                                               

)33.1)(ms 2.0(
s

cm133)ms 3.1(
2
1)ms 5.1( RectangleTriangle









 AAh  

 
 



2.53: a) The change in speed is the area under the ax versus t curve between 
vertical lines at s5.2t  and s.5.7t   This area is 

scm0.30)s52s5.7)(scm00.8scm00.4( 22
2
1  .  
This acceleration is positive so the change in velocity is positive. 
 
b) Slope of vx versus t is positive and increasing with t. 

 

 
 
 
2.54: a) To average 4 hrmi , the total time for the twenty-mile ride must be five  
hours, so the second ten miles must be covered in 3.75 hours, for an average of 2.7 

.hrmi  b) To average 12 hrmi , the second ten miles must be covered in 25 minutes and 
the average speed must be 24 .hrmi  c) After the first hour, only ten of the twenty miles 
have been covered, and 16 hrmi  is not possible as the average speed. 
 
 



2.55: a)  

 
 
The velocity and acceleration of the particle as functions of time are 
 

).sm00.20()sm0.18()(

)sm00.9()sm00.20()sm00.9()(
23

223





tta

tttv

x

x  

 
b) The particle is at rest when the velocity is zero; setting v = 0 in the above expression 
and using the quadratic formula to solve for the time t, 
 

)sm0.9(2
s)m0.9)(sm0.9(4)sm0.20()sm0.20(

3

3233 
t  

 
and the times are 0.63 s and 1.60 s.  c) The acceleration is negative at the earlier time and 
positive at the later time.  d) The velocity is instantaneously not changing when the 
acceleration is zero; solving the above expression for 0)( tax  gives 

s.11.1
sm00.18
sm00.20

3

2

  

Note that this time is the numerical average of the times found in part (c).  e) The greatest 
distance is the position of the particle when the velocity is zero and the acceleration is 
negative; this occurs at 0.63 s, and at that time the particle is at  

 
m.45.2)s630s)(m00.9(s)63.0)(sm0.10(s)63.0)(sm00.3( 2233  .  

 
(In this case, retaining extra significant figures in evaluating the roots of the quadratic 
equation does not change the answer in the third place.) f) The acceleration is negative at 
t = 0 and is increasing, so the particle is speeding up at the greatest rate at  t = 2.00 s and 
slowing down at the greatest rate at t = 0.  This is a situation where the extreme values of 

a function (in the case the acceleration) occur not at times when 0
dt
da but  at the 

endpoints of the given range. 



2.56: a) .sm25.1s 20.0
m 0.25   

 b) .sm67.1s 15
m 25   

 
 

c)  Her net displacement is zero, so the average velocity has zero magnitude. 
 d) .sm43.1s 35.0

m 0.50   Note that the answer to part (d) is the harmonic mean, not the 
arithmetic mean, of the answers to parts (a) and (b).  (See Exercise 2.5). 

  
 
2.57:  Denote the times, speeds and lengths of the two parts of the trip as t1 and t2, v1 and 
v2, and l1 and l2. 
 
      a) The average speed for the whole trip is 
 

    h,km82)km34(km)76(
)()( hkm 72

km 34
hkm 88

km 76
2211

21

21
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or 82.3 km/h, keeping an extra significant figure. 
 

b) Assuming nearly straight-line motion (a common feature of Nebraska 
highways), the total distance traveled is l1–l2 and 
 

    .hkm31)km34(km)76(

hkm 72
km 34

hkm 88
km 76

21

21
ave 









tt
llv  

 
( hrkm4.31 to three significant figures.) 
 
 
2.58: a) The space per vehicle is the speed divided by the frequency with which the cars 
pass a given point; 

.vehiclem40
hvehicles2400

hkm96
  

      
An average vehicle is given to be 4.5 m long, so the average spacing is 40.0 m – 4.6 m  
= 35.4 m. 
 

b) An average spacing of 9.2 m gives a space per vehicle of 13.8 m, and the traffic 
flow rate is  

.hvehicle6960
vehiclem8.13

hm96000
  

 
 



2.59: (a) Denote the time for the acceleration (4.0 s) as t1 and the time spent running at 
constant speed (5.1 s) as t2. The constant speed is then at1, where a is the unknown 
acceleration. The total l is then given in terms of a, t1 and t2 by 

 

,
2
1

21
2
1 tatatl   

 
and solving for a gives 
 

.sm5.3
s)s)(5.10.4()s0.4)(21(

m) 100(
)21(

2
2

21
2
1








ttt

la  

 
(b) During the 5.1 s interval, the runner is not accelerating, so a = 0. 
 
(c) .sm54.1)s1.9(]s)4)(sm5.3[( 22  tv  
 
(d) The runner was moving at constant velocity for the last 5.1 s. 
 
 
2.60: a) Simple subtraction and division gives average speeds during the 2-second  
intervals as 5.6, 7.2 and 8.8 sm . 

b) The average speed increased by 1.6 sm  during each 2-second interval, so the 
acceleration is 0.8 2sm . 

c) From Eq. (2.13), with v0 = 0, .sm8.4)m4.14)(sm8.0(2 2 v  Or, 
recognizing that for constant acceleration the average speed of 5.6 m/s is the speed one 
second after passing the 14.4-m mark, 5.6 sm  – (0.8 2sm )(1.0 s) = 4.8 sm . 

d) With both the acceleration and the speed at the 14.4-m known, either Eq. (2.8) 
or Eq. (2.12) gives the time as 6.0 s. 

e) From Eq. (2.12), x – x0 = (4.8 sm )(1.0 s) + 2
1 (0.8 2sm )(1.0 s)2 = 5.2 m. This 

is also the average velocity (1/2)(5.6 sm  + 4.8 sm ) times the time interval of  
1.0 s. 
 
 
2.61: If the driver steps on the gas, the car will travel 

m.4.70s)0.3)(sm)(2.321(s)03s)(m (20 22 .  
If the brake is applied, the car will travel 

m,9.42s)0.3)(sm3.8)(21(s)03s)(m (20 22 .  
so the driver should apply the brake. 
 
 



2.62: a)  

























h1
s3600

d1
h24

y1
d365

)y1)(
s
m100.3( 4

1
8ctd  

                               m105.9 15  
 

 b)   m30.0)s10)(
s
m100.3( 98  ctd  

 c)   min 338s500
sm103.0

m105.1
8

11

.
c
dt 




  

 d)   s6.2
sm103.0
m)1084.3(2

8

8






c
dt  

 e)   h54s100,16
smi000,186

mi103 9

.
c
dt 


  

 
2.63: a) sm4642 E  tRv   
      b) orbit) searth'  theof radius  theis ( sm1099.22 4 rtrv    
      c) Let c be the speed of light, then in one second light travels a distance ).s00.1(c  The 
number of times around the earth to which this corresponds is 48.72)s00.1( E Rc  
 
 



2.64: Taking the start of the race as the origin, runner A's speed at the end of 30 m can 
be found from: 
 

sm80.9sm96

sm96)m30)(sm6.1(20)(2
22
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2
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2
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A’s time to cover the first 30 m is thus: 
 

s13.6
sm6.1

sm80.9
2

A

0AA 



a

vvt  

and A’s total time for the race is: 

s8.38
sm80.9
m)30350(s136 


.  

B’s speed at the end of 30 m is found from: 
 

sm95.10sm120

sm120)m30)(sm0.2(20)(2
22

B

222
0B

2
0B

2
B





v

xxavv
 

B’s time for the first 30 m is thus 

s48.5
sm0.2

sm95.10
2

B

0BB 



a

vvt  

and B's total time for the race is: 

s7.34
sm95.10
m)30350(s485 


.  

 
B can thus nap for s 1.47.348.38  and still finish at the same time as A. 
 
 
2.65: For the first 5.0 s of the motion, s.0.5 ,00  tv x   

tavv xxx  0  gives s).0.5(xx av   
This is the initial speed for the second 5.0 s of the motion.  For the second 5.0 s: 

m.150  s,0.5 ),s0.5( 00  xxtav xx  
2222

2
1

00 sm0.4and)s5.12()s25(m150gives  xxxxx aaatatvxx  
 
Use this ax and consider the first 5.0 s of the motion: 

m.0.50s)0.5)(sm0.4(0 22
2
12

2
1

00  tatvxx xx  
 
 



2.66: a) The simplest way to do this is to go to a frame in which the freight train (which 
moves with constant velocity) is stationary.  Then, the passenger train has  
an initial relative velocity of vrel,0 = 10 sm .  This relative speed would be decreased to 

zero after the relative separation had decreased to .m500
rel

2
rel

2
0, a

v  Since this is larger in 
magnitude than the original relative separation of 200 m, there will be a collision.  b) The 
time at which the relative separation goes to zero (i.e., the collision time) is found by 
solving a quadratic (see Problems 2.35 & 2.36 or Example 2.8).  The time is given by  

 0,rel
2

0,rel0,rel 21 axvv
a

t   

  )sm40sm100sm10)(ms10(
22222   

   6.01()s100(  . 
 

Substitution of this time into Eq. (2.12), with x0 = 0, yields 538 m as the distance the 
passenger train moves before the collision. 

 
 
2.67: The total distance you cover is m10.2m90.0m20.1  and the time available is 

s80.0sm 1.50
m 20.1  . Solving Eq. (2.12) for ax, 

2
22

00 sm56.4
s)800(

s)80.0)(sm80.0(m)10.2(2)(2 






.t

tvxxa x
x . 

 
 



2.68: One convenient way to do the problem is to do part (b) first; the time spent 
accelerating from rest to the maximum speed is .s802sm 2.5

sm 20     

At this time, the officer is 

   .m0.80
)sm5.2(2

)sm20(
2 2

22
1

1 
a

vx  

 
This could also be found from ,)2/1( 2

11ta  where t1 is the time found for the acceleration.  
At this time the car has moved (15 sm )(8.0 s) = 120 m, so the officer is 40 m behind the 
car. 
 

a) The remaining distance to be covered is 300 m – x1 and the average speed is 
(1/2)(v1 + v2) = 17.5 sm , so the time needed to slow down is 

 

,s0.16
sm5.17

m80m360


  

and the total time is 24.0 s. 
 

    c) The officer slows from 20 sm  to 15 sm  in 16.0 s (the time found in part (a)), so 
the acceleration is –0.31 2sm . 
 

d), e)  
 

 
 

 



2.69: a) m0.40 with and,)21( T
2

TT  xtax , solving for the time gives 

s17.6s)m(2.10
m)0.40(2 t  

      b) The car has moved a distance  

m,864m0.40
sm2.10
sm40.3

2
1

2

2

1
T

C2
C .x

a
ata   

 
and so the truck was initially 24.8 m in front of the car. 
 

c) The speeds are .sm21 and sm13 CT  tata  
 
d)  

 
 
 



2.70: The position of the cars as functions of time (taking x1 = 0 at t = 0) are 
 

   .,
2
1

02
2

1 tvDxatx   

 
The cars collide when x1 = x2; setting the expressions equal yields a quadratic in t, 
 

   ,0
2
1

0
2  Dtvat  

 
the solutions to which are 
 

      . 21, 21
0

2
00

2
0 vaDv

a
tvaDv

a
t   

 
The second of these times is negative and does not represent the physical situation. 
 

b)  0
2
01 2 vaDvatv   

 
c) 

 
 

 
 



2.71: a) Travelling at sm20 , Juan is m21)s80.0)(sm20(m371 x  from the 
spreader when the brakes are applied, and the magnitude of the acceleration will be 

1

2
1

2 x
va  . Travelling at sm25 , Juan is m17)s80.0)(sm25(m372 x  from the 

spreader, and the speed of the car (and Juan) at the collision is obtained from 
 

22

22

1

22
1

2
02

1

2
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02
2
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2

sm301

m21
m17)sm20()sm25(
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x
xvvx

x
vvxavv xxxxx  

and so sm4.17xv . 
 
    b) The time is the reaction time plus the magnitude of the change in speed )( 0 vv   
divided by the magnitude of the acceleration, or 

s.1.60m)21(
)sm20(

sm4.17sm252)s80.0(2 212
0

0
reactionflash 





 x

v
vvtt  

 
2.72: a) There are many ways to find the result using extensive algebra, but the most  
straightforward way is to note that between the time the truck first passes the police car 
and the time the police car catches up to the truck, both the truck and the car have 
travelled the same distance in the same time, and hence have the same average velocity 
over that time.  Since the truck had initial speed p2

3 v  and the average speed is vp, the 
truck’s final speed must be .p2

1 v  
 

2.73: a) The most direct way to find the time is to consider that the truck and the car are 
initially moving at the same speed, and the time of the acceleration must be that which 
gives a difference between the truck's position and the car's position as 

s.9.15)sm (0.600m)5.75(2or ,m5.75m5.4m26m21m24 2  t  
      b) m.394)s9.15)(sm600.0)(21(s)915s)(m0.20()21( 222

0  .tatv xx  
      c) s.m5.29)s9.15)(sm600.0(s)m0.20( 2

0  tav xx  
 
 



2.74: a) From Eq. (2.17), x(t) = t – 3
3 t  = (4.00  sm )t – (0.667 3sm )t3.  From Eq. 

(2.5), the acceleration is a(t) = –2t = (– 4.00 3sm )t.  

   b) The velocity is zero at β
αt   (a = 0 at t = 0, but this is an inflection point, not an 

extreme). The extreme values of x are then  
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The positive value is then 

 .m77.3m32
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sm00.2
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2.75: a) The particle's velocity and position as functions of time are 
 

,
2

sm00.3)sm00.2(

))sm00.3()sm00.2(()(

2
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ttv

dttvtv
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)sm50.0()sm00.1()()( tttvdttvtx x

t

x    

 
        ),)sm50.0()sm00.1(( 232

0 ttvt x   
 
where x0 has been set to 0.  Then, x(0) = 0, and to have x(4 s) = 0, 

 
,0s)00.4)(sm50.0()s00.4)(sm00.1( 232

0 xv  
 
which is solved for s.m0.40 xv  b) s.m0.12)s4( xv   
 
 
2.76: The time needed for the egg to fall is 
 

   ,s00.3
)sm80.9(

)m80.1m0.46(2
9

2
2 







ht  

 
and so the professor should be a distance vyt = (1.20 sm )(3.00 s) = 3.60 m. 
 
 
 
 



2.77: Let t1 be the fall for the watermelon, and t2 be the travel time for the sound to 
return. The total time is s5.221  ttT . Let y be the height of the building, then, 

.2s
2
12

1 and tvygty   There are three equations and three unknowns. Eliminate t2, solve 
for t1, and use the result to find y. A quadratic results: .0s1s

2
12

1  Tvtvgt  If  

.then ,0 2
4  2 2

a
acbbtcbtat 

 m850s)52)(sm340(and,sm340,sm9.421, Here, ss
2

1  .Tvcvbgatt  
 
Then upon substituting these values into the quadratic formula,  
 

)sm9.4(2
m)850)(sm9.4(4)sm(340)sm340(

2

22

1


t  

 
   

  s42.22m/s 9.42
sm 7.363sm 340

1  t . The other solution, –71.8 s has no real physical meaning. 

Then, .m6.28)s 42.2)(sm8.9( 22
2
12

12
1  gty  Check: s,08.)sm(340m)6.28(   the 

time for the sound to return. 
 
 
2.78: The elevators to the observation deck of the Sears Tower in Chicago move from 
the ground floor to the 103rd floor observation deck in about 70 s.  Estimating a single 
floor to be about 3.5 m (11.5 ft), the average speed of the elevator is    .sm15.5s 70

m 5.3103   
Estimating that the elevator must come to rest in the space of one floor, the acceleration 
is about  

  .sm80.3 2
m 5.32

sm 15.50 22

  
 
 
2.79: a) ;sm4.20m)3.21)(sm80.9(22 2  ghv  the announcer is mistaken. 
 
  b) The required speed would be  
 

s,m4.14m)3.21)(sm80.9(2s)m25()(2 22
0

2
0  yygvv  

 
which is not possible for a leaping diver. 
 
 



2.80: If the speed of the flowerpot at the top of the window is v0, height h of the  
window is 
 

   .)21(or,)21( 0
2

0ave gt
t
hvgttvtvh   

 
The distance l from the roof to the top of the window is then 

  .m310.0
)sm80.9(2

))s420.0)(sm80.9)(21()s420.0/()m90.1((
2 2

222
0 




g
vl  

 
An alternative but more complicated algebraic method is to note that t is the difference 
between the times taken to fall the heights l + h and h, so that 
 

   .2,2)(2 2 hllgt
g
l

g
hlt 


  

 
Squaring the second expression allows cancelation of the l terms, 
 

 ,22)21( 22 hlgtgt   
 
which is solved for 
 

   ,)21(
2
1 2







  gt

t
h

g
l  

which is the same as the previous expression. 
 
 
 
2.81: a) The football will go an additional  

  m27.12

22

sm 80.92
sm 00.5

2 g
v  above the window, so 

the greatest height is 13.27 m or 13.3 m to the given precision. 
 
      b) The time needed to reach this height is s.65.1)sm(9.80m)3.13(2 2   
 
 



2.82: a) 

 
 
       
2.83: a) From Eq. (2.14), with v0=0,  
 

s.m59.7m)640.0)(sm0.45(2)(2 2
0  yyav yy  

 
 
      b) The height above the release point is also found from Eq. (2.14), with 

, and0s,m59.70 gavv yyy   

m94.2
)sm80.9(2

)sm59.7(
2 2

22
0 
g

v
h y  

 
(Note that this is also (64.0 cm)  g

2sm 45 .The height above the ground is then 5.14 m.  
      c) See Problems 2.46 & 2.48 or Example 2.8: The shot moves a total distance  2.20 m 
–1.83 m = 0.37 m, and the time is 
 

s.60.1
)sm80.9(

m)37.0()sm80.9(2)sm59.7()sm59.7(
2

22




 

 
 
 



2.84: a) In 3.0 seconds the teacher falls a distance 
 

m1.44)s0.9)(sm8.9(
2
1

2
1 222  gty  

To reach her ears after 3.0 s, the sound must therefore have traveled a total distance of 
m1.442m)1.44(  hhh ,where h is the height of the cliff. Given 340 m/s for the 

speed of sound: m1020s)03)(sm(340m1.442  .h , which gives 
m530or  m532h to the given precision. 

      b) We can use )(2 0
2
0

2 yygvv yy   to find the teacher's final velocity. This gives 
2222 sm10427m)532)(sm8.9(2 yv  and sm102yv . 

 
 
2.85: a) Let +y be upward. 
At ceiling, 2

0 sm80.9m,0.3,0  yy ayyv . Solve for v0y. 

.sm7.7gives)(2 00
2
0

2  yyyy vyyavv  
     b) tavv yyy  0  with the information from part (a) gives s78.0t . 
     c) Let the first ball travel downward a distance d in time t.  It starts from its maximum 
height, so .00 yv  

222
2
1

00 )sm9.4(gives tdtatvyy yy   
The second ball has sm5.1s)m7.7(3

1
0 yv .  In time t it must travel upward 

dm0.3 to be at the same place as the first ball. 
.)sm9.4()sm1.5(m0.3gives 222

2
1

00 ttdtatvyy yy   
We have two equations in two unknowns, d and t.  Solving gives s59.0t and 

m.7.1d  
     d) m3.1m0.3  d  
 
 



2.86: a) The helicopter accelerates from rest for 10.0 s at a constant 2sm5.0 . It thus 
reaches an upward velocity of  

sm50.0s)0.10)(sm0.5( 2
0  tavv yyy  

and a height of m250s)0.10)(sm0.5( 22
2
12

2
1  tay y at the moment the engine is shut 

off. To find the helicopter's maximum height use 
 )(2 0

2
0

2 yyavv yyy   
Taking m2500 y , where the engine shut off, and since 02 yv  at the maximum height: 
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)sm8.9(2
s)m0.50(m250
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or 380 m to the given precision. 
 
      b)  The time for the helicopter to crash from the height of 250 m where Powers 
stepped out and the engine shut off can be found from:  

0)sm8.9(s)m0.50(m250
2
1 22

2
12

00  tttatvyy yy  

 where we now take the ground as 0y . The quadratic formula gives solutions of 
s67.3t and 13.88 s, of which the first is physically impossible in this situation. Powers' 

position 7.0 seconds after the engine shutoff is given by:  
 

m9.359)s0.49)(sm8.9(
2
1s)0.7)(sm0.50(m250 22 y  

at which time his velocity is 
sm6.18)s0.7)(sm80.9(sm0.50 2

0  gtvv yy  
Powers thus has s88.60.788.13   more time to fall before the helicopter crashes, at his 
constant downward acceleration of 2sm2.0 . His position at crash time is thus: 

2
00 2

1 tatvyy yy   

       22 )s88.6)(sm0.2(
2
1s)88.6)(sm6.18(m9.359   

   m6.184  
 
or 180 m to the given precision. 
 
 



2.87: Take +y to be downward. 
Last 1.0 s of fall: 

22
0

2
2
1

00 s)0.1)(sm(4.9s)0.1(4gives  yyy vhtatvyy  
v0y is his speed at the start of this time interval. 
Motion from roof to :430 hyy   

?,00  yy vv  

sm834.3)43)(sm80.9(2gives)(2 2
0

2
0

2 hhvyyavv yyyy   
This is vy for the last 1.0 s of fall.  Using this in the equation for the first 1.0 s gives 

9.4834.34  hh  
m.270Then   .5.16:for  solve andLet 22  uhuuuh  

 
 
2.88:  a)  s0.10return soundfall  tt   
   s0.10sf  tt        (1) 
 

        
ss

2
f

SoundRock

2
1 tvgt

dd




 

  s
2
f

2 s)m330()sm8.9(
2
1 tt       (2) 

 
Combine (1) and (2): s16.1s,84.8 sf  tt  

 m383)s16.1)(
s
m330(ss  tvh  

      b) You would think that the rock fell for 10 s, not 8.84 s, so you would have  thought 
it fell farther. Therefore your answer would be an overestimate of the cliff's height. 
 
 
2.89: a) Let +y be upward. 

?,sm80.9 s,25.3 m,0.15 0
2

0  yy vatyy  
sm31.11gives 0

2
2
1

00  yyy vtatvyy  
Use this v0y in sm5.20:for  solve  to0  yyyyy vvtavv  
 
      b) Find the maximum height of the can, above the point where it falls from the 
scaffolding: 

? ,sm80.9 ,sm31.11 ,0 0
2

0  yyavv yyy  

m53.6 gives )(2 00
2
0

2  yyyyavv yyy  
The can will pass the location of the other painter.  Yes, he gets a chance. 
 
 



2.90: a) Suppose that Superman falls for a time t, and that the student has been  
falling for a time t0 before Superman’s leap (in this case, t0 = 5 s).  Then, the height h of 
the building is related to t and t0 in two different ways: 

    2
0 2

1 gttvh y   

            ,
2
1 2

0ttg   

 
where v0y is Superman’s initial velocity.  Solving the second t gives .0

2 tt g
h    

Solving the first for v0y gives v0y  = ,
2

tg
t
h
  and substitution of numerical values gives 

t = 1.06 s and v0y = –165 sm , with the minus sign indicating a downward initial velocity. 
 
 b)  

 
 
     c)  If the skyscraper is so short that the student is already on the ground, then 

.m123
2
1 2

0  gth  

 
 



2.91: a) The final speed of the first part of the fall (free fall) is the same as the initial 
speed of the second part of the fall (with the Rocketeer supplying the upward 
acceleration), and assuming the student is a rest both at the top of the tower and at the 

ground, the distances fallen during the first and second parts of the fall are 
g

v
g

v
10
 and

2

2
1

2
1 , 

where v1 is the student's speed when the Rocketeer catches him.  The distance fallen in 
free fall is then five times the distance from the ground when caught, and so the distance 
above the ground when caught is one-sixth of the height of the tower, or 92.2 m.  b) The 
student falls a distance 65H  in time ,35 gHt   and the Rocketeer falls the same 
distance in time t–t0, where t0=5.00 s (assigning three significant figures to t0 is more or 
less arbitrary).  Then, 
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ttg
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ttgttvH







 

At this point, there is no great advantage in expressing t in terms of H and g algebraically;  
s6984s00.5sm29.40m)553(5 2

0 .tt  , from which .sm1.750 v  
 
c) 

 
 
2.92: a) The time is the initial separation divided by the initial relative speed, H/v0.   
More precisely, if the positions of the balls are described by  
    ,)21(,)21( 2

2
2

01 gtHygttvy   
setting y1 = y2 gives H = v0t.  b) The first ball will be at the highest point of its motion if 
at the collision time t found in part (a) its velocity has been reduced from v0 to 0, or gt = 
gH/v0 = v0, or ./2

0 gvH   

 
 



2.93: The velocities are 232and2 ttvtv BA   a) Since vB is zero at t = 0, car 
A takes the early lead.  b) The cars are both at the origin at t = 0.  The non-trivial solution 
is found by setting xA = xB, cancelling the common factor of t, and solving the quadratic 
for 

 

 .4)()(
2
1 2 


t  

 
Substitution of numerical values gives 2.27 s, 5.73 s.  The use of the term “starting point” 
can be taken to mean that negative times are to be neglected.  c) Setting vA = vB leads to a 
different quadratic, the positive solution to which is 

 

 .12)22()22(
6
1 2 


t  

 
Substitution of numerical results gives 1.00 s and 4.33 s. 
 
      d) Taking the second derivative of xA and xB and setting them equal, yields, 

t 622  . Solving, s67.2t . 
 
 
2.94: a) The speed of any object falling a distance H – h in free fall is  

).(2 hHg  b) The acceleration needed to bring an object from speed v to rest over a  

distance h is .1
2

)(2
2

2
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h
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h
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2.95: For convenience, let the student's (constant) speed be v0 and the bus's initial 
position be x0. Note that these quantities are for separate objects, the student and the bus.  
The initial position of the student is taken to be zero, and the initial velocity of the bus is 
taken to be zero.  The positions of the student x1 and the bus x2 as functions of time are 
then  
  ,01 tvx   .)21( 2

02 atxx   
 
      a) Setting 21 xx  and solving for the times t gives  
 

 0
2
00 21 axvv

a
t   

   )m0.40)(sm170.0(2)sm0.5()sm0.5(
)sm170.0(

1 22
2   

  s.349s,55.9 .  
 
The student will be likely to hop on the bus the first time she passes it (see part (d) for a 
discussion of the later time).  During this time, the student has run a distance 

m.847s)55.9)(sm5(0 .tv   
 
     b) The speed of the bus is .sm1.62s)55.9)(sm170.0( 2   
 
     c) The results can be verified by noting that the x lines for the student and the bus 
intersect at two points: 
 

 
 
 
 
 
 
 
 

 
     d) At the later time, the student has passed the bus, maintaining her constant speed, 
but the accelerating bus then catches up to her. At this later time the bus's velocity is 
   .sm38.8s 3.49sm 170.0 2   



2.96: The time spent above ymax/2 is 
2

1 the total time spent in the air, as the time is 
proportional to the square root of the change in height.  Therefore the ratio is 

    .4.2
12

1
2/11
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2.97: For the purpose of doing all four parts with the least repetition of algebra, 
quantities will be denoted symbolically.  That is, 

let   .
2
1,

2
1 2

02
2

01 ttghygttvhy   In this case, s 00.10 t .  Setting 

,021  yy expanding the binomial  20tt  and eliminating the common term 
, yields 2

02
1

00
2

2
1 gttgttvgt  which can be solved for t; 
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Substitution of this into the expression for 1y  and setting 01 y and solving for h as a 
function of v0 yields, after some algebra, 
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     a) Using the given value ,sm 80.9 and s 00.1 2

0  gt  
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sm 8.9
sm 9.4m 4.9m 0.20

0
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This has two  solutions, one of which is unphysical (the first ball is still going up when 
the second is released; see part (c)).  The physical solution involves taking the negative 
square root before solving for 0v , and yields s.m 2.8  
 

 
     b) The above expression gives for i), 0.411 m and for ii) 1.15 km.  c) As v0 approaches 

sm 8.9 , the height h becomes infinite,  corresponding to a relative velocity at the time 
the second ball is thrown that approaches zero.  If ,sm 8.90 v  the first ball can never 
catch the second ball.  d) As v0 approaches 4.9 m/s, the height approaches zero.  This 
corresponds to the first ball being closer and closer (on its way down) to the top of the 
roof when the second ball is released.  If ,sm 9.40 v  the first ball will already have 
passed the roof on the way down before the second ball is released, and the second ball 
can never catch up. 
 
 



2.98: a) Let the height be h and denote the 1.30-s interval as  t; the simultaneous 
equations h = 2

2
1

3
22

2
1 )(, ttghgt   can be solved for t. Eliminating h and taking the 

square root, ,and,
3212

3



  t
tt

t t  and substitution into 2
2
1 gth  gives h = 246 m.  

This method avoids use of the quadratic formula; the quadratic formula is  a 
generalization of the method of “completing the square”, and in the  above form,  

,)( 2
2
1

3
2 ttgh   the square is already completed. 

 
      b)  The above method assumed that t >0 when the square root was taken. The 
negative root (with t = 0) gives an answer of 2.51 m, clearly not a “cliff”. This would 
correspond to an object that was initially near the bottom of this “cliff” being thrown 
upward and taking 1.30 s to rise to the top and fall to the bottom. Although physically 
possible, the conditions of the problem preclude this answer. 
 



3.1:   a)  

,sm4.1
)s0.3(

)m1.1()m3.5(
ave, 


xv  

         .sm3.1
)s0.3(

)m4.3()m5.0(
ave, 


yv  

  
b) sm9.1or  ,sm91.1)sm3.1()sm(1.4 22

ave v  to two significant figures, 
    43arctan 1.4

1.3θ . 
 
 
3.2:   a) 

andm6.45)s0.12)(sm8.3(Δ)( ave,  tvx x  
         m.8.58)s0.12)(sm9.4(Δ)( ave,  tvy y  

 
b) m.4.74)m8.58()m6.45( 2222  yxr  
 
 
3.3:   The position is given by jir ˆ)scm0.5(ˆ])scm5.2(cm0.4[ 22 tt 


. 

(a) î]cm0.4[)0( r , and 
jiji ˆ)cm0.10(ˆ)cm0.14(ˆs)2)(scm0.5(ˆ]s)2)(scm(2.5cm0.4[)s2( 22 r . Then 

using the definition of average velocity, .jiv ji ˆ)scm5(ˆ)scm5(s 2
ˆ)0cm 10(ˆ)cm 4cm 14(

ave  
 

scm1.7ave v  at an angle of 45 . 

b) jijiv ˆ)scm5(ˆ)scm5(ˆ)scm5(ˆ)scm5.2)(2(  ttdt
rd

. Substituting for 
s1,0t , and 2 s, gives: 

jivjv ˆ)scm5(ˆ)scm5(s)1(,ˆ)scm5()0( 


, and jiv ˆ)scm5(ˆ)scm10(s)2( 


. 
The magnitude and direction of v  at each time therefore are: scm0.5:0t  at 90 ; 

scm1.7:05.1t  at scm11:05.2 ;45  t  at 27 . 
c) 

 
 
 



3.4: jiv ˆ3ˆ2 2ctbt 
 . This vector will make a 45 -angle with both axes when the x- and 

y-components are equal; in terms of the parameters, this time is cb 32 . 
 
3.5: a)  
 

 
 

b)  ,sm7.8
)s0.30(

)sm90()sm170( 2
ave, 


xa  

.sm3.2
)s0.30(

)sm110()sm40( 2
ave, 


ya  

 

c)   .1951808.14arctan   ,sm0.9)sm32()sm7.8( 7.8
3.222222  

.  
 
 
3.6: a) 2222 sm23.00.31sin)sm45.0( ,sm39.00.31cos)sm45.0(  yx aa , 

so sm5.6)s0.10)(sm39.0(sm6.2 2 xv  and 

     sm52.0)s0.10)(sm23.0(sm8.1 2 yv . 

b) sm48.6)sm52.0()sm5.6( 22 v , at an angle of    6.4arctan 5.6
52.0  above the 

horizontal. 
c) 

 
 

 



3.7: a) 

 
 

b) 

.ˆ)sm4.2(ˆ2

ˆ])sm4.2[(ˆ)sm4.2(ˆ2ˆ
2

2

jja

jijiv










 tt
 

c) At s0.2t , the velocity is jiv ˆ)sm8.4(ˆ)sm4.2( 
 ; the magnitude is 

sm4.5)sm8.4()sm4.2( 22  , and the direction is    63arctan 4.2
8.4 . The 

acceleration is constant, with magnitude 2sm4.2  in the y -direction. d) The velocity 
vector has a component parallel to the acceleration, so the bird is speeding up. The bird is 
turning toward the y  -direction, which would be to the bird’s right (taking the z -
direction to be vertical). 
 
3.8:  

 
 
 



3.9: a) Solving Eq. (3.18) with 0y , 00 yv  and s350.0t  gives m60000 .y  . 
     b) m385.0tvx  c)  2.72,sm60.3,sm43.3s,m10.10 vgtvvv yxx  
below the horizontal. 

 
 
3.10: a) The time t is given by s82.72  g

ht . 
    b) The bomb’s constant horizontal velocity will be that of the plane, so the bomb 
travels a horizontal distance m470)s82.7)(sm60(  tvx x . 
    c) The bomb’s horizontal component of velocity is 60 m/s, and its vertical component 
is sm7.76 gt . 
d)  

 
 

e) Because the airplane and the bomb always have the same x-component of velocity and 
position, the plane will be 300 m above the bomb at impact. 
 
 



3.11: Take y  to be upward. 
Use Chirpy’s motion to find the height of the cliff. 

s50.3 , ,sm80.9 ,0 0
2

0  thyyav yy  

m0.60gives2
2
1

00  htatvyy yy  
Milada: Use vertical motion to find time in the air. 

?,sm80.9m,0.60,0.32sin 2
000  tayyvv yy  

s55.3gives2
2
1

00  ttatvyy yy  
Then s55.3,0,0.32cos00  tavv xx  gives m86.20  xx . 
 
 
3.12: Time to fall 9.00 m from rest: 

2

2
1 gty   

        22 )sm8.9(
2
1m00.9 t  

      s36.1t  
 
Speed to travel 1.75 m horizontally: 

tvx 0  
                                                                      )s36.1(m75.1 0v  

     sm3.10 v  
 
3.13: Take +y to be upward. 
Use the vertical motion to find the time in the air: 

? ,m5.19m)8.1m3.21(,sm80.9,0 0
2

0  tyyav yy  

s995.1 gives 2
2
1

00  ttatvyy yy  
Then ?,s995.1 ,0 m,0.61 00  xx vtaxx  

s.m6.30 gives 0
2

2
1

00  xxx vtatvxx  
   b) sm6.30xv  since 0xa  

sm6.190  tavv yyy  

sm3.3622  yx vvv  
 
 



3.14: To make this prediction, the student needs the ball’s horizontal velocity at the 
moment it leaves the tabletop and the time it will take for the ball to reach the floor (or 
rather, the rim of the cup). The latter can be determined simply by measuring the height 
of the tabletop above the rim of the cup and using 2

2
1 gty   to calculate the falling time. 

The horizontal velocity can be determined (although with significant uncertainty) by 
timing the ball’s roll for a measured distance before it leaves the table, assuming that its 
speed doesn’t change much on the hard tabletop. The horizontal distance traveled while 
the ball is in flight will simply be horizontal velocity   falling time. The cup should be 
placed at this distance (or a slightly shorter distance, to allow for the slowing of the ball 
on the tabletop and to make sure it clears the rim of the cup) from a point vertically below 
the edge of the table. 
 
 



3.15: a) Solving Eq. (3.17) for 0yv , with  0.45sin)sm0.15(0 yv , 
 

s.08.1
sm80.9

45sin)sm0.15(
2 


T  

   b) Using Equations (3.20) and (3.21) gives at m)52.4,m18.6(),( ,1 yxt : 
)m52.4,m8.16(,:)m74.5,m5.11(, 32 tt . 

    
   c) Using Equations (3.22) and (3.23) gives at 

),sm9.4,sm6.10(:)0,sm6.10( ,:)sm9.4,sm6.10(),( , 321  ttvvt yx  for 
velocities, respectively, of sm7.11  @ 24.8, sm6.10  @ 0 and sm7.11  @ 24.8. 
Note that xv  is the same for all times, and that the y-component of velocity at 3t  is 
negative that at 1t . 
    
   d) The parallel and perpendicular components of the acceleration are obtained from 

 

.,,)(
||||2|| aaa

va
avvaa 





 





 vv

 

For projectile motion, ygvg  vaja  so,ˆ , and the components of acceleration 

parallel and perpendicular to the velocity are 22
1 sm9.8,sm1.4: t . 2

2 sm8.9,0:t . 
22

3 sm9.8,sm1.4:t . 
e)  

 
f) At t1, the projectile is moving upward but slowing down; at t2 the motion is 
instantaneously horizontal, but the vertical component of velocity is decreasing; at t3, the 
projectile is falling down and its speed is increasing. The horizontal component of 
velocity is constant. 
 



3.16: a) Solving Eq. (3.18) with m75.0,0 0  yy  gives s391.0t . 
b) Assuming a horizontal tabletop, 00 yv , and from Eq. (3.16), 

sm58.3/)( 00  txxv x . 

    c) On striking the floor, sm83.32 0  gygtv y , and so the ball has a velocity 
of magnitude sm24.5 , directed 9.46  below the horizontal. 
    
   d) 

 
 

Although not asked for in the problem, this y vs. x graph shows the trajectory of the 
tennis ball as viewed from the side. 

 
 
3.17: The range of a projectile is given in Example 3.11, gvR 0

2
0 2sin  . 

a) km38.1)sm80.9(110sin)sm120( 22  .b) km4.8)sm6.1(110sin)sm120( 22  . 



3.18: a) The time t is s63.12
0

sm80.9
sm0.16 g

vy . 

   b) m1.13202
12

2
1

2
0  g

v
y

ytvgt . 
   c) Regardless of how the algebra is done, the time will be twice that found in part (a), 
or 3.27 s   d) xv is constant at sm0.20 , so m365s)27.3)(sm0.20( . . 
e) 

 
 
 
3.19: a) sm0.189.36sin)sm0.30(0 yv ; solving Eq. (3.18) for t with 00 y  and 

m0.10y  gives 

 s992s,68.0
sm80.9

)m0.10)(sm80.9(2)sm0.18()sm0.18(
2

22

.t 


  

   b) The x-component of velocity will be sm0.249.36cos)sm0.30(   at all times. 
The y-component, obtained from Eq. (3.17), is sm3.11  at the earlier time and 

sm3.11  at the later. 
   c) The magnitude is the same, sm0.30 , but the direction is now 9.36  below the 
horizontal. 
 
 



3.20: a) If air resistance is to be ignored, the components of acceleration are 0 
horizontally and 2sm80.9 g  vertically. 
   b) The x-component of velocity is constant at sm55.70.51cos)sm0.12( xv . The 
y-component is sm32.90.51sin)sm0.12(0 yv  at release and 

sm06.11)s08.2)(sm80.9()sm57.10( 2
0  gtv y  when the shot hits. 

   c) m715s)08.2)(sm55.7(0 .tv x  . 
   d) The initial and final heights are not the same. 
   e) With 0y  and v0y as found above, solving Eq. (3.18) for m81.10 y . 
  
 
   f)  

 
 
3.21: a) The time the quarter is in the air is the horizontal distance divided by the 
horizontal component of velocity. Using this time in Eq. (3.18), 

rounded.m53.1
60cos)sm4.6(2

m)1.2)(sm80.9(m)1.2(60tan

cos2
tan

2

22

22
0

22
0

2

0

2
0

2

0
00













v
gxx

v
gx

v
xvyy

xx
y

 

 
   b) Using the same expression for the time in terms of the horizontal distance in 
Eq. (3.17), 

.sm89.0
60cos)sm4.6(

)m1.2)(sm80.9(60sin)sm4.6(
cos

sin
2

00
00 







v
gxvv y  

 
 



3.22: Substituting for t in terms of d in the expression for darty  gives 

.
cos2

tan
0

22
0

0dart 












v
gddy  

 
Using the given values for d and 0  to express this as a function of 0v , 

.sm62.2690.0)m00.3( 2
0

22











v
y  

Then, a) m14.2y , b) m45.1y , c) m29.2y . In the last case, the dart was fired 
with so slow a speed that it hit the ground before traveling the 3-meter horizontal 
distance. 
3.23: a) With 0yv  in Eq. (3.17), solving for t and substituting into Eq. (3.18) gives 

m6.13
)m/s80.9(2

0.33sin)m/s0.30(
2

sin
2

)( 2

22
0

22
0

2
0

0 



g

v
g

v
yy y 

 

 
   b) Rather than solving a quadratic, the above height may be used to find the time the 
rock takes to fall from its greatest height to the ground, and hence the vertical component 
of velocity, m/s7.23)m/sm)(9.806.28(22 2  ygv y , and so the speed of the 

rock is m/s6.34 ))33.0m/s)(cos0.30((m/s)7.23( 22  . 
   c) The time the rock is in the air is given by the change in the vertical component of 
velocity divided by the acceleration  –g; the distance is the constant horizontal 
component of velocity multiplied by this time, or 

m.103
)m/s80.9(

))0m/s)sin33.((30.0m/s23.7(0m/s)cos33.0.30( 2 



x  

   d) 

 
  



3.24:   a) 
m0.45cos0 tv   

  

 600.0
s)00.3m/s)(0.25(

m0.45cos   

 
         1.53  

    
 
   b)  

m/s0.1553.1cosm/s)0.25( xv  
        0yv  
         m/s0.15v  
         downwardm/s80.9 2a  

 
   c) Find y when 3 00st    

                        2
0 2

1sin gttvy    

                            22 s)00.3)(m/s80.9(
2
1)(3.00s).1m/s)(sin530.25(   

                            m9.15  
                        constantm/s0.15 xv  

        41.9s)00.3)(m/s80.9()53.1m/s)(sin0.25(sin  2
0  gtvv y   

                         m/s7.17m/s41.9()m/s0.15( 2222  yx vvv  
  
 



3.25:   Take y  to be downward. 
   a) Use the vertical motion of the rock to find the initial height. 

?,m/s80.9s,0.20s,00.6 0
2

0  yyavt yy  

m296gives 0
2

2
1

00  yytatvyy yy  
 
    b) In 6.00 s the balloon travels downward a distance m120s)s)(6.000.20(0  yy . 
So, its height above ground when the rock hits is m176m120m296  . 
 
    c) The horizontal distance the rock travels in 6.00 s is 90.0 m. The vertical component 
of the distance between the rock and the basket is 176 m, so the rock is 

m198m)90(m)176( 22   from the basket when it hits the ground. 
 
    d) (i) The basket has no horizontal velocity, so the rock has horizontal velocity 15.0 
m/s relative to the basket. 
Just before the rock hits the ground, its vertical component of velocity is 

m/s78.8s)00.6)(m/s(9.80s0.20 2
0  tavv yyy , downward, relative to the ground. 

The basket is moving downward at 20.0 m/s, so relative to the basket the rock has 
downward component of velocity 58.8 m/s. 
   e) horizontal: 15.0 m/s; vertical: 78.8 m/s 
 
 
3.26: a) horizontal motion: tx ttvxx )43cos(v

m0.60
00 0

  so     
vertical motion (take y  to be upward): 

22
2
1

0
2

2
1

00 )m/s80.9()43.0sin  (m25.0  gives  ttvtatvyy yy   
Solving these two simultaneous equations for 0v  and t gives m/s26.30 v  and s51.2t . 
b) yv  when shell reaches cliff: 

  m/s 4.2s) )(2.51m/s 80.9(43.0sin  m/s) 6.32( 2
0  tavv yyy  

The shell is traveling downward when it reaches the cliff, so it lands right at the edge of 
the cliff. 
 
 
3.27: Take y   to be upward. 
Use the vertical motion to find the time it takes the suitcase to reach the ground: 

? m, 114 ,m/s80.9  ,23sin  0
2

00  tyyavv yy  

s60.9  gives 2
2
1

00  ttatvyy yy  
  
The distance the suitcase travels horizontally is m 795)23.0 cos ( 000  tvvxx x  
 
 



3.28: For any item in the washer, the centripetal acceleration will be proportional to the 
square of the frequency, and hence inversely proportional to the square of the rotational 
period; tripling the centripetal acceleration involves decreasing the period by a factor of 

3 , so that the new period T   is given in terms of the previous period T by 3/TT  . 
 
 
3.29: Using the given values in Eq. (3.30), 

 

.104.3m/s  034.0
s/h)) h)(3600 24((

m) 1038.6(4 32
2

62

rad ga 



  

(Using the time for the siderial day instead of the solar day will give an answer that 
differs in the third place.)    b) Solving Eq. (3.30) for the period T with ga rad , 

 

h. 1.4 ~ s 5070
m/s 9.80

m)1038.6(4
2

62





T  

  
 
3.30: rev/s 9.17 rev/min  550  , corresponding to a period of 0.109 s. a) From Eq. (3.29), 

m/s 1962  T
Rv  . b) From either Eq. (3.30) or Eq. (3.31), 

g 1015.1m/s 1013.1 324
rad a . 

 
3.31: Solving Eq. (3.30) for T in terms of R and rada , 

   a) s 07.3)m/s .80m)/(3.0)(9 0.7(4 22  .    b) 1.68 s. 
 
 
3.32: a) Using Eq. (3.31), m/s 1097.2 42 T

R .   b) Either Eq. (3.30) or Eq. (3.31) gives 
23

rad m/s 1091.5 a .    c) m/s 1078.4 4v , and 22 m/s 1097.3 a . 
 
 
3.33: a) From Eq. (3.31), 22 m/s 3.50m) 0.15/(m/s) 00.7( a . The acceleration at the 
bottom of the circle is toward the center, up. 
   b) 2m/s 50.3a , the same as part (a), but is directed down, and still towards the center. 
c) From Eq. (3.29),  s 12.6m/s) m)/(7.00 0.15(2/2   vRT . 
 
 



3.34: a) 22
rad m/s .6430m) 14/(m/s) 3( a , and 2

tan m/s 5.0a . So, 
 37.9 ,m/s 814.0))m/s 5.0()m/s 643.0(( 22/12222a  to the right of vertical. 

   b) 

 
 
 
3.35: b) No. Only in a circle would rada  point to the center (See planetary motion in 
Chapter 12). 
   c) Where the car is farthest from the center of the ellipse. 
 
3.36: Repeated use of Eq. (3.33) gives a) m/s 0.5   to the right, b) 16.0 m/s to the left, 
and c) m/s 0.13   to the left. 
 
3.37: a) The speed relative to the ground is m/s 2.5m/s 1.0m/s 5.1  , and the time is 

s. 14.0m/s m/2.5 0.35   b) The speed relative to the ground is 0.5 m/s, and the time is  
70  s. 
 
3.38: The walker moves a total distance of 3.0 km at a speed of 4.0 km/h, and takes a 
time of three fourths of an hour (45.0 min). The boat’s speed relative to the shore is 6.8 
km/h downstream and 1.2 km/h upstream, so the total time the rower takes is 

 min. 88hr 47.1
km/h 1.2
km 5.1

km/h 6.8
km 5.1

  

 
3.39: The velocity components are 
    south,2m/s)/ (0.40  andeast  2m/s)/ (0.40m/s 50.0   
for a velocity relative to the earth of 0.36 m/s, 5.52  south of west. 
 



3.40: a) The plane’s northward component of velocity relative to the air must be 80.0 
km/h, so the heading must be 14arcsin 320

80.8  north of west. b) Using the angle found in 
part (a), km/h 310 14 cos km/h)320(  . Equivalently, 

km/h 310km/h) 0.80(km/h) 320( 22  . 
 

 
 
 
3.41: a)  5.25arctan  m/s, 7.4m/s) 2.4(m/s) 0.2( 4.2

2.022 , south of east. 
   b) s 190m/s m/4.2 800  . 
   c) m 381s 190m/s 0.2  . 
 
 
3.42: a) The speed relative to the water is still 4.2 m/s; the necessary heading of the boat 
is  28arcsin 4.2

2.0  north of east. b) m/s 7.3m/s) 0.2(m/s) 2.4( 22  , east. d) 
s 217m/s m/3.7 800  , rounded to three significant figures. 

 
 
3.43: a) 

 
 
     b)  m/s 1.4245m/s)sin  (10m/s) 35(: m/s. 7.145 cos m/s) 10(:  yx . 

     c)  80arctan  m/s, 7.42m/s) 1.42(m/s) 1.7( 1.7
1.4222  

 , south of west. 
 
 
3.44: a) Using generalizations of Equations 2.17 and 2.18, 

2
20

3
30  , ttvvtvv yyxx

   , and 3
6

2
20

4
120  , tttvyttvx yx

  .  b) Setting 

0yv  yields a quadratic in 2
200 , ttvt y
  , which has as the positive solution 

   s, 59.1321
0

2  


vt  

keeping an extra place in the intermediate calculation. Using this time in the expression 
for y(t) gives a maximum height of 341 m. 



3.45: a) The 0xa  and βay 2 , so the velocity and the acceleration will be 
perpendicular only when 0yv , which occurs at 0t . 

   b) The speed is 0/ ,)4( 2/1222  dtdvtβv  at 0t . (See part d below.) 
   c) r and v are perpendicular when their dot product is 0: 

02m) 0.30()2()m 0.15())(( 3222  tββttβtβtt . Solve this for t: 

s 208.522

22

)m/s 500.0(2
m/s) 2.1()m/s m)(0.500 0.30(  t , and 0 s, at which times the student is at (6.25 m, 

1.44 m) and (0 m, 15.0 m), respectively. 
   d) At s 208.5t , the student is 6.41 m from the origin, at an angle of 13  from the x-
axis. A plot of 2/122 ))()(()( tytxtd   shows the minimum distance of 6.41 m at 5.208 
s: 
 

 
    e) In the x - y plane the student’s path is: 
 

 
 
3.46:  a) Integrating, jtitt ˆ)(ˆ)( 2

2
3

3
 r . Differentiating, jia ˆˆ)2(  

 . 
 
b) The positive time at which 0x  is given by αt 32  . At this time, the y-coordinate 
is 

 m 0.9
)m/s 6.1(2

)m/s m/s)(4.0 4.2(3
2
3

2 3

2
2 


 ty  

. 
 



3.47:   a) The acceleration is 

 22
22

m/s 1m/s 996.0
)m 300(2

km/h)) m/s)/(3.6 km/h)(1 88((
2


x

va  

    b)    4.5arctan m 300m 460
m 15 .  c) The vertical component of the velocity is 

  m/s 3.2km/h) 88( m 160
m 15

km/h 3.6
m/s 1  . d) The average speed for the first 300 m is 44 km/h, so 

the elapsed time is 

 s, 1.31
km/h) /(3.65.4m/s)cos km/h)(1 (88

m 160
km/h) m/s)(3.6 km/h)(1 (44

m 300



  

or 31 s to two places. 
 



3.48:  
 
    a) 

 
 
The equations of motions are: 

 

αvv
gtαvv
tαvx

gttαvhy

x

y

 cos 

sin  
) cos (

2
1)sin  (

0

0

0

2
0








 

    Note that the angle of 36 9   results in 3/536.9 sin   and 4/536.9 cos  . 
    b) At the top of the trajectory, 0yv . Solve this for t and use in the equation for y to 

find the maximum height: g
αvt sin  0 . Then,    2sin  

2
1sin  

0
00)sin  ( g

αv
g
αv gαvhy  , which 

reduces to 2g
 sin 22

0 αvhy  . Using 8/250 ghv  , and 5/3 sin α , this becomes 

hhhy g
gh

16
9

2
)5/3)(8/25( 2

 , or hy 16
25 . Note: This answer assumes that hy 0 . Taking 

00 y  will give a result of hy 16
9  (above the roof). 

    c) The total time of flight can be found from the y equation by setting 0y , assuming 
hy 0 , solving the quadratic for t and inserting the total flight time in the x equation to 

find the range. The quadratic is 005
32

2
1  hvgt . Using the quadratic formula gives 

)(2

))((4))5/3(()5/3(

2
1

2
12

00

g

hgvvt 
 . Substituting 8/250 ghv   gives g

gh ghgh

t 8
16

8
25

25
98/25)5/3( 

 . 

Collecting terms gives t:    g
h

g
h

g
h

g
ht 222

1
2
25

2
9

2
1 53  . Only the positive root is 

meaningful and so g
ht 24 . Then, using    hxtαvx g

hgh 44 ,) cos ( 25
4

8
25

0  . 

 
 
3.49: The range for a projectile that lands at the same height from which it was launched 
is g

αvR 2sin  2
0 . Assuming  45α , and m/s 22 m, 50 0  gRvR . 

 
 



3.50: The bird’s tangential velocity can be found from 

 m/s 05.10
s 5.00
m 27.50

s 00.5
)m00.8(2

rotation of time
ncecircumfere




xv  

Thus its velocity consists of the components m/s 05.10xv  and m/s 00.3yv . The speed 
relative to the ground is then 
 m/s 10.5or  m/s 49.10002.3052.1022  yx vvv  
   (b) The bird’s speed is constant, so its acceleration is strictly centripetal–entirely in the 
horizontal direction, toward the center of its spiral path–and has magnitude 

 22
22

c m/s12.6or        m/s 63.12
m 00.8

m/s) 05.10(


r
va x  

   (c) Using the vertical and horizontal velocity components: 

   6.16
m/s 10.05
m/s 00.3tan 1  

 
3.51: Take y  to be downward. 
Use the vertical motion to find the time in the air: 

? m, 25,m/s 80.9 ,0 0
2

0  tyyav yy  

s 259.2 gives 2
2
1

00  ttatvyy yy  
During this time the dart must travel 90 m horizontally, so the horizontal component of 
its velocity must be 

m/s 40
s 25.2

m 900
0 




t
xxv x  

 



3.52: a) Setting hy   in Eq. (3.27) (h being the stuntwoman’s initial height above the 
ground) and rearranging gives 

 ,0
2 cos sin  2 2

000
2
02  h

g
vx

g
ααvx x  

The easier thing to do here is to recognize that this can be put in the form 

 ,0
2 2 2

0002  h
g
v

x
g
vv

x xyx  

the solution to which is 

   (south). m 5.5522
00

0  ghvv
g

vx yy
x  

     b) The graph of )(tvx  is a horizontal line. 

 
 
 
3.53: The distance is the horizontal speed times the time of free fall, 

 m. 274
)m/s (9.80

m) 2(90m/s) 0.64(2
2 

g
yvx  

 
3.54: In terms of the range R and the time t that the balloon is in the air, the car’s original 
distance is tvRd car . The time t can be expressed in terms of the range and the 

horizontal component of velocity,  
00

car

00  cos  cos 1  so  , αv
v

αv
R Rdt  . Using 

gαvR /2sin   0
2
0  and the given values yields m 5.29d . 

 
 



3.55: a) With  450 , Eq. (3.27) is solved for yx
gxv 

22
0 . In this case, m 9.0y  is the 

change in height. Substitution of numerical values gives m/s 8.420 v .  b) Using the 
above algebraic expression for 0v  in Eq. (3.27) gives 

 m) 9.188(
m188

2











xxy  

Using m 116x  gives m 1.44y  above the initial height, or 45.0 m above the ground, 
which is 42.0 m above the fence. 
 
 
3.56: The equations of motions are 2

0 2/1)sin  ( gttαvy   and tαvx ) cos ( 0 , assuming 
the match starts out at 0x  and 0y . When the match goes in the wastebasket for the 
minimum velocity, Dy 2  and Dx 6 . When the match goes in the wastebasket for the 
maximum velocity, Dy 2  and Dx 7 . In both cases, .2/2 cos  sin  αα . 
    To reach the minimum distance: tvD 02

26  , and 2
2
1

02
22 gttvD  . Solving the first 

equation for t gives 
0

26
v

Dt  . Substituting this into the second equation gives 

 226
2
1

0
62 v

DgDD  . Solving this for 0v  gives gDv 30  . 

    To reach the maximum distance: tvD 02
27  , and 2

2
1

02
22 gttvD  . Solving the first 

equation for t gives 
0

27
v
Dt  . Substituting this into the second equation 

gives  227
2
1

0
72 v

DgDD  . Solving this for 0v  gives gDgDv 13.35/490  , which, 
as expected, is larger than the previous result. 
 
 
3.57: The range for a projectile that lands at the same height from which it was launched 
is g

αvR 2sin  2
0 , and the maximum height that it reaches is g

αvH 2
 sin 22

0 . We must find R 

when DH   and gDv 60  . Solving the height equation for g
αgDD 2

sin 6 2

 ,sin  , or 
2/1)3/1(sin  . Then, g

gDR )sin(70.72 6  , or DDR 246569.5  . 
 



3.58: Equation 3.27 relates the vertical and horizontal components of position for a given 
set of initial values. 
   a) Solving for 0v  gives 

 .
 tan 

 cos 2/

0

0
22

2
0 yx

gxv





  

Insertion of numerical values gives m/s 6.160 v . 
    b) Eliminating t between Equations 3.20 and 3.23 gives yv  as a function of x , 

 .
 cos 

sin  
00

00 


v
gxvvy   

Using the given values yields m/s,  98.6 m/s,  28.8 cos 00  yx vvv   so 

m/s,  8.10)m/s  98.6()m/s 28.8( 22 v  at an angle of    1.40arctan 24.8
98.6 , with 

the negative sign indicating a direction below the horizontal. 
   c) The graph of )(tvx  is a horizontal line. 

 
 



3.59: a) In Eq. (3.27), the change in height is hy  . This gives a quadratic equation in 
x, the solution to which is 

 
 .2 sin sin   cos 

  cos 
2tan  cos 

0
22

000
00

0
2
0

0
20

2
0

ghvv
g

v
v

gh
g

vx


















 

    If 0h , the square root reduces to 00 sin  v , and Rx  . b) The expression for x  

becomes ]98.0 sin  sin[ cos m) 2.10( 0
2

0
2

0  x  
    The angle  900  corresponds to the projectile being launched straight up, and there 
is no horizontal motion. If 00  , the projectile moves horizontally until it has fallen the 
distance h. 

 
    c) The maximum range occurs for an angle less than 45 , and in this case the angle is 
about 36 . 
 
 



3.60: a) This may be done by a direct application of the result of Problem 3.59; with 
 400 , substitution into the expression for x gives 6.93 m. 

   b)  

 
    c) Using m)  91m  014( ..   instead of h in the above calculation gives m  36.x  , so the 
man will not be hit. 
 
3.61: a) The expression for the range, as derived in Example 3.10, involves the sine of 
twice the launch angle, and 
 ,2 sin2sin  180 cos2 cos 180 sin)2180( sin))90(2( sin 00000   α
and so the range is the same. As an alternative, using  cos)90sin( 0   and 

00 sin)90cos(    in the expression for the range that involves the product of the sine 
and cosine of 0  gives the same result. 

    b) The range equation is g
vR 2 sin2

0 . In this case, m/s  2.20 v  and m  25.0R . 

Hence ),m/s.22m)/(25.0)(m/s8.9(2 sin 22α  or 5062.02 sin α ; and  2.15α  or 
8.74 . 

 
 



3.62: a) Using the same algebra as in Problem 3.58(a), m/s  8130 .v  . 
    b) Again, the algebra is the same as that used in Problem 3.58; m/s  48.v  , at an angle 
of 1.9 , this time above the horizontal. 
    c) The graph of )(tvx  is a horizontal line. 

 
A graph of )(ty  vs. )(tx  shows the trajectory of Mary Belle as viewed from the side: 

 
 
    d) In this situation it’s convenient to use Eq. (3.27), which becomes 

21)m  071115.0()327.1( xxy  . Use of the quadratic formula gives m  8.23x . 
 
 
3.63: a) The algebra is the same as that for Problem 3.58, 

 . 
)tan(cos2 00

2

2
2
0 yx

gxv





 

In this case, the value for y is m  015. , the change in height. Substitution of numerical 
values gives 17.8 m/s.   b) 28.4 m from the near bank (i.e., in the water!). 
 
 



3.64: Combining equations 3.25, 3.22 and 3.23 gives 

 

,2

)
2
1sin(2

)(sin2)cos(sin

)sin(cos

2
0

2
00

2
0

2
000

2
0

22
0

2
000

22
0

2

gyv

gttvgv

gtgtvv

gtvvv















 

  
where Eq. (3.21) has been used to eliminate t in favor of y. This result, which will be seen 
in the chapter dealing with conservation of energy (Chapter 7), is valid for any y, 
positive, negative or zero, as long as 02 v . For the case of a rock thrown from the roof 
of a building of height h, the speed at the ground is found by substituting hy   into the 

above expression, yielding ghvv 22
0  , which is independent of 0 . 

 
 



3.65:   Take y  to be upward. The vertical motion of the rocket is unaffected by its 
horizontal velocity. 
    a) 0yv  (at maximum height), ?  ,m/s80.9  m/s,0.40 0

2
0  yyav yy  

)(2 0
2
0

2 yyavv yyy   gives m6.810  yy  
    b) Both the cart and the rocket have the same constant horizontal velocity, so both 
travel the same horizontal distance while the rocket is in the air and the rocket lands in 
the cart. 
    c) Use the vertical motion of the rocket to find the time it is in the air. 

? m/s,40,m/s80.9 m/s,40 2
0  tvav yyy  

s164.8  gives  0  ttavv yyy  
Then m.245s)m/s)(8.1640.30(00  tvxx x  
   d) Relative to the ground the rocket has initial velocity components m/s0.300 xv  and 

m/s0.400 yv , so it is traveling at 153.  above the horizontal. 
   e) (i) 

 
  
Relative to the cart, the rocket travels straight up and then straight down 
(ii) 

 
  
Relative to the ground the rocket travels in a parabola. 
 
 



3.66: (a)  
 (ball)runner)( xx vv   

       θ. cos)m/s0.20(m/s006   
300.0cos θ  

       5.72θ  
 

Time the ball is in the air: 
 
 2

2
1

0 sin gtθtvy   

   22 )m/s80.9(
2
1)572m/s)(sin0.20(m0.45 tt.   

 
Solve for t: s549.5t . 
 s))(5.549.5m/s)(cos720.20(cos0  θtvx  

          m33.4  
 
(b) 

 
 
 
 



3.67: Take y  to be downward. 
   a) Use the vertical motion of the boulder to find the time it takes it to fall 20 m to the 
level of the surface of the water. 

?m,20 ,m/s80.9 ,0 0
2

0  tyyav yy  

s02.2 gives 2
2
1

00  ttatvyy yy  
The rock must travel 100 m horizontally during this time, so 

m/s.49
s2.20

m1000
0 




t
xx

v x  

    b) The rock travels downward 45 m in going from the cliff to the plain. Use this 
vertical motion to find the time: 

? m,45 ,m/s80.9 ,0 0
2

0  tyyav yy  

s03.3 gives 2
2
1

00  ttatvyy yy  
During this time the rock travels horizontally 

m150s)m/s)(3.0349(00  tvxx x  
The rock lands 50 m past the foot of the dam. 
 
 
3.68: (a) When she catches the bagels, Henrietta has been jogging for 9.00 s plus the time 
for the bagels to fall 43.9 m from rest. Get the time to fall: 

 2

2
1 gty   

 22 )m/s80.9(
2
1m9.43 t  

           s99.2t  
 

So she has been jogging for s12.0s99.2s00.9  . During this time she has gone 
m36.6s)m/s)(12.005.3(  vtx . Bruce must throw the bagels so they travel 36.6 m 

horizontally in 2.99 s 
 vtx   

    s)992(m6.36 .v  
 m/s2.12v  

 
    (b) 36.6 m from the building. 
 
 



3.69:   Take y  to be upward. 
    a) The vertical motion of the shell is unaffected by the horizontal motion of the tank. 
Use the vertical motion of the shell to find the time the shell is in the air: 

? height) initial  to(returns  0 ,m/s80.9 m/s,4.43sin 0
2

00  t,yyaαvv yy  

s86.8 gives 2
2
1

00  ttatvyy yy  
    Relative to tank #1 the shell has a constant horizontal velocity m/s2.246cos0 v . 
Relative to the ground the horizontal velocity component is 

m/s261.2m/s15.0m/s2.246  . Relative to tank #2 the shell has horizontal velocity 
component m/s226.2m/s0.35m/s2.261  . The distance between the tanks when the 
shell was fired is the m2000s)86.8(m/s)2.226(   that the shell travels relative to tank 
#2 during the 8.86 s that the shell is in the air. 
    b) The tanks are initially 2000 m apart. In 8.86 s tank #1 travels 133 m and tank #2 
travels 310 m, in the same direction. Therefore, their separation increases by 

m177m183m310  . So, the separation becomes 2180 m (rounding to 3 significant 
figures). 
 
 
3.70: The firecracker’s falling time can be found from the usual 

 
g
ht 2

  

The firecracker’s horizontal position at any time t (taking the student’s position as 0x ) 
is 02

2
1  atvtx  when cracker hits the ground, from which we can find that avt /2 . 

Combining this with the expression for the falling time: 

 
g
h

a
v 22
  

   so 

 2

22
a

gvh   

 



3.71: a) The height above the player’s hand will be m40.02
sin

2
0

22
0

2
0  g

v
g

v y  , so the 
maximum height above the floor is 2.23 m.   b) Use of the result of Problem 3.59 gives 
3.84 m.   c) The algebra is the same as that for Problems 3.58 and 3.62. The distance y is 

m1.22m83.1m05.3  , and 

 m/s.65.8
m)22.135tanm)21.4((35cos2

m)21.4()m/s80.9(
2

22

0 


v  

    d) As in part (a), but with the larger speed, 
 m.09.3)m/s80.9(2/35sinm/s)(8.65m83.1 222   
The distance from the basket is the distance from the foul line to the basket, minus half 
the range, or 
 m.62.0)m/s80.9(2/70sin)m/s655.8(m21.4 22   
Note that an extra figure in the intermediate calculation was kept to avoid roundoff error. 
 
3.72: The initial y-component of the velocity is gyv y 20  , and the time the pebble is in 

flight is gyt /2 . The initial x-component is ygxtxv x 2// 2
0  . The magnitude of 

the initial velocity is then 

 ,
y

xgy
y
gxgyv

22

0 2
12

2
2 








  

and the angle is   )/2(arctanarctan
0

0 xy
x

y

v
v  . 

 
 



3.73: a) The acceleration is given as g at an angle of 1.53  to the horizontal. This is a 3-
4-5 triangle, and thus, gaga yx )5/4( and )5/3(   during the "boost" phase of the flight. 
Hence this portion of the flight is a straight line at an angle of 1.53  to the horizontal. 
After time T, the rocket is in free flight, the acceleration is 0xa  and gay  , and the 
familiar equations of projectile motion apply. During this coasting phase of the flight, the 
trajectory is the familiar parabola. 

 
 
      b) During the boost phase, the velocities are: gtvx )5/3(  and gtvy )5/4( , both 
straight lines. After Tt  , the velocities are gTvx )5/3( , a horizontal line, and 

)()5/4( TtggTvy  , a negatively sloping line which crosses the axis at the time of 
the maximum height. 
 

 
 
 
    c) To find the maximum height of the rocket, set 0yv , and solve for t, where 0t  
when the engines are cut off, use this time in the familiar equation for y. Thus, using 

Tt )5/4(  and 
 ,)()( , 25

82
25
162

5
2

max
2

5
4

2
1

5
4

5
42

5
2

max
2

2
1

00max gTgTgTyTgTgTgTygttvyy y 

Combining terms, 2
25
18

max gTy  . 
   d) To find the total horizontal distance, break the problem into three parts: The boost 
phase, the rise to maximum, and the fall back to earth. The fall time back to earth can be 
found from the answer to part (c), 22 )2/1()25/18( gtgT  , or Tt )5/6( . Then, 
multiplying these times and the velocity, ))(())(( 5

6
5
3

5
4

5
32

10
3 TgTTgTgTx  , or 

2
25
182

25
122

10
3 gTgTgTx  . Combining terms gives 2

2
3 gTx  . 

 
 



3.74: In the frame of the hero, the range of the object must be the initial separation plus 
the amount the enemy has pulled away in that time. Symbolically, 

xv
RvxtvxR
0E/H0E/H0  , where E/Hv  is the velocity of the enemy relative to the hero, t 

is the time of flight, 0xv  is the (constant) x-component of the grenade’s velocity, as 
measured by the hero, and R is the range of the grenade, also as measured by the hero. 
Using Eq. (3-29) for R, with 12sin 0   and 2/00 vv x  , 

 .0)2(or        ,2 00E/H
2
0

0
E/H0

2
0  gxvvv

g
vvx

g
v

 

This quadratic is solved for 

 km/h,1.61)422(
2
1

0
2
E/HE/H0  gxvvv  

where the units for g and 0x  have been properly converted. Relative to the earth, the x-
component of velocity is km/h133.245coskm/h)(61.1km/h0.90  , the y-component, 
the same in both frames, is km/h43.245sinkm/h)1.61(  , and the magnitude of the 
velocity is then 140 km/h. 
 
 
3.75: a)   22222222 )sin(cos)sin()cos( RttRωtRωtRyx   , 
so the radius is R. 
 
    b)                                   ,cos  ,sin tRvtRv yx    
and so the dot product 

 

.0
)cossinsincos(

)cos)(sin()sin)(cos(








ttttR
tRtRtRtR

yvxv yx




vr 

 

 
   c) y,tRax,tRa yx

2222 sin    cos    

and so .  and  22 Ra   ra   
 
   d) 22222222222 )cos(sin)cos()sin( RttRtRtRvvv yx   , and so 

Rv  . 

   e)       .
22

2

R
v

R
RRa 

  

 



3.76: a) 

 

.

)()2/1(

22

22

22

22

yx

yyxx

yx

yxdt
d

yx

vv

avav

vv

vv

vv
dt
d

dt
dv













 

   b) Using the numbers from Example 3.1 and 3.2, 

 m/s.54.0
m/s)31m/s)0.1(

)m/s300m/s31)m/s500m/s)(0.1(
22

22







.(
.)(.(.

dt
dv  

The acceleration is due to changing both the magnitude and direction of the velocity. If 
the direction of the velocity is changing, the magnitude of the acceleration is larger than 
the rate of change of speed.   c) 22  yxyyxx vvv,avav av  , and so the above form 

for dt
dv  is seen to be ./ vav 

  
 
 
3.77: a) The path is a cycloid. 

 
 
    b) To find the velocity components, take the derivative of x and y with respect to time: 

),cos1( ωtRvx    and .sinωtRv y   To find the acceleration components, take the 

derivative of xv  and yv  with respect to time: t,Rax  sin2  and  t.Ray  cos2  
   c) The particle is at rest )0(  xy vv  every period, namely at ..../4 /2 0 ω,πω,π,t   At 

that time, ;...4 2 0 πR,πR,,x   and .0y  The acceleration is 2Ra   in the 
-y direction. 

   d) No, since      .cossin 2
2/12222  RtRtRa   

 
 
3.78: A direct way to find the angle is to consider the velocity relative to the air and the 
velocity relative to the ground as forming two sides of an isosceles triangle. The wind 
direction relative to north is half of the included angle, or , 53.11)50/10arcsin(  east of 
north. 
 
 



3.79: Finding the infinite series consisting of the times between meeting with the brothers 
is possible, and even entertaining, but hardly necessary. The relative speed of the brothers 
is 70 km/h, and as they are initially 42 km apart, they will reach each other in six-tenths 
of an hour, during which time the pigeon flies 30 km. 
 
 
3.80: a) The drops are given as falling vertically, so their horizontal component of 
velocity with respect to the earth is zero. With respect to the train, their horizontal 
component of velocity is 12.0 m/s, west (as the train is moving eastward).    b) The 
vertical component, in either frame, is ,.()( m/s820)30tan/m/s0.12   and this is the 
magnitude of the velocity in the frame of the earth. The magnitude of the velocity in the 
frame of the train is m/s.24)m/s820)m/s0.12( 22  .(  This is, of course, the same as 

.30sin/)m/s0.12(   
 
3.81: a) With no wind, the plane would be 110 km west of the starting point; the wind has 
blown the plane 10 km west and 20 km south in half an hour, so the wind velocity is 

km/h7.44)km/h40()km/h20( 22   at a direction of  63)20/40arctan(  south of 
west.    b)  5.10)220/40arcsin(  north of west. 
 
3.82: a) vD /2  b) )/(2 22 wvDv   c) 22/2 wvD   d) 1.50 h, 1.60 h, 1.55 h. 
 
3.83: a) The position of the bolt is ,tt 22)m/s80.9(2/1)m/s50.2(m00.3   and the 
position of the floor is (2.50 m/s)t. Equating the two, .)m/s90.4(m00.3 22 t  Therefore 

s.782.0t    b) The velocity of the bolt is m/s5.17s)782.0)(m/s80.9(m/s50.2 2   
relative to Earth, therefore, relative to an observer in the elevator 

m/s.67.7m/s50.2m/s17.5 v     c) As calculated in part (b), the speed relative to 
Earth is 5.17 m/s. d) Relative to Earth, the distance the bolt travelled is 

m04.1)s782.0)(m/s90.4s782.0)(m/s50.2()m/s80.9(2/1)m/s50.2( 2222  ()tt  
 
 
3.84: km/h5.804plane of speedAir h60.6

km5310   
With wind from A to B: 
 h70.6BAAB  tt  
Same distance both ways: 

 km2655
2

km5310)km/h5.804( ABw  tv  

 km2655km/h5.804( BAw  )tv  
Solve (1), (2), and (3) to obtain wind speed :wv  
 km/h1.98w v  
 



3.85: The three relative velocities are: 
J/G,v  Juan relative to the ground. This velocity is due north and has magnitude 

m/s.00.8J/G v  

,B/Gv  the ball relative to the ground. This vector is 0.37  east of north and has magnitude 
m/s.0.12B/G v  

,B/Jv  the ball relative to Juan. We are asked to find the magnitude and direction of this 
vector. 
The relative velocity addition equation is ,J/GB/JB/G vvv 

  so .J/GB/GB/J vvv 
  

Take y  to be north and x  to be east. 
m/s222.70.37sinB/GB/J  vv x  

m/s584.10.37cos /B/GB/J  GJy vvv  
These two components give m/s39.7B/Jv  at 4.12  north of east. 
 
3.86: a) m/s.80.9)m90.4)(m/s80.9(22 2

0  ghv y    b) .s00.1/0 gv y    c) The 

speed relative to the man is ,) m/s54.4)m/s80.9(m/s8.10( 22   and the speed relative 
to the hoop is 13.6 m/s (rounding to three figures), and so the man must be 13.6 m in 
front of the hoop at release.   d) Relative to the flat car, the ball is projected at an angle 

  .65tan m/s54.4
m/s80.91    Relative to the ground the angle is    

 7.35tan m/s9.10m/s54.4
m/s80.91  

 
3.87: a) m.80m/s80.9/2sin)m/s150( 22   

    b) .106.11000 3
m)80(

m)1010(
2

22  



  

    c) The slower rise will tend to reduce the time in the air and hence reduce the radius. 
The  slower horizontal velocity will also reduce the radius. The lower speed would tend 
to increase the time of descent, hence increasing the radius. As the bullets fall, the friction 
effect is smaller than when they were rising, and the overall effect is to decrease the 
radius. 
 
 
3.88: Write an expression for the square of the distance )( 2D  from the origin to the 
particle, expressed as a function of time. Then take the derivative of 2D  with respect to t, 
and solve for the value of t when this derivative is zero. If the discriminant is zero or 
negative, the distance D will never decrease. Following this process, .5.709/8sin 1   
 
 



3.89: a) The trajectory of the projectile is given by Eq. (3.27), with φ,θ 0  and the 
equation describing the incline is .tanθxy   Setting these equal and factoring out the 

0x  root (where the projectile is on the incline) gives a value for ;0x  the range 
measured along the incline is 

 . 
cos

)(cos]tan)[tan(2cos/
22

0







 











θ
φθφθ

g
vθx  

    b) Of the many ways to approach this problem, a convenient way is to use the same 
sort of "trick", involving double angles, as was used to derive the expression for the range 
along a horizontal incline. Specifically, write the above in terms of φ,θ   as 

 . ]sincoscoscos[sin
cos
2 2

2

2
0 












g
vR  

The dependence on   and hence φ  is in the second term. Using the identities 
),2cos1)(2/1(cos  and  2sin)2/1(cossin 2    this term becomes 

 . ]sin)2)[sin(2/1(]sin2cossin2sin)[cos2/1( θθθθθ   
This will be a maximum when )2sin( θ  is a maximum, at ,θφθ  9022  or 

.2/45 θφ   Note that this reduces to the expected forms when 0θ  (a flat incline, 
 45φ  and when  90θ  (a vertical cliff), when a horizontal launch gives the greatest 

distance). 
 
 



3.90: As in the previous problem, the horizontal distance x in terms of the angles is 

 . 
)(cos

1
2

)tan(tan 22
0 













v
gx  

Denote the dimensionless quantity 2
02/ vgx  by ;β  in this case 

 .2486.0
)m/s0.32(2

30.0m)cos0.60)(m/s80.9(
2

2




  

The above relation can then be written, on multiplying both sides by the product 
,)cos(cos    

 ,
)cos(

coscos)sin()cos(sin




  

and so 

 . 
)cos(

cossin)cos(cos)sin(




  

 
The term on the left is , sin))sin((   so the result of this combination is 
 
 .cos)cos(sin    
 
Although this can be done numerically (by iteration, trial-and-error, or other methods), 
the expansion ))sin()(sin(cossin 2

1 bababa   allows the angle   to be isolated; 
specifically, then 

 ,cos))sin()2(sin(
2
1    

with the net result that 
 .sincos2)2sin(    
    a) For , 30  and   as found above,  3.19  and the angle above the horizontal is 

.3.49   For level ground, using ,2871.0  gives .5.17   b) For , 30  the 
same   as with  30  may be used ,))30cos(30(cos   giving  0.13  and 

.0.17   
 
 



3.91: In a time t,  the velocity vector has moved through an angle (in radians) R
tv  

(see Figure 3.23). By considering the isosceles triangle formed by the two velocity 
vectors, the magnitude v  is seen to be ,v )2/sin(2   so that 

 t)s/0.1sin(
t

m/s10
2

sin2ave 








 




R
tv

t
va  

Using the given values gives magnitudes of 22 m/s98.9m/s59.9 ,  and .m/s0.10 2  The 
instantaneous acceleration magnitude, 222 m/s010m50.2/(m/s)00.5(/ .)Rv   is indeed 
approached in the limit at .0t  The changes in direction of the velocity vectors are 
given by R

tv  and are, respectively, 1.0 rad, 0.2 rad, and 0.1 rad. Therefore, the angle 
of the average acceleration vector with the original velocity vector is 

,)7.95(rad 1.02/,)6.118(rad 2/12/2    and ).(92.9rad 05.02/   
 



3.92: 

 
  
The x-position of the plane is t)m/s236(  and the x-position of the rocket is 

.)(30cos)m/s80.9)(00.3(2/1)m/s236( 22 Ttt   The graphs of these two have the form, 

 
If  we take 0y  to be the altitude of the airliner, then 

222 ))(30(sin)m/s80.9)(00.3(2/1)(2/1)( TtTtgTgTty   for the rocket. This 
graph looks like 

 
By setting 0y  for the rocket, we can solve for t in terms of 

.))(m/s35.7()()m/s80.9()m/s90.4(0 , 22222 TtTtTTT   Using the quadratic 
formula for the variable T,tx   we find 

)m/s35.7(2

)9.4)(m/s35.7)(4()m/s80.9()m/s80.9(
2

22222 TTTTtx   or . 72.2 Tt   Now, using 

the condition that ,xx m1000planerocket   we find 
m,1000)m/s236()(m/s7.12(m/s)236( 22  tTt)t  or .s6.78)72.1( 22 T  

Therefore s.15.5T  
 
 
3.93:   a) Taking all units to be in km and h, we have three equations. We know that 
heading upstream 2//  Gwwc vv  where wcv /  is the speed of the curve relative to water 
and w Gv   is the speed of the water relative to the ground. We know that heading 
downstream for a time .5)( , //  tvvt Gwwc  We also know that for the bottle 

.3)1(/ tv Gw  Solving these three equations for x,vxv wcGw  2 , //  therefore 
5)2(  txx  or .5)22(  tx  Also ,xt 1/3   so 5)1)(22( 3  xx  or 
.062 2  xx  The positive solution is km/h.5.1/  Gwvx  

b) .km/h5.3km/h2/  w/Gwc vv   



 
4.1: a) For the magnitude of the sum to be the sum of the magnitudes, the forces must 
be parallel, and the angle between them is zero. b) The forces form the sides of a right 
isosceles triangle, and the angle between them is 90 . Alternatively, the law of cosines 
may be used as 

   , cos22 2222 FFFF   
from which cos 0  , and the forces are perpendicular. c) For the sum to have 0 
magnitude, the forces must be antiparallel, and the angle between them is 180 . 
 
 
4.2:  In the new coordinates, the 120-N force acts at an angle of 53  from the x -axis, 
or 233  from the x -axis, and the 50-N force acts at an angle of 323  from the x -
axis. 
 
      a) The components of the net force are 

N32323 cos)N50(233 cos)N120( xR  
.N124323 sin)N50(233 sin)N120()N250( yR  

       b) ,N12822  yx RRR     104arctan 32
124 . The results have the same magnitude, 

and the angle has been changed by the amount )37(   that the coordinates have been 
rotated. 
 
 
4.3: The horizontal component of the force is N1.745cos)N10(   to the right and the 
vertical component is N1.745sin)N10(   down. 
 
 
4.4: a) ,cosFFx   where   is the angle that the rope makes with the ramp (  30θ  in 

this problem), so .N3.6930cos
N0.60

 cos  
xFF F


 

    b) N.6.34tansin  θFθFF xy  
 
 



4.5: Of the many ways to do this problem, two are presented here. 
    Geometric: From the law of cosines, the magnitude of the resultant is 
 .N49460cos)N300)(N270(2)N300()N270( 22 R  
The angle between the resultant and dog A’s rope (the angle opposite the side 
corresponding to the 250-N force in a vector diagram) is then 

   .7.31
N494

)N300(120sinarcsin 






   

    Components: Taking the x -direction to be along dog A’s rope, the components of the 
resultant are 
 N42060cos)N300()N270( xR  

,N8.25960sin)N300( yR  

so   .7.31arctan,N494)N8.259()N420( 420
8.25922  θR  

 
4.6: a) N10.8)9.126(cos)N00.6(120cos)N00.9(21  xx FF  

N.00.3)9.126(sin)N00.6(120sin)N00.9(21  yy FF  

b) N.8.64N)(3.00N)10.8( 2222  yx RRR  
 

4.7: 2s/m2.2kg)(60N)132(/  /mFa  (to two places). 
 
 

4.8: .N189)m/skg)(1.40135( 2  maF  
 
 
4.9: kg.16.00)m/sN)/(3.000.48(/ 2  aFm  
 
 
4.10: a) The acceleration is 2

s) (5.00
)m0.11(22 s/m88.022 

t
xa . The mass is then 

kg.9.902m/s 0.88
N 0.80  a

Fm  
    b) The speed at the end of the first 5.00 seconds is m/s4.4at , and the block on the 
frictionless surface will continue to move at this speed, so it will move another 

m0.22vt  in the next 5.00 s. 
 
 



4.11: a) During the first 2.00 s, the acceleration of the puck is 2m/s563.1/ mF  
(keeping an extra figure). At s00.2t , the speed is m/s13.3at  and the position is 

m13.32/2/2  vtat . b) The acceleration during this period is also 2m/s563.1 , and the 
speed at 7.00 s is m/s6.26s)00.2)(m/s(1.563m/s13.3 2  . The position at s00.5t  is 

m125s)2.00sm/s)(5.00(3.13m13.3 x , and at s00.7t  is 
m,21.89s))(2.00m/s3(1/2)(1.56s)m/s)(2.00(3.13m12.5 22   

or 21.9 m to three places. 
 
 
4.12: a) .m/s31.4kg5.32/N140/ 2 mFax  
    b) With m215,0 2

2
1

0  atxv x . 
    c) With m/s0.43/2,00  txtavv xxx . 
 
 
4.13: a) 0F


 

    b), c), d)  

 
 

4.14: a) With 00 xv , 

 .m/s1050.2
)m1080.1(2

)m/s1000.3(
2

214
2

262





 x

va x
x  

    b) s1020.1 8
s/m1050.2
s/m1000.3
214

6 


 
x

x
a
vt . Note that this time is also the distance divided by 

the average speed. 
    c) N.1028.2)m/s1050.2)(kg1011.9( 1621431   maF  
 
 
4.15: .N1094.2)m/s80.9)(m/s12)(N2400()/( 322  gawmaF  
 
 

4.16:   .m/s0.22)m/s80.9(
2.71

160
/

22 





 g

w
F

gw
F

m
Fa  

 
 
4.17: a) kg49.4)m/s80.9/()N0.44(/ 2  gwm  b) The mass is the same, 4.49 kg, and 
the weight is .N13.8)m/s81.1)(kg49.4( 2   
 
 



4.18: a) From Eq. (4.9), kg.327.0)s/m80.9/()N20.3(/ 2  gwm  
    b) N.137)s/m80.9)(kg0.14( 2  mgw  
 
 
4.19: N.825)s/m15)(kg55( 2  maF  The net forward force on the sprinter is 
exerted by the blocks. (The sprinter exerts a backward force on the blocks.) 
 
 
4.20: a) the earth (gravity) b) 4 N, the book c) no d) 4 N, the earth, the book, up e) 4 N, 
the hand, the book, down f) second g) third h) no i) no j) yes k) yes l) one (gravity) m) no 
 
 
4.21: a) When air resistance is not neglected, the net force on the bottle is the weight of 
the bottle plus the force of air resistance. b) The bottle exerts an upward force on the 
earth, and a downward force on the air. 
 
 
4.22: The reaction to the upward normal force on the passenger is the downward normal 
force, also of magnitude 620 N, that the passenger exerts on the floor. The reaction to the 
passenger’s weight is the gravitational force that the passenger exerts on the earth, 
upward and also of magnitude 650 N. .m/s452.0 2

m/s/9.80N650
N650N620

2  
m

F  The passenger’s 

acceleration is 2s/m452.0 , downward. 
 
 

4.23: .s/m104.7
)kg100.6(

)s/m80.9)(kg45( 223
24

2

EE
E





m
mg

m
Fa  

 



4.24: (a) Each crate can be considered a single particle: 

 
ABF  (the force on Am  due to Bm ) and BAF  (the force on Bm  due to Am ) form an 

action-reaction pair. 
(b) Since there is no horizontal force opposing F, any value of F, no matter how 

small, will cause the crates to accelerate to the right. The weight of the two crates acts at 
a right angle to the horizontal, and is in any case balanced by the upward force of the 
surface on them. 
 
 
4.25: The ball must accelerate eastward with the same acceleration as the train. There 
must be an eastward component of the tension to provide this acceleration, so the ball 
hangs at an angle relative to the vertical. The net force on the ball is not zero. 
 
 



4.26: The box can be considered a single particle. 

 
    For the truck: 

 
    The box’s friction force on the truck bed and the truck bed’s friction force on the box 
form an action-reaction pair. There would also be some small air-resistance force action 
to the left, presumably negligible at this speed. 
 
 



4.27: a)  
 
 

 
 

b) For the chair, 0ya  so yy maF   gives 
037sin  Fmgn  

 N142n  
 
 
4.28: a) 

 

 
 
b) 

                                         sinmgT   
 N2790.26sin)s/m80.9)(kg0.65( 2   
 
 



4.29: tricycle and Frank 

 
 

    T is the force exerted by the rope and gf  is the force the ground exerts on the tricycle. 
    spot and the wagon 

  
    T   is the force exerted by the rope. T and T   form a third-law action-reaction pair,  
     .TT 


 

 
 
4.30: a) The stopping time is .s1043.7 4

s/m350
)m130.0(2

)2/( 0

 v
x

v
x
ave

  

b) .N848)kg1080.1(
s)10(7.43
)s/m350(3

4- 


maF  (Using xva 2/2
0  gives the same 

result.) 
 
 
4.31: Take the x -direction to be along 1F


  and the y -direction to be along R


. Then 

N13002 xF  and N13002 yF , so N18382 F , at an angle of 135  from 1F


. 
 
 
4.32: Get g on X: 

2

2
1 gty   

    2)s2.2(
2
1m0.10 g  

                             2s/m13.4g  

                      N41.0)s/m03.4)(kg100.0( 2
XX  mgw  

 
 



4.33: a) The resultant must have no y-component, and so the child must push with a force 
with y-component N.6.1660sinN)100(30sin)N140(   For the child to exert the 
smallest possible force, that force will have no x-component, so the smallest possible 
force has magnitude 16.6 N and is at an angle of 270 , or 90  clockwise from the  

x -direction.  
 
b) .N840)s/m80.9)(kg6.85(.kg6.85 2

s/m0.2
30cosN14060cosN100

2   mgwm a
F . 

 
 
4.34: The ship would go a distance 

 m,25.506
)N100.8(2

)s/m5.1)(kg106.3(
2)/(22 4

272
0

2
0

2
0 





F

mv
mF

v
a

v  

so the ship would hit the reef. The speed when the tanker hits the reef is also found from 

 m/s,17.0
)kg106.3(

)m500)(N100.8(2m/s)5.1()/2( 7

4
22

0 



 mFxvv  

so the oil should be safe. 
 
 
4.35: a) Motion after he leaves the floor: ).(2 0

2
0

2 yyavv yyy   

0yv  at the maximum height, 2
0 m/s80.9,m2.1  yayy , so 

m/s.85.40 yv  

    b) .m/s2.16)s300.0/()s/m85.4(/ 2
av  tva  

    c) 

             
             avav mawF   

 )s/m2.16)(s/m80.9/N890(N890 22
avav  mawF  

   N1036.2 3
av F  

 
 
4.36: 

 N.107.3
)m108.1(2

)s/m5.12(kg)850(
2

6
2

22
0 


 x

vmmaF  

 
 
 
 



4.37: a) 

                              
 (upward)net mgFF   
 
    b) When the upward force has its maximum magnitude maxF  (the breaking strength), 
the net upward force will be maxF mg  and the upward acceleration will be 

 .s/m83.5s/m80.9
kg80.4
N0.75 22maxmax 


 g

m
F

m
mgF

a  

 
4.38: a) N539 mgw  
    b) 

          
   Downward velocity is decreasing so a  is upward and the net force should be upward. 

mgF air , so the net force is upward. 
    
 
 
 c) Taking the upward direction as positive, the acceleration is 

    .s/m47.1s/m80.9
kg0.55
N620s/m80.9 222airair 




m
F

m
mgF

m
Fa  

 



4.39: a) Both crates moves together, so 2s/m50.2a   
    b) 

          N0.10)s/m50.2)(kg00.4( 2
1  amT  

    c)  

      TF   and the net force is to the right, in the direction of a . 
    d) amTF 2  
        N0.25)s/m50.2)(kg00.6(N0.10 2

2  amTF  
 
 
4.40: a) The force the astronaut exerts on the rope and the force that the rope exerts on 
the astronaut are an action-reaction pair, so the rope exerts a force of 80.0 N on the 
astronaut.    b) The cable is under tension. c) 2

kg105.0
N0.80 s/m762.0 m

Fa . d) There is no 
net force on the massless rope, so the force that the shuttle exerts on the rope must be 
80.0 N (this is not an action-reaction pair). Thus, the force that the rope exerts on the 
shuttle must be 80.0 N. e) 24

kg109.05
N0.80 s/m1084.84




 m
Fa . 

 
4.41: a) m.4.4)s025.0)(s/m100.8()s025.0)(s/m100.9()s025.0( 334223 x  
    b) Differentiating, the velocity as a function of time is 

so,)s/m1040.2()s/m1080.1()( 23524 tttv   
  23524 )s025.0)(s/m1040.2()s025.0)(s/m1080.1()s025.0( v  

                               s./m100.3 2  
 

    c) The acceleration as a function of time is 
,)s/m1080.4(s/m1080.1)( 3524 tta   

 
so (i) at ,s/m108.1,0 24 at  and (ii) ,s/m106.0s)025.0( 23a  and the forces are 
(i) N107.2 4ma and (ii) N.100.9 3ma  
 
 



4.42: a) The velocity of the spacecraft is downward. When it is slowing down, the 
acceleration is upward. When it is speeding up, the acceleration is downward. 
    
 
 
 b)  

 speeding up: Fw   and the net force is downward 
                slowing down: Fw   and the net force is upward 
    c) Denote the y-component of the acceleration when the thrust is 1F  by 1a  and the y-
component of the acceleration when the thrust is 2F  by 2a . The forces and accelerations 
are then related by 
 ., 2211 mawFmawF   
Dividing the first of these by the second to eliminate the mass gives 

 ,
2

1

2

1

a
a

wF
wF



  

and solving for the weight w gives 

 .
21

1221

aa
FaFaw




  

In this form, it does not matter which thrust and acceleration are denoted by 1 and which 
by 2, and the acceleration due to gravity at the surface of Mercury need not be found. 
Substituting the given numbers, with y  upward, gives 
 

N.100.16
)s/m80.0(s/m20.1

)N100.25)(s/m80.0()N100.10)(s/m20.1( 3
22

3232





w  

  
In the above, note that the upward direction is taken to be positive, so that 2a  is negative. 
Also note that although 2a  is known to two places, the sums in both numerator and 
denominator are known to three places. 
 
 



4.43: 
 

    
 
    a) The engine is pulling four cars, and so the force that the engine exerts on the first car 
is am4 . b), c), d): Similarly, the forces the cars exert on the car behind are 

aa  mm 2,3  and am . e) The direction of the acceleration, and hence the direction of 
the forces, would change but the magnitudes would not; the answers are the same. 
 
 
4.44: a) If the gymnast climbs at a constant rate, there is no net force on the gymnast, so 
the tension must equal the weight; mgT  . 
    b) No motion is no acceleration, so the tension is again the gymnast’s weight. 
    c) ammamgTwT   (the acceleration is upward, the same direction as the 

tension), so )( a gmT . 

    d) ammamgTwT   (the acceleration is downward, the same opposite as 

the tension), so )( a gmT . 
 
 
4.45: a)  

 
    The maximum acceleration would occur when the tension in the cables is a maximum, 
  

.s/m93.2s/m80.9
kg2200

N000,28 22net 


 g
m
T

m
mgT

m
Fa  

 

    b)     .s/m1.11s/m62.1
kg2200

N000,28 22   

 
 



4.46: a) His speed as he touches the ground is 
  
 s./m80.7)m10.3)(s/m80.9(22 2  ghv  
    
 b) The acceleration while the knees are bending is 

 .s/m6.50
)m60.0(2
)s/m80.7(

2
2

22


y

va  

 
 
    c)  

 
 
    The net force that the feet exert on the ground is the force that the ground exerts on the 
feet (an action-reaction pair). This force is related to the weight and acceleration by 

,mamgFwF   so N4532)s/m80.9s/m6.50)(kg0.75()( 22  gamF . As 
a fraction of his weight, this force is   16.61  g

a
mg
F  (keeping an extra figure in the 

intermediate calculation of a). Note that this result is the same algebraically as  1m0.60
m10.3  . 

 
 
4.47: a)  

 
 

    b) The acceleration of the hammer head will be the same as the nail, 
2322

0 s/m10138.1)cm45.0(2/)s/m2.3(2/  xva . The mass of the hammer head is 
its weight divided by kg50.0s/m80.9/N9.4, 2 g , and so the net force on the hammer 
head is N.570)s/m10138.1)(kg50.0( 23   This is the sum of the forces on the hammer 
head; the upward force that the nail exerts, the downward weight and the downward 15-N 
force. The force that the nail exerts is then 590 N, and this must be the magnitude of the 
force that the hammer head exerts on the nail. c) The distance the nail moves is .12 m, so 
the acceleration will be 2s/m4267 , and the net force on the hammer head will be 2133 
N. The magnitude of the force that the nail exerts on the hammer head, and hence the 
magnitude of the force that the hammer head exerts on the nail, is 2153 N, or about 2200 
N. 
 
 



4.48:  

 
    a) The net force on a point of the cable at the top is zero; the tension in the cable must 
be equal to the weight w. 
    b) The net force on the cable must be zero; the difference between the tensions at the 
top and bottom must be equal to the weight w, and with the result of part (a), there is no 
tension at the bottom. 
    c) The net force on the bottom half of the cable must be zero, and so the tension in the 
cable at the middle must be half the weight, 2/w . Equivalently, the net force on the 
upper half of the cable must be zero. From part (a) the tension at the top is w, the weight 
of the top half is 2/w  and so the tension in the cable at the middle must be 

2/2/ www  . 
    d) A graph of T vs. distance will be a negatively sloped line. 
 
 
 
 
 
4.49:   a)  

 
    b) The net force on the system is N0.53)s/m80.9)(kg00.15(N200 2   (keeping 
three figures), and so the acceleration is ,s/m53.3)kg0.15/()N0.53( 2 up. c) The net 
force on the 6-kg block is N2.21)s/m53.3)(kg00.6( 2  , so the tension is found from 

N2.21 mgTF , or N120N2.21)s/m80.9)(kg00.6()N200( 2 T . 
Equivalently, the tension at the top of the rope causes the upward acceleration of the rope 
and the bottom block, so agT )kg00.9()kg00.9(  , which also gives N120T . d) 
The same analysis of part (c) is applicable, but using kg00.2kg00.6   instead of the 
mass of the top block, or 7.00 kg instead of the mass of the bottom block. Either way 
gives N3.93T . 
 
 



4.50: a)  

 
 

    b) The athlete’s weight is N882)s/m80.9)(kg0.90( 2 mg . The acceleration of the 
barbell is found from s/m375.0s6.1/m60.0av v . Its final velocity is thus 
(2)(0 375m s) 0 750 m s     , and its acceleration is 

 20 s/m469.0
65.1

s/m750.0





t
vva  

The force needed to lift the barbell is given by: 
 mawFF  barbellliftnet  
The barbell’s mass is 2(490 N) (9 80m s ) 50 0kg     , so 

 
N513N23N490

)s/m469.0)(kg0.50(N490 2
barbelllift


 mawF

 

The athlete is not accelerating, so: 
                                    0athleteliftfloornet  wFFF  

N1395N882N513athleteliftfloor  wFF  



4.51:  a)  

   
L is the lift force 

 
 
    b) yy maF    

   
3/2

)3/(
MgL

gMLMg



 

 
    c) )2/(gmmgL  , where m is the mass remaining. 
    3/2MgL  , so 9/4Mm  . Mass 9/5M  must be dropped overboard. 
 
 



4.52:  a) m  mass of one link 
    
 
 

 
 
 
    The downward forces of magnitude 2ma and ma for the top and middle links are the 
reaction forces to the upward force needed to accelerate the links below. 
    b)  (i) The weight of each link is N94.2)s/m80.9)(kg300.0( 2 mg . Using the free-
body diagram for the whole chain: 

 22net s/m5.3ors/m53.3
kg900.0
N18.3

kg900.0
)N94.2(3N12

3





m
Fa  

    (ii) The second link also accelerates at 2s/m53.3 , so: 
  
                                           mamgmaFF  2topnet  

                       )N94.2(2)s/m53.3)(kg300.0(222 2
top  mgmaF  
   N0.8N88.5N12.2   

 
 
 
 
 
4.53: Differentiating twice, the acceleration of the helicopter as a function of time is 
 ,ˆ)s/m12.0(ˆ)s/m120.0( 23 kia  t  
and at 5 0st   , the acceleration is 
 .ˆ)s/m12.0(ˆ)s/m60.0( 22 kia 

  
The force is then 
  

  kiaa ˆ)s/m12.0(ˆ)s/m60.0(
)s/m80.9(

N)1075.2( 22
2

5







g
wmF  

        .ˆ)N104.3(ˆN)107.1( 34 ki   
 
 
 



4.54: The velocity as a function of time is 23)( BtAtv   and the acceleration as a 
function of time is Btta 6)(  , and so the Force as a function of time is 

mBttmatF 6)()(  . 
 
 
4.55: 

  









t
tktk

m
dt

m
t

0

4
2

1
ˆ

4
ˆ11)( jiav 

. 

 
 



4.56: a) The equation of motion, dt
dvmCv  2  cannot be integrated with respect to time, 

as the unknown function )(tv  is part of the integrand. The equation must be separated 
before integration; that is, 

 
,11

0

2

vvm
Ct

v
dvdt

m
C




 

where 0v  is the constant of integration that gives 0v v  at 0t  . Note that this form 
shows that if 0 0v  , there is no motion. This expression may be rewritten as 

 ,1
1

0













m
Ct

vdt
dxv  

which may be integrated to obtain 

 .1ln 0
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m
Ctv

C
mxx  

To obtain x as a function of v, the time t must be eliminated in favor of v; from the 
expression obtained after the first integration, 100  v

v
m

Ctv , so 

 .ln 0
0 








v
v
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mxx  

    b) By the chain rule, 

 ,v
dx
dv

dt
dv

dx
dv

dt
dv

  

and using the given expression for the net force, 
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4.57: In this situation, the x-component of force depends explicitly on the y-component of 
position. As the y-component of force is given as an explicit function of time, yv  and y 

can be found as functions of time. Specifically, tmkay )/( 3 , so 2
3 )2/( tmkvy   and 

3
3 )6/( tmky  , where the initial conditions 0,0 00  yv y  have been used. Then, the 

expressions for xx va ,  and x are obtained as functions of time: 
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In vector form, 
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5.1:  a) The tension in the rope must be equal to each suspended weight, 25.0 N. b) If the 
mass of the light pulley may be neglected, the net force on the pulley is the vector sum of 
the tension in the chain and the tensions in the two parts of the rope; for the pulley to be 
in equilibrium, the tension in the chain is twice the tension in the rope, or 50.0 N. 
 
 
5.2:  In all cases, each string is supporting a weight w against gravity, and the tension in 
each string is w. Two forces act on each mass: w down and )( wT   up. 
 
 
5.3:  a) The two sides of the rope each exert a force with vertical component T θsin , and 
the sum of these components is the hero’s weight. Solving for the tension T, 

. N  1054.2
0.01sin  2

)sm (9.80 kg) 0.90(
sin  2

3
2







 wT  

    b) When the tension is at its maximum value, solving the above equation for the angle 
θ  gives 

.01.1
N)  1050.2(2

sm (9.80 kg) (90.0arcsin
2

arcsin 4

2



















T
w  

 
 
5.4:  The vertical component of the force due to the tension in each wire must be half of 
the weight, and this in turn is the tension multiplied by the cosine of the angle each wire 
makes with the vertical, so if the weight is .48arccos  and  cos , 3

2
4

3
2  θθw ww  

 
 
5.5:  With the positive y-direction up and the positive x-direction to the right, the free-
body diagram of Fig. 5.4(b) will have the forces labeled n and T resolved into x- and y-
components, and setting the net force equal to zero, 

.0sin cos
0sin cos 




wTnF
nTF

y

x




 

Solving the first for αTn cot    and substituting into the second gives 

wTTTT 


















sinsin
sin

sin
cossin

sin
cos 222

 

  
and so ,coscot  sincot   wwTn  as in Example 5.4. 
 
 
5.6:   N.  104.1017.5sin  )sm (9.80 kg) 1390( sin  sin  32  αmgαw  
 
 



5.7: a) N.  1023.5 cosor , cos 4
40 cos

)sm kg)(9.8 4090( 2

 θWTWθT BB  
      b) N.  1036.340sin  N) 1023.5(sin 44  θTT BA  
 
 
5.8: a) .045cos30cos and ,45sin30sin  ,  BACBAC TTwTTTwT  Since 

,45cos45sin   adding the last two equations gives ,)30sin30(cos wTA   and so 
.732.0366.1 wT w

A   Then, .897.045 cos
30cos wTT AB  
  

      b) Similar to part (a), ,45sin60cos , wTTwT BAC   and 
.045cos60sin  BA TT  Again adding the last two,  ,73.2)60cos60(sin wT w

A    and  

.35.345cos
60sin wTT BB  
  

 
 
5.9: The resistive force is N.  523m) 6000m 200)(sm kg)(9.80 1600(sin 2 w . 
 
 
5.10: The magnitude of the force must be equal to the component of the weight along the 
incline, or N.  3370.11sin)sm kg)(9.80 180(sin 2 θW   
 
 
5.11:   a) ,sinN, 60 WθTW   so ,sin45N) 60( T  or N.  85T  
    b) N.  6045 cos N 85, cos 2121  FFθTFF  
 
 
5.12:   If the rope makes an angle   with the vertical, then 0 110

1 51sin 0 073 
    (the 

denominator is the sum of the length of the rope and the radius of the ball). The weight is 
then the tension times the cosine of this angle, or 

N.  65.2
998.0

)sm80.9kg)( 270.0(
))073(.cos(arcsincos

2


mg

θ
wT  

The force of the pole on the ball is the tension times θsin , or N.  193.0)073.0( T  
 
 
5.13:   a) In the absence of friction, the force that the rope between the blocks exerts on 
block B will be the component of the weight along the direction of the incline, 

αwT sin . b) The tension in the upper rope will be the sum of the tension in the lower 
rope and the component of block A’s weight along the incline, 

.sin2sinsin  www  c) In each case, the normal force is . cos w  d) When 
,,0 wn   when .0 ,90  n  

 



5.14:   a) In level flight, the thrust and drag are horizontal, and the lift and weight are 
vertical. At constant speed, the net force is zero, and so fF  and .Lw   b) When the 
plane attains the new constant speed, it is again in equilibrium and so the new values of 
the thrust and drag, F   and f  , are related by fF  ; if .2 ,2 ffFF   c) In order to 
increase the magnitude of the drag force by a factor of 2, the speed must increase by a 
factor of 2 . 
 
5.15: a) 

 
The tension is related to the masses and accelerations by 

.222

111

amgmT
amgmT




 

    b) For the bricks accelerating upward, let aaa  21  (the counterweight will 
accelerate down). Then, subtracting the two equations to eliminate the tension gives 

.sm 96.2
kg0.15kg 0.28
kg 0.15kg 0.28 sm 80.9

or  ,)()(

22

12

12

2112




















mm
mmga

ammgmm
 

      c) The result of part (b) may be substituted into either of the above expressions to find 
the tension N. 191T  As an alternative, the expressions may be manipulated to 
eliminate a algebraically by multiplying the first by 2m and the second by 1m and adding 
(with 12 aa  ) to give 

N. 191
kg) 0.28kg 0.15(

)sm (9.80 kg) (28.0 kg) 0.15(22
or   ,02)(

2

21

21

2121











mm
gmmT

gmmmmT
 

In terms of the weights, the tension is 

.22
21

1
2

21

2
1 mm

mw
mm

mwT





  

If, as in this case, 21212 2 , mmmmm  and ,2 211 mmm   so the tension is greater 
than 1w and less than ;2w this must be the case, since the load of bricks rises and the 
counterweight drops. 
 
 



5.16:    Use Second Law and kinematics: ,2 ,sin  2vaxθga   solve for θ . 
or  ,2sin 2 xvθg    

  .3.12 m)]], 5.1)(sm 8.9)(2[()sm 5arcsin[(2. 2arcsin 222  θgxvθ  
 
 
5.17:  a) 

 
 

      b) In the absence of friction, the net force on the 4.00-kg block is the tension, and so 
the acceleration will be .sm2.50kg) 00.4(N)  0.10( 2   c) The net upward force on the 
suspended block is ,mamgT   or ).( agTm   The block is accelerating downward, 
so ,sm 50.2 2a  and so .kg 37.1)sm 50.2sm (9.80N)  0.10( 22 m                      
d) ,mgmaT   so ,mgT   because .0a  
5.18:  The maximum net force on the glider combination is 
 N,  7000N  25002N  000,12   
so the maximum acceleration is .sm0.5 2

kg 1400
N 7000

max a  

   a) In terms of the runway length L and takoff speed ,, max2
2 aav L

v   so 

 m. 160    
)sm 0.5(2

)sm 40(    
2

    2

2

max

2


a
vL  

   b) If the gliders are accelerating at ,maxa  from  
N.  6000N  2500)sm kg)(5.0 700( , 2

dragdrag  FmaTmaFT  Note that this is 
exactly half of the maximum tension in the towrope between the plane and the first 
glider. 
 
 
5.19:  Denote the scale reading as F, and take positive directions to be upward. Then, 

 .1or    , 





 

w
Fgaa

g
wmawF  

    a) 22 sm 78.1)1N)550(N) 450()(sm 80.9( a , down. 
    b) ,sm 14.2)1N)  (550N) 670()(sm 80.9( 22 a  up. c) If gaF   ,0  and the 
student, scale, and elevator are in free fall. The student should worry. 
 
 



5.20:   Similar to Exercise 5.16, the angle is ),arcsin( 2
2
gt

L , but here the time is found in 

terms of velocity along the table, xt v
x ,
0

  being the length of the table and 0v  the 
velocity component along the table. Then, 

 

  .38.1
m) 75.1(sm 80.9

s)m m)(3.801050.2(2arcsin
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5.21:  

 
 

5.22:  

 
 

 
5.23:    a) For the net force to be zero, the applied force is 
 N.  0.22)sm (9.80 kg) 2.11( )20.0( 2

kkk  mgµnµfF  
      b) The acceleration is ,k g and ,2 2vax   so ,2 k

2 gvx   or m. 13.3x  
 
 



5.24:   a) If there is no applied horizontal force, no friction force is needed to keep the 
box in equilibrium.  b) The maximum static friction force is, from Eq. (5.6), 

N,  16.0N)  0.40( )40.0(ss  wµnµ  so the box will not move and the friction force 
balances the applied force of 6.0 N.  c) The maximum friction force found in part (b),     
16.0 N.  d) From Eq. (5.5), N 8.0N) 0.40)(20.0(k n   e) The applied force is enough 
to either start the box moving or to keep it moving. The answer to part (d), from  
Eq. (5.5), is independent of speed (as long as the box is moving), so the friction force is  
8.0 N. The acceleration is .sm 45.2)( 2

k  mfF  
 
 
5.25:  a) At constant speed, the net force is zero, and the magnitude of the applied force 
must equal the magnitude of the kinetic friction force, 

N.  7)sm (9.80 kg) 00.6( )12.0(  2
kkk  mgµnµfF


 

      b)  ,  mafk F


so 

N.  8)sm 80.9)12.0(sm kg)(0.180 00.6(

)(  
22

kkk



 gammgµmafma F


 

      c) Replacing 2sm 80.9g  with 2sm 62.1  gives 1.2 N and 2.2  N. 
 
 
5.26:  The coefficient of kinetic friction is the ratio n

f k , and the normal force has 
magnitude N.  110N 25N 85   The friction force, from g

a
k wmafF H  is 

N  28
sm 80.9
sm 9.0 N 85N 20 2

2

Hk 






 


g
awFf  

(note that the acceleration is negative), and so .25.0N 110
N 28

k   
 
 
5.27: As in Example 5.17, the friction force is  coskk wn   and the component of the 
weight down the skids is .sin  w  In this case, the angle  is .7.5)0.2000.2arcsin(   
The ratio of the forces is ,110.0

25.0
tan sin 

 cos kk  



  so the friction force holds the safe back, 

and another force is needed to move the safe down the skids. 
      b) The difference between the downward component of gravity and the kinetic 
friction force is 

N.  381)5.7 cos )25.0(5.7 (sin )sm  (9.80 kg) (260) cos (sin 2
k  αµw   

 
 



5.28: a) The stopping distance is 

m.  53
)sm 80.9( )80.0(2

)sm 7.28(
22 2

2

k

22





g

v
a

v  

    b) The stopping distance is inversely proportional to the coefficient of friction and 
proportional to the square of the speed, so to stop in the same distance the initial speed 
should not exceed 

.sm  16
80.0
25.0)sm 7.28(

dryk,

 wetk, 



v  

 
 
5.29:   For a given initial speed, the distance traveled is inversely proportional to the 
coefficient of kinetic friction. From Table 5.1, the ratio of the distances is then .1104.0

44.0   
 
 
5.30:    (a) If the block descends at constant speed, the tension in the connecting string 
must be equal to the hanging block’s weight, .Bw  Therefore, the friction force Awk  on 
block A must be equal to ,Bw  and .k AB ww   
   (b) With the cat on board, ).2()2( k ABAB wwwwga   
 
 
5.31:  

 
 

a) For the blocks to have no acceleration, each is subject to zero net force. Considering 
the horizontal components, 

.  

or ,  ,

BA

BA

ff

fTfT





F

F




 

Using AA gmf k  and BB gmf k  gives )(  k BA mmg F


. 

      b) .k AA gmfT   
 



5.32: 
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where L is the distance covered before the wheel’s speed is reduced to half its original 
speed. Low pressure, .0259.0 m; 1.18

)sm m)(9.80 (18.1
s)m 50.3(

8
3

2

2

L  High pressure, 

.00505.0 m; 9.92
)smm)(9.809.92(

)sm 50.3(
8
3

2

2

L  

 
 
5.33: Without the dolly: mgn  and 0k  nF   ( 0xa  since speed is constant). 

kg 74.34
)sm (9.80 (0.47)

N 160
2

k


gµ

Fm  

With the dolly: the total mass is kg 40.04kg 3.5kg 7.34   and friction now is rolling 
friction, .rr mgf    

2r

r

sm 82.3






m
mgFa

mamgF



 

 
 
5.34: Since the speed is constant and we are neglecting air resistance, we can ignore the 
2.4 m/s, and netF in the horizontal direction must be zero. Therefore  nf rr   

N 200horiz  F before the weight and pressure changes are made. After the changes, 
,)42.1( )81.0( horizFn   because the speed is still constant and 0net F . We can simply 

divide the two equations: 

N 230N) 200( )42.1( )81.0(

)42.1)(81.0(

horiz

N. 200
r

r horiz





F
nµ

n F
 

 
 



5.35:   First, determine the acceleration from the freebody diagrams. 
 

 
 

There are two equations and two unknowns, a and T: 

amTgm
amTgm

BB

AA


 k  

Add and solve for 2
k sm 79.0 ),()(:  ammmmgaa ABAB . 

      (a) s.m 22.0)2( 21  axv  
      (b) Solving either equation for the tension gives N.  7.11T  
 
 
5.36:   a) The normal force will be θw  cos  and the component of the gravitational force 
along the ramp is θw sin  . The box begins to slip when ,cossin s θwθw   or 

,35.0 tan s  θ  so slipping occurs at  3.19)35.0arctan(θ , or 19  to two figures.  
   b) When moving, the friction force along the ramp is θwcosk , the component of the 
gravitational force along the ramp is θwsin , so the acceleration is 

.sm 92.0)cos(sin)cos)sin( 2
kk  θθgmθwθw   

(c) 22 vax  , so 21)2( axv  , or m. 3m)] 5)(sm92.0)(2[( 212 v  
 
 
5.37: a) The magnitude of the normal force is .sin  θmg F


  The horizontal component 

of θcos  , FF


 must balance the frictional force, so 

);sin  (cos  k θmgµ FF


  

solving for  F 


 gives 

θµθ
mgµ

sincos
  

k

k


F


 

      b) If the crate remains at rest, the above expression, with s  instead of k , gives the 
force that must be applied in order to start the crate moving. If ,cot sθ  the needed 
force is infinite, and so the critical value is .cots θ  
 
 



5.38:   a) There is no net force in the vertical direction, so ,0sin  wFn  or 
.sinsin θFmgθFwn   The friction force is ).sin(kkk θFmgnf    The net 

horizontal force is )sin(coscos kk θFmgθFfθF  , and so at constant speed, 

θθ
mgF

sincos k

k





  

      b) Using the given values, 

N,  293
)25sin)35.0(25(cos
)smkg)(9.80 90)(35.0( 2




F  

or 290 N to two figures. 
 
 
5.39: a)  

 
 

      b) The blocks move with constant speed, so there is no net force on block A; the 
tension in the rope connecting A and B must be equal to the frictional force on block A, 

N.  9N) 0.25( )35.0(k    c) The weight of block C will be the tension in the rope 
connecting B and C; this is found by considering the forces on block B. The components 
of force along the ramp are the tension in the first rope (9 N, from part (a)), the 
component of the weight along the ramp, the friction on block B and the tension in the 
second rope. Thus, the weight of block C is 

N, 31.0)36.9 (0.35)cos36.9N)(sin  (25.0N 9
)9.36cos9.36(sinN 9 k


 BC ww

 

or 31 N to two figures. The intermediate calculation of the first tension may be avoided to 
obtain the answer in terms of the common weight w of blocks A and B, 

)),cos(sin( kk θθµwwC   
giving the same result. 
 
      (d) Applying Newton’s Second Law to the remaining masses (B and C) gives: 

  .sm54.1)sincos( 2
k  cBBBc wwwθwwga  

 
 



5.40:  Differentiating Eq. (5.10) with respect to time gives the acceleration 
    ,t

tmktmk gee
m
kva  





  

where Eq. (5.9), kmgv t  has been used. 
Integrating Eq. (5.10) with respect to time with 00 y  gives 
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5.41:   a) Solving for D in terms of tv , 

.mkg 44.0
)sm 42(

)sm (9.80 kg) 80(
2

2

2 
tv

mgD  

      b)     .sm 42
m)kg 25.0(

)sm kg)(9.80 45( 2

t 
D

mgv  

 
5.42: At half the terminal speed, the magnitude of the frictional force is one-fourth the 
weight.   a) If the ball is moving up, the frictional force is down, so the magnitude of the 
net force is (5/4)w and the acceleration is (5/4)g, down.   b) While moving down, the 
frictional force is up, and the magnitude of the net force is (3/4)w and the acceleration is 
(3/4)g, down. 
 
 
5.43:  Setting netF  equal to the maximum tension in Eq. (5.17) and solving for the speed v 
gives 

,sm 0.26
kg) (0.80

m) N)(0.90 600(net 
m

RFv  

or 26 m/s to two figures. 
 
 
5.44:   This is the same situation as Example 5.23. Solving for s  yields 

.290.0
)sm m)(9.80 (220

s)m 0.25(
2

22

s 
Rg
v  

 
 



5.45: a) The magnitude of the force F is given to be equal to 3.8w. “Level flight” means 
that the net vertical force is zero, so ,cos )8.3( cos wwβF   , and 

 75)8.31arccos( . 
      (b) The angle does not depend on speed. 
 
 
5.46: a) The analysis of Example 5.22 may be used to obtain ),(tan 2 gRv  but the 
subsequent algebra expressing R in terms of L is not valid. Denoting the length of the 
horizontal arm as r and the length of the cable as .sin, βlrRl   The relation T

Rv  2  is 

still valid, so .tan 2

2

2

2 )sin(44
gT

lr
gT

R    Solving for the period T, 

s. 19.6
30 tan )sm (9.80

)30m)sin  (5.00m 00.3(4
tan

)sin(4
2

22











g

lrT  

Note that in the analysis of Example 5.22, β  is the angle that the support (string or cable) 
makes with the vertical (see Figure 5.30(b)).   b) To the extent that the cable can be 
considered massless, the angle will be independent of the rider’s weight. The tension in 
the cable will depend on the rider’s mass. 
 
 
5.47:  This is the same situation as Example 5.22, with the lift force replacing the tension 
in the string. As in that example, the angle β  is related to the speed and the turning 
radius by .tan 2

gR
v  Solving for β , 

   .7.20
m 1200 sm 9.80

h)))km 6.3(s)m(1(hkm 240(arctanarctan 2

22








 











gR
vβ  

 
 
5.48:  a) This situation is equivalent to that of Example 5.23 and Problem 5.44, so 

Rg
v 2

s  . Expressing v in terms of the period T, ,2
T

Rv   so .2

24
S gT

R   A platform speed 

of 40.0 rev/min corresponds to a period of 1.50 s, so 

.269.0
)sm 80.9(s) (1.50

m) 150.0(4
22

2

s 
µ  

      b) For the same coefficient of static friction, the maximum radius is proportional to 
the square of the period (longer periods mean slower speeds, so the button may be moved 
further out) and so is inversely proportional to the square of the speed. Thus, at the higher 
speed, the maximum radius is (0.150 m)  240 0

60 0 0 067 m
   . 

 
 



5.49: a) Setting rada g  in Eq. (5.16) and solving for the period T gives 

s, 1.40
sm 9.80

m 40022 2  π
g
RπT  

so the number of revolutions per minute is minrev 1.5s) 1.40(min)s 60(  . 
      b) The lower acceleration corresponds to a longer period, and hence a lower rotation 
rate, by a factor of the square root of the ratio of the accelerations, 

min.rev 92.09.83.70min)rev 5.1( T . 
 
 
5.50: a) .sm 5.24s) (60.0m) 0.50(22  TR    b) The magnitude of the radial force 
is N 49)4(4 22222  gTRwTRmRmv   (to the nearest Newton), so the apparent 
weight at the top is N, 833N 49N 882   and at the bottom is N 931N 49N 882  .  
c) For apparent weightlessness, the radial acceleration at the top is equal to g in 
magnitude. Using this in Eq. (5.16) and solving for T gives 

.s 14
sm 9.80

m 0.5022 2 
g
RT  

      d) At the bottom, the apparent weight is twice the weight, or 1760 N. 
 
 
5.51:  a) If the pilot feels weightless, he is in free fall, and Rvga 2 , so 

sm 3.38)sm m)(9.80 150( 2  Rgv , or hkm 138 .   b) The apparent weight is 
the sum of the net inward (upward) force and the pilot’s weight, or 

 

N, 3581

m) 150)(sm 80.9())sm(h)km((3.6
h)km 280(1 N 700

1 

22

2























g
awmaw

 

or 3580 N to three places. 
 
 
5.52:  a) Solving Eq. (5.14) for R, 

m. 230)sm 80.94(s)m 0.95(4 2222  gvavR  
      b) The apparent weight will be five times the actual weight, 

N  2450)sm (9.80 kg) 0.50( 5 5 2 mg  
to three figures. 
 



5.53:  For no water to spill, the magnitude of the downward (radial) acceleration must be 
at least that of gravity; from Eq. (5.14), .sm 42.2m) 600.0)(sm 80.9( 2  gRv  
 
 
5.54: a) The inward (upward, radial) acceleration will be .sm 64.4 2

m) (3.80
s)m 2.4( 22

R
v  At the 

bottom of the circle, the inward direction is upward. 
      b) The forces on the ball are tension and gravity, so ,mamgT   

N.  1051
sm 80.9
sm 4.64N)  2.71(1 )( 2

2




















g
awgamT  

 
5.55:  a) 

 
         1T  is more vertical so supports more  

       of the weight and is larger. 
     You can also see this from :xx maF   

      
221

12

532.1
60 cos
40 cos

060cos40cos

TTT

TT















 

    b) 1T  is larger so set N. 50001 T  Then N  5.3263532.112  TT , 

        
N 6400

40sin60sin 21






w
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maF yy

 

 
 



5.56: 

 
 

 
    The tension in the lower chain balances the weight and so is equal to w. The lower 
pulley must have no net force on it, so twice the tension in the rope must be equal to w, 
and so the tension in the rope is 2w . Then, the downward force on the upper pulley due 
to the rope is also w, and so the upper chain exerts a force w on the upper pulley, and the 
tension in the upper chain is also w. 
 
 
5.57:  In the absence of friction, the only forces along the ramp are the component of the 
weight along the ramp, sinw , and the component of F


 along the ramp, 

 coscos  FF


. These forces must sum to zero, so tanwF  . 

    Considering horizontal and vertical components, the normal force must have horizontal 
component equal to sinn , which must be equal to F; the vertical component must 
balance the weight, wn cos . Eliminating n gives the same result. 
 
 
5.58: The hooks exert forces on the ends of the rope. At each hook, the force that the 
hook exerts and the force due to the tension in the rope are an action-reaction pair.  
The vertical forces that the hooks exert must balance the weight of the rope, so each hook 
exerts an upward vertical force of 2w  on the rope. Therefore, the downward force that 
the rope exerts at each end is 2sinend wθT  , so ).sin2()sin2(end θMgθwT    
b) Each half of the rope is itself in equilibrium, so the tension in the middle must balance 
the horizontal force that each hook exerts, which is the same as the horizontal component 
of the force due to the tension at the end; ,cos middleend TθT   so 

.)tan 2()sin2(cosmiddle θMgθθMgT    
(c) Mathematically speaking, 0   because this would cause a division by zero in the 
equation for endT  or middleT . Physically speaking, we would need an infinite tension to 
keep a non-massless rope perfectly straight. 
 
 



5.59: Consider a point a distance x from the top of the rope. The forces acting in this 
point are T up and  gM L

xLm  )(   downwards. Newton’s Second Law becomes 

    .  )()( aMgMT L
xLm

L
xLm    Since   . , )()(

mM
F

L
xLm

mM
gmMF MTa 



  . At 

FTx  ,0 , and at )(, gaMTLx mM
MF    as expected. 

 
 
5.60: a) The tension in the cord must be 2m g  in order that the hanging block move at 
constant speed. This tension must overcome friction and the component of the 
gravitational force along the incline, so   cossin 112 gmµgmgm k  and 

)cos(sin12  kµmm  . 
      b) In this case, the friction force acts in the same direction as the tension on the block 
of mass 1m , so )cossin( 1k12 αgmµαgmgm  , or )cosα(sin k12 µmm  . 
      c) Similar to the analysis of parts (a) and (b), the largest 2m  could be is 

1 s(sin cos )m     and the smallest 2m  could be is 1 s(sin cos )m    . 
 
 
5.61:  For an angle of 0.45 , the tensions in the horizontal and vertical wires will be the 
same. a) The tension in the vertical wire will be equal to the weight N 0.12w ; this must 
be the tension in the horizontal wire, and hence the friction force on block A is also 12.0 
N . b) The maximum frictional force is N  15N) 0.60)(25.0(s Awµ ; this will be the 

tension in both the horizontal and vertical parts of the wire, so the maximum weight is 15 
N. 
 
 
5.62: a) The most direct way to do part (a) is to consider the blocks as a unit, with total 
weight 4.80 N. Then the normal force between block B and the lower surface is 4.80 N, 
and the friction force that must be overcome by the force F is 

N,  1.44or  N,  1.440N)  80.4)(30.0(k nµ  to three figures. b) The normal force 
between block B and the lower surface is still 4.80 N, but since block A is moving 
relative to block B, there is a friction force between the blocks, of magnitude 

N, 0.360N)  20.1)(30.0(   so the total friction force that the force F must overcome is 
N  1.80N 0.360N 440.1  . (An extra figure was kept in these calculations for clarity.) 

 
 



5.63: (Denote   F


 by F.) a) The force normal to the surface is θFn  cos  ; the vertical 

component of the applied force must be equal to the weight of the brush plus the friction 
force, so that θFµwθF  cos sin k , and 

N,  9.16
1.53cos)51.0(53.1sin 

N  00.12
cos sin k








θµθ

wF  

keeping an extra figure. b) N  2.1053.1 N)cos  91.16(cos θF . 
 
 
5.64: a) 

N  101.3dynes 13
)scm 980)(g10210)(5.62(

5.62)5.62(

4

26









 mggmmaF
 

This force is 62.5 times the flea’s weight. 
      b) 

 
N  102.9  dynes 29

140)140(
4

maxmax



 mggmmaF
 

Occurs at approximately 1.2 ms. 
      c)  vvvvv 00  area under a-t graph. Approximate area as shown: 

 
 

sm2.1scm 120

g) ms)(14005.0(
2
1     

g)ms)(62.5 (1.2g) ms)(77.52.1(
2
1

)3()2()1(







 AAAA

 

 
 



5.65: a) The instrument has mass kg 531.1 gwm . Forces on the instrument: 

 

 

2sm 07.13








m
mgTa

mamgT
maF yy

 

      
s 25.3gives 

? ,sm  07.13 ,sm  330 ,0

0

2
0





 ttavv
tavv

yyy

yyy  

        Consider forces on the rocket; rocket has the same ya . Let F be the thrust of the 
rocket engines. 

N1072.5)sm 07.13sm  (9.80 kg) 000,25()( 522 



agmF
mamgF

 

    b) m. 4170 gives 0
2

2
1

00  yytatvyy yy  
 
 
5.66: The elevator’s acceleration is: 

tt
dt

tdva )sm 40.0(sm 0.3)sm 20.0(2sm 0.3)( 3232   

At 232 sm  4.6s) 0.4)(sm 40.0(sm 3.0s, 0.4  at . From Newton’s Second Law, 
the net force on you is 

N  1040or  N  8.1036
)sm kg)(4.6 72()sm  8.9)(kg 72( weight apparent  22

scale

scalenet







mawF
mawFF

 

 
 



5.67: Consider the forces on the person: 

 

 
2

 

sm 88.560.0 so 6.1 





 gamgn
mamgn
maF yy

 

       
sm 0.5  gives )(2

?,0  ,sm 88.5  m, 0.3

0
2
0

2

0
2

0
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vvayy
 

 
 
5.68: (a) Choosing upslope as the positive direction: 

mamgmgfmgF  37cos 37sin 37sin kknet   
and 

22 sm25.8))799.0)(30.0(602.0()sm 8.9( a  
Since we know the length of the slope, we can use )(2 0

2
0

2 xxavv   with 00 x  and 
0v  at the top. 

sm11or  sm 5.11sm 132

sm 132m) 0.8)(sm 25.8(22
22

0

2222
0





v

axv
 

(b) For the trip back down the slope, gravity and the friction force operate in opposite 
directions: 

22
knet

sm 55.3))799.0)(30.0()602.0)((sm 8.9()37cos 30.037sin(

  37 cos37sin





ga
mamgµmgF

 

Now 

sm 7.5or  sm 54.7sm 8.56

sm 8.56

m) 0.8)(sm 55.3(20)(2

and ,0m, 0.8,0

22

22

2
0

2
0

2

00









v

xxavv
xxv

 

 



5.69: Forces on the hammer: 

 
 

maTmaF
mgTmgTmaF

xx

yy





74cos gives 

74sin so 074sin gives 
 

Divide the second equation by the first: 
2sm 8.2 and 

74tan
1




 a
g
a  

 
 



5.70: 

 
 

It’s interesting to look at the string’s angle measured from the perpendicular to the top of 
the crate. This angle is of course 90 —angle measured from the top of the crate. The 
free-body diagram for the washer then leads to the following equations, using Newton’s 
Second Law and taking the upslope direction as positive: 

 

slopewstring

slopewstring

stringslopew

wstringslopew

coscos

)sin (sin
0coscos

sinsin

θgmT
θgamθT

θTθgm
amθTθgm











 

Dividing the two equations: 

 
slope

slope
string 0cos

sin
tan

g
θga

θ


  

    For the crate, the component of the weight along the slope is c slopesinm g   and the 
normal force is .cos slopec θgm  Using Newton’s Second Law again: 

 

slope

slope
k

cslopeckslopec

cos
sin

cos sin

θg
θga

amθgmθgm










 

which leads to the interesting observation that the string will hang at an angle whose 
tangent is equal to the coefficient of kinetic friction: 
 40.022 tan)6890tan(tan stringk  θ  
 



5.71: a) Forces on you: 
 

 

 

2
k

k

sm 094.3) cos (sin

sin

cos   gives 












µαga
mafαmg

maF
mgnmaF

xx

yy

 

      Find your stopping distance 
      ?s,m 20,sm 094.3,0 00

2  xxvav xxx  
       m, 64.6 gives )(2 00

2
0

2  xxxxavv xxx which is greater than 40 m. You don’t 
stop before you reach the hole, so you fall into it. 
      b) ?,0m, 40,sm 094.3 00

2  xxx vvxxa  
      .sm 16 gives )(2 00

2
0

2  xxxx vxxavv  
 
 



5.72: The key idea in solving this problem is to recognize that if the system is 
accelerating, the tension that block A exerts on the rope is different from the tension that 
block B exerts on the rope. (Otherwise the net force on the rope would be zero, and the 
rope couldn’t accelerate.) Also, treat the rope as if it is just another object. Taking the 
“clockwise” direction to be positive, the Second Law equations for the three different 
parts of the system are: 
Block A (The only horizontal forces on A are tension to the right, and friction to the left):  
        .k amTgm AAA    
Block B (The only vertical forces on B are gravity down, and tension up):  
         .amTgm BBB   
Rope (The forces on the rope along the direction of its motion are the tensions at either 
end and the weight of the portion of the rope that hangs vertically):  
          .amTTgm RABL

d
R   

To solve for a and eliminate the tensions, add the left hand sides and right hand sides of 

the three equations:   .or  ,)( )(k
k

RBA

AL
d

RB

mmm
mmm

RBAL
d

RBA gaammmgmgmgm 




   

    (a) When   .,0 )(k RBA

L
d

RB

mmm
mmga 

  As the system moves, d will increase, approaching 
L as a limit, and thus the acceleration will approach a maximum value of 

.)( RBA

RB
mmm

mmga 
  

    (b) For the blocks to just begin moving, ,0a  so solve   ][0 AsL
d

RB mmm   for d. 
Note that we must use static friction to find d for when the block will begin to move. 
Solving for d, ),( BAsm

L mmd
R

   or m. .63kg) 4.kg) 2(25(.kg .160
m 0.1 d . 

    (c) When m. 2.50kg) 4.kg) 2(25(.kg, 04. kg .04
m 0.1  dmR  This is not a physically 

possible situation since .Ld   The blocks won’t move, no matter what portion of the 
rope hangs over the edge. 
 
 
5.73: For a rope of length L, and weight w, assume that a length rL is on the table, so that 
a length Lr)1(   is hanging. The tension in the rope at the edge of the table is then 

,)1( wr  and the friction force on the part of the rope on the table is .ss rwf   This must 
be the same as the tension in the rope at the edge of the table, so 

).1(1 and )1( ss   rwrrw   Note that this result is independent of L and w for a 
uniform rope. The fraction that hangs over the edge is )1(1 ss   r ; note that if 

.01 and 1,0s  rr  
 
 



5.74: a) The normal force will be cos sinmg F  , and the net force along (up) the 
ramp is 

).cos(sin)sin(cos)sin   cos (sin cos sss   mgFFαmgmgF  
In order to move the box, this net force must be greater than zero. Solving for F, 

 .
sin   cos

 cos  sin

s

s







 mgF  

Since F is the magnitude of a force, F must be positive, and so the denominator of this 
expression must be positive, or ,sincos s    and . cots    b) Replacing ks with   
with in the above expression, and making the inequality an equality, 

 .
sin cos
cos sin

k

k







 mgF  

 
 
5.75: a) The product 2

s sm 94.2g is greater than the magnitude of the acceleration of 
the truck, so static friction can supply sufficient force to keep the case stationary relative 
to the truck; the crate accelerates north at 2sm 20.2 , due to the friction force of 

N. 0.66ma  b) In this situation, the static friction force is insufficient to maintain the 
case at rest relative to the truck, and so the friction force is the kinetic friction force, 

N. 59kk  mgn   
 
 
5.76: To answer the question, 0v  must be found and compared with hr).km (72 sm 20  
The kinematics relationship 2

02 vax   is useful, but we also need a. The acceleration 
must be large enough to cause the box to begin sliding, and so we must use the force of 
static friction in Newton’s Second Law: .or  , ss gamamg    Then, 

,)(2 2
0s vxgµ   or .m) 47)(sm 8.9)(30(.22 2

s0  gxv   Hence, 
,hkm 60sm 6.160 v  which is less than 72 km/h, so do you not go to jail. 

 
 



5.77: See Exercise 5.40. a) The maximum tension and the weight are related by 
),sin( cos maxkmax βTwβT    

and solving for the weight w gives 

.  sin cos

k
max 








 β

µ
βTw  

This will be a maximum when the quantity in parentheses is a maximum. Differentiating 
with respect to  , 

,0cos sin sin cos

kk









 







d
d  

or ktan   , where θ  is the value of β  that maximizes the weight. Substituting for k  
in terms of θ , 

.
sin 

 sin
 sincos

sin
 cos sin

 cos

max

22

max

max

θ
T

θ
θθT

θ
θθ

θTw










 












 

    b) In the absence of friction, any non-zero horizontal component of force will be 
enough to accelerate the crate, but slowly. 
 
 
5.78: a) Taking components along the direction of the plane’s descent, 

.cos and sin  wLwf    b) Dividing one of these relations by the other cancels the 
weight, so . tan Lf  c) The distance will be the initial altitude divided by the tangent 
of  . , cos  and  tan  wLLf   therefore gwfα N 900,12

N  1300sin   and so .78.5   
This makes the horizontal distance km. 7.24)tan(5.78m) 2500(   d) If the drag is 
reduced, the angle   is reduced, and the plane goes further. 
 
 
5.79: If the plane is flying at a constant speed of s,m 1.36  then ,0F  or 

.0sin  fwT   The rate of climb and the speed give the angle 
.7.9636.1)5arcsin( ,   Then, 

N.  3087N 13007.96sin  N)  900,12(  .sin   TfwT  Note that in level flight 
),0(   the thrust only needs to overcome the drag force to maintain the constant speed 

of .sm 1.36  
 
 



5.80: If the block were to remain at rest relative to the truck, the friction force would 
need to cause an acceleration of ;sm 20.2 2  however, the maximum acceleration possible 
due to static friction is ,sm 86.1)sm 80.9)(19.0( 22   and so the block will move relative 
to the truck; the acceleration of the box would be .sm 47.1)sm 80.9)(15.0( 22

k g  
The difference between the distance the truck moves and the distance the box moves (i.e., 
the distance the box moves relative to the truck) will be 1.80 m after a time 
 

s. 22.2
)sm 47.1sm (2.20

m) 80.1(22
22

boxtruck









aa

xt  

 
In this time, the truck moves m. 43.5s) 221.2( )sm20.2( 22

2
12

truck2
1 ta  Note that an 

extra figure was kept in the intermediate calculation to avoid roundoff error. 
 
 
5.81: The friction force on block A is N, 0.420N) 40.1)(30.0(k Aw  as in Problem 5-
68. This is the magnitude of the friction force that block A exerts on block B, as well as 
the tension in the string. The force F must then have magnitude 
 

N.  2.52N)) 3(1.40N 20.4)(30.0(
)3()( kkk


 ABAAB wwTwwwF 

 

 
Note that the normal force exerted on block B by the table is the sum of the weights of 
the blocks. 
 
 



5.82: We take the upward direction as positive. The explorer’s vertical acceleration is 
2sm 7.3  for the first 20 s. Thus at the end of that time her vertical velocity will be 

s.m 74s) 20)(sm 7.3( 2  atvy  She will have fallen a distance 

m 740s) 20(
2

sm 74
av 






  tvd  

 
and will thus be m 4607401200  above the surface. Her vertical velocity must reach 
zero as she touches the ground; therefore, taking the ignition point of the PAPS as 

,00 y  
)(2 0

2
0

2 yyavvy   
 

22
2

0

2
0

2

sm 6.0or  sm 95.5
460

s)m 74(0
)(2










yy
vv

a y  

 
which is the vertical acceleration that must be provided by the PAPS. The time it takes to 
reach the ground is given by 
 

s4.12
sm 95.5

)sm 74(0
2

0 






a
vvt  

 
Using Newton’s Second Law for the vertical direction 
 

N  1400or  N 5.1447
sm ))7.3(kg)(5.95150()( 2

PAPSv

PAPSv






gammgmaF

mamgF

 

 
which is the vertical component of the PAPS force. The vehicle must also be brought to a 
stop horizontally in 12.4 seconds; the acceleration needed to do this is 

2
2

0 sm 66.2
s4.12

sm 330








t
vva  

and the force needed is N  399)sm kg)(2.66 150( 2
PAPSh  maF  or 400 N, since there 

are no other horizontal forces. 
 
 



5.83: Let the tension in the cord attached to block A be AT  and the tension in the cord 
attached to block C be CT . The equations of motion are then 
 

.
k

amTgm
amTgmT
amgmT

CCC

BABC

AAA





  

     a) Adding these three equations to eliminate the tensions gives 
 

),()( k BACCBA mmmgmmma   
solving for Cm  gives 

,)()( k

ag
gamgamm BA

C 



  

and substitution of numerical values gives kg. 9.12Cm  
      b) N.  101)( N,  2.47)(  agmTagmT CCAA  
 
 
5.84: Considering positive accelerations to be to the right (up and to the right for the left-
hand block, down and to the right for the right-hand block), the forces along the inclines 
and the accelerations are related by 

,kg) 50(53sinkg) (50,kg) 100(30sinkg) 100( aTgagT   where T is the tension 
in the cord and a the mutual magnitude of acceleration. Adding these relations, 

. 067.0or  ,kg) 100kg 50()30sin  kg 10053sin  kg 50( gaag   a) Since a comes 
out negative, the blocks will slide to the left; the 100-kg block will slide down. Of course, 
if coordinates had been chosen so that positive accelerations were to the left, a would be 

. 067.0 g   b) .sm 658.0)sm 80.9(067.0 22   
    c) Substituting the value of a (including the proper sign, depending on choice of 
coordinates) into either of the above relations involving T yields 424 N. 
 
 



5.85: Denote the magnitude of the acceleration of the block with mass 1m as a; the block 
of mass 2m  will descend with acceleration .2a  If the tension in the rope is T, the 
equations of motion are then 
 

.22 22

1

amTgm
amT




 

 
Multiplying the first of these by 2 and adding to eliminate T, and then solving for a gives 
 

.
4

2
22 21

2

21

2

mm
mg

mm
gma





  

 
The acceleration of the block of mass 2m  is half of this, or ).4( 212 mmmg   
 
 
5.86: Denote the common magnitude of the maximum acceleration as a. For block A to 
remain at rest with respect to block B, .s ga   The tension in the cord is then 

).)(()()( kk gammmmgammT BABABA    This tension is related to the mass 

Cm  by ).( agmT C   Solving for a yields 
 

.)(
s

k g
mmm

mmmga
CBA

BAC 





  

 
Solving the inequality for Cm  yields 
 

.
1

))((

s

ks







 BA
C

mmm  

 
 
 
5.87: See Exercise 5.15 (Atwood’s machine). The 2.00-kg block will accelerate upward 
at ,73kg 2.00kg 5.00

kg 00.2kg 00.5 gg 
  and the 5.00-kg block will accelerate downward at .73g  Let the 

initial height above the ground be 0h ; when the large block hits the ground, the small 
block will be at a height 02h , and moving upward with a speed given by 

.762 00
2
0 ghahv   The small block will continue to rise a distance ,732 0

2
0 hgv   and 

so the maximum height reached will be m 46.1717732 000  hhh , which is 0.860 m 
above its initial height. 
 
 



5.88: The floor exerts an upward force n on the box, obtained from ,mamgn   or 
).( gamn   The friction force that needs to be balanced is 

 
N. 105)sm 80.9sm  kg)(1.90 0.28((0.32) )(

22
kk  gamn   

 
 
5.89: The upward friction force must be ,ss gmnf A   and the normal force, which is 
the only horizontal force on block A, must be ,amn A  and so .sga   An observer on 
the cart would “feel” a backwards force, and would say that a similar force acts on the 
block, thereby creating the need for a normal force. 
 
 
5.90: Since the larger block (the trailing block) has the larger coefficient of friction, it 
will need to be pulled down the plane; i.e., the larger block will not move faster than the 
smaller block, and the blocks will have the same acceleration. For the smaller block, 

,kg) 00.4(N  11.11or  ,kg) 00.4()30 cos)25.0((sin30kg) 00.4( aTaTg   and 
similarly for the larger, ,kg) 00.8(N 44.15 aT    a) Adding these two relations, 

2sm 21.2,kg) (12.00N 55.26  aa  (note that an extra figure was kept in the 
intermediate calculation to avoid roundoff error).  b) Substitution into either of the above 
relations gives N.  27.2T  Equivalently, dividing the second relation by 2 and 
subtracting from the first gives ,N 11.11 2

N 44.15
2
3 T  giving the same result.  c) The 

string will be slack. The 4.00-kg block will have 2sm 78.2a  and the 8.00-kg block 
will have ,sm 93.1 2a  until the 4.00-kg block overtakes the 8.00-kg block and collides 
with it. 
 
 
5.91: a) Let Bn  be the normal force between the plank and the block and An  be the 
normal force between the block and the incline. Then, θwnB cos  and 

.cos4cos3 θwθwnn BA   The net frictional force on the block is 
 cos5)( kk wnn BA  . To move at constant speed, this must balance the component 

of the block’s weight along the incline, so ,cos5sin3 k θwθw   and 
.452.037tantan 5

3
5
3

k  θ  
 
 



5.92: (a) There is a contact force n between the man (mass M) and the platform (mass m). 
The equation of motion for the man is ,MaMgnT   where T is the tension in the 
rope, and for the platform, T n mg ma   . Adding to eliminate n, and rearranging, 

).)((2
1 gamMT   This result could be found directly by considering the man-

platform combination as a unit, with mass ,Mm   being pulled upward with a force 2T 
due to the two ropes on the combination. The tension T in the rope is the same as the 
force that the man applies to the rope. Numerically, 

N. 551)sm80.9sm kg)(1.80 25.0kg 0.70(
2
1 22 T  

    (b) The end of the rope moves downward 2 m when the platform moves up 1 m, so 
.2 platformrope aa   Relative to the man, the acceleration of the rope is ,sm 40.53 2a  

downward. 
 
 
5.93: a) The only horizontal force on the two-block combination is the horizontal 
component of .cos, FF


 The blocks will accelerate with ).(cos 21 mmFa    b) The 

normal force between the blocks is ,sin1 Fgm   for the blocks to move together, the 
product of this force and s  must be greater than the horizontal force that the lower block 
exerts on the upper block. That horizontal force is one of an action-reaction pair; the 
reaction to this force accelerates the lower block. Thus, for the blocks to stay together, 

).sin( 1s2  Fgmam   Using the result of part (a), 

).sin(
m

cos
1s

21
2  Fgm

m
Fm 


 

Solving the inequality for F gives the desired result. 
 
 



5.94: The banked angle of the track has the same form as that found in Example 5.24, 
 ,tan

2
0

gR
vβ   where 0v  is the ideal speed, sm 20  in this case. For speeds larger than 0v , a 

frictional force is needed to keep the car from skidding. In this case, the inward force will 
consist of a part due to the normal force n and the friction force 

. cossin   ; radmaβfβnf   The normal and friction forces both have vertical 
components; since there is no vertical acceleration, .sin   cos mgβfβn   Using 

nf s  and ,tan 25.2
2

02 )5.1(
rad βga R

v
R
v   these two relations become 

.sincos
,tan 25.2cossin

s

s

mgβnβn
βmgβnβn







 

Dividing to cancel n gives 

. tan 25.2
sincos
cos sin

s

s 







ββ
ββ  

Solving for s  and simplifying yields 

.
 sin25.11
 cos sin 25.1

2s 





ββ  

Using    79.18arctan
m) 120)(sm 80.9(

s)m 20(
2

2

β  gives .34.0s   

 
 
5.95: a) The same analysis as in Problem 5.90 applies, but with the speed v an unknown. 
The equations of motion become 

.sincos
,cossin

s

2
s

mgnn
Rmvnn







 

Dividing to cancel n gives 

.
sin cos
cos sin 2

s

s

Rg
v






  

Solving for v and substituting numerical values gives sm 9.20v  (note that the value 
for the coefficient of static friction must be used). 
    b) The same analysis applies, but the friction force must be directed up the bank; this 
has the same algebraic effect as replacing f  with f , or replacing s  with s  
(although coefficients of friction may certainly never be negative). The result is 

,
sin cos

 cos sin)(
s

s2

ββ
ββgRv







  

and substitution of numerical values gives s.m 5.8v  
 
 



5.96: (a) hmi 80  is sm 7.35  in SI units. The centripetal force needed to keep the car on 
the road is provided by friction; thus 

m 170or m 171
)sm (0.76)(9.8

s)m 7.35(
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s
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(b) If :20.0s   

hmi 41about or  sm 3.18
sm 2.335)sm (9.8 (0.20) m) 171( 222

s
2




v
grµv

 

(c) If :37.0s   

hmi 56about or  sm 9.24
sm 620)sm (9.8 (0.37) m) 171( 2222




v
v  

The speed limit is evidently designed for these conditions. 
 
 
5.97: a) The static friction force between the tires and the road must provide the 
centripetal acceleration for motion in the circle. 

    
r
vmmgs
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    m, g, and r are constant so ,
2

2

1

1

ss

vv


  where 1 refers to dry road and 2 to wet 

road. 
    sm 192)sm 27( so, 21s2

1
2s  vµµ  

    b) Calculate the time it takes you to reach the curve 

    
s 7.34 gives  
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? m, 800 s,m 19 ,sm 27
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    During this time the other car will travel m. 1250(34.7s) s)m 36(00  tvxx x  The 
other car will be 50 m behind you as you enter the curve, and will be traveling at nearly 
twice your speed, so it is likely it will skid into you. 
 
 
5.98: The analysis of this problem is the same as that of Example 5.22; solving for v in 
terms of β  and s,m 8.1630.0 tan )0.50( )sm 80.9( tan , 2  gRvR  about 

h.km 6.60  
 
 



5.99:   The point to this problem is that the monkey and the bananas have the same 
weight, and the tension in the string is the same at the point where the bananas are 
suspended and where the monkey is pulling; in all cases, the monkey and bananas will 
have the same net force and hence the same acceleration, direction and magnitude. a) The 
bananas move up. b) The monkey and bananas always move at the same velocity, so the 
distance between them stays the same. c) Both the monkey and bananas are in free fall, 
and as they have the same initial velocity, the distance bewteen them doesn’t change. d) 
The bananas will slow down at the same rate as the monkey; if the monkey comes to a 
stop, so will the bananas. 
 
 
5.100:   The separated equation of motion has a lower limit of t3v  instead of 0; 
specifically, 
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Note that the speed is always greater than tv . 
 
 



5.101: a) The rock is released from rest, and so there is initially no resistive force and 
.sm 6.00kg) (3.00N) 0.18( 2

0 a  
      b) .sm 3.80kg) 00.3(s))m (3.00 )msN 20.2(N 0.18( 2  c) The net force must be 
1.80 N, so N  2.16kv  and .sm 63.7)msN (2.20N)  2.16( v  d) When the net 
force is equal to zero, and hence the acceleration is zero, N  0.18t kv  and 

s.m 8.18m)sN (2.20N)  0.18(t v    e) From Eq. (5.12), 

m. 78.7

)1(
msN 2.20

kg 00.3s) (2.00)sm 18.8( s)  kg))(2.00  00.3(m)s N 20.2((














 ey  

From Eq. (5.10), 

s.m 29.6
]s)[1m 18.8( s) kg))(2.00 00.3()ms N 2.2((


 ev  

From Eq. (5.11), but with 0a  instead of g, 
.sm 38.1)sm 00.6( 2s) kg))(2.00 00.3(m)sN 20.2((2  ea  

. 
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s. 14.3)10( ln

so  ,1.01 )(

t



 

k
mt

e
v
v tmk

 

 
 



5.102: (a) The retarding force of the surface is the only horizontal force acting. Thus 
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which gives 
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For the rock’s position: 
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and integrating gives 
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(b) 
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0 2
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m
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m
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This is a quadratic equation in t; from the quadratic formula we can find the single 
solution: 

k
mvt

21
02  

(c) Substituting the expression for t into the equation for x: 
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5.103:  Without buoyancy, .
s 36.0

 so ,
t

t
mg

v
mgkmgkv   

     With buoyancy included there is the additional upward buoyancy force B, so 
mgkvB  t  

3
sm 0.36
sm 24.01t mgmgkvmgB 







  

 
 
5.104:  Recognizing the geometry of a 3-4-5 right triangle simplifies the calculation. For 
instance, the radius of the circle of the mass’ motion is 0.75 m. 
      a) Balancing the vertical force, ,5

4
L5

4
U wTT   so 

N. 0.31)sm (9.80 kg) 00.4(
4
5N 0.80

4
5 2

UL  wTT  

      b) The net inward force is N.  6.66L5
3

U5
3  TTF  Solving 2

24
rad T

RmmaF   for 
the period T, 

s, 334.1
N) (66.6

m) (0.75 kg) 00.4(22  π
F

mRπT  

or 0.02223 min, so the system makes 45.0 rev/min. c) When the lower string becomes 
slack, the system is the same as the conical pendulum considered in Example 5.22. With 

,800.0cos   the period is s, 007.2)sm (9.80(0.800) m) 25.1(2 2  πT  which is the 
same as min.rev 9.29  d) The system will still be the same as a conical pendulum, but 
the block will drop to a smaller angle. 
 
 



5.105:   a) Newton’s 2nd law gives 

    ,y
y kvmg

dt
dv

m   where tv
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0 0

 

     This is the same expression used in the derivation of Eq. (5.10), except the lower limit 
in the velocity integral is the initial speed 0v  instead of zero. 
     Evaluating the integrals and rearranging gives 
     )1(t0

mktmkt evevv    
     Note that at 0t   this expression says 0vvy   and at t  it says .tvvy   
     b) The downward gravity force is larger than the upward fluid resistance force so the 
acceleration is downward, until the fluid resistance force equals gravity when the 
terminal speed is reached. The object speeds up until tvvy  . Take y  to be downward. 

 
 
 
 
 
 
 
 

 
 

     c) The upward resistance force is larger than the downward gravity force so the 
acceleration is upward and the object slows down, until the fluid resistance force equals 
gravity when the terminal speed is reached. Take y  to be downward. 



5.106: (a) To find find the maximum height and time to the top without fluid resistance: 

s 61.0
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(b) Starting from Newton’s Second Law for this situation 

kvmg
dt
dvm   

we rearrange and integrate, taking downward as positive as in the text and noting that the 
velocity at the top of the rock’s “flight” is zero: 

386.1)25.0ln(
sm 0.2sm 0.6
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From Eq. 5.9, ,s 204.0)sm 8.9()sm 0.2( 22
t  gvkm  and 

s 0.283(1.386) s) 204.0()386.1(  k
mt  to the top. Equation 5.10 in the text gives us 
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5.107:  a) The forces on the car are the air drag force 2
D Dvf   and the rolling friction 

force .rmg  Take the velocity to be in the x -direction. The forces are opposite in 
direction to the velocity. xx maF   gives 

mamgDv  r
2   

We can write this equation twice, once with sm 32v  and 2sm 42.0 a  and once 
with sm 24v  and .m/s 30.0 2a  Solving these two simultaneous equations in the 
unknowns D and r  gives 015.0r   and .msN  36.0 22D  
      b) βmgn cos  and the component of gravity parallel to the incline is ,sin βmg  
where .2.2 β  
      For constant speed, .02.2 cos 2.2sin  2

r  Dvmgmg   
      Solving for v  gives .sm 29v  
      c) For angle 0 cos sin, 2

r  Dvmgmg    

      and 
D

ββmgv ) cos  (sin r  

       The terminal speed for a falling object is derived from ,02
t mgDv  so 

.t Dmgv   

       ββvv  cos sin rt   

       And since ββvvµ  cos )015.0( sin,015.0 tr   
 
 
5.108:  (a) One way of looking at this is that the apparent weight, which is the same as 
the upward force on the person, is the actual weight of the person minus the centripetal 
force needed to keep him moving in its circular path: 

N  434
m 40

s)m 12()sm (9.8 kg) 70(
2

2
2

app













R
mvmgw  

(b) The cart will lose contact with the surface when its apparent weight is zero; i.e., when 
the road no longer has to exert any upward force on it: 

sm 20or  sm 8.19
sm 392)sm (9.8 m) 40(

0

2222

2






v
Rgv

R
mvmg

 

The answer doesn’t depend on the cart’s mass, because the centripetal force needed to 
hold it on the road is proportional to its mass and so is its weight, which provides the 
centripetal force in this situation. 
 
 



5.109: a) For the same rotation rate, the magnitude of the radial acceleration is 
proportional to the radius, and for twins of the same mass, the needed force is 
proportional to the radius; Jackie is twice as far away from the center, and so must hold 
on with twice as much force as Jena, or 120 N. 
      b) .2

Jackie rmvF   

                    s.m 8.3kg 30
m) (3.6 N) 120( v  

 
 
5.110: The passenger’s velocity is s.m 80.82  tRπv  The vertical component of the 
seat’s force must balance the passenger’s weight and the horizontal component must 
provide the centripetal force. Therefore: 

N 188 cos

N 833 sin
2

seat

seat





R
mvθF

mgθF
 

Therefore  3.774.43;N 188N 833 tan θθ  above the horizontal. The magnitude of 
the net force exerted by the seat (note that this is not the net force on the passenger) is 

N 854

N) 188(N) 833()( 22
22

2
seat













R
mvmgF  

(b) The magnitude of the force is the same, but the horizontal component is reversed. 
 
5.111: a) 

 
 

      b) The upward friction force must be equal to the weight, so 
mgTRπmn  )4( 22

ss   and 

.28.0
m) 5.2(4π

rev) 0.601s( )sm 80.9(
4 2

22

2

2

s 
Rπ

gT  

    c) No; both the weight and the required normal force are proportional to the rider’s 
mass. 
 
 



5.112:  a) For the tires not to lose contact, there must be a downward force on the tires. 
Thus, the (downward) acceleration at the top of the sphere must exceed mg, so 

,2 mgm R
v   and .sm 3.11m) (13.0 )sm 80.9( 2  gRv  

    b) The (upward) acceleration will then be 4g, so the upward normal force must be 
N.  5390)sm (9.80 kg) 5(110 5 2 mg  

 
 
5.113: a) What really happens (according to a nosy observer on the ground) is that you 
slide closer to the passenger by turning to the right.   b) The analysis is the same as that of 
Example 5.23. In this case, the friction force should be insufficient to provide the inward 
radial acceleration, and so ,2

s Rmvmgµ   or 

m 120
)sm (9.80 (0.35)

s)m 20(
2

2

s

2


gµ

vR  

to two places. Why the passenger is not wearing a seat belt is another question. 
 
 
5.114:  The tension F in the string must be the same as the weight of the hanging block, 
and must also provide the resultant force necessary to keep the block on the table in 
uniform circular motion; ,2

r
vmFMg   so .mMgrv   

 
5.115:  a) The analysis is the same as that for the conical pendulum of Example 5.22, and 
so 

.0.81
m) 100.0(4

s) 00.41)(sm 80.9(arccos
4
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22

2
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gTβ  

b) For the bead to be at the same elevation as the center of the hoop,  90β  and 
,0 cos β  which would mean ,0T  the speed of the bead would be infinite, and this is 

not possible.   c) The expression for β cos  gives ,48.2 cos β  which is not possible. In 
deriving the expression for ,cosβ  a factor of β sin  was canceled, precluding the 
possibility that .0β  For this situation, 0β  is the only physical possibility. 
 
 



5.116:  a) Differentiating twice, βtax 6  and ,2δay   so 

N. 40.4)sm 00.2( kg) 20.2(

N/s) 58.1(s)N 72.0( kg) 20.2(
2 
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b) 

 
 

c) At N, 40.4 and N 75.4 s, 00.3  yx FFt  so 

N,  48.6N)  40.4(N) 75.4( 22 F  
at an angle of   .223 arctan 75.4

40.4 
  

 
 
5.117:  

 
 

 
5.118:  See Example 5.25. 
       a)     N. 8.61sm9.80kg) 60.1( m 00.5

)sm 0.12(2 22
 R

v
A gmF  

       b)     N. 4.30sm9.80kg) 60.1( m 00.5
)sm 0.12(2 22  R

v
B gmF , where the minus sign 

indicates that the track pushes down on the car. The magnitude of this force is 30.4 N. 
 
 



5.119:  The analysis is the same as for Problem 5.95; in the case of the cone, the speed is 
related to the period by ,tan22 TβπhTRπv   or .tan2 vβπhT   The maximum and 
minimum speeds are the same as those found in Problem 5.95, 
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The minimum and maximum values of the period T are then 
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5.120:  a) There are many ways to do these sorts of problems; the method presented is 
fairly straightforward in terms of application of Newton’s laws, but involves a good deal 
of algebra. For both parts, take the x-direction to be horizontal and positive to the right, 
and the y-direction to be vertical and positive upward. The normal force between the 
block and the wedge is n; the normal force between the wedge and the horizontal surface 
will not enter, as the wedge is presumed to have zero vertical acceleration. The horizontal 
acceleration of the wedge is A, and the components of acceleration of the block are xa  
and ya . The equations of motion are then 

.cos 
sin 

sin 

mgnma
nma

nMA

y

x





 

Note that the normal force gives the wedge a negative acceleration; the wedge is expected 
to move to the left. These are three equations in four unknowns, A, yx aa  ,  and n. Solution 
is possible with the imposition of the relation between A, xa  and ya . 
      An observer on the wedge is not in an inertial frame, and should not apply Newton’s 
laws, but the kinematic relation between the components of acceleration are not so 
restricted. To such an observer, the vertical acceleration of the block is ,ya  but the 
horizontal acceleration of the block is .Aax   To this observer, the block descends at an 
angle ,  so the relation needed is 

. tan α
Aa

a

x

y 


 

At this point, algebra is unavoidable. Symbolic-manipulation programs may save some 
solution time. A possible approach is to eliminate xa  by noting that Aa m

M
x   (a result 

that anticipates conservation of momentum), using this in the kinematic constraint to 
eliminate ya  and then eliminating n. The results are: 
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      (b) When ,0,  AmM  as expected (the large block won’t move). Also, 
,cossin

1tan
 tan

)tan1( tan 2 ααgga g
x 

 


 which is the acceleration of the block 
( αg sin  in this case), with the factor of α cos  giving the horizontal component. Similarly, 

.sin2 αgay   
     (c) The trajectory is a spiral. 
 
 



5.121:  If the block is not to move vertically, the acceleration must be horizontal. The 
common acceleration is , tan θga   so the applied force must be 

. tan )()( θgmMamM   
 
 
5.122: The normal force that the ramp exerts on the box will be .sin   cos θTαwn   
The rope provides a force of θT  cos  up the ramp, and the component of the weight down 
the ramp is .sin  αw  Thus, the net force up the ramp is 

). cos  (sin)sin   (cos
)sin   cos ( sin cos 

kk

k

αµαwθµθT
θTαwµαwθTF




 

The acceleration will be the greatest when the first term in parantheses is greatest; as in 
Problems 5.77 and 5.123, this occurs when . tan kθ  
 
 
5.123:   a) See Exercise 5.38; ).sin   (cos kk θθwF    
       b)  

 
 

       c) The expression for F is a minimum when the denominator is a maximum; the 
calculus is identical to that of Problem 5.77 (maximizing w for a given F gives the same 
result as minimizing F for a given w), and so F is minimized at . tan kθ  For 

,0.14,25.0k  θ  keeping an extra figure. 
 
 



5.124:  For convenience, take the positive direction to be down, so that for the baseball 
released from rest, the acceleration and velocity will be positive, and the speed of the 
baseball is the same as its positive component of velocity. Then the resisting force, 
directed against the velocity, is upward and hence negative. 
      a)  

 
 

      b) Newton’s Second Law is then .2Dvmgma   Initially, when ,0v  the 
acceleration is g, and the speed increases. As the speed increases, the resistive force 
increases and hence the acceleration decreases. This continues as the speed approaches 
the terminal speed.    c) At terminal velocity, ,0a  so ,t D

mgv   in agreement with  

Eq. (5.13).    d) The equation of motion may be rewritten as ).( 22
2
t

vvtv
g

dt
dv   This is a 

separable equation and may be expressed as 
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so  . tanh tt vgtvv   
Note: If inverse hyperbolic functions are unknown or undesirable, the integral can be 
done by partial fractions, in that 

,11
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ttt
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and the resulting logarithms in the integrals can be solved for )(tv  in terms of 
exponentials. 
 
 



5.125:   Take all accelerations to be positive downward. The equations of motion are 
straightforward, but the kinematic relations between the accelerations, and the resultant 
algebra, are not immediately obvious. If the acceleration of pulley B is ,Ba  then 

,3aaB   and Ba  is the average of the accelerations of masses 1 and 2, or 
.22 321 aaaa B   There can be no net force on the massless pulley B, so .2 AC TT   

The five equations to be solved are then 

.02
02 321

333

222

111







CA

C

A

A

TT
aaa

amTgm
amTgm
amTgm

 

These are five equations in five unknowns, and may be solved by standard means. A 
symbolic-manipulation program is of great use here. 
      a) The accelerations 1a  and 2a  may be eliminated by using 

))).1()1((2()(2 21213 mmTgaaa A   
The tension AT  may be eliminated by using 

).()21()21( 33 agmTT CA   
Combining and solving for 3a  gives 

.
4
4

313221

313221
3 mmmmmm

mmmmmmga



  

      b) The acceleration of the pulley B has the same magnitude as 3a  and is in the 
opposite direction. 

      c)    ).(
22 3

1

3

11
1 ag

m
mg

m
Tg

m
Tga CA   

Substituting the above expression for 3a  gives 
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      d) A similar analysis (or, interchanging the labels 1 and 2) gives 

.
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      e) & f) Once the accelerations are known, the tensions may be found by substitution 
into the appropriate equation of motion, giving 

.
4

8
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4
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313221
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mmmmmm
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      g) If mmm  21  and ,23 mm   all of the accelerations are zero, mgTC 2  and 
.mgTA   All masses and pulleys are in equilibrium, and the tensions are equal to the 

weights they support, which is what is expected. 
 
 



5.126: In all cases, the tension in the string will be half of F. 
      a) N, 622 F  which is insufficient to raise either block; .021  aa  
      b) N. 622 F  The larger block (of weight 196 N) will not move, so ,01 a  but the 
smaller block, of weight 98 N, has a net upward force of 49 N applied to it, and so will 
accelerate upwards with .sm 9.4 2

kg 10.0
N 49

2 a  

      c) N, 2122 F  so the net upward force on block A is 16 N and that on block B is 
114 N, so 2

kg 20.0
N 16

1 sm 8.0a  and .sm 4.11 2
kg 10.0
N 114

2 a  
 
 
5.127:   Before the horizontal string is cut, the ball is in equilibrium, and the vertical 
component of the tension force must balance the weight, so , cos wβTA   or 

. cos βwTA   At point B, the ball is not in equilibrium; its speed is instantaneously 0, so 
there is no radial acceleration, and the tension force must balance the radial component of 
the weight, so , cos βwTB   and the ratio . cos)( 2 βTT AB    



6.1:    a) J60.3)m5.1( )N40.2(   b) J900.0)m50.1)(N600.0(   
    c) J70.2J720.0J60.3  . 
 
 
6.2:  a) “Pulling slowly” can be taken to mean that the bucket rises at constant speed, so 
the tension in the rope may be taken to be the bucket’s weight. In pulling a given length 
of rope, from Eq. (6.1), 
 J.6.264)m00.4)(s/m80.9( )kg75.6( 2  mgsFsW  
    b) Gravity is directed opposite to the direction of the bucket’s motion, so Eq. (6.2) 
gives the negative of the result of part (a), or J265 . c) The net work done on the bucket 
is zero. 
 
 
6.3: J300)m0.12)(N0.25(  . 
 
 
6.4: a) The friction force to be overcome is 
 
 ,N5.73)s/m80.9)(kg0.30)(25.0( 2

kk  mgnf   
 
or 74 N to two figures. 
     
   b) From Eq. (6.1), J331)m5.4)(N5.73( Fs . The work is positive, since the worker 
is pushing in the same direction as the crate’s motion. 
    
   c) Since f and s are oppositely directed, Eq. (6.2) gives 
 
 J.331)m5.4)(N5.73(  fs  
   
  d) Both the normal force and gravity act perpendicular to the direction of motion, so 
neither force does work. e) The net work done is zero. 
 
 



6.5: a) See Exercise 5.37. The needed force is 
 

 N,2.99
30sin)25.0(30cos

)s/m80.9)(kg30)(25.0(
sincos

2

k

k 








 mgF  

 
keeping extra figures. b) J5.38630cos)m50.4)(N2.99(cos Fs , again keeping an 
extra figure. c) The normal force is sinFmg  , and so the work done by friction is 

J5.386)30sin)N2.99()s/m80.9)(kg30)((25.0)(m50.4( 2  . d) Both the normal 
force and gravity act perpendicular to the direction of motion, so neither force does work. 
e) The net work done is zero. 
 
 
 
 
6.6: From Eq. (6.2), 
 
 J.1022.50.15cos)m300)(N180(cos 4Fs  
 
 
6.7: ,J1062.214cos)m1075.0)(N1080.1(2cos2 936 Fs or J102.6 9   to 
two places. 
 
 
6.8: The work you do is: 
 
 )ˆ)m0.3(ˆ)m0.9(()ˆ)N40(ˆ)N30(( jijisF 


 

           )m0.3)(N40()m0.9)(N30(   
               J150mN120mN270   
 
 
6.9: a) (i) Tension force is always perpendicular to the displacement and does no work. 
       (ii) Work done by gravity is ).( 12 yymg   When 21 yy  , 0mgW . 
       b) (i) Tension does no work. 
       (ii) Let l be the length of the string. J1.25)2()( 12  lmgyymgWmg  
    The displacement is upward and the gravity force is downward, so it does negative 
work. 
 
 



6.10: a) From Eq. (6.6), 

 J.1054.1
h/km
s/m

6.3
1)km/h0.50()kg1600(

2
1 5

2















K  

b) Equation (6.5) gives the explicit dependence of kinetic energy on speed; doubling the 
speed of any object increases the kinetic energy by a factor of four. 
 
 
6.11: For the T-Rex, J1032.4))hr/km4)((kg7000( 32

km/hr6.3
s/m1

2
1 K . The person’s 

velocity would be m/s111kgJ)/701032.4(2 3 .v  , or about 40 km/h. 
 
 
6.12: (a) Estimate: 1m sv    (walking) 
     2 m sv    (running) 
     70kgm   
     Walking: J35)s/m1)(kg70( 2

2
12

2
1  mvKE  

      Running: J140)s/m2)(kg70( 2
2
1 KE  

      (b) Estimate: s/m30s/ft88mph60 v  
                           kg2000m  
      J109)s/m30)(kg2000( 52

2
1 KE  

      (c) mghWKE  gravity  Estimate m2h  

     J20)m2)(s/m8.9)(kg1( 2 KE  
 
 
6.13: Let point 1 be at the bottom of the incline and let point 2 be at the skier. 
      12tot KKW    

      0,
2
1

2
2
01  KmvK  

      Work is done by gravity and friction, so fmg WWW tot . 
      mghyymgWmg  )( 12   
       tan/)sin/)(cos( kk mghhmgfsW f   
      Substituting these expressions into the work-energy theorem and solving for 0v  gives               

      )tan/1(2 k0  ghv  
 
 



6.14:    (a)  

 

)m0.15)(s/m80.9(2)s/m0.25(

2
2
1

2
1

22

2
f0

2
0

2
f









ghvv

mvmvmgh

KEW

 

 s/m3.30  
 

(b)  

 

)s/ms80.9(2
0)s/m3.30(

g2

2
1

2
1

2

222
f

2
0

2
0

2
f











vvh

mvmvmgh

KEW

 

           m8.46  
 

 
6.15: a) parallel to incline: force component sinmg  , down incline; displacement 

sinh   , down incline 
          mghhmgW  )sin/)(sin(||   perpendicular to incline: no displacement in this 
direction, so 0W . 
         mghWWWmg  || , same as falling height h. 

         b) tot 2 1W K K   gives 21
2mgh mv  and ghv 2 , same as if had been dropped 

from height h. The work done by gravity depends only on the vertical displacement of the 
object. 
         When the slope angle is small, there is a small force component in the direction of 
the displacement but a large displacement in this direction. When the slope angle is large, 
the force component in the direction of the displacement along the incline is larger but 
the displacement in this direction is smaller. 
       c) m0.15h , so s1.172  ghv  
 
6.16: Doubling the speed increases the kinetic energy, and hence the magnitude of the 
work done by friction, by a factor of four. With the stopping force given as being 
independent of speed, the distance must also increase by a factor of four. 
 
 
6.17: Barring a balk, the initial kinetic energy of the ball is zero, and so 
 J.74.2m/s)kg)(32.0145.0)(2/1()2/1( 22  mvW  
 
 



6.18: As the example explains, the boats have the same kinetic energy K at the finish line, 
so 22 )2/1()2/1( BBAA vmvm  , or, with 22 2,2 BAAB vvmm  .   a) Solving for the ratio of the 
speeds, 2/ BA vv .   b) The boats are said to start from rest, so the elapsed time is the 
distance divided by the average speed. The ratio of the average speeds is the same as the 
ratio of the final speeds, so the ratio of the elapsed times is 2//  BAAB vvtt . 
 
 
6.19: a) From Eq. (6.5), 16/12 KK  , and from Eq. (6.6), 1)16/15( KW  . b) No; 
kinetic energies depend on the magnitudes of velocities only. 
 
 
6.20: From Equations (6.1), (6.5) and (6.6), and solving for F, 
 

N.0.32
)m50.2(

))s/m00.4()s/m00.6)((kg00.8()( 22
2
12

1
2
22

1











s

vvm
s
KF  

 
 

6.21:   cm8.16
)N0.40(

))s/m00.2()s/m00.6)((kg420.0( 22
2
1








F
Ks  

 
 
6.22: a) If there is no work done by friction, the final kinetic energy is the work done by 
the applied force, and solving for the speed, 

 .s/m48.4
)kg30.4(

)m20.1)(N0.36(222


m
Fs

m
Wv  

b) The net work is smgFsfFs )( kk  , so 

 

)kg30.4(
)m20.1))(s/m80.9)(kg30.4)(30.0(N0.36(2

)(2

2

k







m
smgFv 

 

  s./m61.3  
(Note that even though the coefficient of friction is known to only two places, the 
difference of the forces is still known to three places.) 
 



6.23: a) On the way up, gravity is opposed to the direction of motion, and so 
J4.28)m0.20)(s/m 80.9)(kg145.0( 2  mgsW . 

    b)   s/m26.15
)kg145.0(
)J4.28(2)s/m0.25(2 22

12 



m
Wvv . 

    c) No; in the absence of air resistance, the ball will have the same speed on the way 
down as on the way up. On the way down, gravity will have done both negative and 
positive work on the ball, but the net work will be the same. 
 
 
6.24: a) Gravity acts in the same direction as the watermelon’s motion, so Eq. (6.1) gives 
 
 J.1176)m0.25)(s/m80.9)(kg80.4( 2  mgsFsW  
      
 b) Since the melon is released from rest, 01 K , and Eq. (6.6) gives 
 
 J.11762  WKK  
 
 
6.25: a) Combining Equations (6.5) and (6.6) and solving for 2v  algebraically, 
 

 .s/m96.4
)kg00.7(

)m0.3)(N0.10(2)s/m00.4(2 2tot2
12 

m
Wvv  

 
Keeping extra figures in the intermediate calculations, the acceleration is 

.s/m 429.1)kg 00.7/()s/mkg 0.10( 22 a  From Eq. (2.13), with appropriate change in 
notation, 
 ),m0.3)(s/m429.1(2)s/m00.4(2 222

1
2
2  asvv  

giving the same result. 
 
 
6.26: The normal force does no work. The work-energy theorem, along with Eq. (6.5), 
gives 

 ,sin2222 gLgh
m
W

m
Kv   

 
where sinh L   is the vertical distance the block has dropped, and   is the angle the 
plane makes with the horizontal. Using the given numbers, 
 
 s./m97.29.36sin)m75.0)(s/m80.9(2 2 v  
 
 



6.27: a) The friction force is mgk , which is directed against the car’s motion, so the net 
work done is mgsk . The change in kinetic energy is 2

01 )2/1( mvKK  , and so 
gvs k

2
0 2/  .   b) From the result of part (a), the stopping distance is proportional to the 

square of the initial speed, and so for an initial speed of 60 km/h, 
m3.51)0.80/0.60)(m2.91( 2 s . (This method avoids the intermediate calculation of 

k , which in this case is about 0.279.) 
 
 
6.28: The intermediate calculation of the spring constant may be avoided by using Eq. 
(6.9) to see that the work is proportional to the square of the extension; the work needed 
to compress the spring 4.00 cm is   J3.21)J0.12(

2

cm00.3
cm00.4  . 

 
 
6.29: a) The magnitude of the force is proportional to the magnitude of the extension or 
compression; 
 N.64)m050.0/m020.0)(N160(,N48)m050.0/m015.0)(N160(   
       b) There are many equivalent ways to do the necessary algebra. One way is to note 

that to stretch the spring the original 0.050 m requires J4)m050.0(
m0.050

N169 2
2
1 








, 

so that stretching 0.015 m requires J360.0)050.0/015.0)(J4( 2   and compressing 0.020 
m requires J64.0)050.0/020.0)(J4( 2  . Another is to find the spring constant 

m/N1020.3)m050.0()N160( 3k , from which 23 )m015.0)(m/N1020.3)(2/1(   
J360.0 and J64.0)m020.0)(m/N1020.3)(2/1( 23  . 

 
 
6.30: The work can be found by finding the area under the graph, being careful of the 
sign of the force. The area under each triangle is 1/2 base height . 
      a) J40)N10)(m8(2/1  . 
      b) J20)N10)(m4(2/1  . 
      c) J60)N10)(m12(2/1  . 
 
 
6.31: Use the Work-Energy Theorem and the results of Problem 6.30. 

     a) s/m83.2
kg10

)J40)(2(
v  

b) At m12x , the 40 Joules of kinetic energy will have been increased by 20 J, so  

s/m46.3
kg10

)J60)(2(
v . 

 
 



6.32: The work you do with your changing force is 

 xdxdxdxxF
m
N0.3)N0.20()(

9.6

0

9.6

0

9.6

0    

           9.6
0

29.6
0 |)2/)(

m
N0.3(|)N0.20( xx   

           J209orJ4.209mN4.71mN138   
 
The work is negative because the cow continues to advance as you vainly attempt to push 
her backward. 
 
6.33: 12tot KKW   

       0,
2
1

2
2
01  KmvK  

      Work is done by the spring force. 2
2
1

tot kxW  , where x is the amount the spring is 
compressed. 

 cm5.8/and
2
1

2
1

0
2
0

2  kmvxmvkx  

 
6.34:  a) The average force is N400)m200.0/()J0.80(  , and the force needed to hold 
the platform in place is twice this, or 800 N. b) From Eq. (6.9), doubling the distance 
quadruples the work so an extra 240 J of work must be done. The maximum force is 
quadrupled, 1600 N. 
     Both parts may of course be done by solving for the spring constant 

N/m10004m)2000(J)0.80(2 32  ..k , giving the same results. 
 
 



6.35: a) The static friction force would need to be equal in magnitude to the spring force, 
kdmg s  or 76.1

)s/m80.9)(kg100.0(
)m086.0)(m/N0.20(

s 2 µ , which is quite large. (Keeping extra figures in 

the intermediate calculation for d gives a different answer.)    b) In Example 6.6, the 
relation 

 2
1

2
k 2

1
2
1 mvkdmgd   

 
was obtained, and d was found in terms of the known initial speed 1v . In this case, the 
condition on d is that the static friction force at maximum extension just balances the 
spring force, or mgkd s . Solving for 2

1v  and substituting, 

 

)),47.0)(60.0(2)60.0((
)m/N0.20(

)s/m80.9)(kg10.0(

)2(

2

2

2
22

ks
2
s

2

s
k

2
s

k
22

1








































k
mg

k
mgg

k
mg

m
k

dgdd
m
kv

 

from which s/m67.01 v . 
 
 
6.36:  a) The spring is pushing on the block in its direction of motion, so the work is 
positive, and equal to the work done in compressing the spring. From either Eq. (6.9) or 
Eq. (6.10), J06.0)m025.0)(m/N200( 2

2
12

2
1  kxW . 

      b) The work-energy theorem gives 

 s./m18.0
)kg0.4(
)J06.0(22


m
Wv  

 
6.37:  The work done in any interval is the area under the curve, easily calculated when 
the areas are unions of triangles and rectangles.   a) The area under the trapezoid is 

J0.4mN0.4  .   b) No force is applied in this interval, so the work done is zero.   c) 
The area of the triangle is J0.1mN0.1  , and since the curve is below the axis 

)0( xF , the work is negative, or J0.1 .   d) The net work is the sum of the results of 
parts (a), (b) and (c), 3.0 J. (e) J0.1J02J0.1  . . 
 
 



6.38:  a) J0.4K , so s/m00.2)kg0.2()J0.4(22  mKv .   b) No work is 
done between m0.3x  and m0.4x , so the speed is the same, 2.00 m/s.   c) 

J0.3K , so s/m73.1)kg0.2/()J0.3(2/2  mKv . 
 
 
6.39:  a) The spring does positive work on the sled and rider; 22 )2/1()2/1( mvkx  , or 

s/m83.2)kg70/()m/N4000()m375.0(/  mkxv .   b) The net work done by 
the spring is )()2/1( 2

2
2
1 xxk  , so the final speed is 

 s./m40.2))m200.0()m375.0((
)kg70(
m/N4000()( 222

2
2
1  xx

m
kv  

 
 
6.40:  a) From Eq. (6.14), with Rddl  , 

 .sin2cos2cos 00

02

1




wRdwRdlFW
P

P
   

In an equivalent geometric treatment, when F


 is horizontal, Fdxd  lF


, and the total 
work is wF 2  times the horizontal distance, in this case (see Fig. 6.20(a)) 0sinθR , 
giving the same result.   b) The ratio of the forces is 0tan

2 cot2
0

θw
w  . 

 

      c) .
2

cot2
)cos1(

sin2
)cos1(

sin2 0

0

0

0

0 θθ
wR

θwR






 

 
 
6.41: a) The initial and final (at the maximum distance) kinetic energy is zero, so the 
positive work done by the spring, 2)2/1( kx , must be the opposite of the negative work 
done by gravity, θmgLsin , or 

 cm.7.5
)m/N 640(

0.40sin)m 80.1)(s/m 80.9)(kg 0900.0(2sin2 2





k

θmgLx  

At this point the glider is no longer in contact with the spring.   b) The intermediate 
calculation of the initial compression can be avoided by considering that between the 
point 0.80 m from the launch to the maximum distance, gravity does a negative amount 
of work given by J567.00.40sin)m80.0m80.1)(s/m80.9)(kg0900.0( 2  , and so 
the kinetic energy of the glider at this point is 0.567 J. At this point the glider is no longer 
in contact with the spring. 
 



6.42: The initial and final kinetic energies of the brick are both zero, so the net work done 
on the brick by the spring and gravity is zero, so 0)21( 2  mghkd , or 

m.53.0)m/N450/()m6.3)(s/m80.9)(kg80.1(2/2 2  kmghd  The spring will 
provide an upward force while the spring and the brick are in contact. When this force 
goes to zero, the spring is at its uncompressed length. 
 
 
6.43: J106.3)s3600)(W100()time)(power(Energy 5   

 kg.70fors1002so
2
1 2  mK/mvmvK  

 
6.44:  Set time to stop: 
 mamgmaF  k:   

   22
k s/m 96.1)s/m80.9)(200.0(  gµa  

   atvv  0  
   t)s/m 96.1(s/m 00.80 2  
    s 08.4t  

   
t

mv
t

KEP
2

2
1

  

       W157
s08.4

)s/m00.8)(kg0.20( 2
2
1

  

 
 
6.45:  The total power is W10485.1)s/m00.9)(N165( 3 , so the power per rider is 
742.5 W, or about 1.0 hp (which is a very large output, and cannot be sustained for long 
periods). 
 
 

6.46:  a)    W.102.3
yr)/s1016.3(

)yr/J100.1( 11
7

19



  

      b)     .kW/person2.1
folks106.2

W102.3
8

11



  

      c)     .km800m100.8
m/W100.1)40.0(

W102.3 228
23

11



  

 
 



6.47: The power is vFP  . F is the weight, mg, so 
kW. 15.17s)m (2.5 )sm (9.8 kg) 700( 2 P  So, 0.23,kW. 75kW 15.17   or about 

23% of the engine power is used in climbing. 
 
 
6.48:  a) The number per minute would be the average power divided by the work (mgh) 
required to lift one box, 

 s, 41.1
m) (0.90 )sm (9.80 kg) 30(

hp)W (746 hp) 50.0(
2   

or min. 6.84    b) Similarly, 

s, 378.0
m) (0.90 )sm (9.80 kg) (30

 W)100(
2   

or min. 7.22  
 
 
6.49:  The total mass that can be raised is 

kg, 2436
m) (20.0 )sm (9.80

s) hp)(16.0W (746 hp) 0.40(
2   

so the maximum number of passengers is .28kg 65.0
kg 1836   

 
 
6.50:  From any of Equations (6.15), (6.16), (6.18) or (6.19), 

hp. 3.57 W1066.2
s) (4.00

m) (2.80 N) 3800( 3 
t

WhP  

 
 

6.51:  N. 101.8
s))m 6.3(h)km 1(( h)km 65(
hp)W hp)(746 (280,000 )70.0( )70.0( 6ave 

v
PF  

 
 
6.52:  Here, Eq. (6.19) is the most direct. Gravity is doing negative work, so the rope 
must do positive work to lift the skiers. The force F


 is gravity, and ,NmgF   where N 

is the number of skiers on the rope. The power is then 

 

 W.1096.2

)0.15(90.0 cos 
hkm 6.3

sm 1 h)km (12.0 )sm (9.80 kg) (70 )50(

 cos )( )(

4

2













 vNmgP

 

Note that Eq. (1.18) uses   as the angle between the force and velocity vectors; in this 
case, the force is vertical, but the angle 0.15  is measured from the horizontal, so 

 0.150.90  is used. 
 



6.53:  a) In terms of the acceleration a and the time t since the force was applied, the 
speed is atv   and the force is ma, so the power is .)( )( 2tmaatmaFvP   b) The 
power at a given time is proportional to the square of the acceleration, tripling the 
acceleration would mean increasing the power by a factor of nine. c) If the magnitude of 
the net force is the same, the acceleration will be the same, and the needed power is 
proportional to the time. At s 0.15t , the needed power is three times that at 5.0 s, or 
108 W. 
 
6.54: 

.

2
1 2

PFv
mavmva

dt
dvmv

mv
dt
d

dt
dK














 

 
6.55:  Work done in each stroke is FsW   and tFstWP 100av   

mgFt 2 s, 00.1  and m. 010.0s   W.20.0av P  
 



6.56: 

   
      

Let mass  totalM  and revolution onefor   timeT  
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5 revolutions in 3 seconds s 53 T  

J. 877s) 53(m) (2.00 kg) 0.12(
3
2 222  πKE  

 
6.57: a) J 532m) (3.80 N) 140(   b) J 315)25 sin( m) (3.80 )sm (9.80 kg) 0.20( 2    
c) The normal force does no work. 
   d) 

J 20325 cos m) (3.80 )sm (9.80 kg) (20.0 )30.0(

 cos 
2

kkk



 θmgsµnsµsfW f  

    e) J 15J 203J 315J 532   (14.7 J to three figures). 
    f) The result of part (e) is the kinetic energy at the top of the ramp, so the speed is 

.sm 21.1kg) (20.0J) 7.14(22  mKv  
 



6.58:  The work per unit mass is .)( ghmW   
     a) The man does work, kg.J 3.92m) (0.4 kg)N 8.9(   
     b) 5.6%.100kg)J 70(kg)J 92.3(   
     c) The child does work, kg.J 1.96m) (0.2 kg)N 8.9(   

2.8%.100kg)J 70(kg)J 96.1(   
     d) If both the man and the child can do work at the rate of kg,J 07  and if the child 
only needs to use kgJ 96.1  instead of kg,J 92.3  the child should be able to do more pull 
ups. 
 
6.59: a) Moving a distance L along the ramp, ,sin  , outin αLsLs   so . sin

1
αIMA   

      b) If )()( , outininout ssFFIMAAMA   and so )( )()( )( ininoutout sFsF  , or .inout WW   
     c)  

 
     d) 

.
))((
))((

outin

inout

inin

outout

in

out

IMA
AMA

ss
FF

sF
sF

W
WE   

 

6.60: a) kg. 7.41
m) (18.0 )sm (9.80

J) 1035.7(
2

3
g 







g
sW

g
wm  

       b) N. 458
m 0.18

J 1025.8  
3

n 



s

Wn  

      c) The weight is N, 408g  s
Wmg  so the acceleration is the net force divided by the   

mass, .sm 2.1
kg 41.7

N 408N 458 2
  

 
6.61:  a) 

J. 1059.2 
)mins (60 min) 1.90(

m) 1066.6(2 kg) 400,86(
2
12

2
1

2
1 12

262
2 







 









π
T
πRmmv  

                  b) J. 1080.4s)) (3.00m) (1.00( kg) (86,400 )21( )21( 322 mv  
 



6.62: a) 

J 3.22m) (1.5012.0 cos )sm (9.80 kg) (5.00 )31.0(

 cos 
2

kk



 θsmgµsfW f  

(keeping an extra figure)  b) J.  15.3m) (1.50 12.0sin  )sm (9.80 kg) 00.5( 2   
 c)  The normal force does no work. d) J.  0.7J 3.22J 3.15    
 e) J, 5.1J 0.7s)m (2.2 kg) (5.00 )21( 2

12  WKK  and so 
s/m4.1)kg00.5/()J1.5(22 v . 

 
6.63:  See Problem 6.62: The work done is negative, and is proportional to the distance s 
that the package slides along the ramp, sθµθmgW )cos(sin k . Setting this equal to 
the (negative) change in kinetic energy and solving for s gives  

)cos(sin2)cos(sin
)2/1(

k

2
1

k

2
1

θµθg
v

θµθmg
mvs





  

m.6.2
)12cos)31.0(12)(sins/m80.9(2

m/s)2.2(
2

2




  

As a check of the result of Problem 6.62, s/m4.1)m6.2/()m5.1(1)s/m2.2(  . 
 
6.64:  a) From Eq. (6.7), 
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1

2

1

2

1

.111

12
2

x

x

x

x

x

x x xx
k

x
k

x
dxkdxFW  

The force is given to be attractive, so 0xF  , and k must be positive. If 
12

11
12 , xxxx  , 

and 0W .  b) Taking “slowly” to be constant speed, the net force on the object is zero, 
so the force applied by the hand is opposite xF , and the work done is negative of that 
found in part (a), or  

21

11
xxk   , which is positive if 12 xx  .  c) The answers have the same 

magnitude but opposite signs; this is to be expected, in that the net work done is zero. 
 
6.65:  2

E )/( rRmgF   

      







 

2

1 E
R2

E2

2
E )|)/1((

r
E

E mgRrmgRdrmgRFdsW
R

   

   0, 112tot  KKKW     
      This gives J1025.1 12

E2  mgRK  
      2

22
1

2 mvK   so s/m000,11/2 22  mKv  
 



6.66:  Let x be the distance past P. 
Ax 100.0k  

when m5.12x , 600.0k   
 m04000m5.12/500.0 /.A   
 
(a) 

2
2
f

f
2

2
i

2
f

f

2
i0

2
ik

iff

)s/m50.4(
2
1

2
m)/0400.0()100.0()s/m80.9(

2
1

2
)100.0(

2
1)1000(

2
10
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f
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vxAxg

vdxAx.g

mvmgdxµ

KEKEWKEW

x
 

Solve for m11.5: ff xx   
     (b) 0.304m)115m)(/0400.0(100.0k  .  
     (c) iff KEKEW   

         2
1k 2

10 mvmgxµ   

       m3.10
)s/m80.9)(100.0(2

s)/m50.4(2/ 2

2

k
2
i  gµvx  

 
 
 
6.67:   a) .N00.4)m00.1)(mN00.4( 333  ax  
       b) .N0.32)m00.2)(mN00.4( 333  bx  c) Equation 6.7 gives the work needed to 
move an object against the force; the work done by the force is the negative of this, 

  


 2

1

).(
4

4
1

4
2

3x

x
xxdxx  

With m00.11  axx  and m00.22  bxx , J0.15W , this work is negative. 
 



6.68: From Eq. (6.7), with 01 x , 

4
2

33
2

22
2

0 0

4
2

3
2

2
2

32

)m/N 3000()m/N 233()m/N 0.50(
432

)(2 2

xxx

xcxbxkdxcxbxkxFdxW
x x



    

  
 a) When m050.02 x , J115.0W , or 0.12 J to two figures. b) When 

m,050.02 x J173.0W , or 0.17 J to two figures. c) It’s easier to stretch the spring; 
the quadratic 2bx  term is always in the x -direction, and so the needed force, and 
hence the needed work, will be less when 02 x . 
 
6.69:  a) N147.0kg)120.0( m)400(

m/s)(0.70
rad

22  .R
vmmaT , or 0.15 N to two figures. b) At 

the later radius and speed, the tension is N41.9kg)120.0( m)100(
m/s)(2.80 2

. , or 9.4 N to two 
figures. c) The surface is frictionless and horizontal, so the net work is the work done by 
the cord. For a massless and frictionless cord, this is the same as the work done by the 
person, and is equal to the change in the block’s kinetic energy, 

J441.0))s/m70.0()s/m80.2)((kg120.0)(2/1()()2/1( 222
1

2
212  vvmKK . Note 

that in this case, the tension cannot be perpendicular to the block’s velocity at all times; 
the cord is in the radial direction, and for the radius to change, the block must have some 
non-zero component of velocity in the radial direction. 
 
6.70:  a) This is similar to Problem 6.64, but here 0  (the force is repulsive), and 

12 xx  , so the work done is again negative; 

 

J.1065.2

))m1025.1()m200.0((mN1012.2(11

17

191226

21

















xx
W 

 

    Note that 1x  is so large compared to 2x  that the term 
1

1
x  is negligible. Then, using Eq. 

(6.13)) and solving for 2v , 

 .s/m1041.2
kg)1067.1(

J)1065.2(2s)/m1000.3(2 5
27

17
252

12 



 



m
Wvv  

b) With 12 ,0 KWK  . Using 
2xW  , 

 .m1082.2
)s/m1000.3)(kg1067.1(

)mN1012.2(22 10
2527

226

2
11

2

















mvK

x  

c) The repulsive force has done no net work, so the kinetic energy and hence the speed of 
the proton have their original values, and the speed is s/m1000.3 5 . 
 
 



6.71: The velocity and acceleration as functions of time are 

 ttatt
dt
dxtv  62)(,32)( 2   

a) s./m56.2)s00.4)(s/m02.0(3)s00.4)(s/m20.0(2)s00.4( 232 tv  
b) .N28.5)s00.4)(s/m02.0(6)s/m20.0(2)(kg00.6( 32 ma  

    c) .J7.19s)/m256)(kg00.6)(2/1( 2
212  KKKW  

 
 
6.72: In Eq. (6.14), dxdl   and  0.31  is constant, and so 

 
.J39.30.31cos)m/N00.5(

coscos

m50.1

m00.1

22

2

1

2

1



 




dxx

dxFdlFW
P

P

x

x


 

The final speed of the object is then 

 s./m57.6
)kg250.0(

)J39.3(2)s/m00.4(2 22
12 

m
Wvv  

 
6.73:   a) )()2/1( 2

1
2
212 vvmKK   

 J.910))s/m00.5()s/m50.1)((kg0.80)(2/1( 22   
    b) The work done by gravity is 2 3(80 0kg)(9 80m s )(5 20 m) 4 08 10 Jmgh           , 
so the work done by the rider is 3 3910 J ( 4 08 10 J) 3 17 10 J        . 
 

6.74:  a)  .
)1())1( 1

0
1

0
0






 



  nx

x
nn xn

b
xn

bdx
x
bW  

Note that for this part, for 0,1 1  nxn  as x . b) When 10  n , the improper 
integral must be used, 

 ,)(
)1(

lim 1
0

1
2

2











 



nn

x
xx

n
bW  

and because the exponent on the 1
2
nx   is positive, the limit does not exist, and the integral 

diverges. This is interpreted as the force F doing an infinite amount of work, even though 
0F  as .2 x  

 
 
6.75:  Setting the (negative) work done by the spring to the needed (negative) change in 
kinetic energy, 2

02
12

2
1 mvkx  , and solving for the spring constant, 

 m./N1003.1
)m070.0(

)s/m65.0)(kg1200( 5
2

2

2

2
0 

x
mvk  

 
 



6.76:  a) Equating the work done by the spring to the gain in kinetic energy, 
2

2
12

02
1 mvkx  , so 

 .s/m93.6)m060.0(
kg0300.0
m/N400

0  x
m
kv  

b) totW  must now include friction, so 0
2
02

1
tot

2
2
1 fxkxWmv  , where f is the magnitude 

of the friction force. Then, 

 
.s/m90.4)m06.0(

kg)0300.0(
N)00.6(2)m06.0(

kg0300.0
m/N400

2

2

0
2
0



 x
m

x
m
kv f

 

c) The greatest speed occurs when the acceleration (and the net force) are zero, or 
m0150.0, m/N400

N00.6  k
fxfkx . To find the speed, the net work is 

)()( 0
22

02
1

tot xxfxxkW  , so the maximum speed is 

 

m/s, 5.20

m)0.0150m060.0(
kg)0300.0(

)N00.6(2))m0150.0()m060.0((
)kg0300.0(

m/N400

)(2)(

22

0
22

0max





 xx
m
fxx

m
kv

which is larger than the result of part (b) but smaller than the result of part (a). 
 
6.77:  Denote the initial compression of the spring by x and the distance from the initial 
position by L. Then, the work done by the spring is 2

2
1 kx  and the work done by friction is 

)(k Lxmg   ; this form takes into account the fact that while the spring is compressed, 
the frictional force is still present (see Problem 6.76). The initial and final kinetic 
energies are both zero, so the net work done is zero, and 21

k2 ( )kx mg x L  . Solving for 
L, 

 ,m813.0)m250.0(
)s/m80.9)(kg50.2)(30.0(

)m250.0)(m/N250)(2/1()2/1(
2

2

k

2

 x
mg

kxL


 

or 0.81 m to two figures. Thus the book moves m06.1m25.m81.  , or about 1.1 m. 
 
6.78:  The work done by gravity is θmgLW sing   (negative since the cat is moving 
up), and the work done by the applied force is FL, where F is the magnitude of the 
applied force. The total work is 
 .J4.13130sin)m00.2)(s/m80.9)(kg00.7()m00.2)(N100( 2

tot W  
The cat’s initial kinetic energy is J2.20)s/m40.2)(kg00.7( 2

2
12

12
1 mv , and 

 .s/m58.6
)kg00.7(

)J4.131J2.20(2)(2 1
2 







m
WKv  

 



6.79:  In terms of the bumper compression x and the initial speed 0v , the necessary 
relations are 

 .5,
2
1

2
1 2

0
2 mgkxmvkx   

Combining to eliminate k and then x, the two inequalties are 

 .25and
5 2

22

v
mgk

g
vx   

    a) Using the given numbers, 

 ,m16.8
)s/m80.9(5

)s/m0.20(
2

2

x  

 .m/N1002.1
)s/m0.20(

)s/m80.9)(kg1700(25 4
2

22

k  

     b) A distance of 8 m is not commonly available as space in which to stop a car. 
 
 
6.80:  The students do positive work, and the force that they exert makes an angle of 

0.30  with the direction of motion. Gravity does negative work, and is at an angle of 
0.60  with the chair’s motion, so the total work done is 

J8.257)m50.2)(0.60cos)s/m80.9)(kg0.85(0.30cos)N600(( 2
tot W , and so the 

speed at the top of the ramp is 

 .s/m17.3
)kg0.85(
)J8.257(2s)/m 00.2(2 2tot2

12 
m
Wvv  

Note that extra figures were kept in the intermediate calculation to avoid roundoff error. 
 
 
6.81: a) At maximum compression, the spring (and hence the block) is not moving, so the 
block has no kinetic energy. Therefore, the work done by the block is equal to its initial 
kinetic energy, and the maximum compression is found from ,2

2
12

2
1 mvkX   or 

 m. 600.0s)m 00.6(
mN 500

kg 00.5
 v

k
mX  

b) Solving for v in terms of a known X, 

 s.m 1.50m) 150.0(
kg 00.5

mN 500
 X

m
kv  

 



6.82:  The total work done is the sum of that done by gravity (on the hanging block) and 
that done by friction (on the block on the table). The work done by gravity is (6.00 kg) gh 
and the work done by friction is  , kg) 00.8(k ghµ  so 
 
 J. 58.8m) (1.50 )sm (9.80 kg) 00.8)(25.0(kg 00.6( 2

tot W  
 
This work increases the kinetic energy of both blocks; 

 ,)(
2
1 2

21tot vmmW   

so 

 s.m 90.2
kg) (14.00
J) 8.58(2

v  

 
6.83: See Problem 6.82. Gravity does positive work, while friction does negative work. 
Setting the net (negative) work equal to the (negative) change in kinetic energy, 

 ,)(
2
1)( 2

212k1 vmmghmµm   

and solving for k  gives 

 

0.79.
kg) 00.8(

m)) (2.00 )sm 80.9((s)m (0.900 kg) (14.00 )21(kg) 00.6(

)( )21(

22
2

2
211

k









m
ghvmmmµ

 

 
 
6.84:  The arrow will acquire the energy that was used in drawing the bow (i.e., the work 
done by the archer), which will be the area under the curve that represents the force as a 
function of distance. One possible way of estimating this work is to approximate the F vs. 
x curve as a parabola which goes to zero at 0x  and ,0xx   and has a maximum of 0F  

at ,2
0xx   so that ).()( 0

4
2
0

0 xxxxF
x
F   This may seem like a crude approximation to the 

figure, but it has the ultimate advantage of being easy to integrate; 

 .
3
2

32
4 )(4

0
0

0
0

3
0

2
0

02
0

02
02

0

0
0 0

xFxxx
x
Fdxxxx

x
FFdx

x x

  







  

With N 2000 F  and J. 100 m, 75.00  Wx  The speed of the arrow is then 

.sm 89kg) (0.025
J) 100(22 m

W  Other ways of finding the area under the curve in Fig. (6.28) 

should give similar results. 
 
 



6.85:  ,) 25.0( so  25.0 totk smgWWmgf f   where s is the length of the rough patch. 
      12tot KKW         
      2

02
12

02
12

22
1

2
2
02

1
1 2025.0)45.0(  , mvvmmvKmvK   

     The work-energy relation gives 2
02

1)12025.0()25.0( mvsmg   
     The mass divides out and solving gives m. 5.1s  
 
 
6.86: Your friend’s average acceleration is 

20 m/s 00.2
s3.00

m/s00.6





t
vva  

Since there are no other horizontal forces acting, the force you exert on her is given by 
 

N 130)m/skg)(2.000.65( 2
net  maF  

 
Her average velocity during your pull is 3.00 m/s, and the distance she travels is thus 9.00 
m. The work you do is J1170m)N)(9.00130( Fx , and the average power is 
therefore  W.390sJ/3.001170   The work can also be calculated as the change in the 
kinetic energy. 
 
6.87: a) figures.  three toJ101.10or  J,101.098m)0.14)(m/skg)(9.80800( 552   
     b)    J.1030.1)m/skg)(18.0800)(2/1( 52   

     c)    kW.99.3
s60

J101.30J1010.1 55


  

 
 
6.88:  

.)N/s043.0()N/s43.0(N/s)96.0(

)18184(
)32)(62(

3322

3222

2

ttt
tββttm

βttβtm
mavFvP












 

 
At s, 400t  the power output is 13.5 W. 
 
 
6.89:  Let t equal the number of seconds she walks every day. Then, 

J.101.1)sJ/s)(86400100(J/s)280( 7 tt Solving for t, hours.3.6s111,13 t  
 
 



6.90:        a) The hummingbird produces energy at a rate of J/s7.0 to J/s.75.1  At          
10 beats/s, the bird must expend between 0.07 J/beat and 0.175 J/beat. 
      b) The steady output of the athlete is W/kg,7kgW/70500  which is below the        
10 W/kg necessary to stay aloft. Though the athlete can expend 

W/kg02kgW/704001   for short periods of time, no human-powered aircraft could 
stay aloft for very long. Movies of early attempts at human-powered flight bear out this 
observation. 
 
 
6.91:  From the chain rule, ,)( ghmghWP dt

dm
dt
d

dt
d   for ideal efficiency. Expressing 

the mass rate in terms of the volume rate and solving gives 
 

.
s

m1030.1
)kg/mm)(1000170)(m/s80.9)(92.0(

W)102000( 3
3

32

6


  

 
 
6.92:  a) The power P is related to the speed by ,2

2
1 mvKPt   so .2

m
Ptv   

      b)   .
22

1222
mt
P

tm
Pt

dt
d

m
P

m
Pt

dt
d

dt
dva  . 

a)                 .
3
2

9
8

3
222

2
3

2
3

2
1

0 t
m
Pt

m
Pdtt

m
Pdtvxx    

 
 
6.93:  a) J.101.26m)63.1)(m/s80.9)(kg/m1005.1)(kg107500( 523333    
    b) W.1.46s)J)/(86,4001026.1( 5   
 



6.94:  a) The number of cars is the total power available divided by the power needed per 
car, 

 ,177
m/s)N)(27108.2(

W104.13
3

6




  

 
rounding down to the nearest integer. 
      b)  To accelerate a total mass M at an acceleration a and speed v, the extra power 
needed is Mav. To climb a hill of angle  , the extra power needed is .sin vMg   These 
will be nearly the same if ;sin~ ga  if ,m/s10.0~tan~sin 2 gg  the power is 
about the same as that needed to accelerate at .m/s10.0 2   
      c) MW.2.9m/s)27)(010.0)(m/skg)(9.801010.1( 26   d) The power per car needed 
is that used in part (a), plus that found in part (c) with M  being the mass of a single car. 
The total number of cars is then 

 ,36
m/s)27))(010.0)(m/skg)(9.8010(8.2N108.2(

W109.2W104.13
243

66




  

rounding to the nearest integer. 
 
 
6.95: a) MW.2.4m/s)N)(451053( 3

0  FvP  
      b) MW.16m/s))(45m/s5.1(kg)101.9( 25

1  mavP  
      c) Approximating ,sin  by ,tan  and using the component of gravity down the 
incline as ,sinmg   

MW.6.0m/s)5)(0.015)(4m/s80.9(kg)101.9()sin( 25
2  vmgP   

 
 
6.96:  a) Along this path, y is constant, and the displacement is parallel to the force, so 

J.0.15m)00.3)(N/m50.2( 2
m)(2.002 2

  xdxαyW  
    b) Since the force has no y-component, no work is done moving in the y-direction. 
    c) Along this path, y varies with position along the path, given by ,5.1 xy   so 

,5.1)5.1( 2xxxFx    and 

J.0.10
3

m)200()N/m50.2(5.15.1
3

22    dxxdxFW x   

 
 



6.97: a) 

W.513
m/s)0.12)(m/s)0.12)(kg/m2.1(m463.0)(00.1)(2/1(   

)m/skg)(9.800.62)(0045.0((

)(

232

2
airroll






 vFFFvP

 

  
        

6.98: a)         N.1068.1
km/h))m/s)/(3.6km/h)((10.60(

W100.28 3
3





v
PF  

  
b) The speed is lowered by a factor of one-half, and the resisting force is lowered by a 
factor of ),4/35.065.0(   and so the power at the lower speed is 
 
 hp.13.8kW10.30.35/4)0.65kW)(0.50)(0.28(   
  
c) Similarly, at the higher speed, 
 

hp.154kW114.84)0.35.65kW)(2.0)(00.28(   
  
 



6.99:   a)               N.358
km/h))m/s)/(3.6km/h)((10.60(

W/hp)hp)(74600.8(
  

  
b) The extra power needed is 
 

hp,2.39kW3.29))10/1(sin(arctan
3.6

km/h6.60)m/skg)(9.801800(
m/s

km/h
2

|| mgv  

 
so the total power is 47.2 hp. (Note: If the sine of the angle is approximated by the 
tangent, the third place will be different.)     c) Similarly, 
 

hp,94.3kW94.2))010.0(sin(arctan
3.6

km/h0.60)m/skg)(9.801800(
m/s

km/h
2

|| mgv  

  
This is the rate at which work is done on the car by gravity. The engine must do work on 
the car at a rate of 4.06 hp.  d) In this case, approximating the sine of the slope by the 
tangent is appropriate, and the grade is 

,0203.0
km/h))m/s)/(3.6km/h)((10.60)(m/skg)(9.801800(

W/hp)hp)(74600.8(
2   

  
very close to a 2% grade. 
 
 



6.100:  Use the Work–Energy Theorem, ,KEW   and integrate to find the work. 

 
x

dxµWmvKE
0

2
0 .)cosmgsinmg( and

2
10   

 
Then, 

 









x xxWdxxW
0

2

.cos
2

Asinmg ,)cosAsin(mg   

  
Set .KEW   

.cos
2

Asinmg
2
1 2

2
0 








  xxmv  

  
To eliminate x, note that the box comes to a rest when the force of static friction balances 
the component of the weight directed down the plane. So, ;cosmg Asinmg  x  solve 
this for x and substitute into the previous equation. 

 .
cosA

sin



x  

Then, 
 

,cos
2
cosA

sinA

cosA
sinsin

2
1

2

2
0





























 





gv  

  

and upon canceling factors and collecting terms, .
cosA
sin3 2

2
0 

gv   Or the box will remain 

stationary whenever .
cosA
sin3 2

2
0 

gv   

 
 



6.101:  a) Denote the position of a piece of the spring by l; 0l  is the fixed point and 
Ll   is the moving end of the spring. Then the velocity of the point corresponding to l, 

denoted u, is Lvlu 1)(   (when the spring is moving, l will be a function of time, and so u 
is an implicit function of time). The mass of a piece of length dl is ,dldm L

M  and so 

 ,
2
1

2
1 2

3

2
2 dll

L
MvdmudK   

and 

   
L Mvdll

L
MvdKK

0

2
2

3

2

.
62

 

b) ,2
2
12

2
1 mvkx   so s.m 6.1m) 1050.2(kg) 053.0(m)N 3200()( 2  xmkv . 

c) With the mass of the spring included, the work that the spring does goes into the 
kinetic energies of both the ball and the spring, so .2

6
12

2
12

2
1 Mvmvkx    Solving for v, 

 s.m 3.9m)1050.2(
3kg) (0.243kg) 053.0(

m)N 3200(
3

2 





 x
Mm
kv  

d) Algebraically, 

 J 40.0
)31(

)21(
2
1 2

2 



mM

kxmv  and 

 J. 60.0
)31(

)21(
6
1 2

2 



Mm

kxMv  

 



6.102:  In both cases, a given amount of fuel represents a given amount of work 0W  that 
the engine does in moving the plane forward against the resisting force. In terms of the 
range R and the (presumed) constant speed v, 

 .2
2

0 





 

v
vRRFW   

In terms of the time of flight ,, vtRT   so 

 .3
0 






 

v
βvTvTFW   

a) Rather than solve for R as a function of v, differentiate the first of these relations with 
respect to v, setting 00 dv

dW  to obtain .0 dv
dF

dv
dR RF  For the maximum range, ,0dv

dR  so 
.0dv

dF  Performing the differentiation, ,022 3  vβvdv
dF   which is solved for  

 h.km 118sm 9.32
msN 30.0

smN 105.3
41

22

22541




















βv  

     b) Similarly, the maximum time is found by setting ;0)( Fvdv
d  performing the 

differentiation, ,03 22  vβv  which is solved for 

 h.km 90sm 25
msN 30.0(3

smN 105.3
3

41

22

22541




















βv  

 
6.103:  a) The walk will take one-fifth of an hour, 12 min. From the graph, the oxygen 
consumption rate appears to be about min,kgcm 12 3   and so the total energy is 
 
 J. 100.2)cmJ(20 min) (12 kg) (70 min)kgcm 12( 533   
 
b) The run will take 6 min. Using an estimation of the rate from the graph of about 

minkgcm 33 3   gives an energy consumption of about J. 108.2 5  c) The run takes 4 
min, and with an estimated rate of about min,kgcm 50 3   the energy used is about 

J. 10 8.2 5  d) Walking is the most efficient way to go. In general, the point where the 
slope of the line from the origin to the point on the graph is the smallest is the most 
efficient speed; about 5 h.km  
 



6.104: From yyxx maFmaFm  ,,aF 
 and .zz maF   The generalization of Eq. (6.11) 

is then 

 .  , ,
dz
dvva
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dvva z
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xx   

The total work is then 
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7.1:   From Eq. (7.2), 
 

.MJ  3.45J 103.45m) (440 )sm (9.80 kg) 800( 62 mgy  
 
 
7.2:   a) For constant speed, the net force is zero, so the required force is the sack’s 
weight, N. 49)sm kg)(9.80 00.5( 2    b) The lifting force acts in the same direction as the 
sack’s motion, so the work is equal to the weight times the distance, 

J; 735m)(15.0 N) 00.49(   this work becomes potential energy. Note that the result is 
independent of the speed, and that an extra figure was kept in part (b) to avoid roundoff 
error. 
 
 
7.3:   In Eq. (7.7), taking 01 K  (as in Example 6.4) and .,0 other122 WUKU   
Friction does negative work ,fy  so ;2 fymgyK   solving for the speed ,2v  

 

.sm 55.7
kg) 200(

m) (3.00 N) 60)sm (9.80 kg) 200((2)(2 2

2 






m

yfmgv  

 
 
7.4:   a) The rope makes an angle of    30arcsin m 6.0

m 0.3  with the vertical. The needed 
horizontal force is then N, 67930 tan )sm (9.80 kg) 120( tan 2 θw  or N 108.6 2 to 
two figures.  b) In moving the bag, the rope does no work, so the worker does an amount 
of work equal to the change in potential energy, 

J.  10 0.95)30 cos(1 m) (6.0 )sm (9.80 kg) 120( 32   Note that this is not the product 
of the result of part (a) and the horizontal displacement; the force needed to keep the bag 
in equilibrium varies as the angle is changed. 
 
 
7.5:   a) In the absence of air resistance, Eq. (7.5) is applicable. With m, 0.2221  yy  
solving for 2v  gives 

s.m 0.24m) 0.22)(sm 80.9(2s)m 0.12()(2 22
12

2
12  yygvv  

   b) The result of part (a), and any application of Eq. (7.5), depends only on the 
magnitude of the velocities, not the directions, so the speed is again s.m 0.24   c) The 
ball thrown upward would be in the air for a longer time and would be slowed more by 
air resistance. 
 
 



7.6:    a) (Denote the top of the ramp as point 2.) In Eq. (7.7), 
J,  5.87m) (2.5N) 35( ,0 other2  WK  and taking 01 U  and 

s,m 25.6 J, 147)30sin  m (2.5 )sm (9.80 kg) 12( kg 12
J) 5.87J 147(2

1
2

22  vmgyU  or 

sm 3.6  to two figures. Or, the work done by friction and the change in potential energy 
are both proportional to the distance the crate moves up the ramp, and so the initial speed 
is proportional to the square root of the distance up the ramp; .sm 25.6 s)m 0.5( m 1.6

m 2.5   
       b) In part a), we calculated otherW  and 2U . Using Eq. (7.7), 

J  491.5J  147J  5.87s)m (11.0 kg) 12( 2
2
1

2 K  

.sm 05.9kg) 12(
J)  5.491(22

2
2  m

Kv  
 
 
7.7:    As in Example 7.7, J,  94 ,0 22  UK  and .03 U  The work done by friction is  

 
J,  56m) (1.6 N) 35(   and so J, 383 K  and .sm 5.2Kg 12

J) 38(2
3 v  

 
 
7.8:    The speed is v and the kinetic energy is 4K. The work done by friction is 
proportional to the normal force, and hence the mass, and so each term in Eq. (7.7) is 
proportional to the total mass of the crate, and the speed at the bottom is the same for any 
mass. The kinetic energy is proportional to the mass, and for the same speed but four 
times the mass, the kinetic energy is quadrupled. 
 
 
7.9:    In Eq. (7.7), other1  ,0 WK   is given as J, 22.0  and taking 

J,  22.0,0 22  mgRKU  so 

m/s. 8.2
kg 0.20
J 22.0m) (0.50 )sm 80.9(2 2

2 







v  

 
 



7.10:    (a) The flea leaves the ground with an upward velocity of 1.3 m/s and then is in 
free-fall with acceleration 2sm 8.9  downward. The maximum height it reaches is 
therefore cm. 0.9)(2)( 2

0
2  gvv yy  The distance it travels in the first 1.25 ms can be 

ignored. 
     (b)  

J  10 1.8ergs 8.1

s)cm (130 g) 10210(
2
1

2
1

7

26

2









 mvKEW

 

 
 
7.11:    Take 0y  at point A. Let point 1 be A and point 2 be B. 

J.  5400 giveshen relation tenergy - workThe

J 3840J, 500,37
2
1

 J, 224,28)2(,0

122

2
22

1
2

2
11

other21

22other11








KUKW

mvKmvK

WWRmgUU
UKWUK

f

f

 

 
7.12:    Tarzan is lower than his original height by a distance ),45cos30 (cos l  so his 
speed is 

,sm 9.7)45cos30(cos2  glv  
a bit quick for conversation. 
 
 



7.13:    a) The force is applied parallel to the ramp, and hence parallel to the oven’s 
motion, and so J.  880m) (8.0 N) 110(  FsW  b) Because the applied force F


 is 

parallel to the ramp, the normal force is just that needed to balance the component of the 
weight perpendicular to the ramp, , cos wn   and so the friction force is 

  coskk mgf   and the work done by friction is 
J,  157m) 0.8(37 cos )sm (9.80 kg) (10.0 )25.0( cos 2

kf  smgW   
keeping an extra figure.  c) J47237sin)m0.8)(sm80.9)(kg0.10(sin 2 mgs , 
again keeping an extra figure.  d) J. 251J 157J 472J 880    e) In the direction up the 
ramp, the net force is 

N, 31.46                     
)37 cos )25.0(37 )(sinsm kg)(9.80 0.10(N 110                     

 cossin  
2

k




  mgmgF
 

so the acceleration is .sm 3.15kg) 10.0N) 46.31( 2  The speed after moving up the 

ramp is ,sm 09.7m) (8.0)sm 15.3(22 2  asv  and the kinetic energy is 
J. 252)21( 2 mv  (In the above, numerical results of specific parts may differ in the third 

place if extra figures are not kept in the intermediate calculations.) 
 
 
7.14:    a) At the top of the swing, when the kinetic energy is zero, the potential energy 
(with respect to the bottom of the circular arc) is ), cos1( θmgl   where l is the length of 
the string and θ  is the angle the string makes with the vertical. At the bottom of the 
swing, this potential energy has become kinetic energy, so ,)cos1( 2

2
1 mvθmgl   or 

sm 1.2)45 cos1( m)800( )sm 809(2)cos1(2 2   ..θglv .  b) At 45  from the 
vertical, the speed is zero, and there is no radial acceleration; the tension is equal to the 
radial component of the weight, or N. 83.045 cos )sm (9.80 kg) 12.0( cos 2 θmg   c) 
At the bottom of the circle, the tension is the sum of the weight and the radial 
acceleration, 

N, 1.86))45 cos1(21(2
2  mglmvmg  

or 1.9 N to two figures. Note that this method does not use the intermediate calculation of 
v. 
 
 
7.15:    Of the many ways to find energy in a spring in terms of the force and the 
distance, one way (which avoids the intermediate calculation of the spring constant) is to 
note that the energy is the product of the average force and the distance compressed or 
extended. a) J.  80.0m) N)(0.200 800)(21(   b) The potential energy is proportional to 
the square of the compression or extension; J. 0.5)m 0.200m 0.050( J) 0.80( 2   



7.16:    ,2
2
1 kyU   where y is the vertical distance the spring is stretched when the weight 

mgw   is suspended. ,k
mgy   and ,x

Fk   where x and F are the quantities that 
“calibrate” the spring. Combining, 

J  0.36
m) 0.150N 720(

))sm (9.80 kg) 0.60((
2
1)(

2
1 222


xF

mgU  

 
 
7.17:    a) Solving Eq. (7.9) for m. 063.0, m)N 1600(

J) 20.3(22  k
Uxx  

      b) Denote the initial height of the book as h and the maximum compression of the 
spring by x. The final and initial kinetic energies are zero, and the book is initially a 
height hx   above the point where the spring is maximally compressed. Equating initial 
and final potential energies, ).(2

2
1 hxmgkx   This is a quadratic in x, the solution to 

which is 

 

m. 101.0 m, 116.0

)sm(9.80 kg) (1.20
m) (0.80 m)N 1600(211

m)N 1600(
)sm kg)(9.80 20.1(

211

2

2























mg
kh

k
mgx

 

The second (negative) root is not unphysical, but represents an extension rather than a 
compression of the spring. To two figures, the compression is 0.12 m. 
 
 
7.18:    a) In going from rest in the slingshot’s pocket to rest at the maximum height, the 
potential energy stored in the rubber band is converted to gravitational potential energy; 

J. 2.16m) (22.0 )sm kg)(9.80 1010( 23  mgyU  
       b) Because gravitational potential energy is proportional to mass, the larger pebble 
rises only 8.8 m. 
       c) The lack of air resistance and no deformation of the rubber band are two possible 
assumptions. 
 
 
7.19:    The initial kinetic energy and the kinetic energy of the brick at its greatest height 
are both zero. Equating initial and final potential energies, ,2

2
1 mghkx   where h  is the 

greatest height. Solving for h, 

 m. 7.1
)sm (9.80 kg) 20.1(2

m) (0.15 m)N 1800(
2 2

22


mg

kxh  

 
 



7.20:    As in Example 7.8, 1 0K   and J. 0250.01 U  For s,m20.02 v  

J,0040.02 K  so ,J 0210.0 2
2
1

2 kxU   so m.092.0mN5.00
J)0210.0(2 x  In the absence 

of friction, the glider will go through the equilibrium position and pass through 
m 092.0x  with the same speed, on the opposite side of the equilibrium position. 

 
 
7.21:    a) In this situation, 02 U  when ,0x  so J 0250.02 K  and 

s.m 500.0kg 0.200
J) 0250.0(2

2 v  b) If s,m 50.22 v  

 ,J  625.0s)m kg)(2.50 (0.200 )21( 1
2

2 UK   so m. 500.0mN 5.00
J) 625.0(2

1 x  Or, 

because the speed is 5 times that of part (a), the kinetic energy is 25 times that of part (a), 
and the initial extension is m. 0.500m 100.05   
 
 
7.22:    a) The work done by friction is 

J, 00196.0m) (0.020 )sm (9.80 kg) (0.200 )05.0( 2
kother  xmgµW  

so J 00704.02 K  and .sm 27.0kg 0.200
J) 00704.0(2

2 v  b) In this case J, 0098.0other W  so 

J, 0.0152J 0098.0J 0250.02 K  and s.m 39.0kg 0.200
J) 0152.0(2

2 v  
   c) In this case, ,02 K  ,02 U  so 

.13.0or  m), 100.0()sm (9.80 kg) 200.0(J 0250.00 k
2

kother1  µµWU  
 
 
7.23:    a) In this case,  J 000,6251 K  as before, J 000,17other W  and 

J. 900,50
)00.1( )sm (9.80 kg) 2000(m) 00.1( m)N 1041.1)(21(

)21(
225

2
2
22




 mgykyU
 

The kinetic energy is then J 557,100 J 000,17J 900,50J 000,6252 K , 
corresponding to a speed s.m 6.232 v  b) The elevator is moving down, so the friction 
force is up (tending to stop the elevator, which is the idea). The net upward force is then 

kxfmg 400,138)m00.1()mN1041.1(N000,17)sm80.9)(kg2000( 52 

 for an upward acceleration of .sm2.69 2  
 
 



7.24:    From ,mvkx 2
2
12

2
1   the relations between m, v, k and x are 

 .522 mgkx,mvkx   
Dividing the first by the second gives ,x g

v
5

2  and substituting this into the second gives 

,k
v

mg
2

2

25  so a) & b), 

 
.mN1046.4

)sm50.2(
)sm80.9)(kg1160(25

,m128.0
)sm5(9.80

)sm50.2(

5
2

22

2

2





k

x
 

 
 
7.25:    a) Gravity does negative work, J.118)m16)(sm80.9)(kg75.0( 2    b) 
Gravity does 118 J of positive work.  c) Zero  d) Conservative; gravity does no net work 
on any complete round trip. 
 
 
7.26:     a) & b) J.5.2)m0.5)(smkg)(9.80050.0( 2   
 

 
 

    c) Gravity is conservative, as the work done to go from one point to another is path-
independent. 
 
 
7.27:    a) The displacement is in the y-direction, and since F


 has no y-component, the 

work is zero. 
    b) 

 J.104.0)(
3

N/m1212 3
1

3
2

2
22

1

2

1

  xxdxxd
x

x

P

P
lF


 

c) The negative of the answer to part (b), 3m104.0  d) The work is independent of 
path, and the force is conservative. The corresponding potential energy is 

.)mN4( 32
3

)mN12( 32

xU x   
 
 



7.28:    a) From (0, 0) to (0, L), 0x  and so ,0F


, and the work is zero. From (0, L) to 
(L, L), F


 and l


d  are perpendicular, so .0 lF


d  and the net work along this path is 

zero.  b) From (0, 0) to (L, 0), .0 lF


d  From (L, 0) to (L, L), the work is that found in 
the example, ,CLW 2

2   so the total work along the path is .2CL   c) Along the diagonal 
path, y,x   and so ; dyCyd  lF


 integrating from 0 to L gives .2

2CL  (It is not a 
coincidence that this is the average to the answers to parts (a) and (b).)  d) The work 
depends on path, and the field is not conservative. 
 
 
7.29:     a) When the book moves to the left, the friction force is to the right, and the work 
is J.6.3)m0.3)(N2.1(    b) The friction force is now to the left, and the work is again 

.J6.3  c) .J2.7   d) The net work done by friction for the round trip is not zero, and 
friction is not a conservative force. 
 
 
7.30:    The friction force has magnitude N.8.58)m/s80.9)(kg0.30)(20.0( 2

k mg  a) 
For each part of the move, friction does ,J623)m6.10)(N8.58(   so the total work 
done by friction is .kN2.1   b) .N882)m0.15)(N8.58(   
7.31:    The magnitude of the friction force on the book is 
 N.68.3)sm80.9)(kg5.1)(25.0( 2

k mg  
a) The work done during each part of the motion is the same, and the total work done 

is J59)m0.8)(N68.3(2   (rounding to two places).   b) The magnitude of the 
displacement is ,)m0.8(2  so the work done by friction is 

.N42)N68.3)(m0.8(2   c) The work is the same both coming and going, 
and the total work done is the same as in part (a), .J59  d) The work required to 
go from one point to another is not path independent, and the work required for a 
round trip is not zero, so friction is not a conservative force. 

 
 
7.32:    a) )( 2

2
2
12

1 xxk    b) ).( 2
2

2
12

1 xxk   The total work is zero; the spring force is 
conservative  c) From 1x  to ,3x  ).( 2

1
2
32

1 xxkW   From 3x  to ,x2  ).( 2
3

2
22

1 xxkW   
The net work is ).( 2

1
2
22

1 xxk   This is the same as the result of part (a). 
 
 
7.33:    From Eq. (7.17), the force is 

 .61
7

6
66 x

C
xdx

dC
dx
dUFx 






  

The minus sign means that the force is attractive. 
 
 
 



7.34:    From Eq. (7.15), ,xxF dx
dU

x
343 )mJ8.4(4    and so 

.N46.2)m80.0)(mJ8.4()m800.0( 34 xF  
 
 
7.35:    ,xkkyy,kkx z

U
y
U

x
U 0  and  2  2  






  so from Eq. (7.19), 

.̂)2(ˆ)2( jiF xkkyykkx 


 
 
 
7.36:    From Eq. (7.19), ,y

U
x
U jiF ˆˆ





 


 since U has no z-dependence. 

so    and  33
22 ,
yy

U
xx

U  
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7.37:    a) .612 713 r
b

r
a

r
U

rF  
  

 

 
 
     b) Setting 0rF  and solving for r gives .)2( 6/1

min bar   This is the minimum of 
potential energy, so the equilibrium is stable. 
     c) 

 

.
424

))/2(())/2((

)(

22

2

2

66/1126/1

6
min

12
min

min

a
b

a
b

a
ab

ba
b

ba
a
r
b

r
arU







 

To separate the particles means to remove them to zero potential energy, and requires the 
negative of this, or .42

0 abE    d) The expressions for 0E  and minr  in terms of a and b 
are 

 .2
4

6
min

2

0 b
ar

a
bE   

Multiplying the first by the second and solving for b gives 6
min02 rEb  , and substituting 

this into the first and solving for a gives 12
min0rEa  . Using the given numbers, 

.mJ1041.6)m1013.1)(J1054.1(2

mJ1068.6)m1013.1)(J1054.1(
67861018

12138121018








b
a

 

(Note: the numerical value for a might not be within the range of standard calculators, 
and the powers of ten may have to be handled seperately.) 
 
 
7.38:    a) Considering only forces in the x-direction, ,F dx

dU
x   and so the force is zero 

when the slope of the U vs x graph is zero, at points b and d.  b) Point b is at a potential 
minimum; to move it away from b would require an input of energy, so this point is 
stable. c) Moving away from point d involves a decrease of potential energy, hence an 
increase in kinetic energy, and the marble tends to move further away, and so d is an 
unstable point. 
 
 



7.39:     a) At constant speed, the upward force of the three ropes must balance the force, 
so the tension in each is one-third of the man’s weight. The tension in the rope is the 
force he exerts, or .N2293)sm80.9)(kg0.70( 2    b) The man has risen 1.20 m, and so 
the increase in his potential energy is .J823)m20.1)(sm80.9)(kg0.70( 2   In moving up 
a given distance, the total length of the rope between the pulleys and the platform 
changes by three times this distance, so the length of rope that passes through the man’s 
hands is ,m60.3m20.13   and .J824)m6.3)(N229(   
 
 
7.40:    First find the acceleration: 

 2
2

0

2
0

2

sm75.3
)m2(1.20
)sm00.3(

)(2






xx
vva  

Then, choosing motion in the direction of the more massive block as positive: 

 

m 24.2

24.2
sm)75.380.9(
sm)75.380.9(
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2

2

net
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7.41:     a) 22other11 UKWUK   
    0221  KUU  
    m85.3ft280  with  kother  smgs,WW f   

    The work-energy expression gives 0k
2
12

1  mgsmv   

    ;mph50sm4.222 k1  gsv   the driver was speeding. 
a) 15 mph over speed limit so $150 ticket. 
 

 



7.42:     a) Equating the potential energy stored in the spring to the block's kinetic energy, 
,mvkx 2

2
12

2
1   or 

 .sm11.3)m220.0(
kg00.2

mN400
 x

m
kv  

     b) Using energy methods directly, the initial potential energy of the spring is the final 
gravitational potential energy, ,sin2

2
1 mgLkx   or 

 m.821.0
0.37sin)sm80.9)(kg00.2(

)m220.0)(mN400(
sin 2

2
2
12

2
1





mg

kxL  

 
 
7.43:    The initial and final kinetic energies are both zero, so the work done by the spring 
is the negative of the work done by friction, or mgl,µkx k

2
2
1   where l is the distance the 

block moves. Solving for ,µk  

 .41.0
)m00.1)(sm80.9)(kg50.0(

)m20.0)(mN100)(2/1()2/1(
2

22

k 
mgl

kx
  

 
 
7.44:    Work done by friction against the crate brings it to a halt: 

 
N 29.64

m 5.60
J 360

spring compressed ofenergy  potential

k

k





f

xf
 

The friction force working over a 2.00-m distance does work 
.J6.128)m00.2)(N29.64(k xf  The kinetic energy of the crate at this point is thus 

,J4.231J6.128J360   and its speed is found from 

 

sm 04.3

sm 256.9
kg 050

J) 4.231(2

J 4.231
2

222

2







v
.

v

mv

 

 
 
7.45:     a) J9.15)m50.2)(sm80.9)(kg650.0( 2 mgh  
     b) The second height is ,m875.1)m50.2(75.0   so second ; J9.11mgh  loses 

J4.0J11.9J9.15   on first bounce. This energy is converted to thermal energy. 
a) The third height is ,m40.1)m875.1(75.0  , so third ; J9.8mgh  loses 

J3.0J8.9J9.11   on second bounce. 
 
 



7.46:     a) .)2( 2
2
1

ABA mvRhmgUU   From previous considerations, the speed at the 
top must be at least .gR  Thus, 

 .
2
5or      

2
1)2( RhmgR,Rhmg   

     b) ,KRmgUU CCA  )50.2(  so 

 .sm3.31)m0.20)(sm80.9)(00.5()00.5( 2  gRvC  

The radial acceleration is .sm0.49 2
rad

2

 R
vCa  The tangential direction is down, the 

normal force at point C is horizontal, there is no friction, so the only downward force is 
gravity, and .sm80.9 2

tan  ga  
 
 
7.47:     a) Use work-energy relation to find the kinetic energy of the wood as it enters the 
rough bottom: 21 KU   gives J.4.7812  mgyK  
      Now apply work-energy relation to the motion along the rough bottom: 

     
J 478  ; 0  , 1212kother

22other11

.KUUKmgsWW
UKWUK

f 




 

      ; 0J4.78 k  mgs  solving for s gives m.0.20s  
      The wood stops after traveling 20.0 m along the rough bottom. 
       b) Friction does J4.78  of work. 
 
 



7.48:     (a) 

 

m 3.9

)sm 8.9(
40sin
40cos)sm 8.9)(20.0()sm 15(

2
1

sin
cos

2
1

sin

cos
2
1

222

k
2
0

k
2
0

TopfBottom
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ghhgv
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mghdθmgmv
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(b) Compare maximum static friction force to the weight component down the plane. 

 

s
2

2
ss

N 176)40)(sinsm kg)(9.8 28(sin

N 158
40cos)sm kg)(9.8 28)(75.0(cos

fmg

mgf









 

so the rock will slide down. 
    (c) Use same procedure as (a), with m3.9h  

 

sm11.8 sincos22
2
1

sin
cos

kB

2
Bk

BottomfTop












ghghv

mvhmgmgh

KEWPE

 

 
 



7.49:     a) 22other11 UKWUK   
      Let point 1 be point A and point 2 be point B. Take 0y  at point B. 
      ,mvmvmgy 2

22
12

12
1

1   with m0.20h  and sm0.101 v  

      sm2.2222
12  ghvv  

      b) Use ,UKWUK 22other11   with point 1 at B and point 2 where the spring has    
its maximum compression x. 
      sm2.22  with   ; 0 1

2
12

1
1221  vmvKKUU  

      ,kxmgsWWW f
2

2
1

kelother    with xs  m100  
      The work-energy relation gives .0other1 WK  
      02

2
1

k
2
12

1  kxmgsmv   
       Putting in the numerical values gives .07504.292  xx  The positive root to this 
equation is .m4.16x  
      b) When the spring is compressed m4.16x  the force it exerts on the stone is 

N.8.32el  kxF  The maximum possible static friction force is 

 N.118)sm80.9)(kg0.15)(80.0(max 2
ss  mgf   

The spring force is less than the maximum possible static friction force so the stone 
remains at rest. 
 
 
7.50:    First get speed at the top of the hill for the block to clear the pit. 

 

sm 20
s 20
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Energy conservation: 
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7.51:    22other11 UKWUK   
      Point 1 is where he steps off the platform and point 2 is where he is stopped by the 
cord. Let 0y  at point 2. ,kxWy 2

2
1

other1   m.0.41   where m0.11x  is the amount 
the cord is stretched at point 2.The cord does negative work. 
     ,UKK 0221   so 02

2
1

1  kxmgy  and .N/m631k  
      Now apply kxF   to the test pulls: 
     kxF   so .m602.0 kFx  
 
 
7.52:    For the skier to be moving at no more than sm0.30 ; his kinetic energy at the 
bottom of the ramp can be no bigger than 

 J250,38
2

)sm0.30)(kg0.85(
2

22


mv  

      Friction does J4000  of work on him during his run, which means his combined PE 
and KE at the top of the ramp must be no more than J.42,250J4000J250,38   His KE 
at the top is 

 J170
2

)sm0.2)(kg0.85(
2

22


mv  

His PE at the top should thus be no more than ,J42,080J170J250,42   which gives a 
height above the bottom of the ramp of 

 .m5.50
)sm80.9)(kg0.85(

J080,42J080,42
2 

mg
h  

 
 
7.53:    The net work done during the trip down the barrel is the sum of the energy stored 
in the spring, the (negative) work done by friction and the (negative) work done by 
gravity. Using ,kFkx )( 2

2
12

2
1   the performer’s kinetic energy at the top of the barrel is 

 

J,107.17m)5.2)(smkg)(9.80(60m)N)(4.040(
mN1100

N)4400(
2
1 32

2

K  

  

and his speed is .sm5.15kg60
)J1017.7(2 3

  
 
 



7.54:    To be at equilibrium at the bottom, with the spring compressed a distance ,x0  the 
spring force must balance the component of the weight down the ramp plus the largest 
value of the static friction, or .sin0 fθwkx   The work-energy theorem requires that 
the energy stored in the spring is equal to the sum of the work done by friction, the work 
done by gravity and the initial kinetic energy, or 

 ,mvLfwkx 22
0 2

1)sin(
2
1

   

where L is the total length traveled down the ramp and v is the speed at the top of the 
ramp. With the given parameters, J2482

02
1 kx  and N.1010.1 3

0 kx  Solving for k 
gives .mN2440k  
 
 
7.55:    The potential energy has decreased by 

J.8.156)m00.2)(sm(9.80kg)(4.0m)00.2)(smkg)(9.800.12( 22   The kinetic 

energy of the masses is then ,vvmm J8.156)kg0.8()(
2
1 22

21   so the common speed is 

,v sm43.4kg0.8
J)8.156(   or sm4.4  to two figures. 

 
 



7.56:    a) The energy stored may be found directly from 

     J.1033.6)J000,58(J000,51J000,625
2
1 5

2other1
2
2  mgyWKky  

        b) Denote the upward distance from point 2 by h. The kinetic energy at point 2 and 
at the height h are both zero, so the energy found in part (a) is equal to the negative of the 
work done by gravity and friction, 

h,hhfmg )N600,36()N000,17)sm80.9)(kg2000(()( 2   so 

m.3.17
J1066.3
J1033.6

4

5




h   c) The net work done on the elevator between the highest point of 

the rebound and the point where it next reaches the spring is 
J.1072.3)m00.3)(( 4 hfmg  Note that on the way down, friction does negative 

work. The speed of the elevator is then .sm10.6kg2000
)J1072.3(2 4

   d) When the elevator 
next comes to rest, the total work done by the spring, friction, and gravity must be the 
negative of the kinetic energy 3K  found in part (c), or 

.)mN1003.7(N)600,2(
2
1)(J1072.3 2

3
4

3
2
33

4
3 xxkxxfmgK   

      
      (In this calculation, the value of k was recalculated to obtain better precision.) This is 
a quadratic in 3x , the positive solution to which is 

 
m,746.0

)J1072.3)(mN1003.7(4N)10(2.60N1060.2

)mN1003.7(2
1

44233

43






x

 

       
corresponding to a force of N1005.1 5  and a stored energy of J1091.3 4 . It should be 
noted that different ways of rounding the numbers in the intermediate calculations may 
give different answers. 
 
 



7.57:    The two design conditions are expressed algebraically as 
N1066.3 4 mgfky  (the condition that the elevator remains at rest when the 

spring is compressed a distance y; y will be taken as positive) and 
2

2
12

2
1 kxfymgymv   (the condition that the change in energy is the work 

fyW other ). Eliminating y in favor of k by ky N1066.3 4  leads to 
 

kk
)N1066.3)(N1070.1()N1066.3(

2
1 4424 

 

  .N)10N)(3.6610(1.96J105.62
44

4

k


  

     
This is actually not hard to solve for mN919k , and the corresponding x is 39.8 m. 
This is a very weak spring constant, and would require a space below the operating range 
of the elevator about four floors deep, which is not reasonable.  b) At the lowest point, the 
spring exerts an upward force of magnitude mgf  . Just before the elevator stops, 
however, the friction force is also directed upward, so the net force is 

fmgfmgf 2)(  , and the upward acceleration is 22 sm0.17m
f . 

 
 
7.58:    One mass rises while the other falls, so the net loss of potential energy is 
 

.J176.1)m400.0)(sm80.9)(kg2000.0kg5000.0( 2   
 
This is the sum of the kinetic energies of the animals. If the animals are equidistant from 
the center, they have the same speed, so the kinetic energy of the combination is 2

tot2
1 vm , 

and 

.sm83.1
)kg7000.0(

)J176.1(2
v  

 
 
7.59:    a) The kinetic energy of the potato is the work done by gravity (or the potential 

energy lost), mglmv 2
2
1 , or sm00.7)m50.2)(sm80.9(22 2  glv . 

      b) 

,2
2

mg
l

vmmgT   

 
so N.94.2)sm80.9)(kg100.0(33 2  mgT  
 
 



7.60:    a) The change in total energy is the work done by the air, 

.J0.80
)m6.53)(sm80.9())sm0.40(

)sm0.30()sm6.18(()21(
)kg145.0(

)(
2
1)()(

22

22

2
2
1

2
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      b) Similarly, 
 

.J3.31
)m6.53)(sm80.9())sm6.18(

)sm7.28()sm9.11)((21(
)kg145.0()()(

22

22

2233

















 UKUK

 

 
c) The ball is moving slower on the way down, and does not go as far (in the x-direction), 
and so the work done by the air is smaller in magnitude. 
 
 
7.61:    a) For a friction force f, the total work done sliding down the pole is fdmgd  . 
This is given as being equal to mgh, and solving for f gives 

.1)(






 




d
hmg

d
hdmgf  

When 0,  fdh , as expected, and when mgfh  ,0 ; there is no net force on the 
fireman.  b) N441)1)(sm80.9)(kg75( m5.2

m0.12  .  c) The net work done is 

))(( ydfmg  , and this must be equal to 2
2
1 mv . Using the above expression for f, 

 

,1

)(

))((
2
1 2







 











d
ymgh

yd
d
hmg

ydfmgmv

 

 
from which )1(2 dyghv  . When 0y  ghv 2 , which is the original condition. 
When dy  , 0v ; the fireman is at the top of the pole. 
 
 



7.62:    a) The skier’s kinetic energy at the bottom can be found from the potential energy 
at the top minus the work done by friction, 

J,500.10)m0.65)(kgN8.9)(kg0.60(F1  WmghK  or 

J720,27J500,10J200,381 K . Then sm4.30kg60
)J207,27(22

1  m
Kv . 

      b)  )N588)(2[(.J720,27),(J720,27)( 2airkAF12 KdfmgdWWKK   
)],m82)(N160()m82(   , or J4957J763,22J720,272 K . Then, 

 

.sm9.12sm85.12
kg60

)J4957(22
2 

m
Kv  

  
      c) Use the Work-Energy Theorem to find the force. ,KEW   

.N2000N1983)m5.2()J4957(  dKEF  
 
 
7.63:    The skier is subject to both gravity and a normal force; it is the normal force that 
causes her to go in a circle, and when she leaves the hill, the normal force vanishes. The 
vanishing of the normal force is the condition that determines when she will leave the 
hill. As the normal force approaches zero, the necessary (inward) radial force is the radial 
component of gravity, or ,cos2 mgRmv   where R is the radius of the snowball. The 
speed is found from conservation of energy; at an angle  , she has descended a vertical 
distance )cos1( R , so )cos1(2

2
1  mgRmv , or )cos1(22  gRv . Using this in 

the previous relation gives  cos)cos1(2  , or 





 2.48

3
2arccos . This result 

does not depend on the skier’s mass, the radius of the snowball, or g. 
 
 
7.64:    If the speed of the rock at the top is vt, then conservation of energy gives the 
speed bv  from )2(2

t2
12

b2
1 Rmgmvmv  , R being the radius of the circle, and so 

gRvv 42
t

2
b  . The tension at the top and bottom are found from R

mvmgT
2
t

t   and 

R
mvmgT

2
b

b  , so wmgmgvvTT R
m 662)( 2

t
2
btb  . 

 
 



7.65:    a) The magnitude of the work done by friction is the kinetic energy of the 
package at point B, or 2

2
1

k BmvmgL  , or 

.392.0
)m00.3)(sm80.9(

)sm80.4)(21()21(
2

22

k 
gL

vB  

 
    b) 

.J832.0
)m60.1)(sm80.9)(kg200.0()sm80.4)(kg200.0( 22

2
1

other





 AB UKW

 

 
Equivalently, since 0,0  BCABABA WWUKK , or 

.J832.0))m00.3)(300.0()m60.1((  mgWUW BCAAB  
 
 
7.66:    Denote the distance the truck moves up the ramp by x. 2

02
1

1 mvK  , 
sin1 mgLU  , 02 K , sin2 mgxU   and  cosrother mgxW  . From 

)()( 1122other UKUKW  , and solving for x, 

.
cossin

sin)2(
)cos(sin

sin

r
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0
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Lgv
mg

mgLKx  

 
 
7.67: a) Taking 0)0( U , 

.)mN00.6()mN0.30(
32

)( 32232

0
xxxxdxFxU

x

x  
  

 
      b) 

,J75.27
))m50.0)(mN00.6()m50.0)(mN0.30((

))m00.1)(mN00.6()m00.1)(mN0.30((
322

322
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and so sm85.7kg900.0
)J75.27(2

2 v . 
 
 
7.68:    The force increases both the gravitational potential energy of the block and the 
potential energy of the spring. If the block is moved slowly, the kinetic energy can be 
taken as constant, so the work done by the force is the increase in potential energy, 

2
2
1 )(sin  akmgaU  . 

 
 



7.69:    With mghkxUmvKKU  2
2
1

1
2
22

1
212 ,0,0 , and solving for 2v , 

sm01.7)m20.1)(sm80.9(2
)kg150.0(

)m045.0)(mN1900(2 2
22

2  gh
m

kxv  

 
 
7.70:    a) In this problem, use of algebra avoids the intermediate calculation of the spring 
constant k. If the original height is h and the maximum compression of the spring is d, 
then 2

2
1)( kddhmg  . The speed needed is when the spring is compressed 2

d , and from 
conservation of energy, 2

2
12

2
1 )2()2( mvdkdhmg  . Substituting for k in terms of 

dh  , 

,
2
1

4
)(

2
2mvdhmgdhmg 









   

which simplifies to 

.
4
1

4
322 






  dhgv  

Insertion of numerical values gives sm14.6v . b) If the spring is compressed a 
distance x, mgxkx 2

2
1 , or k

mgx 2 . Using the expression from part (a) that gives k in 
terms of h and d, 

m.0210.0
)(2

)2(
22








dh

d
dhmg

dmgx  

 
 
7.71:    The first condition, that the maximum height above the release point is h, is 
expressed as mghkx 2

2
1 . The magnitude of the acceleration is largest when the spring is 

compressed to a distance x; at this point the net upward force is mamgkx  , so the 
second condition is expressed as ))(( agkmx  .  a) Substituting the second expression 
into the first gives 

.
2

)(or,)(
2
1 2

2
2

gh
agmkmghag

k
mk 







  

 
b) Substituting this into the expression for x gives ag

ghx  2 . 
 
 



7.72:    Following the hint, the force constant k is found from kdmgw  , or d
mgk  . 

When the fish falls from rest, its gravitational potential energy decreases by mgy; this 
becomes the potential energy of the spring, which is 2

2
12

2
1 yky d

mg . Equating these, 

.2or,
2
1 2 dymgyy

d
mg

  

 
 

9.73:  a)    rrra )( 2
0

22
0

2
rad   
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     b) From the above, 

 








)rad 0.15(2
)sm 0.25sm 0.85(

2

22
rad

θ
aαr .sm 00.2 2  

    c) Similar to the derivation of part (a), 

.]2][[
2
1

2
1

2
1 2

0
2  IIθαIωIωK  

    d) Using the result of part (c), 

.mkg 208.0
rad) (15.0m)) 250.0/()sm 00.2((

J) 0.20 J 0.45( 2
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7.74:    a) From either energy or force considerations, the speed before the block hits the 
spring is 

           
.sm30.7

)1.53cos)20.0(1.53)(sinm00.4)(sm80.9(2

)cos(sin2
2

k





 gLv

 

       b) This does require energy considerations; the combined work done by gravity and 
friction is )cos)(sin( k θθdLmg  , and the potential energy of the spring is 2

2
1 kd , 

where d is the maximum compression of the spring. This is a quadratic in d, which can be 
written as 

.0
)cos(sin2 k

2 


Ld
mg

kd


 

 
The factor multiplying 2d  is 1m504.4  , and use of the quadratic formula gives 

m06.1d .  c) The easy thing to do here is to recognize that the presence of the spring 
determines d, but at the end of the motion the spring has no potential energy, and the 
distance below the starting point is determined solely by how much energy has been lost 
to friction. If the block ends up a distance y below the starting point, then the block has 
moved a distance dL   down the incline and ydL   up the incline. The magnitude of 
the friction force is the same in both directions, θmg cosk , and so the work done by 
friction is θmgydL cos)22(k   . This must be equal to the change in gravitational 
potential energy, which is θmgysin . Equating these and solving for y gives 

.
tan

2)(
cossin

cos2)(
k

k

k

k











 dLdLy  

 
Using the value of d found in part (b) and the given values for k  and   gives 

m32.1y . 
 
 
7.75:    a) ,J75.3)m25)(.mN0.40)(21()m25.0)(N0.20( 2

other  BB UWK  

so sm87.3kg500.0
)J75.3(2 Bv , or sm9.3  to two figures.  b) At this point (point C), 

0CK , and so otherWUC   and m50.0mN0.40
)J00.5(2 cx  (the minus sign denotes a 

displacement to the left in Fig. (7.65)), which is 0.10 m from the wall. 
 
 



7.76:    The kinetic energy K   after moving up the ramp the distance s will be the energy 
initially stored in the spring, plus the (negative) work done by gravity and friction, or 

.)cos(sin
2
1

k
2 smgkxK    

 
Minimizing the speed is equivalent to minimizing K  , and differentiating the above 
expression with respect to   and setting 0d

Kd  gives 
),sin(cos0 k   mgs  

or 
k

1tan   , 









k

1arctan


 . Pushing the box straight up )90(   maximizes the 

vertical displacement h, but not sinhs  . 
 
 
7.77:    Let m18.01 x , m71.02 x . The spring constants (assumed identical) are then 
known in terms of the unknown weight w, wkx 14 . The speed of the brother at a given 
height h above the point of maximum compression is then found from 

,
2
1)4(

2
1 22

2 mghv
g
wxk 







  

 
or 

,22)4(

1

2
22

2
2









 h

x
xgghx

w
gkv  

so sm13.3))m90.0(2)m18.0()m71.0(()sm80.9( 22 v , or sm1.3  to two 
figures.  b) Setting 0v  and solving for h, 

,m40.1
2

2

1

2
2

2
2 

x
x

mg
kxh  

or 1.4 m to two figures.  c) No; the distance 1x  will be different, and the ratio 

 2m53.0
1

)m53.0(
11

2
1

1

2
2 1 xx

x
x
x x    will be different. Note that on a small planet, with lower g, 

1x  will be smaller and h will be larger. 
 
 



7.78:    a)   xmmaFxdtxda xxx
2
0

2
0

22 ,     
                  ymmaFyydtyda yyy

2
0

2
0

2
0

22 ,    
 

        b)     )(
2
1 222

0
2
0 yxmydyxdxmdyFdxFU yx       

        c) 

)(cos
)(sin

000000

000000

xxytydtdyv
yyxtxdtdxv

y
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(i) When 0xx   and 0,0  xvy  and 00yvy   

)(
2
1and

2
1,

2
1)(

2
1 2

0
2
0

2
0

2
0

2
0

2
0

2
0

22 yxmUKEmxUmyvvmK yx    

(ii) When 0x  and 000 , xvyy x   and 0yv  

)(
2
1and

2
1,

2
1 2

0
2
0

2
0

2
0

2
0

2
0

2
0 yxmUKEymUmxK    

Note that the total energy is the same. 
 
 

7.79:    a) The mechanical energy increase of the car is 
       .J10027.1)sm37)(kg1500( 62

2
1

12  KK  
        Let   be the number of gallons of gasoline consumed. 

       
gallons053.0

J10027.1)15.0)(J103.1( 68







 

 
       b) onsaccelerati19)gallons00.1(   
 
 



7.80:    (a) ghAghVmgh )m1()(energyStored    

              
.J104.4

)m150)(8.9)(m1)(m100.3)(mkg1000(
12

s
m263
2




 

 
(b) 90% of the stored energy is converted to electrical energy, so 
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Change in level of the lake: 
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7.81:    The potential energy of a horizontal layer of thickness dy, area A, and height y is 

gydmdU )( . Let   be the density of water. 
     .so, dyAgydUdyAdVdm    
     The total potential energy U is 

     
.kWh102.9J103.3so,m150andm100.3

.
71426
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7.82:    a) Yes; rather than considering arbitrary paths, consider that 
 

.ˆ
3

3

jF 





















Cy
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     b) No; consider the same path as in Example 7.13 (the field is not the same). For this 
force, 0F


 along Leg 1, 0 lF


d  along legs 2 and 4, but 0 lF


d  along Leg 3. 

 
 



7.83:    a) Along this line, yx  , so dyyd 3 lF


, and 

.J6.50)(
4

4
1

4
2

2

1
 yydyF

y

y y
  

      b) Along the first leg, 0dy  and so 0 lF


d . Along the second leg, m00.3x , 
so 22 )mN50.7( yFy  , and 

.J5.67))(mN35.7( 3
1

3
2

22

1

 yydyF
y

y y  

      c) The work done depends on the path, and the force is not conservative. 
 
 
7.84:    a)  

 
 

b) (1): 0x  along this leg, so 0F


 and 0W . (2): Along this leg, m50.1y , so 
xdxd )mN00.3( lF


, and J38.3)0)m50.1)((mN50.1( 2 W  (3) 0 lF


d , so 

0W  (4) 0y , so 0F


 and 0W . The work done in moving around the closed path 
is 3.38 J.  c) The work done in moving around a closed path is not zero, and the force is 
not conservative. 
 
 



7.85:    a) For the given proposed potential FkxxU dx
dU ),( , so this is a possible 

potential function. For this potential, kFU 2)0( 2 , not zero. Setting the zero of 
potential is equivalent to adding a constant to the potential; any additive constant will not 
change the derivative, and will correspond to the same force.  b) At equilibrium, the force 
is zero; solving 0 Fkx  for x gives kFx 0 . kFxU 2

0 )(  , and this is a 
minimum of U, and hence a stable point. 
c)  

 
d) No; 0tot F  at only one point, and this is a stable point.  e) The extreme values of x 
correspond to zero velocity, hence zero kinetic energy, so ExU  )( , where x  are the 
extreme points of the motion. Rather than solve a quadratic, note that 

kFkFxk 22
2
1 )(  , so ExU  )(  becomes 

,2

2
1 22

k
F

k
Fx

k
FkF

k
Fxk









 





 

.3
k
Fx

k
Fx    

 
f) The maximum kinetic energy occurs when )(xU  is a minimum, the point kFx 0  
found in part (b). At this point kFkFkFUEK 222 2)()(  , so 

mkFv 2 . 
 
 



7.86:    a) The slope of the U vs. x curve is negative at point A, so xF  is positive (Eq. 
(7.17)).  b) The slope of the curve at point B is positive, so the force is negative.  c) The 
kinetic energy is a maximum when the potential energy is a minimum, and that figures to 
be at around 0.75 m.  d) The curve at point C looks pretty close to flat, so the force is 
zero.  e) The object had zero kinetic energy at point A, and in order to reach a point with 
more potential energy than  )(AU , the kinetic energy would need to be negative. Kinetic 
energy is never negative, so the object can never be at any point where the potential 
energy is larger than )(AU . On the graph, that looks to be at about 2.2 m.  f) The point of 
minimum potential (found in part (c)) is a stable point, as is the relative minimum near 
1.9 m.  g) The only potential maximum, and hence the only point of unstable equilibrium, 
is at point C. 
 



7.87:    a) Eliminating   in favor of   and )( 00 xβx  , 
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0)11()( 2
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x

xU  . )(xU  is positive for 0xx   and negative for 0xx   (  and   

must be taken as positive). 
 

 
b) 
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m
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The proton moves in the positive x-direction, speeding up until it reaches a maximum 
speed (see part (c)), and then slows down, although it never stops. The minus sign in the 
square root in the expression for )(xv  indicates that the particle will be found only in the 
region where 0U , that is, 0xx  . 
     c) The maximum speed corresponds to the maximum kinetic energy, and hence the 
minimum potential energy. This minimum occurs when 0dx

dU , or 

,023
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x
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x
x

xdx
dU   

which has the solution 02xx  . 2
040 )2(

x
xU  , so .2

02mx
v    d) The maximum speed 

occurs at a point where 0dx
dU , and from Eq. (7.15), the force at this point is zero.  e) 
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8.1:  a) s.mkg 1020.1)sm kg)(12.0 000,10( 5   
       b) (i) Five times the speed, s.m 0.60 (ii) 5   s.m 8.26sm 0.12   
 
 
8.2:  See Exercise 8.3 (a); the iceboats have the same kinetic energy, so the boat with the 
larger mass has the larger magnitude of momentum by a factor of .2)()2( mm  
 
 

8.3:  a)    .
2
1

2
1 

2
1 222

 2

m
p

m
vmmvK   

 

b) From the result of part (a), for the same kinetic energy, 
2

2
2

1

2
1

m
p

m
p

 , so the larger mass 

baseball has the greater momentum;   .525.0145.0040.0ballbird pp  From the result 
of part (b), for the same momentum 2211 mKmK  , so 2211 wKwK  ; the woman, with the 
smaller weight, has the larger kinetic energy.   .643.0700450womanman KK  
 
 
8.4:  From Eq.  (8.2), 
 

    sm kg 1.7820.0 cos sm 50.4 kg 420.0  xx mvp  
      s.m kg 0.64620.0sin  sm 50.4 kg 420.0  yy mvp  

 
 
8.5:  The y-component of the total momentum is 
 

       s.mkg 256.0sm 80.7 kg0570.0sm 30.1 kg 145.0   
 
This quantity is negative, so the total momentum of the system is in the y -direction. 
 
 
8.6:  From Eq. (8.2),     s,mkg 015.1sm 00.7 kg 145.0 yp  and 

    s,mkg 405.0sm 00.9 kg 045.0 xp  so the total momentum has magnitude 
 

    s,mkg 09.1smkg 015.1smkg 405.0 2222  yx ppp  

and is at an angle arctan   
 68405.

015.1 , using the value of the arctangent function in the 
fourth quadrant  .0p ,0 y xp  
 
 



8.7:     N. 563
s1000.2

sm 0.25kg 0450.0
 3  


t
p  The weight of the ball is less than half a newton, so the 

weight is not significant while the ball and club are in contact. 
 
 
8.8:  a) The magnitude of the velocity has changed by  
 

    s,m 0.100sm 0.55sm 0.45   
 
and so the magnitude of the change of momentum 
is s,m kg 14.500  )sm 0.100( kg) 145.0(  to three figures. This is also the magnitude of 
the impulse. b) From Eq. (8.8), the magnitude of the average applied force is 

s1000.2
kg.m/s 500.14

3
=7.25 N.103  

 
 
8.9:  a) Considering the +x-components, 

,smkg 73.1  s) 05.0( N) 0.25(  s)m 00.3kg)( 16.0(12  Jpp and the velocity is 
10.8  sm in the +x-direction.  b) p 2 = 0.48 smkg  + (–12.0 N)(0.05 s) = –0.12 

smkg  , and the velocity is +0.75 sm  in the –x-direction. 
 
 
8.10:  a) F


 t=(1.04 j


)smkg 105  .  b) (1.04 ĵ)smkg 105  . 

c) .jj ˆ)sm10.1(ˆ
kg) 000,95(

) kg.1004.1( s
m5

   d) The initial velocity of the shuttle is not known; the 
change in the square of the speed is not the square of the change of the speed. 

 



8.11:  a) With ,01 t  
 

,)sN 10  00.2(  )sN 10  80.0(     3
2

292
2

7

0

2 ttdtFJ
t

xx    

 
which is 18.8 smkg  , and so the impulse delivered between t=0 and 

.î)smkg (18.8 is s1050.2 3
2  t    b) 

and s),1050.2( )sm (9.80 kg) 145.0( 32 yJ  the impulse is  

ĵ)smkg 10  55.3( 3        c)
2t

J x =7.52 N,103  so the average force is 

(7.52 .îN)103  
 
      d) jpp


 12   

                )ˆ1055.3ˆ(18.8m/s)ˆ0.5ˆkg)(40.0145.0( 3 jiji   
                .ji ˆkg.m/s) 73.0(ˆkg.m/s) 0.13(   
 
The velocity is the momentum divided by the mass, or  (89.7 m/s) 

.ji ˆm/s)0.5(ˆ   
 
 

8.12: The change in the ball’s momentum in the x-direction (taken to be 
positive to the right) is 

m/s,kg 15.41m/s)0.5030 cos s)m 0.65(( kg) 145.0(   so the x-
component of the average force is 
 

N,108.81
s1075.1

m/skg 41.15 3
3 



  

and the y-component of the force is 
 

N.107.2
s)1075.1(

30sin  m/s) kg)(65.0145.0( 3
3 




  

 
 
 

8.13:  a)   
2

1
),(

3
)( 3

1
3
212

t

t
ttBttAFdtJ  

 

or .0 tif )3/( 1
3
22  tBAtJ       b)  .

3
3
22 t

m
Bt

m
A

m
J

m
pv   

 
 



8.14:  The impluse imparted to the player is opposite in direction but of 
the same magnitude as that imparted to the puck, so the player’s speed is 

 cm/s, 27.4kg) 0.75(
)sm (20.0 kg) 16.0(  in  the  direction opposite to the puck’s. 

 
 
8.15:  a) You and the snowball now share the momentum of the snowball 
when thrown so your speed is s.cm 68.5kg) 0.400kg (70.0

s)m (10.0 kg) 400.0(    b) The change in 

the snowball’s momentum is s),mkg 20.7)sm 0.18( )kg 400.0(  so 
your speed is cm/s. 3.10kg 70.0

smkg 20.7   

 
8.16:  a)  The final momentum is 
 

s,mkg 1975.0)sm 650.0)(350.0()sm 120.0)(kg 250.0(   
taking positive directions to the right. a) Before the collision, puck B was 
at rest, so all of the momentum is due to puck A’s motion, and 
 

                     m/s. 790.0
kg 250.0

m/skg 5197.0
1 




A
A m

pv  

b) 2
1

2
2

2
212 2

1
2
1

2
1

AABBAA vmvmvmKKK   

 

       
2

22

)sm7900.0)(kg 250.0(
2
1       

)sm 650.0)(kg 350.0(
2
1)sm 0.120( )kg 250.0(

2
1




 

 
       J 0023.0  
 
 



8.17:  The change in velocity is the negative of the change in Gretzky’s 
momentum, divided by the defender’s mass, or 
 

s.m 66.4

)sm 0.13sm50.1(
N 900
N 756sm 00.5

)( 1212





 AA
B

A
BB vv

m
mvv

 

 
Positive velocities are in Gretzky’s original direction of motion, so the 
defender has changed direction. 
 

b) )(
2
1)(

2
1 2

1
2

2
2

1
2

212 BBBAAA vvmvvmKK   

  

















)m/s) 5.00(m/s) N)((4.66 090(      

)m/s) 0.13(m/s) N)((1.50 675(
)m/s 08.9(2

1
22

22

2  

  kJ. 85.6  
 
 
8.18:  Take the direction of the bullet’s motion to be the positive direction. The total 
momentum of the bullet, rifle, and gas must be zero, so 

                   ,0m/s) 1.85kg)( (2.80m/s) 1.85  m/s kg)(601 00072.0( gas  p  
 
and gasp = 0.866 .smkg  Note that the speed of the bullet is found by subtracting 
the speed of the rifle from the speed of the bullet relative to the rifle. 
 
 
8.19:  a) See Exercise 8.21;   .sm 3.60)sm 080.0(kg 00.1

kg 00.3 Av  
 
      b) J. 46.8m/s) kg)(1.200 00.3)(2/1(m/s) (3.60 kg) (1.00 2)1( 22   
 
 
 
8.20:  In the absence of friction, the horizontal component of the hat-plus-adversary 
system is conserved, and the recoil speed is 
 

                              .sm 66.0
kg) 012(

36.9 cos )sm kg)(22.0 05.4(



 

 
 



8.21:  a) Taking Av  and Bv  to be magnitudes, conservation of momentum is 

expressed as BBAA vmvm  , so .A
B

A
B v

m
mv   

      b)  .
))/(()2/1(

)2/1(
2

2

2

2

A

B

ABAB

AA

BB

AA

B

A

m
m

vmmm
vm

vm
vm

K
K

  

 
(This result may be obtained using the result of Exercise 8.3.) 
 
 
8.22: 
 

X Po: decay   Po 2104214214   
 

m/s 101.92  
kg 1065.6
J)102(1.23 

2
2
1 :

7
27

12

2






















m
KEv

vmKESetv

 

 
                                                                  
Momentum conservation: 
                        

                                           

m/s 1065.3
kg)1067.1)(210(

m/s) 10kg)(1.92 1065.6(

210

0

5

27

727
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xx




















m
vm
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x
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8.23:    Let the +x-direction be horizontal, along the direction the rock is thrown. 
There is no net horizontal force, so xP  is constant. Let object A be you and object B 
be the rock.  
 
  35.0 cos0 BBAA vmvm  
 

 m/s 11.2
0.35cos





A

BB
A m

vmv  

 
 
8.24:   Let Rebecca’s original direction of motion be the x-direction. a) From 
conservation of the x-component of momentum,  
 
 

,kg) 0.65(53.1 m/s)cos kg)(8.0 (45.0m/s) kg)(13.0 0.45( xv  
 
So s.m 67.5xv  If Rebecca’s final motion is taken to have a positive 

-y component, then 
 

s.m 43.4
kg) 0.65(

53.1sin  s)m kg)(8.0 0.45(



yv  

 
Daniel’s final speed is 
 

 22
yx vv s,m 20.7s)m 43.4(s)m 67.5( 22   

 
and his direction is arctan    3867.5

42.4  from the -x axis, which is 1.91  from the 
direction of Rebecca’s final motion. 
 

b) 222 s)m (13.0 (45.0)
2
1)sm (7.195 kg) 0.65(

2
1s)m (8.0 kg) 0.45(

2
1

K  

          J. 680  
 
Note that an extra figure was kept in the intermediate calculation. 
 
 



8.25:  s),m 25.2()sm 00.4()sm 00.3)(( KenKimKenKim mmmm  so 
 

,750.0
s)m 00.3()sm 00.4(
s)m 25.2(s)m 00.3(

Ken

Kim 




m
m  

 
and Kim weighs  N. 525N) 700)(750.0(   
 

8.26: The original momentum is  s,mkg 1060.9)sm 00.4)(kg 000,24( 4   the 
final mass is kg, 000,27kg 3000kg 000,24   and so the final speed is 
 

s.m 56.3
kg 1070.2

smkg 1060.9
4

4




  

 
 

8.27: Denote the final speeds as BA vv  and and the initial speed of puck A as ,0v  and 
omit the common mass. Then, the condition for conservation of momentum is 
 

0.45 cos 0.30 cos 0 BA vvv   
.0.45 sin 0.30 sin0 

BA vv   
 
The 0.45  angle simplifies the algebra, in that sin ,0.45 cos0.45  and so the 

Bv terms cancel when the equations are added, giving  
 

sm3.29
0.30 sin0.30 cos

0 



vvA  

From the second equation, s.m 7.20
2
 Av

Bv  b) Again neglecting the common mass, 
 

,804.0
s)m 0.40(

s)m 20.7(s)m 3.29(
)21(

))(21(K
2

22

2
0

22

1

2 






v

vv
K

BA  

 
so 19.6% of the original energy is dissipated. 
 
 



8.28: a) From . ,)(
21

2211
21212211 mm

vmvmvvmmvmvmvmvm 
  Taking positive 

velocities to the right, sm.3.001 v  and sm 1.202 v , so sm 1.60v . 
 

   b) 2)sm60.1)(kg 0.250 kg 0.500(
2
1

K  

                  22 )sm20.1)(kg 0.250(
2
1)sm 3.00)(kg 0.500(

2
1

  

              J. 1.47  
 
 

8.29: For the truck, kg, 6320M and s,m 10V  for the car,  kg 1050m  and 
sm15v  (the negative sign indicates a westbound direction). 

 
a) Conservation of momentum requires mvMVvmM  )( , or 

 

eastbound. sm 4.6
kg) 1050kg 6320(

)sm15)(kg 1050()sm 10)(kg 6320(





v  

 

b) .sm 5.2
kg 6320

)sm 15kg)( 1050(








M
mvV  

 c) kJ281KE for part (a) and  kJ 138KE  for part (b). 
 
 

s.m 1.3
)kg 195(

)sm 2.7)(kg 85(

sm 0.5
)kg 195(

)sm 8.8)(kg 110(





y

x

v

v

8.30: Take north to be the x-direction and east to be the y-direction (these choices are 
arbitrary). Then, the final momentum is the same as the intial momentum (for a 
sufficiently muddy field), and the velocity components are 
 
 
 
 
 
The magnitude of the velocity is then ,sm 9.5)sm 1.3()sm 0.5( 22   at an angle or 
arctan    320.5

1.3  east of north. 
 
 



8.31: Use conservation of the horizontal component of momentum to find the velocity of 
the combined object after the collision. Let +x be south. 
             P x  is constant gives 

J 0300.0
J 0020.0)s 100.0)(kg 400.0(

J 0320.0)s 600.0)(kg 150.0()s 200.0)(kg 250.0(

north) ,scm 10.0( scm 0.10
)kg 400.0()s 600.0)(kg 150.0()sm 200.0)(kg 250.0(

12

2
2
1

2

2
2
12

2
1

1

22

2










KKK
K

K

vv
v

x

x

 

 
Kinetic energy is converted  to thermal energy due to work done by 

nonconservative forces during the collision. 
 
 
8.32:  (a)  Momentum conservation tells us that both cars have the same change in 
momentum, but the smaller car has a greater velocity change because it has a smaller 
mass. 
 

 
 (b) The occupants of the small car experience 2.5 times the velocity change of 

those in the large car, so they also experience 2.5 times  the acceleration. Therefore they 
feel 2.5 times the force, which causes whiplash and other serious injuries. 
 
 

car) (large V2.5  
kg 1200
kg 3000

car) (large   car) (small 







V

V
m
Mv

vmVM

8.33:  Take east to be the x-direction and north to be the y-direction (again, these choices 
are arbitrary). The components of the common velocity after the collision are 
 

h.km 33.33
kg) 4200(

)hkm 0.50( kg) 2800(

hkm67.11
kg) 4200(

)hkm  35.0( kg) 1400(

y 









v

vx

 

The velocity  has magnitude hkm 3.35h)km 33.33(h)km 67.11( 22  and is at a 
direction arctan    

 7.7067.11
33.33  south of west. 

 
 



8.34: The initial momentum of the car must be the x-component of the final momentum 
as the truck had no intial x-component of momentum, so 
 

car

truckcar

car
car

 cos )(
m

vmm
m
pv x 

  

   )2490( cos ) sm 0.16(
kg 950
kg 2850

  

      .m 5.19 s  
 

Similarly, s.m 9.2166sin  s)m 0.16(
1900
2850

truck v  

 
 
8.35: The speed of the block immediately after being struck by the bullet may be found 
from either force or energy considerations. Either way, the distance s is related to the 
speed  blockv by gs.2 k

2 µv   The speed of the bullet is then 

s,m 229

m) 230.0)(m 80.9)(20.0(2
kg 1000.5

kg 205.1

gs2

2
3

k
bullet

bulletblock
bullet









 s

m
mmv 

 

 
or  sm 103.2 2  to two places. 
 
 
8.36: a) The final speed of the bullet-block combination is 

Energy is conserved after the collision, so 2
2
1 )()( VMmgyMm  , and 

      cm. 2.93m 0293.0
)sm 80.9(
)sm 758.0(

2
1

2
1

2

22


g

Vy  

 

J. 73.1)sm kg)(0.758 012.6(  a),part  Fromc)

J. 866)sm kg)(380 100.12(b)
2

2
1

2

23
2
12

2
1

1



 

K

mvK
 

 
 

s.m 758.0)sm  380(
kg 012.6

kg 100.12 3







V



8.37:  Let +y be north and +x be south. Let A11  vand Sv  be the speeds of  Sam and of 
Abigail before the collision. s.m 00.9 s,m 00.6 kg, 0.50 kg, 0.80 22  ASAS vvmm  

xP  is constant gives 

J 640
J 3465

J 4101 b)
(Abigail) sm 26.2

0.23sin  0.37sin  
givesconstant  is 
(Sam) sm 67.9

0.23 cos 0.37 cos 

12

2
22

12
22

1
2

2
12

12
12

1
1

1

221

1

221
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vmvmK
v

vmvmvm
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v

vmvmvm
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AASS

A
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y

S
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8.38: (a) At maximum compression of the spring, .102 Vvv   Momentum conservation 
gives Vkg) 0.12(s)m  00.2kg)( 00.2(   

 
sm 333.0V  

spr
2

102
2
02 )(

2
1

2
1 :onconservatiEnergy UVmmvm   

           spr
22 )m 333.0)(kg 0.12(

2
1s)m 00.2)(kg 00.2(

2
1 Us   

    J 33.3spr U  
 

(b) The collision is elastic and Eqs. (8.24) and (8.25) may be used: 
 

 
 

sm 67.0  s,m 33.1 102  vv

8.39: In the notation of  Example 8.10, with the smaller glider denoted as A, conservation 
of momentum gives  s.m 40.5)00.3()50.1( 22  BA vv  The relative velocity has 
switched direction, so s.m 00.322  BA vv  Multiplying the second of these relations 
by (3.00)  and adding  to the first  gives  ,sm 20.3or  s,m 4.14)50.4( 22  AA vv  with 
the minus sign indicating a velocity to the left. This may be substituted into either relation 
to obtain s;m 20.02 Bv   or, multiplying the second relation by (1.50) and subtracting 
from the first gives  s,m 90.0)50.4( 2 Bv which is the same result. 
 
 



8.40: a) In the notation of Example 8.10, with the large marble (originally moving to the 
right) denoted as s.m 200.0)00.1()00.3(, 22  BA vvA  The relative velocity has switched 
direction, so .m 600.022 svv BA   Adding these eliminates 2Bv  to give 

 s,m 100.0or  s,m 400.0)00.4( 22  AA vv with the minus sign indicating a final 
velocity to the left. This may be substituted into either of the two relations to obtain 

s;m 500.02 Bv  or, the second of the above relations may be multiplied by 3.00 and 
subtracted from the first to give  s,m 00.2)00.4( 2 Bv the same result. 

 
.105.4,105.4 c)

smkg 009.0 s,m kg 009.0 b)
44  



BA

BA

KK
PP

 

Because the collision is elastic, the numbers have the same magnitude. 
 
 
8.41:  Algebraically,  s.m 202 Bv  This substitution and the cancellation of common 
factors and units allow the equations in   and β  to be reduced to 
 

.sin   1.8sin 0

  cos 8.1 cos 2

β

β








 

 
Solving for cos   and sin  , squaring and adding gives 
 

    .1sin . 8.1 cos 8.12
22
 β  

 
Minor algebra leads to cos .57.26or  ,

8.1
2.1  ββ  Substitution of this result into the first 

of the above relations gives .87.36 and , cos 5
4     

 
8.42:  a) Using Eq. .),24.8( 3

1
u 2u 1
u 2u 1  


V
vA  b) The kinetic energy is proportional to the 

square of the speed, so  9
1K

K A c) The magnitude of the speed is reduced by a factor of 

 3
1 after each collision, so after N  collisions, the speed is  N3

1 of its original value. To find 
N, consider 

.10
)3ln(

)000,59ln(
)000,59ln()3ln(

000,593

or  
000,59
1

3
1














N

N

N

N

 

to the nearest integer. Of course, using the logarithm in any base gives the same result. 
 



8.43: a) In Eq. (8.24), let . and  Mmmm BA   Solving for M gives 

A

A

vv
vvmM




  

In this case,   s,m 1020.1 and s,m 1050.1 77  Avv  with the minus sign indicating 
a rebound. Then, .9)20.1) 1.50

1.20 50.1 mmM  
  Either Eq.  (8.25) may be used to find 

 s,m 1000.3 6
5  v

Bv or Eq. (8.23), which gives 
 s),m 1020.1(s)m 1050.1( 77 Bv the same result. 

 
 

8.44: From Eq. (8.28), 
 

       
m. 056.0

)kg 90.0(
)m 60.0)(kg 20.0()m 40.0)(kg 40.0()m 30.0)(kg 30.0(

m, 044.0
)kg 90.0(

 )m 30.0)(kg 20.0()m 10.0)(kg 40.0()m 200kg) 30.0(

cm

cm











y

.(x
 

 
 
8.45:  Measured from the center of the sun, 
 

m. 1042.7
kg 1090.1kg 1099.1

)m 1078.7)(kg 1090.1()0)(kg 1099.1( 8
2730

112730




  

 
The center of mass of the system lies outside the sun. 
 
 
8.46: a) Measured from the rear car, the position of the center of mass is, from Eq. (8.28), 

 m, 0.24
kg) 1800kg 1200(

)m 0.40)(kg 1800(



which is 16.0 m behind the leading car.  

s.m 8.16
)kg 1800kg 1200(

)sm 0.20)(kg 1800()sm 0.12)(kg 1200(             

(8.30), Eq. From c)
s.mkg 1004.5)sm 0.20)(kg 1800()sm 0.12)(kg 1200( b)

cm

4









v

 

   s.mkg 1004.5)sm 8.16)(kg 1800kg 1200( d) 4   
 
 



8.47:  a) With 01 x  in Eq. (8.28), 
 

kg. 30.0)1)m m)/(2.0 0.8)((kg 10.0()1)/(( cm221  xxmm  
 
      .̂ )smkg 0.2(ˆ )sm 0.5)(kg 400(   b) iivP  .M cm c) In Eq. (8.32), 

.ˆ)sm 7.6()kg 30.0/(  so , 12 iPvv 
 0  

 
 
8.48: As in Example 8.15, the center of mass remains at rest, so there is zero net 
momentum, and the magnitudes of the speeds are related by ,2211 vmvm    or  

s.m 47.0)sm 70.0)(kg 0.90/kg 0.60()/( 1212  vmmv  
 
 
8.49: See Exercise 8.47(a); with ,01 y  Eq. (8.28) gives  )1)/(( cm221 yymm  

kg, 75.0)1)m 4.2/()m 0.6)((kg 50.0(  so the total mass of the system is 1.25 kg. 
 
b)    .tdt

d iva ˆ )sm1.50( 3
cmcm 


 

c)   .̂)N  63.5(ˆs) (3.0 )sm50.1( )kg 1.25( 3
cm iiaF 


m  
8.50: .0 so ,0  zFzp  The x -component of force is  

 

 

.)sN 50.1( t
dt

dpF x
x   

N 25.0
dt

dp
F y

y  

 
 
8.51: a) From Eq. (8.38), N.  0.80)skg 0500.0)(sm 1600( F  b) The absence of 
atmosphere would not prevent the rocket from operating. The rocket could be steered by 
ejecting the fuel in a direction with a component perpendicular to the rocket’s velocity, 
and braked by ejecting in a direction parallel (as opposed to antiparallel) to the rocket’s 
velocity. 
 
 



8.52: It turns out to be more convenient to do part (b) first; the thrust is the force that 
accelerates the astronaut and MMU, N.  22.5)sm kg)(0.029 110kg 70( 2  maF  
a) Solving Eq. (8.38) for dm , 
 

gm. 53
sm 490

s) N)(5.0 22.5( 

ex


v

dtFdm  

 
 
8.53: Solving for the magnitude of dm in Eq. (8.39), 
 

kg. 75.0s) 1(
s)m 2000(

)sm kg)(25.0 6000( 2

ex

 dt
v
madm  

 
 
8.54: Solving Eq. (8.34) for exv and taking the magnitude to find the exhaust speed,  

 dtdm
m

ex av  2sm 0.15    s.km4.2s 160   In this form, the quantity dtdm
m is 

approximated by   tm
m

tm
m 160 s. 

 
8.55: a) The average thrust is the impulse divided by the time, so the ratio of the average 
thrust to the maximum thrust is .442.0s) (1.70 N) (13.3

s)N 0.10(     b) Using the average force in Eq. 

(8.38), s.m 800kg 0125.0
sN 0.10 

ex  
dm

dtFv    c) Using the result of part (b) in Eq. (8.40),   

sm530)0133.00258.0(ln )sm800( v . 
 
 
8.56: Solving Eq. (8.4) for the ratio m

m0 , with 00 v , 
 

.1.45
skm10.2
skm00.8expexp

ex

0 


















v
v

m
m  

 
 
8.57: Solving Eq. (8.40) for 

om
m , the fraction of the original rocket mass that is not fuel,   

. exp
ex0










v
v

m
m  

a) For  .102.7s))m(2000sm1000.3(exp(,sm1000.31000.1 66553   cv  
b) .22.0s))m 2000(s)m 3000(exp( ,sm 3000For v  

 
 
 



8.58: a) The speed of the ball before and after the collision with the plate are found 
from the heights. The impulse is the mass times the sum of the speeds,  

  47.0m 60.1m 00.2sm 2(9.80kg) 040.0()22()( 2
2121  gygymvvmJ

b) N.  237s)10s/2.00N 47.0( 3
t  


J   

 
 
8.59: jijjFp ˆ)sN 2.5N 0.30(ˆ)tsN 33.8(ˆ)2(ˆ)3( 23223 ttγtβtαt dt  


 

 
After 0.500 s, ,ˆs)mkg63.15(ˆs)mkg04.1( jip 


and the velocity is 

 
.̂s)m82.7(ˆs)m52.0( jipv  m
 

 
8.60: a)   s.N  1.14s)10(3.00 N) 380( 3  tFJ xx  

    s.N  33.0s)10(3.00 N) (110 3  tFJ yy  

b)     
  sm05.0

)sm 80.9(N 560.0
N.s14.1sm 20.0 212 


 mJvv xxx  

 

s.m78.1
))sm(9.80N) ((0.560

N.s) 33.0()sm0.4( 212  mJvv yyy  

 
 

8.61: The total momentum of the final combination is the same as the initial momentum; 
for the speed to be one-fifth of the original speed, the mass must be five times the original 
mass, or 15 cars. 
 
 
8.62: The momentum of the convertible must be the south component of the total 
momentum, so 
 

s.m 67.2
kg) (1500

60.0 s)cosm kg 800(
con 


v  

Similarly, the speed of the station wagon is 
 

s.m 46.3
kg) (2000

60.0sin  s)mkg800(
sw 


v  

 
 



8.63: The total momentum must be zero, and the velocity vectors must be three vectors of 
the same magnitude that sum to zero, and hence must form the sides of an equilateral 
triangle. One puck will move 60  north of east and the other will move 60 south of east. 
 
 
8.64: a) xtotCxCBxBAxA vmvmvmvm  , therefore 
 

kg050.0
s)cos60m50.0kg)( (0.030s)m 1.50kg)( 020.0(s)m kg)(0.50 100.0( 

Cxv  

sm75.1Cxv  
 
 
Similarly, 
 

kg 050.0
60s)sin m50.0kg)( 030.0(s)m kg)(0020.0(s)mkg)(0100.0( 

Cyv  

sm 26.0Cyv  
 
     b) 

 
J 092.0]s)m 26.0(s)m 75.1[(kg) 050.0(      

s)m50.0kg)( 030.0(s)m kg)(1.50 020.0(s)m kg)(0.5 100.0(
22

2
1

2
2
12

2
12

2
1



K
 

 
 

8.65: a) To throw the mass sideways, a sideways force must be exerted on the mass, and 
hence a sideways force is exerted on the car. The car is given to remain on track, so some 
other force (the tracks on the car) act to give a net horizontal force of zero on the car, 
which continues at sm 00.5 east. 

     b) If the mass is thrown with backward with a speed of sm 00.5  relative to the initial 
motion of the car, the mass is at rest relative to the ground, and has zero momentum. The 
speed of the car is then  

   s,m 71.5)sm 00.5( kg 175
kg 200  and the car is still moving east. 

 
     c) The combined momentum of the mass and car must be same before and after the 
mass hits the car, so the speed is      

 kg 225
sm 00.6kg 0.25sm 00.5kg 200  =  s,m 78.3 with the car still 

moving east. 
 



8.66:  The total mass of the car is changing, but the speed of the sand as it leaves the car 
is the same as the speed of the car, so there is no change in the velocity of either the car 
or the sand (the sand acquires a downward velocity after it leaves the car, and is stopped 
on the tracks after it leaves the car). Another way of regarding the situation is that exv in 
Equations (8.37), (8.38) and (8.39) is zero, and the car does not accelerate. In any event, 
the speed of the car remains constant at 15.0 m/s. In Exercise 8.24, the rain is given as 
falling vertically, so its velocity relative to the car as it hits the car is not zero. 
 

8.67:   a) The ratio of the kinetic energy of the Nash to that of the Packard is 
  
   .68.12

2

2

2

sm 5kg 1620
sm 9kg 840 

PP

NN

vm
vm  b) The ratio of the momentum of the Nash to that of the 

Packard is 0.933,   )m/s kg)(5 1620(
)m/s kg)(9 (840 

PP

NN
vm
vm  therefore the Packard has the greater magnitude 

of momentum. c) The force necessary to stop an object with momentum P  in time t is  
F  = /P t. Since the Packard has the greater momentum, it will require the greater force 
to stop it. The ratio is the same since the time is the same, therefore   / PN FF  0.933. d) 
By the work-kinetic energy theorem,   F  d

k . Therefore, since the Nash has the greater 
kinetic energy, it will require the greater force to stop it in a given distance. Since the 
distance is the same, the ratio of the forces is the same as that of the kinetic energies, 

  / PN FF  1.68. 
 
 
8.68:   The recoil force is the momentum delivered to each bullet times the rate at which 
the  bullets are fired, 

  ave F N. 36.4  
mins/  60

nbullets/mi 1000 m/s) (293 kg) 1045.7( 3 





   

 
 



8.69:   (This problem involves solving a quadratic. The method presented here formulates 
the answer in terms of the parameters, and avoids intermediate calculations, including 
that of the spring constant.) 
 
      Let the mass of the frame be M  and the mass putty be m.  Denote the distance that the 
frame streteches the spring by x0 , the height above the frame from which the putty is 
dropped as h , and the maximum distance the frame moves from its initial position (with 
the frame attached) as d. 
 

The collision between the putty and the frame is completely inelastic, and the 
common speed after the collision is  . 20 Mm

mghv  After the collision, energy is 
conserved, so that 
 

or  , )((
2
1)()(

2
1 2

0
2

0
2
0 xxdkgdMmvMm   

                          , )((
2
1)()2(

2
1 2

0
2

0
0

2

xxd
x
mggdMmgh

Mm
m




 

 
where the above expression for 0v , and 0xmgk  have been used. In this form, it is seen 
that a factor of g cancels from all terms. After performing the algebra, the quadratic for d 
becomes 

 
which has as its positive  root 

For this situation, m = 4/3 M and h/x0 = 6, so 
 
 d = 0.232 m. 
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8.70: a) After impact, the block-bullet combination has a total mass of 1.00 kg, and the 
speed V of the block is found from .or  ,2

2
12

total2
1 XVkXVM m

k The spring constant k 
is determined from the calibration; m.N300

m 10502
N 75.0

3   .
k  Combining, 

 

  s.m 60.2m100.15
kg 1.00

N/m300 2  V  

b) Although this is not a pendulum, the analysis of the inelastic collision is the same; 
 

  .sm 325sm 60.2
Kg 100.8

Kg 00.1
3

total 


 V
m

Mv  

 
 

8.71: a) Take the original direction of the bullet’s motion to be the x-direction,  
and the direction of recoil to be the y-direction. The components of the stone’s velocity  
after impact are then 
   

  ,sm 0.21sm 350
Kg 0.100

Kg 1000.6 3








 




xv  

 

  ,sm 0.15sm 250
Kg 100.0

Kg 1000.6 3








 




yv  

 

and the stone’s speed is     ,sm 8.25sm 0.15sm 0.21 22   at an angle of arctan 

  .5.350.21
0.15   b)    J  368m/s 350 kg 1000.6 23

2
1

1  K  

  23
2
1

2 m/s 250kg 1000.6 K    ,J 221s/m 8.25kg 100.0 22
2
1  so the collision is 

not perfectly elastic. 
 



8.72: a) The stuntman’s speed before the collision is .s/m 9.920s  gyv  The speed 
after the collision is  
 

  .m/s 3.5m/s 9.9
kg 100.0

kg 0.80
0

vs

s 


 sv
mm

mv  

 
b) Momentum is not conserved during the slide. From the work-energy theorem, the 
distance x is found from or ,totalk

2
total2

1 gxmµvm   
 

 
   .m 7.5

s/m 80.925.02
s/m 28.5

2 2

2

k

2


g

vx


 

 
Note that an extra figure was needed for V in part (b) to avoid roundoff error. 
 
 
8.73: Let v be the speed of the mass released at the rim just before it strikes the second 
mass. Let each object have mass m. 
       Conservation of energy says gRvmgRmv 2  ;2

2
1   

      This is speed 1v for the collision. Let 2v be the speed of the combined object just after 
the collision. Conservation of momentum applied to the collision 
gives 2 2  so 2 1221 gRvvmvmv   
 
      Apply conservation of energy to the motion of the combined object after the collision. 
Let 3y be the final height above the bottom of the bowl. 
 
    3

2
22

1 2 2 gymvm   
 

4/
22

1
2

2
2

3 RgR
gg

vy 





  

     Mechanical energy is lost in the collision, so the final gravitational potential energy is 
less than the initial gravitational potential energy. 
 
 



8.74: Collision: Momentum conservation gives 
 

310

310

3
)3(

vvv
vmmvmv




             (1) 

     Energy Conservation: 
 

 
2
3

2
1

2
0

2
3

2
1

2
0

3

3
2
1

2
1

2
1

vvv

vmmvmv




          (2) 

 
Solve  (1) and (2) for sm50.2: 33 vv  
    Energy conservation after collision: 
 

       θglmghmvm cos1333
2
1 2

3   

 
Solve for  68.8:θθ  
 
 

8.75: First consider the motion after the collision.  The combined object has mass 
totm 25.0 kg. Apply aF 

m  to the object at the top of the circular loop, where the 
object has speed 3v . 

R
vmmgT

2
3  

     The minimum speed 3v  for the object not to fall out of the circle is given by setting 

0T . This gives ,3 Rgv  where m. 3.50R  
 
     Next, use conservation of energy with point 2 at the bottom of the loop and point 3 at 
the top of the loop. Take 0y  at the point 2. Only gravity does work, so 
 
     3322 UKUK   
      Rgmvmvm 2tot

2
3tot2

12
2tot2

1   

      Use Rgv 3  and solve for sm 13.15: 22  gRvv  
      Now apply conservation of momentum to the collision between the dart and the 
sphere. Let 1v  be the speed of the dart before the collision. 
          sm 1.13kg 0.25kg 00.5 1 v  
      sm 5.651v  
 
 



8.76: Just after the collision:   maF  

 

    

sm0.16
m 35.1

kg 00.8sm80.9kg 00.8N1600

8

2
82

2
8

88







v

v
R
vmgmT

 

 
 

Energy and momentum are conserved during the elastic collision. 
 

      

      
(2)                                  sm1024

sm0.16kg 00.8kg 00.2kg 00.2
2
1

2
1

2
1

(1)                                       sm0.64
sm 0.16kg 00.8kg 00.2kg 00.2

222
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2
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2
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2
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vmvmvm

vv
vv
vmvmvm

 

Solve (1) and  (2) for sm0.40: 00 vv  
 
 
8.77:  a) The coefficient of friction, from either force or energy consideration, is 

,22
k gsvµ  where v  is the speed of the block after the bullet passes through. The speed 

of the block is determined from the momentum lost by the bullet, 
   s,mkg 12.1sm280kg1000.4 3   and so the coefficient of kinetic friction is 
 

  
   .22.0

m45.0sm 80.92
)kg 80.0(sm kg 12.1

2

2

k 


µ  

 
b)        J.  291sm120sm 400kg1000.4 22 3

2
1     c) From the calculation of the 

momentum in part  (a), the block’s initial kinetic energy was .J 784.0kg) 80.0(2
)smkg 12.1(

2

22

 
m

p  
 
 



8.78: The speed of the block after the bullet has passed through (but before the block has 
begun to rise; this assumes a large force applied over a short time, a situation 
characteristic of bullets) is 
 

m/s. 297.0m) 10  45.0)(m/s 80.9(22 22  gyV  
 
The final speed v of the bullet is then 
 

m/s, 390.6m/s) 297.0(
kg10  5.00

kg 1.00  m/s 450  3

0
0













V
m
Mv

m
MVmv

m
pv

 

or 390 m/s to two figures. 
 
 
8.79:   a )  Using the notation of Eq. ( 8.24 ),  
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b) Of the many ways to do this calculation, the most direct way is to differentiate the 
expression of part (a) with respect to M and set equal to zero; 

.
2)(0

)(
2

)(
10

or ,
)(

)K4(0

32

20

Mm
MMm

Mm
M

Mm

Mm
M

dM
dm






















 

 
c) From Eq.(8.24), with 0;   ,  ABA vmmm  the neutron has lost all of its kinetic 
energy. 
 
 



8.80: a) From the derivation in Sec. 8.4 of the text we have 
 

BA

A
B0

BA 

BA
A

2
    and 

 
 

MM
MVV
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The ratio of the kinetic energies of the two particles after the collision is 
 

BA

2
BA

BA

BA

2
BA

2

A

BA
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      b)  i) For ;0, ABA  KEMM  i.e., the two objects simply exchange kinetic energies. 
 

ii)               ,5 For BA MM   

5
4

))(5(4
)4(

BB

2
B

B

A 
MM

M
KE
KE  

i.e., AM gets 4/9 or 44% of the total. 
 
      c)  We want 
 

BA

2
BBA

2
A

BA

2
BA

B

A

4
2

4
)(

1
MM

MMMM
MM
MM

KE
KE 




  

 
which reduces to  
 

,06 2
BBA

2
A  MMMM  

 
from which, using the quadratic formula, we get the two possibilities  BA  83.5 MM  and 
 

B.A  172.0 MM   
 



8.81: a) Apply conservation of energy to the motion of the package from point 1 as it 
leaves the chute to point 2 just before it lands in the cart. Take y = 0 at point 2, so y1 = 
4.00 m. Only gravity does work, so 
 

2
22

1
1

2
12

1

2211

mvmgymv
UKUK




 

m/s 35.92 1
2
12  gyvv  

 
     b) In the collision between the package and the cart momentum is conserved in the 
horizontal direction. (But not in the vertical direction, due to the vertical force the floor 
exerts on the cart.) Take +x  to be to the right. Let A be the package and B be the cart. 
 
     Px is constant gives 
     xBAxBBxAa vMmvmvm 211 )(   
     m/s 00.51 xBv  
     ( 37.0 cos m/s) 00.3(1

xAv The horizontal velocity of the package is constant during 
its free-fall.) 
      Solving for xv2  gives m/s. 29.32 xv The cart is moving to the left at 3.29 m/s after 
the package lands in it. 
 
 

8.82: Even though one of the masses is not known, the analysis of Section (8.4) leading 
to Eq. (8.26) is still valid, and  m/s. 0.250  m/s 0.050  m/s 200.0red v   b) The mass 

redm  may be found from either energy or momentum considerations. From momentum 
conservation, 

kg. 024.0
m/s) (0.250

m/s) 050.0 m/s kg)(0.200 040.0(
red 


m  

As a check, note that 
 

collision. elasticperfectly  afor must it  as , so
J,  10 0.8m/s) kg)(0.250 024.0(m/s) kg)(0.050 040.0(

and J,  10 0.8m/s) kg)(0.200 040.0(
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8.83: a) In terms of the primed coordinates, 
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with a similar expression for .2

Bv  The total kinetic energy is then 
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The last term in brackets can be expressed as 

,)  (2 cmvvv 
 BBAA mm  

and the term 
cm)m  (    vvvvv 

BABBAABBAA mmmmm   
         ,0  

 
     and so the term in square brackets in the expression for the kinetic energy vanishes, 
showing the desired result.   b) In any collision for which other forces may be neglected 
the velocity of the center of mass does not change, and the 2

cm2
1 Mv  in the kinetic energy 

will not change. The other terms can be zero (for a perfectly inelastic collision, which is 
not likely), but never negative, so the minimum possible kinetic energy is .2

cm2
1 Mv  

 
 
8.84: a) The relative speed of approach before the collision is the relative speed at which 
the balls separate after the collision. Before the collision, they are approaching with 
relative speed 2 v , and so after the collision they are receding with speed 2v . In the limit 
that  the larger ball has the much larger mass, its speed after the collision will be 
unchanged (the limit as BA mm  in Eq. (8.24)), and so the small ball will move upward 
with speed 3 v .  b) With three times the speed, the ball will rebound to a height time 
times greater than the initial height. 
 
 



8.85: a) If the crate had final speed v , J&J have speed 4.00 vsm  relative to the ice, 
and so  ).m/skg)(4.00 20.01(kg) 0.15( vv  Solving for .sm56.3, kg) 0.135(

s)m (4.00 kg) 0.120( vv  

b) After Jack jumps, the speed of the crate is ,sm222.2)sm00.4(kg) (135.0
kg) 0.75(   and the 

momentum of Jill and the crate is smkg 3.133  . After Jill jumps, the crate has a speed v  
and Jill has speed 4.00 ,sm v  and so 

 v)kg 0.15(smkg 3.133  ),sm 00.4kg)( 0.45( v and solving for v  gives 
s.m 22.5v   c) Repeating the calculation for part (b) with Jill jumping first gives a final 

speed of s.m 67.4  
 
 



8.86: (a) For momentum to be conserved, the two fragments must depart in opposite 
directions. We can thus write 

BBAA VMVM   

Since ,BA MMM  we have 
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Then for the ratio of the kinetic energies 
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The ratio of the KE’s is simply the inverse ratio of the masses. 
From the two equations 

QKEKEKE
M
MKE  BAB

A

B
A   and  

We can solve for BKE to find 

BA

A
B

BA

A
BA

A

B1

1

MM
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MM
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     (b) If AAB then ,4 MMM   will get 4 times as much KE as ,BM or 80% of Q for 
AM and 20% for .BM  

 
 



8.87:   Let the proton be moving in the + x -direction with speed pv  after the decay.  The 
initial momentum of the neutron is zero, so to conserve momentum the electron must be 
moving in the x -direction after the collision; let its speed be .ev  
      xP  is  constant gives 0 = eevm  +  .ppvm  
     ev  = ( ep mm ) v  – p  

 The total kinetic energy after decay is totK  = 2
2
1

eevm + 2
2
1

ppvm . Using the 

momentum equation to replace ev  gives totK  = 2
2
1

ppvm ( 1+ ).ep mm  

 

%  0544.010  5.44
1836

1
1

1   Thus  4

ptot




 

e

p

mmK
K

8.88: The ratios that appear in Eq. ( 8.42 ) are  ,and 1.0176
1

0176.1
0176.0 so the kinetic energies are 

a) J.10  6.43  J)1054.6( b) and J10  1.13  J)1054.6( 1313
1.0176

1 1413
0176.1
0176.0   -  

Note that the energies do not add to J1054.6 13 exactly, due to roundoff. 
 
8.89: The “missing momentum” is 
 
    smkg 10  5.60 22    325 10 kg)(1.141050.3(    m/s smkg1061.1) 22    . 
 
Since the electron has momentum to the right, the neutrino’s momentum must be to the 
left. 
 
 



8.90:  a )  For the -y and -x directions, respectively, and m as the common mass of a 
proton, 
 

βmvmvmv AA coscos 221    
           0 = sin2Amv βmvB sin2  

 
or 
 

1Av  = 2Av coscos 2Bv β  
    0 = sin2Av βvB sin2 . 

 
b ) After minor algebra, 
 
 

 
).cos(2      

sin  sin   cos  cos2

22
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βvvvv
βvvvvv

BABA

BABAA








 

 
c ) For a perfectly elastic collision, 
 

2
2

2
2

2
1 2

1
2
1

2
1

BAA mvmvmv   or .2
2

2
2

2
1 BAA vvv   

 
Substitution into the above result gives d) 0.)cos(   The only positive angle with 
zero cosine is ).90(2 π  
 
 
8.91: See Problem 8.90. Puck B moves at an angle 65.0 )652590 i.e.(   from the 
original direction of puck A’s motion, and from conservation of momentum in the 

-y direction, .466.0 22 AB vv   Substituting this into the expression for conservation of 
momentum in the x direction, sm 6.13)65cos466.00.25(cos12  

AA vv , and so 
34.62 Bv  m/s. 

     As an alternative, a coordinate system may be used with axes along the final directions 
of motion (from Problem 8.90, these directions are known to be perpendicular). The 
initial direction of the puck’s motion is  0.25 from the final direction, so 

,0.65cos and0.25cos 1212 ABAA vvvv  giving the same results. 
 
 



8.92: Since mass is proportional to weight, the given weights may be used in determining 
velocities from conservation of momentum. Taking the positive direction to the left, 

sm 105.0
N 1000

36.9 cos m/s) N)(7.00 600(30.0 cos m/s) N)(5.00 800(







v  

 
 
8.93: a )  From symmetry, the center of mass is on the vertical axis, a distance 

)2cos()2( L from the apex.   b) The center of mass is on the (vertical) axis of 
symmetry, a distance 33/)2/(2 LL   from the center of the bottom of the    . c) Using 
the wire frame as a coordinate system, the coordinates of the center of mass are equal, 
and each is equal to .42/)2( LL   The distance of this point from the corner is 
  .)353.0(81 LL  This may also be found from consideration of the situation of part 
a),( with  45  d ) By symmetry, the center of mass is in the center of the equilateral 

triangle, a distance LLL )289.0(12)60)(tan2(  above the center of the base. 
 
 
8.94: The trick here is to notice that the final configuration is the same as if the canoe 
( assumed symmetrical ) has been rotated about its center of mass. Intially, the center of 
mass is a distance m 643.0kg) (105

m) (1.5 kg) 0.45(   from the center of the canoe, so in rotating about 
this point the center of the canoe would move m. 1.29 m 643.02   
 
 
8.95: Neglecting friction, the total momentum is zero, and your speed will be one-fifth of 
the slab’s speed, or 0.40  s./m  
 
 



8.96: The trick here is to realize that the center of mass will continue to move in the 
original parabolic trajectory, “landing” at the position of the original range of the 
projectile. Since the explosion takes place at the highest point of the trajectory, and one 
fragment is given to have zero speed after the explosion, neither fragment has a vertical 
component of velocity immediately after the explosion, and the second fragment has 
twice the velocity the projectile had before the explosion. a) The fragments land at 
positions symmetric about the original target point. Since one lands at ,2

1 R  the other 
lands at  

m. 848120sin
)s/m 80.9(

)s/m 80(
2
32sin

2
3

2
3

2

2

0

2
0  

g
vR  

 
b) In terms of the mass m  of the original fragment and the speed v  before the explosion, 

2
1

1 K .  so,)2( and 2
2
12

2
1222

22
1

2
2 mvmvmvKmvvKmv m   The speed v  is related 

to ,cosby  000  vvv so 
 

J.1060.1)0.60cos)m/s80)(kg0.20(
2
1cos

2
1  42

0
22

0  mvK  

  
 



8.97: Apply conservation of energy to the explosion. Just before the explosion the sheel 
is at its maximum height and has zero kinetic energy. Let A  be the piece with mass 1.40 
kg and B be the piece with mass 0.28 kg. Let Av  and Bv  be the speeds of the two pieces 
immediately after the collision. 
 
 J 8602

2
12

2
1  BBAA vmvm  

 
Since the two fragments reach the ground at the same time, their velocitues just 

after the explosion must be horizontal. The initial momentum of the shell before the 
explosion is zero, so after the explosion the pieces must be moving in opposite horizontal 
directions and have equal magnitude of momentum: .BBAA vmvm   
 
     Use this to eliminate :for  solve andequation first  in the BA vv  

     
m/s.  3.14)(Then 

m/s.  6.71 and J 860)/1(2
2
1




BABA

BABBB

vmmv
vmmvm

 

 
     b) Use the vertical motion from the maximum height to the ground to find the time it 
takes the pieces to fall to the ground after the explosion. Take + y  downward. 

     
s. 4.04 tgives 

?  m, 0.80 ,m/s  80.9,0
2

2
1

00

0
2

0





tatvyy

tyyav

yy

yy  

     During this time the horizontal distance each piece moves is 
    m. 1.289 and m 8.57  tvxtvx BBAA  
     They move in opposite directions, so they are m 347 BA xx apart when they land. 
 
 



8.98: The two fragments are 3.00 kg and 9.00 kg. Time to reach maximum height = time 
to fall back to the ground. 

 

s. 5.12
sm 8.90.55sin)sm 150(0

sin
2

09







t
t

gtvv

 

    
     The heavier fragment travels back to its starting point, so it reversed its velocity. 

 86.0  55 cos )sm (150   cos0  vvx  sm to the left after the explosion; this is .9v Now 
get 3v  using momentum conversation. 

       
sm602

sm0.86kg00.9kg 00.3sm0.86kg 12

3

3

99330






v
v
vmvmMv

 

)5.12)(sm602()s 5.12)(sm 0.86(explosionAfter explosion Before  3  xxx  

launched it was  wherefrom m86003 x  
Energy released = Energy after explosion – Energy before explosion 
 

   

J 1033.5

)sm 0.86)(kg 0.12(
2
1      

)sm 0.86)(kg 00.9(
2
1)sm 602)(kg 00.3(

2
1

)(
2
1m

2
1m

2
1

5

2

22

2
993

2
99

2
33







 vmmvv

 

 



8.99:   The information is not sufficient to use conservation of energy. Denote the emitted 
neutron that moves in the -y direction by the subscript 1 and the emitted neutron that 
moves in the –y-direction by the subscript 2. Using conservation of momentum in the x- 
and y-directions, neglecting the common factor of the mass of neutron, 
 

.30sin  45sin  10)sin 32(0
30 cos45 cos 10 cos)32(

210

2100




vvv
vvvv

 

 
With  45 cos45 sin , these two relations may be subtracted to eliminate ,1v  and 
rearrangement gives  
 

),30sin 30 cos()10)sin 32( 10 cos )32(1( 20  vv  
 

from which 2v  sm101.0or  sm1001.1 33  to two figures. Substitution of this into 
either of the momentum relations gives s.m 2211 v  All that is known is that there is no 

-z component of momentum, and so only the ratio of the speeds can be determined. The 
ratio is the inverse of the ratio of the masses, so BaKr )5.1( vv  . 
 
 

8.100: a) With block B initially at rest, 1cm Amm
m vv

BA

A
 .  b) Since there is no net external 

force, the center of mass moves with constant velocity, and so a frame that moves with 
the center of mass is an inertial reference frame. c) The velocities have only x -
components, and the x -components are 

1cm11cm11 , Amm
m

BAmm
m

AA uvuvvvu
BA

A

BA

B
  . Then, 011cm  BBAA umumP . 

d) Since there is zero momentum in the center-of-mass frame before the collision, there 
can be no momentum after the collision; the momentum of each block after the collision 
must be reversed in direction. The only way to conserve kinetic energy is if the 

momentum of each has the same magnitude so in the center-of-mass frame, the blocks 
change direction but have the same speeds.  Symbolically, 1212  , BBAA uuuu  . e) The 
velocities all have only x –components; these components are 

.4 s,m00.2 s,m 4.00sm 00.6 s,m00.2sm 00.6 22600.0
400.0

1600.0
200.0

1  BABA uuuu
and s.m 00.8s,m 00.2 22  BA vv  and  Equation (8.24) predicts 13

1
2 AA vv   and Eq. 

(8.25) predicts 13
4

2 AB uv  , which are in agreement with the above. 
 
 



8.101: a) If the objects stick together, their relative speed is zero and 0 .  b) From Eq. 
(8.27), the relative speeds are the same, and 1 .  c) Neglecting air resistance, the 
speeds before and after the collision are gh2  and 12gH , and 

gh
gH

2
2 1    = hH1 . d) 

From part (c),      m. 0.87  m 1.2 0.85    22
1  hH e) 2

 1     kk HH , and by induction 

.  2 hH n
n   f)     cm. 8.9  85.0 m 2.1 16   

 
 
 

8.102: a) The decrease in potential energy  0    means that the kinetic energy 
increases. In the center of mass frame of two hydrogen atoms, the net momentum is 
necessarily zero and after the atoms combine and have a common velocity, that velocity 
must have zero magnitude, a situation precluded by the necessarily positive kinetic 
energy. b) The initial momentum is zero before the collision, and must be zero after the 
collision. Denote the common initial speed as 0v , the final speed of the hydrogen atom as 
v , the final speed of the hydrogen molecule as V , the common mass of the hydrogen 
atoms as m  and the mass of the hydrogen molecules as 2 m . After the collision, the two 
particles must be moving in opposite directions, and so to conserve momentum, Vv 2   . 
From conservation of energy, 
 

  2
02

122 3  
2
1    2

2
1 mvmvVm   

                               2
02

322   2    mvmVmV   

 
m

v
V

3
  

2
  

2
02 
 , 

 
from which   m/s, 10  203.1  4V or 1.20   410  m/s to two figures and the hydrogen atom 
speed is 410  2.41  v  m/s. 
 
8.103: a) The wagon, after coming down the hill, will have speed sin  2gL  = 10 m/s. 
After the “collision”, the speed is    m/s, 6.9  m/s 10 kg 435

kg 300  and in the 5.0 s, the wagon 
will not reach the edge. b) The “collision” is completely inelastic, and kinetic energy is 
not conserved. The change in kinetic energy is 
      J, 4769  m/s 10kg 300m/s 6.9kg 435 2

2
12

2
1   so about 4800 J is lost. 
 
 



8.104: a) Including the extra force, Eq.  37.8  becomes 
 

,    ex mg
dt
dmv

dt
dvm   

where the positive direction is taken upwards (usually a sign of good planning). b) Diving 
by a factor of the mass ,m  
 

.        ex g
dt
dm

m
v

dt
dva   

 
c) 20 .sm 2.10  sm 80.9  sm 222   d) 3327 sm    ,skm 2.45   90 )m/s(9.80 2   which 
is about three-fourths the speed found in Example 8.17. 
 
 
8.105: a) From Eq.       .37.1  ln   ,40.8 exkg 3,300

kg 13,000
ex vvv   

b)     .1.18  000,4/000,13ln exex vv   
c)       .38.2300/1000In18.1 exexex vvv   d) Setting the result of part (c) equal to 

7.00 km/s and solving for exv  gives .km/s 94.2ex v  
 
 
8.106: a)  There are two contribution to 

  .or |,|||, exnetexnetnet dtdmvvFdtdmvdtdmvFF   
b)   sm 66.8s)kg 150(N 1300|/|/net dtdmF = 31 km/h. This equal to 

.ex vv   
 
 



8.107: a)  For 0t  the rocket is at rest. For  t0  90 s, Eq.  40.8  is valid, and 
       .s120/11lnsm 2400 ttv   At 90t s, this speed is 3.33 km/s, and this is also 

the speed for .s 90t  
 

 
 
    b) The acceleration is zero for 90 and 0  tt  s. For 900  t  s, Eq. (8.39) gives, 
with   s 120/1

m/s 20
0

2 s, 120 tdt
dm am  . 

 
 

 
    c) The maximum acceleration occurs at the latest time of firing, 90t  s, at which time 
the acceleration is, from the result of part (a),  

2
120/901

m/s 20 m/s 802  , and so the astronaut is 
subject to a force of 6.0 kN, about eight times her weight on earth. 
 
 



8.108: The impulse applied to the cake is mvmgtµJ  k1 , where m is the mass of the 
cake and v is its speed after the impulse is applied. The distance d that the cake moves 
during this time is then .2

1k2
1 gtd   While sliding on the table, the cake must lose its 

kinetic energy to friction, or   .2
2
1

2k mvdrmg  Simplification and substitution for v 

gives 2
2
1

2k

2
1k tgdr µ

µ , substituting for d in terms of 2t  gives 
 

 ,
2
1

2
1

2k1k
2k

1k2

2k

2
1k

1k
2 





 








 gtgtr  

which gives t = 0.59 s. 
 
 
8.109: a) Noting than dxdm L

M  avoids the intermediate variable ρ . Then, 
 

2
1

0

Ldx
L
Mx

M
x

L

cm   . 

 
b) In this case, the mass M may be found in terms of ρ  and L, specifically by using  

AdxAdxdm    to find that 2 2LAxdxAM   . Then, 
 

.
3

2
3

22 3

20

2
2cm

LL
AL

dxAx
AL

x
L







   

 
 
8.110: By symmetry, 0cmx . Using plane polar coordinates leads to an easier 

integration, and using the Theorem of Pappus   3
3
4

2cm ππ2
2

ay a   is easiest of all, but the 
method of Problem 8.109 involves Cartesian coordinates. 
 

For the x-coordinate, dxxatdm 22   , which is an even function of x, so 

  .0 dxx  For the y-coordinate, dyyaρtdm 222  , and the range of integration is 
from 0 to a, so 
 

 
a

dyyay
M
ρty

0

22
cm .,2  

 
Making the substitutions ,2 , ,π 222

2
1 yduyautaρM   and 

π3
4

π3
4

π
2

0

2
3

2
2
1

2cm
2

2

au
a

duu
a

y
a

o

a












  . 

 
 



8.111: a) The tension in the rope at the point where it is suspended from the table is 
 gxT  , where x is the length of rope over the edge, hanging vertically. In raising the 

rope a distance dx , the work done is     .negative is dxdxxg   The total work done 
is then 
 

    .
322

 
2

4/
0

20

4/

glxgdxxg l

l

    

 
   b) The center of mass of the hanging piece is initially a distance l/8 below the top of the 
table, and the hanging weight is   4/lg , so the work required to raise the rope is 
      ,32/8/4/ 2glllg    as before. 
 
 

8.112: a) For constant acceleration a, the downward velocity is v at and the distance x 
that the drop has fallen is .2

2
1 atx   Substitution into the differential equation gives 

 

  22222

2
3

2
1

2
1 taataatgat  , 

 
the non-zero solution of which is .3

ga   
 

   b)    .m 7.14s 00.3
3
m/s 9.80

2
1

2
1 2

2
2 








at  

   c)     .g 4.29m 7.14g/m 00.2 kx  
 



9.1:  a)                    .34.4rad 60.0
m 502
m 50.1


.

 

 

b) cm. 27.6
)180rad)((128

cm) 0.14(


 π
 

     
c) m. 1.05rad) m)(0.70 50.1(   
 

 

9.2: a)          s.rad 199
s 60

min 1 
rev

rad 2  
min
rev 1900 




















 π  

    b)  s. 10  3.07s)rad 199()180rad   (35 3   
 
 

9.3:   a)  .srad 42   s, 3.5at  so , )srad (12.0    23  αtt
dt

dωα z
z The angular acceleration 

is proportional to the time, so the average angular acceleration between any two times is 
the arithmetic average of the angular accelerations.  b) ,)srad (6.0 23 tωz   so at  

s.rad 73.5  s, 3.5   zωt  The angular velocity is not linear function of time, so the 
average angular velocity is not the arithmetic average or the angular velocity at the 
midpoint of the interval. 
 
 
9.4:     a)  .)srad 60.1( 2t)( 3 tβtα dt

dω
z

z   
 
    b)   .srad 4.80s) 0.3)(srad 60.1( s) 0.3( 23 zα  
 

,srad 40.2
s 0.3

srad 00.5 srad 20.2
s 0.3

)0(  s) 0.3( 2.
av 







ωωα z  

which is half as large (in magnitude) as the acceleration at s. 3.0t   
 
 
9.5:  a) 232 )srad (0.036  s)rad 400.0(3   tβtγωz    b)  γωt z ,0At  

s.rad70.0 so rad,  3.50s,rad3.1 s, 5.00Atc)  s.rad400.0 s5.00
rad50.3

av   zz ωθω t  
The acceleration is not constant, but increasing, so the angular velocity is larger than the 
average angular velocity. 
 
 



9.6:   )srad 0.40( ,)srad 50.4()srad 0.40(s)rad 250( 2
z

232 αttωz     
at which   timepositiveonly   the;in  quadratic ain  results 0 Setting a)  .)srad00.9( 3 tωt z   

  rev. 93.3rad 586 s, 4.23At  )c
.srad 78.1 s, 4.23At b) s.4.23 is 0 2




θt
αttω zz  

s.rad138 e)  s.rad250 0,At   d) s 4.23
rad586

av   zz ωωt  
 
9.7:  a) .,0 Setting b)  .62 and 32 3

2
c

b
zdt

dw
zdt

dθ
z tαctbαctbtω z   

 
 
9.8: (a) The angular acceleration is positive, since the angular velocity increases steadily 
from a negative value to a positive value. 
 
   (b) The angular acceleration is 
 

20 srad 00.2
s 00.7

s)rad 00.6(srad 00.8








t
ωωα  

 
   Thus it takes 3.00 seconds for the wheel to stop )0( zω . During this time its speed is 
decreasing. For the next 4.00 s its speed is increasing from srad 8.00  tosrad 0  . 
   (c) We have 

rad. 7.00  rad 49.0 rad 0.42
s) (7.00 )srad 00.2(s) (7.00 s)rad 00.6(0 22

2
1

2
2
1

00





 ttθ

 

Alternatively, the average angular velocity is 
 

srad 00.1
2

srad 00.8srad 00.6


  

Which leads to displacement of 7.00 rad after 7.00 s. 
 
 
9.9:  a) ? s, 30.0  s,rev 8.333minrev 500 rev, 200 00  ωtωθω  

          rpm 300srev 5.00 gives  
2

0
0 






 

 ωtωωθθ  

b) Use the information in part (a) to find :α   

rev 312 gives  
2

and  75.0 gives 
? s,rev  333.8 ,srev 1111.0 0,Then 

srev 1111.0 gives 

0
0

0

0

0
2

2
0







 








tωωθθ

tαtωω
tωω

αtωω

 

 



9.10: a) s.rad  25.2)s 50.2)(srad 300.0(srad  50.1 2
0  tαωω zzz  

    rad. 69.4)s 50.2)(srad 300.0()s 50.2)(srad 50.1( 21t b) 22
2
12

0  tαωθ zz  
 
 

9.11: a) 
 

.
s
rev 25.1

)s 00.4(
)minrev 500minrev 200(

2
s 60

min 1




 

The number of revolutions is the average angular velocity, min,rev 350 times the time 
interval of 0.067 min, or 23.33 rev. b) The angular velocity will decrease by another 

minrev 200 in a time s. 67.22srev 25.1
1

mins 60
minrev 200   

 
 
9.12:  a) Solving Eq. (9.7) for t gives .0

z

zz
α

ωωt   

Rewriting Eq. (9.11) as )( 2
1

00 tαωtθθ zz   and substituting for t gives 

),(
2
1

2
)(1

)(
2
1

0
22

0
0

00
0

0

zz

zz
zz

zzz
z

zz

ωω

ωωωω

ωωω
α

ωωθθ









 









 






 





 

which when rearranged gives Eq. (9.12). 
 
    b)              222

0
2 srad 0.12srad 0.16 rad) 00.7(1 21121 zzz ωωθα  

.srad8 2  
 
 
9.13: a)  From Eq.  ,7.9  with s. 0.24 ,0 2srad 50.1

srad 0.36
0   z

zω
z tω  

   b ) From Eq.  ,12.9  with rev. 8.68rad 432,0 2

2

srad) 50.1(2
s)rad 0.36(

00  θ θω z  

 
 
9.14:  a) The average angular velocity is s,rad 5.40s 4.00

rad 162   and so the initial angular 
velocity is s.rad 27 ,2 0z02av  ωωωω zzz  

   b)  .srad8.33
s4.00

)srad27(srad108 2







t

ωα z
z  

 
 



9.15:  From Eq. (9.11), 

s.rad5.10
2

s)00.4)(srad(2.25
s4.00

rad0.60
2

2
0

0 



tα

t
θθω z

z  

 
 
9.16:  From Eq. (9.7), with   2

s00.6
srad140

0 srad33.23 ,0 t
ω

zz
zαω The angle is most 

easily found from rad.420s)s)(6.00rad70(zav   tωθ  
 
 
9.17:  From Eq. (9.12), with  ,0zω the number of revolutions is proportional to the 
square of the initial  angular velocity, so tripling the initial angular velocity increases the 
number of revolutions by 9, to 9.0 rev. 
 
 



9.18: The following table gives the revolutions and the angle θ  through which the wheel 
has rotated for each instant in time and each of the three situations: 
 
 
 

θθ θt       srev'
)c(      

        srev'
)b(        

    srev'
)a(          

 
0.05     0.50   180        0.03     11.3     0.44   158 

 
0.10     1.00   360        0.13     45        0.75   270 

 
0.15     1.50   540        0.28   101        0.94   338 

 
0.20     2.00   720         0.50  180        1.00   360 
–––––––––––––––––––––––––––––––––––––– 

 
The θ and zω graphs are as follows: 
 
   a)  

 
 
   b) 

 
 
   c) 



9.19: a) Before the circuit breaker trips, the angle through which the wheel turned was 
1082s) (2.00 )srad (30.0s) (2.00 )srad 0.24( 22  rad, so the total angle is 

rad. 540rad 432rad 108   b) The angular velocity when the circuit breaker trips is 
     s,rad 84s 00.2srad 0.30srad 0.24 2  so the average angular velocity while the 
wheel is slowing is s,rad 0.42  and the time to slow to a stop is  s, 3.10srad 42.0

rad 432  so the 
time when the wheel stops is s 3.12 . c) Of the  many ways to find the angular 
acceleration, the most direct is to use the intermediate calculation of part (b) to find that 
while slowing down  zω  srad 84 so .srad 17.8 2

s 3.10
srad 84  

z  
 
 
9.20: a) Equation (9.7) is solved for ,0 tαωω zzz  which gives ,2zave tωω zα

z   or 

.2
2
1

0 tαtωθθ zz    b)   .srad 125.02 2
2  

t
θ

t
ωz  c)  s.rad 5.5 tαω zz  

 
 
9.21: The horizontal component of velocity is rω , so the magnitude of the velocity is 
     
    a) 47.1 m/s 
 

    b) m/s. 3.47)m/s 0.4(
rev/min

rad/s
30

 )min/rev 90m)( 0.5( 2
2















 π  

 
 
9.22: a)  m 10 0.25

sm 25.1
3 50.0 srad , 55.21

 10 58.0
m 25.1

3 
srad , or 21.6 srad  to three figures. 

 
    b) (1.25 sm ) (74.0 min) (60 min)s = 5.55 km. 
 
    c) z  

min)s (60 min) 0.74(
srad 55.21srad 0.50  6.41 310 .srad 2  

 
 
9.23: a)  2rω 2)srad 00.6(  )m 500.0(  18 .sm 2  
 
   b)  ωrv )srad 00.6( )m 500.0( sm 00.3 , and  r

v2 )m 500.0(
)sm 00.3( 2

.sm 18 2  
 
 



9.24: From rada ,2rω  

           
r
aω 




 m1050.2
sm 80.9000,400

 2

2

 1025.1 4 s,rad  

which is )srad 10  25.1( 4    20.1s 60min 1
rad 2rev 1 π min.rev 10  5   

  
 
9.25: a)     sm 180.0  m 300.0 srad 600.0    ,0 22

tan rad  αraa  so and  .sm 180.0  2a  
so rad, b) 3

πθ       .sm 377.0  m 0.300 rad 3 srad 600.02   222
 rad  πrωa  

 
 
The tangential acceleration is still  ,sm 180.0 2 and so on 

    .sm 418.0 sm 377.0 sm 180.0 222 22 a  
   c) tan

22
 rad  since ,sm 775.0   and ,sm 754.0  ,120 of anglean For  aaa  is 

still 2m/s180.0  
 
 
9.26:    srev 430.0  s 200.0 srev 900.0 srev 250.0       a) 2

0z  tαωω zz  
(note that since zω0  and zα  are given in terms of revolutions, it’s not necessary to 
convert to radians).  rev 0.068(0.2s) s)rev 340.0( b) zav  tω .  c) Here, the conversion 
to radians must be made to use Eq. (9.13), and 

  s.m 01.1revrad  2 rev/s 0.430 
2

m 750.0







 πrωv  

 
   d) Combining equations (9.14) and (9.15), 
 


.sm 46.3

  m)) rev)(0.375rad2 srev 900.0(())m 375.0(rev)rad2 srev 430.0[((

)()(

2

2222

222
tan

2
rad

2

2
1







ππ

αrrωaaa

 

 

9.27:     cm, 7.10
 min)rev 5000(

)sm 80.9)(3000(    2

minrev
srad

30

2

2
rad 

ω
ar  

 
so the diameter is more than 12.7 cm, contrary to the claim. 
 
 



9.28: a) Combining Equations (9.13) and (9.15), 
 

.      22
 rad ωv

ω
vωrωa 





  

b) From the result of part (a), .srad 250.0      sm 00.2
sm 500.0rad  v

aω  
 
 
9.29: a)    .sm 831.0     )minrev 1250(  2

m107.12
minrev

srad
30

3


πωr  

    b) .sm 109    2
2)m 107.12(

)sm 831.0(
3

22
 r

v  

 
 
9.30: a) 2

m 200.0
sm 0.10 srad 0.50      

2
tan  
r

aα   b) At   sm 0.50   s, 00.3   vt and 

srad 250     200.0
sm 0.50  r

vω  and  at ,0 t  )sm 0.10( sm 0.50  2v  
,sm 80.0  s) 00.30(  so .srad 400  ω   c)  s) 00.3)(srad 325(  av tω e  

rev. 155  rad 975    d) .sm 40.1  m) 200.0)(sm (9.80     2
rad  rav  This speed will 

be reached at time s 86.7  at or  s, 00.3  after  s 86.4  sm 0.10
sm 40.1sm 0.50  tt . (There are many 

equivalent ways to do this calculation.) 
 
 
9.31: (a) For a given radius and mass, the force is proportional to the square of the 
angular velocity;   29.2  

2

minrev 423
minrev 640   (note that conversion to srad  is not necessary for this 

part).  b) For a given radius, the tangential speed is proportional to the angular velocity; 
51.1  423

640   (again conversion of the units of angular speed is not necessary).   

    c)  (640    sm 15.7or  s,m 75.15  )minrev 2
m 0.470

minrev
srad

30 π  to three figures, and 

. 108sm 1006.1 23
)2m 470.0(

s)m 75.15(
rad

22 ga r
v   

 
 
9.32: (a)     Rωv   T   

 cm 09.5  2  
cm 55.2  

rev 1
 2 

s 60
min 1 

min
 5.7   scm 00.2




























RD
R

radπrevR

 

     b)      Rαa   T   

        2
2

T srad 7.15  
m 0255.0
sm 400.0 

R
aα  

 
 



9.33:  The angular velocity of the rear wheel is s.rad 15.15
m 330.0
sm 00.5r

r 
r
vω  

The angular velocity of the front wheel is srad 3.77srev 600.0f ω  
Points on the chain all move at the same speed, so ffrr ωrωr   

  cm 99.2rfrr  ωωrr  
 
 
9.34: The distances of the masses from the axis are ,and , 4

3
44

LLL  and so from Eq.  ,16.9  
the moment of inertia is 

.
16
11

4
3

44
2

222

mLLmLmLmI 



















  

 
 
9.35: The moment of inertia of the cylinder is 12

2LM  and that of each cap is ,4
2Lm  so the 

moment of inertia of the combination is   .2
212 LmM   

 
 
9.36: Since the rod is 500 times as long as it is wide, it can be considered slender. 
a) From Table   ,a2.9  
 

    .mkg1088.7m 50.1 kg 042.0
12
1

12
1 2322  MLI  

 
b) From Table   ,b2.9  
 

    .mkg 1015.3m 50.1 kg 042.0
3
1

3
1 2222  MLI  

 
c) For this slender rod, the moment of inertia about the axis is obtained by considering it 
as a solid cylinder, and from Table   ,f2.9  
 

.mkg 1073.4m) 105.1( kg) 042.0(
2
1

2
1 28232  MRI  

 
 



9.37: a) For each mass, the square of the distance from the axis is 
,m 1000.8m) 200.0(2 222  and the moment of inertia is 

.mkg 1040.6)m 10800.0( kg) 200.0(4 2222     b) Each sphere is  m 200.0  from the 
axis, so the moment of inertia is     .mkg 1020.3m 200.0 kg 200.04 222    
a) The two masses through which the axis passes do not contribute to the moment of 

inertia.    .mkg 032.0m 22.0kg) 2.0(2 22
I  

 
 

9.38: (a) 
2

balls
2

barballsbar 2
2

12
1









LmLMIII                

                          222 mkg 33.2m 00.1 kg 500.02m 00.2 kg 00.4
12
1

  

 

        (b) 2
ball

2
bar3

1 LmLmI   

 

                         222 mkg 33.7m 00.2 kg 500.0m 00.2 kg 00.4
3
1

  

 
        c) 0I  because all masses are on the axis 
 
        (d) 2

Total
2

ball
2

bar 2 dMdmdmI   
                 22 mkg 25.1)m 500.0)(kg 00.5(   
 
 
 
 
 
 
9.39:   )ringr disk,d( rd  III  

 

2
rd

22
2

2
1rr

21
2

1
2

2
3

r

22
ddd

2
d

3
d

mkg 52.8            

mkg 580.5)(
2
1           

) cm  70.0 cm, 50.0(     kg 15.08)(  )cmg 00.2(  :ring

mkg 945.2
2
1           

kg 56.23)cmg 00.3(  :disk
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rrmI

rrrrπm

rmI

πrm

 

 
 



9.40:  a) In the expression of Eq. (9.16), each term will have the mass multiplied by 
3f and the distance multiplied by ,f  and so the moment of inertia is multiplied by 

 .)( 523 fff   b) .1037.6(2.5)(48) 85   
 
 
9.41:  Each of the eight spokes may be treated as a slender rod about an axis through an 
end, so the moment of inertia of the combination is 

2

2

2spoke2
rim

mkg 193.0

m) (0.300 kg) (0.20 
3
8)kg 40.1(

 
3

 8







 









 R

m
RmI

 

 
 
9.42:  a) From Eq. (9.17), with I from Table (9.2(a)), 

J. 103.1)
mins 60

revrad 2
min
rev 2400()m 08.2)(kg 117(

24
1

12
1

2
1 2222 

πωmLK  

   b) From ,Kmgy   
  km. 1.16m 1016.1

)sm 80.9)(kg 117(
J103.1  3

2

6





mg
Ky  

 
 
9.43:  a) The units of moment of inertia are ][m [kg] 2  and the units of ω  are equivalent 
to ]s[ 1  and so the product 2

2
1 Iω  has units equivalent to ])sm(kg[ ]sm[kg 22   , 

which are the units of Joules. A radian is a ratio of distances and is therefore unitless. 
    b) 180022IωπK  , when is in  min.rev  
 
 
9.44:  Solving Eq. (9.17) for I, 

.mkg 1025.2
)min rev (45

J)025.0(22 2 3
2

minrev
srad

60
22 


 

πω
KI  

 
 
 
 



9.45: From Eq. (9.17), ),( 2
1

2
22

1
2 ωωIKK   and solving for I, 

 
 

 
.mkg 600.0

))minrev 650()minrev 520((
)J 500(2

)(
2

2

2

minrev
srad

30
22

2
1

2
2

12















ωω
KKI

 

 
 

 

9.46:  The work done on the cylinder is PL, where L is the length of the rope. Combining 
Equations (9.17), (9.13) and the expression for I from Table (9.2(g)), 

N. 7.14
)m 00.5)(sm 80.9(2

)sm 00.6)(N 0.40(
2
1or    ,

2
1

2

22
2 

L
v

g
ωPv

g
ωPL  

 

9.47:  Expressing ω in terms of . , rada2
rad Rωα   Combining with ,

2
1 2MRI   Eq. (9.17) 

becomes  J. 1035.7
4

)sm 3500)(m 20.1)(kg 0.70(
2
1

2
1 4

2

rad  MRaK  

 

9.48:  a)  With ,2MRI  with expression for v is 

.
1

2
mM

ghv


  

     b) This expression is smaller than that for the solid cylinder; more of the cylinder’s 
mass is concentrated at its edge, so for a given speed, the kinetic energy of the cylinder is 
larger. A larger fraction of the potential energy is converted to the kinetic energy of the 
cylinder, and so less is available for the falling mass. 
 



9.49:  a) Tω 2 , so Eq. (9.17) becomes .2 22 TIK   

b) Differentiating the expression found in part (a) with respect to T,  

.)4( 32
dt
dTTI

dt
dK   

     c) figures.  two to70or  J, 2.70)s 5.1()mkg 0.8(2 222   

     d)  W.56.0)0060.0)(s)  5.1()mkg 0.8(4( 322    
 

9.50: The center of mass has fallen half of the length of the rope, so the change in 
gravitational potential energy is 

J. 147)m 0.10)(sm 80.9)(kg 00.3(
2
1

2
1 2  mgL  

 

9.51: J. 823)m 700.0)(sm 80.9)(kg 120( 2   
 

9.52: In Eq; (9.19), .2 so  , and 222
cm MRIRdMRI P   

 

9.53:  ,
15
4  so  ,

5
2

3
2 22222 RdMdMRMR  and the axis comes nearest to the center of 

the sphere at a distance .)516.0()152( RRd   
 

9.54: Using the parallel-axis theorem to find the moment of inertia of a thin rod about an 
axis through its end and perpendicular to the rod, 

.
3212

2
2

22
cm LMLMLMMdII p 






  

 
 
9.55:       gives which , )()(so 2

2
2

2
22

12
12

cm
b aΜ baΜ Ι, mdΙΙp   

                        .
3
1or   ,

4
1

12
1 222222 baΜΙbabaΜΙ   

 
 



9.56:   a) 2
12
12

12
1 b)     Μb Ι ΜaΙ   

 
 
9.57:        so  2 199  EqIn 2

12 ,hL and d LΙ, .. M
cm   

,hLhLΜ

hLhLLΜ

hLLΜΙp





 





 


















 

22

222

2
2

3
1

4
1

12
1

212
1

 

which is the same as found in Example 9.12. 
 
 
9.58: The analysis is identical to that of Example 9.13, with the lower limit in the integral 
being zero and the upper limit being R, and the mass .2πLρRΜ   The result is 

,2
2
1 ΜRΙ   as given in Table  .f)(2.9  

 
 
 
 
9.59:   With dxdm L

M  

.
330

2
L

0

3
2 

L

LMx
L
Mdx

L
MxΙ  

 
 
 



9.60: For this case, . dxdm   

    a) 
22

2

00

2 yLxγγx dxdm Μ
LL

    

    b)        
L

ΜγL
L

LxγdxγxxΙ
0

2
24

0

4
2 .

4
)(

4

 

This is larger than the moment of inertia of a uniform rod of the same mass and length, 
since the mass density is greater further away from the axis than nearer the axis. 

   c)  
L

γxdxxLΙ
0

2)(  

  

.
6

12

43
2

2

)2(

2

4
0

432
2

0

322

LM

L

xxLxL

dxxLxxL

L

L















 

 

   
This is a third of the result of part (b), reflecting the fact that more of the mass is 
concentrated at the right end. 
 
 
9.61: a) For a clockwise rotation, ω  will be out of the page.  b ) The upward direction 
crossed into the radial direction is, by the right-hand rule, counterclockwise. ω  and r  are 
perpendicular, so the magnitude of rω 

 is .vωr    c) Geometrically, ω  is 
perpendicular to ,v  and so vω 

  has magnitude rad,aωv   and from the right-hand 
rule, the upward direction crossed into the counterclockwise direction is inward, the 
direction of .rada  Algebraically, 

 
   

,2

rad

r
ωωrrωω

rωωvωa












 

where the fact that ω  and r are perpendicular has been used to eliminate their dot 
product. 
 
 



9.62:  

 
 

For planetary alignment, earth must go through 60  more than Mars: 
 




60
60

ME

ME

tωtw
θθ

 

                                                            

yr9.1
360 and 

yr1
360

60

ME

ME












ww

ωω
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d365352.060
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9.63:  a) sm  26.82mph60 v  

rpm840srev14.0srad0.88

m3048.0.in12





r
vω

r
 

 
mph 75sm 33.5s)rad0.88)(m381.0(

m 0.381 in. 15
same readsr speedomete since (a)part in  as  same b)




rωv
r

ω
 

m 0.254 in. 10
sm22.35mph50 c)




r
v  

. s;rad0.88
r
vω this is the same as for 60 mph with correct tires, so 

speedometer read 60 mph. 
 
9.64: a) For constant angular acceleration ,2

2

α
ωθ  and so .22

rad αθrrωa   
    b) Denoting the angle that the acceleration vector makes with the radial direction as β , 
and using Equations (9.14) and (9.15), 

,
2
1

  2
r r tan 2

rad

tan

θrαθ
α

rω
α

a
aβ   

so  rad. 666.036.9 tan 2
1

 tan 2
1  β  

 
 



9.65: a) .)srad 50.1()srad 40.6(32 2322 ttβtγt
dt
dωz 


  

b) .)rad/s 00.3( )rad/s 40.6( 6 2 32 ttβγ
dt

dwα z
z    

 
c) An extreme of angular velocity occurs when 0,  z which occurs at  

13.23

2

rad/s 50.1
rad/s 20.3

3  β
γt  s, and at this time 

rad/s.83.6
)rad/s 500.0(3

)rad/s 20.3(3/)3/)(3()3/)(2( 3

22
22

z  βγβγββγγω  

 
 
9.66: a) By successively integrating Equations (9.5) and (9.3), 

                           
.)rad/s 042.0()rad/s 90.0(

62

,)rad/s 125.0()rad/s 80.1(
2

332232

2322

tttβtγθ

tttβγtz




 

    b) The maximum positive angular velocity occurs when 0,  zα ,



γt  the angular  

velocity at this time is 




















β
γ

β
γβ

β
γγωz

22

2
1

2
48.6

)rad/s 25.0(
)rad/s 80.1(

2
1

3

22

  rad/s. 

The maximum angular displacement occurs when 0,  zω  at time 
β
γt 2

  (t = 0 is an 

 inflection point, and )0(θ is not a maximum) and the angular displacement at this time is 
 

2

332

3
22

6
2

2 ββ
βθ 








 












 = rad. 2.62
)rad/s 25.0(
)rad/s 80.1(

3
2

23

32

  

 
 
9.67: a) The scale factor is 20.0, so the actual speed of the car would be 9.72hkm 35  m

s.rad 652 c)   J. 51.8)21( b) 2K2  Imv  
 



9.68: a) s.rad 300.0)00.6)(srad (0.05 b)  .srad 050.0 22
m 0.60
sm 00.3 2

tan  sαtα r
a  

 
     c) .sm 5.40m) (60.0 s)rad 300.0( 222

rad  ra  
 
     d)  

 
 

     e) ,sm 18.6)sm 00.3()sm 40.5( 22222
tan

2
rad

2  aaa  
and the magnitude of the force is kN. 66.7)sm 18.6)(kg 1240( 2  maF  
 
      f) arctan     .9.60arctan 00.3

40.5
tan

rad a
a  

 
 
9.69:  a) Expressing angular frequencies in units of revolutions per minute may be 
accomodated by changing the units of the dynamic quantities; specifically, 

min.rev211

minrev
srad 

 30mkg 16.0
) J 4000(2  min)rev 300( 

2

2

2
2

2
12










 














I
Wωω

 

 
b) At the initial speed, the 4000 J will be recovered; if this is to be done is 5.00 s, the 
power must be  W.800s 5.00

J 4000   
 
 



9.70:  a) The angular acceleration will be zero when the speed is a maximum, which is at 
the bottom of the circle. The speed, from energy considerations, is 

   where),cos1(22  gRghv is the angle from the vertical at release, and 

                   s.rad 25.1)36.9 cos1(
)m 50.2(

)sm 80.9(2)cos1(2 2

 
R
g

R
v  

    b)   will again be 0 when the meatball again passes through the lowest point. 
    c) rada  is directed toward the center, and m 93.3)m 50.2( )srad 25.1( , 2

rad
2

rad  aRωa
    d) ), cos1)(2() cos1)(2(2

rad βgRβRgRa   independent of R. 
 
 
9.71:  a) s.m 696.1)m 1045.0)(revrad 2)(srev 0.60( 2  π  

b) s.rad  8.84
m 10  00.2

sm  696.1
2  r

vω  
 
 
9.72:  The second pulley, with half the diameter of the first, must have twice the angular 
velocity, and this is the angular velocity of the saw blade. 
 

     a) s.m 1.75
2

m 208.0 
minrev

srad
30

 min))rev 3450(2( 













   

     b)   ,sm 1043.5 
2

m 208.0 
minrev

srad 
30

 min)rev 3450(2 24

2

2
rad 























 
 ra  

so the force holding sawdust on the blade would have to be about 5500 times as strong as 
gravity. 

 

 
 



9.73:  a)    rrra )( 2
0

22
0

2
rad   

  

 

  .)( [2 

 )( 

  

0

0
0

00

r

rt
t

r







 





 

     b) From the above, 

 








)rad 0.15(2
)sm 0.25sm 0.85(

2

22
rad

θ
aαr .sm 00.2 2  

    c) Similar to the derivation of part (a), 

.]2][[
2
1

2
1

2
1 2

0
2  IIθαIωIωK  

    d) Using the result of part (c), 

.mkg 208.0
rad) (15.0m)) 250.0/()sm 00.2((

J) 0.20 J 0.45( 2
2 
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9.74:  leadwood III   
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9.75:  I approximate my body as a vertical cylinder with mass 80 kg, length 1.7 m, and 
diameter 0.30 m (radius 0.15 m) 
 

222 mkg 9.0m) (0.15 kg) 80(
2
1

2
1

 mRI  

 
 
9.76:  Treat the V like two thin 0.160  kg bars, each 25 cm long. 
 

23

22

mkg 1067.6

m) 250.0kg)( (0.160 
3
12

3
12




















mL
 

 
 
 
 
9.77:  a)  srad 425.9rpm 0.90   

25
2

6

2
2 mkg102522

s)rad4259
J1001022 so 

2
1 


  .

.(
).(

ω
K Ι ΙωK

 

 

 mkg 7800( 32  ρtρπRρVm is the density of iron and t=0.100 m is the 
thickness of the flywheel) 

42

2
1

2
1 ρπtRmRΙ   

m 36.7diameter  m; 68.3)2( 41  ρπtIR  
22

c sm327 b)  Rωa  
 
9.78: Quantitatively, from Table (9.2), a) and  , 2

3
222

2
1  mRΙmRΙmRI CBA Object A 

has the smallest moment of inertia because, of the three objects, its mass is the most 
concentrated near its axis.  b) Conversely, object B’s mass is concentrated and farthest 
from its axis. c) Because 2

sphere 52 mRΙ  , the sphere would replace the disk as having the 
smallest moment of inertia. 
 
 



9.79:  a) See Exercise 9.50. 
 

J. 1014.2
s) 164 ,86(

m)1038.6kg)( 1097.5)(3308.0(22 29
2

26242

2

2





π

T
ΙπK  

    b)        J. 1066.2
)s10156.3(

m) 1050.1kg)( 1097.5(22
2
1 33

2 7

2112422












 π

T
πRM  

 
    c)  Since the Earth’s moment on inertia is less than that of a uniform sphere, more of 
the Earth’s mass must be concentrated near its center. 
 
 
9.80:  Using energy considerations, the system gains as kinetic energy the lost potential 
energy, mgR. The kinetic energy is 

)(
2
1)(

2
1

2
1

2
1

2
1 22222 mRΙωRmΙωmvΙωK  2  

,for  solving and  Using 2
2
1 ωmRΙ   

.
3
4     and    ,

3
42

R
g

R
gω   

 



9.81: a) 

 
 
Consider a small strip of width dy and a distance y  below the top of the triangle. The 
length of the strip is   .bhyx   

        The strip has area x dy and the area of the sign is ,
2
1 bh  so the mass of the strip is 

        dyy
h
M

bh
dy

h
ybM

bh
xdyMdm  2 2 2
2
1 
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MbxdmdI  
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4
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Mbdyy

h
MbdII hhh







   

        b) 22
6
1 m  kg 304.2  MbI  

 srad 00.4srev 00.2 πω   
            J 1822

2
1  IωK  

 
 



9.82: (a) The kinetic energy of the falling mass after 2.00 m is 
    .J 100m/s 00.5 kg 00.8 2

2
12

2
1  mvKE  The change in its potential energy while 

falling is      J 8.156m 00.2 m/s 8.9 kg 00.8 2 mgh  
The wheel must have the “missing” 56.8 J in the form of rotational KE. Since its 

outer rim is moving at the same speed as the falling mass, 5.00 sm : 
 

rv   
 

rad/s 51.13
m370.0

m/s00.5


r
v  

 therefore;
2
1 2IKE   

 
 

22
22 m  kg 622.0or  m  kg 6224.0

srad 51.13
J 8.5622





KEI  

 
(b) The wheel’s mass is 280 2sm  8.9N = 28.6 kg. The wheel with the largest possible 
moment of inertia would have all this mass concentrated in its rim. Its moment of inertia 
would be 
 

   222 m  kg 92.3m370.0kg6.28  MRI  
The boss’s wheel is physically impossible. 
 
 
 
 
 
9.83:  a)       J. 784.0sm 80.9 m 500.0 kg 160.0 2   b) The kinetic energy of the stick 
is 0.784 J, and so the angular velocity is 
 

             
   

.srad 42.5
3m 1.00 kg 160.0

J) 2(0.784  
3

2  2
22 

ML
k

I
k   

 
This result may also be found by using the algebraic form for the kinetic energy, 

,2MgLK  from which ,3 Lg  giving the same result. Note that ω is independent 
of the mass.   
       sm  5.42m 1.00 srad 42.5    c)  Lv    
   (c).part  ofresult   theof 32 is This ;sm 43.42g d) L  
 
 



9.84:  Taking the zero of gravitational potential energy to be at the axle, the initial 
potential energy is zero   (the rope is wrapped in a circle with center on the axle).When 
the rope has unwound, its center of mass is a distance R below the axle, since the length 
of the rope is R2 and half this distance is the position of the center of the mass. Initially, 
every part of the rope is moving with speed ,0 R  and when the rope has unwound, and 
the cylinder has angular speed , the speed of the rope is R (the upper end of the rope 
has the same tangential speed at the edge of the cylinder). From conservation of energy, 
using 2)21( MRI  for a uniform cylinder,  

                                     . 
24

 
24

222
0

2 RmgπRmMRmM







 






   

Solving for  gives 

                                                           
  ,

2
42

0 mM
Rπmgωω


  

 
and the speed of any part of the rope is .Rv   
 
 
9.85:  In descending a distance d, gravity has done work gdmB  and friction has done 
work ,K gdmA  and so the total kinetic energy of the system is  .K AB mµmgd   In 
terms of the speed v of the blocks, the kinetic energy is 

         ,
2
1

2
1

2
1 2222 vRImmIvmmK BABA    

where ,Rvω   and condition that the rope not slip, have been used. Setting the kinetic 
energy equal to the work done and solving for the speed v, 

              
 .
2

2
k

RImm
mmgdv

BA

AB





  

 
 
9.86:  The gravitational potential energy which has become kinetic energy is  

     J. 0.98m 00.5 sm 80.9 kg 2.00kg 00.4 2 K  In terms of the common speed v of  
the blocks, the kinetic energy of the system is 

                        
2

2
21 2

1)(
2
1









R
vIvmmK  

                            kg).4.12(
)m160.0(

)mkg480.0(kg002kg00.4
2
1 2

2

2
2 v.v 







 
  

Solving for s.m81.2 gives kg4.12
J0.98 vv  

 



9.87:  The moment of inertia of the hoop about the nail is 2MR 2 (see Exercise 9.52), and 
the initial potential energy with respect to the center of the loop when its center is directly 
below the nail is gR  ( ).cos1 β  From the work-energy theorem, 

                                       ), cos  1(g
2
1 222  RMRMωIωK  

from which ). cos1)((  Rgω  
 

9.88: a) 2

2
1 IωK   

                 

J. 10 00.2

minrev
srad

60
2minrev3000m)kg)(0.901000(

2
1

2
1

7

2
2




















π
 

       b)  s, 1075
W101.86
J1000.2

4

7

ave






P
K  

which is about 18 min. 
 

9.89:    a) )m)10005kg)(60.1(m)10kg)(2.5080.0((
2
1

2
1

2
1 22222

22
2
11

  .RMRM    

                                            .mkg1025.2 23    

         b)      See Example 9.9. In this case, becomesfor  expression  theso and,1 vRv  

                 

s.m40.3
))m)kg)(0.02550.1()mkg1025.2((1(

m)00.2)(sm80.9(2

)(1
2

223

2

2











mRI
ghv

 

c) The same calculation, with 2R  instead of 1R  gives s.m 95.4v  This does make 
sense, because for a given total energy, the disk combination will have a larger fraction of 
the kinetic energy with the string of the larger radius, and with this larger fraction, the 
disk combination must be moving faster. 
 
 



9.90:   a) In the case that no energy is lost, the rebound height h  is related to the speed 
v by ,2

2

g
υh  and with the form for h given in Example 9.9, .2 1 mM

hh    b) Considering 
the system as a whole, some of the initial potential energy of the mass went into the 
kinetic energy of the cylinder. Considering the mass alone, the tension in the string did 
work on the mass, so its total energy is not conserved. 
 
 
9.91:  We can use J 250cylinder)( Κ  to find   for the cylinder and v  for the mass. 
 
         22

2
12

2
1 mkg 1125.0m) kg)(0.150 0.10(  MRΙ  

 
         srad 67.66 2  so  2

2
1  IKIK  

         sm 10.0       Rv  
          Use conservation of energy .2211 UKUK   Take 0  y  at lowest point of the 
mass, so ,   and 0  1 2 hyy   the distance the mass descends. .  so  0 2121 KUUK   
         kg 0.12  where,2

2
12

2
1  mImvmgh   

         For the cylinder, .  so  , and 2
4
12

2
12

2
1 MvIRvMRI    

         2
4
12

2
1 Mvmvmgh   

          m 23.7
2

1
2

2







 

m
M

g
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9.92:   Energy conservation: Loss of PE of box equals gain in KE of system. 

sm 68.3
kg) 00.7( kg 50.1

m) )(1.50sm kg)(9.80 00.3(

4
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4
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9.93:   a) The initial moment of inertia is .2

2
1

0 MRI   The piece punched has a mass of 

16
M  and a moment of inertia with respect to the axis of the original disk of 
 

.
512
9

242
1

16
2

22

MRRRM


























  

 
The moment of inertia of the remaining piece is then 
 

.
512
247

512
9

2
1 222 MRMRMRI   

 
      .)4/)(16/()2/( b) 2

512
3832

2
122

2
1 MRRMRMMRI   

 
 



9.94:   a) From the parallel-axis theorem, the moment of inertia is 
 
        ,)52( 22 MLMRIP  and 
 

.
5
21

2

2 
























L
R

ML
IP  

 
If R = (0.05)L, the difference is ),3()( b)   .001.0)05.0)(52( rod

2
rod

2 MmMLI   which 
is 0.33% when .)01.0(rod Mm   
 
 

9.95:  a) With respect to O, each element 2
ir  in Eq. (9.17) is ,22

ii yx   and so 
 

    
i i i i

yxiiiiiiiiiO IIymxmyxmrmI .)( 22222  

      b) Two perpendicular axes, both perpendicular to the washer’s axis, will have the 
same moment of inertia about those axes, and the perpendicular-axis theorem predicts 
that they will sum to the moment of inertia about the washer axis, which is ),( 2

2
2

12 RRM   

and so xI yI ).( 2
2

2
14 RRM   

     c) From Table (9.2), LmI (12
1 )22 L .2

6
1 mL  

 Since 12
1

0  bemust   and both , and , yxyxyx I IIIIII  .2mL  
 
 

9.96:  Each side has length a and mass ,4
M  and the moment of inertia of each side about 

an axis perpendicular to the side and through its center is .48
2

412
1 2MaM a   The moment of 

inertia of each side about the axis through the center of the square is, from the 
perpendicular axis theorem,   12

2
2448

22 MaaMMa  . The total moment of inertia is the sum of 

the contributions from the four sides, or .4 312
22 MaMa   

 
 



9.97:  Introduce the auxiliary variable L, the length of the cylinder, and consider thin 
cylindrical shells of thickness dr and radius r; the cross-sectional area of such a shell is 

,  2 drr  and the mass of shell is .  2  2 2drLrαπdrrLρπdm   The total mass of the 
cylinder is then 

  
R RLπdrrLπdmM

0

3
2

3
 2 2  

and the moment of inertia is 

.
5
3

5
 2 2 2

5
42 MRRLπdrrLπdmrI

R

o
    

b) This is less than the moment of inertia if all the mass were concentrated at the edge, as 
with a thin shell with ,2MRI   and is greater than that for a uniform cylinder with 

,2
2
1 MRI   as expected. 

 
9.98:  a) From Exercise 9.49, the rate of energy loss is dt

dΤ
Τ

Ιπ
3

24 ; solving for the moment of 
inertia ,power   theof in terms PI  
 

.mkg1009.1
s1022.4

s 1 
4

s) 0331.0)( W105(1 
4

2 38
 132

3313





 πdtdΤπ

ΡΤΙ  

b) 
Μ
ΙR

2
5 km. 10about   m,109.9

kg)1099.1)(4.1(2
)mkg1008.1(5  3

 30

2 38




  

 

            c)                       c. 103.6sm 109.1
s) 0331.0(

m)109.9(22 36
3





Τ
πR

 

 

           d)                                         ,mkg 109.6
)34(

3 17
3 




R
Μ

V
Μ  

 
which is much higher than the density of ordinary rock by 14 orders of magnitude, and is 
comparable to nuclear mass densities. 
 
 



9.99:  a) Following the hint, the moment of inertia of a uniform sphere in terms of the 
mass density is ,5

15
82

5
2 ρRΜRI   and so the difference in the moments of inertia of 

two spheres with the same density   but different radii 
).)(158( is  and 5

1
5
212 RRπρΙRR   

 
           b) A rather tedious calculation, summing the product of the densities times the 
difference in the cubes of the radii that bound the regions and multiplying by 

kg.1097.5 gives ,34  24M   c) A similar calculation, summing the product of the 
densities times the difference in the fifth powers of the radii that bound the regions and 
multiplying by .334.0mkg 1002.8 gives  ,158 22 22 MRI   
 
 



9.100:  Following the procedure used in Example 9.14 (and using z as the coordinate 
along the vertical axis)  Then, .and 4

2
2

4

4

2

2 dzz dΙdz zπρdm,zr(z)  
h
Rπρ 

h
R

h
R   

 

  . hπρRz
h
Rπρdzz

h
RπρdΙΙ

h h   
0

4
0

5
4

4
4

4
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The volume of a right circular cone is so and is mass   the, 2

3
12

3
1 hRhRV   

 

.
10
3

310
3 22

2

ΜRRhRπΙ 






 
  

 
 



9.101: a) 2
20

2
200  Setting b) .)( so ,     rvtsrsddrdrds  

gives a quadratic in θ . The positive solution is 





  0

2
0 21) rtβvrθ(t


. 

(The negative solution would be going backwards, to values of r smaller than 0r  .) 
 
      c) Differentiating, 

,
2

)(
2

0

z
βvtr

v
dt
dθtω


  

 

  .
2

232
0

2

vtr
v

dt
d

z





  

 
The angular acceleration z  is not constant. d) mm; 0.250 r  It is crucial that θ  is 
measured in radians, so     .radm 247.0rad2rev 1 revm 55.1 µπ µβ   The total angle 
turned in 74.0 min = 4440 s is 
 

   
 

rad 101.337 

m 100.25 m100.25

s 4440 m/s 25.1 m/rad1047.22
m/rad1047.2

1

5

323

7

7




























θ
 

 
which is 2.13   rev. 104  
 
 
e)  

 
  



10.1:  Equation (10.2) or Eq. (10.3) is used for all parts. 
a)  m,N 00.40 90sin  N) m)(10.0 00.4(   out of the page. 
b) m,N 6.34120sin  N) m)(10.0 00.4(   out of the page.  
c) m,N 0.2030sin  N) m)(10.0 00.4(   out of the page. 
d) m,N 3.1760sin  N) m)(10.00 00.2(   into the page.  
e) The force is applied at the origin, so 0.τ  
f) .0180sin  N) m)(10.0 00.4(    

 
 
10.2:     m,N 40.0m) N)(5.00 00.8(1 τ  
             m,N 0.1230sin  m) N)(2.00 (12.0 2 τ  
 
where positive torques are taken counterclockwise, so the net torque is m,N 0.28  with 
the minus sign indicating a clockwise torque, or a torque into the page. 
 
 
10.3:  Taking positive torques to be counterclockwise (out of the page),  

 m,N 2.34N) m)(26.0 (0.09 m,N 1.62N) (180.0 m) 090.0( 21  ττ  
   m,N78.1N) (14.0 m) 090.0(23  so the net torque is m,N 50.2  with the 

direction counterclockwise (out of the page). Note that for 3  the applied force is 
perpendicular to the lever arm. 
 
 
10.4:   RFFRFRFττ )( 122121   

           m.N 726.0m) N)(0.330 7.50  N 30.5(   
 
 
10.5:     a)  

 
       b) Into the plane of the page. 
       c) ]ˆN) 00.4(ˆn) 00.5[(]ˆm) 150.0(ˆ m) 450.0[( iijiFr 

                        

        
  ˆm)N 1.05(

ˆN) 00.5m)( 150.0( N) 00.4( m) 450.0(  

k

k




 



10.6:  (a)           CCW m,N 8.7m) 2.0)(60N)(sin  50(A τ  

              
CW m,N 10m) 2.0(N) 50(

CW m,N 5m) 2.0)(30N)(sin  50(
0

D

C

B






τ
τ
τ

 

 
        (b)  mN 10  mN 5 mN 8.7   τ  
                    CW m,N 3.6   
 
10.7:  kg 00.2 kg, 40.8  where,2 22

3
2  mMmRMRI  

            2mkg 600.0 I  

          
mN 0524.0  ,

;srad 0.08726 gives 

? s, 0.30 ;srad 5.236rpm 0.50 ;srad 7.854  rpm 75.0 
2

0

0







IατIατ
ααtωω

αtωω

f

 

 

10.8:     
  m.N 1.13

s 00.8
minrev 400

m kg 50.2  a) minrev
srad

60
2

2 









t
IIα  

  

       b) .J 102.19  
minrev

srad 
60
2 minrev 400 )mkg 50.2(

2
1  

2
1 3

2
22 










πI  

 
 
10.9:    in  found that as same  the,sm 2.1m 0.2 sm 36.022 2  asv  
Example 9-8. 
 
 

10.10:       
  .srad 00.2

mkg 0.5
m 250.0N 0.40 2

2 



I

FR
I
τα  

 
 

10.11: a)                





















Mm
mMg

Mm
mMgTMgn

21
3 

21
    

 
         b) This is less than the total weight; the suspended mass is accelerating down, so the 
tension is less than mg.   c) As long as the cable remains taut, the velocity of the mass 
does not affect the acceleration, and the tension and normal force are unchanged. 
 
 



10.12:      a) The cylinder does not move, so the net force must be zero. The cable exerts 
a horizontal force to the right, and gravity exerts a downward force, so the normal force 
must exert a force up and to the left, as shown in Fig. (10.9).   

 b)       N, 490sm 80.9kg) 50(N 0.9 222 n at an angle of arctan    1.1490
0.9  from the 

vertical (the weight is much larger than the applied force F ). 
 
 

10.13:    
 

n
tMR

Rn
I

n
R

n
f

2
0

k


   

   

        
     

    .482.0
N 160 s 50.72

 minrev 850 m 260.0 kg 0.50 minrev
srad

30 


 

 
 
10.14:    (a) Falling stone: 2

2
1 atg   

                                                

 

 
)2(
:  :Pulley

)1(:  :Stone
sm 80.2

s 00.3m 6.12  

2
1

R
2

2
12

2
1

2

2
2
1

MaT
MRαMRTRIατ

maTmgmaF
a

a

a










 

                                                           
Solve (1) and (2): 

 

kg 00.2
m/s 80.2m/s 80.9

m/s 80.2 
2

kg 0.10
2 22

2
































M
ag

aMM
 

 
(b)From (2): 

   
N 0.14

m/s 80.2 kg 0.10
2
1

2
1 2





T

MaT  

 
 



10.15:        22
2
12

2
1 m  kg 02320.0m 0750.0kg 8.25  mRI  

      
 

N 47.7 so 

      
 

rad/s 046.8 gives 2

? rad, 33.0  rev 25.5 ;0 rad/s; 23.04  rpm 220

k
k

kk

2
0

2
0

2

00










Rµ
IαnIαnRµ

nRµRfττ
Iατ

αθθαωω
αθθωω

f

 

 
10.16:   This is the same situtation as in Example 10.3.   a) N. 0.42)21(  MmmgT  
b)  s.m11.82(12  mMghv     c) There are many ways to find the time of fall. 
Rather than make the intermediate calculation of the acceleration, the time is the distance 
divided by the average speed, or   s. 69.12 vh      d) The normal force in Fig. 
(10.10(b)) is the sum of the tension found in part (a) and the weight of the windlass, a 
total 159.6 N (keeping extra figures in part ( a)). 
 
 
10.17:  See Example 10.4. In this case, the moment of inertia I is unknown, so 

    .2
2121 RImmgma    a)      ,m/s 75.3s 80.0m 20.12 22

1 a  
  N. 2.18 and N 50.7  so 122111  agmTamT  

   b) The torque on the pulley is   m, N 0.80312  RTT and the angular acceleration is 
.mkg 0.016 so ,rad/s 50 22

1  IRaα  
 
 

10.18:    .3
2

3
1 Ml

F
Ml
Fl

I



  

 
 
10.19:   The acceleration of the mass is related to the tension by ,cm TMgMa   and the 
angular acceleration is related to the torque by 

2
cmcm  and /   where,/or  , MRIRStaαMTaTRτIα   have been used.        

a) Solving these for N. 882.02/ gives  MgTT     b) Substituting the expression for T 
into either of the above  relations gives  which   from ,2/cm ga   

s. 553.042 cm  ghaht rad/s. 9.33 c) cmcm  RtaRvω  
 
10.20:  See Example 10.6 and Exercise 10.21. In this case,        

.srad 33.9 , and cmcm
2
cm2  RvωghvMvK  

 
 



10.21:   From Eq. (10.11), the fraction of the total kinetic energy that is rotational is 
 

 
      ,

1
1

/1
1

2121
21

cm

222
cmcm

2
cm

2
cm

2
cm

I
MRvIMIMv

I






 

  

where  Rvcm  for an object that is rolling without slipping has been used.  
      a) ,5)MR2(Ib) .31 is ratio above  theso,)21( 22

cm  MRI so the above ratio is 
,32c)  .72 2MRI   so the ratio is ,MR85d)  .52 2I  so the ratio is .135  

 
 
10.22:      a) The acceleration down the slope is ,sin M

fθga  the torque about the 
center of the shell is 

                                       ,
3
2

3
2 2 MRa

R
aMR

R
aIIαRfτ   

. so 3
2 aM

f   Solving these relations a for f and simultaneously gives or,sin3
5 θga    

.N83.4)smkg)(3.6200.2(
3
2

3
2

,sm62.30.38sin)sm80.9(
5
3sin

5
3

2

22





Maf

θga
 

The normal force is Mg cos θ , and since ,snµf   

.313.0 tan 
5
2

cos
sin

3
2

 cos3
2

cos 
5
3

3
2

s  θ
θg
θg

θg
a

θMg
Ma

n
fµ  

 
        b) 2sm62.3a since it does not depend on the mass. The frictional force, however, 
is twice as large, 9.65 N, since it does depend on the mass. The minimum value of sµ  also 
does not change. 
 
 



10.23: 
 

       
)1eq.( ) cos (sin

 cos sin
 cos

s

s

aθµθg
maθmgµθmg

mgn





 

n  and mg act at the center of the ball and provide no torque. 

αmRθmgµIατ

mRIθRmgµττ f

2
5
2

s

2
5
2

s

 cos gives 

;cos




 

No slipping means (eq.2)    cos   so  , 5
2

s agµRaα   
We have two equations in the two unknowns a and .s  Solving gives 

613.00.65 tan tan and sin 7
2

7
2

7
5  θµθga s  

   b) Repeat the calculation of part (a), but now .2
3
2 mRI   

858.00.65 tan tan and sin 5
2

5
2

s5
3  θµθga  

 
    The value of s  calculated in part (a) is not large enough to prevent slipping for the 
hollow ball. 
 
        c) There is no slipping at the point of contact. 



10.24:  
 

slipping nofor  cm Rv   
 
a) Get v at bottom: 

ghv

R
vmRmvmgh

Iωmvmgh

 7
10

 
5
2

2
1

2
1

 
2
1

2
1

2
22

22




















 

 
Now use energy conservation. Rotational KE does not change 
 

h
g
gh

g
vh

KEhmgKEmv

7
5

22

2
1

7
102

RotRot
2




 

 
         hhhmgmgh  (b)  With friction on both halves, all the PE gets converted 
back to PE. With one smooth side, some of the PE remains as rotational KE. 
 
 
10.25: cm

2
2
1

0
2

cm1 )2/1( mvwIKWwh f   
Solving for h  with Rwv cm  
 

 

m. 7.11
N 392
J 3500   

]s)rad 0.25(m) 600.0()rad 0.25(m) 600.0)(800.0([ 2222
sm 80.92

1
2






w

s
h

w

 



10.26:    a) 
 

 
The angular speed of the ball must decrease, and so the torque is provided by a friction 
force that acts up the hill. 
 
   b) The friction force results in an angular acceleration, related by .fRI  The 
equation of motion is cm,sin  mafβmg   and the acceleration and angular acceleration 
are related by Rαa cm  (note that positive acceleration is taken to be down the incline, 
and relation between cma  and   is correct for a friction force directed uphill). 
Combining, 

 ,571sin 2 ma
mR

Imaβmg 





   

  .sin 75 which from cm βga      c) From either of the above relations between if f and 
,cma  

, cos sin 
7
2

5
2

sscm βmgµnµβmgmaf   

from which   . tan72s µ  
 
 
10.27:    a)          rad/s, 3086.0s 0.15mkg 2100m 40.2N 0.18 2  tIFRtαω  
or 0.309 rad/s to three figures. 
b)      2121 2

2  IωKW    J. 100srad 3086.0mkg 00.2 22   
c)  W.67.6 ,or  either  From ave  PtWPτωP  
 

10.28:    a)   
 

m.N 519

rev/min
rad/s

30
rev/min 2400

hp/ W746hp 175











πω

Pτ  

 
b)    J. 32612mN 519  πθτW  

 



10.29: a)      
t
ωIIατ



  

 
     

m.N 377.0
s 5.2

minrev
srad

30
minrev 1200m 100.0kg 50.121 2














π

 

 

b)    rad. 157rev 0.25
s/min 60

s 5.2rev/min 600
ave t  

      c)   J. 2.59θτ  

     d)  2

2
1 IωK   

      
J,  2.59

rev/min
rad/s

30
rev/min) 1200(m) kg)(0.100 5.1)(2/1(

2
1

2
2


















π

 

 
the same as in part (c). 
 
 
10.30:  From Eq. (10.26), the power output is 
 

 W,2161
rev/min

rad/s
60
2rev/min  4800m)N 30.4( 






 

 τωP  

which is 2.9 hp. 
 
 
10.31:     a) With no load, the only torque to be overcome is friction in the bearings 
(neglecting air friction), and the bearing radius is small compared to the blade radius, so 
any frictional torque could be neglected. 
 

   b)   N. 6.65
m) 086.0(

rev/min
rad/s

30
rev/min) (2400

 W/hp)hp)(746 9.1(/











πR

ωP
R
τF  

 
 



10.32:   22
2
12

2
1 mkg 2.42m) kg)(2.08 117(  mLI  

  

    a)                   .rad/s 2.46
mkg 42.2
mN 1950 2

2 



I
τα  

    b)    rad/s. 9.53rev) 2 rev 0.5)(rad/s 2.46(22 2    

    c)  From either (10.24), Eq.or  
2
1 2 KW  

J.  106.13rad/rev) 2  rev N.m)(5.00 1950( 4 πτW  
 
   d), e) The time may be found from the angular acceleration and the total angle, but the  
instantaneous power is also found from hp). kW(141 105 τωP  The average power is 
half of this, or kW. 6.52  
 
 

10.33:     a) m.N 358
rev/min

rad/s
30

rev/min) (400 W)10  150(/ 3 














πωPτ  

   b) If the tension in the rope is N.  1079.1/ so and  , 3 RτwwFF  
 
   c) Assuming ideal efficiency, the rate at which the weight gains potential energy is the 
power output of the motor, or m/s. 8.83 so ,  wPvPwv Equivalently, .Rv   
 
 
10.34:  As a point, the woman’s moment of inertia with respect to the disk axis is 2mR , 
and so the total angular momentum is 

s./mkg 10  28.5    

rad/rev) 2  rev/s 500.0(m) 00.4(kg 50.0  kg 110
2
1    

2
1)(

23

2

2
womandiskwomandisk









 







 

π

ωRmMωIILLL

 

 
 
10.35:    a) ,s/mkg 115sin 2φmvr  with a direction from the right hand rule of into the 
page. 
 
     b)        ,smkg 125mN 12536.990sin m 8kgN 8.9kg 2 22 τdtdL  
out of the page. 
 
 



10.36:  For both parts, .IωL   Also, ,rv  so ).( rvIL   
 
   a) mvrrvmrL  ))(( 2  
       smkg 1067.2)m 1050.1(s)m 1098.2(kg) 1097.5( 24011424 L   
   b) ))(52( 2 ωmrL   

       
smkg 1007.7

hr))s 3600hr (24.0rad 2()m 1038.6)(kg 1097.5)(52(
233

2624



L
 

 
 
10.37:  The period of a second hand is one minute, so the angular momentum is 
 

s.mkg 1071.4
s 60

2)m 100.15(
3

kg 100.6

2
3

2622
3

2











 








T
lMIωL

 

 
 
10.38:  The moment of inertia is proportional to the square of the radius, and so the 
angular velocity will be proportional to the inverse of the square of the radius, and the 
final angular velocity is 
 

s.rad 106.4
km 16

km 100.7
ds 400,86(d) (30

rad 2 3
252

2

1
12 







 




















R
R

 

 
 
10.39:    a) The net force is due to the tension in the rope, which always acts in the radial 
direction, so the angular momentum with respect to the hole is constant.     
      b) ,, 2

2221
2

11 rmLrmL   and  with   .rad 00.7)(, 2
211221 srrωωLL   

      c)   J. 1003.1))()(()21( 22
11

2
22

 rωrωmK  
      d) No other force does work, so  J 1003.1 2  of work were done in pulling the cord. 
 
 



10.40: The skater’s initial moment of inertia is 
 

,mkg 56.2)m 80.1)(kg 00.8(
2
1)mkg 400.0( 222

1 I  

and her final moment of inertia is 
 

.mkg 9.0)m 1025)(kg 00.8()mkg 400.0( 222
2  I  

 
Then from Eq. (10.33), 
 

s.rev 14.1
mkg 9.0
mkg 56.2s)rev 40.0( 2

2

2

1
12 





I
Iωω  

 
Note that conversion from rev/s to srad  is not necessary. 
 
 
10.41: If she had tucked, she would have made 40.0)mkg 18)mkg 6.3()2( 22   rev in 
the last 1.0 s, so she would have made 60.0)0.15.1)(rev 40.0(   rev in the total 1.5 s. 
 
 
10.42:    Let                    

                   
.mkg1360)m 00.2)(kg0.40(mkg1200

,mkg1200
2222

02

2
01





mRII

II
 

 
 Then, from Eq. (10.33), 
 

                           s.rad924.0
kg.m 1360
kg.m 1200

s 6.00
rad 2

2

2

2

1
12 
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I
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10.43:      a) From conservation of angular momentum, 
 

 

  srad 385.1
1207021
srad 3.0     

21
1

21
21

122

2

12
0

1
12
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mRMR
MRω

mRI
Iωω

 

                 
or 1.39 srad  to three figures 

b)        kJ, 80.1srad 00.3m 00.2kg 1202121 22
1 K  and 

      J. 499 m 00.2kg 7021 2
2

2
02  ωIK  In changing the parachutist’s horizontal 

component of velocity and slowing down the turntable, friction does negative work. 
 
 
10.44:  Let the width of the door be l; 
 

 
   

   
      

s.rad 223.0
m 500.0kg 500.0m 00.1kg 0.4031

m 500.0sm 0.12kg 0.500    

231
2

22

22









lmMl
lmv

I
Lω

 

 
Ignoring the mass of the mud in the denominator of the above expression gives 

,srad 225.0ω  so the mass of the mud in the moment of inertia does affect the third 
significant figure. 
 
 
10.45:  Apply conservation of angular momentum ,L


with the axis at the nail. Let object 

A be the bug and object B be the bar. 
      Initially, all objects are at rest and .01 L  
      Just after the bug jumps, it has angular momentum in one direction of rotation and the 
bar is rotating with angular velocity Bω in the opposite direction. 

srad 120.03
 gives 

 and m 00.1  where
2

3
1

21

2
3
1
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10.46: 

 
 

(a)  Conservation of angular momentum: 
 

srad 885

)m 00.2( 
sm 9.80

N 0.90
3
1)m 50.1)(sm 00.6)(kg 00.3()m (1.50s)m 0.10)(kg 00.3( 2

2

2
23

1
101

.ω

ω

ωLmvdmdvm















 

 
(b)  There are no unbalanced torques about the pivot, so angular momentum is 

conserved. But the pivot exerts an unbalanced horizontal external force on the system, so 
the linear momentum is not conserved. 
 
10.47: 

 
 
 



10.48:     a) Since the gyroscope is precessing in a horizontal plane, there can be no net 
vertical force on the gyroscope, so the force that the pivot exerts must be equal in 
magnitude to the weight of the gyroscope, 

   N, 617.1sm 80.9kg 165.0 2  mgωF  1.62 N to three figures.  
         b) Solving Eq. (10.36) for ,ω  

                                    
   ,srad 7.188

s 20.2rad 2 mkg 1020.1
m 1000.4 N 617.1

24

2








 



πI
ωRω  

which is .minrev 1080.1 3  Note that in this and similar situations, since   appears in 
the denominator of the expression for ,  the conversion from srev  and back to 

minrev must be made. 
 
   c) 

 
 

 

10.49: a) 
P

MR
P
K 22 ))2/1)((2/1( 

  

                    
    

s, 1021.2
 W1046.7

rev/min) (500m) kg)(2.00 000,60)(2/1()2/1(

3

4

2
rev/min

rad/s
30

2







 

 
or 36.8 min. 
 

       

m.N 1010.1
360

rad 2/s)00.1(
rev/min

rad/s
30

rev/min) 500(m) kg)(2.00 000,60)(2/1(

 b)

5

2
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10.50:  Using Eq. (10.36) for all parts,     a) halved     b) doubled (assuming that the 
added weight is distributed in such a way that r  and I are not changed)     c) halved 
(assuming that w  and r  are not changed)     d)  doubled     e) unchanged. 
 
 



10.51:    a) Solving Eq. (10.36) for . )5/2( , 2  ωMRIωττ   Using s 86,400
rad 2 ω  and 

s/y) 10y)(3.175 000,26(
2

7
 and the mass and radius of the earth from Appendix F, 

m.N 105.4~ 22 τ  
 
 
10.52:     a) The net torque must be 

m.N 60.2
s) 00.9(

rev/min
rad/s

60
2rev/min  120

)mkg 86.1( 2 






 








t
ωIIατ  

This torque must be the sum of the applied force FR  and the opposing frictional torques 
fτ  at the axle and nrµfr k due to the knife. Combining, 

 

   ) (1
kf nrµττ

R
F   

      

N. 1.68

m) N)(0.260  (0.60)(160m)N 50.6(m)N 60.2(
m 500.0

1



  

 
   b) To maintain a constant angular velocity, the net torque τ  is zero, and the force  is F   

N. 62.9m)N 24.96  mN 50.6(m 500.0
1 F     c) The time t needed to come to a stop is 

found by taking the magnitudes in Eq. (10.27), with fττ   constant; 
  

  
  s. 6.3

mN 6.50
mkg 86.1 rev/min 120 2

rev/min
rad/s

60
2

ff









τ
ωI

τ
Lt  

 
Note that this time can also be found as   .s 00.9 m6.50N

mN60.2

t  

 
 

10.53:    a)    
 

.mkg 955.0

rev/min
rad/s

30
 rev/min 100

s 0.2 mN 0.5 2















πω

tτ
α
τI  

   b) Rather than use the result of part (a), the magnitude of the torque is proportional to 
  and hence inversely proportional to || t ; equivalently, the magnitude of the change in 
angular momentum is the same and so the magnitude of the torque is again proportional 

to .||/1 t  Either way,   m. N 0.080
s 125

s 2mN 0.5f τ  

   c)       rev. 2.104s min/60 1 s 125 rev/min 50.0ave tω  
 
 



10.54:    a) The moment of inertia is not given, so the angular acceleration must be found 
from kinematics; 
 

               
   

.s/rad  33.8
s 00.2 m 30.0

m 5.00222 2
222 

rt
s

t
θα  

         b)    rad/s. 67.16s 00.2 rad/s 33.8 2 αt  
         c) The work done by the rope on the flywheel will be the final kinetic energy;          

    J. 200m 0.5 N 0.40  FsWK  
 

   d)    
 

.mkg 44.1
rad/s 67.16

J 20022 2
22 


KI  

 
 

10.55:    a) .2 














I
tτt

I
ττταtτωP  

         b) From the result of part (a), the power is     kW. 50.4  W500 2
0.20
0.60   

         c)   ./2 /22τ 2/3 IθτθIτταθτωP   

        d) From the result of part (c), the power is    kW. 6.2 W500 2/3
00.20
00.6      e) No; the 

power is  proportional to the time t or proportional to the square root of the angle. 
 
 
10.56:    a) From the right-hand rule, the direction of the torque is ,ˆˆˆ kji   the z  
direction.         
 
   b),  c) 

 
        d) The magnitude of the torque is ),( 2

0 lxxF   which has it maximum at .2l  The 
torque at .4 is 2 0 lFlx   
 
 



10.57:     . 2
)(

222










Iθ
I
θθt  

 
The angle in radiants is ,2  the moment of inertia is 
 

232 mkg 9.39))m 25.1)(s m 80.9()N 750(()31(   
 
and the torque is m.N 275)m 25.1(N) 220(   Using these in the above expression gives 

,s 455.0 22 t  so s. 675.0t  
 
 
10.58:    a) From geometric consideration, the lever arm and the sine of the angle 
between rF 

 and  are both maximum if the string is attached at the end of the rod.  b)  In 
terms of the distance x where the string is attached, the magnitude of the torque is 

.22 hxFxh   This function attains its maximum at the boundary, where  ,hx   so the 
string should be attached at the right end of the rod.     c) As a function of x, l and h, the 
torque has magnitude 

.
)2( 22 hlx

xhF


  

 
This form shows that there are two aspects to increasing the torque; maximizing the lever 
arm l and maximizing sin .  Differentiating  with respect to x and setting equal to zero 
gives maxx ).)2(1)(2( 2lhl   This will be the point at which to attach the string unless 

h2  > l, in which case the string should be attached at the furthest point to the right, .lx   
 
 
10.59:    a) A distance 4L  from the end with the clay. 
   b) In this case 2)34( MLI   and the gravitational torque is 

,sin )23(sin )2)(43(  LMgMgL   so .sin  )89(  Lg  
   c) In this case 2)31( MLI   and the gravitational torque is 

.sin  )23( so ,sin  )2(sin  )2)(4(  LgLMgMgL   This is greater than in part (b). 
   d) The greater the angular acceleration of the upper end of the cue, the faster you would 
have to react to overcome deviations from the vertical. 
 
 



10.60:  In Fig. (10.22) and Eq. (10.22), with the angle   measured from the vertical, 
θθ cos sin   in Eq. (10.2).  The torque is then  .cos FRτ  

 

a)      
2

0
  cos


FRθdθFRW  

b) In Eq. (6.14), dl is the horizontal distance the point moves, and so ,FRdlFW    

the same as part (a).     c) From .4,)4( 22
2 MRFωωMRWK       d) The 

torque, and hence the angular acceleration, is greatest when 0, at which point 
MRFIτα 2)(  , and so the maximum tangential acceleration is .2 MF     e) 

Using the value for   found in part   (c), .42
rad MFRωa   

 
 
10.61:   The tension in the rope must be N. 530)(  agm  The angular acceleration of 
the cylinder is ,rad/s 2.3 2Ra  and so the net torque on the cylinder must be 9.28 

m.N   Thus, the torque supplied by the crank is 
m,N 141.8m)N (9.28  m) N)(0.25 530(  and the force applied to the crank handle is 

kN 2.1m 0.12
mN 8.141   to two figures. 

 
 
10.62:  At the point of contact, the wall exerts a friction force f directed downward and a 
normal force n directed to the right. This is a situation where the net force on the roll is 
zero, but the net torque is not zero, so balancing torques would not be correct. Balancing 
vertical forces, ,cosrod FwfF  and balacing horizontal forces 

, With .sin krod nµfnθF   these equations become 
 

,cos krod wFnµθF   
 .sinrod nθF   

 
(a)  Eliminating n and solving for rodF  gives 

                            N. 266
30sin)25.0(30 cos

N) 0.40()m/s  (9.80 kg) 0.16(
sincos

2

k
rod 









θµθ

FωF  

 
               b) With respect to the center of the roll, the rod and the normal force exert zero 
torque. The magnitude of the net torque is nµfRfF k   and ,)(   may be found 
insertion of the value found for rodF  into either of the above relations; i.e., 

 N. 2.33sinrodk  θFµf Then, 

                                .rad/s 71.4
)mkg (0.260

m) 10N)(18.0 54.31N 0.40( 2
2

2









I
τα  

 
 



10.63:  The net torque on the pulley is TR, where T is the tension in the string, and 
ITR α  . The net force on the block down the ramp is .)cos(sin k maTβµβmg   

The acceleration of the block and the angular acceleration of the pulley are related by 
.αRα   

 
   a) Multiplying the first of these relations by RI  and eliminating   in terms of a, and 
then adding to the second to eliminate T gives 
 

   
  ,

/1
 cossin 

/
 cossin 

2
k

2
k

mRI
βµβg

RIm
βµβmga








  

 
and substitution of numerical values given 1.12 .m/s2   b) Substitution of this result into 
either of the above expressions involving the tension gives T = 14.0 N. 
 
 
10.64:  For a tension T in the string, . and R

aIIαTRmaTmg   Eliminating T and 
solving for a gives 

,
/1/ 22 mRI
g

RIm
mga





  

 
where m is the mass of the hanging weight, I is the moment of inertia of the disk 
combination  9.89 Problem from mkg 1025.2 23  I  and R is the radius of the disk to 
which the string is attached. 
           a) With m = 1.50 kg, .m/s 88.2 m,1050.2 22   aR  
           b) With m = 1.50 kg, .m/s 13.6 m,1000.5 22   aR   
        The acceleration is larger in case  (b); with the string attached to the larger disk, the 
tension in the string is capable of applying a larger torque. 
 
 
10.65:  Taking the torque about the center of the roller, the net torque is ,αIfR   

2 MRI  for a hollow cylinder, and with MafRa   ,/ (note that this is a relation 

between magnitudes; the vectors 


af  and  are in opposite directions). The net force is 
,MafF   from which .FfMFaMaF 2 and 2 so and 2   

 
 



10.66:  The accelerations of blocks A and B will have the same magnitude a. Since the 
cord does not slip, the angular acceleration of the pulley will be .R

a  Denoting the 
tensions in the cord as , and BA TT  the equations of motion are 
 

,   2 a
R
ITT

amgmT
amTgm

BA

BBB

AAA






 

 
where the last equation is obtained by dividing  I  by R  and substituting for   in 
terms of a. 
 
      Adding the three equations eliminates both tensions, with the result that 

2/ RImm
mmga

BA

BA




  

Then, 

.
/

  
RIRmRm

mmg
R
a

BA

BA




  

The tensions are then found from 
 

.
2

)(

2
)(

2

2

2

2

RImm
RImmmgagmT

RImm
RImmmgagmT

BA

BAB
BB

BA
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As a check, it can be shown that .)( IRTT BA   
 
 



10.67:  For the disk,  10.6 Example see)43( 2MvK  . From the work-energy theorem, 
,sin 1 MgLK   from which 

 

m. 957.0
0.30sin  )sm 80.9(4

)sm 50.2(3
sin  4

3
2

22





g

vL  

 
This same result may be obtained by an extension of the result of Exercise 10.26; for the 
disk, the acceleration is ,sin  )32( g  leading to the same result. 
         b) Both the translational and rotational kinetic energy depend on the mass which 
cancels the mass dependence of the gravitational potential energy. Also, the moment of 
inertia is proportional to the square of the radius, which cancels the inverse dependence 
of the angular speed on the radius. 
 
 
10.68:  The tension is related to the acceleration of the yo-yo by ,)2()2( amTgm   and 
to the angular acceleration by .b

aIITb    Dividing the second equation by b and 
adding to the first to eliminate T yields 
 

,
2

2   ,
)(2

2
)2(

2
222 bRb

gα
bR

g
bIm

mga








  

 
where 22

2
12 mRmRI   has been used for the moment of inertia of the yo-yo. The 

tension is found by substitution into either of the two equations; e.g., 
 

.
)1)(2(

2
)(2

)(2
)(2

21 )2())(2( 22

2
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10.69:     a) The distance the marble has fallen is .2)2( RrhrRhy   The 
radius of the path of the center of mass of the marble is ,rR   so the condition that the 
ball stay on the track is ).(2 rRgv   The speed is determined from the work-energy 
theorem, .)21()21( 22 Imvmgy   At this point, it is crucial to know that even for the 
curved track, ;rv  this may be seen by considering the time T to move around the 
circle of radius rR   at constant speed V is obtained from ,)( 2 VtrR   during which 
time the marble rotates by an angle   , 1 2 Tr

R    from which . rV  The work-
energy theorem then states ,)107( 2mvmgy   and combining, canceling the factors of m 
and g leads to ,2))(107( RrhrR   and solving for h gives 

.)1017()1027( rRh    b) In the absence of friction, ,)21( 2mvmgy   and substitution 
of the expressions for y and 2v  in terms of the other parameters gives 

,2))(21( RrhrR   which is solved for .)23()25( rRh   
 

10.70: In the first case, 


F  and the friction force act in opposite directions, and the 
friction force causes a larger torque to tend to rotate the yo-yo to the right. The net force 
to the right is the difference ,fF   so the net force is to the right while the net torque 
causes a clockwise rotation. For the second case, both the torque and the friction force 
tend to turn the yo-yo clockwise, and the yo-yo moves to the right. In the third case, 
friction tends to move the yo-yo to the right, and since the applied force is vertical, the 
yo-yo moves to the right. 
 

 
 

 
10.71:    a) Because there is no vertical motion, the tension is just the weight of the hoop: 

    N 76.1kgN 8.9 kg 180.0  MgT   b) Use . find  to  I The torque is 
 ,// so , 2 MRMgMRTMRRTIRTαRT       

    22 rad/s 5.122m 08.0sm 8.9 so  Rg     
     c) 2sm 8.9 Ra  
     d) T would be unchanged because the mass M is the same, a and  would be twice as 
great because I is now .2

2
1 MR  

 
 



10.72:   (a)  RaIτ  T and  

2
T

T22

m/s 50
kg 4.00
N 2002
2
1

2
1











M
Pa

R
aMRMRPR 

 

Distance the cable moves: 2
2
1 atx   

 
   sm 5.70s 41.1 m/s 500

s. 41.1 m/s 50
2
1m 50

2
0

22





atvv

tt
 

 
        (b)  For a hoop, ,2MRI  which is twice as large as before, so T and  a  would be 
half as large. Therefore the time would be longer. For the speed, ,22

0
2 axvv  in which 

x is the same, so v  would be smaller since a is smaller  
 
 
10.73:   Find the speed v the marble needs at the edge of the pit to make it to the level 
ground on the other side. The marble must travel 36 m horizontally while falling 
vertically 20 m. 
        Use the vertical motion to find the time. Take y to be downward. 

        

m/s. 82.17 gives Then 

s 02.2 gives 

?  m, 20 ,m/s 80.9 ,0

000

2
2
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00

0
2
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      Use conservation of energy,  where point 1 is at the starting point and point 2 is at the 
edge of the pit, where m/s. 82.17v Take 0y  at point 2, so . and 0 12 hyy   

     2
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2211
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      Rolling without slipping means 2
5
12

2
12

5
2   so  ,  . mvImrIrvω   

      
m 23

)m/s 10(9.80
m/s) 82.17(7

10
7

2

2
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       b) ,2
5
12

2
1 mvI   Independent of r. 

       c) All is the same, except there is no rotational kinetic energy term in 2
2
1: mvKK   

       2
2
1 mvmgh   

       0.7 m, 16
2

2


g

vh times smaller than the answer in part ( a). 

 
 



10.74:  Break into 2 parts, the rough and smooth sections. 
      2
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Smooth: Rotational KE does not change. 
 

m/s 29.0
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10.75:     a) Use conservation of energy to find the speed 2v  of the ball just before it 
leaves the top of the cliff. Let point 1 be at the bottom of the hill and point 2 be at the top 
of the hill. Take 0y  at the bottom of the hill, so m. 0.28y and 0 21 y  
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       Rolling without slipping means   2
5
122

5
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1 )/(  and  mvrvmrIrv    
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       Consider the projectile motion of the ball, from just after it leaves the top of the cliff 
until just before it lands. Take y  to be downward. 
   Use the vertical motion to find the time in the air: 

    
s 39.2 gives 

?  m,  0.28 ,sm  80.9 ,0
2

2
1

00

0
2

0





ttatvyy

tyyav
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yy  

    During this time the ball travels horizontally     m. 5.36s 39.2 sm 26.1500  tvxx x

    Just before it lands, s 3.15 and s 4.23 00  xxyyy vvtavv sm  0.2822  yx vvv  

         b) At the bottom of the hill,    .sm 0.25 rrvω  The rotation rate doesn't change 
while the ball is in the air, after it leaves the top of the cliff, so just before it lands 

.s) 3.15( r  The total kinetic energy is the same at the bottom of the hill and just before 
it lands, but just before it lands less of this energy is rotational kinetic energy, so the 
translational kinetic energy is greater. 
 
 



10.76:  (a) )1(
2
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2
1 22 Imvmgh   

                     





 2

s
2

rspokesrim 3
16 RmRMIII  

Uniform density means:  . and 2 sr λRmπRλm   No slipping means that  .Rvω   
Also,  3262sr  πRλRλπRλmmm  substituting into (1) gives 
 

                

      

 
 

   
   

sm 0.26 and

srad 124
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(b) Doubling the density would have no effect because it does not appear in the answer. 

,  1
Rαω  so doubling the diameter would double the radius which would reduce 

but half,by  ω Rωv  would be unchanged. 
 
 
10.77:    a) The front wheel is turning at s.rad 2srev 00.1    
              s 07.2)srad 2)(m 330.0(  rωυ  
         b) srev 503.0srad 16.3m 655.0()sm 07.2(  rvω  
         c) srev 50.1 srad 41.9)m 220.0()sm 07.2(  rvω  
 
 
10.78:    a) The kinetic energy of the ball when it leaves the tract (when it is still rolling 
without slipping) is  )107( 2mv and this must be the work done by gravity, W = mgh, so 

.710ghv  The ball is in the air for a time .720 so  ,2 hyvtxgyt   
   b) The answer does not depend on g, so the result should be the same on the moon. 
   c) The presence of rolling friction would decrease the distance.  
   d) For the dollar coin, modeled as a uniform disc, .38 so and ,)43( 2 hyxmvK   
 
 



10.79:    a)        
  s.m34.9  

kg 0590.07
m 15.0 mN 400 21 800.010

7
10 2


m
Kv  

 
   b) Twice the speed found in part (a), s.m 7.18     c) If the ball is rolling without 
slipping, the speed of a point at the bottom of the ball is zero.    d) Rather than use the 
intermediate calculation of the speed, the fraction of the initial energy that was converted 
to gravitational potential energy is         mghkx 221 0.720 so ,900.0 800.0  and solving 
for h gives 5.60 m. 
 
 
10.80:    a)  

 
         b)   R is the radius of the wheel (y varies from 0 to 2R) and T is the period of the 
wheel’s rotation. 
         c)   Differentiating, 
                                                  

.2cos 2                2sin2

2sin 2        2cos12
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        d)   22 when 0 







T
tvv yx or any multiple of  ,2π  so the times are integer 

multiples of the period T. The acceleration components at these times are 
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independent of time. This is the magnitude of the radial acceleration for a point moving 
on a circle of radius R with constant angular velocity .2

T
  For motion that consists of this 

circular motion superimposed on motion with constant velocity  ,0a  the acceleration 
due to the circular motion will be the total acceleration. 
 
 



10.81:  For rolling without slipping, the kinetic energy is       ;65 21 222 mvvRIm   
initially, this is 32.0 J and at the return to the bottom it is 8.0 J. Friction has done J 0.24  
of work, J 0.12 each going up and down. The potential energy at the highest point was 
20.0 J, so the height above the ground was    m. 40.32sm 80.9kg 0.600

J 0.20   

 
 
10.82:  Differentiating , and obtaining the answer to part (b), 
 

,333 3231
32

2 θb
b
θbbt

dt
dθ







  

.666 3132
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            a)                                   .
2
96 3432

cm
31

cm
32

cm θbIdθθIbdαIW  

                c)   The kinetic energy is 

,
2
9

2
1 3432

cm
2

cm  bIIK   

in agreement with Eq. (10.25); the total work done is the change in kinetic energy. 
 
 
10.83:  Doing this problem using kinematics involves four unknowns (six, counting the 
two angular accelerations), while using energy considerations simplifies the calculations 
greatly. If the block and the cylinder both have speed v, the pulley has angular velocity 
v/R and the cylinder has angular velocity v/2R, the total kinetic energy is 
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This kinetic energy must be the work done by gravity; if the hanging mass descends a 
distance y, .)32(or    , 2 gyvMgyK   For constant acceleration, ,22 ayv   and 
comparison of the two expressions gives .3ga   
 
 



10.84: (a) 
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         (b) As the bridge lowers,  is  so  changes,  not constant. Therefore Eq. (9.17) is 
not valid. 
 
         (c) Conservation of energy: 

srad 78.1
m 00.8

60sin)sm 8.9(3

sin 3
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10.85:  The speed of the ball just before it hits the bar is s.m34.15   2  gyv  
      Use conservation of angular momentum to find the angular velocity  of the bar just 
after the collision. Take the axis at the center of the bar. 
            2

1 m kg 153.4 m 00.2 sm15.34 kg 5.00  mvrL  
Immediately after the collsion the bar and both balls are rotating together. 
      ωIL tot2   

             22222
tot mkg 67.50m 00.2 kg 00.52m 00.4 kg 00.8

12
12

12
1

 mrMlI  

    2
12 m kg 4.153    LL  

      srad 027.3 tot2  ILω  
Just after the collision the second ball has linear speed   
          sm055.6srad027.3 m 00.2  rwv and is moving upward. 

  m 1.87y gives 
2
1 2  mgymv for the height the second ball goes. 

 
 



10.86:    a) The rings and the rod exert forces on each other, but there is no net force or 
torque on the system, and so the angular momentum will be constant. As the rings slide 
toward the ends, the moment of inertia changes, and the final angular velocity is given by 
Eq.  ,33.10  

        ,
4mkg 1000.2

mkg 1000.5
2
2 1
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 ans so min.rev 5.72  Note that conversion from rev/min to rad/s is not necessary. 
   b) The forces and torques that the rings and the rod exert on each other will vanish, but 
the common angular velocity will be the same, 7.5 rev/min. 
 
 
10.87: The intial angular momentum of the bullet is     ,2  4 Lvm and the final moment 
of intertia of the rod and bullet is        .4819243 222 mLLmLm   Setting the initial 

angular moment equal to I and solving for gives   .
19
6

4819
8

2 Lv
mL

mvL
   

  b)      
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10.88:   Assuming the blow to be concentrated at a point (or using a suitably chosen 
“average” point) at a distance r from the hinge, . and ave,aveave rJtrFLrF   
The angular velocity  is then 

  ,
2
32 ave

2
3
1

aveave

ml
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ml
tFl

I
trF

I
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Where l  is the width of the door. Substitution of the given numeral values gives 
s.rad514.0  

 
 
10.89:    a) The initial angular momentum is  2lmvL   and the final moment of inertia 
is   ,2 2

0 lmII   so 
 

 
   

s.rad 46.5
23

2
22 




lmlM
lmvω  

 
    b)     ,21 2IωghmM  and after solving for h  and substitution of numerical values, 

m. 1016.3 2h  c) Rather than recalculate the needed value of  , note that   will be 
proportional to v and hence h will  be proportional to ;2v  for the board to swing all the 

way over, m. 250.0h and so   s.m 1012sm 360 m 0.0316
m 250.0 v  

 
 



10.90: Angular momentum is conserved, so ,2200  II   or, using the fact that for a 
common mass the moment of inertia is proportional to the square of the radius, 

,2
2
20

2
0  RR or      ,2 ~ 2

0000
2
00

2
00

2
0   RRRRRRR  

where the terms in R  and 2  have been omitted. Canceling the 0
2
0R  term gives 

cm. 1.1
2 0

0 



ω
ωRR  

 
 
10.91: The initial angular momentum is AIωL 01   and the initial kinetic energy is 

.22
01 ωIK A  The final total moment of inertia is AI4 , so the final angular velocity 

is   041 ω and the final kinetic energy is       .414421 1
2

0 KωI A  (This result may be 
obtained more directly from .2 ILK  Thus,      J 2400 34K and 43 11  KK  

J. 3200  
 
 
10.92:  The tension is related to the block’s mass and speed, and the radius of the circle, 

by .
2

r
vmT   The block’s angular momentum with respect to the hole is mvrL  , so in 

terms of the angular momentum, 
 

  .1
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222
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The radius at which the string breaks can be related to the initial angular momentum by 

       
    ,

N 0.30 kg 250.0
m 800.0 sm 00.4 kg 250.0 2

max

2
11

max

2
3 

mT
rmv

mT
Lr  

from which m. 440.0r  
 
 
10.93: The train’s speed relative to the earth is  m 0.475 sm 600.0 ω , so the total 
angular momentum is  

            ,0
2

m 00.1 kg 00.7 21m 475.0kg 20.1 m 475.0sm 600.0
2







 ωω  

 
from which srad298.0 ,with the minus sign indicating that the turntable moves 
clockwise, as expected. 
 
 



10.94:     a), g)   

 
 

   b) Using the vector product form for the angular momentum, so , and 2121 rrvv 
  

 
         ,1122 vrvr 

 mm  
so the angular momenta are the same.  c) Let .ĵω 

 Then, 
      and ,ˆˆ

11 kiv xzr 
  

                                           .ˆˆˆ 22
111 kjivL xRyxxRmωrm 


 
 
With ,222 Ryx   the magnitude of , and ,2 is 22

1
2 RmRm  ωLL 

and so 
. and ,cos 62

1
))(2( 2

22 


  
Rm

Rm  This is true for 2L


as well, so the total angular 

momentum makes an angle of 6
  with the +y-axis.    d) From the intermediate 

calculation of part (c), ,2
1 mvRRmLy    so the total y-component of angular 

momentum is yy LmvRL  e) .2 is constant, so the net y-component of torque is zero. f) 
Each particle moves in a circle of radius R with speed v, and so is subject to an inward 
force of magnitude .2 Rmv  The lever arm of this force is R, so the torque on each has 
magnitude .2mv  These forces are directed in opposite directions for the two particles, 
and the position vectors are opposite each other, so the torques have the same 
magnitude and direction, and the net torque has magnitude 22mv . 
 

 



10.95:     a) The initial angular momentum with respect to the pivot is ,mvr and the 
final total moment of inertia is ,2mrI   so the final angular velocity is 

 .2 Imrmvrω   
b) The kinetic energy after the collision is 

   

 
  .2 

or  ,
2
1

2

22

Imr
ghmMω

ghmMImrωK







 

 

  c) Substitution of 2ΜrΙ  into either of the result of part (a) gives  ,rv
Mm

mω 








  

and into the result of part (b), ),1(2 rghω  which are consistent with the forms for v. 
 
 
10.96: The initial angular momentum is 11 mRvΙω  , with the minus sign indicating that 
runner’s motion is opposite the motion of the part of the turntable under his feet. The 
final angular momentum is so ),( 2

2 mR   

          2
11

2 mRΙ
mRvΙωω




  

 

               22

2

m) 00.3kg)( 0.55()mkg 80(
s)m 8.2m)( 00.3kg)( 0.55(s)rad 200.0)(mkg 80(




  

               s,rad 776.0  
 
where the minus sign indicates that the turntable has reversed its direction of motion (i.e., 
the man had the larger magnitude of angular momentum initially). 
 
 
10.97:  From Eq. (10.36), 
 

       s,rad 7.12
m)) 33.0(s)m0.6()(mkg 085.0(

m) 040.0)(sm  kg)(9.80 0.50(
2

2








ω
ωr  

 
or 13 srad to two figures, which is quite large. 
 
 



10.98: The velocity of the center of mass will change by ,cm m
Jv   and the angular 

velocity will change by  
I
xxJω )( cm The change is velocity of the end of the bat will 

then be 



Ι

xxxJ
m
Jωxvv cm cm

cmcmend
)(_  Setting 

, ofon cancellati allows 0end Jv   ,)( gives and cmcm mxxxΙ  which when solved for x 
is 

m. 710.0m) 600.0(
kg) 800.0m)( 600.0(

)mkg1030.5( 22

cm
cm







x
mx
Ιx  

 
 
10.99:  In Fig. (10.34(a)), if the vector 

are  vector  thehence and , Lr  βanglean  makebut  horizontalnot with the horizontal, the 
torque will still be horizontal (the torque must be perpendicular to the vertical weight). 
The magnitude of the torque will be βrω  cos  , and this torque will change the direction 
of the horizontal component of the angular momentum, which has magnitude βL  cos . 

Thus, the situation of Fig. (10.36) is reproduced, but with LL  of instead horiz . Then, the 
expression found in Eq. (10.36) becomes 
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10.100:    a)  

 
 
           The distance from the center of the ball to the midpoint of the line joining the 
points where the ball is in contact with the rails is   ,2 22 dR   .4 so 22

cm dRωv   
when ,0d  this reduces to ,Rvcm   the same as rolling on a flat surface. When 

,2Rd  the rolling radius approaches zero, and .any for  0 cmv  
 

b) 22
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 ImvK  

c)     
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Setting this equal to mgh and solving for cmv gives the desired result.    c) The 
denominator in the square root in the expression for cmv  is larger than for the case 

cm so ,0 vd   is smaller. For a given speed, 0   than thelarge is d  case, so a larger 
fraction of the kinetic energy is rotational, and the translational kinetic energy, and hence 

cmv , is smaller.    d) Setting the expression in part (b) equal to 0.95 of that of the 0d  
case and solving for the ratio 1.05. gives RdRd  Setting the ratio equal to 0.995 gives 

.37.0Rd  
 
 



10.101:    a) 
 

 
           The friction force is .  so  , kkk gµaMgµnµf   The magnitude of the angular 
acceleration is   .k

2
k 2
21 R

gµ
MR

MgRµ
I
fR    b) Setting  RtRatv   0  and solving for t 

gives 
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    c) The final kinetic energy is       ,at4343 22 MMv  so the change in kinetic energy 
is  
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10.102: Denoting the upward forces that the hands exert as , and RL FF the conditions that 

RL FF  and must satisfy are 

,
r

IωFF

wFF

RL

RL




 

where the second equation is ,L  divided by r. These two equations can be solved 
for the forces by first adding and then subtracting, yielding 
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Using the values and N 4.78)sm 80.9)(kg 00.8( 2  mg  

smkg 7.132
)m 200.0(

)revrad 2srev 00.5()m 325.0)(kg 00.8( 2





 π
r
I  

gives 
).sN 4.66(N 2.39  s),N (66.4N 2.39  RL FF  

N. 4.18 N, 0.60 s,rad 314.0srev 0.05  b)      
N. 2.39,0  a)       




RL

RL

FF
FF

 

      
.srev 0.0916 is which ,srad 575.0  gives  0  d)

force. downward a indicatingsign  minus with the
 N, 2.86 N, 165 s,rad 89.1srev 0.3  c)

sN  66.4
N 39.2 
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10.103:    a) See Problem 10.92;  .32
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2
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d and  b)  are always antiparallel, so 
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which is the same as the work found in part  (b). 
  



11.1:      Take the origin to be at the center of the small ball; then, 

m387.0
kg00.3

)m580.0)(kg00.2(kg)(0)00.1(
cm 


x  

from the center of the small ball. 
 
 
11.2:      The calculation of Exercise 11.1 becomes 

m351.0
kg50.4

)m580.0)(kg00.2()m280.0)(kg50.1()0)(kg00.1(
cm 


x  

This result is smaller than the one obtained in Exercise 11.1. 
 
 
11.3:      In the notation of Example 11.1, take the origin to be the point ,S  and let the 
child’s distance from this point be .x  Then, 

m,125.1
2

 ,0)2(
cm 





m

MDx
mM

mxDMs  

which is ,2)22( DL  halfway between the point S and the end of the plank. 
 
 
11.4:      a) The force is applied at the center of mass, so the applied force must have the 
same magnitude as the weight of the door, or N. 300  In this case, the hinge exerts no 
force. 
       b) With respect to the hinge, the moment arm of the applied force is twice the 
distance to the center of mass, so the force has half the magnitude of the weight, or 

N 150 . The hinge supplies an upward force of N. 150N 150N 300   
 
 
11.5:      kN,45.5 so ),m0.10)(N2800(40 sin)m0.8(  FF keeping an extra figure. 
 
 
11.6:      The other person lifts with a force of N.100N60N160   Taking torques 
about the point where the N -60 force is applied, 

m.40.2
N100
N160)m50.1( or ),m50.1)(N160()N100( 







 xx  

 
 

11.7:      If the board is taken to be massless, the weight of the motor is the sum of the 
applied forces, N. 1000  The motor is a distance m200.1)N1000(

)N600)(m00.2(  from the end where 
the 400-N force is applied. 
 
 



11.8:      The weight of the motor is N.800N200N600N400   Of the myriad ways 
to do this problem, a sneaky way is to say that the lifters each exert N 100 to the lift the 
board, leaving N 500 and N 300 to the lift the motor. Then, the distance of the motor 
from the end where the 600-N force is applied is m75.0)N800(

)N300)(m00.2(  .The center of 

gravity is located at m80.0)N1000(
)m75.0)(N800()m0.1)(N200(  from the end where the N 600  force 

is applied. 
 
 
11.9:      The torque due to , cot is hθhTT D

Lw
xx  and the torque due to LwDTT yy  is . 

The sum of these torques is ).cot1( θLw D
h From Figure (11.9(b)), ,tanθDh  so the net 

torque due to the tension in the tendon is zero. 
 
 
11.10:     a) Since the wall is frictionless, the only vertical forces are the weights of the 
man and the ladder, and the normal force. For the vertical forces to balance, 

N,900N740N160m12  wwn  and the maximum frictional forces is 
N360)N900)(40.0(2s nµ (see Figure 11.7(b)). b) Note that the ladder makes contact 

with the wall at a height of 4.0 m above the ground. Balancing torques about the point of 
contact with the ground, 

 
m,N684)N740))(53)(m0.1()N160)(m5.1()m0.4( 1 n  

 
so N,0.1711 n  keeping extra figures. This horizontal force about must be balanced by 
the frictional force, which must then be 170 N to two figures. c) Setting the frictional 
force, and hence 1n , equal to the maximum of 360 N and solving for the distance x along 
the ladder, 

),N740)(53()N160)(m50.1()N360)(m0.4( x  
so x = 2.70 m, or 2.7 m to two figures. 
 
 
11.11:     Take torques about the left end of the board in Figure (11.21). a) The force F at 
the support point is found from 

N.1920or  ),m00.3)(N500()m50.1)(N280()m00.1(  FF b) The net force must be 
zero, so the force at the left end is N,1140)N280()N500()N1920(   downward. 
 
 



11.12:     a)  

 
 

 
         b) ,0 when m 25.6  AFx which is 1.25 m beyond point B. c) Take torques about 
the right end. When the beam is just balanced, N.900 so ,0  BA FF The distance that 
point B must be from the right end is then m.50.1)N900(

)m50.4)(N300(   
 
 
11.13:     In both cases, the tension in the vertical cable is the weight .ω  a) Denote the 
length of the horizontal part of the cable by .L  Taking torques about the pivot point, 

),2(030tan LwwL.TL  from which .60.2 wT   The pivot exerts an upward vertical 
force of w2  and a horizontal force of w60.2 , so the magnitude of this force is w28.3 , 
directed 6.37  from the horizontal. b) Denote the length of the strut by L , and note that 
the angle between the diagonal part of the cable and the strut is .0.15   Taking torques 
about the pivot point, .10.4 so ,45sin  )2(45.0sin  15.0sin  wTLwwLTL   The 
horizontal force exerted by the pivot on the strut is then ωT 55.330.0 cos   and the 
vertical force is ,05.430sin  )2( wTw   for a magnitude of ,38.5 w  directed .8.48   
 
 
11.14:     a) Taking torques about the pivot, and using the 3-4-5 geometry, 
 

),N150)(m00.2()N300)(m00.4()53()m00.4( T  
 

so N. 625T  b) The horizontal force must balance the horizontal component of the 
force exerted by the rope, or N. 500)54( T  The vertical force is 

N,75)53(N150N300  T  upwards. 
 
 



11.15:     To find the horizontal force that one hinge exerts, take the torques about the 
other hinge; then, the vertical forces that the hinges exert have no torque. The horizontal 
force is found from N.140 which from ),m50.0)(N280()m00.1( HH  FF  The top hinge 
exerts a force away from the door, and the bottom hinge exerts a force toward the door. 
Note that the magnitudes of the forces must be the same, since they are the only 
horizontal forces. 
 
 
11.16:     (a) Free body diagram of wheelbarrow: 
 

 
 

N1200
0)m70.0()m70.0)(N80()m0.2)(N450(
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         (b) From the ground. 
 
 
11.17:     Consider the forces on Clea. 
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11.18:     a) Denote the length of the boom by L, and take torques about the pivot point. 
The tension in the guy wire is found from 
 

,0.60 cos )35.0N)(2600( 0.60 cos  N)5000( 60sin  LLTL  
 

so kN. 14.3T  The vertical force exerted on the boom by the pivot is the sum of the 

weights, 7.06 kN and the horizontal force is the tension, 3.14 kN. b) No; .0 
F
F

tan 
H

v 







 

 
11.19:     To find the tension  LT in the left rope, take torques about the point where the 
rope at the right is connected to the bar. Then, 

N.270 so m),N)(0.5090( m)N)(1.50240( 150sin m)00.3( LL  TT  The vertical 
component of the force that the rope at the end exerts must be 

N,195150sin  N)270( N)330(   and the horizontal component of the force is 
,150 cos N)270(  so the tension is the rope at the right is N.304R T .9.39 and θ  

 
 
11.20:     The cable is given as perpendicular to the beam, so the tension is found by 
taking torques about the pivot point; 

kN.40.7or  ,0.25 cos  m)50.4kN)(00.5(0.25 cos m)00.2kN)(00.1(m)00.3(  TT  
The vertical component of the force exerted on the beam by the pivot is the net weight 
minus the upward component of kN.17.00.25 cos kN00.6 , TT  The horizontal force 
is kN. 13.30.25sin  T  
 
 
11.21:    a)   ).N)(00.8()m 00.3(m)00.3( 21 llFF   a have given to is This  

 of magnitude m.80.0 so N.m,40.6 l   b) The net torque is clockwise, either by 
considering the figure or noting the torque found in part (a) was negative. c) About the 
point of contact of ,2F the torque due to , is 11 lFF  and setting the magnitude of this 
torque to m, 80.0 gives mN 40.6  l  and the direction is again clockwise. 
 
 
11.22:     From Eq. (11.10), 

).m1333(
)m100.50m)(100.3(

m)200.0( 2
242

0 
 





 FF

lΑ
lFY  

Then, N 0.25F  corresponds to a Young’s modulus of N 500 and Pa, 103.3 4  F  
corresponds to a Young’s modulus of Pa. 107.6 5  
 



11.23:                ,m1060.1
)m1025.0)(Pa 1020(

)m00.2)(N400( 26
210

0 
 







lY
FlA   

and so m, 1043.14 3 Ad or 1.4 mm to two figures. 
 
 
11.24:     a) The strain, from Eq. (11.12), is .

0 YA
F

l
l  For steel, using Y from Table (11.1) 

and ,m 1077.1 24
4
2  dA   

.101.1
)m 1077.1)(Pa 100.2(

)N4000( 4
2411

0


 





l

l  

 
Similarly, the strain for copper )Pa1010.1( 11Y  is .101.2 4 b) Steel: 

m103.8)m750.0()101.1( 54   . Copper:   m106.1)m750.0)(101.2( 44  
 
 
11.25:     From Eq. (11.10), 

Pa. 100.2
)m1020.0)(m1050.0(

)m00.4)(N5000( 11
224 


 Y  

 
 
11.26:     From Eq. (11.10), 

Pa. 108.6
)m10.1)()m 105.3((

)m0.45)(sm 80.9)(kg0.65( 8
23

2




 
Y  

 
 
11.27:     a) The top wire is subject to a tension of N157)sm80.9)(kg0.16( 2  and 
hence a tensile strain of 33

)m 105.2)(Pa 1020(
)N157( 103.1or  ,1014.32710




 to two figures. The 

bottom wire is subject to a tension of 98.0 N, and a tensile strain of 31096.1  , or 
3102.0   to two figures.  b)  mm,1.57m))(0.50010(3.14 3    

mm.0.98m))(0.50010(1.96 3    
 
 

11.28:    a)  Pa. 106.1 6
)m 105.12(

) 80.9)(kg8000(
22

2s
m


  b) .108.0 5

Pa 102.0
Pa 101.6

10

6 


   

c) m. 102)m 50.2()108.0( 55    
 
 
11.29:     N. 101.9)m 0.50)(Pa 10013.1)(18.2( 625   
 
 



11.30:     a) The volume would increase slightly. b) The volume change would be twice 
as great. c) The volume is inversely proportional to the bulk modulus for a given pressure 
change, so the volume change of the lead ingot would be four times that of the gold. 
 
 
11.31:     a) Pa. 1033.3 6

m 100.75
N 250

24- 


   b) kN. 133)m 10Pa)(2)(200 10(3.33 246    
 
 

11.32:     a) Solving Eq. (11.14) for the volume change, 

              
.m 0531.0

)Pa 101.0Pa 1016.1)(m 00.1)(Pa 108.45(
Δ

3

583111








PkVV
 

 

b) The mass of this amount of water not changed, but its volume has decreased to 
,m947.0m053.0m000.1 333   and the density is now .mkg1009.1 33

m 947.0
kg1003.1
3

 3

  
 
 

11.33:  .Pa101.21   ,Pa108.4
)cm45.0(

)Pa106.3)(cm600( 1109
3

63





B
kB  

 
 

11.34:     a) Using Equation ),17.11(  
 

               Shear strain .104.2
]Pa105.7)][m005)(.m10[(.

)N109( 2
10

5
|| 





AS
F

 

 
         b) Using Equation x ),16.11(  Shear stain .m104.2)m1)(.024(. 3 h  
 
 

11.35:     The area A in Eq. )17.11(  has increased by a factor of 9, so the shear strain for 
the larger object would be 91  that of the smaller. 
 
 
11.36:     Each rivet bears one-quarter of the force, so 
 

 Shear stress .Pa1011.6
)m10125(.
)N1020.1( 8

22

4
4
1

|| 



 A
F

 

 
 



11.37:     Pa104.3 or ,Pa1041.3 77
)m1092.0(

)N8.90(
23  A

F  to two figures. 

 
 
11.38:     a) N.1060.1)m105)(Pa1020)(106.1( 326103    b) If this were the case, 

the wire would stretch 6.4 mm.  
 
         c) N.105.6)m105)(Pa1020)(105.6( 326103    
 
 
 

11.39:     .sm 10.2sm80.9
)kg1200(

3)m1000.3()Pa1040.2( 22
248

tot 





m
Fa  

 
 
11.40:     mm.97.04 so ,m1045.7 2 7

Pa 104.7
N 350
 8  


AdA  

 
 

11.41:     a) Take torques about the rear wheel, so that fdxωxfω  cmcm or  ,d . 
     b) m30.1)m46.2)(53.0(   to three figures. 
 
 
11.42:     If Lancelot were at the end of the bridge, the tension in the cable would be 
(from taking torques about the hinge of the bridge) obtained from 
 

so N.6860T  This exceeds the maximum tension that the cable can have, so Lancelot is 
going into the drink. To find the distance x Lancelot can ride, replace the 12.0 m 
multiplying Lancelot’s weight by x and the tension  N1080.5by  3

max TT  and solve 
for x; 
 

                  m.84.9
)sm80.9)(kg600(

)m0.6)(sm80.9)(kg200()m0.12)(N1080.5(
2

23




x  

 
 
 

),m0.6)(sm80.9)(kg200()m0.12)(sm80.9)(kg600()N0.12( 22 T



11.43:     For the airplane to remain in level flight, both 0 and 0  F . 
 

           
 Taking the clockwise direction as positive, and taking torques about the center of mass, 
 

Forces: 0wingtail  FWF  
 

Torques: 0)m3(.)m66.3( wingtail  FF  
 
A shortcut method is to write a second torque equation for torques about the tail, and 
solve for the .0)m36.3()N6700)(m66.3(: wingwing  FF  This gives 

.N(down)600N7300N6700 and ),up(N7300 tailwing  FF   
 
Note that the rear stabilizer provides a downward force, does not hold up the tail of the 
aircraft, but serves to counter the torque produced by the wing. Thus balance, along with 
weight, is a crucial factor in airplane loading. 
 
 
11.44:     The simplest way to do this is to consider the changes in the forces due to the 
extra weight of the box. Taking torques about the rear axle, the force on the front wheels 
is decreased by N,1200N3600 m3.00

m1.00   so the net force on the front wheels 

is N109.58N1200N 10,780 3 to three figures. The weight added to the rear wheels 
is then N,4800N1200 N3600   so the net force on the rear wheels is 

N,1036.1N4800N8820 4  again to three figures. 
        b) Now we want a shift of N10,780  away from the front axle. Therefore, 

N780,10m00.3
m00.1 W  and so N.340,32w  

 
 
11.45:     Take torques about the pivot point, which is 2.20 m from Karen and 1.65 m 
from Elwood. Then ),m20.0)(N240()m20.2)(N420()m65.1(Elwood w so Elwood 
weighs 589 N. b) Equilibrium is neutral. 
 
 



11.46:     a) Denote the weight per unit length 
as . and ),cm0.8(),cm0.10( so , 321 αlwαwαwα   
The center of gravity is a distance cmx to the right of point O where 
 

321

321
cm

)2cm0.10()cm5.9()cm0.5(
www

lwwwx



   

 

.
)cm0.8()cm0.10(

)2cm0.10()cm5.9)(cm0.8()cm0.5)(cm0.10(
l

ll



  

 
Setting  0cm x  gives a quadratic in ,l  which has as its positive root cm.8.28l  
         b) Changing the material from steel to copper would have no effect on the length l  
since the weight of each piece would change by the same amount.  
 
 
 
11.47:     Let Rrr


 ii ,where R


 is the vector from the point O to the point P. 

The torque for each force with respect to point P is then iii Fr
  , and so the net torque 

is 
 

  iiiτ FRr
    

        







. 

  

iii

ii

FRFr

FRFri




 

In the last expression, the first term is the sum of the torques about point O, and the 
second term is given to be zero, so the net torques are the same. 
 
 
11.48:     From the figure (and from common sense), the force 1F


 is directed along the 

length of the nail, and so has a moment arm of (0.0800 m) 60sin . The moment arm of 

2F


 is 0.300 m, so 
 

N.116)231.0N)(500(
m)300.0(

60sin   m)0800.0(
12 


 FF  

 
 



11.49:     The horizontal component of the force exerted on the bar by the hinge must 
balance the applied force F


, and so has magnitude 120.0 N and is to the left. Taking 

torques about point  m),00.3( m)00.4N)(0.120(, VFA  so the vertical component is 
N160 , with the minus sign indicating a downward component, exerting a torque in a 

direction opposite that of the horizontal component. The force exerted by the bar on the 
hinge is equal in magnitude and opposite in direction to the force exerted by the hinge on 
the bar. 
 
 
11.50:     a) The tension in the string is N,502 w and the horizontal force on the bar 
must balance the horizontal component of the force that the string exerts on the bar, and 
is equal to N,30 37sin  N)50(   to the left in the figure. The vertical force must be 

N.58N)50(N)30( c) .59
N30
N50arctan  b) up.  N,50N1037 cos N)50( 22 







  

         d) Taking torques about (and measuring the distance from) the left end, 
)m0.5)(N40()N50( x , so m0.4x , where only the vertical components of the 

forces exert torques. 
 
 
11.51:     a) Take torques about her hind feet. Her fore feet are 0.72 m from her hind feet, 
and so her fore feet together exert a force of N,9.73m) 72.0(

m)28.0( N)190(   so each foot exerts a 
force of 36.9 N, keeping an extra figure. Each hind foot then exerts a force of 58.1 N.  
b) Again taking torques about the hind feet, the force exerted by the fore feet is 

N,1.105m 72.0
m)09.0( N)25(m) 28.0( N) 190(   so each fore foot exerts a force of 52.6 N and each hind 

foot exerts a force of 54.9 N. 
 
 
11.52:     a) Finding torques about the hinge, and using L as the length of the bridge and 

  and BT ww for the weights of the truck and the raised section of the bridge, 
 

     30 cos L30 cos 70sin 2
1

B4
3

T wLwTL ,  so 
 
 

  N.1057.2
70 sin

30 cos)sm 80.9( 5
2

B2
1

T4
3







mmT  

 
b) Horizontal:   N.109713070cos 5 .T Vertical:  40sin  BT Tww  
 N.102.46  5  
 
 



11.53:     a) Take the torque exerted by 2F


 to be positive; the net torque is then 
,sin sin)(sin )( 21  FllxFxF   where F is the common magnitude of the forces. 

b) m,N3.2537 sin)m0.3)(N0.14(1   keeping an extra figure, and 
    m,N9.3737 sin)m5.4)(N0.14(2   and the net torque is m.N6.12   About point 
P, m,N3.25)37 )(sinm0.3)(N0.14(1   and  
    m,N6.12)37 )(sinm5.1)(N0.14(2   and the net torque is m.N6.12  The 
result of part (a) predicts ,37 sin)m5.1)(N0.14(   the same result. 
 
 
11.54:     a) Take torques about the pivot. The force that the ground exerts on the ladder is 
given to be vertical, and θθF sin)m0.4)(N250(sin)m0.6(V    

N.354 so ,sin)m50.1)(N750( V  Fθ  b) There are no other horizontal forces on the 
ladder, so the horizontal pivot force is zero. The vertical force that the pivot exerts on the 
ladder must be N,646)N354()N250()N750(  up, so the ladder exerts a downward 
force of N 646  on the pivot. c) The results in parts (a) and (b) are independent of θ.  
 
 
11.55:     a) . and  THwmgV  To find the tension, take torques about the pivot 
point. Then, denoting the length of the strut by ,L  

.cot
4

or ,cos
6

cos
3
2sin

3
2

θmgwT

θLmgθLwθLT







 























 

 
 
         b) Solving the above for w , and using the maximum tension for ,T  

N.951)sm 80.9()kg0.5(055tan)N700(
4

tan 2  .mgθTw  

 
         c) Solving the expression obtained in part (a) for tan and letting 

.004 so ,700.0tan ,0 4  .θθω T
mg  

 
 



11.56:     (a) and (b) 
 
Lower rod: 

 
 

           )cm0.8()cm0.4)(N0.6(:0p A  
                                                                      N0.3A  

            N 9.0N3.0N0.6N0.6:0 3  ATF  
 
Middle rod: 

 
)cm0.5)(N0.9()cm0.3(:0p  B  

           N15B  
      N24N9.0N15:0 32  TBTF  

 
 
 
 
 
 
Upper rod: 
 

 
 

 
)cm0.6()cm0.2)(N24(:0p C  

N0.8C  
        N32N8.0N24:0 21  CTTF  



11.57:  

 
 

hingeat  axis ,0  
0)30)(cosm75.3()40)(sinm0.6(  wT  

          N760 T  
 
11.58:     (a) 

 
 

                             0Hinge   

              
N000,120                     

37 cos)m0.7)(N45,000(37m)sin 5.3(



T

T
 

 
         (b) N 000,120 :0  THFx  
 
               N  45,000 :0  VFx  
 
          The resultant force exerted by the hinge has magnitude N 1028.1 5  and direction 

6.20  above the horizontal. 
 
 



11.59:  

 
         a) ,0  axis at lower end of beam 
         Let the length of the beam be L. 
 

        
N 2700

20 sin
40 cos 

040 cos
2

)20 (sin

2
1















mgT

LmgLT
 

 
         b) Take +y upward. 
 

        
N 137260cos  gives 0

N 6.73 so 060sin   gives 0

sx 



TfF
nTwnFy  

       19
N 73.6
N 1372, s

sss 
n
fµnµf  

 
        The floor must be very rough for the beam not to slip. 
 
 
11.60:     a) The center of mass of the beam is 1.0 m from the suspension point. Taking 
torques about the suspension point, 
 

)m00.2)(N 100()m00.1)(N 0.140()m00.4( w  
 
(note that the common factor of sin 30  has been factored out),  from which N. 0.15w  
 
         b) In this case, a common factor of sin 45  would be factored out, and the result 
would be the same. 
 



11.61:     a) Taking torques about the hinged end of  the pole  
0)m00.5()m00.5()N600()m50.2)(N200(  yT . Therefore the y-component of  

the tension is N700yT . The x-component of the tension is then 

N714)N700()N1000( 22 xT . The height above the pole that the wire must be 
attached is m90.4)m00.5( 714

700  . b) The y-component of the tension remains 700 N and 

the x-component becomes N 795)N714( m40.4
m90.4  , leading to a total tension of 

N, 1059N) 700( N) 795( 22   an increase of 59 N. 
 
 
11.62:     A and B are straightforward, the tensions being the weights suspended; 

N. 588.0)sm80.9)(kg0360.0kg0240.0( N, 353.0)sm80.9)(kg0360.0( 22
A  BTΤ

To find , and DC TT a trick making use of the right angle where the strings join is available; 
use a coordinate system with axes parallel to the strings. Then, 

N, 353.053.1 cos  N, 470.036.9 cos  BDBC TTTT  To find ,ET  take torques about 
the point where string F is attached; 

m,N0.833                    
m)5000)(sm809kg)(1200(

)m200.0(53.1sin  )m800.0(36.9sin  )m000.1(
2






...

TTT CDE

 

so FE TT  N. 833.0  may be found similarly, or from the fact that FE TT  must be the 

total weight of  the ornament. N. 931.0 which from N, 76.1)sm80.9)(kg180.0( 2  FT  
 
 
11.63:     a) The force will be vertical, and must support the weight of the sign, and is 300 
N. Similarly, the torque must be that which balances the torque due to the sign’s weight 
about the pivot, mN225)m75.0)(N300(  . b) The torque due to the wire must balance 
the torque due to the weight, again taking torques about the pivot. The minimum tension 
occurs when the wire is perpendicular to the lever arm, from one corner of the sign to the 
other. Thus, N. 132or  m,N 225)m80.0()m50.1( 22  TT The angle that the wire 
makes with the horizontal is .0.62)(arctan 90 1.50

0.80  Thus, the vertical component of 
the force that the pivot exerts is (300 N) –(132 N) sin N 1830.62  and the horizontal 
force is  N62062cos)N132( . , for a magnitude of 193 N and an angle of 71  above 
the horizontal. 
 
 



11.64:     a) m.3.1)m1030.0(4)100.9)(23.0()( 244
0 µwllσw    

 
         b) 

                    
N, 101.3

m100.2
m1010.0 

42.0
 )m)100.2( ( Pa) 101.2(

 1

6
 2

32211



















π
w
w

σ
AY

l
lAYF

 

 
where the Young’s modulus for nickel has been used. 
 
 
11.65:     a) The tension in the horizontal part of the wire will be 240 N. Taking torques 
about the center of the disk,  N. 60or w ,0m))00.1( m)250.0N)( 240(  w                  
b) Balancing torques about the center of the disk in this case, 

 1.53 so,0 cos m))N)(2.00 20(m)00.1N)( 60((m)250.0( N) 240( θθ . 
 
 
11.66:     a) Taking torques about the right end of the stick, the friction force is half the 
weight of the stick,  2

wf  Taking torques about the point where the cord is attached to 
the wall (the tension in the cord and the friction force exert no torque about this 
point),and noting that the moment arm of the normal force is 

.22 )40.0(arctan   so 0.40, tanThen, tan,tan 2    nl n
fw  

 
         b) Taking torques as in part (a), and denoting the length of the meter stick as ,l  

.
2

 tan n and )(
2

wxlwθlxlwlwfl   

In terms of the coefficient of friction ,s  

.tan
2
23tan

)(

2

2
s θ

xl
xlθ

x
xl

n
f

l

l








  

Solving for x, 

cm.230
tan

tan3 
2 s

s .
θµ
µθlx 




  

         c) In the above expression, setting gives for  solving and cm 10 sx  

.625.0
201

tan)203(
s 





l
θlµ  

 
 



11.67:     Consider torques around the point where the person on the bottom is lifting. The 
center of mass is displaced horizontally by a distance  45sin  m)25.0m625.0(  and the 
horizontal distance to the point where the upper person is lifting is 45sin  m)25.1( , and 
so the upper lifts with a force of N. 588)300.0(45sin25.1

45sin375.0 
 ww  The person on the 

bottom lifts with a force that is the difference between this force and the weight, 1.37 kN. 
The person above is lifting less. 
 
                                             
 
 
 



11.68:  
          (a) 

 

       
 
 
 

         
N 2.59

)cm0.15)(N 0.15()cm80.3(
0

B

B

Elbow





F
F  

 

 
         (b) 

             

   
 

 
 
 
 
 
 
 
 
 

N 754
)cm0.33)(N 0.80()cm0.15)(N 0.15()cm80.3(

0

B

B






F
F

E

 



11.69:     a) The force diagram is given in Fig. 11.9. 
 

         

 

positive is derivative  the;1   b)

 sosin

0sin 
elbowat  axis ,0

22
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DhL
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hDTw
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D θTwL

 

         c)   The result of part (b) shows that maxw increases when D increases. 
 
 
11.70: 
 

 
 
         By symmetry, A=B and C=D. Redraw the table as viewed from the AC side. 

 

   

N 670       
 and N 130        Use

N 1590 :0       
N 130        

)m50.0(N 1500)m8.1(N 0.90)m6.3(2        
:0)endright about (        










DC
DCBA

DCBAF
BA

A
τ

 

         By Newton’s third law of motion, the forces A, B, C, and D  on the table are the 
same as the forces the table exerts on the floor. 
 
 



11.71:     a) Consider the forces on the roof 

 
 
         V and H  are the vertical and horizontal forces each wall exerts on the roof. 

        
2 so  2

roof.  theof weight  total theis N00020
wVwV

 ,w



 

.length  have halfeach Let  join. halves
  two the whereline  thealong axis  with theroof,   theof half one   to0Apply         

L


N 7140
035tan4

        

035cos035sin        
2 use and out, divides         

0035cos 035sin )35.0 cos)(2()2(        

4
1











.
wH

. w. H
wVL

.VL.HLLw

 

         By Newton’s 3rd law, the roof exerts a horizontal, outward force on the 
wall. For torque about an axis at the lower end of the wall, at the ground, this 
force has a larger moment arm and hence larger torque the taller the walls. 
b) 

 
 
 
 
Consider the torques 
on one of the walls. 



11.72:     a) Take torques about the upper corner of the curb. The force F


acts at a 
perpendicular distance hR   and the weight acts at a perpendicular distance 

  .2 222 hRhhRR  Setting the torques equal for the minimum necessary force, 

.2 2

hR
hRhmgF




  

         b) The torque due to gravity is the same, but the force F


acts at a perpendicular 
distance ,2 hR  so the minimum force is hvRhmg 2)( /2R–h. c) Less force is 
required when the force is applied at the top of the wheel. 
 
 

11.73:     a) There are several ways to find the tension. Taking torques about point B (the 
force of the hinge at A is given as being vertical, and exerts no torque about B), the 
tension acts at distance 22 )m00.2()m00.4( r 47.4 m and at an angle of 

.6.56
4.00
2.00arctan 30 






  Setting 

N 268 gives for  solving and )m00.2(N)500(sin   TTφTr .   b) The hinge at A is given 
as exerting no horizontal force, so taking torques about point ,D  the lever arm for the 
vertical force at point m,4.3130.0 tan)m00.4(m)(2.00 is B  so the horizontal force 

at N. 232
m31.4

)m00.2(N)500( is B  Using the result of part (a), 

however, N 23230.0 cosN)268(   In fact, finding the horizontal force at B first 
simplifies the calculation of the tension slightly. c) N. 3660.30sin)N 268()N 500(   
Equivalently, the result of part (b) could be used, taking torques about point ,C  to get the 
same result. 
 
 



11.74:     a) The center of gravity of top block can be as far out as the edge of the lower 
block. The center of gravity of this combination is then 43L  from the right edge of the 
upper block, so the overhang is .43L  
         b) Take the two-block combination from part (a), and place it on the third block 
such that the overhang of 43L  is from the right edge of the third block; that is, the center 
of gravity of the first two blocks is above the right edge of the third block. The center of 
mass of the three-block combination, measured from the right end of the bottom block, is 

6L  and so the largest possible overhang is .1211)6()43( LLL   
Similarly, placing this three-block combination with its center of gravity over the right 
edge of the fourth block allows an extra overhang of ,8L  for a total of  .2425L  c) As 
the result of part (b) shows, with only four blocks, the overhang can be larger than the 
length of a single block. 
11.75:     a)  

 

         

N 424.0

N 424.0
30cos2

0)cos2(
at  axis ,0

30 so 2sin
N 47.12














CA

C

C

B

FF

mgF

wRθRF
P
θRRθ

wF

 

         b) Consider the forces on the bottom marble. The horizontal forces must sum to 
zero, so 

         
N 848.0

30sin

sin








A

A

Fn

θnF
 

         Could use instead that the vertical forces sum to zero 

         
checks. which N, 848.0

30cos

0cos








mgFn

nmgF

B

B 
 

 



11.76:     (a) Writing an equation for the torque on the right-hand beam, using the hinge 
as an axis and taking counterclockwise rotation as positive: 

0
2

sin
22

cos
22

sinwire 
θLwθLFθLF c  

where  is the angle between the beams, cF  is the force exerted by the cross bar, and w is 
the weight of one beam. The length drops out, and all other quantities except cF  are 
known, so 
 

2
 tan )2(

cos 
sin   sin

wire
22

1
22

1
2wire

c
θwFwFF

θ

θθ




  

 
Therefore 

N 130
2

53 tan 260 


F  

         b) The cross bar is under compression, as can be seen by imagining the behavior of 
the two beams if the cross bar were removed. It is the cross bar that holds them apart. 
 
         c) The upward pull of the wire on each beam is balanced by the downward pull of 
gravity, due to the symmentry of the arrangement. The hinge therefore exerts no vertical 
force. It must, however, balance the outward push of the cross bar: 130 N horizontally to 
the left for the right-hand beam and 130 N to the right for the left-hand beam. Again, it’s 
instructive to visualize what the beams would do if the hinge were removed. 
 
 
11.77:     a) The angle at which the bale would slip is that for which 

  .0.31arctan or  ,sin  cos sss  µββw βwµΝµf  The angle at which the bale 
would tip is that for which the center of gravity is over the lower contact point, or 
arctan  27or  ,6.26( m) 50.0

m) 25.0 to two figures. The bale tips before it slips. b) The angle for 
tipping is unchanged, but the angle for slipping is arctan  22or    ,8.21)40.0( to two 
figures. The bale now slips before it tips. 
 
 
11.78:     a) N 103)smkg)(9.800.30)(35.0( 2

kk  mgµΝµfF  
         b) With respect to the forward edge of the bale, the lever arm of the weight is 

m125.02
m250.0   and the lever arm h of the applied force is then h 

m.36.0 m)125.0( m)125.0( 35.0
m125.01

k
 F

mg  
 
 



11.79:     a) Take torques about the point where wheel B is in contact with the track. With 
respect to this point, the weight exerts a counterclockwise torque and the applied force 
and the force of wheel A both exert clockwise torques. Balancing torques, 

m).N)(1.00 950(m)60.1)((m)00.2(A  FF  Using 
N. 870 and N, 80 N, 494k  ABA FwFFwF   b) Again taking torques about the 

point where wheel B is in contact with the tract, and using 
m. 92.1 so N),00.1N)( 950( )N 494( (a),part in  as N 494  hhF  

 
 
11.80:     a) The torque exerted by the cable about the left end is θTLsin . For any angle 

,sin)180(sin , θθ   so the tension T will be the same for either angle. The horizontal 
component of the force that the pivot exerts on the boom will be 

θTTθT cos)180( cosor  cos   . b) From the result of part (a), , α sin
1
θT and this 

becomes infinite as .180or  0   Also, c), the tension is a minimum when sin  is a 
maximum, or ,90  a vertical string. d) There are no other horizontal forces, so for the 
boom to be in equilibrium, the pivot exerts zero horizontal force on the boom. 
 
 
11.81:     a) Taking torques about the contact point on the ground, 

N.3664)640( so ,sinm)5.4(sin)m0.7(  w.TθwθT  The ground exerts a vertical  
force on the pole, of magnitude N 2052Tw . b) The factor of sin appears in both 
terms of the equation representing the balancing of torques, and cancels. 
 
 
11.82:     a) Identifying x with l in Eq. (11.10), .0lAYk   
         b) .2 )21( 0

22 lAxYkx   
 
 
11.83:     a) At the bottom of the path the wire exerts a force equal in magnitude to the 
centripetal acceleration plus the weight, 
 

N. 1007.1)sm80.9)m50.0(rev))rad 2)(srev00.2((( 322  mF  
From Eq. (11.10), the elongation is 

mm.5.5
)m10014.0)(Pa 107.0(

)m50.0)(N 1007.1(
2411

3





  

 
         b) Using the same equations, at the top the force is 830 N, and the elongation is 
0.0042 m. 
 
 



11.84:     a) 

 
 

         b) The ratio of the added force to the elongation, found from taking the slope of the 
graph, doing a least-squares fit to the linear part of the data, or from a casual glance at the 
data gives .mN 1000.2 4l

F From Eq. (11.10), 

Pa. 108.1
))m1035.0((

m)50.3()mN 1000.2( 11
23

40 





 A
l

l
FY  

         c) The total force at the proportional limit is N, 80N 60N 0.20  and the stress at 
this limit is Pa. 101.2 8

)m1035.0(
)N 80(

23 
 

 
 
11.85:     a) For the same stress, the tension in wire B must be two times in wire A, and so 
the weight must be suspended at a distance m70.0)m05.1)(32(  from wire A..  
 
         b) The product Y A for wire B is )34(  that of wire B, so for the same strain, the 
tension in wire B must be )34(  that in wire A, and the weight must be 0.45 m from wire 
B. 
 
 
11.86:     a) Solving Eq. (11.10) for l  and using the weight for F, 

m.108.1
)m1000.8)(Pa 100.2(

)m0.15)(N 1900( 4
2411

0 
 




YA
Fll  

         b) From Example 5.21, the force that each car exerts on the cable is 
,0

2
0

2 lwlmωF g
w  and so 

m.109.1
)m1000.8)(Pa 100.2)(sm 80.9(

)m0.15()srad84.0)(N 1900( 4
24112

222
0

2
0 

 



gYA

lwω
YA
Fll  

 
 



11.87:     Use subscripts 1 to denote the copper and 2 to denote the steel. a) From Eq. 
(11.10), with , and 2121 FFll   

m.63.1
)Pa109)(cm00.2(
)Pa1021)(cm00.1()m 40.1( 102

102

11

22
12 





















YA
YALL  

         b) For nickel, Pa 1000.4 8
1

A
F and for brass, Pa. 1000.2 8

2
A

F c) For nickel, 
3

Pa 1021
Pa 1000.4 109.110

8 

  and for brass, .102.2 3

Pa 109
Pa 1000.2

10

8 

   

 
 

11.88:     a) N. 102.4)010.0)(m100.3)(Pa 104.1( 42410

max0
max 







 
 

l
lYAF  

 
         b) Neglect the mass of the shins (actually the lower legs and feet) compared to the 
rest of the body. This allows the approximation that the compressive stress in the shin 
bones is uniform. The maximum height will be that for which the force exerted on each 
lower leg by the ground is maxF found in part (a), minus the person’s weight. The impulse 
that the ground exerts is 

s.mkg 102.1)s 030.0))(sm 80.9)(kg 70(N 102.4( 324 J The speed at the 
ground is ghmJgh 22 so ,2   and solving for h, 
 

m,642
2
1 2









m
J

g
h  

but this is not recommended. 
 
 
11.89:     a) Two times as much, 0.36 mm, b) One-fourth (which is 2)21( ) as much, 
0.045 mm.c) The Young’s modulus for copper is approximately one-half that for steel, so 
the wire would stretch about twice as much. mm. 33.0)mm 18.0(

Pa 1011
Pa 1020

10

10



  

 
11.90:     Solving Eq. (11.14) for ,V  

L. 0541.0
m)150.0(

)sm80.9)(kg1420()L 250)(Pa 10110( 2

2
111

00









π

A
mgkVPkVV

 

 
The minus sign indicates that this is the volume by which the original hooch has 
shrunk, and is the extra volume that can be stored. 
 
 



11.91:     The normal component of the force is θF cos  and the area (the 
intersection of the red plane and the bar in Figure (11.52)) is , cos / θA  so the 
normal stress is .cos )( 2AF  
         b) The tangential component of the force is ,sin  θF  so the shear stress is 

. cos sin  )AF( θθ   
         c) θ2cos is a maximum when 0.or  1, cos  θθ  d) The shear stress can be 
expressed as ,)(2sin  )2( θAF which is maximized when 

.45
2

90 or ,1)(2sin 


 θθ  Differentiation of the original expression with respect 

to   and setting the derivative equal to zero gives the same result. 
 
 
11.92:     a) Taking torques about the pivot, the tensionT in the cable is related to 

the weight by .
sin  2

 so ,2 sin  00 θ
mgTmgllθT   The horizontal component of the 

force that the cable exerts on the rod, and hence the horizontal component of the 

force that the pivot exerts on the rod, is θmg cot  
2

and the stress is .cot  
2

θ
A

mg

b) 

.
2

cot 00

AY
θmgl

AY
Fll   

         c) In terms of the density and length, ,)( 0lρAm   so the stress is 
θgρl cot  )2( 0  and the change in length is .cot  )2( 2

0 θΥgρl  d) Using the numerical 
values, the stress is 5104.1   Pa and the change in length is  m. 102.2 6 e) The 
stress is proportional to the length and the change in length is proportional to the 
square of the length, and so the quantities change by factors of 2 and 4. 
 
 



11.93:     a) Taking torques about the left edge of the left leg, the bookcase would 
tip when ,750)m1.80(

)m90.0)(1500(  F  and would slip when ,600)1500)(( s  F  so 
the bookcase slides before tipping. b) If F is vertical, there will be no net 
horizontal force and the bookcase could not slide. Again taking torques about the 
left edge of the left leg, the force necessary to tip the case is kN.5.13)m10.0(

)m90.0)(1500( 

c) To slide, the friction force is ), cos (s θFwµf   and setting this equal 
to θF sin   and solving for F  gives 

.
 cos sin s

s

θµ
wµF


  

To tip, the condition is that the normal force exerted by the right leg is zero, and 
taking torques about the left edge of the left leg, 

),m 90.0()m 0.10( cos m) (1.80 sin  wθFθF   and solving for F  gives 

.
sin  2  cos )91( θθ

wF


  

Setting the expression equal gives 
, cos sin)sin 2  cos )91(( ss θµθθθµ   

and solving for θ  gives 

.66
)2-1(

)910(arctan 
s

s 









µ
µθ  

 
 



11.94:     a) Taking torques about the point where the rope is fastened to the 
ground, the lever arm of the applied force is 2

h  and the lever arm of both the 
weight and the normal force is .tan)( so and ,tan 2  hwnFh h   Taking torques 
about the upper point (where the rope is attached to the post), .2

hFhf  Using 
nf s  and solving for F, 

, 400
36.9 tan
1

30.0
1) 400(2

 tan
112

11

s

nNnNwF 






















 

         b) The above relations between become  and  , fnF  

,
5
2 , tan )(

5
3 FfhwnhF    

and eliminating gives for  solving and  and Fnf  

,
tan

5352
1

s














wF  

and substitution of numerical values gives 750 N to two figures. c) If the force is 
applied a distance y above the ground, the above relations become 
 

,)(  ,tan )( fhyhFhwnFy    
which become, on eliminating , and fn  

   
.

tan
1

s














h
y

h
y

Fw  

As the term in square brackets approaches zero, the necessary force becomes 
unboundedly large. The limiting value of y is found by setting the term in square 
brackets equal to zero. Solving for y gives 

.71.0
36.9 tan30.0
9.36 tan

 tan
 tan













sh
y  

 
 



11.95:     Assume that the center of gravity of the loaded girder is at ,2L  and that 
the cable is attached a distance x to the right of the pivot. The sine of the angle 
between the lever arm and the cable is then ,))2(( 22 xLhh   and the tension is 
obtained from balancing torques about the pivot; 

,2
))2(( 22

Lw
xLh

hxT 













 

where w is the total load (the exact value of w and the position of the center of 
gravity do not matter for the purposes of this problem). The minimum tension will 
occur when the term in square brackets is a maximum; differentiating and setting 
the derviative equal to zero gives a maximum, and hence a minimum tension, at 

).2()( 2
min LLhx   However, if ,2 if occurs which ,min LhLx   the cable must 

be attached at L, the furthest point to the right. 
 
 
11.96:     The geometry of the 3-4-5 right triangle simplifies some of the 
intermediate algebra. Denote the forces on the ends of the ladders by 

RL FF  and (left and right). The contact forces at the ground will be vertical, since 
the floor is assumed to be frictionless. a) Taking torques about the right end, 

RLL FFF  N.391 so),m90.0)(N360()m40.3)(N480()m00.5(  may be found in a 
similar manner, or from N. 449N 840  LR FF  b) The tension in the rope may be 
found by finding the torque on each ladder, using the point A as the origin. The 
lever arm of the rope is 1.50 m. For the left ladder, 

N 1.322 so ),m60.1)(N480()m20.3()m50.1(  TFT L (322 N to three figures). As a 
check, using the torques on the right ladder, 

)m90.0)(N360()m80.1()m50.1(  RFT  gives the same result. c) The horizontal 
component of the force at A must be equal to the tension found in part (b). The 
vertical force must be equal in magnitude to the difference between the weight of 
each ladder and the force on the bottom of each ladder, 480 N391 N = 449 
N360 N = 89 N. The magnitude of the force at A is then 

N.334)N89()N 1.322( 22   
         d) The easiest way to do this is to see that the added load will be distributed 
at the floor in such a way that 

N.961)N800)(64.0( and N,679)N800)(36.0(  RRLL FFFF  Using these 
forces in the form for the tension found in part (b) gives 

N,53.936
)m50.1(

)m90.0)(N360()m80.1(
)m50.1(

)m60.1)(N480()m20.3(






 RL FFT  

which is 937 N to three figures. 
 
 



11.97:     The change in the volume of the oil is pvk  OO and the change in the 
volume of the sodium is .ss pvk   Setting the total volume change equal to Ax (x is 
positive) and using ,AFp   

),)(( ssOO AFVkVkAx   
and solving for sk  gives 











s
OO

2

s
1
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Vk
F

xAk  

 
 
11.98:     a) For constant temperature  0T , 

  .)( and 0) ()()( p
V

VpBVpVppV 



  

         b) In this situation, 

  ,0)( ,0 )( 1 


 

V
VγppVVγpVp γ  

and 

.)( γp
V

VpB 



  

 
 
11.99:     a) From Eq.(11.10), mm 0.66or  m, 1062.6 4

)m 1000.5)(Pa 1020(
)m50.1)(sm80.9)(kg50.4(

2710

2 


 l  

to two figures. b) J.022.0)m100500.0)(sm80.9)(kg50.4( 22    c) The magnitude 
F will be vary with distance; the average force is N, 7.16)cm 0250.0( 0 lAY and so 
the work done by the applied force is J. 1035.8)m 100500.0(N)7.16( 32   d) The 
wire is initially stretched a distance m 1062.6 4 ( the result of part (a)), and so the 
average elongation during the additional stretching is m 1012.9 4 , and the 
average force the wire exerts is N. 8.60 The work done is negative, and equal to 

J. 1004.3)m 100500.0)(N8.60( 22    e) See problem 11.82. The change in 
elastic potential energy is 

  J, 1004.3))m 1062.6()m 1062.11((
m 50.12

)m 1000.5)(Pa 1020( 22424
2710





  

the negative of the result of part (d). (If more figures are kept in the intermediate 
calculations, the agreement is exact.)  



Note: to obtain the numerical results given in this chapter, the following numerical values 
of certain physical quantities have been used; 
 

kg. 1097.5 and sm 80.9  ,kgmN 10673.6 24
E

22211   mgG  
 

Use of other tabulated values for these quantities may result in an answer that differs in 
the third significant figure. 
12.1:      The ratio will be the product of the ratio of the mass of the sun to the mass of the 
earth and the square of the ratio of the earth-moon radius to the sun-moon radius. Using 
the earth-sun radius as an average for the sun-moon radius, the ratio of the forces is 
 

.18.2
kg 105.97
kg 101.99 

m 101.50
m 1084.3

24

302

11

8





















  

 
 
12.2:      Use of Eq. (12.1) gives 
 

N. 1067.1
m) 106.38m 10(7.8

kg) 2150)(kg 1097.5()kgmN 10673.6( 4
265

24
2211

2
21

g 



 

r
mmGF  

The ratio of this force to the satellite’s weight at the surface of the earth is 

%.7979.0
)sm 80.9)(kg 2150(

)N 1067.1(
2

4


  

(This numerical result requires keeping one extra significant figure in the intermediate 
calculation.) The ratio, which is independent of the satellite mass, can be obtained 
directly as 

,
2

E
2

E
2

E 







r
R

gr
Gm

mg
rmGm  

yielding the same result. 
 
 

12.3:                                                  .
)(

))((
122

12

21
2

12

21 F
r
mmG

nr
nmnmG   

 
 
12.4:      The separation of the centers of the spheres is 2R, so the magnitude of the 
gravitational attraction is .4)2( 2222 RGMRGM   
 
 



12.5:      a) Denoting the earth-sun separation as R and the distance from the earth as x, 
the distance for which the forces balance is obtained from 

,
)( 2

E
2

S

x
mGM

xR
mGM




 

which is solved for 

m.1059.2
1

 8

E

S






M
M

Rx  

 
       b) The ship could not be at equilibrium for long, in that the point where the forces 
balance is moving in a circle, and to move in that circle requires some force. The 
spaceship could continue toward the sun with a good navigator on board. 
 
 
12.6:      a) Taking force components to be positive to the right, use of Eq. (12.1) twice 
gives 
 

    
 

 
 

















11

22
2211

1032.2

 ,
m 0.600
kg 0.10

m 0.400
kg 00.5 kg 100.0 kgm10673.6gF

 

with the minus sign indicating a net force to the left. 
 
       b) No, the force found in part (a) is the net force due to the other two spheres. 
 
 

12.7:                 
  .104.2

 m1078.3
kg1035.7 kg70 kgm .10673.6 3

28

22
2211 




   

 
 

12.8:                                                           
 

4
2 1003.6

500 ,23
000 ,333   

 
 



12.9:      Denote the earth-sun separation as 1r  and the earth-moon separation as 2r . 

       a)                                     ,1030.6
)(

 20
2

2

E
2

21

S
M 










 r
m

rr
mGm  

toward the sun.   b)The earth-moon distance is sufficiently small compared to the earth-
sun distance (r2 << r2) that the vector from the earth to the moon can be taken to be 
perpendicular to the vector from the sun to the moon. The components of the 
gravitational force are then 
 

,1099.1 ,1034.4 20
2

2

EM20
2

1

SM 
r

mGm
r

mGm  

and so the force has magnitude  201077.4  and is directed 6.24  from the direction 
toward the sun. 
 

       c)     
 

,1037.2
r

 20
2

2

E
2

21

S
M 










 r
m

r
mGm  

toward the sun. 
 
 
 
12.10: 
 

           

                                              

square  theofcenter   the towardN, 10  2.8
m) 10.0(

kg) 800( )kgNm10  67.6(               

 
m) (0.10

45 cos kg) 800)(kgNm10  67.6(2

  45 cos 2

F  45 cos 2  

3

2

222 11

2

22211

2
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12.11: 
 

          
 

         

left  the toN,106.1

N10043.1

N10668.1

m 40.0 m; 10.0
kg 500

3
31

4
2

23

32
3

3
2

12

21
1

2312

321
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12.12:     The direction of the force will be toward the larger mass, and the magnitude 
will be 
 

.)(4
)2()2( 2

12
2

1
2

2

d
mmGm

d
mGm

d
mGm 

  

 
 
12.13:     For convenience of calculation, recognize that the mass of the small sphere will 
cancel. The acceleration is then 
 

,sm 10 1.2
0.10
0.6

m) 10 (10.0
kg) 260.0(2 29

22


 


G
 

 
directed down. 
 
 
12.14:     Equation (12.4) gives 
 

  
  .sm757.0

m1015.1
kg105.1 kgmN10763.6 2

26

222211
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12.15:     To decrease the acceleration due to gravity by one-tenth, the distance from the 
earth must be increased by a factor of ,10 and so the distance above the surface of the 
earth is 

 
  m.1038.1R 110 7

E   
 

 
12.16:     a) Using ,sm80.9g 2

E  Eq 4.12  gives 

,sm 87.8
)905)(.sm 80.9(

949.
1)815(. 

1mg
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where the subscripts v refer to the quantities pertinent to Venus. b) kg) 00.5( )sm87.8( 2  
N.3.44  

 
 
12.17:     a) See Exercise 12.16; 
 

  .sm369.0
1700

8 )sm80.9( 2
2

2
Titania 








g  

 
         b) 3

T

3
E

E

T

E

T .
r
r

m
m

ρ
ρ  , or rearranging  and solving for density,  3

E

3
E

E )81(
 1700)1(

E ..
r

r
m

m
T

Eρρ  

  ,mkg 1656 )mkg 5500( 3
1700
5123   or about  E.0.39  

 
 
 
12.18:     kg 1044.2 212

 G
gRM and   .mKg10 1.30 33

34 3 
Rπ

Mρ  

 
 
 



12.19:     2
E

r
mmGF   

         E
3 m10600 Rr   so N 610F  

 
 
         At the surface of the earth, N. 735g  mw  
 
         The gravity force is not zero in orbit.  The satellite and the astronaut have the same 
acceleration so the astronaut’s apparent weight is zero. 
 
 
12.20:     Get g on the neutron star 
 

2
ns

ns

2
ns

ns

R
GMg

R
GmMmg




 

Your weight would be 

    2
ns

nsns R
mGMmgw   

   

          24

302211

2 m)10(
kg) 1099.1)(kgNm10(6.67 

sm 8.9
N675 









  

 
          N101.9 13  
 
 
12.21:     From eq. (12.1),  ;  (12.4),  Eq. from and ,G 2

E21
2 RGmgmmFr E combining 

and solving for ER , 

kg. 1098.5 24
2

2
E21

E 
Fr

Rmgmm  

 
 



12.22:     a) From Example 12.4  the mass of the lander is 4000 kg. Assuming Phobos to 
be spherical, its mass in terms of its density ,)34(  is  radius and 3ρRRρ    and so the 
gravitational force is 
 

N. 27)m 1012)(mkg 2000)(kg 4000)(34()kg 4000)(34( 33
2

3

 
 G

R
RG

 

 
b) The force calculated in part (a) is much less than the force exerted by Mars in Example 
12.4. 
 
 
12.23:     )m 700()kg 106.3()kgmN  10673.6(22 122211  RGM  
          s.m 83.0  
 
One could certainly walk that fast. 
 
 
12.24:     a)  so  , and E

2 rmGmUrmGmF E  the altitude above the surface of the 

earth is  m. 1036.9 5
E  RF

U  b) Either of Eq. (12.1) or Eq. (12.9) can be used with the 

result of part (a ) to find m, or noting that  ,22222 rmMGU E  E
2 FGMUm   

kg. 1055.2 3  
 
 
12.25:     The escape speed, from the results of Example 12.5, is .2 RGM  
 
         a) .sm 1002.5)m 1040.3()kg 1042.6()kgmN 10673.6(2  36232211    
 
         b) s.m1006.6)m 1091.6()kg 1090.1()kgmN10673.6(2  47 272211     
 
         c) Both the kinetic energy and the gravitational potential energy are proportional to 
the mass. 
 
 



12.26:     a) The kinetic energy is  ,)sm1033.3)(kg 629(or   , 23
2
12

2
1  KmvK  

J. 103.49or  9KE  
 

         b) ,
m 1087.2

)kg 629)(kg 1097.5)(kgmN 10673.6(GM
9

242211






r
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or J. 1073.8 7U  
 
 
12.27:     a) Eliminating the orbit radius r between Equations (12.12) and (12.14) gives 
 

  
 

min. 1751005.1
sm 6200

kg1097.5 kgmN10673.622
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242211
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         b)                                                 .sm 71.32 2
T
πv  

 
 
12.28:     Substitution into Eq. (12.14) gives s, 1096.6 3T  or 116 minutes. 
 
 
 
 
 
12.29:     Using Eq. (12.12), 
 

  
  s.m 1046.7

m 1080.7m 1038.6
kg 1097.5kgmN 10673.6 3
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12.30:     Applying Newton’s second law to the Earth 
 

                                 

kg 1001.2

 )]()3.365[( )kgNm 1067.6(
m) 1050.1(4
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12.31:     baseball. for the cmaF   
          The net force is the gravity force exerted on the baseball by Deimos, so 
 

sm7.4m) 100.6(kg) 100.2()kgm N 1067.6( 3152211

2
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A world-class sprinter runs 100 m in 10 s so have sm4.7 s;m 10  vv  for a thrown 
baseball is very achieveable. 
 
 



12.32:     Apply Newton’s second law to Vulcan.  

 

days 9.47
s 400,86

d1s1014.4

kg)1099.1)(kgNm1067.6(
 m)1079.5(4
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12.33:     a) 

            

s.m1027.8

))11.0m)(10((1.50kg)1099.185.0)(kgmN10673.6(
4

11302211








rGmv

 

                                 
b)  weeks).(about two s1025.12 6vr  
 
 
12.34:     From either Eq. (12.14) or Eq. (12.19), 
 

kg.1098.1

d))s1064.8d)( 7.224(( )kgmN10673.6(
m)1008.1(44
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12.35:     a) The result follows directly from Fig. 12.18. b) m)1092.5)(248.01( 12  

 m,1045.4 12 y. 248 c)   m.104.55m)1050.4)(010.01( 1212  T  
 
 



12.36:     a)     m.1007.7 1021 
F

mGmr  

 
b) From Eq. (12.19), using the result of part (a), 

days. 121s1005.1
kg)1090.1)(kgmN10673.6(

m)1007.7(2 7

302211
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T  

 
         c) From Eq. (12.14) the radius is 32)8(  four times that of the large planet’s orbit, 
or m. 1083.2 11  
 
 
12.37:     a) For a circular orbit, Eq. (12.12) predicts a speed of 
 

s.km 56m)1043(kg)1099.1)(kgmN10673.6( 9302211    
 
The speed doesn’t have this value, so the orbit is not circular. b) The escape speed for any 
object at this radius is skm79)skm56(2  , so the spacecraft must be in a closed 
elliptical orbit. 
 
 



12.38:     a) Divide the rod into differential masses dm  at position l, measured from the 
right end of the rod. Then , dm = dl  ( LM ), and 
 

dU = . 
xl

dl
L

GmM
xl
dmGm





  

 
Integrating, 

U =  





 




L
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L

L
GmM

xl
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L
GmM .1ln  

 

For x >> L, the natural logarithm is  xL~ , and U .xMGm    b)  The x-component 
of the gravitational force on the sphere is 

 

,
)())(1(
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Lxx
GmM

xL
xL

L
GmM

δx
δUFx







  

with the minus sign indicating an attractive force. As  x >> L,  the denominator in the 
above expression approaches 2x , and xF 2xMGm , as expected. The derivative may 
also be taken by expressing  

xLx
x
L ln)ln(1ln 





   

 
at the cost of a little more algebra. 
 
 



12.39:     a) Refer to the derivation of Eq. (12.26) and Fig. (12.22). In this case, the red 
ring in Fig. (12.22) has mass M and the common distance s is .22 ax  Then, 

.22 axGMmU     b) When x >> a, the term in the square root approaches 2x   
and xGMmU  , as expected. 

         c)                                              xF
δx
δU

 ,2322 )( ax
GMmx


 , 

 

with the minus sign indicating an attractive force.   d) when x >> a, the term inside the 
parentheses in the above expression approaches 2x and 232 )(xGMmxFx   

,2xGMm  as expected.  e) The result of part (a) indicates that 
a

GMmU 
  when 

.0x  This makes sense because the mass at the center is a constant distance a from the 
mass in the ring. The result of part (c) indicates that 0xF when .0x  At the center of 
the ring, all mass elements that comprise the ring attract the particle toward the respective 
parts of the ring, and the net force is zero. 
 
 

12.40:     At the equator, the gravitational field and the radial acceleration are parallel, 
and taking the magnitude of the weight as given in Eq. (12.30) gives 
 

.rad0 mamgw   
 
The difference between the measured weight and the force of gravitational attraction is 
the term .radma   The mass m  is found by solving the first relation for . ,

0 radagmm   Then, 
 

  .
1rad0rad0

rad
rad 





ag
w

ag
awma  

 
Using either 2

0 sm 80.9g or calculating  0g from Eq. (12.4) gives N. 40.2rad ma  
 
 
12.41:   a)    N 54or  N, 5.53kg 5.00 sm 7.10 22

N RmGm  to two figures. 
 

         b)       
    N. 0.52

hs 3600h 16
m 105.24sm  7.10kg 00.5 2

72
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rad0 
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12.42:     a)                                   .
2

2
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2 r
Rmc

r
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r
GMm

  

 

         b)                            
 

N. 350
m 1000.32

m104.1sm1000.3kg 00.5
26

228




 

 

 
         c) Solving Eq. (12.32) for ,M  
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12.43:     a) From Eq. (12.12), 

   
 

. 102.1kg 103.4     
kgm N 10673.6

sm10200lym10461.9ly 5.7

S
737

2211

23152

M
G

RvM






   

 
         b) It would seem not. 
 

         c)                                     m, 1032.622 10
2

2

2S 
c

Rv
c
GMR  

 
which does fit. 
 
 

12.44:     Using the mass of the sun for M in Eq. (12.32) gives 
 

  
  km. 95.2

sm1000.3
kg 1099.1 kgm N 10673.62

28

302211
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That is, Eq. (12.32) may be rewritten 

.Mkm 95.22

sunsun
2

sun
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mm
M
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Using 3.0 km instead of 2.95 km is accurate to 1.7%. 
 
 



12.45:       
    .104.1

m 1038.6sm103
kg 1097.5 kgmN 1067.62
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12.46:     a) From symmetry, the net gravitational force will be in the direction 
45 x   thefrom -axis (bisecting the x and y axes), with magnitude 
 









  45sin  

)m 50.0(
)kg 0.1(2

))m 50.0(2(
)kg 0.2()kg 0150.0)(kgmN 10673.6( 22

2211  

                    N. 1067.9 12  
 
b) The initial displacement is so large that the initial potential may be taken to be zero. 
From the work-energy theorem, 
 

.
)m 50.0(
)kg 0.1(2

m) (0.50 2
)kg 0.2(

2
1 2









 Gmmv  

 
Canceling the factor of m and solving for v, and using the numerical values gives 

s.m103.02 5  
 
 
12.47:     The geometry of the 3-4-5 triangle is available to simplify some of the algebra, 
The components of the gravitational force are 
 

                         
5
3

)m 000.5(
)kg 0.80)(kg 500.0)(kgmN 10673.6(

2

2211 
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                              N 10406.6 11  
 

                         







 

5
4

)m 000.5(
)kg 0.80(

)m 000.4(
)kg 0.60()kg 500.0)(kgmN 10673.6( 22

2211
xF  

 
                              N, 10105.2 10  
 
so the magnitude is  N 1020.2 10 and the direction of the net gravitational force is 
163 m. 1.39y 0,at xA  b)   axis.-  thefrom ckwisecounterclo  x  
 
 



12.48:     a) The direction from the origin to the point midway between the two large 
masses is arctan )angle(14.6 not the is which ,6.26)( m 0.200

m 100.0   found in the example. 
 
b) The common lever arm is 0.100 m, and the force on the upper mass is at an angle of  

is net torque The arm.lever   thefrom 45  
 












 

22
2211

)m 200.0(
)m 100.0(

m) 2(0.200
45m)sin  (0.100kg) kg)(0.500 )(0.0100kgmN 10673.6(  

            m,N 1039.5 13    
 
with the minus sign indicating a clockwise torque.  c) There can be no net torque due to 
gravitational fields with respect to the center of gravity, and so the center of gravity in 
this case is not at the center of mass. 
 
 
12.49:     a) The simplest way to approach this problem is to find the force between the 
spacecraft and the center of mass of the earth-moon system, which is m 1067.4 6 from 
the center of the earth. 
 
 

 
The distance from the spacecraft to the center of mass of the earth-moon system is 
3.82 m.108  Using the Law of Gravitation, the force on the spacecraft is 3.4 N, an 
angle of 61.0 from the earth-spacecraft line. This equilateral triangle arrangement 
of the earth, moon and spacecraft is a solution of the Lagrange Circular Restricted 
Three-Body Problem. The spacecraft is at one of the earth-moon system Lagrange 
points. The Trojan asteriods are found at the corresponding Jovian Lagrange 
points. 
        or, isworkTheb)

m103.84
kg)kg)(12501035.7kg1097.5)(kg/mN10673.6

8

22242211
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GMmW  

J. 1031.1 9W  
 
 



12.50:     Denote the 25-kg sphere by a subscript 1 and the 100-kg sphere by a 
subscript 2.   a) Linear momentum is conserved because we are ignoring all other 
forces, that is, the net external force on the system is zero. Hence, .2211 vmvm   
This relationship is useful in solving part (b) of this problem. b)From the work-
energy theorem, 
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22

2
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if
21 2

111 vmmm
rr
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and from conservation of momentum the speeds are related by .2211 vmvm   Using 
the conservation of momentum relation to eliminate 2v  in favor of 1v  and 
simplifying yields 

,112

if21

2
22
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rrmm
Gmv  

with a similar expression for 2v . Substitution of numerical values gives 
s.m1008.4 s,m1063.1 6

2
5

1
  vv  The magnitude of the relative velocity is 

the sum of the speeds, s.m 1004.2 5  
         c) The distance the centers of the spheres travel  21  and xx  is proportional to 
their acceleration, and .4or  , 211

2

2

1

2

1 xxm
m

a
a

x
x   When the spheres finally make 

contact, their centers will be a distance of   m, 402or  apart, 2 21  RxxR  
m. 4024or 22  Rxx  Thus, .6.1m 32 and ,4.0m 8 12 RxRx   

 
 
12.51:     Solving Eq. (12.14) for r, 
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from which m. 1083.3 8r  
 
 
12.52:     kg,N 1093.5   10

m)50.1(
kg)0.20)(kgmN 10673.6(

2

2211  


gg directed toward the 
center of the sphere. 
 
 



12.53:     a) From Eq. (12.14), 

,m 10492.7
2

s 86,164 kg) 10(5.97 )kgmN 10673.6(
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ππ
TGmr                                

and so m. 1058.3 7
E  Rrh  Note that the period to use for the earth’s rotation 

is the siderial day, not the solar day (see Section 12.7). b) For these observers, the 
satellite is below the horizon. 
 

 
 
 
12.54:     Equation 12.14 in the text will give us the planet’s mass: 

                           
P

232
GM
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                                  , kg 10731.2 24 or about half earth’s mass. 
Now we can find the astronaut’s weight on the surface (The landing on the north 
pole removes any need to account for centripetal acceleration): 
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kg 6.85kg 10731.2kgmN 10673.6

26

242211

2
p

ap









r
mGM

w
 

 
 
12.55:     In terms of the density , the ratio   ,34 is 2RRM   and so the escape 
speed is 
               s.m 177m 10150 mkg 2500 kgm N 10673.6 38

2332211  v  
 
 



12.56:     a) Following the hint, use as the escape velocity ,2ghv   where h is the 
height one can jump from the surface of the earth. Equating this to the expression 
for the escape speed found in Problem 12.55, 

,
4
3or   ,

3
82 22

G
ghRGRπgh


   

where 2sm 80.9g  is for the surface of the earth, not the asteroid. Using 
m 1h (variable for different people, of course), km. 7.3R  As an alternative, if 

one’s jump speed is known, the analysis of Problem 12.55 shows that for the same 
density, the escape speed is proportional to the radius, and one’s jump speed as a 
fraction of sm 60  gives the largest radius as a fraction of km. 50  b) With 

.mkg1003.3 , 33
4

32  GR
aRva   

 
 
12.57:     a) The satellite is revolving west to east, in the same direction the earth is 
rotating. If the angular speed of the satellite is sω  and the angular speed of the 
earth is ,Eω the angular speed relω  of the satellite relative to you is .Esrel ωωω   

      hrevh 12rev 1 12
1

rel ω  
   hrev12

1
E ω  

   srad102.18hrev -4
8
1

Erels  ωωω  

       
r
vm

r
mmGm E

2

2 says  aF 
 

  m 1003.2; gives   this with and 7
2

E3E2  r
ω

Gmrrv
r

Gmv   

This is the radius of the satellite’s orbit. Its height h above the surface of the 
earth is m. 1039.1 7 ERrh  
         b) Now the satellite is revolving opposite to the rotation of the earth. 

If west to east is positive, then   hrev12
1

rel ω  
  srad 107.27hrev -5

24
1

Erel  ωωωs  

m1059.3 and m 1022.4 gives 77
2

E3  hr
ω

Gmr  

 



12.58:     (a) Get radius of   km 850,182:X 4
1 R  

      m 101.20R 7  
 
Astronant mass: kg 2.962sm 9.80

N 943  gm  Use astronant at north pole to get mass of 
X: 

kg1005.2
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Apply Newton’s second law to astronant on a scale at the equator of X. 

 

day one is which hr, 36.7
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(b) For satellite:  22Gm2 x
2

2
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r
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12.59:     The fractional error is 

  ).)((11 EE
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hRR







 

At this point, it is advantageous to use the algebraic expression for g as given in 
Eq. (12.4) instead of numerical values to obtain the fractional difference as 

,)(1 EEE RhRhR   so if the fractional difference is 
m. 104.6(0.01) %,1 4

E  Rh  
     If the algebraic form for g in terms of the other parameters is not used, and the 
numerical values from Appendix F are used along with  ,sm 80.9 2g  

,107.8 3
E

Rh  which is qualitatively the same. 
 
 



12.60:     (a) Get g on Mongo: It takes 4.00 s to reach the maximum height, where 
v = 0 then )s 00.4(sm0.1200 ggtv   

2sm00.3g  
Apply Newton’s second law to a falling object: 

GgRM
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GmMmgmaF 2
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         b) Apply Newton’s second law to the orbiting starship. 
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12.61:     At Sacramento, the gravity force on you is  2
E

1
ER

mmGF  

 At the top of Mount Everest, a height of m 8800h above sea level, the gravity 
force on you is 

 
2

E
2
E

E
2

E
2 )1()( Rh

mmG
hR

mmGF
RE 




  

 






 
 

E
12

E

2 21,21)1(
R

hFF
R

hRh E  

28.02

E1

21 


r
h

F
FF % 

 
 



12.62:     a) The total gravitational potential energy in this model is 
  











  
EM

ME

rR
m

r
mGmU  

         b) See Exercise 12.5. The point where the net gravitational field vanishes is 

m. 1046.3
1

8

EM

EM 



mm

Rr  

Using this value for r in the expression in part (a) and the work-energy theorem, 
including the initial potential energy of ))(( EEMMEE RRmRmGm   gives 

s.km 1.11  c) The final distance from the earth is not MR , but the Earth-moon 
distance minus the radius of the moon, or m. 10823.3 8 From the work-energy 
theorem, the rocket impacts the moon with a speed of s.km9.2  
 
 
12.63:     One can solve this problem using energy conservation, units of J/kg for energy, 
and basic concepts of orbits. ,or  , 2

2
1

2 r
GM

a
GM vUKE  where UKE  and ,  are the 

energies per unit mass, v  is the circular orbital velocity of 1655 m/s at the lunicentric 
distance of m. 1079.1 6  The total energy at this distance is Kg.J1037.1 6  When the 
velocity of the spacecraft is reduced by 20 m/s, the total energy becomes 
 

,
m)10(1.79

kg)1035.7()kg/mN10673.6(s)/m20s/m1655(
2
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222211
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or kg.J1040.1 6E  Since ,2a

GME   we can solve for m, 10748.1, 6aa the semi 
–major axis of the new elliptical orbit. The old distance of m 1079.1 6  is now the 
apolune distance, and the perilune can be found from 

m. 10706.1, 6
2  

p
rr ra pa Obviously this is less than the radius of the moon, so the 

spacecraft crashes! At the surface, kg.J10818.2 or, 6
m

 UU R
GM  

Since the total energy at the surface is kg,J1040.1 6 the kinetic energy at the surface 
is h.km 6057 sm 10682.1or  kg,J10415.1So, kg.J10415.1 362

2
16  vv  

 
 



12.64:     Combining Equations (12.13) and (3.28) and setting 
  ,12.30 Eq.in  0 that sosm 80.9 2

rad  ωa  
 

s, 1007.52 3

rad


a
RT  

 
which is 84.5 min, or about an hour and a half. 
 
 
12.65:     The change in gravitational potential energy is 
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so the speed of the hammer is, from the work-energy theorem, 
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12.66:     a) The energy the satellite has as it sits on the surface of the Earth is .

E

E
i R

GmME   

The energy it has when it is in orbit at a radius . is 
E

E
2fE R

GmMERR   The work needed to 

put it in orbit is the difference between these: .-
E

E
2if R

GmMEEW   
         b) The total energy of the satellite far away from the Earth is zero, so the additional 
work needed is   .0

E

E

E

E
22 R

GmM
R

GmM    
         c) The work needed to put the satellite into orbit was the same as the work needed 
to put the satellite from orbit to the edge of the universe. 
 
 



12.67:     The escape speed will be 
 

s.m 1035.42 4

ES

s

E

E 









R
m

R
mGv  

a) Making the simplifying assumption that the direction of launch is the direction of the 
earth’s motion in its orbit, the speed relative the earth is 
 

s.m 1037.1
s)10(3.156
m) 1050.1(2sm 1035.4
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2 4
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11
4ES 
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      b) The rotational at Cape Canaveral is s,m 1009.4 2
s 86164

28.5 cos m) 1038.6(2 6

  so the speed 
relative to the surface of the earth is s.m 1033.1 4   c) In French Guiana, the rotational 

speed is s,m 1063.4 2  so the speed relative to the surface of the earth is s.m 1032.1 4  
 
 
12.68:     a) The SI units of energy are ,sm kg 22  so the SI units for   are .sm 22  Also, 
it is known from kinetic energy considerations that the dimensions of energy, kinetic or 
potential, are ,speedmass 2  so the dimensions of gravitational potential must be the 
same as .speed2 b) .E

r
Gm

m
U   

c) kg.J 1068.311 6

fE
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d) 101053.5 m  J. (An extra figure was kept in the intermediate calculations.) 
 
12.69:     a) The period of the asteroid is m 103 Inserting . 11a2 23

 GM
πT  for a gives 

m 105 andy  84.2 11 gives a period of 6.11 y. 
 
         b) If the period is .m1090.4 then, 93.5 11 ay  
         c) This happens because ,524.0   another ratio of integers. So once every 5 orbits 
of the asteroid and 2 orbits of Jupiter, the asteroid is at its perijove distance. Solving 
when m. 1022.4 , 74.4 11 ayT  
 
 



12.70:     a) In moving to a lower orbit by whatever means, gravity does positive work, 

and so the speed does increase. b)   so , , From 2/12/1
E2

E
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 rGmv
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Note that a positive r is given as a decrease in radius. Similarly, the kinetic energy is  
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J. 1070.6 and J 1034.1 89  KW   d)As the term “burns up” suggests, the 
energy is converted to heat or is dissipated in the collisions of the debris with the 
grounds. 
 
 
12.71:     a) The stars are separated by the diameter of the circle d =2R, so the 
gravitational force is .2

2

4R
GM  

 
         b) The gravitational force found in part (b) is related to the radial acceleration by 

RMvMaF 2
radg   for each star, and substituting the expression for the force from part 

(a) and solving for v gives .4RGMv  The period is 

.416 23322 GMRGMRR 
     c) The initial gravitational potential energy is 

RGM 22  and the initial kinetic energy is ,4.)21(2 22 RGMMv   so the total 
mechanical energy is .22 RGM If the stars have zero speed when they are very far 
apart, the energy needed to separate them is .42 RGM  
 
 



12.72:     a) The radii 21  and RR  are measured with respect to the center of mass, and so 
. and , 12212211 MMRRRMRM   

         b) If the periods were different, the stars would move around the circle with respect 
to one another, and their separations would not be constant; the orbits would not remain 
circular. Employing qualitative physical principles, the forces on each star are equal in 
magnitude, and in terms of the periods, the product of the mass and the radial 
accelerations are 
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From the result of part (a), the numerators of these expressions are equal, and so the 
denominators are equal, and the periods are the same. To find the period in the symmetric 
from desired, there are many possible routes. An elegant method, using a bit of hindsight, 
is to use the above expressions to relate the periods to the force ,2
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 so that 

equivalent expressions for the period are 
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Adding the expressions gives 
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         c) First we must find the radii of each orbit given the speed and period data. In a 
circular orbit, 
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2 Ror  , vT
T

Rv   

Thus  2
d)s 400 86,d )(137sm 10(1210

2
)ds  86,400 d 137)( sm 1036( 33

R and m, 1078.6R  ,   βα  

m. 1026.2 10 Now find the sum of the masses and use , RMRM  and the fact 

that ,).(3 2

3.2 )(4
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  inserting the values of T, and the radii, 

kg. 1012.3.)( 30
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 MMMM Since 

1034.2 and kg, 1080.7or  kg, 1012.34,3 302930  βαααβααβ MMMMRRMM
         d) Let   therefer to   andstar   therefer to β black hole. Use the relationships derived 
in parts (a) and (b):   RRRRMMR (,)176.0()8.367.0()(  

T
πRGTMM

β vβα 23
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 . For ,αR  inserting the values for M and T and 



12.73:     From conservation of energy, the speed at the closer distance is 
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12.74:     Using conservation of energy, 
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The subscripts a and p denote aphelion and perihelion. 

To use conservation of angular momentum, note that at the extremes of distance 
(periheleion and aphelion), Mars’ velocity vector must be perpendicular to its radius 
vector, and so the magnitude of the angular momentum is mrvL  . Since L is constant, 
the product rv  must be a constant, and so 
    

s,m10650.2
m) 10067.2(
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a confirmation of Kepler’s Laws. 
 
 



12.75:     a) The semimajor axis is the average of the perigee and apogee distances, 
m. 1058.8))()(( 6

aEpE2
1  hRhRa From Eq. (12.19) with the mass of the earth, 

the period of the orbit is 
    

s, 1091.72 3
23





EGM

aT  

 
a little more than two hours. b) See Problem 12.74; .53.1

p

ap  r
r

a
 c) The equation that 

represents conservation of energy (apart from a common factor of the mass of the 
spacecraft) is 
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where conservation of angular momentum has been used to eliminate . offavor  is pa vv  

Solving for 2
pv  and simplifying, 

 

  ,sm 1071.72 227
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from which  s.m1051.5 and  sm 1043.8  33

p  avv d) The escape speed for a given 

distance is ,2 rGMve   and so the difference between escape speed and pv  is, after 
some algebra, 
 

  )(1/11 2
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p
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E rr
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Gmvv  

 
Using the given values for the radii gives s.m1041.2 3

pe  vv  The similar calculation 

at apogee give s,m1026.3 3
ae  vv  so it is more efficient to fire the rockets at perigee. 

Note that in the above, the escape speed ev is different at the two points, 
s.m1077.8 and sm1009.1 3

ae
4

pe  vv  
 
 



12.76:     a) From the value of g at the poles, 
 

  
  kg. 1009.1
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         b)   .sm 080.0 c)  .sm 432.0 22
MM

22
UU

2
U  RGmrRgrGm  d) No; Miranda’s 

gravity is sufficient to retain objects released near its surface. 
 
 
12.77:     Using Eq. (12.15), with the mass mM instead of the mass of the earth, the 
energy needed is 
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12.78:     a) The semimajor axis is m 104 15 and so the period is 
 

 
   s, 1038.1

kg1099.1 kgmN 10673.6
m 1042 14

302211

2315







π  

 
which is about 4 million years. b) Using the earth-sun distance as an estimate for the 
distance of closest approach,  1042 4

ESS  RGmv  

  221 c)  s.m mv  J. 1024
S  RmGm  This is far larger than the energy of a volcanic 

eruption and is comparable to the energy of burning the fossil fuel. 
 
 



12.79:     a) From Eq. (12.14) with the mass of the sun, 
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This is about 24 times the orbit radius of Pluto and about 2501  of the way to Alpha 
Centauri. 
 
 
12.80:     Outside the planet it behaves like a point mass, so at the surface: 
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12.81:     The radius of the semicircle is πLR   
       Divide the semicircle up into small segments of length dθR  
 

 
 

   dθMdθRLMdM    
F


d  is the gravity force on dMm by  exerted  
;0  ydF  the y-components from the upper half of the semicircle cancel the y-

components from the lower half. 
The x-components are all in the +x-direction and all add. 
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12.82:     The direct calculation of the force that the sphere exerts on the ring is slightly 
more involved than the calculation of the force that the ring exerts on the ball. These 
forces are equal in magnitude but opposite in direction, so it will suffice to do the latter 
calculation. By symmetry, the force on the sphere will be along the axis of the ring in Fig. 
(12.34), toward the ring. Each mass element dM of the ring exerts a force of magnitude 

22 xa
GmdM


 on the sphere, and the x-component of this force is 

 
.2/3222222 xa

GmdMx
xa

x
xa

GmdM





 

 
As x >> a the denominator approaches 2 and 3

x
GMmFx  , as expected, and so the force on 

the sphere is   ,/
2/322 xaGmMx   in the direction.-x The sphere attracts the ring with 

a force of the same magnitude. (This is an alternative but equivalent way of obtaining the 
result of parts (c) and (d) of Exercise 12.39.)2 
 
 
12.83:     Divide the rod into differential masses dm at position l, measured from the right 
end of the rod. Then,  LMdldm  , and the contribution 

 
. is pieceeach  from 2 Lxl

GmMdldFdF xx 
  Integrating from Lll    to0  gives 
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with the negative sign indicating a force to the left. The magnitude is   .Lxx

GmMF   As x >>  

L, the denominator approaches , and 2
2

x
GmMFx   as expected. (This is an alternative but 

equivalent way of obtaining the result of part (b) Exercise 12.39.) 
 
 



12.84:     a) From the result shown in Example 12.10, the force is attractive and its 
magnitude is proportional to the distance the object is from the center of the earth. 
Comparison with equations (6.8) and (7.9) show that the gravitational potential energy is 
given by 
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2
3
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E r
R

mGmrU   

This is also given by the integral of rF   to0 from g  with respect to distance. b) From part 

(a), the initial gravitational potential energy is .
1 E

E

R
mGm  Equating initial potential energy 

and final kinetic energy (initial kinetic energy and final potential energy are both zero) 

gives m/s. 1090.7 so , 3

E

E2  v
R

Gmv  



12.85:      a) ,
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23 2
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rT   therefore 
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  3E   rGMvTv v
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GM  therefore 
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23

T
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rπ vT   

         b) Note: Because of the small change in r, several significant figures are needed to 
see the results. Starting with 

GM
rT 23 2  (Eq.(12.14)),  vrT  2 ,  and r

GMv   
(Eq.(12.12)) find the velocity and period of the initial orbit: 
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v and 

5.92s 5549 2  vrT   min. We then can use the two derived equations to 
approximate the  

s.m05662.

 and s, 1228.0. and  ,  and  

)s 5549(
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Before the cable breaks, the shuttle will have traveled a distance d, d 
22s 7.1324)sm 05662(.)m 75( So,  m. 75)m 100()m 125( 22   min. It will take 

22 minutes for the cable to break. 
     c) The ISS is moving faster than the space shuttle, so the total angle it covers in an 
orbit must be 2 radians more than the angle that the space shuttle covers before they are 
once again in line. Mathematically, πrr

tvv
r
vt 2)(

)(  
 . Using the binomial theorem and 

neglecting terms of order     πtrv
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   as was to be 

shown.  y. 9.7d 2900s 105.2 8
)s 1228.0(

)s 5549( 22
 T

Tt  It is highly doubtful the shuttle 
crew would survive the congressional hearings if they miss! 
 
 



12.86:     a) To get from the circular orbit of the earth to the transfer orbit, the 
spacecraft’s energy must increase, and the rockets are fired in the direction opposite that 
of the motion, that is, in the direction that increases the speed. Once at the orbit of Mars, 
the energy needs to be increased again, and so the rockets need to be fired in the direction 
opposite that of the motion. From Fig. (12.37), the semimajor axis of the transfer orbit is 
the arithmetic average of the orbit radii of the earth and Mars, and so from Eq. (12.19), 
the energy of spacecraft while in the transfer orbit is intermediate between the energies of 
the circular orbits. Returning from Mars to the earth, the procedure is reversed, and the 
rockets are fired against the direction of motion. b) The time will be half the period as 
given in Eq. (12.19), with the semimajor axis a being the average of the orbit radii, 

m, 1089.1 11a  so 

s, 1024.2
kg) 1099.1)(kgmN 10673.6(

)m 10(1.89 
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7
302211

2311
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which is more than 2
18  months. c) During this time, Mars will pass through an angle of 

  9.135)360( )ds 400,86)(d 687(
)s 1024.2( 7

, and the spacecraft passes through an angle of 180 , so the 
angle between the earth-sun line and the Mars-sun line must be 1.44 . 
 
 



12.87:     a) There are many ways of approaching this problem; two will be given here. 

       I) Denote the orbit radius as r  and the distance from this radius to either ear as δ . 
Each ear, of mass m , can be modeled as subject to two forces, the gravitational force 
from the black hole and the tension force (actually the force from the body tissues), 
denoted by .F  Then, the force equations for the two ears are 

 
 
where   is the common angular frequency. The first equation reflects the fact that one 
ear is closer to the black hole, is subject to a larger gravitational force, has a smaller 
acceleration, and needs the force F to keep it in the circle of radius .r  The second 
equation reflects the fact that the outer ear is further from the black hole and is moving in 
a circle of larger radius and needs the force F  to keep in in the circle of radius .r  
       Dividing the first equation by r  and the second by r  and equating the 
resulting expressions eliminates  , and after a good deal of algebra, 
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r

rGMmF  

At this point it is prudent to neglect  in the sum and difference, but recognize that F  is 
proportional to  , and numerically kN.  1.23

3  
r

GMmF  (Using the result of Exercise 
12.39 to express the gravitational force in terms of the Schwartzschild radius gives the 
same result to two figures.) 
       II) Using the same notation, 
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where  can be of either sign. Replace the product 2m with the value 
for 32  ,0 rGMmmωδ   and solve for 
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Using the binomial theorem to expand the term in square brackets in powers of ,r  

   ),3()(21 33 
r

GMmrrr
r

GMmF   

the same result as above. 
     Method (I) avoids using the binomial theorem or Taylor series expansions; the 
approximations are made only when numerical values are inserted and higher powers of 
  are found to be numerically insignificant. 
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12.88:     As suggested in the problem, divide the disk into rings of radius r and thickness 
dr. Each ring has an area drrdA  2 and mass . 22

2
 

drrdAdM
a
M

a
M 


 The magnitude of 

the force that this small ring exerts on the mass m is then ),)()(  ( 2322 xrxdMmG   the 
expression found in Problem 12.82, with dM instead of M and the variable r instead of a. 

Thus, the contribution dF to the force is .
)(

2
23222 rx

rdr
a

GMmxdF


   

The total force F is then the integral over the range of r; 
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The integral (either by looking in a table or making the substitution 22 aru  ) is  
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Substitution yields the result 
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       The second term in brackets can be written as 
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if x >> a, where the binomial approximation (or first-order Taylor series expansion) has 
been used. Substitution of this into the above form gives 
 

,2x
GMmF   

as it should. 
 
 



12.89:     From symmetry, the component of the gravitational force parallel to the rod is 
zero. To find the perpendicular component, divide the rod into segments of length dx and 
mass ,2L

Mdxdm   positioned at a distance x from the center of the rod. The magnitude of 
the gravitational force from each segment is 

.
2

 
2222 ax
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The component of dF perpendicular to the rod is dF ,
22 ax

a


 and so the net gravitational 

force is 
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L
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L
GmMadFF .

)(2 2322  

The integral can be found in a table, or found by making the substitution θ.ax  tan  
Then, ,sec )( , sec 22222  aaxdadx   and so 
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and the definite integral is 

.
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GmMF


  

When a >> L, the term in the square root approaches , and 2
2

a
GmMFa   as expected.  



13.1:  a) s.rad 1038.12 s,1055.4 3231   πfωT T
π

f    

     b) s.rad 1053.52 s, 1014.1 33
Hz) 220(4

1   πfω  
 
 
13.2: a)  Since the glider is released form rest, its initial displacement (0.120 m) is the 
amplitude. b) The glider will return to its original position after another 0.80 s, so the 
period is 1.60 s. c) The frequency is the reciprocal of the period (Eq. (13.2)), 

 s 60.1
1f Hz. 625.0  

 
13.3: The period is s 1014.1 3

440
s 50.0   and the angular frequency is 

 T
πω 2 s.rad 1053.5 3  

 
13.4: (a) From the graph of its motion, the object completes one full cycle in 2.0 s; its 
period is thus 2.0 s and its frequency .s 5.0period1 1  (b) The displacement varies 
from m, 20.0  tom 20.0   so the amplitude is 0.20 m. (c) 2.0 s (see part a) 
 
13.5: This displacement is 4

1  of a period. 
      s. 0500.0 so s, 200.01  tfT  
 
13.6: The period will be twice the time given as being between the times at which the 
glider is at the equilibrium position (see Fig. (13.8)); 

m.N 292.0kg) 200.0( 
s) 60.2(2

22
22
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πm
T
πmωk  

 
13.7: a) kg. 084.0 c)   s.rad 7.372 b)  s. 167.0 2

1 
ω
k

f mπfωT  
 
13.8: Solving Eq. (13.12) for k, 

m.N 1005.1
s 150.0

2 kg) 600.0(2 3
22
















π
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πmk  

 
 
13.9: From Eq. (13.12) and Eq. (13.10),  Hz, 66.2 s, 375.02 1

mN 140
kg 500.0  TfπT  

s.rad 7.162  πfω  
 
13.10: a) )( so ,)sin( 22

2

2 txxωβωtAωa
dt

xd
x   is a solution to Eq. (13.4) if 

ωAaω m
k 2 b) .2   a constant, so Eq. (13.4) is not satisfied. c)  ,)( βωti

dt
dx

x iωv   

  mkωtxxωAeiωa βωti
dt

dv
x

x 22)(2  if (13.4) Eq. osolution t a is )( so ,)(  
 



13.11:  a)  s,m 8.29Hz) )(440m)(2 10(3.0 b)   )Hz) )(440((2 cos mm) 0.3( 3   πtπx  
),Hz) )(440sin((2 )sm1034.6()( c)   .sm1029.2Hz) 440()mm)(2 0.3( 372422 tπtjπ   

.sm1034.6 37
max j  

 

13.12: a) From Eq. (13.19), m. 98.000 
mk

v
ω
vA   b) Equation (13.18) is 

 indeterminant, but from Eq. (13.14), ,2
   and from Eq. (13.17), sin . so ,0 2

π   
c) )).)srad  sin((12.2 m) 98.0( so ,sin  ))2(( cos txωtπωt   
 
13.13: With the same value for ω , Eq. (13.19) gives m 383.0A and Eq. (13.18) gives 

 .rad 02.1rad/s) (12.2 cos m) (0.383 and  tx  

,58.5rad 02.1
kg N/m/2.00 300m) (0.200

m/s) 4.00(arctan 








 
  

 
and x = (0.383 m) cos ((12.2 rad/s)t + 1.02 rad). 
13.14: For SHM,   .m/s 71.2m) 101.1(Hz) 5.2(2)2( 22222  πxπfxωax  
b) From Eq. (13.19) the amplitude is 1.46 cm, and from Eq. (13.18) the phase angle is  
0.715 rad. The angular frequency is rad/s, 7.152 πf so 

. rad) 715.0rad/s) ((15.7 cos )cm/s 359(

rad) 715.0rad/s) ((15.7sin  )scm 9.22(
rad) 715.0rad/s) ((15.7 cos cm) 46.1(

2 




ta
tv

tx

x

x  

 
13.15: The equation describing the motion is ;sin ωtAx  this is best found from either 
inspection or from Eq. (13.14) (Eq. (13.18) involves an infinite argument of the 
arctangent). Even so, x is determined only up to the sign, but that does not affect the 
result of this exercise. The distance from the equilibrium position is 

       m. 353.054sinm 600.02sin   πTtπA  
 
 



13.16: Empty chair: k
mπT 2  

N/m 993
s) (1.30

kg) 5.42(44
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With person in chair: 
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13.17:    kg 400.0,2  mkmπT  

s 09.22

N/m 60.3
m 300.0

)m/s 70.2kg)( 400.0( gives 

: calculate  tom/s 70.2 Use
2
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13.18: We have ).2 )s 4.71cm/s)sin(( 60.3()( 1 πttvx    Comparing this to the general 
form of the velocity for SHM: 

2
s 4.71

cm/s 60.3
1

π
ω

ωA





  

(a)    s 33.1s 71.422T 1  πωπ  

(b)   cm764.0
s 71.4

scm60.3scm60.3
1  ω

A  

(c )  2212
max scm9.16)cm764.0()s71.4(  Aωa  

 



13.19: rad)42.2s)radcos((4.16 cm)40.7()( a)  ttx  
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sm216.0sm)0125.0)(50.10.26(
.sm 0.303 is Speed 

sm 303.0sm)0125.0()0740.0(50.10.26

m 0125.0 gives s 00.1at  evaluated )( e)
N 92.1 so  d)

sm 308.0 gives 

m 0740.0cm 40.7 c)
mN0.26)2( so 2 b)
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13.20: See Exercise 13.15; 

s. 0.0871))(20.36))(1.5arccos((  πt  
 
13.21: a) Dividing Eq. (13.17) by ω , 

.sin  , cos 0
0  A

ω
v Ax  

Squaring and adding, 

,2
2

2
02

0 A
ω
vx   

which is the same as Eq. (13.19). b) At time ,0t  Eq. (13.21) becomes 
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2 kxv
ω
kkxmvkA   

where 2kωm   (Eq. (13.10)) has been used. Dividing by 2k  gives Eq. (13.19). 
 
13.22: a) s.m 1.48m) 10Hz))(0.60392(2()2( 3

max  πAπfv  

b) J. 1096.2s)mkg)(1.48107.2(
2
1)(

2
1 5252

maxmax
  VmK  

 
13.23: a) Setting 2

2
12

2
1 kxmv   in Eq. (13.21) and solving for x gives .

2
Ax   

Eliminating x in favor of v with the same relation gives .2
2

2 ωA
x mkAv   b) This 

happens four times each cycle, corresponding the four possible combinations of + and – 
in the results of part (a). The time between the occurrences is one-fourth of a period or 
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13.24: a) From Eq. (13.23), 
 

m/s. 1.20m) 040.0(
kg 0.500
mN  450

max  A
m
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b) From Eq. (13.22), 

m/s. 11.1m) 015.0(m) 040.0(
kg 0.500
N 450 22 v  

c) The extremes of acceleration occur at the extremes of motion, when ,Ax   and 
2

max m/s 36
kg) (0.500

m) N/m)(0.040 450(


m
kAa  

d) From Eq. (13.4), .m/s 5.13 2
kg) (0.500

m) 0.015N/m)( 450(  
xa  

e) From Eq. (13.31), J.  36.0m) N/m)(0.040 450( 2
2
1 E  

 
13.25: a)    

max
22222

max   . m/s 5.13m) 100.18(Hz) 85.0(2)2( vAfAωa        
m/s 961.02  πfAωA . ,m/s 57.2)2( b) 22  xπfax  

  m/s. 833.0m) 100.9(m) 100.18(Hz) 85.0(2

)2(
2222

22




π

xAπfv
 

c) The fraction of one period is )21( π arcsin ),0.180.12(  and so the time is 
)2( πT arcsin 11037.1)0.180.12(  s. Note that this is also arcsin ωAx )( . 

d) The conservation of energy equation can be written 2
2
12

2
12

2
1 kxmvkA  . We are 

given amplitude, frequency in Hz, and various values of x . We could calculate velocity 
from this information if we use the relationship 222 4 fπωmk  and rewrite the 
conservation equation as 2

2
1

42
12

2
1

22

2 xA
fπ

v  . Using energy principles is generally a good 

approach when we are dealing with velocities and positions as opposed to accelerations 
and time when using dynamics is often easier. 
 
13.26: In the example, mM

MAA  12  and now we want  , So . 2
1

12
1

2 mM
MAA  or 

Mm 3 . For the energy, 2
22

1
2 kAE  , but since 14

3
14

1
212

1
2 or  , , EEEAA   is lost to 

heat. 
 
 



13.27:  a)        J  0284.02
2
12

2
1  kxmv . 

       b) m. 014.0
kg) (0.150N/m) 300(

m/s) 300.0(m) 012.0(
2

2
2

2
02

0 
ω
vx  

       c)   sm615.0mAkωA  
 
 
 
 
 
13.28: At the time in question we have 

22 sm 40.8)( cos 
sm 20.2)sin( 

m 600.0)( cos 











ωtAωa
ωtωAv

ωtAx
 

 
Using the displacement and acceleration equations: 

222 sm 40.8m) 600.0()( cos  ωωtAω   
12 s 742.3 and 0.14  ωω  To find A, multiply the velocity equation by :ω  

212 sm 232.8)sm (2.20 )s 742.3()(sin   ωtAω  
Next square both this new equation and the acceleration equation and add them: 

m 840.0

m 7054.0
)s 742.3(
sm 3.138sm 3.138

sm 3.138sm 56.70sm 77.67
)(cos )(sin 

)sm 40.8()sm 232.8()(cos )(sin 

2
41

42

4

42
2

42424224

2224

2222224224













A
ω

A

Aω
ωtωtAω

ωtAωωtAω




 

 
The object will therefore travel m 0.240m 600.0m 840.0  to the right before stopping 
at its maximum amplitude. 
 
13.29: mkAv max  

sm 509.0Then 

m. 0405.0)( so 
: find  to  Use

s 158)2(so 2

: find  to  Use

max

maxmax

max

22





 

mkAv

mkaAmkAa
Aa

Tπmk kmπT

mkT

 

 
 



13.30:    Using 
0

0
L
Fk  from the calibration data, 

kg. 00.6
Hz)) 60.2((2

m) 10(1.25N) 200(
)2(

)(
2

1

2
00 






ππf
LFm  

 

13.31: a) m.N 10153
m) 120.0(

)sm (9.80 kg) 650(
Δ

3
2


l

mgk  

        b) s. 695.0
sm 9.80

m 120.0222 2  π
g
lπ

k
mπT   

 
13.32: a) At the top of the motion, the spring is unstretched and so has no potential 
energy, the cat is not moving and so has no kinetic energy, and the gravitational potential 
energy relative to the bottom is J  3.92m) 050.0()m/s kg)(9.80 00.4(22 2 mgA . 
This is the total energy, and is the same total for each part. 
b) J  92.3 so ,0,0 springgrav  UKU . 
c) At equilibrium the spring is stretched half as much as it was for part (a), and so  

J  98.0 so and J, 1.96J) 92.3( J,  0.98J) 92.3( 2
1

grav4
1

spring  KUU . 
 
13.33: The elongation is the weight divided by the spring constant, 

cm 97.3
4 2

2

2 
π

gT
mω

mg
k
wl . 

 
13.34: See Exercise 9.40. a) The mass would decrease by a factor of 271)31( 3  and so 
the moment of inertia would decrease by a factor of )2431()31)(271( 2  , and for the 
same spring constant, the frequency and angular frequency would increase by a factor of 

6.15243  .  b) The torsion constant would need to be decreased by a factor of 243, or 
changed by a factor of 0.00412 (approximately). 
 
13.35: a) With the approximations given,  ,mkg 1072.2 282  mRI  

28 mkg 102.7or    to two figures.  
b) radmN 103.4)mkg 1072.2(Hz) 22()2( 62822  πIπfκ . 
 
13.36: Solving Eq. (13.24) for  in terms of the period, 

m/rad.N 1091.1

)m) 10kg)(2.20 1000.2)(21((
s 00.1

2

 2

5

223
2

2





















π

I
T
π

 

 



13.37:  

 
.mkg 0152.0

s) (265125)(2
m/radN 450.0

)2(
2

22 






ππf

I  

 
 
13.38: The equation )t( cos φωθ  describes angular SHM. In this problem, .0φ  
a) ). cos(  and ) sin( 2

2

2 tωωtωω
dt

θd
dt
dθ   

b) When the angular displacement is ) cos(, tω , and this occurs at ,0t so 

1.cos(0) since , and 0,sin(0)  since  0 2
2

2

 ω
dt

θd
dt
dθ  

       When the angular displacement is ). cos(or  ), cos(,2 2
1

2 tωtω    

.21) cos( since , 
2

 and,
2
3) sin( since 

2
3 2

2

2

 tωω
dt

θdtωω
dt
dθ  

This corresponds to a displacement of 60 . 
 
13.39: Using the same procedure used to obtain Eq. (13.29), the potential may be  
expressed as 

].)1(2)1[( 6
0

12
00

  RxRxUU  
Note that at . , 00 UURr   Using the appropriate forms of the binomial theorem for 

|| 0Rx  << 1, 

      

       























 









 




2
00

2
00

0

2
76612

2
1312121

RxRx

RxRx
UU  

    







 2

2
0

0
361 x
R

U  

    .
2
1

0
2 Ukx   

where 2
0 /72 RUk   has been used. Note that terms in 2u  from Eq. (13.28) must be    

kept ; the fact that the first-order terms vanish is another indication that 0R  is an extreme 
(in this case a minimum) of U. 
 
 

13.40:     Hz. 1033.1
kg) 1066.1(008.1

N/m) 580(2
2
1

22
1 14

27 





 m
kf  

 
13.41: ,2 gLT   so for a different acceleration due to gravity ,g   

  s. 60.2sm 71.3sm 80.9s 60.1 22  ggTT  



13.42:  a) To the given precision, the small-angle approximation is valid. The highest 
speed is at the bottom of the arc, which occurs after a quarter period, s. 25.024  g

LT   
       b) The same as calculated in (a), 0.25 s. The period is independent of amplitude. 
 
13.43: Besides approximating the pendulum motion as SHM, assume that the angle 
is sufficiently small that the length of the spring does not change while swinging in the 
arc. Denote the angular frequency of the vertical motion as L

gkg
m
k     and 0  

,402
1

w
kgω   which is solved for kwL 4 . But L is the length of the stretched 

spring; the unstretched length is     m. 00.2N/m 50.1N 00.1330  kwkwLL  
 
13.44: 
 

 
 
 
 
 
 
 
13.45: The period of the pendulum is   s. 36.1100s 136 T Then, 

 
 

.sm 67.10
s 1.36
m 5.44 2

2

2

2

2


π

T
Lπg  

 
13.46: From the parallel axis theorem, the moment of inertia of the hoop about the nail is 

 .13.39Eq.in   with ,22 so ,2 222 RdgRπTMRMRMRI   Solving for R, 

m. 496.08
22  πgTR  

 
13.47: For the situation described, LdmLI   and 2  in Eq. (13.39); canceling the factor 
of m and one factor of L in the square root gives Eq. (13.34). 
 
 



13.48:    a) Solving Eq. (13.39)  for I, 

      .mkg 0987.0m 250.0 sm 80.9 kg 1.80 
2

s 940.0 
2

22
22
















π
mgd

π
TI  

      b) The small-angle approximation will not give three-figure accuracy for 
rad. 0.400Θ   From energy considerations, 

  .Ω
2
1 cos1 2

maxImgd   

       Expressing max in terms of the period of small-angle oscillations, this becomes 

      .srad 66.2rad 0.40cos1
s 940.0

22 cos122
22

max 














π
T
π  

 
13.49: Using the given expression for I in Eq. (13.39), with d=R (and of course m=M), 

s. 58.0352  gRπT  
 
13.50: From Eq. (13.39), 

     .kg.m 129.0
2

100s 120 m 200.0 sm 9.80 kg 80.1
2

2
2

2
2
















ππ
TmgdI  

 
13.51: a) From Eq. (13.43), 

 
 

 
 

Hz. 393.0
2

 so ,srad 47.2
kg 300.04

skg 90.0
kg 300.0
mN 50.2   2

2





π

ωfω  

       b)      .skg73.1kg 300.0 mN 50.222  kmb  
 
13.52: From Eq. (13.42)   ,for  Solving . exp 212 btAA m

b  

s.kg0220.0
m100.0
m300.0ln

)s00.5(
)kg050.0(2ln 2

2

1 


















A
A

t
mb  

As a check, note that the oscillation frequency is the same as the undamped frequency to 
 valid.is (13.42) Eq. so ,%108.4 3  

 



13.53: a) With .(0)0, Ax   

        b)                     ,sin   cos 
2

)2(




   tωωtω

m
bAe

dt
dxv tmb

x  

and at down. slopes 0near    versus ofgraph   the;2 ,0  ttxmAbvt  

           c)            ,sin  
2

'  cos 
4

2
2

2
)2(





















  tω

m
bωtω

m
bAe

dt
dva tmbx

x   

and at ,0t  

.
24 2

2
2

2

2




















m
k

m
bAω

m
bAax  

(Note that this is .))( 00 mkxbv   This will be negative if 

.2 if positive and  2 if zero ,2 kmbkmbkmb   The graph in the three cases will 
be curved down, not curved, or curved up, respectively. 
 
13.54: At resonance, Eq. (13.46) reduces to .2 b)      . a)     . 13d max

1 AbFA A  Note that 
the resonance frequency is independent of the value of b (see Fig. (13.27)). 
 
 
13.55: a) The damping constant has the same units as force divided by speed, or 
       .skgsmsmkg 2   b)The units of km  are the same as  ,skgkg]]][skg[[ 212   
the same as those for     .52.0 so  , 2.0(i) . c)  . maxmaxd

2
d kFkFAkbωmkωb   

 ,5.2) 4.0( so ,0.4  ii)( maxmaxd kFkFAkb  as shown in Fig.(13.27). 
 
13.56: The resonant frequency is  

Hz,22.2srad139 )kg108)mN102.1( 6 mk  
and this package does not meet the criterion. 
 



13.57: a) 

.sm 1072.6
minrev

srad 
 

30
 )minrev3500(

2
m100.0 23

2

2 





















πAωa  

b) .sm3.18
minrev

srad 
 

30
)m05(.)minrev3500(  c) N. 1002.3 3 









πωAma

J. 6.75)sm 3.18)(kg 45)(.( 2
2
12

2
1  mvK  d) At the midpoint of the stroke, cos(ω t)=0 

and so s,rad ))(minrev(35002  thus,2 3
350

minrev
srad

30
ππω. ωπtπωt   so 

W.101.76s) (J 6.75or  ,Then  s. 4
2(350)

3
)350(2

3  PtKPt  
e) If the frequency doubles, the acceleration and hence the needed force will quadruple 
(12.1 N). 103 The maximum speed increases by a factor of 2 since , α ωv  so the speed 
will be 36.7 m/s. Because the kinetic energy depends on the square of the velocity, the 
kinetic energy will increase by a factor of four (302 J). But, because the time to reach the 
midpoint is halved, due to the doubled velocity, the power increases by a factor of eight 
(141 kW). 
 
13.58: Denote the mass of the passengers by m and the (unknown) mass of the car by M. 
The spring cosntant is then lmgk  . The period of oscillation of the empty car is 

kMπT 2E   and the period of the loaded car is 

 

  s. 003.12

so ,22

22
LE

22
EL












g
lπTT

g
lπT

k
mMπT

 

 
13.59: a) For SHM, the period, frequency and angular frequency are independent of 
amplitude, and are not changed. b) From Eq. (13.31), the energy is decreased by a factor 
of 4

1 . c) From Eq. (13.23), the maximum speed is decreased by a factor of 2
1  d) Initially, 

the speed at 41A  was ;14
15 ωA  after the amplitude is reduced, the speed is 

    14
32

1
2

1 42 ωAAAω  , so the speed is decreased by a factor of 
5

1  (this result is 

valid at 41Ax   as well). e) The potential energy depends on position and is 
unchanged. From the result of part (d), the kinetic energy is decreased by a factor of 5

1 . 
 
13.60: This distance ; is kmgLL   the period of the oscillatory motion is 

,22
g
L

k
mπT   

which is the period of oscillation of a simple pendulum of lentgh L. 
 



13.61: a) Rewriting Eq. (13.22) in terms of the period and solving, 

s. 68.12 22





v

xAπT  

      b) Using the result of part (a), 

m. 0904.0
2

2
2 









vTAx  

      c) If the block is just on the verge of slipping, the friction force is its maximum, 
.ss mgµnµf   Setting this equal to     .143.02 gives 2 22  gTπAµTπmAma s  

 
13.62: a) The normal force on the cowboy must always be upward if he is not holding on. 
He leaves the saddle when the normal force goes to zero (that is, when he is no longer in 
contact with the saddle, and the contact force vanishes). At this point the cowboy is in 
free fall, and so his acceleration is g ; this must have been the acceleration just before 
he left contact with the saddle, and so this is also the saddle’s acceleration. 
b) m. 110.0))Hz 50.1(2)sm80.9()2( 222  πfπax  c) The cowboy’s speed will 

be the saddle’s speed, s.m 11.2)2( 22  xAπfv  d) Taking 0t  at the time when 
the cowboy leaves, the position of the saddle as a function of time is given by Eq. 

(13.13), with ; cos 2 Aω
g

  this is checked by setting 0t  and finding that 

. 22 ω
a

ω
gx   The cowboy’s position is .)2( 2

00c tgtvxx   Finding the time at which 
the cowboy and the saddle are again in contact involves a transcendental equation which 
must be solved numerically; specifically, 
 

rad), 11.1s)rad 42.9(( cos m) 25.0()sm 90.4(s)m11.2(m) 110.0( 22  ttt  
 
which has as its least non-zero solution s. 538.0t  e) The speed of the saddle is 

,sm 72.1)(sin  s)m  36.2(  tω and the cowboy’s speed is (2.11 )sm 80.9()sm 2  
s,m 16.3s) 538.0(   giving a relative speed of sm 87.4  (extra figures were kept in 

the intermediate calculations). 
 
 
13.63: The maximum acceleration of both blocks, assuming that the top block does not 
slip, is ),( max MmkAa   and so the maximum force on the top block is 
  .)( is amplitude maximum  theso and , smaxs kgMmµAmgµkAMm

m   
 
 



13.64: (a) Momentum conservation during the collision: Vmmv )2(0   
 

sm 00.1s)m 00.2(
2
1

2
1

0  vV  

 
Energy conservation after the collision: 
 

22

2
1

2
1 kxMV   

 

)(amplitude m 500.0 
mN 0.80

s)m 00.1kg)( 0.20(  
22


k

MVx  

 
Mkπfω  2   

 

Hz 318.0
kg 0.20

mN 0.80
2
1 

2
1


π

Mk
π

f  

 

s 14.3
Hz 318.0

11


f
T  

 
(b) It takes 21  period to first return: s 57.1s) 14.3(2

1   
 
 



13.65: a) 2mm   
      Splits at 2 so  ,energy, kinetic all isenergy   where0 2

2
1 EEmv Ex   

   k  stays same 

     kEAkAE 2 so 2
2
1   

      Then 2 means 2 AAEE   
 
       2 means 2 so 2 TTmmkmπT   

b) 2mm   
Splits at Ax   where all the energy is potential energy in the spring, so E  doesn’t  

change. 
AkAE  so 2

2
1 stays the same. 

,2 so 2 TTkmπT  as in part (a). 
c) In example 13.5, the mass increased. This means that T increases rather than 

decreases. When the mass is added at ,0x the energy and amplitude change. When the 
mass is added at ,Ax  the energy and amplitude remain the same. This is the same as 
in this problem. 
 
 
13.66: a) 

 
 

For space considerations, this figure is not precisely to the scale suggested in the 
problem. The following answers are found algebraically, to be used as a check on the 
graphical method. 

         b)                                               m.200.0
N/m)(10.0

J)200.0(22


k
EA  

        c) m.141.0 , If d) J.050.0
22

1
4  AE xEU e) From Eq. (13.18), using 

, and 00 2
0

2
0 k

U
m
K xv   

    429.0
 0

0
2

2

0

0

0

0


U
K

xω
v

k
U

m
k

m
K

 

and   rad580.00.429arctan  . 
 



13.67: a) The quantity l  is the amount that the origin of coordinates has been moved 
from the unstretched length of the spring, so the spring is stretched a distance xl   (see 
Fig. (13.16 ( c ))) and the elastic potential energy is 2

el )()21( xlkU  . 
 

         b)                .
2
1

2
1

0
22

0el mgxmgxlxklkxxxmgUU    

Since ,kmgl   the two terms proportional to x cancel, and 
 

  .
2
1

2
1

0
22 mgxlkkxU   

 
         c) An additive constant to the mechanical energy does not change the dependence 
of the force on  ,  , dx

dU
xFx   and so the relations expressing Newton’s laws and the 

resulting equations of motion are unchanged. 
 
 
13.68:     The “spring constant” for this wire is ,l

mgk   so 
 

Hz. 1.11
m1000.2

sm80.9
2
1

2
1

2
1

3

2







 πl
g

πm
k

π
f  

 
 
13.69:     a) s.m150.02 T

πA  b)   .sm112.02 22  xTπa  The time to go from 
equilibrium to half the amplitude is   rad, 6or  ,21sin πωtωt   or one-twelfth of a 
period. The needed time is twice this, or one-sixth of a period, 0.70 s. 
d)   m.38.422 2


rπ

g
ω
g

k
mgl  

 



13.70:     Expressing Eq. (13.13) in terms of the frequency, and with ,0 and taking 
two derivatives, 

 

 
   

    .
s50.1

2cos sm2110.4
s50.1

2cos m240.0
s50.1

2

s50.1
2sin sm00530.1

s50.1
2sin 

s50.1
m240.02

s50.1
2 cos m240.0

2
2

































































πtπtπa

πtπtπv

πtx

x

x                                                

 
                                            

a) Substitution gives m, 120.0x  or using  3
Tt  gives .120 cos 2

AAx   
b) Substitution gives 

   - in the N, 1021.4sm106.2kg0200.0 22 xmax   direction. 

c)   s. 577.0 arccos 43
2  

A
A

π
Tt  

d) Using the time found in part (c) ,  sm 665.0v (Eq.(13.22) of course gives the 
same result). 

 
 
13.71:     a) For the totally inelastic collision, the final speed v  in terms of the initial 
speed ghV 2  is 

    sm2.6or  s,m57.2m40.0sm80.92 4.2
2.22

    Mm
MVv  to two figures.  b) When 

the steak hits, the pan is k
Mg  above the new equilibrium position. The ratio 

    ,2 is 22
2

2
0 MmkghMMmkv

ω
v   and so the amplitude of oscillation is 

                             

 

  
 

m. 206.0

kg) m)(2.4N400(
kg) m)(2.2 )(0.40sm80.9(2

mN 400
m/s 80.9kg 2.2

2

2222

22























Mmk
ghM

k
MgA

 

 
        (This avoids the intermediate calculation of the speed.) c) Using the total mass, 

s.487.0)(2  kMmπT  
 
 



13.72: N/m.5685 gives  kg; 400 Hz, 600.0 2
1  kfmf m

k  
         This is the effective force constant of the two springs. 
         a) After the gravel sack falls off, the remaining mass attached to the springs is 225 
kg. The force constant of the springs is unaffected, so Hz. 800.0f  
          To find the new amplitude use energy considerations to find the distance 
downward that the beam travels after the gravel falls off. 
         Before the sack falls off, the amount 0x that the spring is stretched at equilibrium is 
given by      m.6895.0N/m5685m/s80.9kg400 so , 2

00  kmgxkxmg  The 
maximum upward displacement of the beam is m. 400.0A  above this point, so at this 
point the spring is stretched 0.2895 m. 
 
         With the new mass, the mass 225 kg of the beam alone, at equilibrium the spring is 
stretched m. 0.6895m)N 5685()sm (9.80 kg) 522( 2 kmg The new amplitude is 
therefore m.098.0m2895.0m3879.0  The beam moves 0.098 m above and below the 
new equilibrium position. Energy calculations show that 0v when the beam is 0.098 m 
above and below the equilibrium point. 
         b) The remaining mass and the spring constant is the same in part (a), so the new 
frequency is again Hz. 800.0  
         The sack falls off when the spring is stretched 0.6895 m. And the speed of the beam 
at this point is       m/s.508.1kg400N/m5685m400.0  mkAv . Take 0y  
at this point. The total energy of the beam at this point, just after the sack falls off, is  

      J. 16080m6895.0N/m5695m/s508.1kg225 2
2
12

2
1

gel  UUKE Let this 
be point 1. Let point 2 be where the beam has moved upward a distance d and where 

0v .   21
2

2
1

2  .m6985.0 EEmgddkE   gives m7275.0d . At this end point of  
motion the spring is compressed 0.7275 m – 0.6895 m =0.0380 m.  At the new 
equilibrium position the spring is stretched 0.3879 m, so the new amplitude is 0.3789 m + 
0.0380 m = 0.426 m. Energy calculations show that v is also zero when the beam is 0.426 
m below the equilibrium position. 
 
 
13.73:     The pendulum swings through  2

1 cycle in 1.42 s, so m. 85.1 s. 84.2  LT  
         Use T to find g: 
           22 m/s055.92 so 2  TπLggLπT  
         Use g to find the mass pM of Newtonia: 

         

kg 1008.9

m 1018.8  so m, 1014.52

/

24
2
p

p

6
p

7
p

2
pp







G
gR

m

RπR

RGMg

 

 
 



13.74:     a) Solving Eq. (13.12) for m , and using l
Fk   

  kg. 05.4
m 0.250
N 0.40

2
1

2

22


















 l
FTm  

 
         b) , Since m. 0.0405(0.35)sin2 so and ,)35.0( 4

TtπAxTt  the mass has 
already passed the lowest point of its motion, and is on the way up.  
         c) Taking upward forces to be positive, xkxmgF   where,spring  is the 
displacement from equilibrium , so 
  N. 5.44)m/s kg)(9.80  (4.05m) 0.030m)(N 160( 2

spring F  
 
 
13.75:     Of the many ways to find the time interval, a convenient method is to take 

0  in Eq. (13.13) and find that for 6/ so and )/2cos(  cos,2  2
1 TtTπttωAx  . 

The time interval available is from s. 17.13/ and ,  to  Ttt  
 
 
13.76:     See Problem 12.84; using x  as the variable instead of ,r  

. so ,)(
E

3
E

E2
3
E

E

R
g

R
GMωx

R
mGM

dx
dUxF   

        The period is then 

s, 5070
m/s 9.80

m 1038.6222
2

6
E 


 π

g
Rπ

ω
πT  

or 84.5 min. 
 
 



13.77:    Take only the positive root (to get the least time), so that 
     

   

,
2

            

)1arcsin(

 )(

      

or ,                 

1

1

0 10 22

22

22

1

t
m
kπ

t
m
k

t
m
kdt

m
k

xA
dx

dt
m
k

xA
dx

xA
m
k

dt
dx

tA













  

where the integral was taken from Appendix C.  The above  may be rearranged to show 
that ,4

2
1

T

m
k

t    which is expected. 

 
 



13.78:    a)     .
4

    
0 0

43  
x x

xcdxxcdxFU  

 
a) From conservation of energy, , )( 44

4
2

2
1 xAmv c  and using the technique of Problem 

13.77, the separated equation is  

.
244

dt
m
c

xA
dx




 

 
Integrating from 0 to A  with respect to x and from 0 to 4T  with respect to ,t  
 

 


A T
m
c

xA
dx

0
44

.
42

 

 
To use the hint, let ,A

xu   so that duadx    and the upper limit of the u integral is 
.1u  Factoring 2A  out of the square root, 

 

,
32

31.1
1

1 1

0
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T

m
c

Au
du

A
 

 
which may be expressed as .41.7

c
m

AT   c) The period does depend on amplitude, and the 
motion is not  simple harmonic. 
 
 
13.79:   As shown in Fig.    , and  With .sin ,b5.13 tantan  ωtθAωvθvv  this is 
Eq.  .15.13  
 
 
13.80:    a) Taking positive displacements and forces to be upwad, 

  ,2 , 2 xπfamamgn   so 
 

     . 2cos 2 2  tπfAπfgmn  
 
a) The fact that the ball bounces means that the ball is no longer in contact with the lens, 

and that the normal force goes to zero periodically. This occurs when the amplitude 
of the acceleration is equal to ,g or when 

  .2 2
b Aπfg   

 
 



13.81:    a) For the center of mass to be at rest, the total momentum must be zero, so the 
momentum vectors must be of equal magnitude but opposite directions, and the momenta 
can be represented as . and pp 

  
 

      b)       .222
2

22

tot m
p

m
pK   

 
      c) The argument of part (a) is valid for any masses. The kinetic energy is 
 

  .2222 2121
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13.82:   a)                                       .1
29

7
0 


















rr

RΑ
dr
dUFr  

 
         b) Setting the above expression for rF  equal to zero, the term in square brackets 

vanishes, so that  . and ,or  ,1
0

77
029

7
0 RrrR

rr
R   

 

           c)                                J. 1057.7
8
7 19

0
0


R
ΑRU  

 
           d) The above expression for rF  can be expressed as 
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        e)                          z.1039.87
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13.83:   a)                
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Rrr
A

dx
dUFr  

       b)   Setting the term in square brackets equal to zero, and ignoring solutions with 
. or  ,2,2or  0 000 RrrRrRrr   

       c)   The above expression for rF may be written as 
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corresponding to a force constant of .4 3

0RAk   d) The frequency of small oscillations 

would be .)1()21( 3
0mRAπmkπf   

 
 
13.84:   a) As the mass approaches the origin, the motion is that of a mass attached to a 
spring of spring constant k, and the time to reach the origin is .2 kmπ  After passing 
through the origin, the motion is that of a mass attached to a spring of spring constant 2k 
and the time it takes to reach the other extreme of the motions is .22 kmπ  The period is 

twice the sum of these times, or  
2

11  k
mπT . The period does not depend on the 

amplitude, but the motion is not simple harmonic. B) From conservation of energy, if the 
negative extreme is ; so ,)2(,

2
2

2
12

2
1 AAAkkAA   the motion is not symmetric about 

the origin. 
 
 



13.85:   There are many equivalent ways to find the period of this oscillation. Energy 
considerations give an elegant result. Using the force and torque equations, taking torques 
about the contact point, saves a few intermediate steps. Following the hint, take torques 
about the cylinder axis, with positive torques counterclockwise; the direction of positive 
rotation is then such that Ra , and the friction force f  that causes this torque acts in 
the –x-direction. The equations to solve are then 
 

,R    ,      , cm   aIfRkxfMax  
 
Which are solved for 
   

,
 )23(2 x
M

k
RIM

kxax 


  

 
where 2

cm )21( MRII   has been used for the combination of cylinders. Comparison 

with Eq. (13.8) gives .23 22 kMπT ω
π   

 
 



13.86:   Energy conservation during downward swing: 
 

  
sm 40.1)m 100.0)(sm 8.9(2 2 2

0

2
22

1
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ghv

vmghm
 

             
Momentum conservation during collision: 
 

      
sm 560.0

kg 00.5
)sm 40.1)(kg 00.2(
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Energy conservation during upward swing: 

 

cm 1.60m 0160.0
)sm 80.9(2

)sm 560.0(2

2
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5.14     
cm 50.0
cm  4.48cos

θ

θ  

 

                                                Hz 705.0
m 500.0
sm 80.9
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13.87:  
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2211
cg

3 ,2

mm
ymymyd

MmmgdIπT







  

 
      m 292.1

3
2 m 1.55m 55.12 m 55.12





M

MMd  

 

    MMI

III
22

3
1

1

21

m 602.1m 55.12 


 

 
 212

1
cm,2 m 55.1MI   

 
The parallel-axis theorem (Eq. 9.19) gives 

    MMII  m 06.52 m 55.1m 55.1 22
cm,22   

 MIII  m 208.7 2
21   

Then  
    s. 74.2

m 292.1sm 80.93
 m 208.722 2

2


M

MπmgdIπT  

This is smaller than s 9.2T found in Example 13.10. 
 
 



13.88:   The torque on the rod about the pivot (with angles positive in the direction 
indicated in the figure) is   . 22

LL θkτ   Setting this equal to the rate of change of angular 

momentum, ,2

2

dt
dII    

,342

2

2

θ
M
kθ

I
Lk

dt
θd

  

 
where the moment of inertia for a slender rod about its center, 2

12
1 MLI   has been used. 

It follows that .2  and  , 3
232

k
M

ω
π

M
K πTω   

 
 
13.89: The period of the simple pendulum (the clapper) must be the same as that of the 
bell; equating the expression in Eq. (13.34) to that in Eq. (13.39) and solving for L gives 

m. 882.0m)) 60.0kg)( 0.34(()m kg 0.18( 2  mdΙL Note that the mass of the bell, 
not the clapper, is used. As with any simple pendulum, the period of small oscillations of 
the clapper is independent of its mass. 
 
 
13.90: The moment of inertia about the pivot is , )32()31(2 22 MLML   and the center of 
gravity when balanced is a distance )2(2Ld  below the pivot (see Problem 8.95). 
From Eq. (13.39), the frequency is 
 


L

g
πL

g
πT

f
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3
4
1

24
3

2
11

 

 
 
13.91: a) m. 97.3)2( 2  πTgL  b)There are many possibilities. One is to have a 
uniform thin rod pivoted about an axis perpendicular to the rod a distance d from its 
center. Using the desired period in Eq. (13.39) gives a quadratic in d, and using the 
maximum size for the length of the rod gives a pivot point a distance of 5.25 mm, which 
is on the edge of practicality. Using a “dumbbell,” two spheres separated by a light rod of 
length L gives a slight improvement to d=1.6 cm (neglecting the radii of the spheres in 
comparison to the length of the rod; see Problem 13.94). 
 
 



13.92: Using the notation 2
2 , ωγ m

k
m
b   and taking derivatives of Eq. (13.42) (setting the 

phase angle 0 does not affect the result), 
 

). sin  2cos )((e

) cos   sin  (e
cos 

22
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tωωtω γωΑa
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tωΑex
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Using these expression in the left side of Eq. (13.41), 
 

).sin  2 cos )2((                   

) cos 2tsin  )2( cos  (
22t

2t

tωωγtωωγemΑ
tωmγωωmtωkΑebvkx x










 
 

 
The factor   is )2( 2222 ωγωγ  (this is Eq. (13.43)), and so 
 

.)sin  2  cos )(( 22t
xx matωωγtωωγemΑbvkx    

 
 
13.93:   a) In Eq. (13.38), d=x and from the parallel axis theorem, 

. ω, xLmI
x)L(

gx
22 12

222 so)12(


  b) Differentiating the ratio 22 )12(
2

xL
xgω


  with 

respect to x and setting the result equal to zero gives 
 

,122or    ,
))12((

2
)12(

1 222
222

2

22 Lxx
xL

x
xL







 

 
Which is solved for .12Lx   

c) When  x   is the value that maximizes  ω  the ratio   ,
3

12
6

122
12

2

2

LLL
L

g
ω

  

so the length is m. 430.03
2 

ω
gL  

 
 



13.94: a) From the parellel axis theorem, the moment of inertia about the pivot point 
is   .52 22 RLM   
 
Using this in Eq.  (13.39),  With Ld   gives.   
 

  .5215212522 22
sp

22
22

LRTLR
g
Lπ

gL
RLπT 


  

 
      b) Letting   001.1521 22  LR and solving for the ratio RL  (or approximating the 
square root as 22 51 LR ) gives .1.14R

L  
c)     .cm 0.18cm 270.1 1.14   
 
 
13.95: a) The net force on the block at equilibrium is zero, and so one spring (the one 
with  m 00.21 k ) must be stretched three times as much as the one with 

m 00.62 k . The sum of the elongations is 0.200 m, and so one spring stretches 0.150 
m and the other stretches 0.050 m, and so the equilibrium lengths are 0.350 m and 0.250 
m.   b) There are many ways to approach this problem, all of which of course lead to the 
result of Problem 13.96(b). The most direct way is to let m 150.01 x  and 

m, 050.02 x  the results of part (a). When the block in Fig.(13.35) is displaced a 
distance x to the right, the net force on the block is 

        .2122112211 xkkxkxkxxkxxk   
 
From the result of part (a), the term in square brackets is zero, and so the net force is 
  ,21 xkk   the effective spring constant is 21eff kkk   and the period of vibration is 

s. 702.02 m8.00
kg 100.0  πT  

 
 



13.96: In each situation, imagine the mass moves a distance ,x  the springs move 
distances 1x  and  ,2x  with forces . , 222111 xkFxkF   
a)   . so  , , 21eff212121 kkkxkkFFFxxx   
b) Despite the orientation of the springs, and the fact that one will be compressed when 
the other is extended,  ,21 xxx   and the above result is still valid; .21eff kkk    
c) For massless  springs, the force on the block must be equal to the tension in any point 

of the spring combination, and ,21 FFF   and so , ,
2

2
1

1 k
Fx

k
Fx   and   









 F

kk
x  11

21

F
kk

kk
21

21   

and .
21

21
eff κκ

κκκ   d) The result of part (c) shows that when a spring is cut in half, the 

effective spring constant doubles, and so the frequency increases by a factor of .2  
 
 
13.97: a) Using the hint, 
 

,
22

1 2 2321

g
gTTgggLπTT 

 



    

 
so    .21 ggTT   This result  can also be obtained from ,4 22 LπgT   from which  
 
  .02 2  gTgTT  Therefore, .2

1
g
g

T
T    b) The clock runs slow; 0  ,0  gT  

and   sm 80.921 2





 


T
Tggg   

  .sm 7991.9
s 400,86
s 00.421 2







  

 
 



13.98: Denote the position of a piece of the spring by 0  ; ll is the fixed point and 
Ll  is the moving end of the spring. Then the velocity of the point corresponding to ,l  

denoted  
L
lvluu  is  ,  (when the spring is moving, l will be a function of time, and so 

u is an implicit function of time). a) ,dldm L
M  and so 

 

, 
2
1 

2
1 2

3

2
2 dll

L
MvudmdK   

and 

             .
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2

 
2

0

2
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2 Mvdll
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MvdKK
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b) ,0or  ,0  kxmakxmv dt

dx
dt
dv  which is Eq. .4.13  c) m is replaced by ,3

M so 

. and 3
3 M
M
k Mω   

 
 
13.99:    a)  With   2 and 31 2 LdMLI   in Eq.  ,39.13  .3220 gLπT   With the       
addedmass,      πTyLdMmyLMI 2,24  and 2  ,3 22 

    yLgyL  23 22   and 
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2

22

0 yLL
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T
Tr




  

 

 
 
b) From the expression found in part   a), . when 3

2
0 LyTT   At this point, a simple 

pendulum with length y  would have the same period as the meter stick without the 
added mass; the two bodies oscillate with the same period and do not affect the other’s 
motion. 
 



13.100: Let the two distances from the center of mass be . and 21 dd There are then two 
relations of the form of Eq. (13.39); with , and 2

2cm2
2

1cm1 mdIImdII   these 
relations may be rewritten as 
 

 
 .4

4
2
2cm

22
2

2
1cm

22
1

mdIπTmgd

mdIπTmgd




 

 
Subtracting the expressions gives 
 

       , 44 2121
22

2
2

1
22

21 ddddmπddmπTddmg   
and dividing by the common factor of  21 ddm   and letting Ldd  21  gives the 
desired result. 
 
 
13.101: a) The spring, when stretched, provides an inward force; using lω  2  for the 
magnitude of the inward radial acceleration, 

  .or  , 2
0

0 ωmk
kllllklωm


  

 
b) The spring will tend to become unboundedly long. 
 
 
13.102: Let and  that so  , 00 xRrxRr   
                                                       ].[ 2 bxbx eeAF    
When x is small compared to ,1b  expanding the exponential function gives 

     ,121 AbxbxbxAF   
 
corresponding to a force constant of mN 579or  mN 2.579Ab  to three figures. This is 
close to the value given in Exercise 13.40.  



14.1:      ρVgmgw   

                           N 8.41sm 80.9m 1043.1m 858.0 mkg 108.7 22233  π  
or 42 N to two places. A cart is not necessary. 
 
 

14.2:                        
  .mkg 1033.3

m 1074.1
kg 1035.7 3 3

36
3
4
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3
3
4







ππr
m

V
mρ  

 
 
14.3:     

  .mkg1002.7 3 3
mm 0.300.150.5

kg 0158.0
3 

V
mρ  You were cheated. 

 
 
14.4:    The length L of a side of the cube is 

cm.3.12
mkg104.21

kg0.40 3
1

3
1

3
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3 3 




















mVL  

 
14.5:    ρπrρVm 3

3
4  

Same mass means  leadl aluminum, a1
3

1a
3

a  ρrρr  
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14.6:    a)                        327

30

38
3
4

30

sun

sun

m 10412.1
kg 1099.1

m1096.6
kg 1099.1










πV
MD  

            33 mkg 10409.1   
 

b)                    
317

313

30

34
3
4

30

mkg10594.0
m10351.3
kg1099.1

m1000.2
kg1099.1











π
D  

                          316 mkg1094.5   
 
 
14.7:    ρghpp  0  
 

       m91.9
)sm80.9( )mkg1030(

Pa1000.1
23

5
0 







ρg
pph  

 
 



14.8:    The pressure difference between the top and bottom of the tube must be at least 
5980 Pa in order to force fluid into the vein: 

Pa 5980ρgh  

m581.0
)sm80.9( )mkg1050(

mN5980Pa5980
23

2


gh

h  

 
 
14.9:    a)     Pa.706m12.0 sm80.9 mkg600 23 ρgh  
 
       b)     Pa.1016.3m250.0 sm80.9 mkg1000Pa706 323   
 
 
14.10:    a) The pressure used to find the area is the gauge pressure, and so the total area 
is 



 2

3

3

cm 805
)Pa 10205(
)N 105.16(  

b) With the extra weight, repeating the above calculation gives 2cm1250 . 
 
 
14.11:    a) Pa. 1052.2)m250)(sm80.9)(mkg 1003.1( 6233 ρgh   b) The pressure 
difference is the gauge pressure, and the net force due to the water and the air is 

N. 1078.1))m 15.0()(Pa 1052.2( 526  π  
 
 
14.12:    atm. 61.9Pa 1027.6)m 640)(sm 80.9)(mkg 1000.1( 6233  ρghp  
 
 
14.13:    a)   )m 1000.7)(sm 80.9)(mkg 106.13(Pa 10980 22332

2a ρgyp  
Pa. 1007.1 5  b) Repeating the calcultion with 00.412  yyy cm instead of 

Pa. 101.03 gives 5
2 y    c) The absolute pressure is that found in part (b), 1.03 Pa. 10 5  

d) Pa1033.5)(  3
12  ρgyy (this is not the same as the difference between the results of 

parts (a) and (b) due to roundoff error). 
 
 
14.14:    Pa. 100.6)m 1.6)(sm 80.9)(mkg1000.1( 4233 ρgh  
 
 



14.15:    With just the mercury, the gauge pressure at the bottom of the cylinder 
is  mm0 ghppp  With the water to a depth wh , the gauge pressure at the bottom of the 
cylinder is .wwmm0 ghpghρpp   If this is to be double the first value, then 

m.mww ghρghρ   
           m680.0)1000.1106.13)(m0500.0()( 33

wmmw  ρρhh  
The volume of water is 

33 424 cm 816m 108.16)m 10m)(12.0 (0.680A  hV  
 
 
14.16:    a) Gauge pressure is the excess pressure above atmospheric pressure. The 
pressure difference between the surface of the water and the bottom is due to the weight 
of the water and is still 2500 Pa after the pressure increase above the surface. But the 
surface pressure increase is also transmitted to the fluid, making the total difference from 
atmospheric 2500 Pa+1500 Pa = 4000 Pa. 
        b) The pressure due to the water alone is 2500 Pa .ρgh  Thus 

 

m255.0
)sm80.9( )mkg1000(

mN 2500
23

2

h  

 
To keep the bottom gauge pressure at 2500 Pa after the 1500 Pa increase at the surface, 
the pressure due to the water’s weight must be reduced to 1000 Pa: 

m 102.0
)sm 80.9)(mkg 1000(

mN 1000
23

2

h  

 
Thus the water must be lowered by m0.153m102.0m255.0     
 
 
14.17:    The force is the difference between the upward force of the water and the 
downward forces of the air and the weight. The difference between the pressure inside 
and out is the gauge pressure, so 

N.1027.2N300)m75.0( m)30( )sm80.9( )1003.1( )( 5223  wAρghF  
 
 

14.18:      )m (2.00 Pa 1093m) 2.14)(sm 71.3)(mkg1000.1(Pa 10130 2323 33   

 
 

N.1079.1  5



14.19:    The depth of the kerosene is the difference in pressure, divided by the product 
,V

mgρg   
 

m. 14.4
)m250.0( )smkg)(9.80205(

Pa1001.2)m(0.0700N)104.16(
32

523




h  

 
 

14.20:    atm.64.1Pa 1066.1
m)15.0(

)smkg)(9.801200(
)2(

5
2

2

2 
πdπ

mg
A
Fp  

 
 
14.21:    The buoyant force must be equal to the total weight; so ,gg icewater mgVρVρ   
 

  ,m 563.0
mkg 920mkg 1000

kg 0.45 3
33

water








iceρρ

mV  

 
or 3m 56.0  to two figures. 
 
 
14.22:    The buoyant force is and  N, 30.6N 20.11N 17.50 B  
 

 .m 1043.6
)sm 80.9)(mkg 1000.1(

N) 30.6( 34
233

water





gρ

BV  

 
The density is 
 

 .mkg 1078.2
30.6
50.17)mkg1000.1( 333 3

water
water









B
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gρB
gw

V
mρ  

 
 
 



14.23:    a) The displaced fluid must weigh more than the object, so .fluid   b) If the 
ship does not leak, much of the water will be displaced by air or cargo, and the average 
density of the floating ship is less than that of water.   c) Let the portion submerged have 
volume V, and the total volume be 

fluid0
 so ,Then, .  fluido0 ρ

ρ
V
VVρV V   The fraction 

above the fluid is then 0,  If   .1
fluid

 pP
P   the entire object floats, and if fluid  , none 

of the object is above the surface.  d) Using the result of part (c), 
 

%.3232.0
mkg1030

 )m103.04.0(5.0kg)042.0(11 3

3-6

fluid






  

 
 
 
14.24:    a)     N.6370m650.0 sm80.9 mkg1000.1 3233

water  gVρB  
         b) kg. 5582sm 9.80

N 900-N 6370  
g

TB
g
wm   

         c) (See Exercise 14.23.) If the submerged volume is ,V   
 

 %.9.858590.
N 6370
N5470 and 

waterwater





gVρ

w
V
V

gρ
wV  

 
 
14.25:    a) Pa. 116oil oil ghρ  
 
         b)         Pa. 921sm 80.9 m 0150.0 mkg 1000m 100.0 mkg 790 233   
 

         c)            
     

  kg. 822.0
sm 80.9

m 100.0 Pa 805
2

2
topbottom 




g
App

g
wm  

The density of the block is   .822 33 m
kg

m 10.0
kg 822.0 p  Note that is the same as the average 

density of the fluid displaced,       . )mkg 1000( 15.0mkg 790 85.0 33   
 
 



14.26:    a) Neglecting the density of the air, 
 
 

    ,m 1036.3
mkg107.2 sm80.9

N89 33
332





gρ
w

ρ
gw

ρ
mV  

 
33m104.3or  to two figures. 

 

        b)   N. 0.56
7.2

00.11N 891
aluminum

water
water 






 










ρ
ρωVgρwBwT  

 
 
14.27:    a) The pressure at the top of the block is ,0 ghpp  where h is the depth of 
the top of the block below the surface. h  is greater for block  , so the pressure is greater 
at the top of block  . 
         b) .objfl gVB   The blocks have the same volume objV so experience the same 
buoyant force. 
         c) .  so  0 BwTBwT   
 
     .ρVgw   The object have the same V but ρ is larger for brass than for aluminum so 
w is larger for the brass block. B is the same for both, so T is larger for the brass block, 
block B.  
 
 
14.28:    The rock displaces a volume of water whose weight is N.10.8N28.4-N2.39   
The mass of this much water is thus kg102.1sm9.80N8.10 2  and its volume, equal to 
the rock’s volume, is  

33
33 m10102.1

mkg 101.00
kg 102.1 


 

 
The weight of unknown liquid displaced is N, 20.6N 18.6N 2.39  and its mass is 

kg. 102.2sm 9.80N 6.20 2   The liquid’s density is thus 33 m101.102kg102.2   
,mkg1091.1 33 or roughly twice the density of water. 

 
 
14.29:    )(, 21122211 ΑΑvvΑvΑv   
       2

2
2

1 cm) 10.0(20 ,cm)80.0( πΑπΑ    

       sm6.9
)10.0(20

(0.80)s)m0.3( 2

2

2 
π

πv  

 
 



14.30:        
2

3

2

2

2

1
12

sm 245.0)m 0700.0s)(m 50.3(
ΑΑΑ

Αvv  

  a)  (i) s.m 21.5 ,m047.0 (ii)  s.m 33.2 ,m 1050.0 2
2

22
2

2  vΑvΑ  
   b)  .m882s)3600( )sm(0.245 33

2211  tΑυtΑv  
 
 

14.31:    a)   .98.16
)m150.0(
)sm20.1(
2

3


πA

dtdVv  

 
         b) .m 317.0)( 22112  πvdtdVvvrr  
 
 
14.32:    a) From the equation preceding Eq. (14.10), dividing by the time interval dt 
gives Eq. (14.12).   b) The volume flow rate decreases by 1.50% (to two figures). 
 
 
14.33:    The hole is given as being “small,”and this may be taken to mean that the 
velocity of the seawater at the top of the tank is zero, and Eq. (14.18) gives 
 
 ))((2 ρpgyv   

          = ))mkg10(1.03Pa)1013(3.00)(1.0m)0.11)(sm80.9((2 3352   
    s.m4.28  
 
Note that y = 0 and app   were used at the bottom of the tank, so that p was the given 
gauge pressure at the top of the tank. 
 
 
14.34:    a) From Eq. (14.18), s.m6.16m)0.14)(sm80.9(22 2  ghv  
         b) s.m1069.4)m)10(0.30s)(m57.16( 3422   πvΑ  Note that an extra figure 
was kept in the intermediate calculation. 
 
 
14.35:    The assumption may be taken to mean that 01 v in Eq. (14.17). At the 
maximum height, ,02 v  and using gauge pressure for 0, and 221 ppp (the water is open 
to the atmosphere), Pa. 1047.1 5

21  ρgyp  
 
 



14.36:    Using 14
1

2 vv  in Eq. (14.17), 
 

        














 )(

32
15)()(

2
1

21
2
1121

2
2

2
112 yygυρpyyρgvvρpp  

              





  m)0.11)(sm80.9()sm00.3(

32
15 )mkg1000.1(Pa1000.5 22334  

              Pa.1062.1 5   
 
 
14.37:    Neglecting the thickness of the wing (so that 21 yy  in Eq. (14.17)), the pressure 
difference is  Pa.078)(2)1( 2

1
2
2  vvρp The net upward force is then 

N.496)smkg)(9.801340()m(16.2Pa)780( 22   
 
 
 
14.38:    a)    s.kg30.1s 0.60

kg355.0 220    b) The density of the liquid is 

,mkg 1000 3
m 100.355

kg 355.0
33 

 and so the volume flow rate is 

s.L1.30sm1030.1 33
mkg1000
skg30.1

3    This result may also be obtained 

from    s.L30.1s 0.60
L 355.0220   c) 24

33

m1000.2
sm 1030.1

1 





v  

s.m63.14s,m50.6 12  vv  

   d)       12
2
1

2
221 2

1 yyρgvvρpp   

          
        

   m35.1 sm80.9 mkg1000           
sm50.6sm63.1 mkg1000 21 kPa 152     

23

223




 

               kPa119  
 
14.39:    The water is discharged at a rate of s.m352.023

34

m1032.1
sm1065.4

1  





v  The pipe is 

given as horizonatal, so the speed at the constriction is s,m95.822
12  ρpvv  

keeping an extra figure, so the cross-section are at the constriction is 
,m1019.5 25

sm95.8
sm1065.4 34  



 and the radius is cm.41.0 Ar  
 
 



14.40:    From Eq. (14.17), with ,21 yy   

                2
11

2
12

11
2
2

2
112 8

3
42

1
2
1 ρvpvvρpvvρpp 








  

                      Pa,1003.2sm50.2mkg1000.1
8
3Pa1080.1 42334   

where the continutity relation 
2
1

2
vv  has been used. 

 
14.41:    Let point 1 be where cm00.41 r  and point 2 be where cm.00.22 r  The 
volume flow rate has the value scm7200 3  at all points in the pipe. 

sm43.1 so ,cm7200 1
32

1111  vπrvAv  
sm73.5 so ,cm7200 2

32
2222  vπrvAv  

2
222

2
111 2

1
2
1 ρvρgypρvρgyp   

  Pa 1025.2
2
1 so Pa,1040.2 and 52

2
2
112

5
221  vvρpppyy  

 
14.42:    a) The cross-sectional area presented by a sphere is ,4

2Dπ therefore 

  .40
2DπppF    b) The force on each hemisphere due to the atmosphere  is 

 22 m1000.5 π    .776975.0 Pa10013.1 5   
 
 

14.43:    a)     Pa.1010.1m1092.10 sm80.9mkg1003.1 83233 ρgh  
b) The fractional change in volume is the negative of the fractional change in density. 
The density at that depth is then 

 
       111833

0 Pa108.45 Pa1016.11 mkg1003.11  pkρρ  
                                      ,mkg1008.1 33  

A fractional increase of %.0.5  Note that to three figures, the gauge pressure and absolute 
pressure are the same.  
 
 



14.44:    a) The weight of the water is 
 

          N,1088.5m0.3 m0.4 m00.5 sm 80.9 mkg1000.1 5233 ρgV  
 
or N109.5 5  to two figures.  b) Integration gives the expected result the force is what it 
would be if the pressure were uniform and equal to the pressure at the midpoint; 

 

2
dgAF   

                    N,1076.1m50.1 m0.3 m0.4 sm 80.9 mkg1000.1 5233   
 
or N108.1 5  to two figures. 
 

14.45:     Let the width be w and the depth at the bottom of the gate be .H  The force on a 
strip of vertical thickness dh at a depth h  is then  wdhρghdF   and the torque about 
the hinge is   ;2 dhHhρgwhdτ   integrating from Hhh    to0  gives 

m.N1061.212 43  Hg  
 

14.46:    a) See problem 14.45; the net force is dF  from 
,22,  to0 2 gAHHgFHhh    where .HA   b) The torque on a strip of 

vertical thickness dh  about the bottom is     ,dhhHgwhhHdFdτ   and 
integrating from Hhh    to0  gives .66 23 ρgAHρgwHτ     c) The force depends 
on the width and the square of the depth, and the torque about the bottom depends on the 
width and the cube of the depth; the surface area of the lake does not affect either result 
(for a given width). 
 
 
14.47:    The acceleration due to gravity on the planet is 

d
p

ρd
pg

V
m





  

and so the planet’s mass is 

mGd
pVR

G
gRM

22 
  

 
 



14.48:     The cylindrical rod has mass ,M  radius ,R  and length L  with a density that is 
proportional to the square of the distance from one end, 2Cx . 
         a) .2dVCxdVM    The volume element .2dxπRdV   Then the integral 

becomes .22
0 dxRCxM L   Integrating gives .

3

3
22

0
2 LRCdxxRCM L    Solving 

for .3, 32LRMCC   
         b) The density at the Lx   end is     .232

3232
LπR

M
LπR

M LCxρ   The denominator is 
just the total volume ,V  so ,3 VM or three times the average density, .VM  So the 
average density is one-third the density at the Lx   end of the rod. 
 
 



14.49:    a) At ,0r the model predicts 3mkg700,12 A and at ,Rr  the model 
predicts 

.mkg103.15m)1037.6)(mkg1050.1(mkg700,12 336433  BRA  
b), c) 

  



 


















R BRAπRBRARπdrrBrAπdmM
0

343
2

4
3

3
4

43
4][4  

                   






 








 




4
m)1037.6)(mkg1050.1(3mkg700,12

3
m)1037.6(4 643

3
36π  

                   kg,1099.5 24  
 
which is within 0.36% of the earth’s mass.  d) If m )(r is used to denote the mass 
contained in a sphere of radius ,r  then .)( 2rrGmg   Using the same integration as 
that in part (b), with an upper limit of r instead of R  gives the result. 

 
e) )kgmN10673.6()( ,at   and ,0at  0 22112  RRGmgRrgrg  

.sm85.9m)10(6.37kg)1099.5( 22624   

f)   ; 
2

3
3

4
4

3
3

4 2





 























BrAπGBrAr
dr
dπG

dr
dg  

 
setting ths equal to zero gives m1064.532 6 BAr , and at this radius 
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)mkg1050.1(9

)mkg700,12()kgmN10673.6(4 2
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14.50:    a) Equation (14.4), with the radius r instead  of height ,y  becomes 
.)( s drRrρgdrρgdp   This form shows that the pressure decreases with increasing 

radius. Integrating, with ,at  0 Rrp   
 

  
r

R r
rR

R
ρgdrr

R
ρgdrr

R
ρgp

R 22sss ).(
2

    

 
 
       b) Using the above expression with , and 0 34

3
R
M

V
Mr


   

 

Pa.1071.1
m)1038.6(8

)smkg)(9.801097.5(3)0( 11
26

224







π
p  

 
c) While the same order of magnitude, this is not in very good agreement with the 

estimated value. In more realistic density models (see Problem 14.49 or Problem 9.99), 
the concentration of mass at lower radii leads to a higher pressure. 
 
14.51:    a) Pa. 1047.1)m100.15)(sm 80.9)(mkg 1000.1( 32233

waterwater  ghρ  
b) The gauge pressure at a depth of 15.0 hcm below the top of the mercury column 
must be that found in part (a); ),cm0.15()cm(15.0 waterHg gρhgρ   which is solved for 

cm.9.13h  
 
14.52:    Following the hint, 

 

 
h

o

2))(2( ρgπRhdyπRρgyF  

where R and h are the radius and height of the tank (the fact that hR 2 is more or less 
coincidental). Using the given numerical values gives N.1007.5 8F  
 
 
14.53:    For the barge to be completely submerged, the mass of water displaced would 
need to be kg.101.056)m1240)(22mkg10(1.00 7333

water Vρ  The mass of the 
barge itself is 

 
kg,1039.7)m100.4)402212)4022(2(()mkg108.7( 53233    

 
so the barge can hold kg1082.9 6 of coal. This mass of coal occupies a solid volume of 

,m1055.6 33 which is less than the volume of the interior of the barge ),m1006.1( 34  
but the coal must not be too loosely packed. 
 
 



14.54:    The difference between the densities must provide the “lift” of 5800 N (see 
Problem 14.59). The average density of the gases in the balloon is then 
  

.mkg96.0
)m2200)(sm80.9(

)N5800(mkg23.1 3
32

3
ave ρ  

 
 
14.55:     a) The submerged volume so , is 

water gρ
wV   

 







%3030.0
)m(3.0 )mkg1000.1(

)kg900(
333

water

water

Vρ
m

V
gρw

V
V  

 
b) As the car is about to sink, the weight of the water displaced is equal to the weight 

of the car plus the weight of the water inside the car. If the volume of water inside the car 
is V  , 

 




 %7070.030.011or  ,
gVp

w
V
VgpVwgVρ

water
waterwater  

 
 
14.56:    a) The volume displaced must be that which has the same weight and mass as 
the ice, 3

cmgm00.1
gm70.9 cm70.93  (note that the choice of the form for the density of water 

avoids conversion of units).  b) No; when melted, it is as if the volume displaced by the 
gm70.9  of melted ice displaces the same volume, and the water level does not change.  

c)  3
cmgm05.1

gm70.9 cm24.93   d) The melted water takes up more volume than the salt water 

displaced, and so 3cm46.0  flows over. A way of considering this situation (as a thought 
experiment only) is that the less dense water “floats” on the salt water, and as there is 
insufficient volume to contain the melted ice, some spills over. 
 
 



14.57:    The total mass of the lead and wood must be the mass of the water displaced, or 
 

; )(  waterwoodPbwoodwoodPbPb ρVVρVρV   
 

solving for the volume ,PbV  

 
  
  

waterPb

woodwater
woodPb 





VV  

      3333

333
32

mkg1000.1mkg103.11
mkg600mkg1000.1)m102.1(




   

     ,m1066.4 34  
 
which has a mass of 5.27 kg. 
 
 

14.58:    The fraction f of the volume that floats above the fluid is ,
 

1
fluid


f  

where ρ is the average density of the hydrometer (see Problem 14.23 or Problem 14.55), 

which can be expressed as .
1

1  fluid f
ρρ


  Thus, if two fluids are observed to have 

floating fraction .
1
1, and 

2

1
1221 f

fρρff



  In this form, it’s clear that a larger 2f  

corresponds to a larger density; more of the stem is above the fluid. Using 
097.0  ,242.0

)cm2.13(
)cmcm)(0.40020.3(

2)cm2.13(
)cmcm)(0.40000.8(

1 3

2

3

2

 ff  gives 

.mkg839 )839.0( 3
wateralcohol  ρρ  

 
14.59:    a) The “lift” is ,)(

2Hair gρρV   from which 
 

.m100.11
)sm80.9)(mkg0899.0mkg(1.20

N000,120 33
233 


V  

 
 

        b) For the same volume, the “lift” would be different by the ratio of the density 
differences, 

 

N.102.11N)000,120( 4

Hair

Heair

2















ρρ
ρρ  

 
This increase in lift is not worth the hazards associated with use of hydrogen. 
 



14.60:    a) Archimedes’ principle states . so ,
A

MLMggLA


   

        b) The buoyant force is ,)( FMgxLgA   and using the result of part (a) and 
solving for x gives .ρgA

Fx   
        c) The “spring constant,” that is, the proportionality between the displacement x and 
the applied force F, is ,ρgAk   and the period of oscillation is 

.22
ρgA
Mπ

k
MπT   

 
 

14.61:         a)  
   

m.107.0
m450.0mkg1003.1

kg0.70
233 




πρA
m

ρgA
mg

ρgA
wx  

       b) Note that in part (c) of Problem M ,60.14 is the mass of the buoy, not the mass of 
the man, and A is the cross-section area of the buoy, not the amplitude. The period is then 

 
 

    
s.42.2

m450.0sm80.9 mkg101.03
kg9502 2233 




π
πT  

 
 



14.62:    To save some intermediate calculation, let the density, mass and volume of the 
life preserver be , and ,0 vm  and the same quantities for the person be . and ,1 VMρ  
Then, equating the buoyant force and the weight, and dividing out the common factor of 

,g  
 

   ,80.0 10water VρvρvVρ   
 

Eliminating V  in favor of 1ρ  and ,M  and eliminating m in favor of 0ρ  and ,v  

  .80.0
1

water0 







 v

ρ
MρMvρ  

Solving for ,0  

  
















 Mv

ρ
Mρ

v
ρ

1
water0 80.01  
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water
water 80.01

ρ
ρ

v
Mρ  
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33

3
33

mkg980
mkg101.03(0.80)1 

m0.400
kg0.75mkg1003.1  

      3mkg732  
 

 
14.63:    To the given precision, the density of air is negligible compared to that of brass, 
but not compared to that of the wood. The fact that the density of brass may not be 
known the three-figure precision does not matter; the mass of the brass is given to three 
figures. The weight of the brass is the difference between the weight of the wood and the 
buoyant force of the air on the wood, and canceling a common factor of 

and ) (  , brass,airwoodwood MρρVg   
1

wood

air
brass

airwood

wood
brasswoodwoodwood 1
















ρ
ρM

ρρ
ρMVρM  

kg.0958.0
mkg150
mkg20.11)kg0950.0(

1

3

3













 

 
 



14.64:    The buoyant force on the mass A, divided 
by kg70.4kg80.1kg1.00kg7.50 bemust  , g (see Example 14.6), so the mass block 
is kg.8.20kg3.50kg70.4  a) The mass of the liquid displaced by the block is 

kg,70.4 so the density of the liquid is .mkg1024.1 33
m103.80

kg70.4
33- 


b) Scale D will read 

the mass of the block, kg,20.8 as found above. Scale E will read the sum of the masses of 
the beaker and liquid, kg.80.2  
 
14.65:  Neglecting the buoyancy of the air, the weight in air is 
    

N.0.45)( A1A1AuAu  VρVρg  
 
and the buoyant force when suspended in water is 
 

N.6.0N39.0N45.0)( A1Auwater  gVVρ  
 
These are two equations in the two unknowns . and A1Au VV  Multiplying the second by 

A1  and the first by water and subtracting to eliminate the A1V term gives 
  
            N)0.6(N)0.45()( A1waterA1AuAuwater ρρρρgVρ   

                      ))0.6(N)0.45((
)( Auwater

A1Auwater

Au
AuAuAu ρρ

ρρρ
ρgVρw 


  

                            N))0.6)(7.2(N)0.45)(00.1((
)7.23.19)(00.1(

)3.19(



  

                                   N.5.33  
Note that in the numerical determination of ,Auw specific gravities were used instead of 
densities. 
 
 



14.66:    The ball’s volume is 
333 cm7238cm)0.12(

3
4

3
4

 ππrV  

As it floats, it displaces a weight of water equal to its weight. a) By pushing the ball 
under water, you displace an additional amount of water equal to 84% of the ball’s 
volume or .cm6080)cm7238)(84.0( 33   This much water has a mass of 

kg080.6 6080 g and weighs N,6.59)smkg)(9.80080.6( 2  which is how hard you’ll 
have to push to submerge the ball. 
         b) The upward force on the ball in excess of its own weight was found in part (a): 

N.6.59  The ball’s mass is equal to the mass of water displaced when the ball is floating: 
 

kg,158.1g 1158)cmg00.1)(cm7238)(16.0( 33   
 
and its acceleration upon release is thus 

 
2net sm5.51

kg1.158
N6.59


m

Fa  

 
 
14.67:    a) The weight of the crown of its volume V is gVρw crown  , and when 
suspended the apparent weight is the difference between the weight and the buoyant 
force, 
 

.)(  watercrowncrown gVρρgVfρfw   
 
Dividing by the common factors leads to 

 

.
1

1or  
water

crown
crowncrown water fρ

ρfρρρ


  

 
As ,0f the apparent weight approaches zero, which means the crown tends to float; 
from the above result, the specific gravity of the crown tends to 1. As ,1f  the 
apparent weight is the same as the weight, which means that the buoyant force is 
negligble compared to the weight, and the specific gravity of the crown is very large, as 
reflected in the above expression.  b) Solving the above equations for f in terms of the 
specific gravity,  ,1

crown

water
ρ
ρf  and so the weight of the crown would be 

     N. 2.12N 9.12 3.1911    c) Approximating the average density by that of lead for a 
“thin” gold plate, the apparent weight would be      N. 8.11N 9.12 3.1111   
 
 



14.68:    a) See problem 14.67. Replacing f with, respectively, wwwater and wwfluid  gives 
 

,
- fluidfluid

steel

ww
w

ρ
ρ

 ,
- waterfluid

steel

ww
w

ρ
ρ

  

 
and dividing the second of these by the first gives 
 

.
-
-

water

fluid

water

fluid

ww
ww

ρ
ρ

  

 
b) When fluidw is greater than water,w  the term on the right in the above expression is less 
than one, indicating that the fluids is less dense than water, and this is consistent with the 
buoyant force when suspended in liquid being less than that when suspended in water. If 
the density of the fluid is the same as that of water fluidw waterw , as expected. Similarly, 
if fluidw  is less than waterw , the term on the right in the above expression is greater than 
one, indicating the the fluid is denser than water.  c) Writing the result of part (a) as 
 

.
1
1

water

fluid

water

fluid

f
f

ρ
ρ




  

 
and solving for ,fluidf  

 

      %.4.84844.0128.0 220.1111 water
water

fluid
fluid  f

ρ
ρf  

 
 

14.69:    a) Let the total volume be V; neglecting the density of the air, the buoyant force 
in terms of the weight is 

,)(
0

m
waterwater 








 V

ρ
gwgρgVρB  

or 

 





g

w
gρ

BV
wwater

0  

 b) .m1052.2 34
Cuwater

 gρ
w

gρ
B Since the total volume of the casting is ,

water

B
gρ the 

cavities are 12.4% of the total volume. 
 
 



14.70:    a) Let d be the depth of the oil layer, h the depth that the cube is submerged in 
the water, and L be the length of a side of the cube. Then, setting the buoyant force equal 
to the weight, canceling the common factors of g and the cross-section area and 
supressing units, 

 LhLLhdLhdLdh (0.65) so ,(0.35)by  related are  and  ,.)550()750()1000(  
d. Substitution into the first relation gives m.040.05.00

2
(750)(1000)

(550)0)(0.65)(100  
 LLd    b) The 

gauge pressure at the lower face must be sufficient to support the block (the oil exerts 
only sideways forces directly on the block), and 

Pa.539m)100.0)(sm80.9)(mkg(550 23
wood  gLp As a check, the gauge 

pressure, found from the depths and densities of the fluids, is 
Pa.539)sm80.9))(mkgm)(1000025.0()mkgm)(750040.0(( 233   

 
 
14.71:    The ship will rise; the total mass of water displaced by the barge-anchor 
combination must be the same, and when the anchor is dropped overboard, it displaces 
some water and so the barge itself displaces less water, and so rises. 

To find the amount the barge rises, let the original depth of the barge in the water be 
    abwaterab0  and   where, mmAmmh  are the masses of the barge and the anchor, and 

A is the area of the bottom of the barge. When the anchor is dropped, the buoyant force 
on the barge is less than what it was by an amount equal to the buoyant force on the 
anchor; symbolically, 

 
  ,watersteelawater0water gmAghAgh    

 
which is solved for 
 

 
   m, 1057.5

m00.8 mkg7860
kg0.35 4

23
steel

a
0


A

mhhh


 

 
or about 0.56 mm. 
 

 



14.72:    a) The average density of a filled barrel is 
,mkg875mkg750 3

m0.120
kg0.153

oil 3  V
m which is less than the density of seawater, 

so the barrel floats. 
        b) The fraction that floats (see Problem 14.23) is 

 

%.0.15150.0
mkg1030
mkg87511 3

3

water

ave 

  

 
        c) The average density is 333 m

kg
m0.120
kg0.32

m
kg  1172 910   which means the barrel sinks. 

In order to lift it, a tension 
N173) 80.9)(m120.0)( 1030() 80.9)(m120.0)( 1177( 232 s

m3
m
kg

s
m3

m
kg  T  is required. 

 
 
14.73:    a) See Exercise 14.23; the fraction of the volume that remains unsubmerged is 

.1 ρL
ρB  b) Let the depth of the liquid be x and the depth of the water be y. Then 

. and  LyxgLwgyLgx B    Therefore yLx   and .)(
ωL

BL
ρρ

Lρρy 
  c) 

m.046.0m)10.0(0.16.13
8.76.13  

y  
 

14.74:    a) The change is height y is related to the displaced volume ,by  
A
VyV 

  

where A is the surface area of the water in the lock. V  is the volume of water that has 
the same weight as the metal, so 

 

                               
gAρ

w
A

gρw
A
Vy

water

water 


  

                                    m.213.0
m))m)(20.00.60)((sm80.9)(mkg(1.00x10

N)1050.2(
233

6




  

 
 

b) In this case, V  is the volume of the metal; in the above expression, water  is 

replaced by ,00.9 watermetal    which gives m;189.0 and , 9
8

9   yyyy y the 
water sinks by this amount. 
 
 



14.75:    a) Consider the fluid in the horizontal part of the tube. This fluid, with mass 
,Al  is subject to a net force due to the pressure difference between the ends of the tube, 

which is the difference between the gauge pressures at the bottoms of the ends of the 
tubes. This difference is ),( RL yyρg   and the net force on the horizontal part of the fluid 
is 

 
,)( RL AlaAyyg    

 
or 
 

.)( RL l
g
ayy   

 
b) Again consider the fluid in the horizontal part of the tube. As in part (a), the fluid is 
accelerating; the center of mass has a radial acceleration of magnitude ,22

rad la   and 
so the difference in heights between the columns is .2))(2( 222 glgll    
 

Anticipating Problem, 14.77, an equivalent way to do part (b) is to break the fluid in 
the horizontal part of the tube into elements of thickness dr; the pressure difference 
between the sides of this piece is drrdp )( 2  (see Problem 14.78), and integrating 
from ,2 gives   to0 22 lplrr   giving the same result. 
 

c) At any point, Newton’s second law gives pAdladpA  from which the area A 
cancels out. Therefore the cross-sectional area does not affect the result, even if it varies. 
Integrating the above result from 0 to l gives palp   between the ends. This is 
related to the height of the columns through ypgp   from which p cancels out. 
 
 



14.76:    a) The change in pressure with respect to the vertical distance supplies the force 
necessary to keep a fluid element in vertical equilibrium (opposing the weight). For the 
rotating fluid, the change in pressure with respect to radius supplies the force necessary to 
keep a fluid element accelerating toward the axis; specifically, ,ρa drdrdp

p

p  
 and 

using rωa 2  gives .2rρω
p

p 
  b) Let the pressure at  0,0  ry be ap (atmospheric 

pressure); integrating the expression for 
p

p



  from part (a) gives 

 

  .2
2

a 2
0, rρωpyrp   

 

c) In Eq. )0,(,),5.14( 1a2  yrpppp as found in part (b), ),(y and 0 21 rhy   the 
height of the liquid above the 0y  plane. Using the result of part (b) gives 

.2)( 22 grωrh   
 
 
14.77:    a) The net inward force is   ,AdppAAdpp   and the mass of the fluid 
element is .rρAd   Using Newton’s second law, with the inward radial acceleration of 

,'2 r  gives .2 rdrdp   b) Integrating the above expression, 
 

  
p

p

r

r
rdrdp

0 0

2ρω  

 

 ,
2

0
22

2

0 rrρωpp 







  

which is the desired result. c) Using the same reasoning as in Section 14.3 (and Problem 
14.78), the net force on the object must be the same as that on a fluid element of the same 
shape. Such a fluid element is accelerating inward with an acceleration of magnitude 

,cm
2Rω  and so the force on the object is .cm

2RρVω  d) If ,obcmR cmobRρρ   the inward 
force is greater than that needed to keep the object moving in a circle with radius cmobR at 
angular frequency ω , and the object moves inward. If ,obcm cmobRρρR  , the net force is 
insufficient to keep the object in the circular motion at that radius, and the object moves 
outward. e) Objects with lower densities will tend to move toward the center, and objects 
with higher densities will tend to move away from the center. 
 
 



14.78:     (Note that increasing x  corresponds to moving toward the back of the car.) 
       a) The mass of air in the volume element is ρAdxρdV  , and the net force on the 
element in the forward direction is   .AdppAAdpp  From Newton’s second law, 

,)( adxρAAdp   from which .adxρdp   b) With ρ given to be constant, and with 
. ,0 00 ρaxppxatpp   c) Using 3kg/m 1.2ρ in the result of part (b) gives 

    atmp-523 1015  ~ Pa 0.15m 5.2 sm 0.5 mkg 2.1  , so the fractional pressure 
difference is negligble. d) Following the argument in Section 14-4, the force on the 
balloon must be the same as the force on the same volume of air; this force is the product 
of the mass ρV and the acceleration, or .ρVa  e) The acceleration of the balloon is the 
force found in part (d) divided by the mass   ., balbal aρρorVρ  The acceleration relative to 
the car is the difference between this acceleration and the car’s acceleration, 

   .1balrel aρρa   f) For a balloon filled with air,   1bal ρρ  (air balloons tend to sink 
in still air), and so the quantity in square brackets in the result of part (e) is negative; the 
balloon moves to the back of the car. For a helium balloon, the quantity in square 
brackets is positive, and the balloon moves to the front of the car. 
 
 
14.79:    If the block were uniform, the buoyant force would be along a line directed 
through its geometric center, and the fact that the center of gravity is not at the geometric 
center does not affect the buoyant force. This means that the torque about the geometric 
center is due to the offset of the center of gravity, and is equal to the product of the 
block’s weight and the horizontal displacement of the center of gravity from the 
geometric center, .2m)075.0(  The block’s mass is half of its volume times the density 
of water, so the net torque is 
 

m,N02.7
2

m075.0)sm80.9(
2

)mkg1000()m30.0( 2
33

  

 
or mN 0.7  to two figures. Note that the buoyant force and the block’s weight form a 
couple, and the torque is the same about any axis. 

 
14.80:    a) As in Example 14.8, the speed of efflux is .2gh  After leaving the tank, 
the water is in free fall, and the time it takes any portion of the water to reach the 
ground is ,)(2

g
hHt   in which time the water travels a horizontal distance 

).(2 hHhvtR   
        b) Note that if ,)()(, hhHhHhhHh   and so hHh   gives the 
same range. A hole hH   below the water surface is a distance h above the bottom 
of the tank. 
 

 



14.81:    The water will rise until the rate at which the water flows out of the hole is 
the rate at which water is added; 
 

,2
dt
dVghA   

 
which is solved for 

 

cm.1.13
)sm80.9(2
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m10501

sm1040.2
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24
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.gA
dtdVh  

 
Note that the result is independent of the diameter of the bucket. 
 

 
14.82:  a) .sm200.0)m0160.0()m00.8)(sm80.9(2)(2 322

33133  AyygAv  
b) Since 3p  is atmospheric, the gauge pressure at point 2 is 

),(
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81
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2
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using the expression for 3υ  found above. Subsititution of numerical values gives 
4

2 1097.6 p  Pa. 
 
 
14.83:    The pressure difference, neglecting the thickness of the wing, is 

),( )21( 2
bottom

2
top vvρp   and solving for the speed on the top of the wing gives 

 
.sm133)mkg20.1(Pa)2000(2s)m120( 32

top v  
 

The pressure difference is comparable to that due to an altitude change of about m,200  
so ignoring the thickness of the wing is valid. 
 
 



14.84:    a) Using the constancy of angular momentum, the product of the radius and 

speed is constant, so the speed at the rim is about h.km17
350
30h)km200( 






  b) The 

pressure is lower at the eye, by an amount 

Pa. 108.1
hkm6.3

sm1)h)km17()hkm200(()mkg2.1(
2
1 3

2
223 








p  

c) m1602
2
g

v to two figures. d) The pressure at higher altitudes is even lower. 
 
 
14.85:    The speed of efflux at point D is ,2 1gh  and so is 18gh  at C. The gauge 
pressure at C is then 1,11 34 ρghρghρgh   and this is the gauge pressure at E. The 
height of the fluid in the column is .3 1h  
 
 
14.86:    a) ,A

dtdVv   so the speeds are 
 

.sm50.1
m100.40

sm1000.6  and sm00.6
m100.10

sm1000.6
24

33

24

33

















 

 
b) Pa1069.1or  Pa,10688.1)( 442

2
2
12

1  vvp  to three figures. 

c) cm.7.12
)sm80.9)(mkg106.13(

Pa)10688.1(
H 233

4

g





g
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14.87:    a) The speed of the liquid as a function of the distance y that it has fallen is 
,22

0 gyvv   and the cross-section area of the flow is inversely proportional to this 
speed. The radius is then inversely proportional to the square root of the speed, and if the 
radius of the pipe is ,0r the radius r of the stream a distance y below the pipe is 
 

.21
)2(

41

2
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0412
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00















v
gyr

gyv
vr

r  

 
        b) From the result of part (a), the height is found from or ,2)21( 412

0  vgy  
 

m. 10.1
)sm80.9(2
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14.88:    a) The volume V of the rock is 

 

.m1057.8
)sm80.9)(mkg1000.1(

N)0.21)smkg)(9.8000.3(( 34
233

2

waterwater










g
Tw

g
BV


 

 
In the accelerated frames, all of the quantities that depend on g (weights, buoyant 

forces, gauge pressures and hence tensions) may be replaced by ,agg   with the 
positive direction taken upward. Thus, the tension is ,)( 0 g

gTgVmBgmT    

where N.0.210 T  
N.4.26N)0.21(,sm50.2for  ; b) 9.80

2.509.802  Taagg  
N.6.15N)0.21(,sm50.2For  c) 80.9

50.280.92  Ta  
.0 and 0, If d)  Tgga  

 
 



14.89:    a) The tension in the cord plus the weight must be equal to the buoyant force, so 
 

)mkg180mkg1000)(sm80.9)(m50.0(m)20.0)(21(    

)(
3322

foamwater



 VgT
 

 
b) The depth of the bottom of the styrofoam is not given; let this depth be .0h  

Denote the length of the piece of foam by L and the length of the two sides by l. The 
pressure force on the bottom of the foam is then  lLghp 2)( 00   and is directed up. 
The pressure on each side is not constant; the force can be found by integrating, or using 
the result of Problem 14.44 or Problem 14.46. Although these problems found forces on 
vertical surfaces, the result that the force is the product of the average pressure and the 
area is valid. The average pressure is ))),22((( 00 lhρgp   and the force on one side 
has magnitude 

Lllhρgp )))22((( 00   
 
and is directed perpendicular to the side, at an angle of 0.45  from the vertical. The force 
on the other side has the same magnitude, but has a horizontal component that is opposite 
that of the other side. The horizontal component of the net buoyant force is zero, and the 
vertical component is 

 

,
2

)))22(()(0.45cos(22)(
2

0000
LlgLllhgpLlghpB    

 
the weight of the water displaced. 
 

N.4.80



14.90:    When the level of the water is a height y above the opening, the efflux speed is 
,2gy  and .2)2( 2 gydπdt

dV   As the tank drains, the height decreases, and 

.2
)2(
2)2( 2

2

2

gy
D
d

D
gyd

A
dtdV

dt
dy












 

This is a separable differential equation, and the time T to drain the tank is found from 

,2 
2

dtg
D
d

y
dy







  

which integrates to 

  ,2 2
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0
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D
dy H 





  

or 
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14.91:    a) The fact that the water first moves upwards before leaving the siphon does not 
change the efflux speed, .2gh  b) Water will not flow if the absolute (not gauge) 
pressure would be negative. The hose is open to the atmosphere at the bottom, so the 
pressure at the top of the siphon is ),(a hHρgp   where the assumption that the cross-
section area is constant has been used to equate the speed of the liquid at the top and 
bottom. Setting 0p  and solving for H gives   .hρgpH a   
 
 
14.92:    Any bubbles will cause inaccuracies. At the bubble, the pressure at the surfaces 
of the water will be the same, but the levels need not be the same. The use of a hose as a 
level assumes that pressure is the same at all point that are at the same level, an 
assumption that is invalidated by the bubble.  



15.1:      a) The period is twice the time to go from one extreme to the other, and 
sm1.2or  s,m20.1s)(5.0m)00.6(  Tfv to two figures.    b) The amplitude 

is half the total vertical distance, m.310.0    c) The amplitude does not affect the wave 
speed; the new amplitude is m.150.0  d) For the waves to exist, the water level cannot be 
level (horizontal), and the boat would tend to move along a wave toward the lower level, 
alternately in the direction of and opposed to the direction of the wave motion. 
 
 
15.2:                                                                 vf   
 

                                                                   Hz105.1
m001.0

sm1500 6



vf  

 
15.3:      a) m.0.439Hz)(784s)m344(  fv  
 
       b) Hz.105.25m)10(6.55s)m344( 65  vf  
 
 
15.4:      Denoting the speed of light by c, ,f

c and 

       a) m.87.2 b) .m556
Hz105.104

sm1000.3
Hz10540

sm10003
6

8

3

8








.  

 
 
15.5:      a) Hz)000,20(s)m344(  m,17.2Hz)0.20()sm344( minmax   

cm.72.1  
        
   b) mm.74.0Hz)000,20(s)m1480( m,74.0Hz)0.20()sm1480( minmax   
 
 
15.6:      Comparison with Eq. (15.4) gives a) mm,50.6  cm,0.28 b)  

Hz8.27 c) s0360.0
11  Tf  and from Eq. (15.1), d) sm7.78Hz)m)(27.8280.0( v , 

direction.  e) x  
 
 



15.7:   a) Hz,25.0m)320.0(s)m00.8(  vf  
m.rad19.6m)320.0()2(2 s,104.00Hz)0.25(11 2   ππkfT  

       b) .
m320.0

Hz)(25.02cos m)0700.0(),( 









xtπtxy  

       c)   cm.95.4m))(0.320m)(0.360Hz)s)(25.0((0.1502 cos m)0700.0( π  
d) The argument in the square brackets in the expression used in part (c) is ),875.4(2π  
and the displacement will next be zero when the argument is ;10π  the time is then 

s0.1550m))(0.320m)(0.360Hz)(50.251()5(  xT  and the elapsed time is 
s.02.02 e)  s,0050.0 T  

 
 
 
 
15.8:      a) 
 

 
 
 
       b) 

 
 
 



15.9:      a)          )cos(  )sin(  2
2

2

ωtkxAk
x
yωtkxAk

x
y







  

 

   ),cos(  )(sin 2
2

2

ωtkxAω
t
yωtkxAω
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and so ),( and ,2
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2

2
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txy
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   is a solution of Eq. (15.12) with .kωv   
 

       b) )sin(  )cos( 2
2

2

ωtkxAk
x
yωtkxAk
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y







  

 

          ),(sin  )cos( 2
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2

ωtkxAω
t
yωtkxAω
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and so ),( and ,2
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   is a solution of Eq. (15.12) with .kωv      c) Both waves 
are moving in the x -direction, as explained in the discussion preceding Eq. (15.8).      
d) Taking derivatives yields .)(sin ),( and )( cos ),( 2 ωtkxAωtxaωtkxωAtxv yy   
 
 



15.10:     a) The relevant expressions are 
                                                           )cos( ),( tωkxAtxy   

                                                        )(sin ωtkxωA
t
yvy 



  

                                              ).(cos 2
2

2

kxωtAω
t

v
t
ya y

y 





  

 

 
        
b) (Take A, k and ω  to be positive. At ,0tx  the wave is represented by (19.7(a)); point 
(i) in the problem corresponds to the origin, and points (ii)-(vii) correspond to the points 
in the figure labeled 1-7.) (i) ,)0cos( ωAωAvy   and the particle is moving upward (in 

the positive y-direction). ,0)0sin( 2  Aωay  and the particle is instantaneously not 

accelerating. (ii) ,2)4cos( ωAπωAvy    and the particle is moving up. 

,2)4sin( 22 AωπAωay   and the particle is speeding up.  
(iii) ,0)2cos(  πωAvy  and the particle is instantaneously at rest.  

,)2sin( 22 AωπAωay   and the particle is speeding up.  

(iv) ,2)43cos( ωAπωAvy   and the particle is moving down. 

,2)43sin( 22 AωπAωay   and the particle is slowing down ( yv  is becoming less 
negative). (v) ωAπωAvy  )cos(  and the particle is moving down. 

,0)sin( 2  πAωay  and the particle is instantaneously not accelerating.  

(vi) 2)45cos( ωAπωAvy   and the particle is moving down. 

2)45sin( 22 AωπAωay   and the particle is speeding up ( yv  and ya have the 
same sign). (vii) ,0)23cos(  πωAvy  and the particle is instantaneously at rest. 

AωπAωay
22 )23sin(   and the particle is speeding up. 

 (viii) ,2)47cos( ωAπωAvy   and the particle is moving upward. 

2)47sin( 22 AωπAωay   and the particle is slowing down ( yv  and ya  have 
opposite signs). 
 



15.11:     Reading from the graph,    a)  s.040.0 b)  ,mm0.4  TA  c) A displacement of 
0.090 m corresponds to a time interval of 0.025 s; that is, the part of the wave represented 
by the point where the red curve crosses the origin corresponds to the point where the 
blue curve crosses the t-axis )0( y  at  s, 025.0t and in this time the wave has traveled 
0.090 m, and so the wave speed is sm6.3  and the wavelength is  

m14.0)s040.0)(sm6.3( vT . d) sm 6.0s 0.015m 090.0   and the wavelength is 
0.24 m. d) No; there could be many wavelengths between the places where )(ty  is 
measured. 
 
 

15.12:     a)                    





 










 


t
T

xπA
T
txπA 2cos2cos  
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where vf
T


  has been used. 

b)  .
λ

2sin
λ

2 vtxπAπv
t
yvy 



  

   c) The speed is the greatest when the cosine is 1, and that speed is λ2πvA . This will be 
equal to v  if πA 2 , less than v if πA 2  and greater than v  if πA 2 . 
 



15.13:    a) :0t  
____________________________________________________________ 
x(cm)  0.00   1.50     3.00     4.50      6.00    7.50     9.00   10.50   12.00 
____________________________________________________________ 
y(cm)  0.000  0.212  0.300  0.212   0.000   0.212  0.300   0.212   0.000 
____________________________________________________________ 
    

 
               b) i) t = 0.400 s: 
_______________________________________________________________ 
x(cm)   0.00   1.50    3.00     4.50        6.00       7.50     9.00    10.50   12.00 
_______________________________________________________________ 
y(cm)   0.285   0.136  0.093  0.267   0.285   0.136   0.093    0.267   0.285 
_______________________________________________________________ 
    

 
 :s 800.0 ii t  

________________________________________________________________ 
x(cm)  0.00  1.50   3.00  4.50   6.00      7.50       9.00       10.50    12.00 
________________________________________________________________ 
y(cm)  0.176  0.296 0.243 0.047   0.176   0.296   0.243   0.047    0.176 
________________________________________________________________ 
 
 



15.14: Solving Eq. (15.13) for the force ,F  
 

  . 2.43))m 750.0()Hz0.40((
m 2.50
kg 120.0 222 






 fµµvF  

 
 
 
15.15:       a) Neglecting the mass of the string, the tension in the string is the weight of 
the pulley, and the speed of a transverse wave on the string is 
 

s.m3.16
)mkg0550.0(

)sm80.9)(kg 50.1( 2


µ
Fv  

 
                 b) m. 136.0)Hz 120()sm3.16(  fv    c) The speed is proportional to 
the square root of the tension, and hence to the square root of the suspended mass; the 
answers change by a factor of m. 0.192 and sm 23.1  to,2  
 
 
15.16:       a) s.m 8.41)kg 800.0()m 0.10() 0.140(  µFv  
         b) m. 9.34)Hz20.1()sm 8.41(  fv    c) The speed is larger by a factor of 

 ,2 and so for the same wavelength, the frequency must be multiplied by 
Hz. 1.70or  ,2  

 
 
15.17:    Denoting the suspended mass by M  and the string mass by ,m  the time for the 
pulse to reach the other end is 
 

s. 390.0
)sm80.9)(kg50.7(

)m0.14)(kg800.0(
)( 2 

Mg
mL

LmMg
L

v
Lt  

 
 
15.18:       a) The tension at the bottom of the rope is due to the weight of the load, and 
the speed is the same  sm5.88 as found in Example 15.4    b) The tension at the middle 
of the rope is (21.0 N 8.205)sm809()kg 2 . (keeping an extra figure) and the speed of 
the rope is s.m7.90     c) The tension at the top of the rope 
is sm6.215)sm80.9)(kg0.22( 2   and the speed is .sm9.92  (See Challenge Problem 
(15.80) for the effects of varying tension on the time it takes to send signals.) 
 
 



15.19:       a) sm0.10)mkg(0.0500N)00.5(  µFv  
   b) m0.250Hz)(40.0)sm(10.0  fv  
   c) )specified. as ,)0.0( :(Note)cos( ),( AyωtkxAtxy   

srad0.802  m;rad00.82 ππfωππk  - 
])srad0.80()mrad(8.00cos[)cm00.3(),( tπxπtxy   

d) )cos( and )sin( 2 ωtkxAωaωtkxAωv yy   
222

max , sm1890)(2  πfAAωay  
e)  ismax,ya much larger than g, so ok to ignore gravity. 
 
 
15.20:    a) Using Eq.(15.25), 

 22
ave 2

1 AωµFP   

       232
3

)m106.1())Hz0.120(2()N0.25(
m0.80

kg1000.3
2
1 










 
   

      = 0.223 W, 
 
or 0.22 W to two figures.    b) Halving the amplitude quarters the average power, to 0.056 
W. 
 
 
15.21:    Fig. 15.13 plots 0.at )(sin),( 2 22  xωtkxAωµFtxP  
 
 )(sin )(sin  ),(0,For 2

max
222 ωtPωtAωµFtxPx   

 When .2)4()2(,4 ππkxx   
 sin ωtPtPωtωtπ  cos ),4( so , cos)2( 2

max  
  
 The graph is shifted by 4T  but is otherwise the same. The instantaneous power 
is still never negative and 0.at  as same  the,max2

1
av  xPP  

 
 

15.22:     m,5.2)m5.7( 2

2

2

1

mW0.1
mW11.0

12  Ι
Ιrr so it is possible to 

move m5.0m5.2m5.721  rr closer to the source. 
 
 



15.23:    a) 2
22

2
11   rΙrΙ   

 
2222

2112 mW050.0)m3.1m3.4)(mW026.0()(  rrΙΙ  
 
b) W04.6)mW026.0()m3.4(44 222  πΙπrP  
 
Energy = J102.2)s3600)(W04.6( 4Pt  

 
 
15.24:    (a) Hz. 118(b) mm.30.2 2

srad742
2  π
ωfA   (c) m.90.0mrad98.6

22  
k
π   (d) 

s.m106mrad98.6
srad742  k

ωv   (e) The wave is traveling in the –x direction because the 
phase of  y (x,t) has  the form .ωtkx    (f) The linear mass density is 

mkg10504.2)m35.1()kg1038.3( 33  µ , so the tension is 
N3.28)sm3.106)(mkg10504.2( 232  µvF  (keeping an extra figure in v  for 

accuracy).   23
2
122

2
1

av )srad742()N3.28)(mkg1050.2( )g(  AωµFP   
W.39.0)m1030.2( 23    

 
15.25:    m15.0at  mW250.0 2  rI  
        W707)mW250.0()m0.15(44 222  πIπrP  
 
 



15.26:    a) The wave form for the given times, respectively, is shown. 
 

 
 
   b) 
 

 
 



15.27:    a) The wave form for the given times, respectively, is shown. 
 

 
   b)  
 

 
 
 
 
 
 
 
 
 
 
 
15.28: 
 

 
 
 



15.29: 
 

 
 
15.30:    Let the wave traveling in the  t).( cos  ),( bedirection  1 ωkxAtxyx   The 
wave traveling in the x  direction is inverted due to reflection from the fixed end of the 
string at ).cos( ),( form  thehasit  so ,0 2 ωtkxAtxyx   The wave function of the 
resulting standing wave is then ),(),(),( 21 txytxytxy  , where 

  vωkπTπωA  s,rad 1072.1s) 1065.3(22 mm, 46.2 33  
m.rad5.15)sm111)(srad1072.1( 3   

 
 
15.31:    a) The nodes correspond to the places where 

integeran   ,or  0sin  is, that );1.15( Eq.in   allfor  0 nodenode nnπkxkxty  . 
nxπk m) 333.1(  m,rad 75.0With node   and for 

m,... 6.67 m, 5.33 m, 4.00 m, 2.67 m, 1.333 ,0 ...,,2,1,0 node  xn   b) The antinodes 
correspond to the points where cos ,0kx  which are halfway between any two adjacent 
nodes, at 0.667 m, 2.00 m, 3.33 m, 4.67 m, 6.00 m, ... 
 
 

15.32:    a)           ,sinsinsw
2

2

2

kxωtAk
x
y



    ,sinsinsw

2
2

2

kxωtAω
t
y



  

so for ),( txy  to be a solution of Eq. (15.12), ,2

2
2

v
ωk 

  and .
k
ωv   

b) A standing wave is built up by the superposition of traveling waves, to which the 
relationship kωv  applies. 
 
 



15.33:     a) The amplitude of  the standing  wave is cm, 85.0sw A the wavelength is 
twice the distance between adjacent antinodes, and so Eq. (15.28) is 
 

).cm 0.302sin())s 0.0752sin(()cm 85.0(),( πxtπtxy   
    

 c) cm. 688.0))cm 0.30(cm) (10.52sin()cm 0.850( π  
    
 

m/s. 00.4)s 0750.0()cm 30.0(λλb)  Tfv

15.34:     )]cos()cos([21 ωtkxωtkxAyy   
                ]sinsincoscossinsincoscos[ ωtkxωtkxωtkxωtkxA   
     .sinsin2 ωtkxA  
 
 
15.35:    The wave equation is a linear equation, as it is linear in the derivatives, and 
differentiation is a linear operation. Specifically, 
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Repeating the differentiation to second order in both x and t, 
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The functions 1y and 2y are given as being solutions to the wave equation; that is, 
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and so 21 yyy   is a solution of Eq. (15.12). 
 
 



15.36:    a) From Eq. (15.35), 
 

L
f

2
1

1  m
FL

)m 400.0(2
1


)kg 1000.3(
)m 400.0)(N 800(

3
=408 Hz. 

 
   b) th

Hz408
Hz000,10 24  theso,5.24  harmonic may be heard, but not the .25 th  

 
 
15.37:    a) In the fundamental mode, 

s.m 0.96)m 60.1)(Hz0.60(so and m 60.12  fvL  
         
          b) .461)m 800.0()kg 0400.0()sm 0.96( 222  LmvµvF  
 
 
 
15.38:    The ends of the stick are free, so they must be displacement antinodes. 
     1st harmonic: 

        m 0.42
2
1

11  LL  

     2nd harmonic: 

       m 0.21 22  LL  
     3rd harmonic: 

 m 33.1
3

2
2
3

33 
LL

 
 
 



15.39:    a)  

 
            
             b) Eq. (15.28) gives the general equation for a standing wave on a string: 
             ωtkxAtxy sin ) sin(),( sw  
 
              cm 80.22)cm 60.5(2 so ,2 SWsw  AAAA  
            c) The sketch in part (a) shows that )2(3 L  
 
            kππk 2,2   
 
            Comparison of ),( txy given in the problem to Eq.(15.28) gives 

cm.rad0340.0k  
 
             So, cm .8184)cmrad0340.0(2  π  
 
             cm 277)3(3 L  
 
              d) (c)part  from cm, 185  
 
              Hz96.72 so srad0.50  πωfω  
 
               period s 126.01  fT  
 
               scm1470 fv  
  

e) ωtkxωAdtdyvy cossin sw  
scm280cm)s)(5.60rad0.50(SWmax,  ωAvy  

 
f) Hz65.2 so ,3Hz96.7 113  fff  is the fundamental 
 

srad1332 Hz;2.218 8818  πfωff  
 

cm.rad0906.02andcm3.69Hz)(21.2s)cm1470(  πkfv  
 

)s]rad([133sin)cm]rad([0.0906sincm)60.5(),( txtxy   



15.40:    (a) m.193.0 (b) mm.2.22mm)44.4( mrad5.32
22

2
1

SW2
1  π

k
πAA  

( c) s.m2.23  (d) Hz.120 mrad5.32
mrad754

2
mrad754

2   k
ωω vf (e) If the wave traveling in 

the x  direction is  written as ),cos(),(1 tkxAtxy  then the wave traveling in the 
mrad5.32 and (a), frommm22.2  where),cos(),(isdirection 2  kAωtkxAtxyx

s.rad754 and ω    (f) The harmonic cannot be determined because the length of the 
string is not specified. 
 
 
15.41:    a) The traveling wave is )s]rad[742)m]rad([6.98cosm)30.2(),( txtxy   

srad742 and mrad98.6   mm;60.4 so mm30.2 SW  ωkAA  
The general equation for a standing wave is so ,sin)sin  (),( SW tkxAtxy   

)s]rad)sin([742m]radsin([6.98mm)60.4(),( txtxy   
 
b) 15.24) Exercise (fromm35.1L  

m900.02  kπ  
),2(3 L so this is the 3rd harmonic 

c) For this 3rd harmonic, Hz1182  πωf  
Hz39.33Hz)118( so 3 113  fff  

 
 
15.42:    The condition that Lx   is a node becomes .nπLkn   The wave number and 
wavelength are related by .2 so and ,2 nLπk nnn   
 
 
15.43:    a) The product of the frequency and the string length is a constant for a given 
string, equal to half of the wave speed, so to play a note with frequency 

cm. 45.0  Hz) (587Hz)(440cm)0.60( Hz,587 x  
         b) Lower frequency requires longer length of string free to vibrate. Full length of 
string gives Hz,440 so this is the lowest note possible. 
 
15.44:    a) (i) 2

x  is a node, and there is no motion. (ii) 4
x  is an antinode, 

and ,cos)iii(.4)2(,2)2(
2

1
4

22
maxmaxmax  πAfπvπfaπfAπfAv   and this factor 

multiplies the results of  (ii), so  AfπafAπv 22
maxmax 22,2  .  b) The amplitude is 

.2(iii) ,(ii)  ,0)i(or  ,sin AAkxA  c) The time between the extremes of the motion is the 
same for any point on the string (although the period of the zero motion at a node might 
be considered indeterminate) and is .2

1
f  

 
 



15.45:    a)   Hz.0.16m, 00.32 )m50.1(2
)sm0.48(

211  L
vfL    

b) Hz.0.483 m,00.13 1213  ff    c) Hz.0.644 m,75.04 1314  ff  
 
 
15.46:    a) For the fundamental mode, the wavelength is twice the length of the string, 
and s.m311m)Hz)(0.635245(22  fLfv   b) The frequency of the fundamental 
mode is proportional to the speed and hence to the square root of the tension; 

Hz.2461.01Hz)245(     c) The frequency will be the same, Hz.245 The wavelength 
will be m, 40.1)z245()sm 344(airair  fv  which is larger than the wavelength 
of standing wave on the string by a factor of the ration of the speeds. 
 
 
 
15.47:    a)  s,rad 1262 Hz, 0.20)m 80.1()sm 0.36(  πfωvf   

m.rad 49.32  πvωk  
   b)  .)srad 126()mrad 3.49( cos)mm 50.2()( cos ),( txωtkxAtxy   
 
   c)At  .)srad 126( cos )mm 50.2( cos ),0( ,0 tωtAtyx   From  this form it may be 
seen that at .0,0,0  


t
ytx   d) At 234,3m 35.1 πkxx   and 

   .23 cos ,43 ωtπAty   
 
    e) See Exercise  s.m 315.0  ;12.15 ωA  f) From the result of part  
  s.m 315.0  mm. 0 ,d  yvy  
 
 



15.48:    a) From comparison with Eq.    cm, 00.5 cm, 75.0 ,4.15 cm400.0
2 A  

s.m 25.6 and  s 00800.0 Hz, 125 1  fvTf f  
     b) 

 
 

 
 

 
 

 
 
 

c) To stay with a wavefront as t  increases, x  and so the wave is moving in the x - 
direction. d) From Eq.  ,13.15 the tension is N.5.19)sm 25.6( )mkg 50.0( 22  µvF  
 

e) W.2.5422
2
1

av  AωµFP  
 
 
15.49:    a) Speed in each segment is µ.Fv   The time to travel through a segment is 

.vLt   The travel times then, are . and ,, 43
4

21
111
F

µ
F
µ

F
µ LtLtLt   Adding gives 

.2 1111
2
7

2
1

total F
µ

F
µ

F
µ

F
µ LLLLt   

 
b) No, because the tension is uniform throughout each piece. 

 
 



15.50:    The amplitude given is not needed, it just ensures that the  wave disturbance is 
small. Both strings have the same tension ,F  and the same length m.5.1L The wave 
takes different times 21  and tt  to travel along each string, so the design requirements is 

s. 20.021  tt Using   and mFLµFvvLt   

   with s, 20.0 gives 21  FLmm . kg1010 and kg1090 3
1

3
1

  mm  Solving 
for F gives N. 0.6F  
 
 
15.51:    a) )cos( ),( ωtkxAtxy   

)sin( ωtkxAωdtdyvy   
πfAAωvy 2max,   

  M
FLf

Lm
Fvvf 













1 so , and  

M
FLπAvy 










2

max,  

 
b) To double max ,yv  increase F by a factor of 4 

 
 
15.52:    The maximum vertical acceleration must be at least .g  Because 

.ωgAAωgAωa 2
minmin

22   thusand ,   Using  πvπfω 22  and µ,Fv   this 

becomes .2

2

4min Fπ
µgA   

 
 



15.53:    a) See Exercise 15.10; ,2
2

2

yωa
t

y
y 



  and so . 22 ωxµmωk   
 

        b)                                         2

22
22 422

μλ
Fπ

λ
πvπfω 






  

 
and so .)4( 22 xFπk   The effective force constant k  is independent of amplitude, as 
for a simple harmonic oscillator, and is proportional to the tension that provides the 
restoring force. The factor of 21  indicates that the curvature of the string creates the 
restoring force on a segment of the string. More specifically, one factor of 1 is due to 
the curvature, and a factor of )(1 µ  represents the mass in one wavelength, which 
determines the frequency of the overall oscillation of the string. The mass  xµm   
also contains a factor of  ,µ and so the effective spring constant per unit length is 
independent of .µ  
 
 



15.54:   a), b) 

 
 

       c)   The displacement is a maximum when the term in parentheses in the denominator 
is zero; the denominator is the sum of two squares and is minimized when ,vtx  and the 
maximum displacement is A. At cm, 4.50 x the displacement is a maximum at 

s. 10  2.25  )sm(20.0m) 10  (4.50  32  t The displacement will be half of the 
maximum when s. 10  2.75 and s 10  1.75  )(  or   ,)( 3322   vAxtAvtx  
d)   Of  the many ways to obtain the result, the method presented saves some algebra and 
minor calculus, relying on the chain rule for partial derivatives. Specifically, let 

,  ),( vtxtxuu   so that if . and  ),  ),( v
du
dg

t
u

du
dg

t
f

du
dg

t
u

du
dg

x
fg(utxf 
















  

(In this form it may be seen that any function of this form satisfies the wave equation; see 
Problem 15.59.) In this case, ,(),( 1223  uAAtxy  and so 
 

322

223

2

2

222

3

)(
)3(2 ,

)(
2

uA
uAA

x
y

uA
uA

x
y













  

 

      ,
)(

)3(2 ,
)(

2
222

223
2

2

2

222

3

uA
uAAv

t
y

uA
uAv

t
y












  

 
and so the given form for ),( txy  is a solution to the wave equation with speed .v  
 
 



15.55:   a) and b) (1): The curve appears to be horizontal, and yv  = 0. As the wave 
moves, the point will begin to move downward, and   ya 0. (2): As the wave moves in 
the + x -direction (to the right in Fig. (15.34)), the particle will move upward so yv > 0. 
The portion of the curve to the left of the point is steeper, so ya  > 0. (3) The point is 
moving down, and will increase its speed as the wave moves; yv  < 0, ya < 0. (4) The 
curve appears to be horizontal, and yv  = 0. As the wave moves, the point will move away 
from the x -axis, and ya >0. (5) The point is moving downward, and will increase its 
speed as the wave moves; 0.   0,   yy av (6) The particle is moving upward, but the curve 
that represents the wave appears to have no curvature, so 0.   and  0   yy av     c) The 
accelerations, which are related to the curvatures, will not change. The transverse 
velocities will all change sign. 
 
 
15.56:   (a ) The wave travels a horizontal distance d in a time 
 

    s. 333.0
Hz0.40 m 0.600

m  00.8





f
d

v
dt  

 
            (b) A point on the string will travel a vertical distance of A4  each cycle. 
Although the transverse velocity  txv y ,  is not constant, a distance of m 00.8h  
corresponds to a whole number of cycles,  

,400))m 1000.5(4(()m 00.8()4( 3  Ahn so the amount of time 
is s. 0.10)Hz 0.40()400(  fnnTt  
 
            (c ) The answer for (a ) is independent of amplitude. For (b), the time is halved if 
the amplitude is doubled. 
 
 



15.57:  a) 222 ),(),( Ayxzyxy   
   
          The trajectory is a circle of radius .A  
 
          .0)0,0( ,)0,0(,0At  zAyt  
       
          .)2,0(,0)2,0(,2At Aωπzωπyωπt   
              
          .0)2,0(,),0(,At  ωπzAωπyωπt     
 
           Aωπzωπyωπt  )23,0(,0)23,0(,23At  
 
            b) )cos( ,)sin( ωtkxAωdtdzvωtkxAωdtdyv zy   
 
            ,22 Aωvvv zy   so the speed is constant. 
 
             kjr ˆˆ zy 

  
 
             )sin( )cos( )cos( )(sin  22 tωkxtωkxωAtωkxtωkxωAzvyv zy vr   
          
             vvr   so ,0   is tangent to the circular path. 
 
            c) )sin( ,)cos( 22 tωkxAωdtdvatωkxAωdtdva zzyy    
          
             222222 )](sin)(cos[ ωAtωkxtωkxωAzaya zy ar    
             
              raAωaAr  ar  so  ,, 2   
 
               aar   and 180 so  cos  ra   is opposite in direction to ar ;  is radially 
inward. 
              ,222 Azy   so the path is again circular, but the particle rotates in the 
opposite sense compared to part (a ). 
 
 
 



15.58:   The speed of light is so large compared to the speed of sound that the travel time 
of the light from the lightning or the radio signal may be neglected. Them, the distance 
from the storm to the dorm is m 92.1523)s 43.4)(sm 344(    and the distance from the 
storm to the ballpark is m. 1032)s 00.3)(sm344(   The angle that the direction from the 
storm to the ballpark makes with the north direction is found from these distances using 
the law of cosines; 
 
 

              ,07.90
)m 1120( )m 1032(2

)m 1120()m 1032()m 1523.92( arccos 
222












  

 
 
so the storm can be considered to be due west of the park. 
 
 
15.59:   a) As time goes on, someone moving with the wave would need to move in such 
a way that the wave appears to have the same shape. If this motion can be described by  

  with , ccvtx  a constant (not the speed light),then ),(),( cftxy   
and the waveform is the same to such observer. b) See Problem 15.54. The derivation is 
completed by taking the second partials, 
 

  ,,1
2

2

2

2

2

2

22

2

du
fd

t
y

du
fd

vx
y







  

 
)/(),( so vxtftxy  is a solution to the wave equation with wave speed v .    c) This is 

of the form vxtuuftxy  with ),(),( and 
 
   

22 ))(()( xcBtCDeuf  , 
 
and the result of part (b) may be used to determine the speed BCv  immediately. 
 
 



15.60:  a) 
 

 
       b)  43or  4No; c) ).sin( ππωtkxωΑt

y 
  would both give .2Α  If the 

particle is known to be moving downward, the result of part    b) shows that 
4.3 so and  0, cos    d) To identify  uniquely, the quadrant in which   is must be 

known. In physical terms, the signs of both the position and velocity, and the magnitude 
of either, are necessary to determine   (within additive multiples of π2 ). 
 
 
15.61:  ωkFvFFµFµF a) and substituting this into Eq. (15.33) gives the 
result. 
 
        b) Quadrupling the tension for F to FF 4 increases the speed µFv   by a 
factor of 2, so the new frequency ωand new wave number k are related to 

.kωkωkω )(2)(by   and   For the average power to be the same, we must have 
4 and 4 so , kωωkωkkωωkFFkω  . 

 
        Multiplying the first and second equations together gives 
 
   2. so  ,222 ωωωω   
 
Thus, the frequency must decrease by a factor of .2  Dividing the second equation by 
the first equation gives 
 
   8.  so  ,822 kkkk   
 



15.62:   (a) 

                 
 
         
         (b) The wave moves in the x direction with speed ,v  so in the expression for 

)0,(xy  replace x with :vtx   
 

                


















Lvtx
LvtxLvtxLh

vtxLLvtxLh
Lvtx

txy

)(   for                               0
)(0for     )(

0)(for )(
 )(for                              0

),(  

 
       (c) From Eq. (15.21): 
 
 



























LvtxF
LvtxLhFvLhvLhF

vtxLLhFvLhvLhF
LvtxF

t
txy

x
txyFtxP

)( for                                   0)0)(0(
)(0   for)())((

0)(for)())((
)(for                           0)0)(0(

),(),(),(
2

2

 

 
Thus the instantaneous power is zero except for ,)( LvtxL   where it has the 
constant value .)( 2LhFv  
 
 



15.63:   a) 22
2
1

av AωµFP   

        µvFµFv  so  
         )(22  vππfω   
    
          Using these two expressions to replace ωF and   gives 
          m)(8.00kg) 1000.6(;2 32232

av
 µAvμπP    

          cm07.7
4
2 2

1

32
av

2











µvπ
PA   

      b) 3
av ~ vP  so doubling 8. offactor  aby    increases  avPv  

      W400.0W)0.50(8av P       
 
 
 
 
 
 
 
 
 



15.64:   a) , d) 
 

 

 
 

        b)The power is a maximum where the displacement is zero, and the power is a 
minimum of zero when the magnitude of the displacement is a maximum.    c) The 
direction of the energy flow is always in the same direction. d) In this case, 

),sin( ωtkxkΑx
y 
 and so Eq. (15.22) becomes 
 
  ).(sin),( 22 ωtkxAFktxP    
 
 The power is now negative (energy flows in the x -direction), but the qualitative 
relations of part (b) are unchanged. 
 
 

15.65:    



µ

ΤYΑF
µ
Fv

µ
Fv Δ, 122

2
12

1  

 
Solving for α,  

   









ΤρY

vv
Τµ)ΑY

vv
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1
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15.66:   (a) The string vibrates through 21 cycle in so min,4 5000
1  

 

s109.6min106.1min
5000

4
2
1 23   TT  

 
           Hz10.4s106.911 2  Tf  

 
            m50.0cm0.50  L  

 
     (b) Second harmonic 
  
     (c) sm5.2m)Hz)(0.504.10(  fv  
     (d) (i)Maximum displacement, so ) sinsin  cm5.1( (ii) 0 ωtkxvv tt

y
y 



   

 
Speed ωtkxωvy sincm)sin5.1(  
 
at maximum speed, 1 sin sin  ωtkx  
 

cm)Hz)(1.5 (10.42cm)5.1(2cm)5.1( ππfωvy   
     sm0.98scm98   
 
(e) 2vFµµFv   

kg1085.1
)sm2.5(

m) N)(0.500 00.1( 2
22

 L
v
FµLM  

                                                                                         =18.5 g 
 
 
15.67:   There is a node at the post and there must be a node at the clothespin. There 
could be additional nodes in between. The distance between adjacent nodes is  ,2  so 
the distance between any two nodes is ...,3,2,1for  )2( nn   

,),2(cm0.45 fvn   so 
...,3,2,1,Hz)800.0()]cm0.90([  nnvnf  

 
 



15.68:    (a) The displacement of the string at any point is .sin)sin(),( SW tkxAtxy   For 
the fundamental mode ,2L  so at the midpoint of the string 

,1)2)(2sin(sin  Lπkx  and  
.sinSW tAy   Taking derivatives gives ,cosSW ωtωAv t

y
y  

  with maximum value 

,sin and , SW
2

SWmax ωtAωaωAv t
v

yy
y  

  with maximum value .SW
2

max Aωay   
Dividing these gives 

s,rad102.21s)m80.3()sm1040.8( 323
maxmax  yy vaω and then  

m.101.72s)rad1021.2(s)m80.3( 33
maxSW

 ωvA y  
 
      (b) s.m272s)rad10(2.21m)386.0()2)(2( 3  ππLωπωLfv   
 
 
 
 
15.69:   a) To show this relationship is valid, take the second time derivative: 

],cos)sin[(),(
SW2

2

2

2

ωtkxA
tt

txy




  

]sin)sin[(),(
SW2

2

ωtkxA
t

ω
t

txy






  

 ,t cos)sin (
t

t),(
sw

2
2

2

ωkxΑωxy



  

                                                  Q.E.D. ),,(),( 2
2

2

txyω
t

txy 


  

 
 The displacement of the harmonic oscillator is periodic in both time and space. 
 
 b) Yes, the travelling wave is also a solution of the wave equation. 
 
 



15.70:   a) The wave moving to the left is inverted and reflected; the reflection means that 
the wave moving to the left is the same function of ,x and the inversion means that the 
function is ).( xf  More rigorously, the wave moving to the left in Fig. (15.17) is 
obtained from the wave moving to the right by a rotation of 180 , so both the coordinates 

) and ( xf have their signs changed. b). The wave that is the sum is )()( xfxf   (an 
inherently odd function), and for any .0)0()0(,  fff     c) The wave is reflected but 
not inverted (see the discussion in part (a) above), so the wave moving to the left in Fig. 
(15.18) is ).( xf   
 

 d) 
dx

xd
xd
xdf

dx
xdf

dx
xdf

dx
xdfxfxf

dx
d

dx
dy )(

)(
)()()()())()(( 







  

 

             .
xxdx

df
dx
df



   

 
At 0x , the terms are the same and the derivatives is zero. (See Exercise 20-2 for a 
situation where the derivative of f is not finite, so the string is not always horizontal at the 
boundary.) 
 
 
15.71:   a)     ),(),(),( 21 txytxytxy   
               )cos()cos( ωtkxωtkxΑ    
                      kxωtkxωtkxωtkxωtΑ sin  sin  cos cossin sin coscos    
          . coscos )2( kxωt   
 b) At 0 so and ,)cos(2),0(,0  xωtΑtyx  is an antinode.    c) The maximum 
displacement is, front part (b), ,2SW ΑΑ  the maximum speed is ωΑωΑ 2SW  and the 
magnitude of the maximum acceleration is .2 2

sw
2 ΑωΑω   

 
15.72:   a) m800.0)Hz0.240(s)m0.192(  fv , and the wave amplitude is  

cm.400.0SW Α The amplitude of the motion at the given points is (i) 
2)sin( cm)(0.400 (ii) node), (a0)(cm)sin 400.0( ππ    antinode)(an  cm0.004  

cm.0.2834)sin( cm)(0.400 (iii) and π   b). The time is half of the period, or 
s.1008.2)2(1 3f     c) In each case, the maximum velocity is the amplitude 

multiplied by πfω 2 and the maximum acceleration is the amplitude multiplied by  
.sm 10 6.43 ,sm4.27 (iii) ;sm109.10  s,m6.03 (ii)  0;0, (i)or  ,4 2323222  fπω  

 
 



15.73:   The plank is oscillating in its fundamental mode, so m,10.02  L with a 
frequency of s.m0.20 a) .Hz00.2  fv     b) The plank would be its first overtone, 
with twice the frequency, or s.jumps4  
 
 
15.74:   (a) The breaking stress is ,mN100.7 28

2 
πr
F and the maximum tension is 

N,900F so solving for r gives the minimum radius m.104.6 4
)mN10(7.0

N 900
28





π

r  

The mass and density are fixed, ,2 Lπr
Mρ   so the minimum radius gives the maximum 

length m.40.0
)mkg7800(m)10(6.4

kg100.4
324

3

2  







πρπr
ML  

 
       (b) The fundamental frequency is .2

1
2
1

2
1

1 ML
F

LM
F

L
F

Lf    Assuming the 

maximum length of the string is free to vibrate, the highest fundamental frequency occurs 
when Hz.376 N,900

m)kg)(0.4010(4.0
N900

2
1

1 3  
fF  

 
 



15.75:   a) The fundamental has nodes only at the ends, . and 0 Lxx      b) For the 
second harmonic, the wavelength is the length of the string, and the nodes are at 

. and 2,0 LxLxx   
 

b)  

 
 

 

 

 

 
 
d) No; no part of the string except for ,2Lx   oscillates with a single frequency. 
 



15.76:    
 
   a) The new tension F  in the wire is 
 

 









1

water

1

water

3
11)31(

AA ρ
ρw

ρ
ρwwBFF  

  

       .)87645.0()8765.0(
)mkg107.2(3
)mkg1000.1(1      33

33

Fww 










  

 
The frequency will be proportional to the square root of the tension, and so 

Hz.1878765.0)Hz200( f  
 
 b) The water does not offer much resistance to the transverse waves in the wire, 
and hencethe node will be located a the point where the wire attaches to the sculpture and 
not at the surface of the water. 
 
 
15.77:   a) Solving Eq. (15.35) for the tension F, 
 

N.148)Hz4.65)(m600.0)(kg104.14(444 232
1

2
1

2  mLfµfLF  
 
        b) The tension must increase by a factor of ,)( 2

4.65
4.73 and the percent increase is 

%.0.261)4.654.73( 2   
 
 
15.78:   a) Consider the derivation of the speed of a longitudinal wave in Section 16.2. 
Instead of the bulk modulus B, the quantity of interest is the change in force per fractional 
length change. The force constant k   is the change in force force per length change, so 
the force change per fractional length change is ,Lk  the applied force at one end is 

))(( vvLkF y  and the longitudinal impulse when this force is applied for a time t is 
.vvLtk y  The change in longitudinal momentum is yvLmvt ))((  and equating the 

expressions, canceling a factor of t and solving for . gives  22 mkLvv   
 
 An equivalent method is to use the result of Problem 11.82(a), which relates the 
force constant k   and the “Young’s modulus” of the Slinky .or  ,, ALkYLYAkTM   
The mass density is  (16.8) Eq. and ),(ALmρ   gives the result immediately. 
 
 b) s.m90.4)kg250.0()mN50.1()m00.2(   
 
 



15.79:   a)  .
2
1)21( 22

k 
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yµ

µm
mv

x
Ku y  

 
     b) so and )sin( ωtkxωAt

y 
  

 

).(sin 
2
1 222 ωtkxAμωuk   

 
   c)   The piece has width ,height  and y

xxx 
 and so the length of the piece is 
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where the relation given in the hint has been used. 
 

d)  
.

2
1)(1 22

2
1

p 













 



x
yF

x
xxFu x

y

 

e)  ),sin( ωtkxkAx
y 
 and so 

 

)(sin 
2
1 222

p ωtkxAFku   

 
and f) comparison with the result of part (c)with ,2222 Fµωvωk   shows that for a 

sinusoidal wave .pk uvu   g) In this graph, pk  and uu  coincide, as shown in part 
(f).  
 

 
 



15.80:   a) The tension is the difference between the diver’s weight and the buoyant force,
 
   N.392))sm80.9)(m0800.0)(mkg(1000kg120()( 233

water  gVρmF  
 
b) The increase in tension will be the weight of the cable between the diver and the point 
at x, minus the buoyant force. This increase in tension is then 
 

  xπgAxρx )sm80.9)()m1000.1()mkg(1000mkg10.1()( 2223   
                       x)mN70.7(  

The tension as a function of x is then .)mN70.7()N392()( xxF      c) Denote the 
tension as ,)( 0 axFxF   where N3920 F  and m.N70.7a Then, the speed of 
transverse waves as a function of x is µaxFv dt

dx )( 0   and the time t 
needed for a wave to reach the surface is found from 
 

   
 .

0

dx
axF

µ
dtdx

dxdtt  

 
Let the length of the cable be L, so 
 

         

 00

000
0

2

2

FaLF
a

µ

axF
a

µ
axF

dxµt LL






 
 

 

s.98.3)N392)m)(100mN(7.70N392(
mN70.7

mkg10.12
  

 



15.81:   The tension in the rope will vary with radius r. The tension at a distance r from 
the center must supply the force to keep the mass of the rope that is further out than r 
accelerating inward. The mass of this piece in ,L

rLm  and its center of mass moves in a 
circle of radius ,2

rL and so 
 

).(
2

)( 22
2

2 rL
L

mω
L

rLω
L

rLmrT 



 





 

  

An equivalent method is to consider the net force on a piece of the rope with length dr 
and mass .Lmdrdm   The tension must vary in such a way that 

.)(or  ,)()( 22 drrLmωdmrωdrrTrT dr
dT  This is integrated to obtained 

,)2()( 22 CrLmωrT   where C is a constant of integration. The tension must vanish 
at ,Lr  from which )2( 2LmωC  and the previous result is obtained. 
The speed of propagation as a function of distance is 

,
2

)()( 22 rLω
m
TL

µ
rT

dt
drrv   

where 0dt
dr  has been chosen for a wave traveling from the center to the edge. 

Separating variables and integrating, the time t is 

.2
0 22 


L

rL
dr

ω
dtt  

The integral may be found in a table, or in Appendix B. The integral is done explicitly by 
letting ,cos , cos ,sin 22 θLrLdθθLdrθLr   so that 

.
2

arcsin(1)2

and ,arcsin
22

ω
π

ω
t

L
rθ

rL
dr






 

 



15.82:   a)  ,cos sin  sin cos SWWS ωtkxωωAωt,kxkA t
y

x
y  



 and so the instantaneous 

power is 

).2sin()2sin(
4
1

)cos )(sincos (sin

SW

SW

2

2

ωtkxωkFA

ωtωtkxkxωkFAP




 

       b) The average value of P is proportional to the average value of ),2sin( t  and the 
average of the sine function is zero; .0av P     c) The waveform is the solid line, and the 
power is the dashed line. At time 0 and 0 ,2  Pyωπt  and the graphs coincide. d) 
When the standing wave is at its maximum displacement at all points, all of the energy is 
potential, and is concentrated at the places where the slope is steepest (the nodes). When 
the standing wave has zero displacement, all of the energy is kinetic, concentrated where 
the particles are moving the fastest (the antinodes). Thus, the energy must be transferred 
from the nodes to the antinodes, and back again, twice in each cycle. Note that    P is 
greatest midway between adjacent nodes and antinodes, and that P vanishes at the nodes 
and antinodes. 
 

 
 
 



15.83:  a) For a string, µ
F

L
n

nf 2  and in this case, .1n  Rearranging this and solving 

for F gives  , that Note .4 222 ρπrµfLµF   
  m.kg 1001.1)mkg 7800(m) 10203(. so 3323   πµ Substituting values, 

N. 4.99Hz) 0.247(m) m)4(.635kg 1001.1( 223  F  

       b) To find the fractional change in the frequency we must take the ration of :   to ff  

,
2
1

µ
F

L
f   

                                                                     ,
2

1
2
1

2
1




















 F

µLµ
F

L
f  

                                                                        2
1

2
1 F

µL
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1

F
F

µL
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Now divide both sides by the original equation for f and cancel terms: 
 

                                                                   

F
F

f
f

f
f

µ
F

L

F
F

µL
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   c)   From Section 17.4, , TAYF   so 
     FFπF  Then, N. 4.3)C11)()m10203(.(C1020.1Pa1000.2 23511  

and,017.0 ,034.0  ff finally, ,Hz2.4f or the pitch falls. This also explains 
the constant the constant tuning in the string sections of symphonic orchestras. 

 



16.1:  a)  Appmfv then,1000if)b.344.0)Hz100(s)m344(λ 0  

01000A Therefore, the amplitude is    m. 102.1 5  maxmax  increasing , Since c) pBkAp   
while keeping A constant requires decreasing k, and increasing π , by the same factor. 
Therefore the new wavelength is  Hz. 50 m, 9.6)20(m) 688.0( m 9.6

sm 344
new  f  

16.2:     m. 1021.3or  , 12

Hz) 1000( Pa) 9102.2(2

)sm 1480( Pa) 2100.3(
2

max 




  AA

ππBf
vp The much higher bulk modulus 

increases both the needed pressure amplitude and the speed, but the speed is proportional 
to the square root of the bulk modulus. The overall effect is that for such a large bulk 
modulus, large pressure amplitudes are needed to produce a given displacement. 
 
 
16.3:    From Eq. (16.5), .2λ2max vfπBABAπBkAp   

a) Pa.7.78s)m(344Hz)150(m) 1000.2( Pa) 1042.1(2 55  π  
b) Pa.778Pa7.78100 c)   Pa.77.8Pa78.710   
The amplitude at Hz1500 exceeds the pain threshold, and at Hz000,15  the sound 

would be unbearable. 
 
 
16.4:    The values from Example 16.8 are  Hz,1000 Pa,1016.3 4  fB  

m.102.1 8A   Using Example 16.5, ,sm295sm344 293K
K216 v  so the pressure 

amplitude of this wave is Pa).1016.3(2 4
max  A

v
πfBBkAp  

Pa.108.1m)102.1(
sm295
Hz)(10002 38  

π  This is 0.27Pa)10(3.0Pa)101.8( 23    

times smaller than the pressure amplitude at sea level (Example 16-1), so pressure 
amplitude decreases with altitude for constant frequency and displacement amplitude. 
 
 
16.5:    a) Using Equation (16.7),    222 s)400m)(8( so,)λ( BfρvB  

Pa.1033.1)mkg1300( 103   

b) Using Equation (16.8),   2422  s 10(3.9m)5.1()(  ρtLρvY   
Pa. 1047.9)mkg6400( 103   

 



16.6:    a) The time for the wave to travel to Caracas was s  579s  39min   9   and the 
speed was sm10085.1 4  (keeping an extra figure). Similarly, the time for the wave to 
travel to Kevo was 680 s for a speed of s,m10278.1 4  and the time to travel to Vienna 
was 767 s for a speed of s.m10258.1 4  The average speed for these three 
measurements is s.m1021.1 4  Due to variations in density, or reflections (a subject 
addressed in later chapters), not all waves travel in straight lines with constant speeds.     
b) From Eq. (16.7), ,2vB   and using the given value of 33 mkg103.3   and the 
speeds found in part (a), the values for the bulk modulus are, respectively, 

Pa.102.5  and  Pa105.4  Pa,109.3 111111   These are larger, by a factor of 2 or 3, than 
the largest values in Table (11-1). 
 
 
16.7:    Use  sm 1482water v at C,20  as given in Table  1.16  The sound wave travels 
in water for the same time as the wave travels a distance m8.20m 20.1m 0.22   in air, 
and so the depth of the diver is 
 

    m. 6.89
sm 344
sm 1482m 8.20m 8.20

air

water 
v

v
 

 
This is the depth of the diver; the distance from the horn is m. 8.90  
 
 
16.8:    a), b), c) Using Eq.  ,10.16  
 

     
  sm1032.1

molkg 1002.2
K 15.300 KmolJ 3145.8 41.1 3

32H 



 v  

     
  sm1002.1 

molkg 1000.4
K 15.300 KmolJ 3145.8 67.1 3

3eH 



 v  

          
  .sm323

molkg 109.39
K 15.300 KmolJ 3145.8 67.1

3Ar 



 v  

 
d) Repeating the calculation of Example 16.5 at K15.300T  gives ,sm348air v  and 
so airHeairH  94.2, 80.3

2
vvvv   and . 928.0 airAr vv   

 
 



16.9:    Solving Eq. (16.10) for the temperature, 
 

   K,191
KmolJ3145.840.1

hrkm6.3
sm1 

0.85
hkm850mol)kg108.28(

2

3

2






























R
MvT


 

 
or  C.82      b) See the results of Problem 18.88, the variation of atmospheric pressure 
with altitude, assuming a non-constant temperature. If we know the altitude we can use 

the result of Problem 18.88, .1
0

0


















 


R
Mg

T
ypp  Since  ,yTT o   

m,C106. K,191for 2  T and ).ft.840,44( m667,13 K,2730  yT   Although a 
very high altitude for commercial aircraft, some military aircraft fly this high. This result 
assumes a uniform decrease in temperature that is solely due to the increasing altitude. 
Then, if we use this altitude, the pressure can be found: 
 

,
K273

m)(13,667 )mC 106(.1p
m)C10K)(.6molJ315.8(

)smmol)(9.8kg108.28(
2

o

2

23















 










 
p  

 
and ,p13.)70(.p o

66.5
o p  or about .13 atm. Using an altitude of 13,667 m in the 

equation derived in Example 18.4 gives ,p18. op  which overestimates the pressure due 
to the assumption of an isothermal atmosphere. 
 
 
16.10:    As in Example K,294.15C21 with 5,-16 T  
 

s.m80.344
molkg108.28

K)K)(294.15molJ3145.8)(04.1(
3 







 M
RTv  

 
The same calculation with s,m344.22 gives 283.15T so the increase is s.m58.0  
 
 
16.11:    Table 16.1 suggests that the speed of longitudinal waves in brass is much higher 
than in air, and so the sound that travels through the metal arrives first. The time 
difference is 
 

s.208.0
)mkg(8600Pa)1090.0(

m0.80
sm344

m0.80
311

Brassair





v

L
v
Lt  

 
 



16.12: 
mol)kg108.28(

K)K)(260.15molJ3145.8)(40.1(
mol)kg108.28(

K)K)(300.15molJ3145.8)(40.1(
33  





  

               s.m24  
 
(The result is known to only two figures, being the difference of quantities known to 
three figures.) 
 
 
16.13:    The mass per unit length  is related to the density (assumed uniform) and the 
cross-section area ,by  AρµA  so combining Eq. (15.13) and Eq. (16.8) with the given 
relations between the speeds, 
 


900

 so  900 ΥAF
Αρ
F

ρ
Υ

 

 
 

16.14:    a) m.0.16
Hz220

)mkg10(8.9Pa)100.11( 3310





f
ρΥ

f
v  

b) Solving for the amplitude A (as opposed to the area )2πra  in terms of the average 
power ,av ΙaP   

               
2

av )2(
ρΥω

aPA   

                  m.1029.3
))Hz220(2(Pa)100.11)(mkg109.8(

)m)10(0.800(W))1050.6(2 8

21033

2-26










π
π  

 
c) s.m104.55m)10289.3)(Hz220(22 58   πΑfπω  
 
 



16.15:    a) See Exercise 16.14. The amplitude is 

                  
2

2
ρΒω
Ι

  

 

       m.1044.9
Hz))3400(2(Pa)1018.2)(mkg1000(

)mW1000.3(2 11
293

26










π
 

 
The wavelength is 
 

m.434.0
Hz3400

)mkg(1000Pa)1018.2( 39





f
ρB

f
v  

 
b) Repeating the above with Pa1040.1γ 5 pB  and the density of air gives 

m. 0.100 and m1066.5 9  A     c) The amplitude is larger in air, by a factor of about 
60. For a given frequency, the much less dense air molecules must have a larger 
amplitude to transfer the same amount of energy. 
 
 
16.16:    From Eq. (16.13), ,22

max BvpI   and from Eq. (19.21), .2 Bv  Using     

Eq. (16.7) to eliminate   .22, 2
max

2
max ρBpBpρBIv   Using Eq. (16.7) to 

eliminate B, .2)(2 2
max

22
max ρvpρvvpI   

 
 
16.17:    a) Pa.95.1s)m(344

m)10(5.00 Hz)(150 Pa)1042.1(22
max

65


π

v
πBfABkAp  

         b) From Eq. (16.14), 
.mW104.58s))m344)(mkg2.1(2(Pa)95.1(2 23322

max
 ρvpI  

        c)   dB.6.96 log10 12

3

10
104.58  

  
 
 



16.18:    (a) The sound level is 
dB.57or  , log dB)(10 so , log dB)10( 212

2

0 mW10
mW 0.500

I
I   βββ µ  

         b) First find v, the speed of sound at C, 0.20   from Table 16.1, s.m344v  
The density of air at that temperature is .mkg20.1 3  Using Equation (16.14), 

.mW1073.2or ,
s)m344)(mkg20.1(2

)mN150.0(
2

25
3

222
max  I
ρv

pI  Using this in Equation 

(16.15), dB.74.4or ,
mW10

mW102.73 log dB)10( 212

25




 



ββ  

 
 
16.19:    a) As in Example 16.6, dB.40.6 .mW104.4 212

s)m344)(mkg20.1(2
Pa)100.6(

3

25

  

βI  

 
 
16.20:    a)   dB.0.6 log 10 4  I

I  b) The number must be multiplied by four, for an 
increase of 12 kids. 
 
 
16.21:    Mom is five times further away than Dad, and so the intensity she hears is 

2
25
1 5 of the intensity that he hears, and the difference in sound intensity levels is 

dB.14log(25)10   
 
 
16.22: 

dB25dB90dB75level) (Sound   

i

f

I
I

I
I

I
I f

0

i

0
log 10log 10log 10level) (Sound   

Therefore 

iI
I flog 10dB25   

35.2 102.310
i

f  I
I  
 

 
16.23:    ,0.20 Thus, .dB)log (10dB 13or  ,dB)log 10( 000

 IIβ I
I

I
I  or the intensity has 

increased a factor of 20.0. 
 
 



16.24:    Open Pipe: 
 

Hz 594
2

1
1

v
f
vL   

 
Closed at one end: 

f
vL  41  

Taking ratios: 

        
Hz 297

2
Hz 594

Hz 594
4
2





f

fv
v

L
L

 

 
 
16.25:    a) Refer to Fig. (16.18). i) The fundamental has a displacement node at 

m 600.02 
L , the first overtone mode has displacement nodes at  m 300.04 

L  
m 900.0 and 4

3 L  and the second overtone mode has displacement nodes at 
m 000.1 and m 600.0 m, 200.0 6

5
26  LLL . ii) Fundamental: 0, :First  m. 200.1 ,0 L  

m. 200.1 m, 600.0 2  LL m. 200.1 m, 800.0 m, 400.0 0,:Second 3
2

3  LLL  
         b) Refer to Fig.  (16.19); distances are measured from the right end of the pipe in 
the figure. Pressure nodes at: Fundamental: m 200.1L . First overtone: 

m. 200.1 m, 400.03  LL Second overtone:  m,  240.05 L  
m. 200.1 ,m 720.053  LL  Displacement nodes at Fundamental: .0  First 

overtone:  m. 800.032 ,0 L Second overtone:  m,  480.052  ,0 L m 960.054 L  
 
 
16.26:    a)  Hz, 382m) 450.0(2

) 344(
21  sm

L
vf  Hz, 11473 Hz, 7642 131  fff  

Hz. 15294 14  ff  
b) Hz. 13387 Hz, 9565 Hz, 5733 Hz, 191 17151341  fffffff L

v  Note that 
the symbol “ 1f ” denotes different frequencies in the two parts. The frequencies are not 
always exact multiples of the fundamental, due to rounding.  
c) Open: ,3.52

1

000,20 f  so the 52nd harmonic is heard. Stopped; ,7.104
1

000,20 f  so 103 rd 
highest harmonic heard. 
 
 
16.27:    Hz. 25295  Hz, 15173 Hz, 506 1312m) 4(0.17

m/s) 344(
1  fffff  

 
 



16.28:    a) The fundamental frequency is proportional to the square root of the ratio M
  

(see Eq. (16.10)), so 
 

Hz, 767
00.4

8.28
)57(

3)5(Hz) 262(
He

air

air

He
airHe 





M
Mff  

 
    b) No; for a fixed wavelength , the frequency is proportional to the speed of sound in 
the gas. 
 
 
16.29:    a) For a stopped pipe, the wavelength of the fundamental standing wave is 

,m 56.04 L and so the frequency is    kHz. 0.614m) 56.0(sm 3441 f  b) The length 
of the column is half of the original length, and so the frequency of the fundamental 
mode is twice the result of part (a), or 1.23 kHz. 
 
16.30:    For a string fixed at both ends, Equation   , ,33.15 2L

nv
nf   is useful. It is 

important to remember the second overtone is the third harmonic. Solving for v, ,2
n

Lf nv   
and inserting the data,    

3
 /s588m 635.2v , and .sm 249v  

 
 
16.31:    a) For constructive interference, the path difference m 00.2d must be equal to 
an integer multiple of the wavelength, so ,λ n nd  
 

 .Hz 172
m 2.00

sm 344
λn

nn
d
vn

d
vnvfn 






  

 
Therefore, the lowest frequency is 172 Hz. 
         b) Repeating the above with the path difference an odd multiple of half a 
wavelength,   .Hz 1722

1 nfn Therefore, the lowest frequency is  .0n Hz 86   
 
 



16.32:    The difference in path length is     .2or ,2 xLxxLxxLx  For 
destructive interference, ))λ21((  nx ,and for constructive interference, λ.nx  The 
wavelength is   m 670.1)Hz 206(sm 344λ  fv  (keeping an extra figure), and so 
to have 34 ,0  nLx  for destructive interference and 44  n for constructive 
interference. Note that neither speaker is at a point of constructive or destructive 
interference. 

a) The points of destructive interference would be at  m. 1.42 m, 58.0x  
b) Constructive interference would be at the points m. 1.83  m, 1.00  m, 17.0x  
c) The positions are very sensitive to frequency, the amplitudes of the waves will not 

be the same (except possibly at the middle), and exact cancellation at any frequency is 
not likely. Also, treating the speakers as point sources is a poor approximation for these 
dimensions, and sound reaches these points after reflecting from the walls , ceiling, and 
floor. 
 
 
16.33:        m 500.0Hz 688sm 344λ  fv  

To move from constructive interference to destructive interference, the path 
difference must change by 2.λ If you move a distance x toward speaker B, the distance 
to B gets shorter by x and the difference to A gets longer by x so the path difference 
changes by 2x. 
          2λ2 x and m 0.1254λ x  
 
 
16.34:    We are to assume     .m 00.2Hz 172m/s 344λ so ,sm 344  fvv  If 

mrA  00.8  and Br  are the distances of the person from each speaker, the condition for 
destructive interference is  λ,2

1 nrr AB  where n is any integer. Requiring 
  0λ2

1  nrr AB  gives     ,4m 00.2m 00.82
1  Arn  so the smallest 

value of Br  occurs when ,4n and the closest distance to B is 
   m. 00.1m 00.24-  m 00.8 2

1 Br  
 
 
 
 
 
 
 



16.35:     m 400.0Hz 860sm 344  fv  

       
5.3differencepath 

m. 4.1m 0.12m 13.4 is differencepath  The





 

The path difference is a half-integer number of wavelengths, so the interference is 
destructive. 
 
 
16.36:    , Since a) beat ba fff   the possible frequencies are 440.0  Hz 5.1Hz   

Hz 441.5or  Hz 5.438     b) The tension is proportional to the square of the frequency. 
Therefore  

Hz 440
Hz 5.1222  i) . So  .2 and  

T
T

f
f

T
TffTfT   .1082.6 3  

  .1082.6 ii) 3
Hz 440
Hz 5.12  T

T  
 
16.37:    a) A frequency of   Hz 110Hz 112Hz 1082

1  will be heard, with a beat 
frequency of 112 Hz–108 Hz = 4 beats per second.    b) The maximum amplitude is the 
sum of the amplitudes of the individual waves,   .m 100.3m 105.12 88    The 
minimum amplitude is the difference, zero. 
 
 
16.38:    Solving Eq. (16.17) for v, with Lv = 0, gives 

  ,sm 775sm 0.25
Hz1240Hz 1200

Hz 1240
S

LS

L 











 v

ff
fv  

or 780 sm  to two figures (the difference in frequency is known to only two figures). 
Note that ,0S v  since the source is moving toward the listener. 
 
 
16.39:    Redoing the calculation with +20.0 sm for LS for  m/s 0.20 and vv   gives 267 
Hz. 
 
 
16.40:    a) From Eq.   Hz. 375 ,sm 0.15 ,0 with ,17.16 LS  Afvv  

b) Hz. 371 ,sm 0.15  ,sm 35.0 With LS  Bfvv  
c) )in  figure extraan  (keeping Hz 4 ABA fff  . The difference between the 

frequencies is known to only one figure. 
 
 



16.41:    In terms of wavelength, Eq. (16.29) is 





 S
L

s
L vv

vv  

a)      .m 798.0Hz 400sm 344  and m 0.25 ,0 344
319

LSL  vv  This is, of 
course, the same result as obtained directly from Eq. (16.27). 

    m. 922.0Hz 400sm 369 and sm 0.25 LS  vv  The frequencies corresponding to 
these wavelengths are     c) 431 Hz and     d) 373 Hz. 
 
 
 
16.42:    a) In terms of the period of the source, Eq. (16.27) becomes 

 

.sm 25.0
s 1.6
m 12.0sm 32.0

S
S 




T
vv  

 
b) Using the result of part (a) in Eq. (16.18), or solving Eq. (16.27) for Sv  and 

substituting into Eq. (16.28) (making sure to distinguish the symbols for the different 
wavelengths) gives m. 91.0  
 
 

16.43:    S
S

L
L f

vv
vvf 










  

a) The direction from the listener to source is positive, so .0 and 2  LS vvv  

kHz 00.22
2 SSL 









 ff
vv

vf  

b) 2   ,0 LS vvv   

kHz 50.12
S2

3
SL 






 

 ff
v
vvf  

This is less than the answer in part (a). 
The waves travel in air and what matters is the velocity of the listener or source 

relative to the air, not relative to each other. 
 

 
16.44:    For a stationary source,    ,1 so ,0 SLSLS S

L fvvffv vv
vv  

  

     m/s. 8.191sm 3441 giveswhich Hz 520
Hz 490

L S

L  f
fvv  

This is negative because the listener is moving away from the source. 
 

 



16.45: a)  and ,sm 0.30 m/s, 0.18 SL  vv     Hz 262 gives 16.29 Eq. 314
362

L f  
 Hz. 302  Hz. 228 and m/s 0.30 ,sm 0.18 b) LSL  fvv  
 
 
16.46:    a) In Eq. (16.31),  and 588.070.11S vv  .36.088)arcsin(0.5α   

16.20, Examplein  As b)  
  s. 23.2

))0.36tan(( )sm 344( )70.1(
m 950




t  

 
 



16.47:    a) Mathematically, the waves given by Eq. (16.1) and Eq. (16.4) are out of 
phase. Physically, at a displacement node, the air is most compressed or rarefied on either 
side of the node, and the pressure gradient is zero. Thus, displacement nodes are pressure 
antinodes.     b) (This is the same as Fig. (16.3).) The solid curve is the pressure and the 
dashed curve is the displacement. 
 

 
 

    c) 

 
 

The pressure amplitude is not the same. The pressure gradient is either zero or 
undefined. At the places where the pressure gradient is undefined mathematically (the 
“cusps” of the xy - plot), the particles go from moving at uniform speed in one direction 
to moving at the same speed in the other direction. In the limit that Fig. (16.43) is an 
accurate depiction, this would happen in a vanishing small time, hence requiring a very 
large force, which would result from a very large pressure gradient.     d) The statement is 
true, but incomplete. The pressure is indeed greatest where the displacement is zero, but 
the pressure is equal to its largest value at points other than those where the displacement 
is zero. 
 
 
16.48:    The altitude of the plane when it passes over the end of the runway is 

m 14515m)tan  1200m (1740  , and so the sound intensity is 2)45.1(1  of what the 
intensity would be at 100 m. The intensity level is then 
 

  dB, 8.96(1.45) log10dB 0.100 2   
 
so the airliner is not in violation of the ordinance. 
 
 



16.49:    a) Combining Eq. (16.14) and Eq. (16.15), 
 

      20.52123)10(
0max 10)mW )(10sm 344)(mkg 20.1(2102  βρvIp  

                     Pa, 10144.1 2  
 
or Pa, 1014.1 2  to three figures.     b) From Eq. (16.5), and as in Example 16.1, 

 

  m. 1051.7
Hz 587Pa) 1042.1(2

s)m 344( Pa)  10144.1(
2

9
5

2
maxmax 









ππfB
vp

Bk
pA  

 
    c) The distance is proportional to the reciprocal of the square root of the intensity, and 
hence to 10 raised to half of the sound intensity levels divided by 10. Specifically, 

 
m. 9.62m)10 00.5( 23.00)(5.20   

 
 
16.50:    a) .10  dB) 10(

0 AIIAp β    )m 20.1)(10(mW 101.00 b) 250.5212  
 W.10 79.3 7  

 
 
16.51:    For the flute, the fundamental frequency is 

Hz 0.800
m) 1075.0(4
sm 0.344

4f1 
L
vf  

For the flute and string to be in resonance, 
Hz 0.600  where, s1s1sf1f  ffnfn is the fundamental frequency for the string. 

f3
4

s1f1fs )( nffnn   

sn  is an integer when ...5 ,3 ,1 ,3f  NNn (the flute has only odd harmonics) 
NnNn 4 gives 3 sf   

Flute harmonic N3 resonates with string harmonic ,...5,3,1 ,4 NN  
 
 



16.52:    (a) The length of the string is ,10Ld   so its third harmonic has frequency 
.3 2

1string
3 µFf d The stopped pipe has length L, so its first harmonic has frequency 

.
4

pipe
1 L

vf s  Equating these and using .
3600

1 gives 10 2
sµvFLd   

 (b) If the tension is doubled, all the frequencies of the string will increase by a factor of 
2 . In particular, the third harmonic of the string will no longer be in resonance with the 

first harmonic of the pipe because the frequencies will no longer match, so the sound 
produced by the instrument will be diminished. 
(c) The string will be in resonance with a standing wave in the pipe when their 
frequencies are equal. Using string

1
pipe

1 3 ff  , the frequencies of the pipe are 
string

1
pipe

1 3nfnf  , (where n=1, 3, 5…). Setting this equal to the frequencies of the string 
,string

1fn  the harmonics of the string are ,...15 ,9 ,33  nn  
 
 
16.53:    a) For an open pipe, the difference between successive frequencies is the 
fundamental, in this case 392 Hz, and all frequencies would be integer multiples of this 
frequency. This is not the case, so the pipe cannot be an open pipe. For a stopped pipe, 
the difference between successive frequencies is twice the fundamental, and each 
frequency is an odd integer multiple of the fundamental. In this case, 

.9  Hz 1764  ,7  Hz 1372  and  Hz, 196 111 fff    Hz. 1764for  9Hz, 1372for  7  b)  nn  
    m. 439.0Hz 784m/s 344 4 so  ,4 c) 11  fvLLvf  

 
 
16.54:    The steel rod has standing waves much like a pipe open at both ends, as shown 
in Figure (16.18). An integral number of half wavelengths must fit on the rod, that is, 

.
2L
nvf n   

a) The ends of the rod are antinodes because the ends of the rod are free to ocsillate. 
 
b) The fundamental can be produced when the rod is held at the middle because a 

node is located there. 

c)    
  Hz. 1980

m 50.12
sm 5941 1

1 f  

d) The next harmonic is Hz. 3961or  ,2 2  fn We would need to hold the rod at an 
n = 2 node, which is located at 4L  from either end, or at 0.375 m from either end. 
 
 



16.55:    The shower stall can be modeled as a pipe closed at both ends, and hence there 
are nodes at the two end walls. Figure (15.23) shows standing waves on a string fixed at 
both ends but the sequence of harmonics is the same, namely that an integral number of 
half wavelengths must fit in the stall. 

a) The condition for standing waves is L
nv

nf 2 , so the first three harmonics are          
n = 1, 2, 3. 

b) A particular physics professor’s shower has a length of ,  Usingm. 48.1 2L
nv

nfL   
the resonant frequencies can be found when .sm 344v  
 

349  3
232  2
116   1

Hz  )f(n

 

 
Note that the fundamental and second harmonic, which would have the greatest 

amplitude, are frequencies typically in the normal range of male singers. Hence, men do 
sing better in the shower! (For a further discussion of resonance and the human voice, see 
Thomas D. Rossing , The Science of Sound, Second Edition, Addison-Wesley, 1990, 
especially Chapters 4 and 17.) 
 
 
16.56:    a) The cross-section area of the string would be 

,m101.29Pa)10(7.0N)(900 268 a  corresponding to a radius of 
mm640.0 (keeping extra figures). The length is the volume divided by the area, 

 

m.40.0
)m1029.1)(mkg10(7.8

kg)1000.4(
2633

3





 



a
ρm

a
VL  

 
b) Using the above result in Eq. (16.35) gives Hz380or  Hz,3771 f to two figures. 

 
 



16.57:    a) The second distance is midway between the first and third, and if there are no 
other distances for which resonance occurs, the difference between the first and third 
positions is the wavelength m.750.0  (This would give the first distance as 

cm,75.184   but at the end of the pipe, where the air is not longer constrained to move 
along the tube axis, the pressure node and displacement antinode will not coincide exactly 
with the end). The speed of sound in the air is then s.m375m)Hz)(0.750500(  fv

b) Solving Eq. (16.10) for ,  
 

.39.1
K)K)(350.15molJ3145.8(
s)mmol)(375kg108.28(γ

232









RT
Mv  

 
c) Since the first resonance should occur at m875.04 τ but actually occurs at 
m,18.0 the difference is m.0075.0  

 
 
16.58:    a) Considering the ear as a stopped pipe with the given length, the frequency of 
the fundamental is Hz3500 Hz;3440m)10.0()sm344(41  Lvf is near the 
resonant frequency, and the ear will be sensitive to this frequency. b) The next resonant 
frequency would be Hz500,10 and the ear would be sensitive to sounds with frequencies 
close to this value. But Hz7000 is not a resonant frequency for an open pipe and the ear 
is not sensitive at this frequency. 
 
 
16.59:    a) From Eq. (15.35), with m the mass of the string and M the suspended mass, 
 

               
ρLπd

Mg
mL
Ff 221 4

 

                       Hz3.77
)mkg104.21(m)45.0(m)10225(

)smkg)(9.80100.420(
33226

23









π
 

 
and the tuning fork frequencies for which the fork would vibrate are integer multiples of 

Hz.3.77     b) The ratio ,109 4Mm  so the tension does not vary appreciably along 
the string. 
 
 



16.60:    a)   m. 246.0Hz)) (4(349)sm (34444  fvL     b) The frequency will 
be proportional to the speed, and hence to the square root of the Kelvin temperature.  
The temperature necessary to have the frequency be higher is  

 
K, 5.329K)(1.060) 15.293( 2   

 
which is C. 3.56   
 
 
 
16.61:    The wavelength is twice the separation of the nodes, so 

.2
M
RTLffv 

  

Solving for ,  
 

  .27.1Hz) m)(1100 200.0(2
K) 15.293( )KmolJ 3145.8(

kg) 100.16()2( 2
3

2 







Lf
RT
M  

 
 



16.62:    If the separation of the speakers is denoted ,h the condition for destructive 
interference is 

 βxhx 22 , 
 

where β  is an odd multiple of one-half. Adding x to both sides, squaring, cancelling the 
2x  term from both sides and solving for x  gives 

  





22

2 β
β
hx . 

 
Using hf

v  and  from the given data yields 9.01   2.71 , m 2
1β    m 27.1 ,m 2

3β  
     2

9
2
7

2
5  m  0.026 and   m 53.0 ,  βββ . These are the only allowable values of β  

that give positive solutions for x . (Negative values of x  may be physical, depending on 
speaker design, but in that case the difference between path lengths is .)22 xhx       
b) Repeating the above for integral values of β , constructive interference occurs at 4.34 

m  0.26 m,  0.86 m, 1.84  m, . Note that these are between, but not midway between, the 
answers to part (a).  c) If ,2h  there will be destructive interference at speaker 

,2 If  . hB  the path difference can never be as large as 2 . (This is also obtained 
from the above expression for x , with .) and 0 2

1 βx  The minimum frequency is then  
Hz.  86m) 0.4(s)m 344(2 hv  

 
 
16.63:    a) The wall serves as the listener, want Hz. 600L f  

          
Hz 548

sm 344  s,m 30 ,0

S

SL

L
L

S
S

















f
vvv

f
vv
vvf

 

         b) Now the wall serves as a stationary source with Hz600s f  

         S
S

L
L f

vv
vvf 










  

sm344,sm30,0 LS  vvv  
           Hz652L f  
 
 



16.64:    To produce a 10.0 Hz beat, the bat hears 2000 Hz from its own sound plus 2010 
Hz coming from the wall. Call v the magnitude of the bat’s speed, wf  the frequency the 
wall receives (and reflects), and V the speed of sound. 

Bat is moving source and wall is stationary observer: 
 

Hz2000w

vV
f
V 

                                                                 (1) 

 
Bat is moving observer and wall is stationary source: 
 

wHz2010 f
VvV


                                                                    (2) 

 
Solve (1) and (2) together: 

 
sm858.0v  

 
 

16.65: a) .22
max v

πBAfπBABkApRA 


  In air .
ρ
Bv   Therefore 

.)(2
2

,2 222max
2

max RfρBπ
ρB

pIRfρBπp    

b)  )(84 22232
Tot RRfρBIπRP    

c) ,2

2222

2
Tot )(2

4 d
RRfρBπ

πd
PI   

.)(
2

,
)(2

)2( max21
max d

RR
fρBπ

p
A

d
RfRρBπ

IρBp 
  

 



16.66:    (See also Problems 16.70 and 16.74). Let MHz00.20 f  be the frequency of 
the generated wave. The frequency with which the heart wall receives this wave is 

,0H
H ff v

vv  and this is also the frequency with which the heart wall re-emits the wave. 
The detected frequency of this reflected wave is  

,, HH
ff vv

v
  with the minus sign indicating that the heart wall, acting now as a source of 

waves, is moving toward the receiver. Combining, ,0H

H ff vv
vv


  and the beat frequency is 

.21 0
H

H
0

H

H
0beat f

vv
vf

vv
vvfff















  

 
 
 
 
 
Solving for ,Hv  

                 




















Hz)(85Hz)102(2.00

Hz85)m1500(
2 6

beat0

beat
H s

ff
fvv  

                      s.m1019.3 2  
Note that in the denominator in the final calculation, beatf  is negligible compared to .0f  
 
 
16.67:    a) m. 1074.6Hz) 100.22()sm 1482( 23  fv     b) See Problem 16.66 
or Problem 16.70; the difference in frequencies is 

 

   
    Hz.147

sm 4.95sm 1482
sm 95.42Hz100.222 3

W

W
S 














vv

vff  

 
The reflected waves have higher frequency. 
 
 
16.68:    a) The maximum velocity of the siren is .2 PPPP AπfAω   You hear a sound with 
frequency   .2  and 2between   varies  where, PPPPSSsirenL AπfAπfvvvvff   

   .2 and 2 So PPsirenminLPPsirenmaxL AπfvvffAπfvvff    
b) The maximum (minimum) frequency is heard when the platform is passing through 
equilibrium and moving up (down). 
 
 



16.69:    a) iib  andinsect   theof speed  the bat,  theof speed  thebe Let  fvv  the frequency 
with which the sound waves both strike and are reflected from the insect. The frequencies 
at which the bat sends and receives the signals are related by 

.
i

b

b

i
s

i

b
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Solving for ,iv  
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Letting batSreflL  and ffff   gives the result. 
         b) If .sm0.2 ,sm 9.3 and kHz, 5.83 kHz, 7.80 insectbatreflbat  vvff  
 
 
16.70:     (See Problems 16.66, 16.74, 16.67).    a) In a time t, the wall has moved a 
distance tv1  and the wavefront that hits the wall at time t has traveled a distance vt, where 

,00λfv   and the number of wavecrests in the total distance is .
0

1 )(

 tvv     b) The reflected 

wave has traveled vt and the wall has moved ,1tv so the wall and the wavefront are 
separated by .)( 1 tvv       c) The distance found in part (b) must contain the number of 
reflected waves found in part (a), and the ratio of the quantities is the wavelength of the 
reflected wave, 

1

1
0 vv

vv

 .     d) The speed v divided by the result of part (c), expressed in 

terms of 
1

1
00  is vv

vvff 
 . This is what is predicted by the problem-solving strategy. 

.e)
1

1

1

1 2
000 vv

v
vv
vv fff 

   
 
 



16.71:    a) 
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         b) For small x, the binomial theorem (see Appendix B) gives   ,211 21 xx   
  ,211 21 xx    so 

 







 






 

c
vf

c
vff 1
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1 S
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where the binomial theorem has been used to approximate   .121 2 xx   
 

The above result may be obtained without resort to the binomial theorem by 
expressing Rf  in terms of Sf as 
  

.
)(1

)/(1
)(1
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2SSR
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cvf
cv
cv

cv
cv

ff












  

 
To first order in cv , the square root in the denominator is 1, and the previous result is 
obtained.     c) For an airplane, the approximation cv  is certainly valid, and solving 
the expression found in part (b) for ,v  
 

,sm8.56
Hz102.43

Hz 46.0)sm1000.3( 8
8

S

beat

S

RS 






f

fc
f

ffcv  

 
and the approximation cv  is seen to be valid. Note that in this case, the frequency 
difference is known to three figures, so the speed of the plane is known to three figures. 
 
 



16.72:    a) As in Problem 16.71, 
 

,sm102.1
Hz104.568

Hz 10018.0)sm1000.3( 6
8

14
8

S

RS 







f

ffcv  

 
with the minus sign indicating that the gas is approaching the earth, as is expected since 

.SR ff       b) The radius is (952 yr)  103.6s)m102.1)(yrs10156.3( 1667   

3.8m   ly . This may also be obtained from (952 yr) .
S

SR
f

ff       c) The ratio of the width 
of the nebula to π2  times the distance from the earth is the ratio of the angular width 
(taken as 5 arc minutes) to an entire circle, which is 36060 arc minutes. The distance to 
the nebula is then (keeping an extra figure in the intermediate calculation) 
  

ly, 102.5
5
(360)(60)ly 75.32 3


  

 
so the explosion actually took place about 4100 B.C 
 
 
16.73:    a) The frequency is greater than 2800 MHz; the thunderclouds, moving toward 
the installation, encounter more wavefronts per time than would a stationary cloud, and 
so an observer in the frame of the storm would detect a higher frequency. Using the result 
of Problem 16.71, with h,Km 0.42v  
 

Hz. 109
s)m 1000.3(

s)m h/1km (3.6 h)km (42.0Hz)102800( 8
6

SSR 






c
vfff  

 
b) The waves are being sent at a higher frequency than 2800 MHz from an approaching 
source, and so are received at a higher frequency. Repeating the above calculation gives 
the result that the waves are detected at the installation with a frequency 109 Hz greater 
than the frequency with which the cloud received the waves, or 218 Hz higher than the 
frequency at which the waves were originally transmitted at the receiver. Note that in 
doing the second calculation, Hz 109MHz 2800S f is the same as MHz 2800 to three 
figures. 
 
 



16.74:    a) (See also Example 16.19 and Problem 16.66.) The wall will receive and 

reflect pulses at a frequency ,0
w

f
vv

v


 and the woman will hear this reflected wave at a 

frequency 
 

;0
w

w
0

w

w f
vv
vvf

vv
v

v
vv








  

 
The beat frequency is 
 

.21
w

w
0

w

w
0beat 
























vv

vf
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vvff  

 
b) In this case, the sound reflected from the wall will have a lower frequency, and 

using )()( ww0 vvvvf   as the detected frequency (see Example 21-12; wv  is replaced 
by wv  in the calculation of part (a)), 
 

.21
w

w
0

w

w
0beat 
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16.75:    Refer to Equation (16.31) and Figure (16.38). The sound travels a distance vT  
and the plane travels a distance Tvs  before the boom is found. So, ,)()( 2

s
22 TvvTh   or 

.22
s

2 TvhTv   From Equation (16.31), sin .
sv

v
  Then, .

22s
2 Tvh

hvv


  

 
 



16.76:    a)  

 
 
  
        b) From Eq. (16.4), the function that has the given 0at  )0 ,( txp  is given 
graphically as shown. Each section is a parabola, not a portion of a sine curve. The period 
is 41081.5)sm(344m)200.0(  v  s and the amplitude is equal to the area under 
the xp   curve between 0500.0 and 0  xx  m divided by B, or m.1004.7 6  
 

 
 

c) Assuming a wave moving in the x -direction, ),0( ty is as shown. 
 

 
 

d) The maximum velocity of a particle occurs when a particle is moving throughout 
the origin, and the particle speed is .B

pv
x
y

y vv  
  The maximum velocity is found from 

the maximum pressure, and .scm 9.69Pa) 1042.1(s)m Pa)(344 40( 5
max yv The 

maximum acceleration is the maximum pressure gradient divided by the density, 
 

.sm1067.6
)mkg 20.1(

m) (0.100Pa) 0.80( 22
3max a  

 
e) The speaker cone moves with the displacement as found in part (c ); the speaker 

cone alternates between moving forward and backward with constant magnitude of 
acceleration (but changing sign). The acceleration as a function of time is a square wave 
with amplitude 2sm 667  and frequency kHz. 1.72m) (0.200)sm 344(  vf  
 



16.77:    Taking the speed of sound to be s,m 344 the wavelength of the waves emitted 
by each speaker is m. 00.2     a) Point C  is two wavelengths from speaker A and one and 
one-half from speaker B , and so the phase difference is rad. 180 π  
 

        b)                             ,mW 1098.3
m)  (4.004

W1000.8
4

26
2

4

2








ππr

PI  

 
and the sound intensity level is dB. 0.66)10log(3.98 dB) 10( 6  Repeating with 

57.2dB. andW 1031.5 gives m 00.3 and W 1000.6 75   βIrP     c) With the 
result of part (a), the amplitudes, either displacement or pressure, must be subtracted. 
That is, the intensity is found by taking the square roots of the intensities found in part 
(b), subtracting, and squaring the difference. The result is that 

dB. 62.1 and W 1060.1 6   βI   



17.1:      From Eq.         F.1.134327.5659 b)   F.0.81328.6259 a)   ,1.17   
   F.0.88321.3159 c)   

 
 
17.2:      From Eq.         C.7.413210795 b)   C.0.5320.4195 a)   ,2.17   

   C.8.2732189/5 c)   
 
 
17.3:       F 0.720.40 so   ,FC 1 5

9  
       F140.2F 0.7012  TT  
 
 
17.4:      a)  C. 6.55)440.56( 9)5( b)     C. 2.27))0.4( (45.0 )95(   
 
 
17.5:          F,4.104322.4059 (17.1), Eq. From a)  which is cause for worry. 
          F54or    F,6.53321259 b)   to two figures. 
 
 
17.6:          F 2.218.1159  
 
 
17.7:       FC 1K 1 5

9 , so a temperature increase of 10 K corresponds to an increase 
of 18 F . Beaker B has the higher temperature. 
 
 
17.8:      For   C 0.10 (a),for Then  .C 0.10 ),b( 5

9
C5

9
FKC TTTT  

.F 0.18   
 
 
17.9:      Combining Eq. (17.2) and Eq. (17.3), 

  ,15.27332
9
5

 FK TT  

and substitution of the given Fahrenheit temperatures gives a) 216.5 K,  b) 325.9 K,   c) 
205.4 K. 
17.10:      (In these calculations, extra figures were kept in the intermediate calculations 
to arrive at the numerical results.)  )85.126)(5/9( C,12715.273400 a) FC TT  

F.1079.232)1055.1)(5/9( C,1055.115.2731055.1 c)

F.28932)15.178)(5/9( C,17815.27395 b) F.26032
77

F
77

C

FC





TT
TT

 

 
 



17.11:     From Eq. K. 23.2715.273)C92.245( ),3.17( K T  
 
 
17.12:     From Eq. C.1769273.15K 2042.14K) 3.16(7.476)(27 ),4.17(   
 
 
17.13:     From Eq.   mm. 444)mm0.325( ),4.17( K 273.16

K 15.373   
 
 
17.14:     On the Kelvin scale, the triple point is 273.16 K, so 

R.491.69K 5(9/5)273.1R   One could also look at Figure 17.7 and note that the 
Fahrenheit scale extends from F32  toF460   and conclude that the triple point is 
about 492 R.  
 

 
17.15:    From the point-slope formula for a straight line (or linear regression, which, 
while perhaps not appropriate, may be convenient for some calculators), 

C,33.282
Pa 1080.4Pa 106.50

Pa 1080.4)C0.100()C01.0( 44

4





  

 
which is C282  to three figures. 
 
         b) Equation (17.4) was not obeyed precisely. If it were, the pressure at the triple 
point would be   Pa. 1076.4)16.273( 4

15.373
Pa 1050.6 4  P  

 
 
17.16:                C, 168m 1.62C104.2m 1025 152

0  αLLT  
 so the temperature is C 183 . 
 
 
17.17:     .TL m39.0C)5.0)(Cm)(18.01410)()C(102.1( 15

0    
 
 
17.18:     )1( Tαddd   
                            C)))78.0(C0.23)()C(10(2.4cm)(14500.0( 15    

                mm. 4.511cm4511.0   
 
17.19:     a)   cm,101.4C)(28.0cm)90.1)()C(106.2( 315

0
 TαD so the  

diameter is 1.9014 cm.   b) cm,106.3 3
0

TαD so the diameter is 1.8964 cm. 
 
 



17.20:     .102.9C)19.5 C)(5.00)C(100.2( 415  Tα  
 
 
17.21:            C 0.25m 10125.40m 103.2)()( 24

0 TLLα  

  .C103.2 15    
 
 
17.22:     From Eq. (17.8), C.4.49 so C,4.2915

30

K 101.5
1050.1  




 TT β

VV  

17.23            L, 11C0.9 L 1700 C1075 15
0  TVβ  so there is 11 L of air. 

 
 
17.24:     The temperature change is .C 0.14C 0.32C 0.18 T  The volume of 
ethanol contracts more than the volume of the steel tank does, so the additional amount of 
ethanol that can be put into the tank is   TVββVV  0ethanolsteelethanolsteel   

  1515 )C(1075C106.3      33 m 0280.0C 0.14m 80.2   
 
17.25:     The amount of mercury that overflows is the difference between the volume 
change of the mercury and that of the glass; 

 
     .C 107.1

 0.55cm 1000
cm 95.8K 100.18 15

3

3
15

glass
 




C
β  

 
 
17.26:     a) .222, 0

22 ALLLALA L
L

L
L    But ,TαL

L  and so 
  .22 00 TAαTAαA   

         b)         .m 104.1C5.12 )m 275.( ))C(104.2( 22 24215   πTAαA   
 
 

17.27:     a)   .cm 431.1cm 350.1
44

22
2

0 
ππDA  

 
         b)          .cm 437.1C150C1020.121cm 431.121 252

0  TαAA      
 
 



17.28:     (a ) No, the brass expands more than the steel. 
         (b) call D  the inside diameter of the steel cylinder at BRST:C150At  C20 DD   
 

 

cm 026.25
)C 130)()C(102.1(1

)C130)()C(10(2.01cm) 25(

1
)cm(1 25

)cm 25(cm 25T
Dcm 000.25

15

15

ST

BR

BRST

BRST





















Tα
TαD

TαDαD
DD







              

                                                                              
 
 
17.29:     The aluminum ruler expands to a new length of 
       cm 048.20)]C 100)()C(10(2.4cm)[1 0.20()1( 15

0  TαLL  
       The brass ruler expands to a new length of 
       cm 040.20)]C 100)()C(10(2.0cm)[1 0.20()1( 15

0  TαLL  
        The section of the aluminum ruler will be longer by 0.008 cm 
 
 
17.30:     From Eq. (17.12), 
   

                              
N. 100.4

)m 10C)(2.01110)()C(10Pa)(2.0 109.0(
4

241511








TAYαF
 

     
 
17.31:     a)   .)C(102.3)C m)(400 (1.50m) 109.1()( 152

0
  TLLα  

         b) Pa. 102.5m) (1.50m) 10Pa)(1.9 100.2( 9211
0  LLYTYα  

 
 
17.32:     a) m. 105.0m) K)(12.0 0.35)(K 102.1( 315   TLαL  
         b) Using absolute values in Eq. (17.12), 
 

 
A
F Pa. 108.4K) 0.35)(K 10Pa)(1.2 100.2( 71511  TYα  

 
 



17.33:     a)        J 38)KkgJ1020( )Lkg 103.1)(L 50.0))(C20(C37( 3    
 
         b) There will be 1200 breaths per hour, so the heat lost is 

J. 104.6J) 38)(1200( 4  
 
 

17.34:     s, 104.1
) W1200(

)C 7)(KkgJ 3480)(kg 70( 3






P

Tmc
P
Qt  about 24 min. 

 
17.35:     Using Q=mgh in Eq. (17.13) and solving for Τ  gives 
 

.C 53.0
)kg.KJ 4190(

)m 225)(sm 80.9( 2


c
ghT  

 
 
17.36:     a) The work done by friction is the loss of mechanical energy, 
 

    

J. 1054.1                                

)sm 50.2(
2
19.36sin)m 00.8)(sm 80.9()kg 0.35()(

2
1

3

222
2

2
1









  vvmmgh

 

 
         b) Using the result of part (a) for Q in Eq. (17.13) gives 
 

      .C 1021.1KkgJ 3650kg 0.35J 1054.1 23  T  
 
 
17.37:              J. 1003.3KkgJ 470kg 30.0KkgJ 910kg 60.1C20C 210 5  
 
 
17.38:     Assuming   ,1060.0 KQ   

      
   .C 1.45

KkgJ 910kg 1000.8
sm80.7kg 80.16

61060.0 3

2
2
12

2
1




 mc
MV

mc
KT  

 
 
17.39:             KkgJ4190kg 80.1KkgJ910kg 50.1C 20.0C 0.85   
                     J. 1079.5 5  
 
 



17.40:     a)       J. 1005.8K 0.60 KkgJ4190 kg 320.0 4 TmcQ  
         b) s. 402 W200

J 1005.8 4
 

P
Qt  

 
 

17.41:     a)   
    K.kgJ 1051.2

C 55.18C 54.22 kg 780.0
 W0.65 s 120 3 







Tm
Qc  

 
         b) An overstimate; the heat  Q  is in reality less than the power times the time 
interval. 
 
 
17.42: The temperature change is so K, 0.18T  

  
   K.kgJ 240

K 0.18N 4.28
J 1025.1sm 80.9 42











Tw

gQ
Tm

Qc  

 
 
17.43:   a) KkgJ 470  ,  cTmcQ  
 
         We need to find the mass  of 3.00 mol: 
  
            kg 1675.0molkg 10845.55mol 00.3 3  nMm  
 
                C 114K 114KkgJ 470kg 1675.0J 8950mcQT  
 
         b) For   C 35.6  kg, 00.3 mcQTm  
 
         c) The result of part (a) is much larger; 3.00 kg is more material than 3.00 mol.  
 
 

17.44: (a)       kgJ 000,30
kg 50.0

min 5.1minJ000,10melt 
m

QLF                 

     (b) 
Tm

QcTmcQLiquid


:   

           
   


 C kgJ000,1

C30kg 50.0
min 5.1minJ000,10c  

 
  

   





 CkgJ 1300
C 15kg 50.0

min 0.1minJ 000,10:
Tm

QcSolid  

 
  



17.45:    a) 0metalwater QQ  
         0metalmetalmetalwaterwaterwater  TcmTcm  
                 0C 0.78kg 500.0C 0.2KkgJ 4190kg00.1 metal  c  
         KJ/kg 215 metalc  
         
          b) Water has a larger specific heat capacity so stores more heat per degree of 
temperature change. 
 
         c) If some heat went into the styrofoam then metalQ  should actually be larger than in 
part (a), so the true metalc is larger than we calculated; the value we calculated would be 
smaller than the true value. 
 
 
17.46:     a) Let the man be designated by the subscript m and the “‘water” by w, and T is 
the final equilibrium temperature. 
 

wwwmmm TCmTCm   
                                                 wwwmmm TTCmTTCm   
                                                   wwwmmm TTCmTTCm   

Or solving for T, .
wwmm

wwwmmm
CmCm

TCmTCmT 
  Inserting numbers, and realizing we can change K to 

C , and the mass of water is .355 kg, we get 

)kgJ 4190( kg) 355.0() kg.J 3480(kg) 0.70(
)0.12( )kgJ 4190( kg) 355.0()0.37( )K kgJ 3480( kg) 0.70(

CC
CCCT




  

Thus, .85.36 CT   
 

         b) It is possible a sensitive digital thermometer could measure this change since 
they can read to .C1.   It is best to refrain from drinking cold fluids prior to orally 
measuring a body temperature due to cooling of the mouth. 
 
 
17.47:     The rate of heat loss is    numbers, gInterestin .or  ,.

)( t
Q

tmC
t
TmC

t
Q ttQ









   

6.7or  d, 005.0
dayJ 107

C)C)(0.15kg.J kg)(3480 355.70(
6 



 tt  minutes. This may acount for mothers 

taking the temperature of a sick child several minutes after the child has something to 
drink. 
 
 
17.48:     )( fLTcmQ   

                     
Btu. 136kcal 34.2J 1043.1

kgJ 10334K) 0.18)(KkgJ (4190kg) 350.0(
5

3



  



17.49:     )( Vwaterwaterficeice LTcLTcmQ   

         

Btu. 34.5kcal 8.69J 1064.3

kgJ 102256K)kgJ )(4190C 100(
kgJ 10334)C K)(10.0kgJ (2100

kg) 100.12(

4

3

3
3

















 

 

 
 

17.50:     a) .min7.21
)minJ  (800

K)  K)(15.0kgJ kg)(2100 550.0(








P
Tmc

P
Qt  

 
         b) min, 230)minJ (800

)kgJ 10kg)(334 550.0( 3
f  

P
mL so the time until the ice has melted is 

min. 252min 230 min  7.21   
 

 
 

 

17.51:       hr.Btu 102.40kW 01.7
s) (86,400

)kgJ 10334()kglb 2.205lb) 4000( 4
3


  

 
17.52:     a)    kgJ 102256K) K)(66.0kgJ (4190kg) 100.25()( 33

vLTcm  
                   J. 106.91K) K)(66.0kgJ kg)(4190 100.25( b)  J. 1033.6 334  Tmc  
         c) Steam burns are far more severe than hot-water burns. 
 
 
17.53:     With KQmvKLTcmQ   setting ,)2/1( and )( 2

f and solving for v  gives 

   .sm 357)kgJ 105.24C K)(302.3KgJ 130(2 3 v  
 
 



17.54:     a) g. 101
)kgJ 10(2.42

K) K)(1.00kgJ kg)(3480 0.70(
6

v
sweat 








L

TMcm  

         b) This much water has a volume of 101 ,cm3 about a third of a can of soda. 
 
 
17.55:     The mass of water that the camel saves is 
 

kg, 45.3
)kgJ 10(2.42

K) K)(6.0kgJ kg)(3480 400(
6

v








L

TMc  

which is a volume of 3.45 L.  
 
 
17.56:     For this case, the algebra reduces to 
 

C.1.35

).KkgJ4190)(kg240.0(
)KkgJ390)(kg1000.3)(200((

)C0.20)(kgJ4190)(kg240.0(
)C0.100)(KkgJ390))(kg1000.3)(200((

3

3
































T  

 
 
17.57:     The algebra reduces to 
 

    C5.27

)KkgJ kg)(470 (0.250          
))KkgJ kg)(4190 (0.170)KkgJ kg)(390 500.0((

 C))(85.0KkgJkg)(470 (0.250                   
 C ))(20.0KkgJ kg)(4190 (0.170)KkgJ kg)(390 500.0((



























T  

 
 
17.58:     The heat lost by the sample is the heat gained by the calorimeter and water, and 
the heat capacity of the sample is 
 

)Ckg)(73.9(0.0850
)C))(7.1KkgJkg)(390(0.150)KkgJkg)(4190200.0((








Tm

Qc  

    
                        = K,kgJ1010   
 
or KkgJ1000  to the two figures to which the temperature change is known. 
 
 



17.59:     The heat lost by the original water is 
 
  J,10714.4)C0.45)(KkgJ4190)(kg250.0( 4Q  
 
and the mass of the ice needed is 
 

         
waterwaterfice

ice TcLTc
Qm

ice 


  

                  
)C0.30)(KkgJ4190()kgJ10334()C0.20(K)kgJ(2100

J )10714.4(
3

4




  

               g.94.0kg1040.9 2    
 
 
17.60:     The heat lost by the sample (and vial) melts a mass m, where 

g.08.3
)kgJ10(334

K)))(19.5KkgJg)(2800(6.0)KkgJg)(22500.16((
3

f







L
Qm  

 
         Since this is less than the mass of ice, not all of the ice melts, and the sample is 
indeed cooled to C.0  Note that conversion from grams to kilograms was not necessary. 
 
 

17.61:     kg.10.2
kg)J10334(

)CK)(750kgJkg)(23400.4(
3 


  

 
 
17.62:     Equating the heat lost by the lead to the heat gained by the calorimeter 
(including the water-ice mixtue), 
 

.)()200( ficecucuicewPbbP LmTcmTcmmTCcm w   
 
Solving for the final temperature T and using numerical values, 
 

C.4.21

K)kgJ kg)(390 100.0(
K)kgJ kg)(4190 178.0(

kgK)J kg)(130 750.0(
kg)J10kg)(334 018.0(      

)C K)(255kgJ kg)(130 750.0(
3





































T  

 
(The fact that a positive Celsius temperature was obtained indicates that all of the ice 
does indeed melt.) 
 
 



17.63:     The steam both condenses and cools, and the ice melts and heats up along with 
the original water; the mass of steam needed is 

kg. 0.190          
)C 0.72)(kgJ 4190(kgJ 102256

)C K)(28.0kgJ kg)(4190 (2.85kg)J 10kg)(334 450.0(
3

3

steam





m

 

 
 
17.64:     The SI units of H and ,m are area of units  the,both watts are 2

dt
dQ temperature 

difference is in K, length in meters, so the SI units for thermal conductivity are 

.
Km

W
K]][[m

W][m][
2 

  

 
17.65:      W.10.7m)K 400)(m 10K)(1.25mW b)(385  m.K 222 a) 2-4

m 0.450
K 100   

C.73.3m) 1000.12)(mK (222Cc)100.0 2    
 
17.66:     Using the chain rule, dt

dm
dt
dQ LH f and solving Eq. (17.21) for k, 

        

K.mW 227   
K) 100)(m 10250.1(

s) 100.60(
s) 600(

kg) 1050.8()kgJ 10334(   24

23
3

f














TA
L

dt
dmLk

  

 
 



17.67:     (Although it may be easier for some  to solve for the heat flow per unit area, 
part (b), first  the method presented here follows the order in the text.)    a) See Example 
17.13; as in that  example, the area may be divided out, and solving for temperature T  at 
the boundary, 
 

            
   woodwoodfoamfoam

outwoodwoodinfoamfoam

LkLkN
TLkTLkT




  

 

                 
         cm 0.3Km W080.0cm 2.2Km W010.0

C 0.10cm 0.3Km W080.0C 0.19cm 2.2Km W010.0


  

 
              C.8.5   
 
Note that the conversion of the thickness to meters was not necessary.  b) Keeping extra 
figures for the result of part, (a), and using that result in the temperature difference across 
either the wood or the foam gives 
 

    
m102.2

C 767.5C 0.19m W010.0 2
woodfoam




 K
A

H
A

H  

 

                                                                     
m100.3

C0.10C767.5Km W080.0 2


  

 
                                                                 .m W11 2  
 
 
17.68:     a) From Eq.  ,21.17  
 

    
   W,196

m 100.4
K 140m 1040Km W040.0 2

2 


 H  

or  W200 to two figures.   b) The result of part (a) is the needed power input. 
 
 
17.69:     From Eq.  ,23.17  the energy that flows in time t is 
 

  
   J.107.5Btu 708h 0.5

BtuhFft 30
F34 ft 125 5

2

2








 t

R
TAtH  

 
 



17.70:     a) The heat current will be the same in both metals; since the length of the 
copper rod is known, 
 

   
   W.39.5

m 00.1
K 0.35m 10400Km W0.385 24  H  

 
         b) The length of the steel rod may be found by using the above value of H in 
Eq.  21.17  and solving for ,2L or, since AH  and  are the same for the rods, 
 

    
   m. 242.0

K 0.35Km W0.385
K 0.65Km W2.50m 00.122

2 








T
T

k
kLL  

 
 
17.71:     Using (17.21), Eq.in  17.66) Problem (see  dt

dm
vLH   

              
kA
L

dt
dmLT v  

                     ,C5.5
)m150.0)(Km(50.2

m)1085.0(
s) 180(

)kg390.0()kgJ102256( 2

2
3 







W
 

and the temperature of the bottom of the pot is C.106C6C100   
 
 
17.72: 

cm 0.8m 100.8    

)m 1098.4(4    

 4D

2
D

m 1098.4A
m 0.500

K 300
K m.

W2.50sJ 150

2

23

2
2

23













































π

πA

ππRA

A

L
TkA

t
Q

 

                                                                   
                                                                             
 



17.73:  brass) b aluminum,a(ba  HH  

         
b

bbaa L
TAkH

L
TAkH C) 0(   ,)C(150.0

a





  

 
(It has been assumed that the two sections have the same cross-sectional area.) 

C2.90  gives for  Solving
m 500.0

C)0  K)(mW 0.109(
m 800.0

)  C0.150K)(mW 2050(

C)0()C0.150(













TT

TT
L

TAk
L

TAk
b

b
a

a

 

 
 
17.74:     From Eq. (17.25), with ,1e  
         a) .mW 315K) 273)(KmW 1067.5( 24428    

b) A factor of ten increase in temperature results in a factor of 410  increase in the 
output; .mW 1015.3 26  

 
 
17.75:     Repeating the calculation with  W.167 givesK  278C 0.5K 273s  HT  
 
 
17.76:     The power input will be equal to netH  as given in Eq. (17.26); 
 

         
 W.1054.4   

)K) 290(  K) 3000)((KmW 1067.5)(35.0)(m) 1050.1(4(   

)  (P

3

4442822

4
s

4






π

TTAeσ
 

 
 
 

17.77:     
   

2
44284 cm 10.2

K2450KmW1067.50.35
W150





Teσ

HA  

 
 



17.78:     The radius is found from 
 

  .1
444 2

2

Tπσ
H

π
TσH

π
AR   

 
Using the numerical values, the radius for parts (a ) and (b ) are 
 

 
   

m 1061.1
K 000,11

1
KmW 1067.54

 W107.2 11
2428

32

a 



 R  

 
 

   
m 1043.5

K 000,10
1

KmW1067.54
 W1010.2 6

2428

23

b 



 R  

 
         c) The radius of Procyon B is comparable to that of the earth, and the radius of 
Rigel is comparable to the earth-sun distance. 

 
 
17.79:     a) normal melting point of mercury:  0.0C 30  

 normal boiling point of mercury:  100.0C 357  
  C 3.96 1 so C 396100  
 Zero on the M scale is 39  on the C scale, so to obtain CT  multiple 3.96by  T  and 

then subtract  3996.3:39 MC TT  

 Solving for   39
96.3
1 gives CMM TTT  

 The normal boiling point of water is    1.3539100
96.3
1C;100 MT  

 b)  C 6.39 0.10  
 
 
17.80:     All linear dimensions of the hoop are increased by the same factor of ,Tα  so 
the increase in the radius of the hoop would be 
 

    m. 38K 5.0K 102.1m 10 38.6 156  TRα  
 
 



17.81:     The tube is initially at temperature ,0T  has sides of length 0L  volume ,0V  
density ,0ρ   and coefficient of volume expansion .β   
 
         a) When the temperature increase to ,0 TT   the volume changes by an amount 

,V  where .0 TVβV   Then, ,
0 VV

mρ


  or eliminating .,
00 TβVV

mρV


  

Divide the top and bottom by 0V  and substitute .00 Vmρ   Then 

.
1

or  0

0000

0

Tβ
ρρ

VTβVVV
Vmρ





  This can be rewritten as   .1 1

0
 Tβρρ  Then 

using the expression   ,11 nxx n   where  .1,1 0 Tβρρn   
 

b) The copper cube has sides of length 
C. 50.0C 0.20C 0.70 and m, .0125cm 25.1  T  

      .m 105C 0.50m 0125.C 101.5 3935
0

  TβVV  
 
Similarly, ;mkg108.877or  )),C 0.50)(C 101.5(1(mkg109.8 33533   ρρ  
extra significant figures have been keep. So .23 3m

kgρ  
 
 



17.82:      (a) We can use differentials to find the frequency change because all length 
changes are small percents . Let m be the mass of the wire 

 
mFLLmFµFv  )(  

mL
F

L
mFLvf

Lvf

2
1

2

)lfundamenta(2  and







 

                          L
L
Ff 



  (only L changes due to heating) 

                         
L
LLmLF

f
f

mL
F

mL
F 









2
1)())((

2
1

21
2
1

2
1

2  

             Hz15.0)Hz440)(C440)(C40)()C(107.1(
2
1)(

2
1 15  fTαf  

 
The frequency decreases since the length increases 
 
         (b) mFLµFv   

                            
22

)()( 21
2
1 Tα

L
L

mFL
LmFmFL

v
v 








 

 

                                    %034.0104.3)C40)()C(107.1(
2
1 415    

           (c) TαLL L
L

L
L  




2
222  

                      :%068.0108.6)C40)(C107.1( 415 

    

it increases 
 
 
17.83:     Both the volume of the cup and the volume of the olive oil increase when the 
temperature increases,  but β  is larger for the oil so it expands more. When the oil starts 
to overflow,  

AAVV   where,)m1000.1( 3
glassoil

 is the cross-sectional area of the cup. 
         TAβTβVV  oiloiloil0,oil )cm9.9(  
         TAβTβVV glass  glassglass 0,glass )cm0.10(  

         ATAβTAβ )m1000.1()cm0.10()cm9.9( 3
glassoil

  
         The area A divides out. Solving for  C15.5 gives TT  
         C5.3712  TTT  
 
 



17.84:     Volume expansion: dTβVdV    

VV
dTdVβ graph of Slope

  

Construct the tangent to the graph at C8 and C2   and measure the slope of this line. 
 3

3
cm0.10 cm1000 and  Slope :C22 

3

  VAt C  

 15
3

3

)C(103
cm1000

C3cm0.10  


β  

The slope in negative, as the water contracts or it is heated. At 
3

C4
cm 24.0 cm 1000 and slope :C 8 3

  V  

15
3

3

)C(106
cm 1000

C4cm 24.0  β  

The water now expands when heated. 
 
 
17.85:     steel)s aluminum,(a  cm40.0sa  LL  
  
         , 0 TαLL   so 
         cm40.0)))(10cm)(1.28.34()))(10cm)(2.48.24( 1515   TCTC  
          C 395T  
         C41512  TTT   
 
 
17.86:     a) The change in height will be the difference between the changes in 
volume of the liquid and the glass, divided by the area. The liquid is free to 
expand along the column, but not across the diameter of the tube, so the increase 
in volume is reflected in the change in the length of the columns of liquid in the 
stem. 
  

         b) Tββ
A
V

A
VV

h 


 )( glassliquid
glassliquid   

               K) 0.30)(K 1000.2K 1000.8(
)m100.50(
)m10100( 1-514

26

36










  

               m.1068.4 2  
 



17.87:     To save some intermediate calculation, let the third rod be made of 
fractions 21  and ff  of the original rods; then )0650.0( and 1 121 fff   

.0580.0)0350.0(2  f These two equations in 21  and ff are solved for 

,1  ,
0350.00650.0
0350.00580.0

121 fff 



  

and the lengths are cm7.00cm)0.30( and cm23.0cm)0.30( 21  ff  
 
 
17.88:   a) The lost volume, 2.6 L, is the difference between the expanded volume 
of the fuel and the tanks, and the maximum temperature difference is 

                             

,C 78.2      
)m 100.106)()C(102.7)(C105.9(

)m 106.2(      

)(

331514

33
0A1fuel
















Vββ
VT

 

or C28  to two figures; the maximum temperature was C.32   b) No fuel can spill if the 
tanks are filled just before takeoff. 
 
 
17.89:     a) The change in length is due to the tension and heating 

 .αΔTYA, FTα L
ΔL

A
F

AY
F

L
L 

00
for  Solving .  

         b) The brass bar is given as “heavy” and the wires are given as “fine,” so it may be 
assumed that the stress in the bar due to the fine wires does not affect the amount by 
which the bar expands due to the temperature increase. This means that in the equation 
preceding Eq. (17.12), L is not zero, but is the amount TLα 0brass  that the brass 
expands, and so 

                           
Pa. 101.92     

C)120)()(C 102.1)(C 100.2Pa)( 1020     

)(

8

151510

steelbrasssteel









TααY
A
F

 

 
 



17.90:     In deriving Eq. (17.12), it was assumed that 0;L  if this is not the case when 
there are both thermal and tensile stresses, Eq. (17.12) becomes 

.0 





 

AY
FTαLL  

For the situation in this problem, there are two length changes which must sum to zero, 
and so Eq. (17.12) may be extended to two materials a and b in the form 

.0
b

0b
a

0a 


















AY
FTαL

AY
FTαL ba  

Note that in the above, AFT  and  ,  are the same for the two rods. Solving for the stress 
A,F  

Pa 102.1    

)C 0.60(
Pa)) 107m (0.250Pa) 1020m) 350.0((

m) 250.0)()(C 104.2(m) 350.0)()(C 10(1.2    

))()((

8

1010

1515-

b0baoa

0bb0a
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to two figures. 
 
 
17.91:     a)  


 C 67

in.) 5000.2(1)(C 510(1.2

in.) 0020.0(

0αR
RT  to two figures, so the ring should be 

warmed to C.87   b) the difference in the radii was initially 0.0020 in., and this must be 
the difference between the amounts the radii have shrunk. Taking 0R  to be the same for 
both rings, the temperature must be lowered by an amount 

                     0steelbrass Rαα
RT




  

                           
     




 
C100

in. 50.2C102.1C100.2
in. 0020.0

1515
 

to two figures, so the final temperature would be C.80  
 
 
17.92:     a)  The change in volume due to the temperature increase is ,TβV  and the 
change in volume due to the pressure increase is   .11.13 Eq. pB

V   Setting the net 

change equal to zero, .or  , VBβpVTβV B
p    b) From the above, 

    Pa. 1064.8K 0.15K 100.3Pa 106.1 71511  p  
 
 



17.93:     As the liquid is compressed, its volume changes by an amount .0pkVV   
When cooled, the difference between the decrease in volume of the liquid and the 
decrease in volume of the metal must be this change in volume, or   .0m1 VTVαα   
Setting the expressions for V  equal and solving for T  gives 

  
  ,C 76.9

K108.4K1090.3
Pa1050.8Pa10065.5

1415

1106

1m









 

pkT  

so the temperature is C.2.20   
 
 
17.94:     Equating the heat lost be the soda and mug to the heat gained by the ice and 
solving for the final temperature T  

       
     

        KkgJ4190kg120.0KkgJ910kg257.0KkgJ4190kg00.2
kgJ10334C0.15KkgJ2100kg120.0

C0.20KkgJ910kg257.0KkgJ4190kg00.2
3
















 

C.1.14   Note that the mass of the ice  kg120.0  appears in the denominator of this 
expression multiplied by the heat capacity of water; after the ice melts, the mass of the 
melted ice must be raised further to .T  
 

17.95:     a) 
   

   .3.54
C600KkgJ9102

sm7700
2

21 222











Tc

v
Tcm

mv
Q
K  

         b) Unless the kinetic energy can be converted into forms other than the increased 
heat of the satellite cannot return intact. 
 
 
17.96:     a) The capstan is doing work on the rope at a rate 

    W,182
s90.0

2m100.5N5202 2   π
T
πFrτωP  

or W180  to two figures. The net torque that the rope exerts on the capstan, and hence the 
net torque that the capstan exerts on the rope, is the difference between the forces of the 
ends times the radius. A larger number of turns might increase the force, but for given 
forces, the torque is independent of the number of turns.  

         b)               s.C 064.0
K)molJ 470kg)( (6.00

 W)182(





mc
P

mc
dtdQ

dt
dT  

 
 



17.97:     a) Replacing m with nM and nMc with nC, 

  



2

1
).(

4Θ
4

1
4

23
3

3

T

T
TTnk dtTnkdQQ  

For the given temperatues, 

J. 6.83)K) 0.10(K) 0.40((
K) 281(4

K)molJ 1940mol)( 50.1( 44
3 


Q  

         b) K.molJ 86.1K) (30.0 mol) (1.50
J)  6.83( TnΔ

Q  

         c) K.molJ 60.5K) 281K 0.40( K)molJ 1940(C 3   
 
 
17.98:     Setting the decrease in internal energy of the water equal to the final 
gravitational potential energy, .Δwwwwwf mghTVρCVρL   Solving for h, and inserting 
numbers: 

  

km. 108m 1008.1   
)sm kg)(9.8 70(

C) C)(37 kgJ 4190(kgJ 10334)m 1.8.9.1)(mkg 1000(   

)Δ(

5

2

333

wfww









mg
TCLVρh

 

 
 
17.99:     a) J. 102.7s)  W)(3000100)(90( 7  

         b) ,C 89.6
)m 3200)(mkg K)(1.20kgJ (1020

J 107.2Δ 33

7







Vcρ
Q

cm
QT  

or C 9.6  to the more apropriate two figures.   c) The answers to both parts (a) and (b) are 
multiplied by 2.8, and the temperature rises by .C 3.19   
 
 
17.100: See Problem 17.97. Denoting C by ,bTaC   a and b independent of  
temperature, integration gives. 

.)(
2

)a( 2
1

2
212 






  TTbTTnQ  

In this form, the temperatures for the linear part may be expressed in terms of Celsius 
temperatures, but the quadratic must be converted to Kelvin temperatures, 

K. 500 andK  300 21  TT  Insertion of the given values yields 
K) 300-K K)(500molJ mol)(29.5 00.3( Q  

                       ))K) 300(K) 500)((KmolJ 1010.4( 2223    
                                              J. 1097.1 4  
 
 



17.101:    a) To heat the ice cube to C,0.0   heat must be lost by the water, which 
means that some of the water will freeze. The mass of this water is 

g.4.72kg1072.4
)kgJ10334(

)C K)(10.0kgJkg)(2100075.0( 3
3

f

iceiceice
water 







 

L
TCmm  

         b) In theory, yes, but it takes 16.7 kg of ice to freeze 1 kg of water, so this is 
impractical. 
 
 
17.102:    The ratio of the masses is 

,0696.0
kgJ102256K)K)(65.0kgJ4190(

K)K)(42.0kgJ4190(
3

vsw

ww

w

s 









LTC

TC
m
m

 

so kg0696.0 of steam supplies the same heat as kg00.1  of water. Note the heat 
capacity of water is used to find the heat lost by the condensed steam. 
 
 
17.103:    a) The possible final states are steam, water and copper at C,100  water, 
ice and copper at C0.0   or water and copper at an intermediate temperature. 
Assume the last possibility; the final temperature would be 

C1.86

K)kgJ kg)(4190 0950.0(
K)kgJkg)(390(0.446K)kgJkg)(41900350.0(

kg)J 10kg)(334 0950.0(

kg)J102256)CK)(100kgJkg)((41900350.0(
3

3






























T  

This is indeed a temperature intermediate between the freezing and boiling points, 
so the reasonable assumption was a valid one.   b) There are kg13.0 of water. 
 
 
17.104:    a) The three possible final states are ice at a temperature below C,0.0   an ice-
water mixture at C0.0  or water at a temperature above C.0.0   To make an educated 
guess at the final possibility, note that )CK)(15.0kgJkg)(2100140.0(   kJ4.41  are 
needed to heat the ice to C,0.0   and )CK)(35.0kgJkg)(4190(0.190   kJ27.9  must 
removed to cool the water to C,0.0   so the water will not freeze. Melting all of the ice 
would require an additional  kJ,46.8kg)J10kg)(334140.0( 3    so some of the ice 
melts but not all; the final temperature of the system is C.0.0   
 
      Considering the other possibilities would lead to contradictions, as either water 
at a temperature below freezing or ice at a temperature above freezing. 
         b) The ice will absorb 27.9 kJ of heat energy to cool the water to  C.0  Then, 

070.0
kgJ10334

)kJ41.4kJ9.27(
3 



m  kg will be converted to water. There will be 0.070 kg of ice and 

0.260 kg of water. 
 
 



17.105:    a) If all of the steam were to condense, the energy available to heat the water 
would be J.1002.9)kgJ102256)(kg0400.0( 43  If all of the water were to be heated 
to C,0.100  the needed heat would be J.1019.4)C0.50)(KkgJ4190)(kg200.0( 4  
Thus, the water heats to C0.100   and some of the steam condenses; the temperature of 
the final state is C.100  
         b) Because the steam has more energy to give up than it takes to raise the water 
temperature, we can assume that some of the steam is converted to water: 

   kg.019.0
kgJ102256
J1019.4

3

4





m  

Thus in the final state, there are 0.219 kg of water and 0.021 kg of steam. 
 
 
17.106:    The mass of the steam condensed kg.0.035kg049.0kg525.0  The heat lost 
by the steam as it condenses and cools is 
  ),K0.29)(KkgJ4190)(kg035.0()kg035.0( v L  
and the heat gained by the original water and calorimeter is 
 J.108.33K)))(56.0KkgJkg)(4190(0.340K)kgJkg)(420150.0(( 4  
Setting the heat lost equal to the heat gained and solving for kg,J102.26 gives 6

v L or 
kgJ103.2 6  to two figures (the mass of steam condensed is known to only two 

figures). 
 
 



17.107:    a) The possible final states are in ice-water mix at C,0.0  a water-steam mix at 
C0.100   or water at an intermediate temperature. Due to the large latent heat of 

vaporization, it is reasonable to make an initial guess that the final state is at C.0.100  To 
check this, the energy lost by the steam if all of it were to condense would be 

 J. 1014.2)kgJ102256)(kg0950.0( 53   The energy required to melt the ice and heat 
it to J,1013.1))C100(K)kgJ4190(kgJ10kg)(334(0.150 is  C100 53  and the 
energy required to heat the origianl water to )kg.KJkg)(4190(0.200 is C100  

J.104.19)C(50.0 4  Thus, some of the steam will condense, and the final state of the 
system wil be a water-steam mixture at C.0.100   
 
         b) All of the ice is converted to water, so it adds 0.150 kg to the mass of water. 
Some of the steam condenses giving up J1055.1 3 of energy to melt the ice and raise the 

temperature. Thus, kg69.0
kgJ102256
J1055.1

3

5




m and the final mass of steam is 0.026 kg, and 

of the water, kg.0.419kg.20kg.069kg150.   
 
         c) Due to the much larger quantity of ice, a reasonable initial guess is an ice-water 
mix at C.0.0   The energy required to melt all of the ice would be 

 kg)J10(334 kg)350.0( 3  J1017.1 5 . The maximum energy that could be 
transferred to the ice would be if all of the steam would condense and cool to C0.0   and 
if all of the water would cool to C0.0 , 

))CK)(100.0kgJ4190(kgJ10(2256 kg)0120.0( 3   
+ J.106.56)CK)(40.0kgJkg)(4190200.0( 4  

This is insufficient to melt all of the ice, so the final state of the system is an ice-water 
mixture at J1056.6.C0.0 4 of energy goes into melting the ice. So, 

kgJ10334
J1056.6

3

4


m  

kg.196.0  So there is kg154.0 of ice, and kg0.20kg0.196kg012.0  kg0.408 of 
water. 
 
 
17.108:    Solving Eq. (17.21) for k, 

K.mW100.5
K)0.65)(m(2.18

m)10(3.9W)180( 2
2

2
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ΤHk  

 
 



17.109:    a) 













  m101.8m105.0

C0.28)m0.95(2.00 mol.K)J120.0( 22
2

L
ΤkΑH  

         W.9.93  
         b) The flow through the wood part of the door is reduced by a factor of 

W81.5  to868.01 )95.000.2(
)50.0( 2

  . The heat flow through the glass is 

W,0.45
m1045.12

C28.0 m)(0.50K)molJ80.0( 2
2

glass 










 H  

and so the ratio is .35.19.93
0.455.81   

 
17.110:    ., so and ,,, 22112121 21

RΤRTHHRR A
H

A
H

k
L

k
L  The temperature 

difference across the combination is 

,)( 2121 R
A
HRR

A
HTΤΤ   

. so, 21 RRR   
 
 
17.111:    The ratio will be the inverse of the ratio of the total thermal resistance, as given 
by Eq. (17.24). With two panes of glass with the air trapped in between, compared to the 
single pane, the ratio of the heat flows is 

,
(

)()(2(

0glass)glass

airair0glassglass

RkL
kLRkL




 

where 0R  is the thermal resistance of the air films. Numerically, the ratio is 
  2

WKm0.15K)mW(0.80m)102.4(
K))mW(0.024m)10((7.0WKm0.15K))m(0.80m)102.4((2

23

323







 W

 
 



17.112:    Denote the quantites for copper, brass and steel by 1, 2 and 3, respectively, and 
denote the temperature at the junction by .0T  
         a) ,321 HHH   and using Eq.  21.17  and dividing by the common area, 

  .C100 0
3

3
0

2

2
0

1

1 T
L
kT

L
kT

L
k

  

Solving for 0T  gives 
 

       .C100
332211

11
0 




LkLkLk
LkT  

Substitution of numerical values gives C.4.780 T  
         b) Using TH L

kA   for each rod, with C4.78  ,C6.21 321  TTT  gives 
. W 30.3 and W 50.9  W,8.12 321  HHH  If higher precision is kept, 1H  is seen to be 

the sum of . and 32 HH  
 
 
17.113:    a) See Figure 17.11. As the temperature approaches C,0.0   the coldest water 
rises to the top and begins to freeze while the slightly warmer water, which is more 
dense, will be beneath the surface.  b) (As in part (c), a constant temperature difference is 
assumed.) Let the thickness of the sheet be ,x  and the amount the ice thickens in time 

. be dxdt  The mass of ice added per unit area is then ,e ic dxρ  meaning a heat transfer of 
. fe ic dxLρ  This must be the product of the heat flow per unit area times the time, 

    .dtxTkdtAH   Equating these expressions, 

.or     
fice

fe ic dt
Lρ
Tkxdxdt

x
TkdxLρ 




  

This is a separable differential equation; integrating both sides, setting ,0at  0  tx          
gives 

.2
fice

2 t
Lρ
Tkx 

  

The square of the thickness is propotional to the time, so the thickness is propotional to 
the square root of the time.  c) Solving for the time in the above expression, 

  
     s.100.6m25.0

C10KmolJ6.12
kgJ10334mkg920 52

33





t  

         d) Using m40x  in the above calculation gives s, 105.1 10t  about 500 y, a 
very long cold spell. 
 
 



17.114:    Equation(17.21) becomes .x
TkAH 
  

a)  W.13.3 m)C 140)(m 1050.2K)(kgJ (380 24  H  
b) Denoting the points as 1 and 2, .12 t

T
dt
dQ mcHH 

  Solving for 2,at  x
T

  

. 
12 t

T
kA
mc

x
T

x
T










  

The mass m is  ,xρA so the factor multiplying t
T

 in the above expression is 

 m.s 137xk
cρ Then, 

m.C 174)sC m)(0.250s 137(mC 140
2





x
T  

 
 
17.115:    The mass of ice per unit area will be the product of the density and the 
thickness x, and the energy needed per unit area to melt the ice is product of the mass per 
unit area and the heat of fusion. The time is then 

min. 305s 103.18               
)mW 600)(70.0(

kg)L 10m)(334 1050.2)(mkg 920(

3

2

323
f








AP
ρxLt

 

 
 
17.116:    a) Assuimg no substantial energy loss in the region between the earth and the 
sun, the power per unit area will be inversely proportional to the square of the distance 
from the center of the sun, and so the energy flux at the surface of the sun is 

   .mW 1097.6 )mW 1050.1( 272

m) 1096.6
m) 1050.123

8

11




   b) Solving Eq. (17.25) with 1,e  

K.5920
Km W1067.5

m W1097.61 4
1

4
1

428

27
















 σA

HT  

 



17.117:    The rate at which the helium evaporates is the heat gained from the 
surroundings by radiation divided by the heat of vaporization. The heat gained from the 
surroundings come from both the side and the ends of the cylinder, and so the rate at 
which the mass is lost is 

    
v

44
s

222
L

TTσedπdhπ 

       
      

 kgJ1009.2
K 22.4K 3.77Km W1067.5

200.m 045.02m 090.0m 250.0

4

44428

2



























ππ

 

s,kg1062.1 6  
which is h.g82.5  
 
 
17.118: a)  With ,0p  

,T
T
pVTnRVp   

or 

.1  and   ,
T

β
T
T

V
V





  

         b)                                      .67
)K10K)(5.1293(

1
15-

copper

air 


 β
β  

 
 
17.119:    a) At steady state, the input power all goes into heating the water, so 

TcHP dt
dm   and 

K,6.51
min)s60(min)kg(0.500K)kgJ4190(

W)1800(
)(





dtdmc

PT  

and the output temperature is C.51.6C0.18     b) At steady state, the apparatus will 
neither remove heat from nor add heat to the water. 
 
 
17.120:    a) The heat generated by the hamster is the heat added to the box; 

    h.J97.9h)CK)(1.60molJ1020)(m0500.0)(mkg20.1( 33 
dt
dTmcP  

         b)  Taking the efficiency into account, 

h.g8.40
gJ24
hJ979%)10(

cc

0 
L

P
L
P

t
M  

 
 



17.121:    For a spherical or cylindrical surface, the area (17.21) Eq.in  A is not constant, 
and the material must be considered to consist of shells with thickness dr and a 
temperature difference between the inside and outside of the shell .dT  The heat current 
will be a constant, and must be found by integrating a differential equation. a)Equation 
(17.21) becomes 

. 
4

 or     )4( 2
2 dTk

πr
drH

dr
dTπrkH   

Integrating both sides between the appropriate limits, 

).(11
4 12 TTk

baπ
H







   

In this case the “appropriate limits” have been chosen so that if the inner temperature 2T  
is at the higher temperature 1T , the heat flows outward; that is, .0dr

dT  Solving for the 
heat current, 

.)(4 12

ab
TTπabkH




  

   b) Of the many ways to find the temperature, the one presented here avoids some 
intermediate calculations and avoids (or rather sidesteps) the sign ambiguity mentioned 
above. From the model of heat conduction used, the rate of changed of temperature with 
radius is of the form B

r
B

dr
dT  with ,2 a constant. Integrating from  from and   to rar   

brar    to gives 

.11  and  11)( 212 





 






 

ba
BRT

ra
BTrT  

Using the second of these to eliminate B and solving T(r) (and rearranging to eliminate 
compound fractions) gives 

.)()( 122 


















r
b

ab
arTTTrT  

There are, of course, many equivalent forms. As a check, note that at 2, TTar   
. ,at  and 1TTbr    c) As in part (a), the expression for the heat current is 

,
2
Hor  )2( kLdT
πrdr

dTπrLkH   

which integrates, with the same condition on the limits, to 

.
)ln(

)(2Hor    )()ln(
2

12
12 ab

TTπkLTTkLab
π

H 
  

         d)  A method similar (but slightly simpler) than that use in part (b) gives 

.
)ln(
)ln()()( 212 ab

arTTTrT   

        e)  For the sphere: Let ,~ eapproximat and , ablab   with a the common radius. 
Then the surface area of the sphere is ,4 2πaA   and the expression for H is that of Eq. 
(17.21) (with l instead of L, which has another use in this problem). For the cylinder: with 
the same notation, consider  



17.122:    From the result of Problem 17.121, the heat current through each of the jackets 
is related to the temperature difference by   ,ln

2 TH ab
πlk   where l is the length of the 

cylinder and b and a are the inner and outer radii of the cylinder. Let the temperature 
across the cork be 1T  and the temperature across the styrofoam be ,2T  with similar 
notation for the thermal conductivities and heat currents. Then,  TTT 21  

.C  125   Setting HHH  21  and canceling the common factors, 

1.51n 21n 
2211 kTkT 


  

Eliminating gives for  solving and 12 TT   .
2ln 

1.5ln 1
1

2

1
1













k
kTT  

Substitution of numerical values gives ,C 371 T  and the temperature at the radius 
where the layers meet is C.103C37C140   b) Substitution of this value for 1T  into 
the above expression for HH 1  gives 

      W.27C 37
2ln 

KmolJ 04.0m 00.22





πH  

 
 



17.123:    a)  

 
  
         b) After a very long time, no heat will flow, and the entire rod will be at a uniform 
temperature which must be that of the ends, C.0   
         c) 

 
  
d)    .cosC100 LπxLπx

T 
  At the ends, , and 0 Lxx   the cosine is 1  and the 

temperature gradient is    m.C 1014.31000C100 3   m.π    e) Taking the phrase 
“into the rod” to mean an absolute value, the heat current will be 


x
TkA  

W.121m)C1014.3)(m10(1.00 K)m0.385( 32-4 W  f) Either by evaluating x
T

  at 

the center of the rod, where   ,02cos and 2  ππLπx  or by checking the figure in 
part (a), the temperature gradient is zero, and no heat flows through the center; this is 
consistent with the symmetry of the situation. There will not be any heat current at the 
center of the rod at any later time.  g) See Problem 17.114; 

s.m101.1
K)kgJ390)(mkg109.8(

K)mW385( 24
33







ρc
k  

         h) Although there is no net heat current, the temperature of the center of the rod is 
decreasing; by considering the heat current at points just to either side of the center, 
where there is a non-zero temperature gradient, there must be a net flow of heat out of the 
region around the center. Specifically, 

           

,

Δ))2(())2((

2

2

)2()2(

x
x
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x
T

x
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17.124:    a) In hot weather, the moment of inertia I and the length d in Eq. (13.39) will 
both increase by the same factor, and so the period will be longer and the clock will run 
slow (lose time). Similarly, the clock will run fast (gain time) in cold weather. (An ideal 
pendulum is a special case of physical pendulum.)   b)   ΤαL

L 
0

  15 )C(102.1(    

.101.2)C0.10( -4    c)  See Problem 13.97; to avoid possible confusion, denote the 
pendulum period by .τ  For this problem, ,100.6 5

2
1   L

L
τ
τ  so in one day the clock 

will gain ,)400,86(Δ)21( d)  figures.  twoso s2.5)10s)(6.0400,86( 15   Tατ
Δτ  so 

.C93.1))400,86())C(102.1((2 115  T  
 
 
17.125:    The rate at which heat is aborbed at the blackened end is the heat current in the 
rod, 

),()( 12
4

2
4

S TT
L
kATTAσ   

where 21  andK  00.20 TT   is the temperature of the blackened end of the rod. If this were to 
be solved exactly, the equation would be a quartic, very likely not worth the trouble. 
Following the hint, approximate  2T on the left side of the above expression as T1 to 
obtain  

.K424.0))(K1079.6()( 1
4

1
4

s
312

1
4

1
2

12 S
  TTTTTT

k
σLTT  

This approximation for 2T is indeed only slightly than ,1T  and is a good estimate of the 
temperature. Using this for 2T in the original expression to find a better value of T
gives the same T  to eight figures, and further, and further iterations are not worth –
while. 
  
         A numerical program used to find roots of the quartic equation returns a value for 

T  that differed from that found above in the eighth place; this, of course, is more 
precision than is warranted in this problem. 
 
 



17.126:    a) The rates are: 
          W,280 i)(   
          W,0.248h)s3600()C11)(m5.1)(mChJ(54 ii)( 22   
         W,1010.2)m5.1)(mW(1400 iii)( 322   
         W.116)K309(K)320)(m5.1)(KmW10(5.67  (iv) 442428    
         The total is kW,50.2 with the largest portion due to radiation from the sun. 

         h.L72.3sm1003.1
K)kgJ1042.2)(mkg1000(

W1050.2 b) 36
63

3

v





 

ρL
P  

 
          c) Redoing the above calculations with 0e  and the decreased area gives a power 
of 945 W and a corresponding evaporation rate of h.L4.1  Wearing reflective clothing 
helps a good deal. Large areas of loose weave clothing also facilitate evaporation.  



In doing the numerical calculations for the exercises and problems for this chapter, the 
values of the ideal-gas constant have been used with the precision given on page 501 of 
the text, 
 

K.molatmL 0.08206KmolJ 3145.8 R  
 
Use of values of these constants with either greater or less precision may introduce 
differences in the third figures of some answers. 
 
18.1:   a) mol. 3.56)molkg10400(kg) 225.0( 3

tot  Mmn    b) Of the many ways 
to find the pressure, Eq. (18.3) gives 
 

 Pa. 106.81atm 67.2                      
L) (20.0

K) K)(291.15molatmL 06mol)(0.082 3.56(     

6




V
nRTp

 

 
 
18.2:   a)  The final temperature is four times the initial Kelvin temperature, or 4(314.15 
K) –273.15= C983  to the nearest degree. 
 

      kg.1024.5
)K 15.314)(Katm/molL 08206.0(
)L 60.2)(atm 30.1)(kg/mol1000.4(       b) 4

3

tot










RT
MpVnMm  

 
 
18.3:   For constant temperature, Eq. (18.6) becomes 
 

atm. 96.0)390.0110.0)(atm 40.3()( 2112  VVpp  
 
 
18.4:   a) Decreasing the pressure by a factor of one-third decreases the Kelvin 
temperature by a factor of one-third, so the new Celsius temperatures is 1/3(293.15 K) – 
273.15= C175 rounded to the nearest degree.    b) The net effect of the two changes is 
to keep the pressure the same while decreasing the Kelvin temperature by a factor of one-
third, resulting in a decrease in volume by a factor of one-third, to 1.00 L. 
 
 



18.5:     Assume a room size of 20 ft X 20 ft X 20 ft 
 

   C.20 of re temperatua Assume .m 113ft 4000 33 V  

  
molecules 108.2

mol 4685
)K 293)(KJ/mol 315.8(

)m 113)(Pa 1001.1( so 

27

35









AnNN
RT
pVnnRTpV

 

               b)   319
36

27

cmmolecules/ 105.2
cm 10113

molecules 108.2






V
N  

 
 
18.6:  The temperature is K.15.295C0.22 T  (a) The average molar mass of air is      

so mol,kg108.28 3M  

kg.1007.1
K)K)(295.15molatmL 08206.0(
mol)kg10L)(28.8 atm)(0.900 00.1( 3

3

tot








 M
RT
pVnMm  

(b) For Helium mol,kg1000.4 3M so 

kg.1049.1
K)K)(295.15molatmL 08206.0(
mol)kg10L)(4.00 atm)(0.900 00.1( 4

3

tot








 M
RT
pVnMm  

 
18.7:   From Eq. (18.6), 
 

      C.503K776
)cmPa)(4991001.1(
)cmPa)(46.210(2.821K)15.300( 35

36

11

22
12 





















Vp
VpTT  

 
 

18.8:    a)    
   kg. 373.0

K 15.310KmolJ 3145.8
m 0750.0Pa 10013.4molkg100.32 353

tot 







RT
MpVm  

       b) Using the final pressure of Pa 10813.2 5 and temperature of 
kg, 0.275 K, 15.295 m  

so the mass lost is kg 098.0 where extra figures were kept in the intermediate calculation 
of totm . 
 
 
18.9:   From Eq. (18.6), 
 

     Pa 1036.3
m 48.0
m 750.0

K 300.15
K 430.15Pa) 1050.1( 5

3

3
5

2

1

1

2
12 

































V
V

T
Tpp . 

 
 



18.10:    a)             mol. 1078.5
K) (295.15 K)molatmL (0.08206

L) 10atm)(140 00.1( 3
3






RT
pVn  

 
        b)  kg. 185mol) 10  mol)(5.78kg100.32( 33    
 
 
18.11:   L. 0.159292.15)77.3L)( 600.0()( 1212  TTVV  
 
 
18.12:   a)  Pa.105.87 gives (18.7) Eq.  whilePa1028.7 66 VnRT    b) The van der 
Waals equation, which accounts for the attraction between molecules, gives a pressure 
that is 20% lower.  
c) Pa,1028.7 5 2.1%.  Pa,1013.7 5    d)  As Vn  decreases, the formulas and the 
numerical values are the same. 
 
 
18.13:    At constant temperature, atm.1.15.7)6.0atm)(0.1()( 2112  VVpp  
 
 
18.14:     a) .74.3))(50.3( 277K

K296
1

2

2

1

1

2  T
T

p
p

V
V   b) Lungs cannot withstand such a volume 

change;  breathing is a good idea. 
 
 

18.15:     a)  C.70.3K343
K)molatmL0.08206mol)(0.11(

L)atm)(3.10100(2
2 




nR
VpT  

        b) This is a very small temperature increase and the thermal expansion of the tank 
may be neglected; in this case, neglecting the expansion means not including expansion 
in finding the highest safe temperature, and including the expansion would tend to relax 
safe standards. 
 
 



18.16:   (a) The force of any side of the cube is ,)()( LnRTAVnRTpAF   since 
the ratio of area to volume is .K15.293C20.0For  .1  TLVA  
 

                   N. 103.66  
m 200.0

K) (293.15 K)molJ (8.3145 mol) 3( 4



L

nRTF  

 
         b)  For K, 373.15  C00.100 T           
 

                    .N1065.4
m200.0

)KK)(373.15molJ5mol)(8.3143( 4



L

nRTF  

 
 
 
18.17: Example 18.4 assumes a temperature of C0 at all altitudes and neglects the 
variation of g with elevation. 
 

With these approximations, RT/
0

Mgyepp   
 We want y for and0.90so90.0 RT/

0
Mgyepp   

 m850)90.0ln( 
Mg
RTy  

 (We have used kg/mol108.28 3M for air.) 
  
 
18.18: From example 18.4, the pressure at elevation y above sea level is .RT/

0
Mgyepp   

The average molar mass of air is kg/mol,108.28 3M so at an altitude of 100 m, 
 

,01243.0
K)K)(273.15molJ3145.8(

m)100)(sm80.9)(molkg108.28( 23
1 







RT
Mgy  

 
and the percent decrease in pressure is %.24.10124.011 01243.0

0  epp  At an 
altitude of ,1243.0  m,1000 2 RTMgy  and the percent decrease in pressure is 

%.7.11117.01 1243.0  e  These answers differ by a factor of 
,44.91.24% 11.7%  which is less than 10 because the variation of pressure with altitude 

is exponential rather than linear. 
 



18.19: RTMygepp  0 from Example 18.4. 
 

Eq. (18.5) says RT.Mρp )(  Example 18.4 assumes a constant 
ρpT  and  so ,K273 are directly proportional and we can write 

 
RTMgyeρρ  0  

For 0
0124.0

0 988.0 so ,0124.0 m,100 ρeρρ
RT

Mgyy    

 
The density at sea level is 1.2% larger than the density at m.100  
 
 
18.20: Repeating the calculation of Example 18.4 (and using the same numerical values 
for R and the temperature gives) Pa.1044.5)537.0( 4

atm  pp  
 
 
18.21: 

    kg/mol)1028.8(56.5KK15.273KmolJ3145.8mkg364.0 33  MρRTp  
Pa.1028.2 4  

 
 
18.22:     

mol.kg849molecule)kg10mol)(1.41molecules1002.6( 2123
A  mNM  

 
 
18.23:     Find the mass: kg0.1906mol)kg106mol)(63.5400.3( 3  nMm  
 

         335
33 cm4.21m1014.2

mkg108.9
kg1906.0




 

ρ
mV  

 
 

18.24:                           AA N
RT
pVnNN   

                                          

mol)molecules10023.6(
K)K)(300molJ3145.8(

)m10Pa)(1.0010119.9( 23
369









 

                                          molecules.1020.2 6  
 
 



18.25:     a) 
 

         
mol)molecules10(6.023

K)K)(7500molatmL08206.0(
L

molecules1080 23
3

a 








 

N
RT

V
N

V
nRTp  

 
                                              atm,102.8 17  
 
about Pa.102.8 12  This is much lower, by a factor of a thousand, than the pressures 
considered in Exercise 18.24.    b) Variations in pressure of this size are not likely to 
affect the motion of a starship. 
 
 
18.26:     Since  this gas is at standard conditions, the volume will be 

31633 m1023.2  )m104.22(  
AN

NV , and the length of a side of a cube of this 

volume is m.101.6)m1023.2( 63
1

316    
 
 

18.27:     mol,6.55
molg18.0
g1000

  which is mol)molecules10mol)(6.0236.55( 23 = 

molecules.103.35 25  
 
 
18.28:     a) The volume per molecule is 
 

.m10091.4     
Pa)10mol)(1.013molecules10(6.023

K)K)(300.15molJ3145.8(     

326

523









ApA N

RT
nN

pnRT
N
V

 

 
If this volume were a cube of side L, 

 

  m,1045.3m10091.4 93
1

326  L  
 
which is (b) a bit more than ten times the size of a molecule. 
 
 



18.29:
      .m 1000.9cm 0.90g/cm 00.1/g/mol0.18mol 00.5 ) 3533  ρMnρmVa  

18.28; Excercise See b)  
 

  
3/1

23

353/1

A

3/1

molmolecules/10023.6mol 00.5
m1000.9



























 

nN
V

N
V  

           m. 1010.3 10  
 
         c) This is comparable to the size of a water molecule. 
 
 
18.30:     a) From Eq. (18.16), the average kinetic energy depends only on the 
temperature, not on the mass of individual molecules, so the average kinetic energy is the 
same for the molecules of each element. b) Equation (18.19) also shows that the rms 
speed is proportional to the inverse square root of the mass, and so 

 

and 301.0
00.222
18.20

 
  ,491.0

80.83
18.20

 
 

Nerms

Rnrms

Nerms

Krrms 
v
v

v
v  

.614.0
00.222

80.83
 
 

Krrms

Rnrms 
v
v  

 
 
18.31:     a) At the same temperature, the average speeds will be different for the different 
isotopes; a stream of such isotopes would tend to separate into two groups.  

.004.1  b) 349.0
352.0   

 
 
18.32:     (Many calculators have statistics functions that are preprogrammed for such 
calculations as part of a statistics application. The results presented here were done on 
such a calculator.)          a)   With the multiplicity of each score denoted by 

.1.61
150

1 b) 6.54
150

1 is average  the,
2/1

2
1 























iiii xnxnn  (Extra significant 

figures are warranted because the sums are known to higher precision.) 
 
 



18.33:     We known that  . that and BABA TTVV   
         ;/ a) VnRTp   we don’t know n for each box, so either pressure could be higher. 

         A
A

A

N
RT

pVNNRT
N
NpV   where, so b) 








  is Avogadro’s number. We don’t know 

how the pressures compare, so either N could be larger. 
 
           . c) RTMmpV   We don’t know the mass of the gas in each box, so they could 
contain the same gas or different gases. 
 
           kTvm 2

3
av

2
2
1 d)   

TA  > TB  and the average kinetic energy per molecule depends only on T, so the statement 
must be true. 
 
         mkTvrms 3 e)   

We don’t know anything about the masses of  the atoms of the gas in each box, so 
either set of molecules could have a larger .rmsv  
 
 
18.34:     Box A has higher pressure than B. This could be due to higher temperature 
and/or higher particle density in A. Since we know nothing more about these gases, none 
of the choices is necessarily true, although each of them could be true. 
 
 
18.35:     K10300kg;10348.3) 627

nP   Tmmma  
         %64.0s;m109.13 rms

6
rms  cvmkTv  

         
K103.7 s,m100.3For 

3   b)
107

mms

2
rms





Tv

kmvT
 

 
 
18.36:     From ,nRTpV   the temperature increases by a factor of 4 if the pressure and 
volume are each doubled. Then the rms speed MRTv 3rms  increases by a factor of 

,24   so the final rms speed is s.m500s)m250(2   
 
 



18.37:     J.106.21K)K)(300J10381.1)(23( a) 2123
2
3  kT  

 

         .m1034.2
mol)molecules10023.6(mol)kg10(32.0

J)1021.6(22 b) 225
233

21
ave s

m
K





 



 

 

         s,m1084.4
mol)kg10(32.0

K)K)(300molJ3145.8(33s  c) 2
3 




 M
RTv  

 
which is of course the square root of the result of part (b). 
 

         s)m1084.4(
mol)molecules10(6.023

mol)kg100.32(ss d) 2
23

3


















v
N
Mmv

A

 

                          mkg1057.2 23    
 
This may also be obtained from 
 

mol)molecules10(6.023
mol)kg10J)(32.01021.6(22 23

321

ave 





mK  

 
         e) The average force is the change in momentum of the atom, divided by the time 
between collisions. The magnitude of the momentum change is twice the result of part (d) 
(assuming an elastic collision), and the time between collisions is twice the length of a 
side of the cube, divided by the speed. Numerically, 
 

N.1024.1
m)(0.100

J)1021.6(2s2s
s2
s2 19

212

ave








L
K

L
mv

vL
mvF  

 
         Pa.1024.1                   f) 172

aveave
 LFp  

 
             molecules. 1015.8Pa 1024.1Pa 10013.1               g) 21175

ave  PP  
 

         AA               h) N
RT
pVNnN   

  
   

  

.221045.2

molmolecules 2310023.6
K 300K/molatmL 08206.0

L 00.1 atm 00.1








 










 

                           
         i)    The result of part (g) was obtained by assuming that all of the molecules move 
in the same direction, and that there was a force on only two of the sides of the cube. 
 



18.38:     This is the same calculation done in Example 16-9, but with 
.m 106.1 giving atm, 1050.3 513  p  

 
 
18.39:     The rms speeds will be the same if the Kelvin temperature is proportional to the 
molecular mass;   )02.20.28(K 15.293)(

2222 HNHN  MMTT  

C. 1079.3K 1006.4 33   
 
 

18.40:       .sm 1044.6
kg 1000.3

)K 300)(KJ 10381.1(33 a) 3
16

23












m
kT  b) If the particle is 

in thermal equilibrium with its surroundings, its motion will depend only on the 
surrounding temperature, not the mass of the individual particles. 
 
 
18.41:     a) The six degress of freedom would mean a heat capacity at constant volume of 
   

  KJ/kg 1039.1  K.J/mol 9.2436 3
molkg 100.18
KmolJ 3145.833

2
1

3  


M
RRR , b) vibrations do 

contribute to the heat capacity. 
 
 
18.42:  a)        kg/mol 018.0 CJ/kg 833 so ,massmolar    CCv CmolJ 0.15   

      CJ/kg 2060 C,60at   CJ/kg 5.29kg/mol 018.0 CJ/kg 1640 C,180at 
  C.0.5at  CJ/mol 1.37kg/mol 018.0    b) Vibrational degrees of freedom become 
more important. c) OH because 3 exceeds 2RCV  also has rotational degrees of freedom. 
 
 
18.43:       kJ. 56.1K 0.30KmolJ 79.20mol 50.2 (18.26), Eq.  Usinga) Q     
b) From Eq. (18.25), 5

3 of the result of part (a), 936 J. 
 
 



18.44:     a)  K,J/kg  741
kg/mol 1028.0

KJ/mol   76.20
3- 





M
Cc V  

 
which is 177.0

4190
741

  times the specific heat capacity of water. 

 

       b)   .or   , 
N

ww
NwwwNNN C

CmmTCmTCm   Inserting the given data and the result 

from part (a) gives 


p

nRTVnRTpVm or  , use  volume,and find To kg. 65.5N  

       L. 4855
atm 1

K 293Katm/molL 08206.0kg/mol 028.0/kg 65.5



 

 
 
18.45:     From Table (18.2), the speed is (1.60)v s, and so 

2

2
2

)60.1(

33s v
M
RT

m
kTv   

(see Exercise 18.48), and so the temperature is 
 

.)msK10385.4(
K)molJ3145.8(3(1.60)

mol)kg100.28(
)60.1(3

22242
2

3

2

2

vv
R

MvT 



 



 

 
K987s)m1500)(msK10385.4( a) 2224    

 
K438s)m1000)(msK10385.4( b) 2224    

 
K.110s)m500)(msK10385.4( c) 2224    

 
 

18.46:   Making the given substitution ,
2
1 2mv  

 

.
2

82
2

4)(
2323

kTεkTε εe
πkT
m

m
πe

m
ε

πkT
mπvf  













  

 
 



18.47: Express Eq. (18.33) as ,kTεeAεf   with A a constant. Then, 
 

.1 



 



  

kT
εAee

kT
εeA

de
df kTεkTεkTε  

 

Thus, f will be a maximum when the term in square brackets is zero, or ,
2
1 2 kTmvε   

which is Eq. (18.34). 
 
 

18.48:  Note that 
M
R

NM
NR

m
k


A

A . 

 
s.m1037.3mol)kg100.44(K)K)(300molJ3145.8(2 a) 23    

 
s.m1080.3mol))kg100.44((K)K)(300molJ3145.8(8  b) 23  π  

 
s.m1012.4mol)kg10(44.0K)300(K)molJ3145.8(3 c) 23    

 
 
 
18.49:  Ice crystals will form if ;C0.0 T  using this in the given relation for 
temperature as a function of altitude gives km.5.2m105.2 3 y  
 
 
18.50:    a) The pressure must be above the triple point, , If Pa.610 11 ppp   the water 
cannot exist in the liquid phase, and the phase transition is from solid to vapor 
(sublimation). b)  2p  is the critical pressure, Pa.10221 5

c2  pp  For pressures 
below 2p  but above ,1p  the phase transition is the most commonly observed sequence, 
solid to liquid to vapor, or ice to water to steam. 
 
 
18.51: The temperature of C 00.0   is just below the triple point of water, and so there 
will be no liquid. Solid ice and water vapor at C00.0   will be in equilibrium. 
 
 
18.52: The atmospheric pressure is below the triple point pressure of water, and there can 
be no liquid water on Mars. The same holds true for 2CO  
 
 



18.53:   L0083.0)C21(L)11( )C106.3(       a) 5
o  TβVV  

 
                      L0.0014Pa)101.2( )LPa)(111025.6( 712

o  pkVV  
 
So the total change in volume is L.0069.0L0014.0L0083.0 V  b) Yes; V  is 
much less than the original volume of L.0.11  

 

18.54: 
RT

MpVnMm   

 

                  
K)K)(295.15molJ3145.8(

)m103000(Pa)10mol)(2.026kg100.28( 3683







 

 
                  kg.1094.6 16  
 
 

18.55:  
RT
pVMnMm 

  

kg.213.0
K)15.295(K)molJ3145.8(

mol)kg1010.44)()m(0.060m)00.1)((Pa1005.1( 326







π  

 
 
18.56:      a) The height h  at this depth will be proportional to the volume, and hence 
inversely proportional to the pressure and proportional to the Kelvin temperature; 
 

        
T
T

ρgyp
ph

T
T

p
phh










atm

atm  

 

           












K15.300
K15.280

)m0.73)(sm80.9)(mkg1030(Pa)10013.1(
)Pa10013.1(m)30.2( 235

5

 

 
           ,m26.0  
 
so m.04.2 hhh  b) The necessary gauge pressure is the term  ρgy  from the above 
calculation,  Pa.1037.7 5

g p  
 
 



18.57:  The change in the height of the column of mercury is due to the pressure of the 
air. The mass of the air is 
 

       M
RT

hVgρ
M

RT
PVnMm


 Hg

air  

 

         )molg8.28(
K)15.293(K)molJ3145.8(

)m10620.0))(m690.0m900.0((
m)060.0)(sm80.9)(mkg106.13(

24

233





























 

         g.1023.1 3  
 
 

18.58:   The density ρ'  of the hot air must be ,
V
mρρ    where ρ  is the density of the 

ambient air and m is the load. The density is inversely proportional to the temperature, so  
 

                               
1

1
)(


















ρV
mT

Vmρ
ρ

ρ
ρTT  

 

                                   K,545
)m500)(mkg23.1(

)kg290(1K)15.288(
1

33 











 

 
which is C.272  
 
 

18.59:   atm,94.2
)K15.278)(m0159.0(
)K15.318)(m0150.0()atm72.2( 3

3

12

21
12 



















TV
TVpp  

 
so the gauge pressure is atm.92.1  
 
 



18.60:   (Neglect the thermal expansion of the flask.)   a)     )( 1212 TTpp  
Pa.108.00380)300Pa)(10013.1( 45   

 

       b)                    M
RT

VpnMm 









2

2
tot  

 

                                      g.1.45mol)g1.30(
)KK)(300molJ(8.3145

L)Pa)(1.501000.8( 4












  

 
 
 
18.61:      a) The absolute pressure of the gas in a cylinder is Pa)10013.11020.1( 56   

Pa.1030.1 6  At atmospheric pressure, the volume of hydrogen will  increase by a 

factor of ,
1001.1
1030.1

5

6




  so the number of cylinders is 

 

.31
))1001.1()1030.1)((m90.1(

m750
563

3




 

 
   b) The difference between the weight of the air displaced and the weight of the 
hydrogen is 
 

        Vg
RT

pM
ρVgρρ 








 2

2

H
airHair )(  

 

                                          













K)15.288(K)molJ(8.3145
mol)kg10Pa)(2.021001.1(mkg23.1

35
3  

 
                                             )m750)(sm80.9( 32  
 
                                          N.1042.8 3  
 
   c)   Repeating the above calculation with molkg1000.4 3M  gives a weight of  

N.1080.7 3  
 
 



18.62:   If the original height is h and the piston descends a distance y, the final pressure 

of the air will be .atm 







 yh
hp  This must be the same as the pressure at the bottom of the 

mercury column, .)(atm yρgp   Equating these two, performing some minor algebra and 
solving for y gives 
 

 m.140.0
)sm80.9)(mkg106.13(

Pa)10013.1(m)  900.0(
g 233

5
atm 





ρ
phy  

 
 



18.63:    a)  The tank is given as being “large,” so the speed of the water at the top of the 
surface in the tank may be neglected. The efflux speed is then obtained from  

,
2
1 2 phρgρv    or 

 

     






 








 


)mkg(1000
Pa)1020.3()m50.2()sm80.9(22 3

5
2

ρ
phgv  

                     s.m2.26  
 
   b)   Let m50.30 h  and  Pa.1020.4 5

0 p  In the above expression for  

m00.1 ,  hhv  and .
m00.4
m00.4

a
0

0 p
h
hpp 










  Repeating the calculation for 

m00.3h  gives sm1.16v  and with s.m5.44m,00.2  vh     c)  Setting 02 v  in 
the above expression gives a quadratic equation in h which may be re-expressed as 
 

.
m4.00

m50.0
g

m)00.1( 0a

hρg
p

ρ
ph


  

 

Denoting ,m43.21m)50.0( and m204.10
g

220a  z
ρg

py
ρ
p  this quadratic becomes 

 
,0))m00.4()m00.4(()m00.5( 222  zyhyh  

 
which has as its solutions m.47.13 and m737.1  hh  The larger solution is unphysical 
(the height is greater than the height of the tank), and so the flow stops when m.74.1h  
 
      Although use of the quadratic formula is correct, for this problem it is more efficient 
for those with programmable calculators to find the solution to the quadratic by iteration. 
Using m00.2h  (the lower height in part (b)) gives convergence to three figures after 
four iterations. (The larger root is not obtained by a convergent iteration.) 
 
 



18.64:   
s)3600(K)15.293(K)molatmL08206.0(

)molmolecules10023.6)(L5.14)(atm00.1(         a)
23











 tRT

pVN
t

nN
t

N AA  

                                                          pt36 molecule1001.1 20   
 

      .min10
)163.0210.0)(L(0.5

min)60)L5.14(                                                       b) 


 

 
   c)   The density of the air has decreased by a factor of )atm1.00atm72.0(  

0.773,K)273K293(   and so the respiration rate must increase by a factor of  ,733.0
1  

.minbreaths13 to If the breathing rate is not increased, one would experience “shortness 
of breath.” 
 
 

18.65:   
mol)kg100.18(

)kgmol)(50molecules10023.6(3)(333 3

23

AA 


 NMmnNN  

  
                                                                 atoms.100.5 27  
 
  
18.66:   The volume of gas per molecule (see Problem 18.28) is 

ApN
RT , and the volume of a 

molecule is about .m104.3)m100.2(
3
4 329310

0
  πV   Denoting the ratio of these 

volumes as f, 
 

        .Pa)102.1(
)m10mol)(3.4molecules10023.6(

K)K)(300molJ3145.8( 8
32923

0A

ff
VN

RTfp 



   

 
“Noticeable deviations” is a subjective term, but f on the order of unity gives a pressure 
of Pa.108 Deviations from ideality are likely to be seen at values of f substantially lower 
than this. 
 
 



18.67:   a) Dividing both sides of Eq. (18.7) by the product RTV gives the result.    b) The 
algorithm described is best implemented on a programmable calculator or computer; for a 
calculator, the numerical procedure is an interation of 
 

 .)1029.4(1 
)15.400)(3145.8(

)448.0(
)15.400)(3145.8(

)108.9( 52
5

xxx 










  

 
    Starting at 0x  gives a fixed point at 21003.3 x  after four iterations. The number 
density is .mmol1003.3 22     c) The ideal-gas equation is the result after the first 
iteration, .mmol295 3 The vander Waals density is larger. The term corresponding to a 
represents the attraction of the molecules, and hence more molecules will be in a given 
volume for a given pressure. 
 
 
18.68:   

J.1082.1)m400)(sm80.9(
molmolecules10023.6

molkg100.28 a) 222
23

3















 gh

N
MmghU

A

 

 

        b)   Setting K.80.8
KJ1038.1

J1082.1
3
2  ,

2
3

23

22





 



TkTU     c) It is possible, but not at 

all likely for a molecule to rise to that altitude. This altitude is much larger than the mean 
free path. 
 
 
 



18.69:   a), b) (See figure.) The solid curve is ),(rU  in units of ,0U  and with .0Rrx   
The dashed curve is )(rF  in units of .00 RU  Note that .21 rr   

       c)   When .2or  ,2,0 61
01

6

1

0

12

1

0 Rr
r
R

r
R

U 
















  Setting 0F  in Eq. (18.26) 

gives  and 02 Rr   ,)()( d)   .2 002
61

2

1 URUrU
r
r

   so the work required is .0U  

 

 
 
18.70:    a)     J.758m1000.5Pa1001.1 335

2
3

2
3

2
3  pVnRT   b) The mass of the 

gas is ,RT
MpV  and  so the ratio of the energies is 

 

        
   %.0242.01042.2

K 300KmolJ3145.8
sm0.30molkg10016.2

3
1

3
1

2
1 4

232

2
3

2





 



RT
Mv

pV
vRT

MpV

 

 
 
18.71:    a) From Eq.  ,19.18   
 
              s.m 517)molkg100.28( K) 15.300( )KmolJ3145.8(3s 3  v  
 
       b)  s.m 2993s v  
 
 



18.72:    a) s.m 1020.1
 kg)1067.1(

K) 5800( )KJ1038.1(33 4
27

23





 



m
kT  

 

      b) s.m 1018.6
m) 1096.6(

kg)1099.1( )kgmN10673.6(22 5
8

302211









R
GM  

 
      c)   The escape speed is about 50 times the rms speed, and any of Fig.  ,20.18  Eq. 
 32.18  or Table  2.18  will indicate that there is a negligibly small fraction of molecules 
with the escape speed. 
 
 
18.73:   a) To escape, the total energy must be positive, .0UK  At the surface of the 
earth, ,mgRRGmMU   so to escape .mgRK     b) Setting the average kinetic 
energy equal to the expression found in part (a),     .32or  ,23 kmgRTmgRkT   For 
nitrogen, this is  
 

                            
K)J10mol)(1.381molecules10023.6(
m)1038.6()smmol)(9.80kg100.28(

3
2

23-23

623







T  

      
                                K1040.1 5  
 
and for hydrogen the escape temperature is )( 0.28

02.2  times this, or  K.1001.1 4     c) For 
nitrogen,  K1036.6 3T  and for hydrogen, K.459T   d) The escape temperature for 
hydrogen on the moon is comparable to the temperature of the moon, and so hydrogen 
would tend to escape until there would be none left. Although the escape temperature for 
nitrogen is higher than the moon’s temperature, nitrogen would escape, and continue to 
escape, until there would be none left. 
 
 



18.74:   (See Example 12.5 for calculation of the escape speeds)   
  a) Jupiter: 

.(0.0221)sm1031.1mol)kg1002.2(K)K)(140molJ3(8.3145s  e
33 vv    

Earth:
.(0.146)sm1065.1mol)kg1002.2((K)K)(220molJ3(8.3145s  e

33 vv    
 
      b) Escape from Jupiter is not likely for any molecule, while escape from earth is 
possible for some and hence possible for all. 
 
      c) s.m395mol)kg100.32(K)K)(200molJ3(8.3145s  3  v  The radius of 

the asteroid is m,1068.4)43( 53
1

 πρMR  and the escape speed is 
s,m5422 RGM  so there can be no such atmosphere. 

 
 
18.75:     a) From Eq. (18.19), 
 

                           kg.1024.1
s)m001.0(

K)K)(300J10381.1(3
s 

3 14
2

23

2








v
kTm  

 
b) mol)kg100.18(mol)molecules10kg)(6.0231024.1( 32314  MmN A  
             molecules.1016.4 11  
 

c) 
3

1
3

1

4
32

4
322 















π
ρm

π
VrD  

                  m,1095.2
)mkg920(4

kg)1024.1(32 6
3

14 3
1











 


π
 

which is too small to see. 
 

 
18.76:   From ,sin,cos ωtωAvωtAx   

                   

                          .)(sin
2
1           ,)(cos

2
1 222

aveave
22

ave aveωtAmωKωtkAU   

 
Using . that shows   and  )(cos)(sin aveace

2
2
1

ave
2

ave
2 UKkmωθθ   

 
 



18.77:    a) In the same manner that Eq. (18.27) was obtained, the heat capacity of the 
two-dimensional solid would be 2R = 16.6 K.molJ   b) The heat capcity would behave 
qualitatively like those in Fig. (18.18), and heat capacity would decrease with decreasing 
temperature. 
 
 
18.78:    a) The two degrees of freedom associated with the rotation for a diatomic 
molecule account for two-fifths of the total kinetic energy, so )00.1(rot  nRTK  

J.1049.2)KK)(300molJ3145.8( 3  
 

b)  211-
23

3
2 m)10(6.05 

mol molecules10023.6
molkg100.16 22)L(2 















mI  

 
                                    .mkg1094.1 246    
 

c) Using the results of parts (a) and (b), 
 

             mol) molecules10023.6)(mkg10(1.94
J)1049.2(22s 23246

3
rot




 I
NKω A

 

 
                                        s,rad1052.6 12  
 
much larger than that of machinery. 
 
 
18.79:   For ,CO2 the contribution to  is  vibrationother than CV  
 

VV CRCR  270.0
2
5   and     K,molJ  79.20

2
5

  

For both SO2 and H2S, the contribution to CV other than vibration is  
 

K,molJ 94.24
2
6

R  

and the respective fractions of VC are 0.25 and 0.039. 
 



18.80:   a)   

1
22(4

1
2

4

2
4)(

23
0

2/2
23

0

2























 






KTm
π

KTmπkT
mπ

dvev
πkT
mπdvvf kTmv

   

                                          
 

where the tabulated integral (given in Problem18.81) has been used.    b) dvvf )(  is the 
probability that a particle has speed between ; and dvvv  the probability that the particle 
has some speed is unity, so the sum (integral) of dvvf )( must be 1. 
 
 
18.81:    With is integral  the,/2  and 2 kTman   
 

,3
)2()2(2

3
2

4 23

23

m
kT

kTm
π

kTmπkT
mπ 














  

 
which is Eq. (18.16). 
 
 

18.82:     
 









0 0

23
23

.
2

4)(
2

dvev
πkT
mπdvvf kTmv  

 
Making the suggested change of variable, , )21(  ,  2  , 32 dxxdvvdxdvvxv   the 
integral becomes 
 

                      
 










0 0

2  
2

2)( 
2

3

dxxe
πkT
mπdvvvf kT

mx
 

                                     

                                      
22

2
2

2
3

















m
kT

πkT
mπ  

                                               ,822
mπ

KT
m
KT

π
  

which is Eq. (18.35). 
 
 



18.83:  a) See Problem 18.80. Because dvvf )(  is the probability that a particle has a 
speed between dvvfdvvv )( , and   is the fraction of the particles that have speed in that 
range. The number of particles with speeds between dvvv  and   is therefore 

dvvNfdN )(  and 
                           
                                .)( dvvfNN vv

v
  

 
   b) ,2

mp m
kTv   and 

 

                      .42
2

4)(
mp

1
mp

2
3

vπe
e

m
kT

πkT
mπvf 














   

 
For oxygen gas at ,0421.0)( and s,m1095.3  K,300 2

mp  vvfv  keeping an extra 
figure.         c) Increasing v  by a factor of 7 changes 

.1094.2)( and ,7 offactor  aby   21482  vvfef                   d) Multiplying the 
temperature by a factor of 2 increases the most probable speed by a factor of ,2  and the 

answers are decreased by .102.08 and 0297.0  ;2 -21    e) Similarly, when the 
temperature is one-half what it was parts (b) and (c), the fractions increase by 

 0.0595  to2  .104.15 and 21   f) At  lower temperatures, the distribution is more 
sharply peaked about the maximum (the most probable speed), as is shown in Fig. 
(18.20). 
 
 
18.84:  a) Pa.101.40Pa)1034.2)(60.0( 33   
 

        b) .10
K)K)(293.15molJ3145.8(

)mPa)(1.0010mol)(1.40kg100.18( 333

g
RT

MpVm 







  

 
 
18.85:  The partial pressure of water in the room is the vapor pressure at which 
condensation occurs. The relative humidity is %.6.4225.4

81.1   
 
 



18.86:  a) The partial pressure is Pa.101.323Pa)1078.3)(35.0( 33   This is close to 
the vapor pressure at C,12  which would be at an altitude 

km3m)100C(0.6C)12C30(   above the ground (more precise interpolation is not 
warranted for this estimate). 
      b) The vapor pressure will be the same as the water pressure at around C,24  
corresponding to an altitude of about km.1  
 
 
 
 
18.87:    a) From Eq. (18.21), 
 

13621112 ))m1050(m)100.5(24())(24(   πVNrπ  
 
   m.105.4 11  
 
   b) s,m703mol)kg10008.1(K)K)(20molJ3(8.3145 3    and the time between 
collisions is then s,106.4s)m(703m)105.4( 811  about 20 yr. Collisions are not 
very important.          c) 

Pa.101.4K)K)(20J10381.1)(m1050()( 142336   kTVNp  

 d)  mRVNGπ
R

πRVNmG
R

GMve )()38()34)((22 3

  

           kg)1067.1)(m1050)(kgmN10673.6)(38( 27362211   π  
                m)1046.910( 15  
           s.m650  
 
This is lower than s, v and the cloud would tend to evaporate.  e) In equilibrium (clearly 
not thermal equilibrium), the pressures will be the same; from ,NkTpV   

nebulanebulaISMISM )()( VNkTVNkT   
and the result follows.   f) With the result of part (e), 

K, 102
)m 10200(

m 1050 K) 20(
)(

)( 5
136

36

ISM

nebula
nebulaISM 



















 NV

NV
TT  

more than three times the temperature of the sun. This indicates a high average kinetic 
energy, but the thinness of the ISM means that a ship would not burn up. 
 
 



18.88: a) Following Example 18.4, ,RT
pM

dy
dP   which in this case becomes  

,
0 αyT
dy

R
Mg

p
dp


  

which integrates to  

.1or    ,1lnln
0

0
00




























 R
Mg

T
αypp

T
αy

Rα
Mg

p
p  

       b)  Using the first equation above, for sufficiently small ,)1ln( ,
00 T
αy

T
αyα   and this 

gives the expression derived in Example 18.4. 
 
     

c)    ,8154.0
K)288(

m)m)(8863C106.0(1
2








 




 

6576.5
m)C10K)(0.6molJ3145.8(

)sm80.9)(108.28(
2

23





 



Rα
Mg  

(the extra significant figures are needed in exponents to reduce roundoff error), and 
atm,315.0)8154.0( 6576.5

0 p  which is 0.95 of the result found in Example 18.4. Note: 
for calculators without the yx  function, the pressure in part (c) must be found from 

)).8154.0ln()6576.5exp((0pp   
  
 



18.89:  a) A positive slope V
P


  would mean that an increase in pressure causes an increase 

in volume, or that decreasing volume results in a decrease in pressure, which cannot be 
the case for any real gas.     b) See Fig. (18.5). From part (a), p cannot have a positive 
slope along an isotherm, and so can have no extremes (maxima or minima) along an 
isotherm. When V

p

 vanishes along an isotherm, the point on the curve in a Vp -  diagram 

must be an inflection point, and 02

2






V
p  

 

      c)        2

2

V
an

nbV
nRTp 


  

 

              3

2

2
2

)( V
an

nbV
nRT

V
p






  

 

            .6
)(

2
4

2

32

2

V
an

nbV
nRT

V
p






  

 
Setting the last two of these equal to zero gives 
 
           .)(3            ,)(2 324223 nbVannRTVnbVannRTV   
 
c) Following the hint, ),)(23( nbVV   which is solved for .3)( c bnV   Substituting 

this into either of the last two expressions in part (c) gives .278c RbaT   
 

d) .
2792

)(
)()( 22

27
8

cc
c b

a
b
a

b
R

nV
a

bnV
RTp Rb

a




  

 

e) .
3
8

3)(p 227

27
8

cc

c 
bnV

RT

b
a

b
a

 

 
g)  4.35.:OH   .44.3:N  .28.3:H 222    h) While all are close to ,38  the agreement is not 
good enough to be useful in predicting critical point data. The van der Waals equation 
models certain gases, and is not accurate for substances near critical points. 
 
 



18.90:    a) , and )( 2
2

2
12

1
rms212

1
av vvvvvv   and 

 

                        )2(
4
1)(

2
1

21
2
2

2
1

2
2

2
1

2
av

2
rms vvvvvvvv   

 

   
.)(

4
1

)2(
4
1

22
1

2
1

2
2

2
1

vv

vvvv




 

 
This shows that ,avrms vv   with equality holding if and only if the particles have the same speeds. 
 
        b) ),(),( av1

1
av

22
rms1

12
rms uNvvuNvv NN    and the given forms follow immediately. 

 
        c) The algebra is similar to that in part (a); it helps somewhat to express 
 

.
1

1)2(
1)(1

)))1((21)1)(((
1)(

1

22
av

2
av2

2
av

2
av

2
av2

2
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u
N

uuvv
N

Nv
N

N

uNNuNvvNN
N
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Then, 
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)(
1

)2(
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)(
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2
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2
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2
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2
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N
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If ,avrms vv   then this difference is necessarily positive, and .avrms vv   
 
        d) The result has been shown for 1,N  and it has been shown that validity for N implies 
validity for 1;N  by induction, the result is true for all N. 
    
 
 



19.1:   a)  

 
 
       b)  .J1033.1)C80)(KmolJ3145.8)(mol00.2( 3 TnRVp  
 
19.2:   a) 

 
       b)   If the pressure is reduced to 40.0% of its original value, the final volume is 

)25( of its original value. From Eq. (19.4), 

J.1015.9
2
5ln  )K)(400.15KmolJ3145.8)(3(ln 3

1

2 







V
VnRTW  

 
19.3:  

 
 
 

nRTpV   
T constant, so when p increases, V decrease



19.4:  At constant pressure, so,TnRVpW   
 

C.62.1C35.1C0.27so,T and

K 1.35
K)molJ(8.3145 mol)(6

J 1075.1

2CK

3









TT
nR
WT

 

 
 
19.5: a)  

 
b) At constant volume, 0.soand0  WdV  

 
 
19.6: 
 

 
b) J. 1050.4)m0900.0m(0.0600 Pa)10(1.50 3335 Vp  

 



19.7: a) 
 

 
b)   In the first process, 01  VpW . In the second process, 

J.1000.4)m0.080( Pa)10005( 435
2   .VpW   

 
 
19.8: a) .0  and)( ,0 ),( 41212243212113  WVVpWWVVpW  The total work done 
by the system is ),)(( 122141243213 VVppWWW W  which is the area in the p- V 
plane enclosed by the loop. b) For the process in reverse, the pressures are the same, but 
the volume changes are all the negatives of those found in part (a), so the total work is 
negative of the work found in part (a). 
 
 
19.9:   J 73 J,  254  WQ (work is done on the system), and so J.  327 WQU  
 
 
19.10: a) J.1078.3)mPa)(0.2101080.1( 425 Vp  
 

b) J.107.72J103.78J1015.1 445  WQU  
 

c) The relations WQUVpW   and  hold for any system. 
 
 



19.11: The type of process is not specified. We can use WQU  because this applies 
to all processes. 

Q is positive since heat goes into the gas; J1200Q  
W positive since gas expands; J2100W  

J900J2100-J1200 U  
We can also use   TRnU  2

3  since this is true for any process for an ideal gas. 
 








 C4.14

K)molJ5mol)(8.3143(5.00
J)900(2

3
2

nR
UT  

 
C113C14.4C12712  TTT  

 
 
19.12: At constant volume, the work done by the system is zero, so 

.QWQU  Because heat flows into the system, Q is positive, so the internal 
energy of the system increases. 
 
 
19.13: a) J1015.1)mPa)(-0.501030.2( 535 Vp .  (b 

J1055.2J)1015.1(J1040.1 555  WUQ  (heat flows out of the gas). 
c) No; the first law of thermodynamics is valid for any system. 
 
 
19.14: a) The greatest work is done along the path that bounds the largest area above the 
V-axis in the p- V plane (see Fig. (19.8)), which is path 1. The least work is done along 
path 3.  0 Wb)   in all three cases; 0 so ,  QWUQ  for all three, with the greatest 
Q for the greatest work, that along path 1. When ,0Q heat is absorbed. 
 
 
19.15: a) The energy is 
 

kcal,139g)kcalg)(9.0(7.0g)kcalg)(4.00.17()gkcal0.4)(g0.2(   
 
and the time required is  mKv 2 b) min.16.4h0.273h)kcal(510kcal)139(  

h.km501sm139kg)60(cal)J(4.186cal)10139(2 3   
 
 



19.16: a) The container is said to be well-insulated, so there is no heat transfer. b) Stirring 
requires work. The stirring needs to be irregular so that the stirring mechanism moves 
against the water, not with the water.  c) The work mentioned in part (b) is work done on 
the system, so ,0W  and since no heat has been transferred, .0 WU  
 
 
19.17: The work done is positive from a to b and negative from b to a; the net work is the 
area enclosed and is positive around the clockwise path. For the closed path ,0U so 

A .0WQ  positive value for Q means heat is absorbed.  
      b) J.7200 so and 0 (a),part  from and J,7200  WQQQ   
      c) For the counterclockwise path, Q = W < 0. W= J 7200so J, 7200  Q and heat 
is liberated, with |Q|=7200 J. 
 
 
19.18: a),  b) The clockwise loop (I) encloses a larger area in the p-V plane than the 
counterclockwise loop (II). Clockwise loops represent positive work and 
counterclockwise loops negative work, so .0 and 0 III  WW  Over one complete cycle, 
the net work  ,0III WW and the net work done by the system is positive.  c) For the 
complete cycle,  . so  and 0 QWU   From part (a), W > 0 so Q > 0, and heat flows 
into the system.  d) Consider each loop as beginning and ending at the intersection point 
of the loops. Around each loop, .0 and 0  then,;so,0 IIIIII  WQWQWQU  
Heat flows into the system for loop I and out of the system for loop II. 
 
 
19.19:  a) Yes; heat has been transferred form the gasses to the water (and very likely the 
can), as indicated by the temperature rise of the water. For the system of the gasses, 

0Q . 
b) The can is given as being constant-volume, so the gasses do no work. Neglecting the 

thermal expansion of the water, no work is done.  c) .0 QWQU  
 
 
19.20:  a)  J. 1067.1)m 1000.1m Pa)(0.824 10026.2( 53335  Vp    

J.10032J1067.1)kgJ10kg)(2.20 00.1(       

b)
656

v





.
WmLWQU

 

 
 



19.21:  a) Using Equation (19.12), or K, 9.167d K)molJ mol)(20.76 (0.185
J 645d

V
 nC

QT T = 948 K. 

             
b) Using Equation (19.14), K. 900or  K, 9.119d .K)molJmol)(29.07(0.185

J645d   TT
pnC

Q  

 
 
19.22: a) J.4.99)CK)(40.0molJmol)(12.470100.0( TnCV  
 

 



19.23:  C30.0mol.00.5 Tn  
 

a) For constant p, 
 

J3120)CK)(30.0molJmol)(20.7800.5(  TnCQ p   
 

0Q  so heat goes into gas. 
 

b) For constant V, 
 

J1870)CK)(30.0molJmol)(12.4700.5(  TnCQ v  
 
Q > 0 so heat goes into gas. 
 

c) For constant p, 
 

J5540)CK)(30.0molJmol)(36.9400.5(  TnCQ p  
 
Q > 0 so heat goes into gas. 

 
 
19.24: For an ideal gas, ,TCU V  and at constant pressure, 

RCTnRVp V 2
3  Using.   for a monatomic gas, 

 

J.360)m1000.2m10Pa)(8.001000.4(
2
3

2
3

2
3 33334 






 VpTRnU  

 
19.25:  For constant TnCQp p ,  
        Since the gas is ideal, nRTpV   and for constant ., TnRVpp   

        Vp
R

C
nR

VpnCQ p
p 















 

  

         Since the gas expands, 0V  and therefore 0  .0  QQ  means heat goes into 
gas. 
 
 
19.26: For an ideal gas, ,TCU V  and at constant pressure, .TnRVpW   
Using RCV 2

3 for a monatomic gas, .)( 2
3

2
3

2
3 WVpTRnU   Then 

.so, 5
2

2
5  QWWWUQ  

 
 



19.27:  a) For an isothermal process, 
 
             4)1K)ln(K)(350.15molJ5mol)(8.314150.0()(ln  12  VVnRTW  
                                              J.605  
 
     b) For an isothermal process for an ideal gas, .0 and 0  UT   c) For a process 
with ,0U J605WQ ; 605 J are liberated. 
  
 
19.28: For an isothermal process, J.335so,0  QWU  
 
 
19.29:  For an ideal gas ,1 VVp CRCCγ  and so  )1(V RC  

KmolJ5.65)127.0(K)molJ3145.8(   and K.molJ8.73  RCC Vp  
 
 
19.30: a)         

 
b) )( 1212 TTnRpVpV   
                        J.208K)K)(100.0molJ5mol)(8.314250.0(   
 
c) The work is done on the piston. 
d) Since Eq. (19.13) holds for any process, 
 
         J.712K)K)(100.0molJmol)(28.46250.0(  TnCU V  
 
e) Either J10924givesor 3 QWUQTnCQ P  to three significant 

figures. 
f) The lower pressure would mean a correspondingly larger volume, and the net 

result would be that the work done would be the same as that found in part (b). 
 



19.31:   ,11a) γR C p  and so 
    J.553

220.111
C0.5KmolJ3145.8mol 40.2





 TnCQ p  

 
    J.454220.1J553 b)  γTnCTnC PV (An extra figure was kept for 

these calculations.) 
 
 
19.32: a) See also Exercise 19.36; 
 

  Pa. 1076.4
m 0400.0
m 0800.0Pa 1050.1 5

3

3
5

2

1
12

3
5




















γ

V
Vpp  

 
b) This result may be substituted into Eq. (19.26), or, substituting the above form 

for 2p , 
 

   J. 1060.1
 0400.0
 0800.01m0800.0Pa1050.1

2
3

1
1

1

435

1

2

1
11

3
2

















































γ

V
VVp

γ
W

 

 
c) From Eq. (19.22),       ,59.10400.00800.0 321

1212  VVTT and since 
the final temperature is higher than the initial temperature, the gas is heated (see the note 
in Section 19.8 regarding “heating” and “cooling.”) 
 
 



19.33: a) 
 

 
 

)19.6 Examplein  as ,400.1 Use( b) γ From Eq. (19.22), 
 

     C495K 7681.11K 15.293 400.01
2112  VVTT  

 
and from Eq. (19.24),      atm. 1.291.11atm 00.1 400.1

2112  VVpp  
 
 
19.34: 0 gas diatomic idealfor  4.1  WUQγ for adiabatic process 
 

     
γ

ii
γ VPPV

PdVWU



 
const

 

 
 

 
J.  105.1atm L 50

L) (30 atm) 2.1(

VPdVU

3
4.11

1.4-1L)30(1.4-1L)10(1.4

10L1
L301

1V
iiV

VP10L
L30

ii












 



 

 
The internal energy increases because work is done on the gas 0).( U  
The temperature increases because the internal energy has increased. 
 
 
19.35: For an ideal gas TnCU V . . ofsign   theas same  theis  ofsign  The TU   
 

decreases. gas  theof
energy  thenegative; is  so negative is  . so positive is 1 and 

)( and 

 so,  and

1212

1
1212

1
22

1
11

 1
22

1
11

UTTTpp
ppTTpTpT

pnRTVVTVT









 

 
 



19.36: Equations (19.22) and (19.24) may be re-expressed as 
 

. , 
2

1

1

2

1

2

1
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γγ
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K. 298)32( K)350(atm,27.2)32( atm)00.4(, b)

K. 267)32K)(350(atm,04.2)32atm)(00.4(, )
5
2

5
7

3
2

3
5

225
7

223
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Tpγ

Tpγa
 

 
 
 
 
 
 
 

19.37: a) 
 

 
 
       b) From Eq. (19.25), )C (40.0 K)molJ (12.47 mol)(0.450  TnCW V  

J.224  WWQU  
 
 

flow.heat  no is  thereand 0 process, adiabatican For J.224  Q



19.38: a) K. 301)KmolJ (8.3145 mol) 1.0(
)3m 310(2.50 Pa) 510001(  

.
nR
pVT  

 
b)  i) Isothermal: If the expansion is isothermal, the process occurs at constant 

temperature and the final temperature is the same as the initial temperature, namely 
K. 301  

 
                  ii) Isobaric: 

K. 601
K)molJ (8.3145 mol) 100.0(

)m 10(5.00 Pa) 1000.1( 335









T
nR
pVT  

iii) Adiabatic: Using Equation (19.22), .189))(K301(
)2(

))(301( 67.
2
1

67.
1

67.
1

2 1
2

1
11 K

V
VKT

V
VT  



 

 
 

19.39: See Exercise 19.32. a) Pa)1010.1()( 5
2112  VVpp   

b) Using Equation (19.26),  

,
)129.1(

)]m100.1)(mN105.4()m100.5)(mN101.1[(
1

)(

32343335

2211













VpVpW
 

 

.818.0))m1000.1()m1000.5(()()( )c 29.032331
1212  VVTT  The final 

temperature is lower than the initial temperature, and the gas is cooled. 
 
 

Pa.1050.4))m10100.1m1000.5(( 429.13233  

 J345 thusand W

19.40: a) The product pV  increases, and even for a non-ideal gas, this indicates a 
temperature increase. b) The work is the area in the Vp   plane bounded by the blue line 
representing the process and the vericals at b. and VVa  The area of this trapeziod is 
 

J.4800)m(0.0400Pa)1040.2(
2
1))((

2
1 35  abab VVpp  

 
 



19.41: W  is the area under the path from A to B in the pV -graph. The volume 

decreases, so W < 0. J101.95)m Pa)(0.6010150Pa10500( 5333
2
1 W  

TnCU V   

nR
VpVpTTT

nR
VPT

nR
VpT 1122

12
22

2
11

1 so , 
  

))(( 1122 VpVpRCU V   
10015.5)]mPa)(0.8010150()mPa)(0.2010500)[(315.885.20( 3333 U

Then gives WQU   
J102.45J101.95J10015.5 554  WUQ  

Q is negative, so heat flows out of the gas. 
 
 



19.42: (a) abcacvabcacabc WTnCWUQ   
get nRPVTnRTPVTac  :  
 

nR
VPVP

nR
VP

nR
VPTTT aaccaacc

acac


  

K289
K) moleJ8.31mole)((

)mPa)(0.0020100.1()mPa)(0.010100.1(

3
1

3535




 acT  

Pa)100.1(m0.002)(0.010

Pa)105.2(m)002.0010.0(
2
1 graph  under  Area 

53

53



 PVWabc  

 

gas  theinto J3000J 108.1J 1020.1

J 1020.1K 289
K mole

J31.8
2
3mole

3
1         

2
3

J 1080.1

33

3

ac

3





































abc

acacv

abc

Q

TRnTnCU

W

 

 
 
 
 
 

acU (b) in the same = 1200 J 
 

   
gas  theinto J 2000J 800J 1200

J 800Pa 100.1m002.0010.0area 53




acacac

ac

WUQ
W

 

 
(c) More heat is transfered in abc than in ac because more work is done in abc. 
 
 
19.43:      J 0.30J 0.60J 0.90 a)  WQU for any path between a and b. If 
W=15.0 J along path abd, then J. 0.45J 0.15J 0.30  WUQ  b) Along the return 
path,     J; 0.65J 0.35J 0.30 and J, 0.30  WUQU the negative sign 
indicates that the system liberates heat.   
c) In the process 0, dVdb and so the work done in the process ad is  

      , process In the J. 0.23J 0.15J 00.8J;0.15 dbWUUQ adadad   
J. 22.0J 0.8J 0.30 so and 0  dbdb UUQW  

 
 



19.44: For each process, WUQ  . No work is done in the processes ab and dc, and 
so adcadabcbc WWWW   and , and the heat flow for each process is: for :J 90, Qab for 

 J. 350,for  :J 300J 120J 180,for  :J 890J 450J 440,  QdcQadQbc for Q   
= 350 each process, heat is absorbed in each process. Note that the arrows representing 
the processes all point the direction of increasing temperature (increasing U). 
 
 
19.45: We will need to use Equations (19.3),   . 4),-(17 and 12 WQUVVpW   

 
a) The work done by the system during the process: Along ab or cd, W=0. Along bc, 

   ., Along . acaadaccbc VVpWadVVpW   
 

b) The heat flow into the system during the process: .WUQ   
 

   
   
 

         

     acaacadcacaadc

accacaccbcababcaccabc

dcdcdcdc

acaadadadad

accbcbcbcbc

abababab

VVpUUQVVpW
adcca

VVpUUVVpUUUUQVVpW
abcca

UUQUUU
VVpUUQUUU

VVpUUQUUU
UUQUUU











 .
:path  along  state  to state From

 .
:path  along  state  to state From c)
.0 so ,

. so ,
. so ,

.0 so ,

Assuming . and ,  , adcabcadcabcac WWQQpp   
d) To understand this difference, start from the relationship .UWQ   The internal 
energy change U  is path  independent and so it is the same for path abc and path adc. 
The work done by the system is the area under the path in the pV-plane and is not the 
same for the two paths. Indeed, it is larger for path abc.  Since U is the same and W is 
different, Q must be different for the two paths. The heat flow Q is path dependent. 
 
 



19.46: a) 

 
 

    

0 since gas  the J; 28,000                                            
Pa) 6000)(m 7.00(Pa) 2000)(m (7.00                                            

)area(0)area(0                                            
                                    b)

33








Won

dabc
WWWWW dacdbcab

 

 
    c) J000,28)J000,28(0  WUQ  
         Heat comes out of the gas since Q < 0. 
 
 
19.47: a) We aren’t told whether the pressure increases or decreases in process bc. The 
cycle could be 

 

 
 

In cycle I, the total work is negative and in cycle II the total work is positive. For a cycle, 
tottotso,0 WQU   

The net heat flow for the cycle is out of the gas, so heat 
.0 and 0 tottot  WQ Sketch I is correct. 

b) J800tottot  QW  

cabcab WWWW tot  
.0since0  VWbc  

pVpWab  since   is constant. But since it is an ideal gas, TnRVp   
J1660)(  abab TTnRW  

J2460J1660J800tot  abca WWW  



19.48:  Path ac has constant pressure, so ,TnRVpWac   and 
 
                 )( c aac TTnRW   
                        J.104.789K)300KK)(492molJ5mol)(8.3143( 3  
Path cb is adiabatic , so ),0( TnCUUQWQ Vcb   and using  

,RCC pV   
 
       ))(( cTTRCnW bpcb   
 
                J.10735.6K)492KK)(600molJ3145.8KmolJmol)(29.13( 3   
 
Path ba has constant volume, so .0baW  So the total work done is 
                       bacbac WWWW   
                            0J10735.6J10789.4 33   
                            J.1095.1 3  
 
 
19.49:  a) 

 
 
 
Ta = Tc 

19.50:  a) mol.5.21K)K)(40.0molJ07.29(
J)105.2( 4

 


TC
Q
p

n  

 
      b) J.1079.1J)105.2( 4

29.07
20.764 

P

V
C
C

V QTnCU     

     c) J.1015.7 3 UQW   
     d) U   is the same for both processes, and if 

J.1079.1 and  0  ,0 4 UQWdV  
 
 



19.51: and  so and ,0 VpWQU   

         ,m226.0
Pa)10(9.50

J)1015.2( 3
5

5






p

WV  

 
with the negative sign indicating a decrease in volume. 
 
 
19.52:   a)  
 

 
b) At constant temperature, the product pV is constant, so 

  L.00.6L)5.1()(
Pa102.50
Pa101.00

2112 4

5




ppVV  The final pressure is given as being the same 

as Pa.105.2 4
23  pp  The final volume is the same as the initial volume, so 

K.0.75)( 1313  ppTT  c) Treating the gas as ideal, the work done in the first process is 
 
         )ln( )ln( 211112 ppVpVVnRT   

  










 

Pa102.50
Pa101.00ln  )m10Pa)(1.51000.1( 4

5
335  

                                 J,208  
 
keeping an extra figure. For the second process, 
 

))(1()()( 2112212232 ppVpVVPVVp   

                               J.113
Pa102.50
Pa1000.11)m10Pa)(1.51050.2( 4

5
334 











   

 
The total work done is J.95J113J208   d) Heat at constant volume. 
 
 



19.53:   a) The fractional change in volume is 
 

.m104.32K)0.30)(K1020.1)(m1020.1( 341332
0

  TβVV  
 
       b)   J.648)m1032.4))(m0.0200N)1000.3(()( 3424  VAFVp  
 

K)K)(30.0kgJ1051.2)(mkg791)(m1020.1(c) 3332
0  TρCVTmCQ pp

d) J1015.7 5 WQU to three figures.  e) Under these conditions, there is no 
substantial difference between . and pV cc  

 
 

J.107.15 5

19.54: a) .m 1086.2)1000.2)(C 0.70)()C(101.5( 383215
0

 TVβ  
  b) J. 1088.2 3Vp  

c)  TCρVTmCQ  0  

               
J.1944

)C K)(70.0kgJ390)(m 1000.8)(mkg 109.8( 3633


 

 

a) To three figures, 1940 QU  J.  e) Under these conditions, the difference is not 
substantial. 

 
 
19.55: For a mass m of ejected spray, the heat of reaction L is related to the temperature 
rise and the kinetic energy of the spray by or ,)21( 2mvTmCmL   

 kg.J 104.3)sm 19(
2
1)C (80)KkgJ4190(

2
1 522  vTCL  

 
 
19.56:   Solving Equations (19.22) and (19.24) to eliminate the volumes, 

.or  ,
11

2

1
212

1
21

1
1

γ

p
pTTTpTp γγγγ












  

Using C.176 is which K, 449)K)(15.273( air,for  7
2

5

6

1080.2
101.60

15
7 


Tγ  

 
 



19.57: a) As the air moves to lower altitude its density increases; under an adiabatic 
compression, the temperature rises. If the wind is fast-moving, Q is not as likely to be 
signigicant, and modeling the process as adiabatic (no heat loss to the surroundings) is 
more accurate.   b)  See Problems 19.59 and 19.56: The temperature at the higher 
pressure is 

and C13.9 is which K, 1.287Pa)) 10Pa)/(5.60 10K)((8.12 15.258( 7244
2 T  so the 

temperature would rise by 11.9 .C  
 
19.58: a) 

   
  
  b)   The work done is 

)).4()2(()2( 0300000 VpVp
R

CVVpW V   

so and )42( 0003
 VVpp  





   )22(1 2

00
γV

R
CVpW  

Note that 0p is the absolute pressure. c) The most direct way to find the temperature is to 
find the ratio of the final pressure and volume to the original and treat the air as an ideal 
gas; 
 

  γ
γγ

TT
V
V

V
VT
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VpTT 
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00
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33
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2
1  

        d) Since    .12, 0000
0

00

0

00 






 
R

CVpTTRC
RT

VpQ
RT

Vpn V
V This amount of 

heat flows into the gas. 
 
 



19.59:   a) From constant cross-section area, the volume is proportional to the length, and 
Eq. (19.24) becomes   γppLL /1

2112  and the distance the piston has moved is 

                                
Pa105.21
Pa1001.11m250.01

400.1/1

5

5/1

2

1
121 
















































γ

p
pLLL

                                      m. 0.173    
        b)   Raising both sides of Eq. (19.22) to the power γ and both sides of Eq. (19.24) to 
the power 1γ , dividing to eliminate the terms )1(

2
)1(

1  and  γγγγ VV and solving for the ratio 
of the temperatures, 
 

 

 
 

C.206K 480
Pa 101.01
Pa 1021.5K 15.300

400.111

5

5/11

1

2
12 





















 γ

p
pTT  

 
Using the result of part (a) to find 2L and then using Eq. (19.22) gives the same result. 
c)   Of the many possible ways to find the work done, the most straightforward is to use 
the result of part (b) in Eq. (19.25), 
 

    J, 1045.7C 0.179KmolJ 8.20mol 0.20 4 TnCW V  
 
where an extra figure was kept for the temperature difference. 
 
 



19.60:   a) 
 

 
 

b)  The final temperature is the same as the initial temperature, and the density is 
proportional to the absolute pressure. The mass needed to fill the cylinder is then 
 

kg.1002.1
Pa1001.1
Pa1045.1)m10575()mkg23.1( 3

5

5
363

a
0

 




p
pVρm  

 
The increase in power is proportional to the increase in pressure; the percentage increases 
is %.4444.0101.1

45.1   c) The temperature of the compressed air is not the same as the original 
temperature; the density is proportional to the pressure, and for the process,  and modeled 
as abiabatic, the volumes are related to the pressure by Eq. (19.24), and the mass of air 
needed to fill the cylinder is  
 

40.11

5

5
363

1

a
0 Pa101.01

Pa1045.1)m10575()mkg23.1( 


















 



p
pVρm  

                                            kg,1016.9 4  
 
an increase of %2929.01)01.145.1( 04.11   
 
 
19.61: a) For as isothermal process for an ideal gas, 

J.300 so  0, and 0  WQUT  b) For an adiabatic process, Q = 0, and 
J.300 WU  c) For isobaric, .dor  ,d nR

WTTnRpdVW   Then, TnCQ dp  
and substituting for dT gives 

d use, find ToJ.750 Thus,J).300(or, 2
5

2
5 nCUUQRQCnCQ VR

W
R
W

pnR
W

p 

 Substituting for J.450)( ,andd 2
3

2
3  W

nR
WRnUCT V  

 
 
 
 



19.62:  a) 
 

 
 

         b) The isobaric process doubles the temperature to 710 K, and this must be the 
temperature of the isothermal process. c) After the isothermal process, the oxygen is at its 
original volume but twice the original temperature, so the pressure is twice the original 
pressure, Pa.1080.4 5  d) Break the process into three steps. 

J;738K)K)(335molJ5mol)(8.31425.0(o1  nRTW  
)693)(.K710)(KmolJ5mol)(8.314250.0()21ln( )2()(pln  o212  TnRpnRTW

0).d (because 03  VW  
Thus, J.285W  

 
 

19.63: a) During the expansion, the Kelvin temperature doubles and 
 TnCQTnRVpWT p J,738K)K)(355molJ5mol)(8.314250.0( K.300

J2590K)K)(355molJmol)(29.17250.   and J.1850 WQTnCU V   b) The 
final cooling is isochoric; .0 so and 0  WdV  The temperature change is 

J.1850 and K,355  TnCUQT V   c) for the isothermal compression, 
.0 so and 0  UT  

 



19.64: a) 

 
 

         b)   At constant pressure, halving the volume halves the Kelvin temperature, and the 
temperature at the beginning of the adiabatic expansion is K.150 The volume doubles 
during the adiabatic expansion, and from Eq. (19.22), the temperature at the end of the 
expansion is K.1142)1K)(150( 0.40   c) The minimum pressure occurs at the end of the 
adiabatic expansion. During the heating the volume is held constant, so the minimum 
pressure is proportional to the Kelvin temperature, 

Pa.106.82K) 300KPa)(113.71080.1( 45
min   

 
19.65: a) J,187K)150K)(molJ5mol)(8.314150.0(  TnRVpW  

J.467 J,654K)150K)(molJmol)(29.07150.0(  WQUTnC p  

b) From Eq. (19.24), using the expression for the temperature found in Problem 
19.64, 

J,113)21(K)(1K)(150molJ5mol)(8.314150.0(
40.0
1 40.0 W  

0  for an adiabatic process, and 
.0so,0 c) J.113  WdVWWQU Using the temperature change as found 

in Problem 19.64 and part (b), 
andJ,580K)113.7-KK)(300molJmol)(20.76150.0(  QWQUTnCV

 



19.66:   a)   J.103.29ln(3) ln 3
1

2  nRTnRTW V
V  

         b) See Problem J.1033.2))31(1( ;b)(32.19 3
1

3
2

TnCV  

         c) J.1000.622so,3 3
1112  nRTpVVpVV  

         
         d)   

 
 

The most work done is in the isobaric process, as the pressure is maintained at its 
original value. The least work is done in the abiabatic process.  e) The isobaric process 
involves the most work and the largest temperature increase, and so requires the most 
heat. Adiabatic processes involve no heat transfer, and so the magnitude is zero.  f) The 
isobaric process doubles the Kelvin temperature, and so has the largest change in internal 
energy. The isothermal process necessarily involves no change in internal energy. 
 
 



19.67:    a)     

 
 

      b) No heat is supplied during the adiabatic expansion; during the isobaric expansion, 
the heat added is .TnC p    The Kelvin temperature doubles, so K15.300T  and 

J.103.63K)K)(300.15molJmol)(34.60350.0( 3Q   c) For the entire process, 
0T  and so .0U   d) If J.1063.3  ,0 3 QWU   e) During the isobaric 

expansion, the volume doubles. During the adiabatic expansion, the temperature 
decreases by a factor of two, and from (19.22) Eq.  the volume changes by a factor of 

,22 33.01)1(1 γ  and the final volume is .m114.02)m1014( 333.0133    
 
 



19.68:    a) The difference between the pressure, multiplied by the area of the piston, 
must be the weight of the piston. The pressure in the trapped gas is .200 πr

mg
A

mg pp   
      
      b) When the piston is a distance yh   above the cylinder, the pressure in the trapped 
gas is 

                            















 

yh
h

πr
mgp 20  

and for values of y small compared to   .1~1,
1

h
y

h
y

yh
hh 



The net force, taking the 

positive direction to be upward, is then 
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1

2
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2
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mgπrp
h
y

mgπrp
h
y

πr
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This form shows that for positive h, the net force is down; the trapped gas is at a lower 
pressure than the equilibrium pressure, and so the net force tends to restore the piston to 
equilibrium. c) The angular frequency of small oscillations would be 
 

 
.1

2
0

2
02














mg
πrp

h
g

m
hmgπrpω  

 
If the displacements are not small, the motion is not simple harmonic. This can be seen be 
considering what happens if y ~ h; the gas is compressed to a very small volume, and 
the force due to the pressure of the gas would become unboundedly large for a finite 
displacement, which is not characteristic of simple harmonic motion. If y >> h (but not so 
large that the piston leaves the cylinder), the force due to the pressure of the gas becomes 
small, and the restoring force due to the atmosphere and the weight would tend toward a 
constant, and this is not characteristic of simple harmonic motion. 
 
 



19.69:   a)  Solving for p as a function of V and T and integrating with respect to V, 
 

.11ln 

                 

12

2

1

2
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nbV
nbVnRTpdVW
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nbV
nRTp
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When  ,ln ,0 12 VVnRTWba  as expected.  b) Using the expression found in part 
(a), 

 

        

   
    
    

  

J. 1011.3ln(2)  ii)
J. 1080.2        

m 1000.2
1

m 1000.4
1mol 80.1molmJ 554.0               

mol/m 1038.6mol 80.1m 1000.2
mol/m 1038.6mol 80.1m 1000.4ln                 

K 300KmolJ 3145.8mol 80.1 i)

3

3

3333
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2533
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nRT
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         c)   300 J to two figures, larger for the ideal gas. For this case, the difference due to 
nonzero a is more than that due to nonzero b. The presence of a nonzero a indicates that 
the molecules are attracted to each other and so do not do as much work in the expansion.  



20.1:   a) %.8.33338.0 b)     J.6500J4300J2200 6500
2200   

 
20.2:   a) %.9.28289.0b)      J.2600J6400J9000 J9000

J2600   
 
20.3:   a) %.0.23230.0100,16

3700   
       b)  J.12,400J3700J100,16   
       c)  .g350.0

kgJ1060.4
J100,16

4 


   

       d)  hp.298kW222s)60.0J)(3700(   
 
 
20.4:  a) J.1043.6 5

)280.0(
s)W)(1.0010180(1

3

 PtQ e  

      b) J.104.63s)W)(1.0010180(J1043.6 535  PtQ    
 
 
20.5:   a) MW.970MW330MW1300 b)  %.2525.0MW1300

MW330 e  
 
 
20.6:   Solving ,for  (20.6) Eq. r  
                                        or  )1ln(ln)1( erγ   

                                 .8.13)350.0()1( 5.21
1

 γer  
If the first equation is used (for instance, using a calculator without the yx function), note 
that the symbol “e” is the ideal efficiency ,  not the base of natural logarithms. 
 
 
20.7:   a)  C.453K726K)(9.5)15.295( 0.401  γ

ab rTT  
      b) Pa.1099.1Pa)(9.50)1050.8( 64  γγ

ab rpp  
 
 
20.8:  a) From %.5858.0)8.8(11  (20.6), Eq. 40.01  γre  
      b) %,60)6.9(1 40.0    an increase of 2%. If more figures are kept for the 
efficiencies, the difference is 1.4%. 
 
 
20.9:  a) J.1062.1 4

10.2
J 1040.3 4

 
K

QCW  

       b) J.1002.5)1( 41
CCH  KQWQQ  

 
 



20.10:  )(1
f

C TcL
t
m

KtK
Q

t
WP p 
















  

 

                    W.128K)K)(2.5kgJ(485kg)J1060.1(
s3600

kg0.8
8.2

1 5 







  

 

20.11:   a) , b)    W.767
s0.60

J1080.9J1044.1 45

PHEER 
 or 

  .27.7)413.3(
W767
W1633)413.3(

]s)(60J)108.9(s)(60J)1044.1([
s)(60J)108.9(

45

4





EER  

 
 
20.12:  a) )( waterwatericeiceC TcTcLmQ f   

                     
J. 1090.8

K) K)(25.0kgJ 4190(K) K)(5.0kgJ 2100(kgJ 10334 kg) 80.1(
5

3



  

       b)  J. 1037.3 5
40.2

J 1008.8|| 5C  
K

QW   
c)  || that (note J 101.14J 108.08J 1037.3|||| H

655
CH QQWQ  

).)1(|| 1
C KQ   

 
 
20.13: a) J. 215J 335J 550|||| CH  QQ  
       b) K. 378J) 550J K)(335 620(|)|||( HCHC  QQTT  
       c) %.39J) 550J 335(1)||||(1 HC  QQ  
 
 
20.14: a) From Eq. (20.13), the rejected heat is J. 103.72J) 6450)(( 3

K 520
K 300   

b) J. 102.73J 103.72J 6450 33   
c) From either Eq. (20.4) or Eq. (20.14), e=0.423=42.3%. 
 
 

20.15: a) 
C

H
f

C

H
CH ||||

T
TmL

T
TQQ   

J, 10088.3
K) (273.15
K) (287.15kg)J 10kg)(334 0.85( 73   

or    ))(1(||||||||b)  figures.  two toJ 1009.3 HHCH
7 TTQQQW C  
 J) 1009.3( 7 J. 1049.2))15.29715.273(1( 6  

 
 



20.16: a) From Eq. (20.13), J. 492J) 415)(( K 270
K 320  b) The work per cycle is 

J, 77J 415J 492   and  W,212)75.2( s 1.00
J 77 P keeping an extra figure. 

 c) 5.4.K) (50K) 270()( CHC TTT  
 
 
20.17: For all cases, .|||||| CH QQW     a) The heat is discarded at a higher 
temperature, and a refrigerator is required;  J) 1000.5()1)((|||| 3

CHC TTQW  
J. 665)1)15.263298.15((     b) Again, the device is a refrigerator, and 

J. 190)1)15.263/15.273((|||| C  QW    c) The device is an engine; the heat is taken 
form the hot reservoir, and the work done by the engine is  J) 1000.5(|| 3W  

J. 285)1)15.263248.15((   
 
 
20.18: For the smallest amount of electrical energy, use a Carnot cycle. 

   
 J 102.09       

K)J 10kg)(334 (5.00K) 20( 4190kg) (5.00       
6

3
Kkg

J

F waterfreezeC 0  water toCoolin









 mLTmcQQQ

 

Carnot cycle: 
K293K268

J1009.2 out
6

hot

out

cold

in Q
T
Q

T
Q




  

  
                         room)  theJ(into1028.2 6

out Q  
                          J1009.2J1028.2 66

inout  QQW  
                          energy) alJ(electric1095.1 5W  
      
 
20.19:  The total work that must be done is 
 
        J104.90m)100)(smkg)(9.80500( 52

tot  mgyW  
        J250H Q      Find CQ  so can calculate work W  done each cycle: 

       
HT

T
Q
Q C

H

C    

          J7.120K)(773.15K)(373.15J)250()( HHCC  QTTQ  
         J3.129HC  QQW  

         The number of cycles required is cycles.3790
J3.129

J1009.4 5
tot 




W
W

 

 



20.20:  For a heat engine,     J, 7500600.01)J 3000(1/CH  eQQ  
J. 4500)J 7500)(600.0( then and H  eQW This does not make use of the given value 

of      K  320600.01K 8001 engine,Carnot  afor  then used, is  If  . HCHH  eTTTT  
,/ and CHCH TTQQ  which gives the same result. 

 
 
20.21:     J10336.1J/kg10334kg0400.0 43

fC  mLQ  

                   
J 1089.4

J 10825.1K15.273K373.15J10336.1
3

HC

44
CCHH

H

C

H

C







QQW
QTTQ

T
T

Q
Q

 

 
 
20.22:   The claimed efficiency of the engine is .%58

J1060.2
J1051.1

8

8




  While the most efficient 

engine that can operate between those temperatures has efficiency %.381 K400
K250

Carnot e
The proposed engine would violate the second law of thermodynamics, and is not likely to 
find a market among the prudent. 
 
 
20.23:   a) Combining Eq. (20.14) and Eq. (20.15), 
 

     .1
11

1
/1

/

HC

HC

e
e

e
e

TT
TTK 








  

 
         b)   As ),0(heat  no exhausts engine )1(perfect  a ;0 ,1 C  QeKe and this is 
useless as a refrigerator. As )0( useless a ; ,0  eKe engine does no work 

),0( W and a refrigerator that requires no energy input is very good indeed. 
 
 

20.24:      
  .KJ428

k15.273
kgJ 10334 kg350.0 a)

3

C

f

C





T

mL
T
Q  

        .KJ 392
K298.15

J1017.1 b)
5


  

         c)  K.J36)KJ392(KJ428 S  (If more figures are kept in the 
intermediate calculations, or if  K))298.151(K)15.2731((  QS  

K.J35.6 used, is S  
 
 



20.25:   a) Heat flows out of the C0.80   water into the ocean water and the C0.80   
water cools to C0.20   (the ocean warms, very, very slightly). Heat flow for an isolated 
system is always in this direction, from warmer objects into cooler objects, so this 
process is irreversible. 
 

b)  kg100.0 of water goes form  TmcQ is flowheat   theand C20.0  toC0.80  
J102.154)60.0CK)( kgJkg)(4190(0.100 4  

This Q comes out of the 0.100 kg of water and goes into the ocean. 
For the 0.100 kg of water, 

KJ78.02353.15)293.15ln( K)kgJkg)(4190100.0()ln( 12  TTmcS  
For the ocean the heat flow is J10154.2 4Q and occurs at constant T: 

KJ76.85
K293.15

J10154.2 4





T
QS  

KJ7.7KJ85.76KJ02.78oceanwaternet  SSS  
 
 
20.26: (a) Irreversible because heat will not spontaneously flow out of 15 kg of water into 
a warm room to freeze the water. 
 
         (b) roomice SSS   
 

                   
room

F

ice

F

T
mL

T
mL

  

 

                   
K293

kg)J10kg)(3340.15(
K273

)kgJ10kg)(3340.15( 33 



  

 
                   KJ250,1   
 
This result is consistent with the answer in (a) because 0S  for irreversible processes. 
 
 
20.27:   The final temperature will be 
 

C,60
kg)(3.00

C)kg)(80.0(2.00C)kg)(20.000.1(


  

 
and so the entropy change is 

K.J4.47 
K353.15
K333.15ln  kg)00.2(

K293.15
K333.15ln  kg)(1.00K)kgJ4190( 

























  

 



20.28:   For an isothermal expansion, 

K.J31.6 isentropy  of change The . and 0,0 K293.15
J1850 

T
QWQUT  

 
 

20.29:   The entropy change is . and , vmLQ
T
QS 


  Thus, 

 

K.J644
K)216.4(

)kgJ10kg)(2.0913.0( 4








T
mLS v  

 
 
20.30:   a) K.J1005.6 3

K)15.373(
)kgJ10  kg)(225600.1( 3

v  
T

mL
T
QS  Note that this is the change 

of entropy of the water as it changes to steam.  b)  The magnitude of the entropy change 
is roughly five times the value found in Example 20.5.  Water is less ordered (more 
random) than ice, but water is far less random than steam; a consideration of the density 
changes indicates why this should be so. 
 
 
 

20.31:    a)   K.J109
K)15.373(

)kgJ10  kg)(225610  0.18( 33
v 






T
mL

T
QS  

        b)                 KJ8.72
K)34.77(

kg)J10kg)(201100.28(:N
33

2 
 

 

 

                             KJ2.102
K)2466(

kg)J10kg)(233610(107.9 :Ag
33


 

 

 

                             KJ6.86
K)630(

kg)J10kg)(27210(200.6 :Hg
33


 

 

 
        c)  The results are the same order or magnitude, all around KJ100  .The entropy 
change is a measure of the increase in randomness when a certain number (one mole) 
goes from the liquid to the vapor state. The entropy per particle for any substance in a 
vapor state is expected to be roughly the same, and since the randomness is much higher 
in the vapor state (see Exercise 20.30), the entropy change per molecule is roughly the 
same for these substances. 
 
 



20.32:   a) The final temperature, found using the methods of Chapter 17, is 
 

C,94.28
K)kgJkg)(4190(0.800K)kgJkg)(39050.3(

)CK)(100kgJkg)(39050.3(





T  

 
or C9.28   to three figures. b) Using the result of Example 20.10, the total change in 
entropy is (making the conversion to Kelvin temperature)  
 

K.J2.49
K273.15
K302.09ln  K)kgJkg)(4190800.0(       

K 373.15
K 302.09ln  K)kgJkg)(39050.3(



















S

           

 
(This result was obtained by keeping even more figures in the intermediate calculation. 
Rounding the Kelvin temperature to the nearest K01.0  gives the same result. 
 
 
20.33:   As in Example 20.8, 
 

         K.J  74.6
m 0280.0
m 0.0420ln  K)molJ 5mol)(8.314 00.2(ln  3

3

1

2 


















V
VnRS  

 
 
20.34:   a) On the average, each half of the box will contain half of each type of 
molecule, 250 of nitrogen and 50 of oxygen.  b ) See Example 20.11. The total change in 
entropy is  
 
  ln(2) )(ln(2) ln(2) 2121 kNNkNkNS   
 
          K.J105.74ln(2) K)J10381.1)(600( 2123    
 
c) See also Exercise 20.36. The probability is       ,104.2212121 181600100500   
and is not likely to happen. 
        The numerical result for part (c) above may not be obtained directly on some 
standard calculators. For such calculators, the result  may be found by taking the log base 
ten of 0.5 and multiplying by 600, then adding 181 and then finding 10 to the power of 
the sum. The result is then .104.21010 18187.0181    
 
 



20.35:   a) No; the velocity distribution is a function of the mass of the particles, the 
number of particles and the temperature, none of which change during the isothermal 
expansion. b) As in Example 20.11, 23

1
1 ww N (the volume has increased, and 12 ww  ); 

and ln(3), )(3 ln)ln( 12 Nww N   K.J18.3ln(3) )3ln(ln(3)  nRknNkNS A  
c) As in Example 20.8,   ln(3), ln 12 nRVVnRS  the same as the expression used in 
part (b), and K.J3.18S  
 
 
20.36: For  those with a knowledge of elementary probability, all of the results for this 
exercise are obtained from 
 

  ,
2
1

)!4(!
!4)1()(

4










 

kk
ppkP knkn

k  

 
where P(k) is the probability of obtaining k heads, 2

11 and 4  ppn  for a fair coin. 
This is of course consistent with Fig. (20.18). 
 

a)     16
14

!4!0
!44

!0!4
!4 2121   for all heads or all tails.   b)     .21 4

1
!3!1

!44
!1!3

!4   

c)   .21 8
34

2!2!
4!   d) .122 8

3
4
1

16
1   The number of heads must be one of 0, 1, 2, 3 or 

4, and there must be unit probability of one and only one of these possibilities. 
 
 
20.37:  a) J300  J,400H  WQ  
        J100  so  , HCHC  QWQQQW  

        Since it is a Carnot cycle, 
H

C

H

C

T
T

Q
Q

  

 
         C73K200J)(400J)100(K)15.800()(HC  HC QQTT  
 

       
  

cycles 1034.3
cycleJ 100

J103.34

is required cycles ofnumber   theso  J, 100 is cycle onefor  
J1034.3kgJ10334kg0.10 is required  Total b)

4
6

63
fC









CQ
mLQ

 

 
 



20.38: a) Solving Eq. (20.14) for 
,1

1, CHH e
TTT


  so the temperature change 

            K.8.27
600.0
1

55.0
1K15.183

1
1

1
1

CHH 





 













ee

TTT  

 
       b) Similarly,   H,HHC  if and ,1 TTeTT   
 

                              K.3.15
600.0
050.0K15.183

1CCC 











e
eeTTT  

 
 
20.39: The initial volume is .m1062.8 33

1 1

1  p
nRTV  a) At point 1, the pressure  

is given as atmospheric, and Pa,1001.1 5
1 p with the volume found above, 1V  

 Pa1003.22 and ,m1062.8 .m1062.8 5
112

33
12

33
1

2   pppVV T
T  

  
  

%.50500.01 is efficiency  thermal theK, 600 and
K  300between  operating engine cycle-Carnot aFor  %.4.10104.0  e)

J. 227  J 1956 J 2183 is cycle onefor  engine  theinto flowheat   the2,-1 process the
for  nscalculatio in the figures extra Keeping d)    J. 227J 559J 786 is donenet work 

 The c)  .J 1956)K 192)(KmolJ 3145.8)(27)(mol 350.0(
 and J 1397)K 192)(KmolJ 3145.8)(25(  J, 559

)K 192)(KmolJ 3145.8)(mol 350.0( isobaric; is 1-3  process
The 0).( J 786)K 108)(KmolJ 3145.8)(25)(mol 350.0(
 and  ,0 adiabatic, is 3-2 process The J.1018.2K300KJ/mol 3145.8

25mol 350.0 .0 so 0 isochoric, is 2-1 Process b)

.m1041.1 and Pa1001.1 Pa).10013.1 using(

600
300

J 2183
J 227

3

32
13

5
13

5
1

3


















 

e

WUTnC
QnTnCU

TnRVpW
WTnCW

UQ
TnCQUWV

VVppp

p

V

V

V

T
T

a

 

 
 
 



20.40: (a) The temperature at point c is , from sinceK  1000 nRTpVTc   the maximum 
temperature occurs when the pressure and volume are both maximum. So 
 

  
    mol. 16.2

K 1000 KmolJ 3145.8
m0300.0 Pa1000.6 35







c

cc

RT
Vpn  

        (b) Heat enters the gas along paths ab and bc, so the heat input per cycle is HQ  
.acacac UWQ   Path ab has constant volume and path bc has constant pressure, so 

 
J. 1020.1)m 0100.0m 0300.0)(Pa1000.6()(0 4335  bccbcabac VVpWWW

 
For an ideal gas, 

mol.K,J46.28,COFor  . using ,)()T( 2  VaaccVacVac CRpVnTRVpVpCTnCU
 so 

48.5))mPa)(0.01001000.2()mPa)(0.03001000.6((
KmolJ3145.8

KmolJ46.28 3535 



 acU

 
Then J.106.68J105.48J1020.1 444

H Q  
 
(c) Heat is removed from the gas along paths cd and da, so the waste heat per cycle is 

.cacacaC UWQQ   Path cd has constant volume and path da has constant pressure, 
so 
 

J.10400.0)m 0300.0mPa)(0.01001000.2()(0 4335  daddacdca VVpWWW
 
 
 From (b), 

J.105.88J105.48J100.400 so  J,1048.5 44 4
C

4  QUU acca  
 
         (d)  The work is the area enclosed by the rectangular path abcd,     

J.8000J105.86J1068.6or    ),)((      44
CH  QQWVVppW acac  

 
     (e) 0.120.J)10(6.68J)8000( 4

H  QWe  
 
 



20.41: a) K15.290 K,15.268  J,00.1 HC  TTW  
For the heat pump 0Q and 0 HC Q  

H

C

H

C
HC  with  thiscombining ;

T
T

Q
QQQW   gives 

J2.13
290.15)268.15(1
J00.1

1 HC
H 







TT
WQ  

 
b)  Electrical energy is converted directly into heat, so an electrical energy input of 13.2 J 
would be required. 
 

c)  From part (a), C H
HC

H   as decrease  
1

TQ
TT

WQ 


 decreases. 

 
 The heat pump is less efficient as the temperature difference through which the 

heat has to be “pumped” increases. In an engine, heat flows from CH   to TT  and work is 
extracted. The engine is more efficient the larger the temperature difference through 
which the heat flows. 
 
 



20.42: (a) bcab QQQ in  

caQQ out  
K600C327max  cb TTT  

 

K200K)600(
3
1

 b
b

a
a

b

bb

a

aa T
P
PT

T
VP

T
VP  

 
3

5
K mole

J

m0332.0
Pa103.0

K)600)(1moles)(8.3 2(
 




b

b
bbbb P

nRTVnRTVP  

 

%6767.011  )(

%2121.0
J 102.10

J 104.4       

J 104.4J 101.66J 1010.20 (b)

J 101.66K) 400(
K mole

J31.8 
2
5moles) (2.00      

J 1010.2       

J 101.103ln  K) 600(
K mole

J31.8 moles) (2.00             

3ln  ln         

J 109.97K) 400(
K mole

J31.8
2
3moles) 2(       

 and  :gas Monatomic

m 0997.0
1
3)m 0332.0(                            

K 600
K 200

cannotmax

4

3

in

344
outin

4
out

4
in

4

3

2
5

2
3

33
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T
T

capca

bcab

c

b b
b

c
b

b
c

bbcbc

abVab

PV

a
c

b
bc

c

cc

b

bb

eec

QWe

QQWWwUQ

TnCQQ

QQQ

nRT
V
VnRTdV

V
nRTPdVWQ

TnCQ

RCRC

V
P
PVV

T
VP

T
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20.43: a) 

 

Pa 1057.2
m 1000.5

K) K)(773molJ 5mol)(8.314 00.2( ,    

 volume.minimum and pressure maximum  thehas  state (a),part  From e)    
cycleeach heat  of J 206  wastesJ; 206 d)    

58.8%J) 500(J) 294( c)    
C45K 318J)] 500(J) 206(K)[ 773()(    

    

J 206J 500J 294  ,    
J 294m) 00.2)(sm kg)(9.80 0.15(    

J 500 b)    

6
33

C

H

HCHC

H

C

H

C

HCHC

2

H



















V
nRTpnRTpV

a
Q

QWe
QQTT

T
T

Q
Q

QWQQQW
mgyW

Q

 

 
 
20.44: a)  kW  210MW 3.0  MW, 0.3b)  %.0.71 0.070

kW 210
K 300.15
K 15.279 out

e
pe  

MW. 2.8kW) 210)(1(1 e  

        c)  hr.L 106hrkg 106
K) (4 K)kgJ 4190(

hr)s 3600(  W)108.2(  55
6










Tc
dtQd

dt
dm C   

 
20.45: There are many equivalent ways of finding the efficiency; the method presented 
here saves some steps. The temperature at point 3 is so  and  ,4 03 TT   

,
2

192)3(
2
5)2)(2()(   00000000031313H VpVpnRTVVpTTnCWUQ V   

where 000 VpnRT  has been used for an ideal gas. The work done by the gas during one 
cycle is the area enclosed by the blue square in Fig. (20.22), ,00VpW  and so the 
efficiency is %.5.1019

2
H

 Q
We  

 



20.46: a) 00.212  pp  atm, 
L, 00.6  L. 6.00L)(3/2) 00.4( 2312 1

2  VVVV T
T 111.1)9/5(223 2

3  ppp T
T atm, 

67.1)2/3(334 4

3  ppp V
V atm. As a check,  00.2)5/6(441 4

1  ppp T
T atm. To 

summarize,   
) ,( 11 Vp (2.00 atm, 4.00 L)             ) ,( 22 Vp (2.00 atm, 6.00 L) 
) ,( 33 Vp (1.111 atm, 6.00 L)           ) ,( 44 Vp (1.67 atm, 4.00 L). 

 

 
 

         b) The number of moles of oxygen is ,
1

11
RT

Vpn  and the heat capacities are those in 

Table (19.1). The product J; 4.810  value thehas 11 xVp  using this and the ideal gas law, 

J,14222)1J)(4.810)(508.3(1            :i
1

2 









T
Tx

R
CTnCQ P

P  

              J.4052)1J)(4.810(1
1

2
1 










T
TxVpW  

0. WJ,13553)2J)(4.810)(508.2(        :ii
1

23 






 


T
TTx

R
CTnCQ V

V  

WQ
V
V

T
Tx

V
VnRTW 

















   J,2743)2(ln  6)5J)( 4.810(ln ln         :iii

3

4

1

3

3

4
3  

0. WJ,3396)1J)(4.810)(508.2(1        :iv
1

4 









T
Tx

R
CTnCQ V

V  

 
In the above, the terms are given to nearest integer number of joules to reduce roundoff 
error. 
 
c) The net work done in the cycle is J.131J 274-J405   
 
d) Heat is added in steps i and iv, and the added heat is J1761J339J1422   and the 
efficiency is 7.5%.or  ,075.0J1761

J131   The efficiency of a Carnot-cycle engine operating 

between %.4444.01 isK 450 andK 250 450
250   



20.47:   a)  Pa)10363( J,106.52kJ1005kJ1657 35 VpWU  
J,1039.8)m2202.0m4513.0( 433  and so J.1036.7 5 WUQ  

         b) Similarly, 
        VpUQ H  
              )m0682.0m6Pa)(0.009410(2305kJ)1969kJ1171( 333   
              J.1033.9 5  
 
        c) The work done during the adiabatic processes must be found indirectly (the 
coolant is not ideal, and is not always a gas). For the entire cycle, ,0U  and so the net 
work done by the coolant is the sum of the results of parts (a) and (b), J.1097.1 5 The 

work done by the motor is the negative of this, .74.3 d)   J.1097.1
J101.97
J1036.75

5

5





W
QcK  

 
20.48:   For a monatomic ideal gas, .C and 2

3
2
5 RRC VP   

a) ab: The temperature changes by the same factor as the volume, and so 

J.1025.2)mPa)(0.3001000.3)(5.2()( 535  baa
P

P VVp
R

CTnCQ  

The work Vp is the same except for the factor of  J.1090.0  so  , 5
2
5 W  

J.101.35 5 WQU  
 
bc: The temperature now changes in proportion to the pressure change, and 

J,1040.2)mPa)(0.8001000.2)(5.1()( 535
2
3  bbc VppQ  and the work is zero 

J.1040.2 ).0( 5 WQUV  
 
ca: The easiest way to do this is to find the work done first; W will be the negative of area 
in the p-V plane bounded by the line representing the process ca and the verticals from 
points a and c. The area of this trapezoid is  Pa) 101.00Pa 1000.3( 55

2
1  

J, 1000.6)m 500.0m (0.800 433  and so the work is  bemust   J. 1060.0 5 U  
0 (since J 101.05 5  U  for the cycle, anticipating part (b)), and so Q must be 

J. 1045.0 5 WU  
           b) See above; .0  J, 1030.0 5  UWQ  
           c) The heat added, during process ab and ca, is 2.25 J 100.45J 10 55   

J 102.70 5  and the efficiency is %.1.11111.05

5

H 1070.2
1030.0 



Q
W  

 



20.49:  a) ab: For the isothermal process,  )ln(  .0 and 0 1 ab VVnRTWUT   
)ln(1/1 rnRT ),ln( 1 rnRT  and  ).ln( 1 rnRTWQ  bc: For the isochoric process, 

).(;0 and 0 12 TTnCTnCUQWV VV   cd: As in the process ab, 
).ln( and 0 2 rnRTQWU  da: As in process bc, ;0 and 0  WV  

).( 21 TTnCQU V     b) The values of Q for the processes are the negatives of each 
other.   c) The net work for one cycle is ),ln()( 12net rTTnRW  and the heat added 
(neglecting the heat exchanged during the isochoric expansion and compression, as 
mentioned in part (b)) is ),ln( 2cd rnRTQ   and the efficiency is ).(1 21 TT

cd

net
Q
W   This is 

the same as the efficiency of a Carnot-cycle engine operating between the two 
temperatures. 
 
 
20.50: The efficiency of the first engine is 

H

H
1 T

TTe  and that of the second is ,C
2 T

TTe 
  

and the overall efficiency is 

  .C

H

H
21 















 


T
TT

T
TTeee  

The first term in the product is necessarily less than the original efficiency since ,CTT   
and the second term is less than 1, and so the overall efficiency has been reduced. 
 
20.51: a) The cylinder described contains a mass of air )L,πdρm 4( 2  and so the total 
kinetic energy is .Lv)dπρK 228(  This mass of air will pass by the turbine in a time 

,vLt   and so the maximum power is 

  .)8( 32vdπρ
t
KP   

Numerically, the product .ms W5.0mkg 5.08( 543
air )πρ  

        b) h.km 50sm 14
m) 97)(ms W5.0(

)25.0( W)102.3(
3/1

254

63/1

2 



















kd
ePv  

        c) Wind speeds tend to be higher in mountain passes. 
 
 



20.52: a)   h.L 89.9
gal 1

L 788.3
km 1.609

mi 1
mi 25

gal 1hkm 105 




















  

 
     b) From Eq. (20.6), %.5.57575.0)5.8(11 40.01  γre  
 

     c)     hp. 72.1W1038.5575.0kgJ 1060.4Lkg 740.0
hrs 3600
hL 89.9 47 







 

 
      d) Repeating the calculation gives hp, 19W104.1 4  about 8% of the maximum 
power. 
 
 



20.53: (Extra figures are given in the numerical answers for clarity.)    a) The efficiency 
is 611.01 40.0  re , so the work done is J. 78|| and J 122 C  QeQH     b) Denote the 
length of the cylinder when the piston is at point a by 0L and the stroke as s. Then, 

is  volumeand   , 100

0 sLr r
r

sL
L

   
 

.m 100.51)m 1025.41()m 104.86(
6.9
6.10

1
34233

0
 


 πsA

r
rAL  

 
c) The calculations are presented symbolically, with numerical values substituted at the 
end. At point a, the pressure is 344 m 1010.5 is  volume thePa, 1050.8  aa Vp as 
found in part (b) and the temperature is , is  volume the,point At  K. 300 rVVbT aba  the 
pressure after the adiabatic compression is γ

ab rpp   and the temperature is 1 γ
ab rTT . 

During the burning of the fuel, from  ,  to cb the volume remains constant and so 
.rVVV abc   The temperature has changed by an amount 

 
   

    , 
KmolJ 5.20 m 1010.5 Pa 1050.8

J 200 KmolJ 3145.8       344

HHH

aa

a
VaaVaaaV

TfT

T
CVp

RQ
CRTVp

Q
nC
QT











 

where f is a dimensionless constant equal to 1.871 to four figures. The temperature at c is 
then  frTTfTT γ

aabc  1 . The pressure is found from the volume and 
temperature,  frrpp γ

ac  1 . Similarly, the temperature at point d is found by 
considering the temperature change in going from d to a, 

).)1(1( so , )1()1( HC feTTTfe
nC
Qe

nC
Q

ada
VV

 The process from d to a is 

isochoric, so . that note check, a As ).)1(1(  and , γ
cdadad rppfeppVV  To 

summarize, 
 

   ))1(1(           11  
)(           )(   

                           

           
              

11
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feTVfepd
frTrVfrrpc

rTrVrpb

TVpa
TVp
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γ
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a
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γ
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Using numerical values (and keeping all figures in the intermediate calculations), 
 



20.54: (a)  waterand furnacefor   
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(b) 0S means that this process is irreversible. Heat will not flow spontaneously from 
the cool water into the hot furnace. 
 
 



20.55:   a) Consider an infinitesimal heat flow HdQ that occurs when the temperature of 
the hot reservoir is :T   
 

||||

)/(

H
H

CC

H
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HCC

ST
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dQTQ

T
dQTdQ

dQTTdQ
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b)   The 1.00 kg of water (the high-temperature reservoir) goes from 373 K to 273 K. 
 

J. 106.2J 104.19J 1057.3Then 
J 1057.3  so  engine,  theofout  comes 

J 1057.3)KJ 1308)(K 273(|| gives (a)part  ofresult  The
J/K 1308)373273ln()KkgJ 4190)(kg 00.1()(lnS

J 1019.4)K 100)(KkgJ 4190)(kg 00.1(

455
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5
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5
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12

5
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QQW
QQ
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TTmc

TmcQ

h

 

 
c)   2.00 kg of water goes from 323 K to 273 K 

J 104.3

J 1085.3||

KJ 1041.1)323/273(ln)KkgJ 4190)(kg 00.2()(ln 

J 1019.4)K 50)(KkgJ 4190)(kg 00.2(

4
HC

5
hCC

3
12

5
H









QQW

STQ
TTmcS

TmcQ

h  

 
     d)  More work can be extracted from 1.00 kg of water at 373 K than from 2.00 kg of 
water at 323 K even though the energy that comes out of the water as it cools to 273 K is 
the same in both cases. The energy in the 323 K water is less available for conversion 
into mechanical work. 
 
 
20.56:   See Figure (20.15(c)), and Example 20.8. 

a) For the isobaric expansion followed by the isochoric process, follow a path 
from  2

1ln  2lnget   toddor    dd  Use.  to2  to VppV nCnCSTnCQTnCQTTT  
ln2. ln2 )( nRCCn Vp   

b) For the isochoric cooling  followed by the isobaric expansion, follow a path from 
2.ln  ln )(2ln  lnThen  .  to2/  to 2

1 nRCCnnCnCSTTT VppV   
 
 



20.57:  The much larger mass of water suggests that the final state of the system will be 
water at a temperature between C.0.60 and C0  This temperature would be 
 

   
    

C,83.34
)KkgJ 4190)(kg 650.0(

)kgJ 10334
C0.15KkgJ2100kg 0500.0     

C0.45KkgJ 4190kg 0.600

3

























T  

 
keeping an extra figure. The entropy change of the system is then 









318.15
307.98K)lnkgJ kg)(4190 (0.600S  

   K.J 5.10

273.15
307.98ln  K)kgJ 4190(

K 273.15
 kgJ 10334    

258.15
273.15ln  K)kgJ (2100

kg) 0500.0(
3














































  

(Some precision is lost in taking the logarithms of numbers close to unity.) 
 
 
20.58: a) For constant-volume processes for an ideal gas, the result of Example 20.10 
may be used; the entropy changes are ).ln(   and )ln( daVbcV TTnCTTnC  b) The total 
entropy change for one cycle is the sum of the entropy changes found in part (a); the 
other processes in the cycle are adiabatic, with Q = 0 and .0S The total is then 

  .ln ln ln 









da

ac
V

d

a
V

b

c
V TT

TTnC
T
TnC

T
TnCS  

From the derivation of Eq. (20.6), , and 11
d

γ
ca

γ
b TrTTrT    and so the argument of the 

logarithm in the expression for the net entropy change is 1 identically, and the net entropy 
change is zero.  c) The system is not isolated, and a zero change of entropy for an 
irreversible system is certainly possible. 
 
 



20.59: a) 

 
 

         b) From Eq. (20.17), and ,  so and , dSTdQdS T
dQ   

                                                 dSTdQQ     
which is the area under the curve in the TS plane.  c) HQ  is the area under the rectangle 
bounded by the horizontal part of the rectangle at HT and the verticals. || CQ  is the area 
bounded by the horizontal part of the rectangle at CT and the verticals. The net work is 
then |,| CH QQ   the area bounded by the rectangle that represents the process. The ratio 
of the areas is the ratio of the lengths of the vertical sides of the respective rectangles, and 
the efficiency is .

H

CH

H T
TT

Q
We   d) As explained in problem 20.49, the substance that 

mediates the heat exchange during the isochoric expansion and compression does not 
leave the system, and the diagram is the same as in part (a). As found in that problem, the 
ideal efficiency is the same as for a Carnot-cycle engine. 
 
 
20.60: a) K.J 143)K15.373(

kg)J 10(334 kg) 160.0( 3
f  

T
mL

T
QS  

 K.J 196Δ b) K) 15.273(
)kgJ10  kg)(334 160.0( 3

f  
T

mL
T
QS  

c) From the time equilbrium has been reached, there is no heat exchange between the 
rod and its surroundings (as much heat leaves the end of the rod in the ice as enters at 
the end of the rod in the boiling water), so the entropy change of the copper rod is 
zero.  d) K.J 53KJ 143KJ 196   

 
 



20.61: a)          )ln( 12 TTmcS   

                            
K.J 150      

K) 293.15K 5K)ln(338.1kgJ kg)(4190 10250(      3


 

 

 
b) K.J120K 15.393

K) 293.15K K)(338.15kgJ   kg)(4190 10250( 3

element
 



T
TmcS   c) The sum of the result of 

parts (a) and (b) is K.J 30system S  d) Heating a liquid is not reversible. Whatever the 
energy source for the heating element, heat is being delivered at a higher temperature 
than that of the water, and the entropy loss of the source will be less in magnitude than 
the entropy gain of the water. The net entropy change is positive. 
 
 



20.62: a) As in Example 20.10, the entropy change of the first object is )ln( 111 TTcm  and 
that of the second is )ln( 222 TTcm  , and so the net entropy change is as given. Neglecting 
heat transfer to the surroundings, ,0)()( ,0 22211121  TTcmTTcmQQ which is the 
given expression.  b) Solving the energy-conservation relation for  T  and  substituting 
into the expression for S gives 

  .1n1ln
2

1

222

11
22

1
11 
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T
TcmS  

Differentiating with respect to T  and setting the derivative equal to 0 gives 
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cm . 

 
This may be solved for 

  ,
2211

222111

cmcm
TcmTcmT




  

which is the same as T   when substituted into the expression representing  conservation 
of energy. 
 
Those familiar with Lagrange multipliers can use that technique to obtain the relations 

   
T
QS

TT
QS
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 λ ,λ  

and so conclude that  TT   immediately; this is equivalent to treating the differentiation 
as a related rate problem, as 

  02211 





 dT
Td

T
cm

T
cmS

Td
d  

and using TTcm
cm

dT
Td   gives 

22

11  with a great savings of algebra. 
     c)   The final state of the system will be that for which no further entropy change is 
possible. If ,TT   it is possible for the temperatures to approach each other while 
increasing the total entropy, but when  ,TT   no further spontaneous heat exchange is 
possible. 
 
 



20.63: a) For an ideal gas, ,RCC VP   and taking air to be diatomic, 
. and  , 5

7
2
5

2
7  γRCRC VP  Referring to Fig. (20.6), 

).()( 2
7

2
7

H bbccbc VpVpTTRnQ   Similarly, ).(2
5

C ddaa VpVpRnQ   What needs 
to be done is to find the relations between the product of the pressure and the volume at 
the four points. 
         For an ideal gas, ,

b

bb

c

cc
T
Vp

T
Vp    so   .

a

c
T
T

aacc VpVp   For a compression ratio r, and 
given that for the Diesel cycle the process ab is adiabatic, 

  .1
1













 γ

aa

γ

b

a
aabb rVp

V
VVpVp  

Similarly, .
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a

c
ccdd V

VVpVp Note that the last result uses the fact that process da is 

isochoric, and bcad ppVV    also,  ; (process bc is isobaric), and so  .
a

c
T
T

bc VV    Then, 
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Combining the above results,  

2γγ
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c
aadd r

T
TVpVp 











  

Subsitution of  the above results into Eq. (20.4) gives 
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)167.3(

1)002.5(
4.1
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r
r  

where 4.1 ,167.3 
a

c
T
T  have been used. Substitution of  0.21r  yields 

%.8.70708.0 e   



21.1: C103.20chargeandg00.8 9
lead

m  

 a) .100.2
C106.1
C1020.3 10

19

9

e 



 



n   

 b) .1058.8and1033.2
207

g00.8 13

lead

e22
lead


n
nNn A  

 
 
21.2: s10s100andsC000,20current 4 t  
 Q =  It = 2.00 C 

 .1025.1
C1060.1

19
19e 


 

Qn  

 
 
21.3: The mass is primarily protons and neutrons of 271067.1 m  kg, so: 

 28
27n and p 1019.4

kg101.67
kg70.0




 n  

About one-half are protons, so e
28

p 1010.2 nn   and the charge on the electrons is 

given by: .C1035.3)1010.2(C)1060.1( 92819  Q  
 
 
21.4: Mass of gold = 17.7 g and the atomic weight of gold is 197 mol.g  So the 
number of atoms   .1041.5)1002.6(mol 22

molg197
g7.1723 AN  

 a) 2422
p 1027.41041.579 n  

        C106.83C1060.1 519
p  nq  

 b) .1027.4 24
pe  nn  

 
 
21.5:  .electrons101.08atomsH106.021.80mol80.1 2423   
           C.101.73 C1060.1101.08charge 51924    
 
 
21.6: First find the total charge on the spheres: 

C1043.1)2.0)(1057.4(44
4

1 16221
0

2
02

2

0

  πεFrπεq
r
q

πε
F  

And therefore, the total number of electrons required is 
 890.C101.60C1043.1 1916  eqn  
 
 



21.7: a) Using Coulomb’s Law for equal charges, we find: 

        .C1042.7C105.5
m)150.0(4

1N220.0 7213
2

2

0

  qq
πε

F  

 
 b) When one charge is four times the other, we have: 

 C1071.3C10375.1
m)150.0(

4
4

1N220.0 7213
2

2

0

  qq
πε

F  

So one charge is 71071.3   C, and the other is C.10484.1 6  
 
 
21.8: a) The total number of electrons on each sphere equals the number of protons. 
 

.1025.7
molkg026982.0

kg0250.013 24
pe  ANnn  

 b) For a force of 41000.1   N to act between the spheres, 

 .C1043.8m)08.0(N)10(4
4

1N10 424
02

2

0

4  πεq
r
q

πε
F  

                                   15
e 1027.5  eqn  

 c) 10
e 107.27is n  of  the total number. 

 
 
21.9: The force of gravity must equal the electric force. 

.m08.5m8.25
)sm8.9(kg)1011.9(

C)1060.1(
4
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1 2
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21.10:   a) Rubbing the glass rod removes electrons from it, since it becomes positive. 

kg.1027.4)electronkg1011.9(electrons)104.69(

electrons1069.4)Celectrons1025.6(C)107.50(nC50.7
203110

10189








 

The rods mass decreases by kg.1027.4 20  
 b) The number of electrons transferred is the same, but they are added to the mass of 
the  
plastic rod, which increases by kg.1027.4 20  
 
 



21.11: positive.isanddirection-theinbemustsodirection,-theinis 112 qxx  FF
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21.12: a) 2
2

6

0
2

21

0 m)30.0(
C)10550.0(

4
1N200.0

4
1 q

πεr
qq

πε
F


  

                                         C.1064.3 6
2

 q  
 b) 200.0F  N, and is attractive. 
 
 
21.13: Since the charges are equal in sign the force is repulsive and of magnitude: 

N172.0
m)800.0(4
C)1050.3(

2
0

26

2

2







πεr
kqF  

 
 
21.14: We only need the y-components, and each charge contributes equally. 

0.6).sinsince(N173.0sin
m)500.0(

C)104(C)100.2(
4

1
2

66
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αα
πε

F  

Therefore, the total force is N35.02 F , downward. 
 
 
21.15: theinbothareand 32 FF


x-direction. 

N10124.1,N10749.6 4
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  thein,N108.1 4
32 FFF x-direction. 

 
 



21.16: 
 

N100.0
m60.0

C)100.2(C)10.20()CmN109(
2

66229

21 





F  

 
1QF  is equal and opposite to QF1 (Ex. 21.4), so 

 
  N17.0

N23.0

1

1
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xQ

F
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Overall: 

N27.0N17.0N100.0
N23.0





y

x

F
F

 

The magnitude of the total force is     N.35.0N27.0N23.0 22  The direction of 
the force, as measured from the +y  axis is 

 40
27.0
23.0tan 1  θ  

 
 
21.17: 2F


is in the direction. x  

N10.37N37.3N00.7
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For xF3  to be negative, 3q  must be on the –x-axis. 

m144.0so  m,144.0 so  ,
3

31
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21.18: The charge 3q  must be to the right of the origin; otherwise both 32 and qq would 
exert forces in the + x direction. Calculating the magnitude of the two forces: 

direction.  in the N 375.3
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We need :N00.73121  FF  
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21.19: 1221 and FFF  FFF


 since they are acting in the same direction at 

m 400.0y so, 
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21.20: 2121 and FFF  FFF


 since they are acting in opposite directions at             

x = 0  so, 
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21.21: a)  

 
 

 b) 2322
0

22
0 )(

2
4

1sin
)(4

12,0
xa

qQa
πε

θ
xa

qQ
πε

FF yx 
   

 c) direction.thein2
4

1,0At 2
0

y
a
qQ

πε
Fx y   

 
 
 
 
 
 
d)  

 
 
 



21.22: a)    

 
 

 b)  0 ,
)(

2
4

1cos
)(4

12 2/322
0

22
0








 yx F

xa
qQx

πε
θ

xa
qQ

πε
F  

 
 c) At x = 0, F = 0. 
 d) 
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positive x-axis 
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21.25: Let +x-direction be to the right. Find :xa  
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21.26: (a) 2
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1 atx   

 

CN69.5
C106.1

)sm101.00(kg)1011.9(

sm1000.1
s)103.00(

m)50.4(22

19

21231

212
26-2
















q
ma

q
FE

t
xa

 

 
The force is up, so the electric field must be downward since the electron is negative. 
(b) The electron’s acceleration is  ~ 1110  g, so gravity must be negligibly small    
compared to the electrical force. 
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21.29: a) Fq andC,100.55 6 is downward with magnitude 

C,N1013.1Therefore,N.1020.6 49   qFE upward. 
      b) If a copper nucleus is placed at that point, it feels an upward force of   magnitude 

  N.105.24CN101.13C106.129 22419   qEF  
 
 



21.30: a) The electric field of the Earth points toward the ground, so a NEGATIVE 
charge will hover above the surface. 

 C.92.3
CN150
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 qqEmg  
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F  The magnitude of the charge is 

too great for practical use. 
 
 
21.31: a) Passing between the charged plates the electron feels a force upward, and just 
misses the top plate. The distance it travels in the y-direction is 0.005 m. Time of flight 
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       b) Since the proton is more massive, it will accelerate less, and NOT hit the plates. 
To find the vertical displacement when it exits the plates, we use the kinematic equations 
again: 
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      c) As mention in b), the proton will not hit one of the plates because although the 
electric force felt by the proton is the same as the electron felt, a smaller acceleration 
results for the more massive proton. 
      d) The acceleration produced by the electric force is much greater than g; it is 
reasonable to ignore gravity. 
 
 



21.32: a) 
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The angle of ,2E


 measured from the axis,-x  is     9.126tan180 cm3.00

cm00.41  Thus 
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b) The resultant field is 
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21.33: Let x  be to the right and y  be downward. 

Use the horizontal motion to find the time when the electron emerges from the 
field: 
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21.34: a) .CN8.17)14()11(so   ,ˆCN14ˆCN11 22  EjiE



   128so   ,8.51)1114(tan 1 θθ  counterclockwise from the x-axis 
      b) )repulsive(52at)iN,1045.4)C105.2()CN8.17(so 89  FqEF
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21.35: a)   eEFgmF e
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because .ge FF   
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       .101.79 e

14 mm   
       c)   No. The field is uniform. 
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21.37: a) jr ˆ,
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  (Second quadrant). 

 
 
21.38: a) .N1082.9,CN614 17 qEFE  
       b) .N103.2)100.1(4 8210

0
2   πεeF  

       c) Part (b) >> Part (a), so the electron hardly notices the electric field. A person in 
the electric field should notice nothing if physiological effects are based solely on 
magnitude. 
 
 



21.39: a) Let x  be east. 
    E


 is west and q  is negative, so F


 is east and the electron speeds up. 
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         b) F


so0q   is west and the proton slows down. 
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21.40: Point charges 1q  (0.500 nC) and 2q  (8.00 nC) are separated by .m20.1x  The 
electric field is zero when 
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21.41: Two positive charges, q , are on the x-axis a distance a from the origin. 
      a) Halfway between them, .0E  

       b) At any position 
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For graph, see below. 
 

 
 
 
21.42: The point where the two fields cancel each other will have to be closer to the 
negative charge, because it is smaller. Also, it cant’t be between the two, since the two 
fields would then act in the same direction. We could use Coulomb’s law to calculate the 
actual values, but a simpler way is to note that the 8.00 nC charge is twice as large as the  
–4.00 nC Charge. The zero point will therefore have to be a factor of 2  farther from the 
8.00 nC charge for the two fields to have equal magnitude. Calling x  the distance from 
the –4.00 nC charge: 
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21.43: a) Point charge 1q  (2.00 nC) is at the origin and nC00.5(2 q ) is at 
.m800.0x  
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21.44: A positive and negative charge, of equal magnitude q , are on the x-axis, a 
distance a  from the origin. 

 a) Halfway between them, ,2
4

1
2

0 a
q

πε
E   to the left. 

 b) At any position 
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with “+” to the right. 
 This is graphed below. 
 

 
 



21.45: a) At the origin, .0E  
      b) At :0,m3.0  yx  
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21.46: Calculate in vector form the electric field for each charge, and add them. 
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x axis. 
 

21.47: a) At the origin, .CNˆ4800ˆ
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 b) At :0  ,m3.0  yx  
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21.48: For a long straight wire, m.08.1
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21.49: a) For a wire of length a2  centered at the origin and lying along the y-axis, the 
electric field is given by Eq. (21.10). 
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 b) For an infinite line of charge: 
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2
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Graphs of electric field versus position for both are shown below. 
 

 
 

 
21.50: For a ring of charge, the electric field is given by Eq. (21.8). 
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21.51: For a uniformly charged disk, the electric field is given by Eq. (21.11): 
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The x -component of the electric field is shown below. 
 

 
 
 
21.52: The earth’s electric field is 150 CN , directly downward. So, 

,mC1066.2300
2

150 29
0

0

 εσ
ε
σE  and is negative. 

 

21.53: For an infinite plane sheet, E  is constant and is given by 
02ε
σE   directed 

perpendicular to the surface. 
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ε
E  directed toward the surface. 

 
21.54: By superposition we can add the electric fields from two parallel sheets of charge. 
       a) .0E  
       b) .0E  

       c)  ,
2

2
00 ε
σ

ε
σE   directed downward. 

 



21.55:  
 

 

 
 
21.56: The field appears like that of a point charge a long way from the disk and an 
infinite plane close to the disk’s center. The field is symmetrical on the right and left (not 
shown). 

 
 
 



21.57: An infinite line of charge has a radial field in the plane through the wire, and 
constant in the plane of the wire, mirror-imaged about the wire: 
 
  Cross section through the wire: Plane of the wire: 
 

 
 

Length of vector does not depend on angle. Length of vector gets shorter at 
points further away from wire. 

 
 
21.58: a) Since field lines pass from positive charges and toward negative charges, we 
can deduce that the top charge is positive, middle is negative, and bottom is positive. 
 
       b) The electric field is the smallest on the horizontal line through the middle charge, 
at two positions on either side where the field lines are least dense. Here the y-
components of the field are cancelled between the positive charges and the negative 
charge cancels the x-component of the field from the two positive charges. 
 
 
21.59: a) mC101.4m)C)(0.0031105.4( 119  qdp , in the direction from 
and towards 2q . 
       b) If E


 is at ,9.36   and the torque ,sinpEτ   then: 
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21.60: a) .m105.56C)10(1.6m)C109.8( 111930   qpd  
       b) m.N105.34)CN100.6)(mC 109.8( 24530

max  pEτ  
Maximum torque: 
 

 
 
 
21.61: a) Changing the orientation of a dipole from parallel to perpendicular yields: 
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21.62:  11.4
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.CN106  The electric force 
  )CN10C)(4.111060.1( 619qEF N106.58 13  and is toward the water 

molecule (negative x-direction). 
 
 

21.63:   a) 222222
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      b) This also gives the correct expression for yE since y appears in the full 
expression’s denominator squared, so the signs carry through correctly. 
 
 



21.64:  a) The magnitude of the field the due to each charge is 
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where d is the distance between the two charges. The x-components of the forces due to 
the two charges are equal and oppositely directed and so cancel each other. The two 
fields have equal y-components, so: 
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where θ  is the angle below the x-axis for both fields. 
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The field is the y directions. 
 

b) At large ,)2(, 22 dxx   so the relationship reduces to the approximations 
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21.65:  

      The dipoles attract. 
,021  xxx FFF  yyyy FFFF 121 2  

 
b)    
        
Opposite charges are closest so the dipoles attract. 
 

 



21.66: a)   

         
The torque is zero when p  is aligned either in the same direction as E


 or in the 

opposite directions 
b) The stable orientation is when p  is aligned in the same direction as E


 

c)  

 
 
 



21.67:  

   48.6 so00.250.1sin θθ  
 Opposite charges attract and like charges repel. 
 021  xxx FFF  
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(in the direction from the C-00.5 µ charge toward the C-00.5 µ charge). 
       b)  

The y components have zero moment arm and therefore zero torque. 
 xF1 and xF2 both produce clockwise torques. 

N1.743cos11  θFF x  
m,N22.3m)0150.0)((2 1  xFτ  clockwise 
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Similarly for the force from the other charge: 
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Therefore the two force components are: 
 N1064.8 5xF  N1052.510 0.121048.6 555  yF  

        b) Thus, N, 1003.1N) 1052.5(N) 1064.8( 4252522   yx FFF  and 

the angle is ,6.32)arctan(  xy FFθ below the x axis 
 

21.69: a) 
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  But this is 

the equation of a simple harmonic oscillator, so: 
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       b) If the charge was placed on the y-axis there would be no restoring force if q and 
Q had the same sign. It would move straight out from the origin along the y-axis, since 
the x-components of force would cancel. 
 
 
21.70: Examining the forces: .0cosand0sin e  mgθTFFθTF yx  
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21.71: a)   

 
       b) Using the same force analysis as in problem 21.70, we find: 

θmgdπεq tan4 2
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Therefore 
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θ 2sin
331.0tan  . Numerical solution of this transcendental equation leads to 

.5.39 θ  
 
 
21.72: a) Free body diagram as in 21.71. Each charge still feels equal and opposite 
electric forces. 
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      d) The charges on the spheres are made equal by connecting them with a wire, but 
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.C1012.1 6  This equation, along with that from part (b), gives us two equations in 
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21.73:  a) g2.30)molgmol)(22.99100.0(mNaClmol100.0 Na   
           g3.55)molgmol)(35.45100.0(mCl   
Also the number of ions is 22

A 1002.6mol)100.0( N  so the charge is: 
C.9630C)1060.1)(1002.6( 1922  q The force between two such charges is: 
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        b)  .sm1089.5)kg10(3.55N)1009.2(/ 223321  mFa  
c) With such a large force between them, it does not seem reasonable to think the 

sodium and chlorine ions could be separated in this way. 
 
 

21.74: a) 
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      b) The force acts on the middle charge to the right. 
      c) The force equals zero if the two forces from the other charges cancel. Because of 
the magnitude and size of the charges, this can only occur to the left of the negative 

charge .2q  Then: 2
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 where x  is the distance 

from the origin. Solving for x  we find: m.76.1x  The other value of x  was between 
the two charges and is not allowed. 
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F  toward the lower the left charge. The other 

two forces are equal and opposite. 

 
 

       b) The upper left charge and lower right charge have equal magnitude forces at right 
angles to each other, resulting in a total force of twice the force of one, directed toward 
the lower left charge. So, all the forces sum to: 
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Note that a point charge drops off like 2
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 and a dipole like .1
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21.77: a) The field is all in the x -direction (the rest cancels). From the q  charges: 
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electrons C.100.963C)10 60.1()0.10( 619
A  Nq  This much charge is placed at 

the earth’s poles (negative at north, positive at south), leading to a force: 
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b) A positive charge at the equator of the same magnitude as above will feel a 
force in the south-to-north direction, perpendicular to the earth’s surface: 
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21.79: a) With the mass of the book about 1.0 kg, most of which is protons and 
neutrons, we find: #protons = .100.3kg)1067.1(kg)0.1( 2627

2
1    Thus the charge 

difference present if the electron’s charge was %999.99  of the proton’s is 
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.sm103.8)kg1()N103.8( 21313  mFa  

      c) Thus even the slightest charge imbalance in matter would lead to explosive 
repulsion! 
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21.82: First, the mass of the drop: 
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21.86: a) On the x-axis:  
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(b) The electric field is less than that at the same distance from an infinite line of 
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     c) For a 1% difference, we need the next highest term in the expansion that was left 

off to be less than 0.01: 
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        b) The electric field is less than that at the same distance from a point charge (8100 
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        c) For a 1% difference, we need the next highest term in the expansion that was left 

off to be less than 0.01: 
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21.90: (a) On the axis, 
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21.91: (a) As in 22.72: 
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      c) The electric field of (a) is less than that of the point charge (0.90 )CN since the 

correction term that was omitted was negative. 
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      c) The integrand in yE  for Example 21.11 is odd, so yE =0. 

 



21.93: a) The y-components of the electric field cancel, and the x-components from both 

charges, as given in problem 21.87 is: 
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     b) If the point charge is now on the x-axis  the two charged parts of the rods provide 

different forces, though still along the x-axis (see problem 21.86). 
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21.94: The electric field in the x-direction cancels the left and right halves of the 

semicircle. The remaining y-component points in the negative y-direction. The charge per 

unit length of the semicircle is: 
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21.95: By symmetry, .yx EE   For ,yE compared to problem 21.94, the integral over the 

angle is halved but the charge density doubles─giving the same result. Thus, 
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        b) If all edges of the square had equal charge, the electric fields would cancel by 
symmetry at the center of the square. 
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(Note that “+” means toward the right, and “–” is toward the left.) 
 
 



21.101: By inspection the fields in the different regions are as shown below: 
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21.102:     a) σRRπAσQ )( 2
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b) Recall the electric field of a disk, Eq. (21.11):  So,.1)(11
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21.103: a) The four possible force diagrams are: 
 

 
Only the last picture can result in an electric field in the –x-direction. 
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21.104: (a) The four possible diagrams are: 
 

 
 

The first diagram is the only one in which the electric field must point in the negative y-
direction. 
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21.105:  a) For a rod in general of length 
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22.1: a) C.Nm75.160cos)m(0.250 N/C)14( 22  AE


 
 b) As long as the sheet is flat, its shape does not matter. 
 ci) The maximum flux occurs at an angle  0 between the normal and field. 
 cii) The minimum flux occurs at an angle  90  between the normal and field. 

In part i), the paper is oriented to “capture” the most field lines whereas in ii) the 
area is oriented so that it “captures” no field lines. 
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 b) The total flux through the cube must be zero; any flux entering the cube must also 
leave it. 
 
 
22.3: a) Given that lengthedge,,ˆDˆCˆB AEkjiE
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 b) Total flux  
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22.4: C.Nm16.670cos)m(0.240)CN0.75( 22  AE


 

 
 



22.5: a) C.Nm1071.2)2( 25m)(0.400C/m)1000.6(
2 0

6

00



εε

l
rπε πrlAE


 

 b) We would get the same flux as in (a) if the cylinder’s radius was made larger—the 
field lines must still pass through the surface. 
 c) If the length was increased to m,800.0l  the flux would increase by a factor of 
two: C.Nm105.42 25  
 
 
22.6: a) C.Nm452C)1000.4( 2

0
9

011
  εεqS  

 b) C.Nm881C)1080.7( 2
0

9
022

  εεqS  

 c) C.Nm429C)10)80.700.4(()( 2
0

9
0213

  εεqqS  

 d) C.Nm723C)10)40.200.4(()( 2
0

9
0214

  εεqqS  

 e) C.Nm158C)10)40.280.700.4(()( 2
0

9
03215

  εεqqqS  
 f) All that matters for Gauss’s law is the total amount of charge enclosed by the 
surface, not its distribution within the surface. 
 
 
22.7: a) C.Nm1007.4C)1060.3( 25

0
6

0   εεq  
 b) C.106.90)CNm780( 92

000
 εεqεq  

 c) No. All that matters is the total charge enclosed by the cube, not the details of 
where the charge is located. 
 
 
22.8: a) No charge enclosed so 0  

 b)                               C.Nm678
NmC108.85
C1000.6 2

2212

9

0
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 c)                             C.Nm226
NmC108.85

C10)00.600.4( 2
2212
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22.9: a) Since E


 is uniform, the flux through a closed surface must be zero. That is: 

  .00
00

1 ρdVρdVd εε
qAE


 But because we can choose any volume we 

want, ρ  must be zero if the integral equals zero. 
 b) If there is no charge in a region of space, that does NOT mean that the electric field 
is uniform. Consider a closed volume close to, but not including, a point charge. The field 
diverges there, but there is no charge in that region. 
 
 



22.10: a) If 0ρ  and uniform, then q inside any closed surface is greater than zero. 

  00 AE


d  and so the electric field cannot be uniform, i.e., since an 
arbitrary surface of our choice encloses a non-zero amount of charge, E  must depend on 
position. 
 b) However, inside a small bubble of zero density within the material with density ρ , 
the field CAN be uniform. All that is important is that there be zero flux through the 
surface of the bubble (since it encloses no charge). (See Exercise 22.61.) 
 
 
22.11: C.Nm1008.1C)1060.9( 26

0
6

0sides6   εεq  But the box is 
symmetrical, so for one side, the flux is: .CNm1080.1 25

side1   
 b) No change. Charge enclosed is the same. 
 
 
22.12: Since the cube is empty, there is no net charge enclosed in it. The net flux, 
according to Gauss’s  law, must be zero. 
 
 
22.13: 0encl εQE   

The flux through the sphere depends only on the charge within the sphere. 
nC3.19)CmN360( 2

00encl  εεQ E  
 

22.14: a) .CN44.7
m)(0.550

C)1050.2(
4

1
4

1m)0.1m450.0( 2

10

0
2
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πεr
q

πε
rE  

 b) 0E


 inside of a conductor or else free charges would move under the influence of 
forces, violating our electrostatic assumptions (i.e., that charges aren’t moving). 
 
 

22.15: a) m.62.1
CN614

C)10180.0(
4

1
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1||
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1||
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r
q
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 b) As long as we are outside the sphere, the charge enclosed is constant and the sphere 
acts like a point charge. 
 
 
22.16: a) C.1056.7)m(0.0610)CN1040.1(/ 825

000
 εEAεqεqEA  

 b) Double the surface area: C.1051.1)m(0.122)CN1040.1( 725
0

 εq  
 
 



22.17: C.1027.3m)(0.160)CN1150(44 92
0

2
04

1
20

 πεErπεqE
r
q

πε  So the 

number of electrons is: .1004.2 10
C1060.1
C1027.3

e 19

9
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22.18: Draw a cylindrical Gaussian surface with the line of charge as its axis. The 
cylinder has radius 0.400 m and is 0.0200 m long. The electric field is then 840 N/C at 
every point on the cylindrical surface and directed perpendicular to the surface. Thus 

      )2)(())(( cylinder πrLEAEd sE 
 

             /CmN42.2m)(0.0200m)(0.400)(2N/C)840( 2 π  
The field is parallel to the end caps of the cylinder, so for them 0 sE 

d . From 
Gauss’s law: 

C1074.3

)
C
mN2.42()

mN
C10854.8(
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22.19: 
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22.20: a) For points outside a uniform spherical charge distribution, all the charge can 
be considered to be concentrated at the center of the sphere. The field outside  the sphere 
is thus inversely proportional to the square of the distance from the center. In this case: 

CN53
cm0.600
cm0.200)CN480(

2









E  

 b) For  points outside a long cylindrically symmetrical charge distribution, the field is 
identical to that of a long line of charge: 

,
2
λ

0rπε
E   

that is, inversely proportional to the distance from the axis of the cylinder. In this case 

CN160
cm0.600
cm0.200)CN480( 








E  

 c) The field of an infinite sheet of charge is ;2/ 0εσE   i.e., it is independent of the 
distance from the sheet. Thus in this case .CN480E  
 
 
22.21: Outside each sphere the electric field is the same as if all the charge of the sphere 
were at its center, and the point where we are to calculate E


 is outside both spheres. 

21 and EE


 are both toward the sphere with negative charge. 

sphere. charged negatively  thetoward,CN1006.8

CN10471.5
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22.22: For points outside the sphere, the field is identical to that of a point charge of the 
same total magnitude located at the center of the sphere. The total charge is given by 
charge density   volume: 

C1060.1m)150.0)(
3
4)(mCn50.7( 1033  πq  

 a) The field just outside the sphere is 
 

CN4.42
m)(0.150

C)10(1.06)/CmN109(
4 2

10229

2
0







rπε
qE  

 
 b) At a distance of  0.300 m from the center (double the sphere’s radius) the field will 
be 1/4 as strong: 10.6 CN  
 c) Inside the sphere, only the charge inside the radius in question affects the field. In 
this case, since the radius is half the sphere’s radius, 1/8 of the total charge contributes to 
the field: 

CN2.21
m)(0.075

C)1006.1()8/1()C/mN109(
2

10229







E  

 
 
22.23: The point is inside the sphere, so 3/ RkQrE  (Example 22.9) 

 

nC2.10
)m100.0(

m)(0.220)CN950( 33


kkr

ERQ  

 
 
22.24: a) Positive charge is attracted to the inner surface of the conductor by the charge 
in the cavity. Its magnitude is the same as the cavity charge: nC,00.6inner q  since 

0E  inside a conductor. 
 b) On the outer surface the charge is a combination  of the net charge on the conductor 
and the charge “left behind” when the nC00.6  moved to the inner surface: 

nC.1.00nC6.00nC00.5innertotouterouterinnertot  qqqqqq  
 
 
22.25: 32 SandS  enclose no charge, so the flux is zero, and electric field outside the 
plates is zero. For between the plates, 1S  shows that: .000 εσEεAσεqEA   
 
 



22.26: a) At a distance of 0.1 mm from the center, the sheet appears “infinite,” so: 

 





.CN662
m)800.0(2
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 b) At a distance of 100 m from the center, the sheet looks like a point, so: 

.CN1075.6
m)(100
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 c) There would be no difference if the sheet was a conductor. The charge would 
automatically spread out evenly over both faces, giving it half the charge density on any 
as the insulator 

00 2
::).( ε
σ

ε
σ

cEσ   near one face. Unlike a conductor, the insulator is the 
charge density in some sense. Thus one shouldn’t think of the charge as “spreading over 
each face” for an insulator. Far away, they both look like points with the same charge. 
 
 

22.27: a)                                .2
2

λπRσ
L
Q

πRL
Q

A
Qσ   

 b)                                  .2)2(
000 rε

σRE
ε
πRLσ

ε
QπrLEd AE  

 c) But from (a), ,so,2λ
02

λ
rπεER    same as an infinite line of charge. 

 
 



22.28: All the s'σ  are absolute values. 
 (a) at 
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22.29: a) Gauss’s law says +Q on inner surface, so 0E  inside metal. 

b) The outside surface of the sphere is grounded, so no excess charge. 
c) Consider a Gaussian sphere with the –Q charge at its center and radius less than 

the inner radius of the metal. This sphere encloses net charge –Q so there is an electric 
field flux through it; there is electric field in the cavity. 
 d) In an electrostatic situation 0E  inside a conductor. A Gaussian sphere with 
the Q  charge at its center and radius greater than the outer radius of the metal encloses 
zero net charge (the Q  charge and the Q on the inner surface of the metal) so there is 
no flux through it and 0E outside the metal. 
 e) No, 0E  there. Yes, the charge has been shielded by the grounded 
conductor. There is nothing like positive and negative mass (the gravity force is always 
attractive), so this cannot be done for gravity. 
 
 



22.30: Given ,ˆ)m)CN(00.3(ˆ)m)CN(00.5( kiE zx 


edge length 
,m300.0L ,m300.0L and .0ˆˆˆ

11 1  ASs nEjn


 

 )CN(00.3(ˆˆˆ
21 2 ASS nEkn


 zz )m)CN(27.0()m300.0)(m 2  

.m)CN(081.0)m300.0)(m)CN(27.0( 2  
.0ˆˆˆ

33 3  ASS nEjn


 

).0(0)m)CN(27.0(ˆˆˆ
44 4  zzASS nEkn


 

xxASS )m)N/C(45.0()m300.0)(m)CN(00.5(ˆˆˆ 2
5 55

 nEin


 

      ).m)CN(135.0()m300.0)(m)N/C(45.0( 2  
).0(0)m)CN(45.0(ˆˆˆ

66 6  xxASS nEin


 
b) Total flux: 

CNm054.0m)CN()135.0081.0( 22
52   

C1078.4 13
0

 εq  
 
 
22.31: a) 

 
 

 b) Imagine a charge q at the center of a cube of edge length 2L. Then: ./ 0εq  
Here the square is one 24th of the surface area of the imaginary cube, so it intercepts 1/24 
of the flux. That is, .24 0q  
 
 
22.32: a) .CmN750)m0.6)(CN125( 22  EA  
 b) Since the field is parallel to the surface, .0  
 c)  Choose the Gaussian surface to equal the volume’s surface. Then: 750 – 
EA= ,CN577)750C1040.2( 0

8
m0.6

1
0 2   Eεq  in the positive x -direction. 

Since 0q  we must have some net flux flowing in so   AEEA   on second face. 
 d) 0q  but we have E pointing away from face I. This is due to an external field 
that does not affect the flux but affects the value of E. 
 
 



22.33: To find the charge enclosed, we need the flux through the parallelepiped: 
 CmN5.3760 cos)CN1050.2)(m0600.0)(m0500.0(60cos 24

11  AE  
 CmN10560cos)CN1000.7)(m0600.0)(m0500.0(120cos 24

22  AE  
So the total flux is ,CmN5.67CmN)1055.37( 22

21  and 
.C1097.5)CmN5.67( 10

0
2

0
 εεq  

 b) There must be a net charge (negative) in the parallelepiped since there is a net 
flux flowing into the surface. Also, there must be an external field or all lines would point 
toward the slab. 
 
 
22.34: 

 
 

 The   particle feels no force where the net electric field is zero. The fields can 
cancel only in regions A and B. 
   sheetline EE   

   
00 22

λ
ε
σ

rπε
  

   cm16m16.0
)C/m100(

C/m50λ 2 

r  

The fields cancel 16 cm from the line in regions A and B. 
 
 



22.35: 

 
 

 The electric field 1E


 of the sheet of charge is toward the sheet, so the electric 
field 2E


 of the sphere must be away from the sheet. This is true above the center of the 

sphere. Let r be the distance above the center of the sphere for the point where the 
electric field is zero. 
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22.36: a) For ,0,  Ear since no charge is enclosed. 
 For ,, 204

1
r
q

πεEbra   since there is +q inside a radius r. 
 For  Ecrb , 0, since now the –q cancels the inner +q. 
 For ,, 204

1
r
q

πεEcr   since again the total charge enclosed is +q. 
b) 

 
c) Charge on inner shell surface is –q. 
d) Charge on outer shell surface is +q. 
e) 

 
 
 
22.37: a) ,0,  ERr  since no charge is enclosed. 
 b) ,,2 204

1
r
Q

πεERrR   since charge enclosed is ,,2. 20

2
4

1
r
Q

πεERrQ   since 
charge enclosed is 2Q. 

 

 
 

 



22.38: a) ,, 204
1

r
Q

πεEar   since the charge enclosed is Q. 
,0,  Ebra  since the –Q on the  inner surface of the shell cancels the +Q at the 

center of the sphere. 
20

2
4

1,
r
Q

πεEbr  , since the total enclosed charge is –2Q. 

 b) The surface charge density on inner surface: 24πa
Qσ  . 

 c) The surface charge density on the outer surface: .24
2
πb
Qσ   

 d) 

 
 e) 

 
 
 



22.39: a)(i) ,0,  Ear  since 0Q  
 (ii) ,0,  Ebra  since .0Q  
 (iii) ,, 20

2
4

1
r

q
πεEcrb   since .2qQ   

 (iv) ,0,  Edrc  since .0Q  
 (v) ,, 20

6
4

1
r

q
πεEdr   since .6qQ   

 

 
 
 

 b)(i) small shell inner: 0Q  
  (ii) small shell outer: qQ 2  
  (iii) large shell inner: qQ 2  
  (iv) large shell outer: qQ 6  
 
 
22.40: a)(i) ,0,  Ear  since the charge enclosed is zero. 
  (ii) ,0,  Ebra  since the charge enclosed is zero. 
  (iii) ,, 20

2
4

1
r

q
πεEcrb   since charge enclosed is .2q  

  (iv) ,0,  Edrc  since the net charge enclosed is zero. 
  (v) ,0,  Edr since the net charge enclosed is zero. 
 

 
 

b)(i) small shell inner: 0Q     
  (ii) small shell outer: qQ 2  
  (iii) large shell inner: qQ 2  
  (iv) large shell outer: 0Q  
 
 



22.41: a)(i) ,0,  Ear  since charge enclosed is zero. 
  (ii) ,0,  Ebra  since charge enclosed is zero. 
  (iii) ,, 20

2
4

1
r

q
πεEcrb   since charge enclosed is .2q  

  (iv) ,0,  Edrc  since charge enclosed is zero. 
  (v) ,, 20

2
4

1
r

q
πεEdr   since charge enclosed is .2q  

 

 
 

 b)(i) small shell inner: 0Q  
  (ii) small shell outer: qQ 2  
  (iii) large shell inner: qQ 2  
  (iv) large shell outer: qQ 2  
 
 
22.42: a) We need: 
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QρρRπQRRρQ   

 b) ,0,2and0,  ERrERr  since the net charges are zero. 
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Substituting ρ  from (a) .3
0

20 287
2

Rπε
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Q

πεE   

 
 c) We see a discontinuity in going from the conducting sphere to the insulator 
due to the thin surface charge of the conducting sphere—but we see a smooth transition 
from the uniform insulator to the outside. 
 

 
 
 



22.43: a) The sphere acts as a point charge on an external charge, so: 
,204

1
r
qQ

πεqEF   radially inward. 
 
 (b) If the point charge was inside the sphere (where there is no electric field) it 
would feel zero force. 
 
 

22.44: a) 
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22.45: a) ,λ2
4

1,
0 r

Ebra


  radially outward, as in 22.48 (b). 

 b) ,, λ2
4

1
0 rπεEcr   radially outward, since again the charge enclosed is the 

same as in part (a). 
 
 c) 

 
 d) The inner and outer surfaces of the outer cylinder must have the same amount 
of charge on them: .λλand,λλλλ outerinnerinner  ll  
 
 

22.46: a) (i)  .
2

)2(,
000 rπε
αE

ε
αl

ε
qπrlEar   

     (ii) ,bra   there is no net charge enclosed, so the electric field is zero. 
 

      (iii)  .2)2(,
000 rπε
αE

ε
αl

ε
qπrlEbr   

 
 

 b) (i) Inner charge per unit length is α.  (ii) Outer charge per length is .2  
 
 



22.47: a) (i) ,EπrlEar rπε
α

ε
αl

ε
q

000 2)2(,   radially outward. 
     (ii) ,bra  there is not net charge enclosed, so the electric field is zero. 
    (iii) ,br  there is no net charge enclosed, so the electric field is zero. 
 

 
 
b) (i) Inner charge per unit length is .  
     (ii) Outer charge per length is ZERO. 

 
 
22.48: a) ,)2(,

00
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0 2ε
ρr

ε
lρπr

ε
q EπrlERr   radially outward. 

 b) .)2(,λand, λ2
2
λ

2
2

00

2

0

2

0 r
k

rπεrε
ρR

ε
lρπR

ε
q EπrlEρπRRr   

 c) .Rr  the electric field for BOTH  regions is ,
02ε

ρRE  so they are consistent. 
 d) 

 
 
 
22.49: a) The conductor has the surface charge density on BOTH sides, so it has twice 
the enclosed charge and twice the electric field. 
 b) We have a conductor with surface charge density σ  on both sides. Thus the 
electric field outside the plate is .)2()2( 00 εσEεσAAE   To find the field 
inside the conductor use a Gaussian surface that has one face inside the conductor, and 
one outside. 
Then: 
 
 .00but)( inin0out0inout  EAEεσEεσAAEAE  
  
 



22.50: a) If the nucleus is a uniform positively charged sphere, it is only at its very 
center where forces on a charge would balance or cancel 
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 So from the simple harmonic motion equation: 
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d) If Rr   then the electron would still oscillate but not undergo simple 
harmonic motion, because for ,1, 2rFRr   and is not linear. 

 
 
22.51: The electrons are separated by a distance ,2d  and the amount of the positive 
nucleus’s charge that is within radius d  is all that exerts a force on the electron. So: 
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22.52:      
r axar dxex
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QQddθdrre
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  0.)( , ifNote  rQr  
 
         b) The electric field is radially outward, and has magnitude: 
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22.53: a) At N.94,2 215

219
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Fee
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πεR
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πεEqFRr  

  So: .m/s101.0kg1011.9N94 23231  mFa  
  b) .m/s101.44,At 232

(a)  aaRr  

  c) At 8
1

8
1 ()82(,2 eQRr  because the charge enclosed goes like 3r ) so with the 

radius decreasing by 2, the acceleration from the change in radius goes up by ,4)2( 2   
but the charge decreased by 8, so .m/s101.2 232

)b(8
4  aa  

  d) At .0so,0,0  FQr  
 
 



22.54: a) The electric field of the slab must be zero by symmetry. There is no preferred 
direction in the y -z plane, so the electric field can only point in the x -direction. But at 
the origin in the x -direction, neither the positive nor negative directions should be 
singled out as special, and so the field must be zero. 
 b) Use a Gaussian surface that has one face of area A on in the y -z plane at 

,0x  and the other face at a general value .x  Then: 
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with direction given by .̂|| ix
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  Note that E  is zero at .0x  
  Now outside the slab, the enclosed charge is constant with :x  
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22.55: a) Again, E  is zero at 0x , by symmetry arguments. 
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22.56: a) We could place two charges Q on either side of the charge :q  
 

 
 
  b) In order for the charge to be stable, the electric field in a neighborhood around it 
must always point back to the equilibrium position. 
  c) If q  is moved to infinity and we require there to be an electric field always 
pointing in to the region where q  had been, we could draw a small Gaussian surface 
there. We would find that we need a negative flux into the surface. That is, there has to be 
a negative charge in that region. However, there is none, and so we cannot get such a 
stable equilibrium. 
  d) For a negative charge to be in stable equilibrium, we need the electric field to 
always point away from the charge position. The argument in (c) carries through again, 
this time inferring that a positive charge must be in the space where the negative charge 
was if stable equilibrium is to be attained. 
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22.59:   a)    .4sin
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 b) For any closed surface, mass OUTSIDE the surface contributes zero to the flux 
passing through the surface. Thus the formula above holds for any situation where m  is 
the mass enclosed by the Gaussian surface. 
That is:   .encl4πGMdg Ag


 

 



22.60: a) .masspointaforassametheiswhich,44 2
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 b) Inside a hollow shell, the .0so,0encl  gM  
 c) Inside a uniform spherical mass: 
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22.61: a) For a sphere NOT at the coordinate origin: 
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 b) The electric field inside a hole in a charged insulating sphere is: 
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Note that E


 is uniform. 
 
 
22.62: Using the technique of 22.61, we first find the field of a cylinder off-axis, then the 
electric field in a hole in a cylinder is the difference between two electric fields—that of a 
solid cylinder on-axis, and one off-axis. 
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22.63: a) :0x  no field contribution from the sphere centered at the origin, and the 
other sphere produces a point-like field: 
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 b) :2  Rx   the sphere at the origin provides the field of a point charge of charge 
8  Qq   since only one-eighth of the charge’s volume is included. So: 
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 c) :Rx   the two electric fields cancel, so .0E


 
 d) :3Rx   now both spheres contribute fields pointing to the right: 
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22.64: (See Problem 22.63 with QQ  for terms associated with right sphere) 
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22.65: a) The charge enclosed: 
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eQ so the restoring force depends upon displacement to 

the first power, and we have simple harmonic motion. 
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 f) If the amplitude of oscillation is greater than ,2/R  the force is no longer linear in 
,r  and is thus no longer simple harmonic. 

 
 



22.66: a) Charge enclosed: 
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 c) The fraction of Q  between :2 RrR   
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Q
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 d) ,)2/( 2
04233

180
Rπε

QRrE   using either of the electric field expressions above, 

evaluated at .2/Rr   
 e) The force an electron would feel never is proportional to r  which is necessary for 
simple harmonic oscillations. It is oscillatory since the force is always attractive, but it 
has the wrong power of r  to be simple  harmonic.  
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       b) At the closest point, the velocity is zero: 
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   Therefore 

m074.0x since it is the only value between the two charges. 
 
 
23.8: From Example 23.1, the initial energy iE can be calculated: 
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When velocity equals zero, all energy is electric potential energy, so: 
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23.9: Since the work done is zero, the sum of the work to bring in the two equal charges 

q must equal the work done in bringing in charge Q. 
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23.10: The work is the potential energy of the combination. 
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Since U is negative, we want do J1031.7 19  to separate the particles 
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23.12:   Get closest distance .γ  Energy conservation:
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23.13:   BBAA UKUK   
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It is faster at B; a negative charge gains speed when it moves to higher potential. 



23.14: Taking the origin at the center of the square, the symmetry means that the 
potential is the same at the two corners not occupied by the C00.5 µ  charges  (The 
work done in moving to either corner from infinity is the same). But this also means that 
no net work is done is moving from one corner to the other. 
 
 
23.15: E


points from high potential to low potential, so .and ACAB VVVV   

       The force on a positive test charge is east, so no work is done on it by the electric 
force when it moves due south (the force and displacement are perpendicular); .AD VV   
 
 
23.16: a) J.1050.1 6 KqEdUW  
     b) The initial point was at a higher potential than the latter since any positive charge, 

when free to move, will move from greater to lesser potential. 
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23.17: a) Work done is zero since the motion is along an equipotential, perpendicular to 
the electric field. 
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23.18: Initial energy equals final energy: 
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       c) J.108.25V)33(C)1050.2( 89   VqW  
The negative sign indicates that the work is done on the charge. So the work done by the 
field is J.1025.8 8  
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c) The potential along the x-axis is always zero, so a graph would be flat. 
d) If the two charges are interchanged, then the results of (b) and (c) still hold. 
The potential is zero 
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Note: This can also be written as 
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      d) If the charges are interchanged, then the potential is of the opposite sign. 
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  which is the same as the potential of a point charge 

–q. (Note: The two charges must be added with the correct sign.) 
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 which is the potential of a point charge q . 
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       c) The electric field is directed away from q since it is a positive charge. 
 
 
23.29:  a) Point b has a higher potential since it is “upstream” from where the positive 
charge moves. 
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23.30:(a) ,02  QQ VVV  so V is zero nowhere except for infinitely far from the 
charges. 

    The fields can cancel only between the charges 
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 Note that E and V are not zero at the same places. 
 
 
23.31: a) 2211 qVKqVK    
       ;)( 1221 KKVVq   C10602.1 19q  
      J;10099.4 182

1e2
1

1
 vmK  J10915.2 172

2e2
1

2
 vmK  

      V15612
21 




q
KKVV  

      The electron gains kinetic energy when it moves to higher potential. 
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The electron loses kinetic energy when it moves to lower potential 
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 c) Since the sphere is metal, its interior is an equipotential, and so the potential 
inside is 131.3 V. 
 
 
23.33: a) The electron will exhibit simple harmonic motion for ,ax   but will 
otherwise oscillate between .cm0.30  
      b) From Example 23.11, 
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23.34: Energy is conserved: 
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 b) The higher potential is at the positive sheet. 
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       b) V.117m)(0.0220C)/N5311(  EdV  
       c)   The electric field stays the same if the separation of the plates doubles, while the 
potential between the plates doubles. 
 
 
23.39:  a) The electric field outside the shell is the same as for a point charge at the center 
of the shell, so the potential outside the shell is the same as for a point charge: 

 R.for
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The electric field is zero inside the shell, so no work is done on a test charge as 
it moves inside the shell and all points inside the shell are at the same potential as the 
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      c) No, the amount of charge on the sphere is very small. 
 
 



23.40: For points outside this spherical charge distribution the field is the same as if all 
the charge were concentrated at the center. 
 Therefore 
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Since the field is directed inward, the charge must be negative. The potential of a point 
charge, taking   as zero, is 
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at the surface of the sphere. Since the charge all resides on the surface of a conductor, the 
field inside the sphere due to this symmetrical distribution is zero. No work is therefore 
done in moving a test charge from just inside the surface to the center, and the potential at 
the center must also be .V760  
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  which agrees with Equation (21.7). 

 
 
23.43: a) There is no dependence of the potential on ,or yx  and so it has no 
components in those directions. However, there is z  dependence: 
 

 .0  ,ˆ dzforCEC
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and ,for,0 dz E


since the potential is constant there. 
 
     (b) Infinite parallel plates of opposite charge could create this electric field, where the 
surface charge is .0Cεσ   
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(iii) ,0:  Vrr b  since outside a sphere the potential is the same as for point 
charge. Therefore we have the identical potential to two oppositely charged point charges 
at the same location. These potentials cancel. 
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       d) From Equation (24.23): ,0E   since V is zero outside the spheres. 
      e) If the outer charge is different, then outside the outer sphere the potential is no 

longer zero but is .)(
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  All potentials inside the outer 

shell are just shifted by an amount .
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πε
V   Therefore relative potentials within the  

shells are not affected. Thus (b) and (c) do not change. However, now that the potential 
does vary outside the spheres, there is an electric field there: 
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c) The equipotentials are closest when the electric field is largest. 
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      b) The potential was evaluated at y and z equal to zero, and thus shows no 
dependence on them. However, the electric field depends upon the derivative of the 
potential and the potential could still have a functional dependence on the variables y and 
z, and hence yE  and zE may be non-zero. 
 
 



23.47: 
 

 
 

      a) Equipotentials and electric field lines of two large parallel plates are shown above. 
      b)  The electric field lines and the equipotential lines are mutually perpendicular. 
 
 



23.48:  

 
 

      (a) 13121 FFamF   

       


























22

26229

2
13

2
12

2

321

12
13

31
2

12

21

)m16.0(
1

m)08.0(
1)C100.2()CNm109()kg02.0(

11

a

rr
kqma

qqqq

am
r

qkq
r

qkq

 

           2sm 352a   
 
      (b) Maximum speed occurs at “infinity”. The center charge does not move since the 
forces on it balance. Energy conservation gives .fi KU   
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      b) .V2829
C1060.7
J1015.2

9

5








 



q
WVVqW E

E  So the initial point is  

–2829 V with respect to the final point. 
 

      c) .
m
V1054.3

m08.0
V2829 4

d
VE  

 
 



23.50:   a) .
2

2

22

mr
kev

r
ke

r
mv

  

 

       
eV.13.6J1017.2

m1029.5
)C1060.1(

2
1

2
1

2
1c)

.
2
1

2
1

2
1b)

18
11

2192

2
2












k
r

keUUKE

U
r

kemvK
 

 
 
 
 
 
23.51: .mV107.85m)(0.0130V)240(a) 4/344/33/4  CCxV

anode.toward
N,1014.3)C1060.1()mV)00650.0()1005.1((c)

cathode. toward

,mV
m
V1005.1)mV1085.7(

3
4

3
4b)

15193/15

3/1
4/3

53/13/443/1

 







 






eEF

xxCx
x
VE

 

 
 



23.52: From Problem 22.51, the electric field of a sphere with radius R and q distributed 

uniformly over its volume is  for  
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the center of the sphere. 
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Set eq 2  to get rV for the sphere. The work done by the attractive force of the sphere 
when one electron is removed from isto dr  
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The total work done by the attractive force of the sphere when both electrons are 
removed is twice this, .2 sphereW  The work done by the repulsive force of the two electrons 

is 
)2(4 0
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dπε
eWee   The total work done by the electrical forces is .2 sphere eeWW   The 

energy required to remove the two electrons is the negative of this, 
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We can check this result in the special case of d = R, when the electrons initially sit on 
the surface of the sphere. The potential due to the sphere is the same as for a point charge 

e2  at the center of the sphere. 
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The work done by the electric forces when the electrons are removed is Rπεe 0

2 87 and 
the energy required to remove them is Rπεe 0

2 87 . Setting d =R in our general expression 
yields this same result. 
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      b) The fact that the electric potential energy is less than zero means that it is 
energetically favourable for the crystal ions to be together. 
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       c) The potential energy is the same for the negative ions—the equations are identical 
if we examine (a). 
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     e) The real energy )J1080.0( 18 is about 70% of that calculated above. 
 
 

23.55: a) .J1061.8
m100.535

)C1060.1(22 18
10

2192














k

r
keUe  

     b) If all the kinetic energy goes into potential energy: 
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(Note that we must be careful to keep all digits along the way.) .m1087.2 11 x  



23.56: N0.0085)(30tan)sm(9.80kg)101.50(tan 23  θmgFe . (Balance 
forces in x and y directions.) But also: 
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           d) The potential difference between the two cylinders is identical to that in part 
(b) even if the outer cylinder has no charge. 
 
 
23.58: Using the results of Problem 23.57, we can calculate the potential difference: 
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23.61:   a) From Problem 23.57, 
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23.62: Recall from Example 23.12 for a line of charge of length a : 
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     a) For a square with two sets of oppositely charged sides, the potentials cancel and 
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     b) If all sides have the same charge we have: 
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23.64: a) From Example 23.12: 
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That is, the finite rod acts like a point charge when you are a long way from it. 
        b) From Example 23.12: 
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        b) W = .J104.31V)(718C)106.00( 69   Vq  
Note that the work done by the field is negative, since the charge is moved AGAINST the 
electric field. 
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23.70: From Example 22.9, we have: 
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23.71: a) Problem 23.70 shows that 
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b) If VQ ,0  is higher at the center. If  VQ ,0  is higher at the surface. 
 

 
23.72: (a) Points cba and,,  are all at the same potential because 0E  inside the 
spherical shell of charge on the outer surface. So .0 acbcab VVV  
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      (b) They are all at the same potential 
     (c) Only  cV  would change; it would be V.1025.2 6  
 
 
23.73: a) The electrical potential energy for a spherical shell with uniform surface 
charge density and a point charge q  outside the shell is the same as if the shell is 
replaced by a point charge at its center. Since ,drdUFr   this means the force the 
shell exerts on the point charge is the same as if the shell were replaced by a point charge 
at its center. But by Newton’s 3rd law, the force q  exerts on the shell is the same as if the 
shell were a point charge. But q  can be replaced by a spherical shell with uniform 
surface charge and the force is the same, so the force between the shells is the same as if 
they were both replaced by point charges at their centers. And since the force is the same 
as for point charges, the electrical potential energy for the pair of spheres is the same as 
for a pair of point charges. 
      b) The potential for solid insulating spheres with uniform charge density is the same 
outside of the sphere as for a spherical shell, so the same result holds. 
     c) The result doesn’t hold for conducting spheres or shells because when two charged 
conductors are brought close together, the forces between them causes the charges to 
redistribute and the charges are no longer distributed uniformly over the surfaces. 
 
 



23.74: Maximum speed occurs at “infinity” Energy conservation gives 
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23.75: Using the electric field from Problem 22.37, the potential difference between the 
conducting sphere and insulating shell is: 
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same potential as its surface. 
 
 
23.77: Using the electric field from Problem 22.54, the potential difference between the 
two faces of the uniformly charged slab is: 
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23.80: Set the alpha particle’s kinetic energy equal to its potential energy: 
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23.82: a) From Problem 22.57 we have the electric field: 
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       c) The new potential is the same at each sphere’s surface: 
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      d) The new electric field is not the same at each sphere’s surface: 
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      b) A charge is moved in along the z -axis. So the work done is given by: 
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 d) These calculations were based on the particles’ average speed. The distribution 
of speeds ensures that there are always a certain percentage with a speed greater than the 
average speed, and these particles can undergo the necessary reactions in the sun’s core. 
 
 



23.86: a) The two daughter nuclei have half the volume of the original uranium nucleus, 
so their radii are smaller by a factor of the cube root of 2: 
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Each daughter has half of the potential energy turn into its kinetic energy when far from 
each other, so: 
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        c) If we have 10.0 kg of uranium, then the number of nuclei is: 
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 d) We could call an atomic bomb an “electric” bomb since the electric potential 
energy provides the kinetic energy of the particles. 
 
 
23.87: Angular momentum and energy must be conserved, so: 
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       c) ,0)(:  rρar  so the total charge enclosed will be given by: 
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Therefore, by Gauss’s Law, the electric field must equal zero for any position .ar   
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23.90: For an infinitesimal slice of a finite cylinder, we have the potential: 
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  which is the same as for a ring. 
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     After expanding the center of mass velocity and collecting like terms: 
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d) Since the energy is less than zero, the system is “bound.” 
e) The maximum separation is when the velocity is zero: 
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24.6: (a) 12.0 V since the plates remain charged. 
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The separation between the pennies is nearly a factor of 10 smaller than the diameter of a 
penny, so it is a reasonable approximation to treat them as infinite sheets. 
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 b) The charge on each conductor is equal but opposite. Since the inner conductor 
is at a higher potential it is positively charged, and the magnitude is: 
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24.12: a) For two concentric spherical shells, the capacitance is: 
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b) The electric field at a distance of 12.6 cm: 
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d) For a spherical capacitor, the electric field is not constant between the 
surfaces. 
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 b) For parallel capacitors, the voltage over each is the same, and equals the 
voltage source: 52.0 V. 
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24.20: a) and b) The equivalent resistance of the combination is 6.0 ,F  therefore the 
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 c) Since the 3 F6andF11,F µµµ capacitors are connected in parallel and are in 
series with the F9 µ  capacitor, their charges must add up to that of the F9 µ  capacitor. 
Similarly, the charge on the F12andF11,F3 µµµ  capacitors must add up to the same as 
that of the F9 µ  capacitor, which is the same as the whole network. In short, charge is 
conserved for the whole system. It gets redistributed for capacitors in parallel and it is 
equal for capacitors in series. 
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24.22: a) 21 and CC  are in parallel and so have the same potential across them: 
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 b) They must have equal potential difference, and their combined charge must 
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 e) Thermal energy of capacitor, wires, etc., and electromagnetic radiation. 
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 c) The work done in increasing the separation is given by: 

  .
22 0

2

0

2

0 Aε
QFFdx

Aε
dxQUUdW   

 d) The reason for the difference is that E is the field due to both plates. The force 
is QE if E is the field due to one plate is Q is the charge on the other plate. 
 



24.30: a) If the separation distance is halved while the charge is kept fixed, then the 
capacitance increases and the stored energy, which was 8.38 J, decreases since 

.22 CQU   Therefore the new energy is 4.19 J. 
 b) If the voltage is kept fixed while the separation is decreased by one half, then 
the doubling of the capacitance leads to a doubling of the stored energy to 16.76 J, using 

,22CVU   when V is held constant throughout. 
 
 
24.31: a) CQU 22  

 C1000.5)F1000.5)(J0.25(22 49   UCQ  
 The number of electrons N that must be removed from one plate and added to the 
other is 15194 1012.3)C10602.1/()C1000.5(  eQN electrons. 
 b) To double .2offactorabydecreaseconstant,keepingwhile CQU  
 ;/0 dAεC   halve the plate area or double the plate separation. 
 
 

24.32: farad10417.3
V40.2

C1020.8 12
12








V
QC  

 dAKεC 0Since  for a parallel plate capacitor 

 
m10734.6

farad10417.3
)m1060.2)(mN/C1085.8)(00.1(

3

12

232212
0













C

AKεd
 

 The energy density is thus 
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212
2
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m
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)m10734.6)(m1060.2(
V)40.2)(farad1042.3( 
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24.33: a) .C1060.1
V00.4

)J1020.3(22
2
1 9

9








V
UQQVU  

 b) )2exp()2exp(
)(ln

2
00

0 QLVπεCLπε
r
r

rr
πε

L
C

b

a

ba

  

.05.8C))1060.1(V)00.4()m0.15(2exp( 9
0  πε

r
r
b

a  

 
 



24.34: a) For a spherical capacitor: 

 
.V7.38)F1053.8()C1030.3(

F1053.8
)m100.0m115.0(
)m115.0)(m100.0(11

119
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CQV
krr
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b) .J1038.6
2

)V7.38)(F1053.8(
2
1 8

211
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24.35: a) 4

21122
0

2
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0

2

2
02

0 )m126.0(
)F1094.8()V120(

2222
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kε
r

kVCε
r
kqεEεu  

.mJ1064.1 34 u   
 b) The same calculation for .mJ1083.8cm7.14 35 ur  
 c) No, the electric energy density is NOT constant within the spheres. 
 
 

24.36: a) .mJ1011.1
)m120.0(

)C1000.8(
32
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2
1 34
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2
0

0
2
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επr
q

πε
εEεu  

 b) If the charge was –8.00 nC, the electric field energy would remain the same 
since U only depends on the square of E. 
 
 
24.37: Let the applied voltage be V. Let each capacitor have capacitance 2

2
1 . CVUC   

for a single capacitor with voltage V. 
 a) series 
 Voltage across each capacitor is .2V  The total energy stored is 

   2
4
12

s 2
2
12 CVVCU 






  

 parallel 
 Voltage across each capacitor is V. The total energy stored is 

 

 

   spps

sp

22
2
1

p

2;2)(2;22

.voltagewithcapacitorsingleafor)b4

2

QQCVCVQCVVCQ
VCVQUU

CVCVU







 

 c) VdVE voltagewithcapacitorafor  
     spps 2;;2 EEdVEdVE   

 
 



24.38: a) dAKεC 0 gives us the area of the plates: 

 24
2212

312

0

m10475.8
)mN/C1085.8)(00.1(

)m1050.1)(farad1000.5( 










Kε
CdA  

      We also have electrictheis).( so , 00 dVdVAKQVQdAKεC  field 
between the plates, which is not to exceed ThusC.N1000.3 4  

C1025.2

C)N1000.3)(m10475.8)(mNC1085.8)(00.1(
10

4242212







Q
 

 b) Again, ).(70.2)( 00 dVAεdVAKεQ   If we continue to think of dV as 
the electric field, only K has changed from part (a); thus Q in this case is 

.C1008.6C)1025.2)(70.2( 1010    
24.39: a) .mC1020.6)mV10)50.220.3(( 275

0
 εσi  The field induced in the 

dielectric creates the bound charges on its surface. 

 b) .28.1
mV1050.2
mV1020.3

5

5
0 





E
EK  

 
 
24.40: a)  00

66
0 mV1032.4)mV1020.1)(60.3( EεσKEE  

.mC1082.3 25  

 b) .mC1076.2)60.311)(mC1082.3(11 2525  





 

K
σσi  

 c) AdEKεuAdCVU 2
02

12
2
1   

                 .J1003.1)m105.2)(m0018.0()mV1020.1()60.3( 52426
02

1   εU  
 
 
 

24.41: .m0135.0
)mV1060.1()60.3(

)V5500)(F1025.1( 2
7

0

9

0

00 







εEKε
CVA

V
AEKε

d
AKεC  

 
 
24.42: Placing a dielectric between the plates just results in the replacement of 0for  in 
the derivation of Equation (24.20). One can follow exactly the procedure as shown for 
Equation (24.11). 
 
 



24.43: a) .NmC103.2)6.2( 2211
00

 εKεε  
      b) .V100.4)m100.2)(mV100.2( 437

maxmax  dEV  

      c) .mC1046.0)mV100.2)(NmC103.2( 2372211

0

  εEσ
Kε
σE  

            .mC108.2)6.211)(mC1046.0(11 And 2423  





 

K
σσ i  

 
 
24.44: a)   )V12)(F105.2)(1.2()1()1( 7

0000 VCKQKQQQ  
C.103.6 6  

 b)   .C103.6)1.311)(C103.9(1 661   Ki QQ  
 c) The addition of the mylar doesn’t affect the electric field since the induced 
charge cancels the additional charge drawn to the plates. 
 
 

24.45: a) .V1.10
)F1060.3(

J)1085.1(22
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 b) .27.2
)V1.10)(F1060.3(

)J1085.11032.2(2
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2
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24.46: a) The capacitance changes by a factor of K when the dielectric is inserted. Since 
V is unchanged (The battery is still connected), 

 80.1
pC0.25
pC0.45

before

after

before

after  K
Q
Q

C
C  

 b) The area of the plates is ,m10827.2)m0300.0( 2322  ππr  and the 
separation between them is thus 

 
m10002.2

farad105.12
)m10827.2)(mNC1085.8)(00.1(
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 Before the dielectric is inserted, 

 

V000.2
)m10827.2)(mNC1085.8)(00.1(

)m1000.2)(C100.25(
232212
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The battery remains connected, so the potential difference is unchanged after the 
dielectric is inserted. 
 c) Before the dielectric is inserted, 

 
CN999

)m10827.2)(00.1)(mNC1085.8(
C100.25

232212

12

0





 



KAε
QE

 

Again, since the voltage is unchanged after the dielectric is inserted, the electric field is 
also unchanged. 
 
 
 
24.47: a) before: V00.3)F1000.3()C1000.9( 66

000  CQV  
 after: 00 ;F0.15 QQKCC   
 KVCQV offactorabydecreasesV;600.0  
 b) the,dVE  same at all points between the plates (as long as far from the 
edges of the plates) 
 before: mV1500)m1000.2()V00.3( 3  E  
 after: mV300m)1000.2()V600.0( 3  E  
 
 



24.48: a) .
4

4 2
0

2

0 πεd
qE

ε
qπdKE

ε
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K free  AE


 

  b) 2
00

2

00 4
4

dπε
qqE

ε
qqπdE

ε
qq

ε
qd bbbftotal 







 AE


 

        ./ Kqqqq btotal   
  c) The total bound change is  .11

b  Kqq  
 
24.49: a) Equation (25.22):   .

000 εA
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AKε
Q
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Q EKEAdK freeAE


 

b) .
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AKε

QdEdV   

c) .0
0 KC
d
AεK

d
εA

V
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24.50: a) .F108.4
m107.4
)m16.0( 11

3

2
00 

 



ε

d
AεC  

   b) .C1058.0)V12()F108.4( 911   CVQ  
    c) E= dV =(12 V)/(4.7 )m10 3 =2553 mV . 
   d) .J1046.3)V12)(F108.4( 9211

2
12

2
1   CVU  

   e) If the battery is disconnected, so the charge remains constant, and the plates are 
pulled further apart to 0.0094 m, then the calculations above can be carried out 
just as before, and we find: 

 
 a) F1041.2 11C   b) .C1058.0 9Q  

c) mV 2553E        d) .J1091.6
)F1041.2(2

)C1058.0(
2

9
11

292
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24.51: If the plates are pulled out as in Problem 24.50 the battery is connected, ensuring 

that the voltage remains constant. This time we find: 

 a) F104.2 11C  b) C109.2 10Q  c) 
m
V103.1

0094.0
V12 3

d
VE  

  

d) .J1073.1
2

)V12()F104.2(
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24.52: a) System acts like two capacitors in series so   111
eq 21

 CCC  
 

          .
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1

2
1

2
so 2

0

2
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222
0

eq

2
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21 2
0 Lε

dQQ
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QU

d
LεC

d
LεCC

d
Lε

   

 
 
 b) After rearranging, the E fields should be calculated. Use superposition recalling  

Aε
QE
02 for a single plate (not Aε

Q
0

 since charge Q is only on one face). 

 between 1 and 3: 2
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2
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0 2222 Lε
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 between 3 and 2: 2
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 between 2 and 4: 2
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This is the work required to rearrange the plates. 
 

 
24.53: a) The power output is 600 W, and 95% of the original energy is converted. 

.J421J400)s1048.1()W1070.2( 95.0
J400

0
35   EPtE  

b) F054.0
)V125(
)J421(22

2
1

22
2 

V
UCCVU  

 

24.54: F1031.5
m1000.7

)m1020.4( 13
4

0
25

0
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ε
d

AεC  

  .F1081.7pF25.0 13
0

 CC  

 But .m1076.4
F1081.7
)m1020.4( 4

13
0

25
00 














ε
C

Aεd
d
AεC  

Therefore the key must be depressed by a distance of: 
  .mm224.0m1076.4m1000.7 44    
 

 



24.55: a) d .2
)1ln(
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))(ln(
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2: 00000
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Lεπr
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rrd
Lπε

rr
LπεCr a

aaaab
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b) At the scale of part (a) the cylinders appear to be flat, and so the capacitance 
should appear like that of flat plates. 

 
 
24.56: Originally:   F)0.4(;C102.52V)(28F)0.9( 222

4
111 µVCQµVCQ   

eq
4 and,C101.12V)(28 C isstoredenergyoriginaltheSo.F0.1321 µCC   

:is storedenergy  new  theSoF.0.13same,thestill
isecapacitancequivalenttheand,C104.1ischargetotalthenowso

 ,capacitorstheflipandDisconnectJ.1010.5V)(28F)100.13(

eq

4
12
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eq2
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QQQ
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J.1035.4J1010.5J107.45

J1054.7
F)100.13(2
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24.57: a)  )V660()F00.10(andF,00.10F00.600.4 eqeq µVCQµµµFC total

6.6 .C10 3 The voltage over each is 660 V since they are in parallel. So: 
 

C.1096.3)V660()F00.6(

C.1064.2)V660()F00.4(
3

222

3
111









µVCQ
µVCQ

 

 
 b) ,F00.10stilland,C1032.1C1064.2C1096.3 eq

333   CQtotal  

so the voltage is V = Q/C = ,V132)F00.10()C1032.1( 3   µ and the new charges: 
 

C.1092.7)V132)(F00.6(

.C1028.5)V132)(F00.4(
4

222

4
111









µVCQ
µVCQ

 

 
 



24.58: a)  
 

 
 

.22eq CC CC   So the total capacitance is the same as each individual capacitor, and 
the voltage is spilt over each so that 480V  V. Another solution is two capacitors in 
parallel that are in series with two others in parallel. 
 

b) If one capacitor is a moderately good conductor, then it can be treated as a 
“short” and thus removed from the circuit, and one capacitor will have greater than 600 
V over it. 
 

 

24.59:   a)   and21111
251

5
111

21eq 43

CCC
CCCC CC




   

F.52.2
5
3

3
5

3
221so 2eq2

21eq
432 µCCC

CCC
CCC   

         b) 51
4 C1054.5)V220)(F52.2( QQµCVQ    

                 .V66)F104.8(/)C1054.5( 64
51  VV  

 
.C101.85F)2.4)(V44(V44)V88(

Also.C1070.3)F2.4)(V88(V88)66(2220So
4

432
1
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24.60: a) With the switch open:      F00.41
F6

1
F3

11
F6

1
F3

1
eq µC µµµµ    

C108.4V)(210F)00.4( 4
eq

 µVCQtotal . By symmetry, each 

capacitor carries 4.20 C.10 4   The voltages are then just calculated via V=Q/C. 
So: V.70V70/andV,140/ 63  acadcdacad VVVCQVCQV  
 b) When the switch is closed, the points c and d must be at the same potential, so 
the equivalent capacitance is: 

F.4.5
F6)(3

1
F6)(3

1
1

eq µ
µµ

C 















 

,C109.5V)(210F)50.4( 4
eq

 µVCQtotal and each capacitor has the same 
potential difference of 105 V (again, by symmetry) 

c) The only way for the sum of the positive charge on one plate of 2C and the 
negative charge on one plate of 1C to change is for charge to flow through the switch. 
That is, the quantity of charge that flows through the switch is equal to the charge in 

.012  QQ  With the switch open, 21 QQ   and .012  QQ  After the switch is closed, 
C315;C31512 µµQQ  of charge flowed through the switch. 

 
  

24.61: a) F1.2
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1
F4.8

1
F4.8

1
1

eq µ
µµµ
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     C.107.50V)(36F)1.2( 5
eq

 µVCQ    
 b) .J101.36V)(36F)1.2( 32

2
12

2
1  µCVU  

 c) If the capacitors are all in parallel, then: 

 
V.10.8F)21(/C)1027.2(and

,C102.27C)1056.7(3andF21F)4.2F8.4F4.8(
4
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 d) .J101.22V)(10.8F)21( 32
2
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24.62: a) F102.4
F6.0

1
F4.0

1 6
1

eq














µµ
C  

     C101.58V)(600F)104.2( 36
eq

  VCQ  

and .V265V395V660V395F)(4.0C)1058.1(/ 3
3

22   VµCQV  
 b)  Disconnecting them from the voltage source and reconnecting them to 
themselves we must have equal potential difference, and the sum of their charges must be 
the sum of the original charges: 

C.101.90V)(316F)1000.6(

C.101.26V)(316F)1000.4(

V.316
F1010.0
C)102(1.582

)(2and

36
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24.63: a) Reducing the furthest right leg yields    1

F9.6
1

F9.6
1

F9.6
1

C   
.3/F3.2 1Cµ   It combines in parallel with a .F9.6F3.2F6.4 12 CµµµCC   So 

the next reduction is the same as the first: .3/F3.2 1CµC  And the next is the same as 
the second, leaving 3 1C ’s in series so .3/F3.2 1eq CµC   
 b) For the three capacitors nearest points a and b: 

C109.7V)(420F)103.2( 46
eq1

  VCQC  

and .C106.443V)(420F)106.4( 46
222

  VCQC  
 c)   ,V46.7V3

420
3
1 cdV since by symmetry the total voltage drop over the 

equivalent capacitance of the part of the circuit from the junctions between ca,   and 
bd ,  is V,3

420  and the equivalent capacitance is that of three equal capacitors 1C in series. 

cdV  is the voltage over just one of those capacitors, i.e., .Vof31 3
420  

 
 
24.64: (a) F60321equiv µCCCC   

 C7200)V(120F)60( µµCVQ   

(b) 
321equiv

1111
CCCC

   

C654V)(120F)45.5(

F45.5equiv

µµCVQ
µC




  

 
 



24.65: a) Q is constant. 
 with the dielectric: )( 0KCQCQV   

without the dielectric: 00 CQV   
3.91V)V)/(11.5(45.0so,/0  KKVV  

b)  

 
Let dAεC 00   be the capacitance with only air between the plates. With the 

dielectric filling one-third of the space between the plates, the capacitor is equivalent to 
21 and CC  in parallel, where 3/2hasand3/has 2211 AACAAC   

V22.8
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3V)(45.0
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24.66: a) This situation is analagous to having two capacitors 1C  in series, each with 
separation ).(2

1 ad   Therefore   .00

11 2)(2
1

12
1111

ad
Aε

ad
Aε

CC CC 
   

b) .0
00

ad
dC

ad
d

d
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AεC








  

c) As .,asAnd.,0 0  CdaCCa  
 
 
24.67: a) One can think of “infinity” as a giant conductor with .0V  

b) ,4 0)4/( 0
RπεC RπεQ

Q
V
Q   where we’ve chosen 0V  at infinity. 

c) F.107.1m)10(6.444 46
00

 πεRπεC earthearth  Larger than, but 
comparable to the capacitance of a typical capacitor in a circuit. 
 
 



24.68: a) .0
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1: 2
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c) 


 


Rπε
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QudrrπudVU
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2
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4  

d) This energy is equal to Rπε
Q

0

2

42
1  which is just the energy required to assemble all 

the charge into a spherical distribution. (Note, being aware of double counting gives the 
factor of 21 in front of the familiar potential energy formula for a charge Q a distance R 
from another charge Q.) 

e) From Equation (24.9): Rπε
Q

C
QU

0

22

82   from part (c) ,4 0RπεC   as in 
Problem (24.67). 
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24.70:          a) 
.rεπrπε
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c) Using Equation (24.9): 
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24.72: This situation is analagous to having two capacitors in parallel, each with an 
area .2

A So: 

  ).(
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24.73: a) V/m.100.1
)4.5(

C/m1050.0 7

0

23

0







εKε
σE  

  b) V.0.052m)10(5.0V/m)100.1( 97  EdV  The outside is at the higher 
potential. 
  c) volume m1088.2m10 6316   R  
  shell volume 3199262 m105.2m)100.5(m)1088.2(44   πdπR  

J.1036.1)m102.5(V/m)100.1()4.5(V)( 1531927
02

12
02

1   εEKεuVU   
 
 

24.74: a) C.1033.1
m101.00

V)3000()m200.0()50.2( 6
2

2
00 

 



εV

d
AKεCVQ  

  b) C.107.981/2.50)(1C)1033.1()/11( 76   KQQi  

  c) V/m.1001.3
)m200.0((2.50)

C1033.1 5
2
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εAKε
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ε
σE  

  d) J.102.00V)(3000C)1033.1(
2
1

2
1 36   QVU  

  e) 





3
2

3

J/m00.1
m)0100.0()m(0.200

J1000.2
Ad
Uu or 

             .J/m00.1V/m)1001.3()50.2( 325
02

12
02

1  εEKεu  
  f) In this case, one does work by pushing the slab into the capacitor since the 
constant potential requires more charges to be brought onto the plates. When the charge 
is kept constant, the field pulls the dielectric into the gap, with the field (or charges) 
doing the work. 
 
 



24.75: a) We are to show the transformation from one circuit to the other: 
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 Setting the coefficients of the charges equal to each other in matching potential 
equations from the two circuits results in three independent equations relating the two 
sets of capacitances. The set of equations are: 
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 From these, subbing in the expression for ,K  we get: 
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24.76: a) The force between the two parallel plates is: 
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 b) When ,0V  the separation is just .0z So: 
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  c) For V,120 and N/m,25m,102.1,m300.0 3
0

2   VkzA  
mm.1.014mm,537.00m1082.3m)104.2(2 310233   zzz  

  d) Stable equilibrium occurs if a slight displacement from equilibrium yields a 
force back toward the equilibrium point. If one evaluates the forces at small 
displacements from the equilibrium positions above, the 1.014 mm separation is seen to 
be stable, but not the 0.537 mm separation. 
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   c) If the charge is kept constant on the plates, then: 
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 d) Since ,2
)1( 2

0 dxFdxdU D
LVεK   then the force is in the opposite direction to the 

motion ,dx meaning that the slab feels a force pushing it out. 
 
 



24.78: a) For a normal spherical capacitor:  .4 00 ab

ba
rr

rrπεC   Here we have, in effect, two 
parallel capacitors, LC  and UC . 
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 b) Using a hemispherical Gaussian surface for each respective half: 
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    c) The free charge density on upper and lower hemispheres are: 

)1(44
)( 22 Kπr

Q
πr
Qσ

aa

U
Uf ar 

 and .
)1(44

)( 22 Kπr
Q

πr
Qσ

bb

u
Uf ar 

  

  
)1(44

)( 22 Kπr
KQ

πr
Qσ

aa

L
Lf sr 

 and .
)1(44

)( 22 Kπr
KQ

πr
Qσ

bb

L
Lf ar 

  

 d) .
41

1
14

)1()11( 22
aa

fi πr
Q

K
K

K
K

πr
Q

K
KKσσ

arar 






  

         .
41

1
14

)1()11( 22
ba

fri πr
Q

K
K

K
K

πr
Q

K
KKσσ

brb 






  

     e) There is zero bound charge on the flat surface of the dielectric-air interface, or else 
that would imply a circumferential electric field, or that the electric field changed as we 
went around the sphere. 
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24.80: a) The capacitors are in parallel so: 
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  b) For gasoline, with :95.1K  
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  c) For methanol, with :33K  
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LhKeff  full: ;17
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4
3 full: .25
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 d) This kind of fuel tank sensor will work best for methanol since it has the greater 
range of effK  values.  



25.1: C.1089.3)s3600)(3)(A6.3( 4 ItQ  
 
25.2: a) A.1075.8bygivenisCurrent 2

)s60(80
C420  t

QI  

     b) AnqvI d  

        
))m103.1(π)(C106.1)(108.5(

A1075.8
231928
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nqA

Ivd  

         = .sm1078.1 6  
 

25.3: a) 
))m1005.2)(4π)(C106.1)(105.8(

A85.4
231928  


nqA

Ivd  

                     sm1008.1 4  
    min110s6574timetravel

sm1008.1
m71.0
4  dv

d  

     b) If the diameter is now 4.12 mm, the time can be calculated using the formula above 
or comparing the ratio of the areas, and yields a time of 26542 s =442 min. 
     c) The drift velocity depends on the diameter of the wire as an inverse square 
relationship. 
 
 
25.4: The cross-sectional area of the wire is 
  .m10333.1)m1006.2( 25232   ππrA  
     The current density is 
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25.5: constant.isso, dd vJvqnJ   
    ,2211 dd vJvJ   

sm1000.6)20.100.6)(sm1020.1()()( 44
1211212

  IIvJJvv ddd  
 
 



25.6: The atomic weight of copper is mole,g55.63 and its density is .cmg96.8 3  The 
number of copper atoms in thusism00.1 3  

moleg55.63
)moleatoms10023.6)(mcm1000.1)(cmg96.8( 233363   

328 matoms1049.8   
Since there are the same number of free 3melectrons  as there are atoms of 3mcopper  
(see Ex. 25.1), The number of free electrons per copper atom is one. 
 
25.7: Consider 1 3m  of silver. 
      kg105.10so,mkg105.10density 333  m  
     andmol10734.9so,molkg10868.107 43   MmnM    

328
A matoms1086.5  nNN  

      If there is one free electron per .melectronsfree1086.5arethere,m 3283   This 
agrees with the value given in Exercise 25.2. 
 
 
25.8: a) C0106.0)C1060.1)(1068.21092.3()( 191616
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t

QI total  

     b) Current flows, by convention, in the direction of positive charge. Thus, current 
flows with Na  toward the negative electrode. 
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     b) The same charge would flow in 10 seconds if there was a constant current of: 
A.1.41)s8()C329(  tQI  

 
 
25.10: a) .A/m1081.6 25
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     c) Time to travel the wire’s length: 
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25.13: a) tungsten: 
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       b) aluminum: 
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25.15: Find the volume of one of the wires: 
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25.17: a) From Example 25.1, an 18-gauge wire has 23 cm1017.8 A  
 A820)cm1017.8)(A/cm100.1( 2325  JAI  
b) 2326 cm100.1)cmA100.1()A1000(  JIA  

 cm0178.0cm100.1(so 232   ππArπrA   
 mm36.02  rd   
 
 
25.18: Assuming linear variation of the resistivity with temperature: 

   

0

3
0

00

35.2
]C)20320)(C105.4(1[

)](1[

ρ
ρ

TTρρ





  

Since ,JE  the electric field required to maintain a given current density is 
proportional to the resistivity. Thus mV132.0)mV0560.0)(35.2( E  
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25.20: The ratio of the current at C20  to that at the higher temperature is 

.909.3)A220.0()A860.0(  Since the current density for a given field is inversely 
proportional to ),( JEρρ   The resistivity must be a factor of 3.909 higher at the higher 
temperature. 
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25.24: Because the density does not change, volume stays the same, so )2)(2( ALLA   
and the area is halved. So the resistance becomes: 
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That is, four times the original resistance. 
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25.29: a) If 120 strands of wire are placed side by side, we are effectively increasing the 
area of the current carrier by 120. So the resistance is smaller by that factor: 

.1067.41201060.5 86  R  
      b) If 120 strands of wire are placed end to end, we are effectively increasing the 
length of the wire by 120, and so .1072.6120)Ω1060.5( 46  R   
 
 
25.30: With the 0.4  load, where r = internal resistance 

Ir )0.4(V6.12   
Change in terminal voltage: 

r
I

rIVT

V2.2
V2.2V4.10V6.12




 

Substitute for I: 







r
r V2.2)0.4(V6.12  

       Solve for r:  846.0r  
 

25.31: a) 
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)m10100)(m1072.1
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 V4.27)219.0)(A125(  IRV  
     b) J/s3422W3422A)125)(V4.27( VIP  
 J1023.1)s3600)(J/s3422(Energy 7 Pt  
 
 
25.32: a)  700.0A00.4V8.2V8.2V2.21V0.24 rVV abr ε . 
      b) .30.5A00.4V2.21V2.21  RVR  
 
25.33: a) An ideal voltmeter has infinite resistance, so there would be NO current 
through the resistor.0.2   
      b) ;V0.5 εabV  since there is no current there is no voltage lost over the internal 
resistance. 
      c) The voltmeter reading is therefore 5.0 V since with no current flowing, it measures 
the terminal voltage of the battery. 
 
 



25.34: a) A voltmeter placed over the battery terminals reads the emf: .V0.24ε  
     b) There is no current flowing, so .0rV  
     c) The voltage reading over the switch is that over the battery: .V0.24sV  
    d) Having closed the switch: 

.V9.22)28.0)(A08.4(V0.24A08.488.5V0.24  abVI  
.V9.22)60.5)(A08.4(  IRVr  

,0sV  since all the voltage has been “used up” in the circuit. The resistance of the 
switch is zero so .0 IRVs  
 
 
25.35: a) When there is no current flowing, the voltmeter reading is simply the emf of 
the battery: .V08.3ε  
      b) The voltage over the internal resistance is: 

  .067.0
A65.1
V11.0V11.0V97.2V08.3 

I
VrVr  

      c) RVR )A65.1(V97.2   

  8.1
A65.1
V97.2R  

 
 
25.36: a) The current is counterclockwise, because the 16 V battery determines the 
direction of current flow. Its magnitude is given by: 

 A.47.0
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V0.8V0.16
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      b) .V2.15)A47.0)(6.1(V0.16 abV  
      c) V.0.11V0.8)A47.0)(4.1()A47.0)(0.5( acV  
     d)  

 
 



25.37: a) Now the current flows clockwise since both batteries point in that direction: 

  A.41.1
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      b) .V7.13)A41.1)(6.1(V0.16 abV  
      c) .V0.1V0.8)A41.1)(4.1()A41.1)(0.5( acV  

d) 

 
 

 
25.38: a) A.21.00.9V9.1V9.1  bcbcbc RVIV  

       b) .1.26
21.0
48.5)A21.0)()4.10.96.1((V0.8  RRIRε  

       c)  

 
 
25.39: a) Nichrome wire: 
 

 
 
      b) The Nichrome wire does obey Ohm’s Law since it is a straight line. 
      c) The resistance is the voltage divided by current which is .88.3   
 



25.40: a) Thyrite resistor: 

 
 
       b) The Thyrite is non-Ohmic since the plot is curved. 
       c) Calculating the resistance at each point by voltage divided by current: 
 

 
 
 
25.41: a) .101.0A8.14V50.1  Ir ε  
      b) .22.0A8.6V50.1  Ir ε  
      c) .0126.0A1000V6.12  Ir ε  
 
 
25.42: a) .688.0W327)V15( 222  PVRRVP  

      b) A.8.21
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25.43: W.520)A80.0)(V650( VIP  
 
 
25.44: .J6318)s3600)(5.1)(V9)(A13.0(  IVtPtW  
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       b) .(a)From 2Jp   
       c) .becomes(a),Since 2 ρEpρEJ   
25.46: a)   )0.5()A47.0(A47.017V0.8 22

5 RIPRI totalε  
W.0.2)0.9()A47.0(andW1.1 22

9  RIP  
       b) .W2.7)6.1()A47.0()A47.0)(V16( 22

16  rIIP εV  
       c) W.1.4)4.1()A47.0()A47.0)(V0.8( 22

8  IrIP εV  
      d) )c()a()b(   
 
 
25.47: a) J.1059.2)s3600)(V12)(A60( 6 IVtPtW  
       b) To release this much energy we need a volume of gasoline given by: 

.liters062.0m1022.6
mkg900

kg056.0volg0.56
gJ000,46
J1059.2 35
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      c) To recharge the battery: 
.h6.1)W450()Wh720()(  PWht  

 
 
25.48: a) .W4.14)A2.1)(V12(A2.110V12)(  IPrRI εε  
This is less than the previous value of 24 W. 
       b) The work dissipated in the battery is just: W.9.2)0.2()2.1( 22  ArIP  
This is less than 8 W, the amount found in Example (25.9). 
       c) The net power output of the battery is W.11.5W2.9W4.14  This is less than 
16 W, the amount found in Example (25.9). 
 
 
25.49: a) W.24)A0.2()V12(A0.26V12  IPRVI ε  
      b) The power dissipated in the battery is .W0.4)0.1()A0.2( 22  rIP  
      c) The power delivered is then .W20W4W24   
 
 
25.50: a)   W.529.0A18.017/V0.3/ 2RIPRI ε  
      b) .J9530)s3600)(0.5)(V0.3)(A18.0(  IVtPtW  
      c) Now if the power to the bulb is 0.27 W, 
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25.51: a) .26.7W540/)V120( 222  PVRRVP  
     b) .A5.47.26/V120  RVI  
     c) If the voltage is just 110 V, then W.454A13.4  VIPI  
     d) Greater. The resistance will be less so the current drawn will increase, increasing 
the power. 
 

25.52: From Eq. (25.24), .2τne
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      b) The number of free electrons in copper )m105.8( 328   is much larger than in 
pure silicon ).m100.1( 316   
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25.54: r = 2.00 cm 
 T = 0.100 mm 
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25.55: With the voltmeter connected across the terminals of the battery there is no 
current through the battery and the voltmeter reading is the battery emf; .V6.12ε  

With a wire of resistance R connected to the battery current I  flows and 
0 IRIrε  

Call the resistance of the 20.0-m piece ;1R  then the resistance of the 40.0-m piece 
is 12 2RR  . 

;0111  RIrIε  0A)(7.00A)(7.00V6.12 1  Rr  
;0)2( 122  RIrIε  0)2)(A20.4()A20.4(V6.12 1  Rr  

Solving these two equations in two unknowns gives .20.11 R  This is the 
resistance of 20.0 m, so the resistance of one meter is  0.060(1.00m)m)]0.20/(20.1[  
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 I  

So the current in the copper wire is 45 A. 
      b) The current in the silver wire is 45 A, the same as that in the copper wire or else 
charge would build up at their interface. 

     c) .mV76.2
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    e) .V79.2)062.0()A45(  AgAg IRV  
 
 
 



25.57: a) The current must be the same in both sections of the wire, so the current in the 
thin end is 2.5 mA. 

     b) V/m.1014.2
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)A10(2.5m)1072.1( 5
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     c) 23

38

0.8mm )A1080.0()4(
)A10(2.5m)1072.1(









πA

ρIρJE  

   = ).4(V/m1055.8 1.6mm
5 E   

     d) mm8.0mm8.0mm1.6mm1.6 LELEV   

V.101.80m)(1.80V/m)10(8.55m)(1.20V/m)1014.2( 455  V  
 
 

25.58: a) 
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volume dmvnK  

 
.m/J107.8

m/s)10(1.5kg)1011.9()m105.8(
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310

2431328
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     b)   )V0.1()m10()C106.1()m105.8()volume( 3619328VneqVU 13600 J. 
And the kinetic energy in 3cm0.1  is   m)10()J/m107.8( 6310K  
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J13600So.J108.7 19
16

16 


 


K
U  

 
 



25.59: a)  
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     b) When ., 221 A
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25.60: a) .11
4

1
444 22 
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abV
πrabρ
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abρ
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R
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     c) If the thickness of the shells is small, we have the resistance given by: 

  . where,
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4 2 abL
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25.61:  ρKε

Q
AKε

Q
AKε

Q
Kε
σ IAJρJEρJE

0000
and  leakage current. 

 
 



25.62: a)   ./ L
V

AAL
V

RA
V

A
I

R
V JI    So to make the current density a 

maximum, we need the length between faces to be as small as possible, which means 
.dL   So the potential difference should be applied to those faces which are a distance 

d apart. This maximum current density is .ρd
V

MAXJ   
 
 
     b) For a maximum current JAI Lρ

VA
R
V   must be a maximum. The maximum area 

is presented by the faces that are a distance d apart, and these two faces also have the 
greatest current density, so again, the potential should be placed over the faces a distance 
d apart. This maximum current is 

     .6
ρ

VdIMAX   

 

25.63: a) .057.0
m)(0.0016)4(

m)(0.12m)105.9(
2

7







πA
ρLR  

      b) C)40())(0.00088(C(1)m105.9()C 60()1()( 17
0  ρTαρTρ  

 m.103.34m109.83C)60( 87   ρ  
      
      c)   ))C(1018()( 15

000 TβLLTβLALATβVV  
mm.0.86m108.64C)(40m)12.0( 4  L The volume of the fluid remains 

constant. As the fluid expands the container, outward expansion “becomes” upward 
expansion due to surface effects. 

      d) 
A

Lρ
A
ρLR

A
ρLR 




  

  
.1040.2

m)(0.0016/4)(
m)10(0.86m)1095(

m)(0.0016/4)(
m)(0.12m)1034.3(
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2

38

2

8













ππ
R

 

       e) From  Equation (25.12),     






11 057.0
)1040.2057.0(

C40
11

3

0R
R

Tα  

.)C(101.1 13    This value is greater than the temperature coefficient of resistivity and 
therefore is an important change caused by the length increase. 
 
 



25.64: a) A167.0
0.24

V0.4V0.8









R
I

ε
 

         V.6.58)(8.50A)(0.167V00.8  adV  
        b) The terminal voltage is 
 
  .V08.4)50.0()A167.0(V00.4 bcV  
 
        c) Adding another battery at point d in the opposite sense to the 8.0 V battery: 
 

  soand,A257.0
5.24

V4.0V0.8V3.10









R
I

ε
 

  V.3.87)(0.50A)(0.257V00.4  bcV  
 
 
 
 
25.65: a) rrIrV εεεab A)(3.50V9.4andA)(1.50 V4.8   

  
.2.0

A5.00
V8.4V9.4

A)(3.50)A)(1.50V(8.4V4.9








r

rr
 

       b) V.8.7)(0.20A)(1.50V4.8 ε  
 
 
25.66: a) A.1.17)k2k10(/kV14/  RVI  
      b) kW.7.13)000,10(A)17.1( 22  RIP  
      c) If we want the current to be 1.0 mA, then the internal resistance must be: 

  .M14k10M14104.1
A0.001
V000,14 7  RrR  

 
 

25.67: a) .1000
m)(0.050

m)(0.10m)0.5(
2 




πA
ρLR  

      b) V.100)(1000A)10100( 3  IRV  
      c) W.10A)10100()V100( 3  VIP  
 
 



25.68: a) V.0.4360.050.2 2  IIV  Solving the quadratic equation yields 
A,8.29orA34.1 I  so the appropriate current through the semiconductor is 

.A34.1I  
      b) If the current A,68.2I  
  V.3.9A)68.2()A/V(0.36A)(2.68A)/V50.2( 22 V  
 
 
25.69: 22 )()( βIIRαβIαIIRIVIRV   

 
.A42.106.12)2.38.3()3.1(

0)(
2

2
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VIαRβI

  

 
 

25.70: a) .A42.2
4.285.0

V86.785.0
A25.9
V86.7








rR

I
I

r εε  

      b) 086.7)85.050.2(36.00)( 22  IIIrαβI ε  
          A94.1 I  
      c) The terminal voltage at this current is 
  V.21.6)85.0()A94.1(V86.7  IrV εab  
 
 
25.71: a) With an ammeter in the circuit: 

 ).( AA
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RRrI
RRr

I εε



  

So with no ammeter: 
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RRrI
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     b) We want: 

 
.0425.0

)8.3 45.0()01.0(01.001.11
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AA
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R
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R
Rr

R
I
I

 

     c) This is a maximum value, since any larger resistance makes the current even less  
that it would be without it. That is, since the ammeter is in series, ANY resistance it has 
increases the circuit resistance and makes the reading less accurate. 
 
 



25.72: a) With a voltmeter in the circuit: 

. 1 













V

ab
V Rr

rIrV
Rr

I εεε  

      b) We want: 

 

.6.440459999
01.0

01.0

01.099.01





















rrrR
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Rr
rV

V

VV

ab

ε  

       c) This is the minimum resistance necessary—any greater resistance leads to less 
current flow and hence less potential loss over the battery’s internal resistance. 

 
 
25.73: a) The line voltage, current to be drawn, and wire diameter are what must be 

considered in household wiring. 

      b) ,A35
V120
W4200


V
PIVIP  so the 8-gauge wire is necessary, since it can 

carry up to 40 A. 

      c) .W106
m)26003.0()4(

)m(42.0m)1072.1()A35(
2

822
2 






A
ρLIRIP  

      d) If 6-gauge wire is used, 

 
.25.19$)kWh11.0$()kWh175(Savings

kWh175)h12()365()W40(

W66
m)(0.00412))4(

m)(42m)Ω10(1.72A)(35
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822
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25.74: Initially: .9.88)A35.1()V120(00  IVR  
        Finally: .6.97)A23.1()V120(  ff IVR  

.C237C20C217C217

1
9.88
6.97

C105.4
111)()(1  And

0

14
0

00
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ff

f
ff

f

TTT
R
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α
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R
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       b) (i) W162A)(1.35V)120(00 VIP  
 (ii) W148A)(1.23V)120(  ff VIP   
 
 



25.75: a) A.40.0
0.10

V8.0V0.12










R

I ε  

      b) .W6.1)10()A40.0( 22  totaltotal RIP  
      c) Power generated in W.8.4)A40.0()V0.12(, 11  IP εε  
      d) Rate of electrical energy transferred to chemical energy in 

W.3.2A)(0.40V)(8.022  IP εε  
      e) Note (d),(b)c)(   and so the rate of creation of electrical energy equals its rate 

of dissipation. 
 
 

25.76: a) 
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1057.1
m)018.0()4(

m)(2.0m)100.2(



A
LRsteel  

        
V.204)012.01057.1()A15000()(

012.0
)m008.0()4(

)m(35m)1072.1(
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RRIIRV
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ρLR
 

      b) J.199)s1065()0136.0()A15000( 622  RtIPtE  
 
 

25.77: a) .|||| 
E
a

m
qEqmaF   

       b) If the electric field is constant, .||

bc
bc V

aL
m
qELV   

       c) The free charges are “left behind” so the left end of the rod is negatively charged, 
while the right end is positively charged. Thus the right end is at the higher potential. 

       d) .m/s105.3
m)50.0()kg1011.9(

)C10(1.6V)100.1(|| 28
31

193





 



mL
qVa bc  

       e) Performing the experiment in a rotational way enables one to keep the 
experimental apparatus in a localized area—whereas an acceleration like that obtained in 
(d), if linear, would quickly have the apparatus moving at high speeds and large 
distances. 
 
 



25.78: a) We need to heat the water in 6 minutes, so the heat and power required are: 

 
W.233

)s60(6
J83800

J83800)C80()CJ/kg4190()kg250.0(
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QP
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 But .8.61
W233

)V120( 222


P

VR
R

VP  

      b) .m39
m1000.1

)m105.2()8.61(vol
vol 6

352








 




 RLL

A
LR  

Now the radius of the wire can be calculated from the volume: 

.m105.4
m)39(

m105.2vol)(vol 4
35
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25.79: a) .V14.4Ω)(0.24A)10.0(V0.12  IrV εab  
       b) J.1059.2)s3600()5()V4.14()A10( 6 IVtPtE  
       c) J.1032.4)s3600()5()24.0()A10( 522  rtItPE dissdiss  
       d) Discharged at 10 A: 

 .96.0
A10

)24.0()A10(V0.12











I
IrR

Rr
I εε  

       e) J.1073.1)s3600()5()V6.9()A10( 6 IVtPtE  
       f) Since the current through the internal resistance is the same as before, there is the 
same energy dissipated as in (c): .J1032.4 5dissE  
       g) The energy originally supplied went into the battery and some was also lost over 
the internal resistance. So the stored energy was less than was needed to charge it. Then 
when discharging, even more energy is lost over the internal resistance, and what is left is 
dissipated over the external resistor. 
 
 



25.80: a) V.2.19)24.0()A30(V0.12  IrV εab  
      b) J.1053.3)s3600()7.1()V2.19()A30( 6 IVtPtE  
      c) .J1032.1)s3600()7.1()24.0()A30( 622  RtItPE dissdiss   
     d) Discharged at 30 A: 

 .16.0
A30

)24.0()A30(V0.12











I
IrR

Rr
I εε  

      e) J.1081.8)3600()7.1()16.0()A30( 522  RtIPtE  
      f) Since the current through the internal resistance is the same as before, there is the 
same energy dissipated as in (c): J.1032.1 6dissE  
      g) Again, the energy originally supplied went into the battery and some was also lost 
over the internal resistance. So the stored energy was less than was needed to charge it. 
Then when discharging, even more energy is lost over the internal resistance, and what is 
left is dissipated over the external resistor. This time, at a higher current, much more 
energy is lost over the internal resistance. 
 
 

25.81: a) .)(ln)(ln1
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dρ

T
ndT

T
n

dT
dρ

ρ







   

      b) .15.0)K293())K(105( 14  Tn   

.Km100.8)K293()m105.3( 15.0515.05  n
n Ta

T
a   

       c) .m103.4
)K77(

100.8:K77C196 5
15.0
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m.102.3
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100.8:K573C300 5
15.0
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25.82: a) V.kTeVIVIIRIR sdε  ]1)[exp(2)0.1(V00.2  
     b) .667]6676.39[exp1333K293,A1050.1 3 VVTI s    
     Trial and error shows that the right-hand side (rhs) above, for specific V values, equals     
     1333 V, when .V179.0V  The current then is just 
  A.80.1]1)179.0(6.39[exp)A105.1(]16.39[exp 3  VII s  
 
 



25.83: a) dxLx
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      d) Graphs of resistivity, electric field and potential from .to0 Lx   
 

 
 
 

25.84: a) 022 
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I εεε  for maximum power output. 
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      b) For the maximum power output of (a), .2
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26.1: a) .3.12
20
1

32
1 1

eq 





 



R  

    b) .A5.19
3.12

V240

eq





R
VI  

    c) .A12
20

V240;A5.7
32

V240
2032 
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VI
R
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26.2: .11

21

21
eq

1

21

21

1

21
eq RR

RRR
RR

RR
RR

R









 













 

 . and 2
21

1
2eq1

21

2
1eq R

RR
RRRR

RR
RRR 





  

 
 
26.3: For resistors in series, the currents are the same and the voltages add.   a) true.   
b) false. c) .2 RIP   i same, R different so P different; false. d) true. e) V = IR. I 
same, R different; false. f) Potential drops as move through each resistor in the 
direction of the current; false. g) Potential drops as move through each resistor in the 
direction of the current, so ;cVVb   false. h) true. 
 
 
26.4: a) False, current divides at junction a. 
    b) True by charge conservation. 

    c) True. 
R

IVV 1so,21   

    d) False. .so,but,. 212121 PPIIVVIVP   
    e) False. .,Since. 1212

2 PPRRIVP R
V   

    f) True. Potential is independent of path. 
    g) True. Charges lose potential energy (as heat) in .1R  
    h) False. See answer to (g). 
    i) False. They are at the same potential. 
 
 



26.5: a) .8.0
8.4
1

6.1
1

4.2
1

1

eq 


















R  

    b) ;A5.17)6.1()V28(;A67.11)4.2()V28( 6.16.14.24.2  RεIRεI  
.A83.5)8.4()V28(8.48.4  RεI  

    c) .A35)8.0()V28(  totaltotal RεI  
    d) When in parallel, all resistors have the same potential difference over them, so here 
all have V = 28 V. 
    e)  )6.1()A5.17(;W327)4.2()A67.11( 2

6.1
2

6.1
2

4.2
2

4.2 RIPRIP  
W.163)8.4()A83.5(;W490 2

8.4
2

8.4  RIP  
    f) For resistors in parallel, the most power is dissipated through the resistor with the 

least resistance since constant.with,
2

2  V
R

VRIP  

 
 
26.6: a) .8.88.46.14.2eq  iRR  

    b) The current in each resistor is the same and is .A18.3
8.8

V28

eq





R
εI  

    c) The current through the battery equals the current of (b), 3.18 A. 
    d)  )6.1)(A18.3(;V64.7)4.2)(A18.3( 6.16.14.24.2 IRVIRV  

.V3.15)8.4)(A18.3(;V09.5 8.48.4  IRV  
    e)   )6.1()A18.3(;W3.24)4.2()A18.3( 2

6.1
2

6.1
2

4.2
2

4.2 RIPRIP  
.W5.48)8.4()A18.3(;W2.16 2

8.4
2

8.4  RIP  
    f) For resistors in series, the most power is dissipated by the resistor with the greatest 
resistance since .constantwith2 IRIP   
 
 

26.7: a) .V274)000,15)(W0.5(
2

 PRV
R

VP  

    b) .W6.1
000,9

)V120( 22





R

VP  

 
 



26.8: 










































00.5
00.4
1

0.12
1

00.6
1

00.3
1

11

eqR . 

A0.12)00.5()V00.6(  totaltotal RεI  

A;00.9)0.12(
412

12;A00.3)0.12(
412

4
412 





 II  

A00.4)0.12(
63

3;A00.8)0.12(
63

6
63 
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26.9: 















00.3
00.700.5

1
00.100.3

1
1

eqR . 

A0.16)00.3()V0.48(  totaltotal RεI . 

A0.12)0.16(
124

12;A00.4)0.16(
124

4
3175 





 IIII . 

 
 
26.10: a) The three resistors 432 and, RRR are in parallel, so:    





























99.0
50.4
1

50.1
1

20.8
1111

11

432
234 RRR

R  

         49.499.050.32341eq RRR . 

    b) .V69.4)50.3()A34.1(A34.1
49.4

V0.6
111

eq
1 


 RIV

R
εI  

,A162.0
20.8
33.1V33.1)99.0()A34.1(

2
22341

234

234





V
R

V
IRIV R

R  

.A296.0
50.4

V33.1andA887.0
50.1

V33.1

4
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234234 
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I

R
V

I RR  

 
 



26.11: Using the same circuit as in Problem 27.10, with all resistances the same: 























00.6
50.4
350.4111

11

432
12341eq RRR

RRRR . 

    a) .A500.0
3
1A,50.1

00.6
V00.9

1432
eq

1 


 IIII
R
εI  

    b) .W125.1
9
1,W13.10)50.4()A50.1( 1432

2
1

2
11  PPPPRIP  

    c) If there is a break at ,4R  then the equivalent resistance increases: 

.75.6
50.4
250.411

11

32
1231eq 






















RR
RRRR  

And so: 

.A667.0
2
1A,33.1

75.6
V00.9

132
eq

1 


 III
R
εI  

    d) .W99.1
4
1,W96.7)50.4()A33.1( 132

2
1

2
11  PPPRIP  

    e) So 32 and RR  are brighter than before, while 1R  is fainter. The amount of current 
flow is all that determines the power output of these bulbs since their resistances are 
equal. 
 
 
26.12: From Ohm’s law, the voltage drop across the 6.00   resistor is V = IR = 

V.24.0)A)(6.0000.4(   The voltage drop across the 8.00   resistor is the same, 
since these two resistors are wired in parallel. The current through the 8.00   resistor is 
then .A00.300.8V0.24  RVI  The current through the 25.0   resistor is the 
sum of these two currents: 7.00 A. The voltage drop across the 25.0   resistor is V = IR 
= (7.00 A)( 25.0  ) = 175 V, and total voltage drop across the top branch of the circuit is 
175 + 24.0 = 199 V, which is also the voltage drop across the 20.0   resistor. The 
current through the 20.0   resistor is then .A95.920V199  RVI  
 
 
 
26.13: Current through 2.00-  resistor is 6.00 A. Current through 1.00-  resistor also 
is  
6.00 A and the voltage is 6.00 V. Voltage across the 6.00-  resistor is 12.0 V + 6.0 V = 
18.0 V. Current through the 6.00-  resistor is A.00.3)00.6()V0.18(   The battery 
voltage is 18.0 V. 
 
 



26.14: a) The filaments must be connected such that the current can flow through each 
separately, and also through both in parallel, yielding three possible current flows. The 
parallel situation always has less resistance than any of the individual members, so it will 
give the highest power output of 180 W, while the other two must give power outputs of 
60 W and  
120 W. 

.120
W120

)V120(W120 and ,240
W60

)V120(W60
2

2
2

22

1
1

2

 R
R
VR

R
V  

Check for parallel: .W180
80

)V120(
)(

)V120(
)(

2

1
120

1
240

1

2

111

2

21










 



RR

VP  

    b) If 1R  burns out, the 120 W setting stays the same, the 60 W setting does not work 
and the 180 W setting goes to 120 W: brightnesses of zero, medium and medium. 
    c) If 2R  burns out, the 60 W setting stays the same, the 120 W setting does not work, 
and the 180 W setting is now 60 W: brightnesses of low, zero and low. 
 
 

26.15: a) .A100.0
)800400(

V120





R
εI  

    b)  )800()A100.0(;W0.4)400()A100.0( 22
800

22
400 RIPRIP  

.W12W8W4W0.8  totalP  
    c) When in parallel, the equivalent resistance becomes: 

.A449.0
267

V120267
800

1
400

1

eq
total

1

eq 


















R
εIR   

.A150.0)A449.0(
800400

400;A30.0)A449.0(
800400

800
800400 





 II  

    d) W18)800()A15.0(;W36)400()A30.0( 22
800

22
400  RIPRIP  

.W54W18W36  totalP  
    e) The 800   resistor is brighter when the resistors are in series, and the 400   is 
brighter when in parallel. The greatest total light output is when they are in parallel. 
 
 



26.16: a) .72
W200

)V120(;240
W60

)V120( 22

W200

22

W60 
P

VR
P

VR  

  .A769.0
)72240(

V240ε
W200W60 




R
II  

    b) 
W.6.42)72()A769.0(;W142)240()A769.0( 22

W200
22

W60  RIPRIP   
    c) The 60 W bulb burns out quickly because the power it delivers (142 W) is 2.4 times 
its rated value. 
 
 
26.17: 

 
 
 ;0)0.50.50.20(V0.30  I  I = 1.00 A 
 For the -0.20  resistor thermal energy is generated at the rate 

.W0.202  RIP  
 givesand TmcQPtQ   

 s1001.1
W0.20

)C0.40()KkgJ4190()kg100.0( 3






P

Tmct  

 
 



26.18: a)    1
2
11 RIP   

    00.5)A2(W20 11
2 RR  

10and1R  in parallel: 

   
A1

A)2()5()10(

10

10




I
I

 

So 212 and.A50.0 RRI   are in parallel, so 
    )5()A2()A50.0( 2 R  

      0.202R  
    b) V0.10)5)(A2(1 Vε  
    c) From (a): A00.1,A500.0 102  II  
    d)               (given)W0.201 P  

              W00.5)20()A50.0( 2
2

2
22  RiP  

              W0.10)10()A0.1( 2
10

2
1010  RiP  

           W0.35W10W5W20Resist P  
           W35.0V)(10.0A)(3.50Battery  εIP  
            energy. ofon conservati  with theagreeswhich     Battery,Resist PP   

 
 
26.19: a) .A00.2A00.4A00.6 RI  
    b) Using a Kirchhoff loop around the outside of the circuit: 

  
 .00.50)A00.2()00.3()A00.6(V0.28  RR  

    c) Using a counterclockwise loop in the bottom half of the circuit: 
   .V0.420)00.6()A00.4()00.3()A00.6(  εε  
    d) If the circuit is broken at point x, then the current in the 28 V battery is: 

    .A50.3
5.003.00
V0.28









R
εI   

 
26.20:   From the given currents in the diagram, the current through the middle branch 
of the circuit must be 1.00 A (the difference between 2.00 A and 1.00 A). We now use 
Kirchoff’s Rules, passing counterclockwise around the top loop: 

     V.18.00Ω1.00Ω4.00A1.00Ω1.00Ω6.00A)(1.00V20.0 11  εε
Now traveling around the external loop of the circuit: 

      .V0.7000.200.1A00.200.100.6A00.1V0.20 22  εε  
And 

     .V0.13so,V0.13V0.1800.100.4A00.1V  baab V  
 
 



26.21: a) The sum of the currents that enter the junction below the -3  resistor equals  
3.00 A + 5.00 A = 8.00 A. 
    b) Using the lower left loop: 

   
     

.V0.36
0A00.800.3A00.300.4

1

1




ε
ε

 

 Using the lower right loop: 

   
     

.V0.54
0A00.800.3A00.500.6

2

2




ε
ε

  

    c) Using the top loop: 

    .00.9
A00.2
V0.180V0.36A00.2V0.54  RR  

 
 
26.22: From the circuit in Fig. 26.42, we use Kirchhoff’s Rules to find the currents, 1I  
to the left through the 10 V battery, 2I to the right through 5 V battery, and 3I to the right 
through the 10  resistor: 
Upper loop: 

  
   
    .A00.1000.500.5V0.5

0V00.500.400.100.300.2V0.10

2121

21




IIII
II

 

Lower loop:     00.1000.400.1V00.5 32  II  
      A00.1200.1000.5V00.5 3232  IIII  
Along with ,321 III   we can solve for the three currents and find: 
     .A600.0,A200.0,A800.0 321  III  
    b)       .V20.300.3A800.000.4A200.0 abV  
 
 
26.23: After reversing the polarity of the 10-V battery in the circuit of Fig. 26.42, the 
 only change in the equations from Problem 26.22 is the upper loop where the 10 V  
battery is: 
Upper loop:     0V00.500.400.100.300.2V0.10 21  II  
            .A00.3000.500.5V0.15 2121  IIII  
Lower loop:     00.1000.400.1V00.5 32  II  
             .A00.1200.1000.5V00.5 3232  IIII  
Along with ,321 III  we can solve for the three currents and find: 
     .A200.0,A40.1,A60.1 321  III  
    b)       .V4.1000.3A60.100.4A40.1 abV  
 
 



26.24: After switching the 5-V battery for a 20-V battery in the circuit of Fig. 26.42,  
there is a change in the equations from Problem 26.22 in both the upper and lower loops: 
Upper loop:     0V00.2000.400.100.300.2V0.10 21  II  
             .A00.2000.500.5V0.10 2121  IIII  
Lower loop:     00.1000.400.1V00.20 32  II  
             .A00.4200.1000.5V00.20 3232  IIII  
Along with ,321 III  we can solve for the three currents and find: 
   .A2.1,A6.1,A4.0 321  III  
    b)           V6.73A4.04A6.134 12  II  
 
 
26.25: The total power dissipated in the four resistors of Fig. 26.10a is given by the sum  
of: 
         ,W75.03A5.0,W5.02A5.0 2

3
2

3
2

2
2

2  RIPRIP   

         W.8.17A5.0,W14A5.0 2
7

2
7

2
4

2
4  RIPRIP  

      .W47432total  PPPPP  
 
 
26.26: a) If the 12-V battery is removed and then replaced with the opposite polarity, 
the current will flow in the clockwise direction, with magnitude; 

  .A1
16

V4V12










R
εI  

    b)       .V7V4A174474  εIRRVab  
 
 



26.27: a) Since all the external resistors are equal, the current must be symmetrical 
through them. That is, there can be no current through the resistor R for that would imply 
an imbalance 
in currents through the other resistors. 
 With no current going through R, the circuit is like that shown below at right. 
 

 
 
 
 
 So the equivalent resistance of the circuit is 

  .A13
1

V131
2
1

2
1

1

eq 


















totalIR  

  ,A5.6
2
1

legeach  totalII  and no current passes through R. 

    b) As worked out above,  1eqR . 
    c) ,0abV  since no current flows. 
    d) R does not show up since no current flows through it. 
 
 



26.28: Given that the full-scale deflection current is 500 A  and the coil resistance is 
:0.25   

    a) For a 20-mA ammeter, the two resistances are in parallel: 

 
    


 

641.0
A10500A10200.25A10500 636

s

sssccsc

R
RRIRIVV

 

 

 
 
    b) For a 500-m voltmeter, the resistances are in series: 

  
 

.9750.25
A10500
V10500

6

3













s

c
ab

sscab

R

R
I

VRRRIV
 

 

 
 
 



26.29: The full-scale deflection current is 0.0224 A, and we wish a full-scale reading for 
20.0 A. 

  
     

.9.1236.9
A0224.0
A499.0

0250.0A0224.0A0.2036.9A0224.0








R

R
 

 

 
 
 

26.30: a)   A208.0
42523.8

V90
l





totaR
εI  

         .3.8823.8A208.0V90  IrεV  

    b)   .1
1/











V
ε

R
r

Rr
ε

Rr
εR

Rr
εrεIrεV

VVV

V

V

 

 Now if V is to be off by no more than 4% it requires: .0416.01
4.86

90


VR
r  

 
26.31: a) When the galvanometer reading is zero: 

  .and 11212 l
xε

R
RεεIRεIRε

ab

cb
abcb   

    b) The value of the galvanometer’s resistance is unimportant since no current flows 
through it. 

    c)   .V34.3
m000.1
m365.0V15.912 

l
xεε  

 
 



26.32: Two voltmeters with different resistances are connected in series across a 120-V 

line. So the current flowing is .A1020.1
10100

V120 3
3





totalR
VI  But the current 

required for full-scale deflection for each voltmeter is: 

   .A1067.1
000,90

V150andA0150.0
000,10

V150 3
k90)k10(


 





 fsdfsd II  

So the readings are: 

.V108
A1067.1
A1020.1V150andV12

A0150.0
A1020.1V150 3

3

kΩ90

3

kΩ10 

















 
 



VV  

 
 
26.33: A half-scale reading occurs with .600R  So the current through the 
galvanometer is half the full-scale current. 

  .2186000.15
2

A1060.3V50.1
3

total 






 




ss RRRIε  

 
 
26.34: a) When the wires are shorted, the full-scale deflection current is obtained: 

   .5430.65A1050.2V52.1 3   RRIRε total  

    b) If the resistance .mA88.1
5430.65

V52.1:200 



xtotal

x RR
VIR  

    c) .608V52.1
5430.65

V52.1





x
x

xtotal
x I

R
RR

εI  

So: .1824608
A1025.6

V52.1A1025.6
4
1

4
4 


 


xfsdx RII  

.608608
A1025.1

V52.1A1025.1
2
1

3
3 


 


xfsdx RII  

.203608
A10875.1

V52.1A10875.1
4
3

3
3 


 


xfsdx RII  

 
 

26.35:    t
tQ

Q
I
Q

V
Q

I
VRC 
















  

 
 



26.36: An uncharged capacitor is placed into a circuit. 
 a) At the instant the circuit is completed, there is no voltage over the capacitor, 
since it has no charge stored. 
    b) All the voltage of the battery is lost over the resistor, so .V125 εVR  
    c) There is no charge on the capacitor. 

    d) The current through the resistor is .A0167.0
7500

V125





totalR
εi  

    e) After a long time has passed: 
   The voltage over the capacitor balances the emf: .V125cV   
   The voltage over the resister is zero. 
   The capacitor’s charge is C.105.75V)(125F)1060.4( 46   cCvq  
   The current in the circuit is zero. 
 

 

26.37: a) .A1012.1
)F1055.4()1028.1(

C1055.6 4
106

8












RC
qi  

    b) .s1082.5)F1055.4()1028.1( 4106   RCτ   
 

 
26.38:

 .F1049.8
))3/12((ln)1040.3(

s00.4
)/ln(

7
6

0

/
0

 



vvR

τCevv RCτ  

 
 



26.39: a) The time constant :atSo.s1.11)F104.12()10895.0( 66  RC  
  .0)1(:s0 /   RCteCεqt  

  
.C1070.2

)1()V0.60()F104.12()1(:s5
4

)s1.11/()s0.5(6/







 eeCεqt RCt

 

  
.C1042.4

)1()V0.60()F104.12()1(:s10
4

)s1.11/()s0.10(6/







 eeCεqt RCt

 

  
.C1021.6

)1()V0.60()F104.12()1(:s20
4

)s1.11/()s0.20(6/







 eeCεqt RCt

 

  
.C1044.7

)1()V0.60()F104.12()1(:s100
4

)s1.11/()s100(6/







 eeCεqt RCt

 

    b) The current at time t is given by: :atSo./ RCte
R
εi   

  .A1070.6
1095.8

V0.60:s0 51.11/0
5

 


 eit  

  .A1027.4
1095.8

V0.60:s5 51.11/5
5

 


 eit  

  .A1027.2
1095.8

V0.60:s10 51.11/10
5

 


 eit  

  .A1011.1
108.95

V60.0:s20t 51.11/20
5

 


 ei  

  A.1020.8
1095.8

V0.60:s100 91.11/100
5

 


 eit  

    c) Charge against time: 
 

 
 

Current against time: 
 



26.40: a) Originally, s.870.0 RC The combined capacitance of the two identical 
capacitors in series is given by 

  
2

;2111
tot

tot

CC
CCCC

  

 The new time constant is thus .s435.0)( 2
s870.0

2 CR  
    b) With the two capacitors in parallel the new total capacitane is simply 2 C. Thus the 
time constant is .s74.1)s870.0(2)2( CR  
 
 
26.41: 0 CR VVε  
 V48so,V72)0.80()A900.0(,V120  CR VIRVε  
 )C192)V48()F1000.4( 6 µCVQ    
 
 
26.42: a) C.1065.1)V0.28()F1090.5( 46   CVQ  

    b) .
)/1ln(

1)1( //

QqC
tR

Q
qeeQq RCtRCt




   

After .463
))165/1101(ln()F1090.5(

s103:s103 6

3
3 




 


 Rt  

    c) If the charge is to be 99% of final value: 

   
.s0126.0)01.0ln()F1090.5()463(

)/1ln()1(

6

/







 QqRCte
Q
q RCt

 

 
 
26.43: a) The time constant .s0147.0)F1050.1()980( 5  RC   
 

C.1033.1)1()V0.18()F1050.1()1(:s05.0 40147.0/010.05/   eeCεqt RCt  

    b) A.1030.9
980

V0.18 30147.0/10.0/  


 ee
R
εi RCt  

       
V.89.8V11.9V0.18andV11.9)980()A1030.9( 3  

CR VIRV  
    c) Once the switch is thrown, V.89.8 CR VV  
    d) C.1075.6)V89.8()F1050.1(:s01.0After 50147.0/01.05/

0
  eeQqt RCt  

 
 



26.44: a) .A1.17
V240
W4100


V
PI  So we need at lest 14-gauge wire (good up to 18 

A). 12 gauge is ok (good up to 25 A). 

    b)  14
W4100
)V240( 222

P
VR

R
VP  

    c) .c45kW)(4.1)hr1(/kWhr)c(11costhour,1in /kWhrc11At   
 

26.45: We want to trip a 20-A circuit breaker: 

A.20
V120
W900

V120
W1500:W900With

V120V120
W1500

 IPPI  

 

26.46: The current gets split evenly between all the parallel bulbs. A single bulb will 

draw 26.7.
A0.75

A20bulbsofNumberA0.75
V120

W90


V
PI So you can attach 

26 bulbs safely. 
 

26.47: a) W.720V)(120A)0.6(A0.6
20

V120



 IVP

R
VI   

    b) At ))C257()C(108.2(1(20)1(,C280 13
0  TαRRT  

W.419)V120()A49.3(A49.3
A34.4
V120

.4.34





P
R
VI  

 



26.48: a) 

 

.If

11

21

2
1

21

21
131eq

2

21
3

1

21
3eq

1

RR
R

RR
RRRRRR

RR
RRR

RR
RR








































 

    b) 
321

213

1

321
eq

)( 11
RRR

RRR
RRR

R



















 

 ./)()()(If 2211321332111eq RRRRRRRRRRRRRR   

 

 
 

26.49: a) We wanted a total resistance ofpowerandΩ400of  W2.4  from a 
combination of individual resistors of rating.-powerW1.2andΩ400  

 

    b) The current is given by: In.A077.0400/W4.2/  RPI  each leg half the 
current flows, so the power in each resistor in each resistor in each combination is the 
same: .W6.0)400()A039.0()2/( 22  RIP  
 



26.50: a) First realize that the Cu and Ni cables are in parallel. 

 

CuNiCable

111
RRR

  

)(
/

/

22CuCuCu

2NiNiNi

abπ
LρALρR

πa
LρALρR





 

 

 

So: 
Lρ
abπ

Lρ
πa

R Cu

22

Ni

2

cable

)(1 
  

        
























 


 m1072.1
2)m050.0()m100.0(

m108.7
)m050.0(

m20 8

2

8

2

Cu

22

Ni

2

π

ρ
ab

ρ
a

L
π

 

   µR 6.13106.13 6
Cable  

    b) 2effeff πb
L

A
LρR   

     
m1014.2

m20
)106.13()m10.0(

8

622

eff








π
L

Rπbρ
 

 



26.51: Let ,00.1 R the resistance of one wire. Each half of the wire has .2h RR   

 

The equivalent resistance is  25.1)500.0(252 2
5

hhhh RRRR  
 

26.52: a) The equivalent resistance of the two bulbs is .0.1   So the current is: 

A.2.2 isbulbeachthroughcurrenttheA4.4
80.00.1

V0.8





totalR
VI  

W9.9)V4.4()A2.2(V4.4)80.0()A4.4(V0.8 bulbbulb  IVPIrεV  

    b) If one bulb burns out, then 

 ,W3.16)0.2()A9.2(A9.2
80.00.2

V0.8 22 


 RIP
R
VI
total

 

so the remaining bulb is brighter than before. 

 
 

26.53: The maximum allowed power is when the total current is the maximum allowed 
value of A.3.94.2/W36/  RPI Then half the current flows through the 
parallel resistors and the maximum power is: 

.W54)4.2()A9.3(
2
3

2
3)2/()2/( 22222

max  RIRIRIRIP  

 



26.54: a) ;0.4
16

1
16

1
8

1)16,16,8(
1

eq 


















R  

           .0.6
18

1
9

1)18,9(
1

eq 















R  

So the circuit is equivalent to the one shown below. Thus: 

















0.8
420

1
66

1
1

eqR  

 

    b) If the current through the -8  resistor is 2.4 A, then the top branch current is 
A.4.8A2.4A2.4A.42)16,16,8( 2

1
2
1 I But the bottom branch current is twice 

that of the top, since its resistance is half. Therefore the potential of point a relative to 
point V.58)00.6()A6.9()18,9(is eq  IRVx ax  
 



26.55: Circuit (a)  

toequivalentisnetworkThe
16.67resistanceequivalenthaveandparallelinareresistorsΩ50.0andΩ25.0The
26.09resistanceequivalenthaveandparallelinareresistorsΩ40.0andΩ 75.0 The

 

 







 7.18so
05.23
1

0.100
11

eq
eq

R
R

 

 Circuit (b) 

The 
0.18resistanceequivalenthaveandparallelinareresistorsΩ45.0andΩ.030 . 

The network is equivalent to 

 

 







 5.7so
3.30
1

0.10
11

eq
eq

R
R

 

 



26.56: Recognize that the ohmmeter measures the equivalent parallel resistance, not just 
X. 













8.46
85

1
130

1
115

11
2.20
1

X
X  

 

26.57: .0561201)(512:loopleftTop 32232  IIIII  

.010301191012:loopBottom
.089901)(89:looprightTop

321213

31131




IIIIII
IIIII

 

 Solving these three equations for the currents yields: 

.A171.0andA,14.2,848.0 321  IIAI  
 

26.58: .A0.20)8.1(3)8.1(724:loop Outside  εε II  
.V6.80)0.2(2)8.1(7:loopRight  εε  

 
 
26.59: .04660)(421420:loopLeft 21121  IIIII

.094360)(4536:loopRight 21122  IIIII  

Solving these two equations for the currents yields: 

A.11.1and,A32.6,A21.5 1245221   IIIIIII   
 



26.60: a) Using the currents as defined on the circuit diagram below we obtain three 
equations to solve for the currents: 

 

.043
0)(2)(:loopBottom

.032
0)(2:loopTop

.1423
0)(214:loopLeft

21

22121

21

121

21

211










III
IIIIII

III
IIII

II
III

 

Solving these equations for the currents we find: 

A.0.2A;0.6;A0.10
31 2R1battery  RIIIIII  

So the other currents are: 

A.0.6A;0.4A;0.4 21211 542
 IIIIIIIIII RRR  

 .40.1b) A0.10
V0.14

eq  I
VR  

 



26.61: a) Going around the complete loop, we have: 

V.22.0
)112()A44.0(V0.10V0.12

.A44.00)0.9(V0.8V0.12







 


IRεV

IIIRε

ab  

    b) If now the points a and b are connected by a wire, the circuit becomes equivalent to 
the diagram shown below. The two loop equations for currents are (leaving out 
the units): 

  5.00441012 1221  IIII  

and 

A.464.0
05.255)24(2

0)(54254810

1

111

21232






I
III

IIIII
 

Thus the current through the 12-V battery is 0.464 A. 

 
 



26.62: a) First do series/parallel reduction: 

 

Now apply Kirchhoff’s laws and solve for .  

A25.4)A25.2(A2A2
A25.2

0)20(V5)A2)(20(:0

121

2

2adefa






III
I

IV
 

reversed. beshouldpolarityV;109
0)A25.2()20(A)25.4()15(:0abcdefa




ε
εV

 

    b) Parallel branch has a resistance10 . 

V20)A2()10(par  RIV  

Current in upper part: A3
2

30
V20  


R
VI  

s5.13

J60)10(A
3
2 2

2













t

t

URtIUPt

 



26.63: 

 

V7.12;V706.12
V0.12)0.10(1




dcbadc

cd

VVVVVV
VIV

 

 

26.64: First recognize that if the 40   resistor is safe, all the other resistors are also safe. 

A0.158I
W1)40(22


 IPRI

 

Now use series / parallel reduction to simplify the circuit. The upper parallel branch is 
6.38   and the lower one is 25  . The series sum is now 126 . Ohm’s law gives 

V19.9A)158.0()126(   
 

26.65:  The 20.0-  and 30.0-  resistors are in parallel and have equivalent resistance 
12.0  . The two resistors R are in parallel and have equivalent resistance R/2. The 
circuit is equivalent to  

 

     



26.66: For three identical resistors in series, .
3

2

R
VPs   If they are now in parallel over the 

same voltage, W.243)W27(99
3

9
3

22

eq

2

 sp P
R

V
R
V

R
VP  

 
 
26.67: 1

2
11

2
1 so PεRRεP   

2
2

22
2

2 so PεRRεP   
 
    a) When the resistors are connected in parallel to the emf, the voltage across each 
resistor is   and the power dissipated by each resistor is the same as if only the one 
resistor were connected. 21tot PPP   
    b) When the resistors are connected in series the equivalent resistance is 

21eq RRR   

21

21

2
2

1
2

2

21

2

tot PP
PP

PPRR
p











  

 
 



26.68: a) Ignoring the capacitor for the moment, the equivalent resistance of the two 
parallel resistors is 










 00.2;
00.6
3

00.3
1

00.6
11

eq
eq

R
R

 

In the absence of the capacitor, the total current in the circuit (the current through the 
00.8  resistor) would be 

A20.4
2.008.00
V0.42





R

i   

of which 32 , or 2.80 A, would go through the 00.3  resistor and 31 , or 1.40 A, 
would go through the 00.6  resistor. Since the current through the capacitor is given by 

,RCte
R
Vi   

at the instant 0t  the circuit behaves as through the capacitor were not present, so the 
currents through the various resistors are as calculated above. 
    b) Once the capacitor is fully charged, no current flows through that part of the circuit. 
The 00.8  and the 00.6  resistors are now in series, and the current through them is 

A.3.00)6.00(8.00/V)0.42(  Ri   The voltage drop across both the 00.6  
resistor and the capacitor is thus V.0.18)00.6()A00.3(  iRV  (There is no 
current through the 00.3  resistor and so no voltage drop across it.) The change on the 
capacitor is 
 C107.2V)(18.0farad)1000.4( 56   CVQ  
 
 
26.69: a) When the switch is open, only the outer resistances have current through them. 
So the equivalent resistance of them is: 

V.0.12)00.6(A00.8
2
1)00.3(A00.8

2
1

A00.8
4.50

V0.3650.4
63

1
36

1

eq

1

eq
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    b) If the switch is closed, the circuit geometry and resistance ratios become identical 
to that of Problem 26.60 and the same analysis can be carried out. However, we can also 
use symmetry to infer the following: 

.and, 33
1

switch33
2

6   IIII  From the left loop as in Problem 26.60: 

.A71.1
3
1A14.50)3()6(

3
2V36 3switch333 






  IIIII  

 (c) .20.4
A8.57
V0.36A57.8

3
5

3
2

battery
eq333battery   I

RIIII 
 

 
 



26.70: a) With an open switch: V,0.18 abV  since equilibrium has been reached. 
    b) Point “a” is at a higher potential since it is directly connected to the positive 
terminal of the battery. 
 
    c) When the switch is closed: 
 .V00.6)00.3()A00.2(A00.2)00.300.6(V0.18  bVII  
    d) Initially the capacitor’s charges were: 

.C10.081V)0.18()F1000.6(

.C105.40V)0.18()F1000.3(
46

6

56
3









CVQ

CVQ
 

After the switch is closed: 

  
.C107.20V).06V0.18()F1000.6(

.C101.80V)12.0V0.18()F1000.3(
56

6

56
3









CVQ

CVQ
 

So both capacitors lose C.1060.3 5  
 
 
26.71: a) With an open switch: 
 .C10.603V)0.18()F1000.2( 56

eq3
  VCQ  

 Also, there is a current in the left branch: 

  A.00.2
00.300.6

V0.18



I  

 So, V.6.00)(6.0A)0.2(
F100.6
C106.3

6

5

6
6

66 
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 b) Point “b” is at the higher potential. 
 c) If the switch is closed: 
  V.6.00)(3.00A)00.2(  ab VV  
 d) New charges are: 

  

C.10.603C)107.20(C1060.3

C.101.80C)10(1.80C1060.3

.C1002.7V)0.12)(F1000.6(

.C10.801V)0.6()F1000.3(

555
6

555
3

56
6

56
3

















Q
Q

CVQ

CVQ

 

 So the total charge flowing through the switch is C.1040.5 5  
 
 



26.72: The current for full-scale deflection is 0.02 A. From the circuit we can derive 
three equations: 

 (i) A)02.0(0.48)A02.0A100.0)(( 321  RRR  
          .0.12321  RRR  

    (ii) A)02.0)((48.0A)0.02A00.1)(( 321 RRR   
.980.00204.0 321  RRR  

    (iii) A)02.0)((48.0A)0.02A0.10( 321 RRR   
.096.0002.0002.0 321  RRR  

     From (i) and (ii) .8.103  R  
                From (ii) and (iii) .12.0soAnd.08.1 12  RR  
 
 
26.73: From the 3-V range: 
 .30002960V00.3)0.40)(A1000.1( 11

3  
overallRRR  

From the 15-V range: 
.1500012000V0.15)0.40)(A1000.1( 221

3  
overallRRRR  

From the 150-V range: 
  000,135V150)0.40)(A1000.1( 2321

3 RRRR  
    .k150  overallR  

26.74:  a) .k140
k50
1

k200
1k100

1

eq 
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V.4.114
k50
1

k200
1)A1086.2(

.A1086.2
k140
kV400.0

1
3

k200
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 b) ,1000.5 6 RVIf  then we carry out the same calculations as above to find 
.V263A1037.1k292 k200

3
eq  

 VIR  

 c) V.266A1033.1k300findwethen,If k200
3

eq  
 VIRVR  

 
 

26.75: .V68
)k30(

k30)V110(V100
)k30(

V110









R

V
R

I    

   .k5.18k30)V110()k30)(V68(  RR  
 

 



26.76: a) .AI
V

A RRIRIRV   The true resistance R is always less than the 
reading because in the circuit the ammeter’s resistance causes the current to be less then 
it should. Thus the smaller current requires the resistance R to be calculated larger than it 
should be. 

 b) .
VV

V

V RVI
V

VIR
VR

R
V

R
V RI    Now the current measured is greater than that 

through the resistor, so RIVR   is always greater than .IV  
 c) (a): .)( 222

AA RIIVRIVIRIP   
    (b): .)( 22

VV RVIVRVIVRVP   
 

 
26.77: a) When the bridge is balanced, no current flows through the galvanometer: 
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)(0
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XPNPINIVVI PXNMPNG 
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MPXPMNXMNPXPN   

 (b)   .1897
00.15

)48.33)(50.8(





X  

 
26.78: In order for the second galvanometer to give the same full-scale deflection and to 
have the same resistance as the first, we need two additional resistances as shown below. 
So: 

  .m4.91)mA496.1()0.38)(A6.3( 11  RR  
And for the total resistance to be 65 :  

.9.64
0914.0

1
0.38
165 2

1
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26.79: a) A.111.0
)589224(

90





VI  

        
V.4.65)589)(A111.0(

.V9.24)224)(A111.0(
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224








V
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 b) 





 5892241
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V90 IRVI
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     1
224

11589
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   .38748.211
224

11
1














V
V

R
R

  

 c) If the voltmeter is connected over the -589  resistor, then: 
 

.V4.62)589)(A106.0(A106.0
)1(

A122.0

5893874alsoA122.0
735

V90

735
589

1
3874

1224

589589
3875
589589

589589

1

eq
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R

VV  

 d) No. From the equation in part (b) one can see that any voltmeter with finite 
resistance VR  placed in parallel with any other resistance will always decrease the 
measured voltage. 

 

26.80: a) (i) W3380
26.4

)V120( 22





R

VPR  (ii) .0)(
2
1 2


C
iq

dt
qd

Cdt
dUPC  

    (iii) W.3380
26.4

V120)V120( 


 IP   

 b) After a long time, .0,0,00  PPPi CR  
  



26.81: a) If the given capacitor was fully charged for the given emf,  CVQmax  
.C1012.6)V180)(F104.3( 46    Since it has more charge than this after it was 

connected, this tells us the capacitor is discharging and so the current must be flowing 
toward the negative plate. The capacitor started with more charge than was “allowed” for 
the given emf. Let 

f
RCt

ff QeQQtQtQtQQtQ  )()(,allFor.)(and)0( 00  

fromandC1015.8)(;timesomeatgivenareWe 4 TtQTtQ  

  )(,At.)(currentThe.C1012.6above )()(4 0 TQTtetIQ RCt
RC

QQ
dt

tdQ
f

f  

.)()(atcurrenttheSo.)( ))(()(
0

0

RC
QTQRCT

RC
QQ

f
RCT

f
ff eTIisTtQeQQ    

plate).negativethe(towardA1024.8)(Thus 3
)1040.3)(1025.7(
C1012.6C1015.8

63

44 


  



F
TI  

b) As time goes on, the capacitor will discharge to C1012.6 4  as calculated 
above. 
 

 
26.82: For a charged capacitor, connected into a circuit: 

 C.1012.3)F1055.8)(k88.5)(A620.0( 610
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0
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  RCIQ
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26.83: 
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26.84: a) J.10.7
)F1062.4(2

)C0081.0(
2 6

22
0
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 b) .W3616
)F1062.4)(850(

)C0081.0(
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26.85: a) We will say that a capacitor is discharged if its charge is less than that 
of one electron, The time this takes is then given by: 

 
,s36.19)C106.1C100.7(ln)F102.9)(107.6(

)(ln
19675

00








t
eQRCteQq RCt

 

or 31.4 time constants. 
 b) As shown in (a), ),(ln 0 qQt   and so the number of time constants 
required to discharge the capacitor is independent of ,and CR  and depends only on 
the initial charge. 
 

 
26.86: a) The equivalent capacitance and time constant are: 

.s1020.1)F00.2)(00.6(F00.2
F6

1
F3

1 5
eq

1

eq












 


CRC total  

 b) After )1()1(s,1020.1 eqeq
eq

5 RCtRCt
f eCeQqt     

  V.06.5)1(
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)V12)(F0.2()1( 1
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eq
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C
C

C
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26.87: a)   


.)1( 22
2

00

CCdte
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dtIdtPE RCt
total   

 b) .
2
1 2
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2

0

Cdte
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dtRidtPE RCt
RR 

 





 

 c) .
2
1

22
2

22
0

Rtotal EECCV
C

QU    

 d) One half of the energy is stored in the capacitor, regardless of the sizes of the 
resistor. 

 

26.88: dte
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26.89: a) Using Kirchhoff’s Rules on the circuit we find: 
  Left loop: .021014014705521014092 2121  IIII  
  Right loop:    .0352101120552103557 3223  IIII  
  Currents:        .0321  III  
Solving for the three currents we have: 

A,300.01 I  A,500.02 I  A.200.03 I  
 b) Leaving only the 92-V battery in the circuit: 
   Left loop: .021014092 21  II  
   Right loop:        .021035 23  II  
   Currents:             .0321  III  
 
 
Solving for the three currents: 
 A,541.01 I  A,077.02 I  .A464.03 I  
 

c) Leaving only the 57-V battery in the circuit: 
Left loop:        .0210140 21  II   
Right loop: .02103557 23  II  
Currents:            .0321  III  

Solving for the three currents: 
 A,287.01 I  ,A192.02 I  A.480.03 I  
 d) Leaving only the 55-V battery in the circuit: 
   Left loop: .021014055 21  II  
   Right loop:  .02103555 23  II  
   Currents:            .0321  III  
Solving for the three currents: 

A,046.01 I  ,A231.02 I  A.185.03 I  
 e) If we sum the currents from the previous three parts we find: 

A,300.01 I  A,500.02 I  A,200.03 I  just as in part (a). 
f) Changing the 57-V battery for an 80-V battery just affects the calculation in part 
(c). It changes to: 

Left loop:       .0210140 21  II  
Right loop: .02103580 23  II  
Currents:           .0321  III  

Solving for the three currents: 
,A403.01 I  A,269.02 I  A.672.03 I  

So the total current for the full circuit is the sum of (b), (d) and (f) above: 
A,184.01 I  A,576.02 I  A.392.03 I  

 



26.90: a) Fully charged: 
.C1000.1)V1000)(F100.10( 812   CVQ  

 b) .1.1where,)(0 CCe
CR
q

R
ti

CR
q

RR
V

i CRtC 














  

 

 c) We need a resistance such that the current will be greater than 1 A  for longer 
than .s200   

  )F121011(

s4100.2

)F100.1(1.1
C100.1V10001A100.1)200( 11

8
6 



















 Re
R

si   

  .0108.1ln3.18)9.90(1A100.1 7)108.1(6 7

  RRRe
R

R  

Solving for R  numerically we find .1001.71015.7 76  R  
If the resistance is too small, then the capacitor discharges too quickly, and if the 
resistance is too large, the current is not large enough. 
26.91: We can re-draw the circuit as shown below: 
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26.92: 

 
Let current .atexitandatenter baI  At a  there are three equivalent branches, so 
current is 3I  in each. At the next junction point there are two equivalent branches 
so each gets current .6I  Then at b  there are three equivalent branches with current 

3I  in each. The voltage drop from ba to  then is       .6
5

363 IRRRRV III   

This must be the same as .
6
5so, eqeq RRIRV   

 
 



26.93: a) The circuit can be re-drawn as follows: 
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 If )31(2 111
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1121  RRRRRRRR T  and 73.2
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)32(2





 . So, for 

the nth segment to have 1% of the original voltage, we need: 

04 005.0:401.0
)73.21(

1
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c) 21
2

11 2 RRRRRT   

      
.100.4

)100.8()102.3(
)100.8102.3()6400(2

.102.3)100.8()6400(2)6400(6400
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d) Along a length of 2.0 mm of axon, there are 2000 segments each 1.0 mµ  long. The 
voltage therefore attenuates by: 
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e) If  812

2 101.2103.3 TRR  and .102.6 5  
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27.1: a) )ˆˆT)()(1.40sm103.85C)(1024.1( 48 ijBvF  


q  
     .ˆN)1068.6( 4 kF 


 

 b) BvF 
q  

ˆ)(sm1019.4()ˆˆ)(sm103.85T)[(C)(1.401024.1( 448 kikjF  

.ˆN)1027.7(ˆN)1068.6( 44 jiF    
 

 
27.2: Need a force from the magnetic field to balance the downward gravitational force. 
Its magnitude is: 

  T.91.1
)sm10C)(4.001050.2(

)smkg)(9.801095.1(
48

24





 



qv
mgBmgqvB  

The right-hand rule requires the magnetic field to be to the east, since the velocity 
is northward, the charge is negative, and the force is upwards. 
 
27.3: By the right-hand rule, the charge is positive. 
 

 
 
 

27.4: 
m

qqm BvaBvaF 
  

 .ˆ)sm330.0(
kg1081.1

)ˆˆT)()(1.63sm10C)(3.01022.1( 2
3

48

kija 



 



 

  



27.5: See figure on next page. Let ,0 qvBF  then: 

     0FFa   in the k̂  direction 
     0FFb   in the ĵ  direction 
     ,0cF  since B and velocity are parallel 

     o45sin0FFd   in the ĵ  direction 

     0FFe   in the )ˆˆ( kj   direction 

 
 

 
27.6: a) The smallest possible acceleration is zero, when the motion is parallel to the 
magnetic field. The greatest acceleration is when the velocity and magnetic field are at 
right angles: 

 .sm1025.3
kg)10(9.11

T)10)(7.4sm10C)(2.50106.1( 216
31

2619





 



m
qvBa  

 b) If  .5.1425.0sinsin)sm1025.3(
4
1 216  

m
qvBa  

 

27.7: 
60sin)T10C)(3.510(1.6

N1060.4
sin

sin 319-
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Bq

FvBvqF  

    .sm1049.9 6  
 

 



27.8: a) )].ˆ()ˆ([)]ˆˆ()ˆˆ()ˆˆ([ ijkkkjkiBvF yxzzyxz vvqBvvvqBq   

Set this equal to the given value of F to obtain: 
 

  sm106
T)1.25C)(105.60(

N)1040.7(
9

7








 



z

y
x qB

F
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  .sm6.48
T)1.25C)(105.60(

N)1040.3(
9
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z

x
y qB
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 b) The value of zv is indeterminate. 

 c) .90;0 


 y
z

x
x

z

y
zzyyxx F

qB
FF

qB
F

FvFvFvFv  

 
 
27.9: sm1080.3ˆ, 3 yy vwithvq jvBvF   

 ,0N,1060.7 3  
yx FF and N1020.5 3zF  

 zyyzzyx BqvBvBvqF  )(  

 T0.256)]sm103.80C)(10([7.80N)1060.7( 363  
yxz qvFB  

 ,0)(  zxxzy BvBvqF  which is consistent with F as given in the problem. No 
force component along the direction of the velocity. 
 xyxyyxz BqvBvBvqF  )(  
 T175.0 yzx qvFB  

 b) yB is not determined. No force due to this component of B along ;v  measurement 
of the force tells us nothing about .yB  

 c)   N)107.60T)(175.0( 3
zzyyxx FBFBFBFB  

N)3105.20T)(0.256(   

 BFB ;0 and F are perpendicular (angle is )90o  
 
 



27.10: a) The total flux must be zero, so the flux through the remaining surfaces must be 
120.0 Wb. 

 b) The shape of the surface is unimportant, just that it is closed. 
 
 c) 

 
 
 
27.11: a) 32 1005.3m)(0.065T)230.0(  πB AB Wb. 

 b) 32 1083.11.53cosm)(0.065T)230.0(  πB AB Wb. 

 c) 0B since .AB   
 
 
27.12: a) .0)(  ABabcdB  

 b) 0.0115m)300.0(m)300.0)(T128.0()(  ABbefcB  Wb. 

 c) 0.0115m)m)(0.300T)(0.500128.0(
5
3cos)(  BAaefdB AB Wb. 

 d) The net flux through the rest of the surfaces is zero since they are parallel to the x-
axis so the total flux is the sum of all parts above, which is zero. 
 
 
27.13: a) jB ˆ)][( 2y and we can calculate the flux through each surface. Note that 
there is no flux through any surfaces parallel to the y-axis. Thus, the total flux through the 
closed surface is: 

])2)m300.0)(2T/m(2.00T[0.3000)]T300.0(([)(  ABabeB  

m)m)(0.300400.0(
2
1

   

    0108.0 Wb. 
 
 b) The student’s claim is implausible since it would require the existence of a 
magnetic monopole to result in a net non-zero flux through the closed surface. 
 



27.14: a) T)C)(1.6510m)(6.41068.4( 193  





 RqB

m
RqBmmvp  

  .smkg1094.4 21  
 b) .smkg102.31T)C)(1.65104.6()m1068.4( 22319232   qBRRpL  
 
 

27.15: a) T.1061.1
)m0500.0)(C10(1.60

)sm10kg)(1.411011.9( 4
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Rq
mvB  

The direction of the magnetic field is into the page (the charge is negative). 
 b) The time to complete half a circle is just the distance traveled divided by the 
velocity: 

  s.1011.1
sm101.41

m)0500.0( 7
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27.16: a) T294.0
m)C)(0.050010 (1.60

)sm10kg)(1.411067.1(
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qR
mvB  

The direction of the magnetic field is out of the page (the charge is positive). 
 b) The time to complete half a circle is unchanged: 
    s.1011.1 7t  
 
 
27.17: 2211 UKUK   

 ,021  KU so ;21 UK   rkemv 22
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 sm102.1
m)10kg)(1.010(3.34

2C)10602.1(2 7
1527
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 b) aF m gives rmvqvB 2  

 T10.0
m)C)(2.5010(1.602
m/s)10kg)(1.21034.3(
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27.18: a) sinqvBF   

 



 



90sin)sm000C)(500,108(1.60
N1000320.0

sin 19

9

qv
FB  

 T.00.5B If the angleθ  is less than ,90o  a larger field is needed to produce the 

same force. The direction of the field must be toward the south so that Bv  can be 
downward. 
 b) θqvBF sin  




 



90sinT)C)(2.1010(1.60
N1060.4

sin 19

12

θqB
Fv  

 .sm1037.1 7v If θ  is less than ,90o the speed would have to be larger to have the 

same force. The force is upward, so Bv  must be downward since the electron is 
negative, so the velocity must be toward the south. 
 
 
27.19: C106.408C)10602.1)(1000.4( 11198  q  
 speed at bottom of shaft: m/s5.492;2

2
1  gyvmgymv  

 v  is downward and B is west, so Bv  is north. Since F,0q is south. 
 N1093.790sinT))(0.250smC)(49.510408.6(sin 1011   θqvBF  
 
 

27.20: (a) 
qB
mvR   

  
kg)1067.1(12

m)T)(C)(0.2501060.1(3
27
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m

qBRv  

  sm1084.2 6v  
 Since Bv


 is to the left but the charges are bent to the right, they must be 

negative. 
 b) N1096.1)smkg)(9.801067.1(12 25227

grav
  mgF  

     T))(0.250sm10C)(2.84106.1(3 619
magnetic  qvBF  

                  N1041.3 13  
 Since grav,

12
magn 10 FF   we can safely neglect gravity. 

 c) The speed does not change since the magnetic force is perpendicular to the velocity 
and therefore does not do work on the particles. 
 
 



27.21: a) .sm1034.8
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27.22: m.1082.1
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27.23: a) T.107
C)10(1.60

Hz)10(3.00kg)21011.9(2
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 π
q
πfmB  

This is about 2.4 times the greatest magnitude yet obtained on earth. 
 b) Protons have a greater mass than the electrons, so a greater magnetic field would be 
required to accelerate them with the same frequency, so there would be no advantage in 
using them. 
 
 
27.24: The initial velocity is all in the y-direction, and we want the pitch to equal the 
radius of curvature 

But  
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27.25: a) The radius of the path is unaffected, but the pitch of the helix varies with time 
as the proton is accelerated in the x-direction. 
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27.28: a) .sm103.38T)1062.4()mV1056.1( 634  BEv  
 
 b) 
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27.29: a) EB FF   so ;EqvBq   T10.0 vEB  
 Forces balance for either sign of .q  
 b) dVE   so dBVBEv   
 smallest :v  

 largest ,V smallest ,B sm101.2
T)180.0(m)0325.0(

V120 4
min v  

 largest :v   

 smallest ,V largest sm102.3
T)m)(0.054(0.0325

V560, 5
min vB  

 
 



27.30: To pass undeflected in both cases, .CN7898T))(1.35sm1085.5( 3  vBE
 a) If C,10640.0 9q  the electric field direction is given by ,ˆ))ˆ(ˆ( ikj   
since it must point in the opposite direction to the magnetic force. 
 b) If ,C10320.0 9q  the electric field direction is given by ,ˆ))ˆ()ˆ(( ikj   
since it must point in the same direction as the magnetic force, which has swapped from 
part (a). The electric force will now point opposite to the magnetic force for this negative 
charge using .EF qe   
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27.32: a) .mV1018.1)T650.0)(sm1082.1( 66  vBE  
 b) .kV14.6)m1020.5)(mV1018.1( 36  EdVdVE  
 
 
27.33: a) For minimum magnitude, the angle should be adjusted so that )(B  is parallel 
to the ground, thus perpendicular to the current. To counter gravity, ,mgILB   so 

.IL
mgB   

 b) We want the magnetic force to point up. With a northward current, a westward 
B field will accomplish this. 
 
27.34: a) ,N1006.7)T588.0()m0100.0()A20.1( 3 IlbF  and by the righthand 
rule, the easterly magnetic field results in a southerly force. 
 b) If the field is southerly, then the force is to the west, and of the same magnitude as 
part (a), .N1006.7 3F  
 c) If the field is 30  south of west, the force is 30  west of north ( 90  
counterclockwise from the field) and still of the same magnitude, N.107.60 6F   
 
 

27.35: A.9.7
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27.36: N. 0.297T) m)(0.550 A)(0.050 (10.8  IlBF  
 
 



27.37: The wire lies on the x-axis and the force on 1 cm of it is 

 a) .ˆN)(0.023)ˆˆT)(.650m)(A)(0.0103.50( kjiBlF 


I  

 b) .ˆN)(0.020)ˆˆT)(0.56m)(A)(0.0103.50( jkiBlF 


I  

 c) .0)ˆˆT)(0.31m)(A)(0.0103.50( 


iiBlF I  

 d) .̂)N108.9()ˆˆT)(0.28m)(A)(0.0103.50( 3 jkiBlF 


 I  

 e) )]ˆˆ(T0.36)ˆˆ(Tm)[0.74A)(0.0103.50( kijiBlF 


I  
 .̂N)(0.013ˆN)(0.026 jk   
 
 

27.38:     


 BlF I  
Between the poles of the magnet, the magnetic field points to the right. Using the 

fingertips of your right hand, rotate the current vector by 90  into the direction of the 
magnetic field vector. Your thumb points downward–which is the direction of the 
magnetic force. 
 

27.39: a) mgFI   when bar is just ready to levitate. 
 

V817Ω)A)(25.0(32.67

A32.67
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b) A408)0.2()V7.816(,0.2  RIR   
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27.40: (a) The magnetic force on the bar must be upward so the current through it must 
be to the right. Therefore a must be the positive terminal. 

(b) For balance, mgF magn  

A0.3500.5V175

sin
sin
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27.41: a) The force on the straight section along the –x-axis is zero. 

For the half of the semicircle at negative x  the force is out of the page. For the 
half of the semicircle at positive x  the force is into the page. The net force on the 
semicircular section is zero. 

The force on the straight section that is perpendicular to the plane of the figure is 
in the –y-direction and has magnitude ILB.F   

The total magnetic force on the conductor is ,ILB in the y -direction. 
b) If the semicircular section is replaced by a straight section along the x -axis, then the 
magnetic force on that straight section would be zero, the same as it is for the semicircle. 
 
 
27.42: a) m.N104.71m)m)(0.080T)(0.050(0.19A)(6.2 3  IBA  
    b) .mA0.025m)m)(0.080A)(0.050(6.2 2 IA  
    c) Maximum torque will occur when the area is largest, which means a circle: 

m.N106.22m)041(0.04T)A)(0.19(6.2
.m0.041m)0.080m(0.05022

32
max 


πIBA

RπR


 

 
 
27.43: a) The torque is maximum when the plane of loop is parallel to .B  

m.N0.13290sin)2m(0.08866T)A)(0.56(15)(2.7sin 2
max  πNIBA   

     b) The torque on the loop is 71% of the maximum when .450.71sin    
 



27.44: (a) The force on each segment of the coil is toward the center of the coil, as the 
net force and net torque are both zero. 
    (b) As viewed from above: 

 
 
 
As in (a), the forces cancel. 
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27.45: a) s101.52 16 vrT   
    b) mA1.1 tetQI  
    c) 2242 mA109.3  rIIA   
 
 
27.46:  a)  cos,ˆˆˆ:direction,)90(sin:90   BNUNIABNIABτ ijk
    b) .cosdirection,no,0)0(sin:0 NIABBNUNIABτ    
    c) .0cos,ˆˆˆ:direction,)90sin(:90   BNUNIABNIABτ ijk  
    d) .)cos(180direction,no0,)sin(180:180 NIABBNUNIABτ     
 
 
27.47: BBBUUU if  2180cos0cos   

         J.2.42T))(0.835mA2(1.45 2   
 
 



27.48: a) A.4.7
Ω3.2

V105V120








r
VIIrV ab

ab


  

     b) W.564V)A)(120(4.7supplied  abIVP  

     c) W.493Ω)(3.2A)(4.7W564 22
mech  rIIVP ab  

 

27.49: a) A.1.13
Ω106
V120
fI  

     b) .69.313.182.4total AAAIII fr   
     c) V.98.2Ω)A)(5.9(3.69V120  rrrr RIVRIV   
     d) W.362A)V)(3.69(98.2mech  rIP   
 
 

27.50: a) Field current A.0.550
Ω218
V120

fI  

     b) Rotor current A.4.27A0.550A4.82total  fr III  
     c) V.94.8Ω)A)(5.9(4.27V120  rrrr RIVRIV   
     d) W.65.9Ω)(218A)(0.550 22  fff RIP  

     e) W.108Ω)(5.9A)(4.27 22  rrr RIP  
     f) Power input = (120 V) (4.82 A) = 578 W. 

     g) Efficiency = 0.621.
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27.51: a) 
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    b) zBvE ydz   thein,CN104.48)T)(0.95sm10(4.72 33 -direction 
(negative charge). 
     c) V.105.29)CN10m)(4.48(0.0118 53
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27.52:  
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27.53: a) By inspection, using jBBvF ˆ, Bq 


 will provide the correct direction 

for each force. Using either force, say .,
2

2
2 vq

FBF   

     b) ).since(
22

45sin 21
22

11 vvFBvq
BvqF   

 

27.54: a) ikkjijBvF ˆˆ)]ˆˆ()ˆˆ([ zxzx qVBqVBBBqVq 


 
    b) matter.tdoesn'ofsign,0,0 yzx BBB    

    c) .2,ˆˆ
xxx vBqVBqVBq 



FkiF  

 

27.55: The direction of 


E  is horizontal and perpendicular to ,


v  as shown in the sketch: 

 
qEFqvBF EB  ,  

mV7.00T))(0.500sm14.0(
so,deflectionnofor




vBE
qEqvBFF EB  

We ignored the gravity force. If the target is 5.0 m from the rifle, it takes the 
bullet 0.36 s to reach the target and during this time the bullet moves downward 

m.62.02
2
1

0  tayy y  The magnetic and electric forces we considered are horizontal. 
A vertical electric field of mV0.038 qmgE  would be required to cancel the 
gravity force. Air resistance has also been neglected. 
 
 



27.56: a) Motion is circular: 
22

1
222 DRyDxRyx   (path of deflected particle) 

Ry 2  (equation for tangent to the circle, path of undeflected  particle) 
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For a particle moving in a magnetic field, .
qB
mvR   

But .21so,
2
1 2

q
mV

B
RqVmv   

Thus, the deflection .
2222
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d  

,of%13 Dd   which is fairly significant. 
 

27.57: a) m/s.103.3
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      b) s.106.7
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m)4.0(22 8
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π
v
πRT  

      c) If the energy was to be doubled, then the speed would have to be increased by 
,2  as would the magnetic field. Therefore the new magnetic field would be 

T.2.12 0new  BB  
 
      d)For alpha particles, 
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27.60: a) .J1032.4J/eV)106.1(eV)102.7(MeV7.2 13196  K  

m.068.0
T)5.3(C)106.1(

)m/s1027.2(kg)1067.1(
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J)1032.4(22
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rad/s.1034.3
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m/s1027.2Also, 8
7





R
vω  

b) If the energy reaches the final value of 5.4 MeV, the velocity increases by 2 , as 
does the radius, to 0.096 m. The angular frequency is unchanged from part (a) at 

81034.3  rad / s. 
 
 



27.61: a)    2222 )()(ˆ)(ˆ)( zxzyzxzy BvBvqFBvBvqq  jiBvF
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      c) The motion is helical since the force is in the xy-plane but the velocity has a z-
component. The radius of the circular part of the motion is: 

m.0.057
T)120.0(C)1098.1(
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       e) After two complete cycles, the x and y values are back to their original values, x = 
R and y = 0, but z has changed. 
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27.62:  a) 
0.100)/kg)ln(5.001011.9(
V)120(C)106.1(

)/ln( 31

192









abm

qV
m

qERvqE
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s./m1032.2 6 v  

    b) 0)()( 2
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mvBEq
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s,/m101.91orm/s1082.2

0)1023.1()1008.2()1028.2(
66

1623229



 

v
vv

 

but we need the positive velocity to get the correct force, so v s./m1082.2 6  
 c) If the direction of the magnetic field is reversed, then there is a smaller net 
force and a smaller velocity, and the value is the second root found in part (b), 

s./m1019.3 6 v  
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So the distance between two adjacent lines is 2R = 1.6 mm. 
 
 
27.64: .0)(  yzzyx BvBvqF  

N.1032.1

T)(0.450m/s)103.11(C)10(9.45)(

.N1049.2

T)(0.450m/s)10(5.85C)10(9.45)(

3

48

3

48

















xyyxz

zxxzy

BvBvqF

BvBvqF

 

 
 



27.65: a) kijBlF ˆ)T860.0()m(0.750A)58.6(ˆˆ)(: 


BlIIl ababab  
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b) Summing all the forces in part (a) we have .̂)N24.4(total jF 


 
27.66: a) F = ILB, to the right. 

  b) .
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  c) km!3140m103.14
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kg)(25m/s)10(1.12 6
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27.67: The current is to the left, so the force is into the plane. 
 
    .0sinand0Mcos Bxy FθNFgθNF  

             
LB

θgIILBθgFB
tanMtanM   

 
 



27.68: a) By examining a small piece of the wire (shown below) we find: 
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      b) For a particle: 
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  b) This can be used for isotope separation since the mass in the 
denominator leads to different locations for different isotopes. 
 



27.70: (a) During acceleration of the ions: 

m
qVv

mvqV
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In the magnetic field: 

 

V
RqBm

qB
m

qB
mvR m

qV

2

22

2




 

    (b) 
)kg1066.1()12(2

)m500.0()T150.0()C1060.1(
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m
RqBV  

          volts1026.2 4V  
   
    (c) The ions are separated by the differences in their diameters. 
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27.71: a)  

 Divide the rod into infinitesimal sections of 
length dr. 

 
 The magnetic force on this section is drBIdFI   and is perpendicular to the rod. 
The torque dτ  due to the force on this section is .drIBrrdFdτ I   The total torque is 

m,/N2044.02
2
1

0
  BIldrrBIdτ

l
clockwise. This is the same torque calculated 

from a force diagram in which the total magnetic force IlBFI   acts at the center of the 
rod. 

b) IF  produces a clockwise torque so the spring force must produce a 
counterclockwise torque. The spring force must be to the left, the spring is stretched. 

Find x, the amount the spring is stretched: 
,0  axis at hinge, counterclockwise torques positive 

J1098.7

m05765.0
0.53sinN/m)80.4(2

)T340.0()m200.0()A50.6(
0.53sin2

053sin)(
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27.72:   a)  RPPQ FFI ,N0)0sin()T00.3()m600.0(A)00.5( 


BlF  

  page).theof(outN0.12

(3.00m)(1.00A)00.5(page), theinto(N0.12)90sin()T(3.00m)(0.800A)00.5(

00.1
800.0 

 QRF

 
     b) The net force on the triangular loop of wire is zero. 
     c) For calculating torque on a uniform wire we can assume that the force on a wire is 
applied at the wire’s center. Also, note that we are finding the torque with respect to the 
PR-axis (not about a point), and consequently the lever arm will be the distance from the 
wire’s center to the x-axis. 
 

 
)toparallelandrightthe to(pointingmN60.3)90sin()N0.12()m300.0(

,0sin)m0(0,N)0()sin(

PR

τFτrτθrFτ QRRPPQ



 Fr


      d) According to Eqn.   m)(0.800m)(0.600A)00.5()1(sin,28.27 2
1 NIABτ  

m,N60.3)90sin()T00.3(   which agrees with part (c). 
       e) The point Q will be rotated out of the plane of the figure. 

 
 
27.73:  

,0  
     counterclockwise torques positive 
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27.74: a)  jiBkBlF ˆ)(ˆ)()ˆ( xy BBIllII 


 

    
direction.-z in the is  wire thesince,0

N0.545T)0.242(m)(0.250A)00.9(
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 b) N.2.29N)545.0(N)22.2( 2222  yx FFF  
 
 



27.75: Summing the torques on the wire from gravity and the magnetic field will enable 
us to find the magnetic field value. 
 .)m/TN(0.034160sinm)(0.080m)060.0()A2.8(60sin BBIABτB   
 
 There are three sides to consider for the gravitational torque, leading to: 
 

,sin2sin 8866  glmglmg   
 
where 6l  is the moment arm from the pivot to the far 6 cm leg and 8l  is the moment arm 
from the pivot to the centers of mass of the 8 cm legs. 
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27.76: a) mN0.03060sinT)(0.48m)(0.080m)A)(0.060(15.060sin  IABτ   

ĵthein   direction. To keep the loop in place, you must provide a torque in the ĵ  
direction. 
 b) m,N0.01730sinT)(0.48m)(0.080m)60.0)(A0.15(30sin  IABτ  in 
the ĵ  direction you must provide a torque in the ĵ  direction to keep the loop in 
place. 
 c) If the loop was pivoted through its center, then there would be a torque on both 
sides of the loop parallel to the rotation axis. However, the lever arm is only half as large, 
so the total torque in each case is identical to the values found in parts (a) and (b). 
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27.79: The y-components of the magnetic field provide forces  which cancel as you go 
around the loop. The x-components of the magnetic field, however, provide a net force in 
the –y- direction.  
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27.80: ).()( P
iipiiiii 



 τFrrFrFrFrτ pii  
 Note that we added a term after the second equals sign that was zero because the 
body is in translational equilibrium. 
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     c) The sum of all forces is .ˆ0total jF LIB
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     c) If free to rotate about the x-axis .ˆ
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    d) If free to rotate about the y-axis  .ˆ
2
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    e) The form of the torque 


 Bµτ  is not appropriate, since the magnetic field is not 
constant. 
 
 



27.83: a) m,0.325m0.025m350.0 y  we must subtract off the amount 
immersed since the bar is accelerating until it leaves the pools and thus hasn’t reached 0v  
yet. 
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 b) In a distance of 0.025 m the wire’s speed increases from zero to 2.52 m/s. 
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 c) Since there are two down quarks, each of half the charge of the up quark, 
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27.85: a) rule. hand-right  theusingˆˆ knµ IAIA 
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27.86: a)  .ˆcosˆsinˆ jitl θθRdθdld 


 Note that this implies that when ,0θ the 
line element points in the + y-direction, and when the angle is ,90  the line element 
points in the – x-direction. This is in agreement with the diagram. 
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27.87: a)      

top barrel top barrel

.0)( dABdAβLdABdABd rrzAB  

 .
2

)(20 2 βrrBrLBrL rr    

 b) The two diagrams show views of the field lines from the top and side: 
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 b) The distance along the curve, ,d is given by 
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27.91: a) The maximum speed occurs at the top of the cycloidal path, and hence the 
radius of curvature is greatest there. Once the motion is beyond the top, the particle is 
being slowed by the electric field. As it returns to ,0y  the speed decreases, leading to a 
smaller magnetic force, until the particle stops completely. Then the electric field again 
provides the acceleration in the y-direction of the particle, leading to the repeated motion. 
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28.1: For a charge with velocity ,ˆ)sm108.00( 6 jv 
  the magnetic field produced at 

a position r  away from the particle is .
ˆ

4 2
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r
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 So for the cases below: 
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28.4: a) Following Example 28.1 we can find the magnetic force between the charges: 

down).points
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The Coulomb force between the charges is 
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r
qqkF  (the force on the upper 

charge points up and the force on the lower charge points down). 
The ratio of the Coulomb force to the magnetic force is 
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3
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     b) The magnetic forces are reversed when the direction of only one velocity is 
reversed but the magnitude of the force is unchanged. 
 
 



28.5: The magnetic field is into the page at the origin, and the magnitude is 
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28.6: a) 2
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28.8: The magnetic field at the given points is: 
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28.9: The wire carries current in the z-direction. The magnetic field of a small piece of 

wire 2
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 at different locations is therefore: 
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  in the ĵ  direction. 

b) The position 
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dx   is symmetrical with that of part (a), so the magnetic 

field there is 
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4 0 , in the ĵ  direction.  

 
 
28.11: a) At the point exactly midway between the wires, the two magnetic fields are in 
opposite directions and cancel. 
 b) At a distance a above the top wire, the magnetic fields are in the same 

direction and add up: kkkkkB ˆ
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 c) At the same distance as part (b), but below the lower wire, yields the same 

magnitude magnetic field but in the opposite direction: kB ˆ
3
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Iµ

 . 

 
 



28.12: The total magnetic field is the vector sum of the constant magnetic field and the 
wire’s magnetic field. So: 

 a) At (0, 0, 1 m): 
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       b) Since the magnitude of the earth’s magnetic filed is 51000.5   T, to the north, 
the total magnetic field is now o30  east of north with a magnitude of 51078.5   T. This 
could be a problem! 
 
 



28.16: a) B = 0 since the fields are in opposite directions. 

       b) 
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  Note that aa rB  and bb rB  
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28.17: The only place where the magnetic fields of the two wires are in opposite 
directions is between the wires, in the plane of the wires. 

Consider a point a distance x from the wire carrying 2I  = 75.0 A. totB  will be 
zero where 21 BB  . 
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x = 0.300 m; 0tot B  along a line 0.300 m from the wire carrying 75.0 A amd 0.100 m 
from the wire carrying current 25.0 A. 
 b) Let the wire with 0.251 I A be 0.400 m above the wire with 2I  = 75.0 A. 
The magnetic fields of the two wires are in opposite directions in the plane of the wires 
and at points above both wires or below both wires. But to have 21 BB   must be closer 
to wire #1 since 1I < 2I , so can have 0tot B  only at points above both wires. 
 Consider a point a distance x from the wire carrying 0.251 I  A. totB  will be 
zero where .21 BB   
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0tot B  along a line 0.200 m from the wire carrying 25.0 A and 0.600 m from the wire 

carrying current 0.752 I  A. 
  
 



28.18: (a) and (b) B = 0 since the magnetic fields due to currents at opposite corners of 
the square cancel. 
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To give 4B  in the   direction the current in wire 4 must be toward the bottom of the 
page. 
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28.20: On the top wire: ,
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   upward. 

On the middle wire, the magnetic fields cancel so the force is zero. 

On the bottom wire: ,
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28.21: We need the magnetic and gravitational forces to cancel: 
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repulsive since the currents are in opposite directions. 
      b) Doubling the currents makes the force increase by a factor of four to 
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      b) The two wires repel so the currents are in opposite directions. 
 
 
28.24: There is no magnetic field at the center of the loop from the straight sections.  
The magnetic field from the semicircle is just half that of a complete loop: 
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 into the page. 
 
 
28.25: As in Exercise 28.24, there is no contribution from the straight wires, and now we 
have two oppositely oriented contributions from the two semicircles: 
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into the page. Note that if the two currents are equal, the magnetic field goes to zero at 
the center of the loop. 
 
 
28.26: a) The field still points along the positive x-axis, and thus points into the loop 
from this location. 
      b) If the current is reversed, the magnetic field is reversed. At point P the field would 
then point into the loop. 
      c) Point the thumb of your right hand in the direction of the magnetic moment, under 
the given circumstances, the current would appear to flow in the direction that your 
fingers curl (i.e., clockwise). 
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28.28: a) From Eq. (29-17), .T1042.9
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d  points opposite to B


 everywhere. 
 
 
28.31: We will travel around the loops in the counterclockwise direction. 
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 Using Ampere’s Law in each case, the sign of the line integral was determined by 
using the right-hand rule. This determines the sign of the integral for a counterclockwise 
path. 
 
 



28.32:  Consider a coaxial cable where the currents run in OPPOSITE directions. 
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       b) For ,cr   the enclosed current is zero, so the magnetic field is also 
zero. 
 
 
28.33:   Consider a coaxial cable where the currents run in the SAME direction. 
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28.34:    Using the formula for the magnetic field of a solenoid: 
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28.38:   Outside a toroidal solenoid there is no magnetic field and inside it the magnetic 

field is given by .
2
0

πr
NIµB   

    a) r = 0.12 m, which is outside the toroid, so B = 0. 
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    c) r = 0.20 m, which is outside the toroid, so B = 0 
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28.43:  a) The magnetic field from the solenoid alone is: 
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28.45:  

 
 

The material does obey Curie’s Law because we have a straight line for temperature 
against one over the magnetic susceptibility. The Curie constant from the graph is 
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28.46: The magnetic field of charge q  at the location of charge q is into the page. 
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  Let the current run left to right, the electron moves in the opposite direction, 
below the wire, then the magnetic field at the electron is into the page, and the electron 
feels a force upward, toward the wire, by the right-hand rule (remember the electron is 
negative). 
 
 

28.48: (a) 






πr
I

m
ev

m
qvB

m
Fa

2
sin 0

 

  
)m020.0)(2)(kg1011.9(

)A25)(ATm104)(sm000,250)(C106.1(
31

717

π
πa 






  

      ,sm101.1 213 away from the wire. 
  
  b) The electric force must balance the magnetic force. 
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28.49: Let the wire connected to the 25.0   resistor be #2 and the wire connected to 
the 10.0   resistor be #1. Both 21 and II  are directed toward the right in the figure, so at 
the location of the proton  12 and IisI ⊙ 
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and in the direction ⊙. 
 

  Force is to the right. 
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28.50: The fields add 
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28.51: a) 
 

          Along the dashed line, 21 and BB  are in opposite directions. 
If the line has slope 21then00.1 rr   and 
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28.53: Choose a cube of edge length L , with one face on the y-z plane. Then: 
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so the only possible field is a zero field. 
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28.55: a) If the magnetic field at point P is zero, then from Figure (28.46) the current 2I  
must be out of the page, in order to cancel the field from 1I . Also: 
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       b) Given the currents, the field at Q  points to the right and has magnitude 

                  .T1013.2
m50.1
A00.2

m500.0
A00.6

22
60

2

2

1

10 


















π
µ

r
I

r
I

π
µBQ  

        c) The magnitude of the field at S is given by the sum of the squares of the two 
fields because they are at right angles. So: 
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28.56: a) 

 
        b) At a position on the x-axis: 
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in the positive x-direction , as shown at left. 
        c) 

 
        d) The magnetic field is a maximum at the origin, x = 0. 
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       b) At a position on the x-axis: 
 

                                        

 ,

cos
2

2

22
0

net

2222
00

net

axπ
IxµB

ax
x

axπ
Iµθ

πr
IµB







 

   in the negative y-direction, as shown at left. 
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d) The magnetic field is a maximum when: 
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IBax    which is just like a wire carrying current 2I. 

 
 



28.58: a) Wire carrying current into the page, so it feels a force downward from the 
other wires, as shown at right. 
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             b) If the wire carries current out of the page then the forces felt will be the 
opposite of part (a) . Thus the force will be ,mN1011.1 5  upward. 
 
28.59:  The current in the wires is     .A0.90500.0V0.45R  I  The currents 
in the wires are in opposite directions, so the wires repel. The force each wire exerts on 
the other is 
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 To hold the wires at rest, each spring exerts a force of 0.189 N on each wire. 
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28.60: a) Note that the Earth’s magnetic field exerts no force on wire B, since the 
current in wire B is parallel to the Earth’s magnetic field. Thus, for equilibrium, the 
remaining two forces that act on wire B must cancel. Assuming that the length of wire B 
is L  and that wire A carries a current I  we obtain 
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     b) Note that the force on wire B that is generated by wire C is to the right. Thus, if the 
current in wire C is increased, wire B will slide to the right. 
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The wires are in equilibrium, so: 
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28.62: The forces on the top and bottom segments cancel, leaving the left and right sides: 
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       c) Having ax  allows us to simplify the form of the magnetic field, whereas 
assuming ax  means we can assume that the magnetic field from the first loop is 
constant over the second loop. 
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28.65: a) Recall for a single loop: .2/322
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  Here we have two loops, each of 

N turns, and measuring the field along the x-axis from between them means that the 
"" x in the formula is different for each case:  
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     b) Below left: Total magnetic field. Below right: Magnetic field from right coil. 
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28.66: A wire of length l  produces a field .22
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  Here all edges produce a 

field into the page so we can just add them up: 
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And the right and bottom edges just produce the same contribution as the left and top, 
respectively. Thus the total magnetic field is: 
 

   .212 220
22

0 ba
πab

Iµ
bab

a
a
b

π
IµB 








   

 
 
28.67: The contributions from the straight segments is zero since .0 rl


d  The 

magnetic field from the curved wire is just one quarter of a full loop: 

     ,
24

1 0 







R
IµB  

and is out of the page. 
 
 
28.68: The horizontal wire yields zero magnetic field since .0 rl


d  The vertical 

current provides the magnetic field of HALF of an infinite wire. (The contributions from 
all infinitesimal pieces of the wire point in the same direction, so there is no vector 
addition or components to worry about.) 
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28.71:   If there is a magnetic field component in the z-direction, it must be constant 
because of the symmetry of the wire. Therefore the contribution to a surface integral over 
a closed cylinder, encompassing a long straight wire will be zero: no flux through the 
barrel of the cylinder, and equal but opposite flux through the ends. The radial field will 
have no contribution through the ends, but through the barrel: 
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28.73: 
  

  Apply Ampere’s law to a circular path of radius 2a. 
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28.74: At the center of the circular loop the current 2I  generates a magnetic field that is 
into the page–so the current 1I  must point to the right. For complete cancellation the two 
fields must have the same magnitude 
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where we used the substitution  tanz  to go from the first to second line. This is just 
what Ampere’s Law tells us to expect if we imagine the loop runs along the x-axis 
closing on itself at infinity:   .0Iµd lB  
 
 



28.78:   0lB d  (no currents in the region). Using the figure, let forˆ
0iBB   

.0for0and0  yBy  

 
abcde

cdab LBLBd ,0lB  

 
but .0but,0.0  ababcd BLBB  This is a contradiction and violates Ampere’s Law. See 
the figure on the next page. 
 

 
 
 
28.79: a) Below the sheet, all the magnetic field contributions from different wires add 
up to produce a magnetic field that points in the positive x-direction. (Components in the 
z-direction cancel.) Using Ampere’s Law, where we use the fact that the field is anti-
symmetrical above and below the current sheet, and that the legs of the path 
perpendicular provide nothing to the integral: So, at a distance a  beneath the sheet the 
magnetic field is: 
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in the positive x-direction. (Note there is no dependence on a.) 

 
 

 b) The field has the same magnitude above the sheet, but points in the negative x-
direction. 
 
 



28.80: Two infinite sheets, as in Problem 28.79, are placed one above the other, with 
their currents opposite. 

 
 

     a) Above the two sheets, the fields cancel (since there is no dependence upon the 
distance from the sheets). 
     b) In between the sheets the two fields add up to yield ,0nIB  to the right. 
     c) Below the two sheets, their fields again cancel (since there is no dependence upon 
the distance from the sheets). 
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28.82: The microscopic magnetic moments of an initially unmagnetized ferromagnetic 
material experience torques from a magnet that aligns the magnetic domains with the 
external field, so they are attracted to the magnet. For a paramagnetic material, the same 
attraction occurs because the magnetic moments align themselves parallel to the external 
field. 
 For a diamagnetic material, the magnetic moments align anti-parallel to the 
external field so it is like two magnets repelling each other. 
      
     b) The magnet can just pick up the iron cube so the force it exerts is: 
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 So if the magnet tries to lift the aluminum cube of the same dimensions as the iron 
block, then the upward force felt by the cube is: 
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But the weight of the aluminum cube is: 
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So the ratio of the magnetic force on the aluminum cube to the weight of the cube is  

,101.2 3
N212.0

N1037.4 4  


and the magnet cannot lift it. 
 
 c) If the magnet tries to lift a silver cube of the same dimensions as the iron 
block, then the DOWNWARD force felt by the cube is: 
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But the weight of the silver cube is: 
N.0.823)sm(9.8m))(0.020mkg105.10( 23333  gagmW AgAg   

So the ratio of the magnetic force on the silver cube to the weight of the cube is 
,103.5 4

N823.0
N1037.4 4  



and the magnet’s effect would not be noticeable. 
 
 



28.83: a) The magnetic force per unit length between two parallel, long wires is: 
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where 
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0I  is the rms current over the short discharge time. 
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     c) Height that the wire reaches above the original height: 
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28.84: The amount of charge on a length x  of the belt is: 
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Approximating the belt as an infinite sheet: 

    ,
22
00 vσµ

L
IµB   

out of the page, as shown at left. 
 
 



28.85: The charge on a ring of radius r is .22 2a
QrdrrdrAq    If the disk rotates 

at n turns per second, then the current from that ring is: 
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So we integrate out from the center to the edge of the disk to find: 
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28.86: There are two parts to the magnetic field: that from the half loop and that from the 
straight wire segment running from a to a. 
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  using Eq. (28.8). So the total field components are: 
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        b) A credit card reader is a search coil. 
        c) Data is stored in the charge measured so it is independent of time. 
 
 
29.4: From Exercise (29.3), 
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29.5: From Exercise (29.3), 
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      b) At  V0680.0)s00.5)(sV1002.3(V0302.0s00.5 324  t
.

 

A1013.1
600

V0680.0 4



R

I   

 



29.7: a)  for2sin22cos1 0
0 


































T
t

T
NAB

T
tNAB

dt
d

dt
d B   

otherwise.zero;0 Tt  .  

       b) 
2

at0 Tt   

       c) .
4

3and
4

atoccurs2 0
max

TtTt
T

πNAB
  

 d) From Bt T ,0 2  is getting larger and points in the z direction. This gives a 
clockwise current looking down the z axis. From BTtT ,2   is getting smaller but still 
points in the z direction. This gives a counterclockwise current. 
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       c) B is getting weaker, so the flux is decreasing. By Lenz’s law, the induced current 
must cause an upward magnetic field to oppose the loss of flux. Therefore the induced 
current must flow counterclockwise as viewed from above. 
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At m570.0)s120.0)(s0.9(m650.1,s0.9  ct  
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     b) 

  Flux is decreasing so the flux of the induced 
current 

 isind  and I is clockwise. 
29.10: According to Faraday’s law (assuming that the area vector points in the positive z-
direction) 
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29.11: ;cosBAB   is the angle between the normal to the loop and B
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29.13: From Example 29.5, 
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29.15: 

 
 
 
29.16: a) If the magnetic field is increasing into the page, the induced magnetic field 
must oppose that change and point opposite the external field’s direction, thus requiring a 
counterclockwise current in the loop. 
     b) If the magnetic field is decreasing into the page, the induced magnetic field must 
oppose that change and point in the external field’s direction, thus requiring a clockwise 
current in the loop. 
     c) If the magnetic field is constant, there is no changing flux, and therefore no 
induced current in the loop. 
 
 
29.17: a) When the switch is opened, the magnetic field to the right decreases. Therefore 
the second coil’s induced current produces its own field to the right. That means that the 
current must pass through the resistor from point a to point b. 
     b) If coil B is moved closer to coil A, more flux passes through it toward the right. 
Therefore the induced current must produce its own magnetic field to the left to oppose 
the increased flux. That means that the current must pass through the resistor from point b
to point a. 
     c) If the variable resistor R is decreased, then more current flows through coil A, and 
so a stronger magnetic field is produced, leading to more flux to the right through coil B. 
Therefore the induced current must produce its own magnetic field to the left to oppose 
the increased flux. That means that the current must pass through the resistor from point b
to point a. 
 
 



29.18: a) With current passing from ba  and is increasing the magnetic, field 
becomes stronger to the left, so the induced field points right, and the induced current 
must flow from right to left through the resistor. 
     b) If the current passes from ab  , and is decreasing, then there is less magnetic 
field pointing right, so the induced field points right, and the induced current must flow 
from right to left through the resistor. 
     c) If the current passes from ,ab   and is increasing, then there is more magnetic 
field pointing right, so the induced field points left, and the induced current must flow 
from left to right through the resistor. 
 
 
29.19: a) B is ⊙ and increasing so the flux ind  of the induced current is clockwise. 
    b) The current reaches a constant value so B  is constant. 0 dtd B  and there is 
no induced current. 
    c) B  is ⊙ and decreasing, so ind  is ⊙ and current is counterclockwise. 
 
 
29.20: a) )m50.1)(T750.0)(sm0.5( vBl  

V6.5  
     b) (i) 

 
Let q be a positive charge in the moving bar. The 
magnetic force on this charge ,BvF


 q  which 

points upward. This force pushes the current in a 
counterclockwise direction through the circuit. 

 (ii) The flux through the circuit is increasing, so the induced current must cause a 
magnetic field out of the paper to oppose this increase. Hence this current must flow in a 
counterclockwise sense. 
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29.22: a) .V675.0)m300.0)(T450.0)(sm00.5(  vBL  
 b) The potential difference between the ends of the rod is just the motional emf 

.V675.0V  
 c) The positive charges are moved to end b, so b is at the higher potential. 
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 c) N598.0)T850.0)(m850.0)(A827.0(  ILBF , to the left, since you must 
pull it to get the current to flow. 
 
29.24: a) .V00.3)m500.0)(T800.0)(sm50.7(  vBL  
 b) The current flows counterclockwise since its magnetic field must oppose the 
increasing flux through the loop. 
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29.25: For the loop pulled through the region of magnetic field, 
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29.26: a) Using Equation (29.6): .T833.0
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     b) Point a is at a higher potential than point b, because there are more positive 
charges there. 
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     c) All the flux is within r < R, so outside the solenoid 
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29.29: a) The induced electric field lines are concentric circles since they cause the 
current to flow in circles. 
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,mV1075.1 3 E in the clockwise direction, since the induced magnetic field 
must reinforce the decreasing external magnetic field. 
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     e) If the ring was cut and the ends separated slightly, then there would be a potential 
difference between the ends equal to the induced emf: 
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29.31: a) 
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     (b) For a conservative field, the work done for a closed path would be zero. 

     (c)  
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 A is the area of the solenoid. 

 For a circular path: 

 
dt
diBArE 2 constant for all circular paths that enclose the solenoid. 

 So  rqEW 2 constant for all paths outside the solenoid. 
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29.34: According to Eqn.29.14 
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29.39:In a superconductor there is no internal magnetic field, and so there is no changing 
flux and no induced emf, and no induced electric field. 

,0)(0 00encl0
material
Inside   ccDc IIIIId lB  

and so there is no current inside the material. Therefore, it must all be at the surface of the 
cylinder. 
 
29.40:Unless some of the regions with resistance completely fill a cross-sectional area of 
a long type-II superconducting wire, there will still be no total resistance. The regions of 
no resistance provide the path for the current. Indeed, it will be like two resistors in 
parellel, where one has zero resistance and the other is non-zero. The equivalent 
resistance is still zero. 
 
29.41: a) For magnetic fields less than the critical field, there is no internal magnetic 
field, so: 

Inside the superconductor: .̂)mA1003.1(
ˆ)130.0(,0 5

00

0 iiMB 
µ

T
µ
B  

Outside the superconductor: .0,ˆ)130.0(0  MiBB T  

  b) For magnetic fields greater than the critical field, 00  M  both inside 

and outside the superconductor, and ,ˆ)T260.0(0 iBB   both inside and outside the 
superconductor. 
 



29.42: a) Just under 1cB (threshold of superconducting phase), the magnetic field in the 

material must be zero, and .ˆ)mA1038.4(
ˆT1055 4

0

3

0

1 iiBM 






c  

 b) Just over 2cB  (threshold of normal phase), there is zero magnetization, and 
.̂)T0.15(2 iBB  c  

 
29.43:a) The angle   between the normal to the coil and the direction of .30.0is B  

.||and)(|| 2 RIdtdBrN
dt

d B  


  

For 0and0||,0s,00.1and0  IdtdBtt   
For πtπdtdBt sinT)120.0(s,00.10   

πtπtπrNπ sinV)(0.9475T)sin120.0()(|| 2   

m100150.0,m1072.1;:wirefor 38
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m125.7m)0400.0()2()500(2  rNNcL  
 3058wR and the total resistance of the circuit is 

 36586003058R  
tRI  sinmA)259.0(/||   

 
 
b)  

  B increasing so isB ⊙ and increasing 
Isoisind   is clockwise 

 
 



29.44: a) The large circuit is an RC  circuit with a time constant of 
s.200F)1020()10( 6   RC Thus, the current as a function of time is 

s200
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V100 

t

ei












  

At s,200t  we obtain A.7.3)(A)10( 1  ei  
     b) Assuming that only the long wire nearest the small loop produces an appreciable 
magnetic flux through the small loop and referring to the solution of Problem 29.54 we 
obtain 
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So the emf induced in the small loop at iss200t  
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 Thus, the induced current in the small loop is A.54)m(1.0m)25(0.600
mV81.0   Ri  

    c) The induced current will act to oppose the decrease in flux from the large loop. 
Thus, the induced current flows counterclockwise. 
    d) Three of the wires in the large loop are too far away to make a significant 
contribution to the flux in the small loop–as can be seen by comparing the distance c  to 
the dimensions of the large loop. 
 
 



29.45:  a)  

 
    b)  

 
c) .mV4.0
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29.46: a) .sin)cos(11
R

tBA
dt

tBAd
Rdt
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    b) .sin 2222
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R
tABRIP 

  

    c) .
R
sin2 tBAIA    

    d) .sinBBsinsin
222

R
tAtB    

    e) ,sin 2222

R
tABP    which is the same as part (b). 

 



29.47: a) .
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   c) Solving .yieldsfor2 )2(
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s.104.55(0.010)ln
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   e) We can ignore the self-induced currents because it takes only a very short time for 
them to die out. 
 
 
29.48: a) Choose the area vector to point out of the page. Since the area and its 
orientation to the magnetic field are fixed, we can write the induced emf in the 10 cm 
radius loop as 

])sV(4.00V)0.20[(10m)10.0( 42 t
dt

dBπ
dt

dBA
dt

dε zz
z

B 


   

After solving for dt
dBz  and integrating we obtain 

.])sV(4.00-V)0.20[(
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Thus, 

  T902.0s)(2.00)sV(2.00s)(2.00V)0.20(m10T)800.0( 2
22




zB  

    b) Repeat part (a) but set  t)sV10(4.00V)1000.2( 43    to obtain 
T698.0zB  

    c) In part (a) the flux has decreased (i.e., it has become more negative) and in part (b) 
the flux has increased. Both results agree with the expectations of Lenz’s law. 
 



29.49:a) (i) 
dt

d B
||   

 
Consider a narrow strip of width dx and a distance x  from 
the long wire. 
The magnetic field of the wire at the strip is .20 xIB   
The flux through the strip is 

)/()2( 0 xdxIbBbdxd B   

     The total flux through the loop is  
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     (ii) Bvl  for a bar of length l moving at speed v  perpendicular to magnetic field 

.B  
 

  
The emf in each side of the loop is  



29.50:a) Rotating about the :axisy  

 V.0.945m)10(6.00T)(0.450)srad0.35( 2
max 


 BA

dt
d B   

     b) Rotating about the .00:axis B 


 ε
dt

dx  

     c) Rotating about the :axisz  

 V.0.945m)10(6.00T)(0.450)srad0.35( 2
max 


 BA

dt
d B   

 
 
29.51: From Example 29.4, ωBAωtBAωε  max;sin   
 For N  loops, BAωNε max  

 
rpm190min)1s(60rad)/2rev(1)srad20(

V120,m)100.0(T,5.1,400
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29.52: a) The flux through the coil is given by ),cos( tNBA   where N  is the number of 
turns, B is the strength of the Earth’s magnetic field, and   is the angular velocity of the 
rotating coil. Thus, ),sin( tNBA    which has a peak amplitude of .0 NBA   
Solving for A  we obtain 

2
5

0 m18
T)10(8.0turns)(2000rev)/rad(2/60s)min(1min)/rev(30

V0.9



 


NB

A  

 
     b) Assuming a point on the coil at maximum distance from the axis of rotation we 
have 

.sm7.5)revrad(2s)60min1(min)/rev30(m18 2
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29.53: a) V.0126.0
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     b) Since the flux through the loop is decreasing, the induced current must produce a 
field that goes into the page. Therefore the current flows from point a  through the 
resistor to point b . 
 



29.54: a) When ,
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  into the page. 

     b) .
2

0 Ldr
r
iBdAd B 


  

     c)   
b

a

b

aBB abiL
r
driLd ).ln(

22
00







 

     d) .ln
2

0

dt
di)ab(L

dt
d B
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29.55: a)  
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dv   where vt is the terminal velocity 

calculated in part (b). 

 
 
    b) The terminal speed tv  occurs when the pulling force is equaled by the magnetic 

force: .22

22

BL
FRvF

R
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R
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29.56:     The bar will experience a magnetic force due to the induced current in the loop. 
According to Example 29.6, the induced voltage in the loop has a magnitude ,BLv which 
opposes the voltage of the battery, .  Thus, the net current in the loop is .R

BLvI    The 

acceleration of the bar is .)()sin(90
mR

LBBLv
m

ILB
m
Fa     

     a) To find mR
LBBLv

dt
dv atv )(set),(    and solve for v  using the method of separation 

of variables: 

  
 



v t t ee
BL

vdt
mR
LB

BLv
dv
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0 0
).(1)sm10()1(

)(
s3.1

t22B


 

Note that the graph of this function is similar in appearance to that of a charging 
capacitor. 
     b) 2sm2.3N;88.2A;4.2  mFaILBFRεI  
     c) When 

2sm6.2
)(5.0kg)(0.90

T)1.5(m)(0.8)]sm(2.0m)(0.8T)(1.5V12[,sm0.2 



 av  

     d) Note that as the velocity increases, the acceleration decreases. The velocity will 
asymptotically approach the terminal velocity ,sm10m)(0.8T)(1.5

V12 
BL  which makes the 

acceleration zero. 
 
 
29.57:     m0.2T,100.8; 5   LBBvl  
        Use   aF m  applied to the satellite motion to find the speed v  of the satellite. 

        E
3

2

2 m10400; Rr
r

vm
r

mmG E   

       sm10665.7 3E 
r

Gmv  

       Using this v gives V2.1  
 
29.58:      a) According to Example 29.6 the induced emf is T)108( 5 BLv  

mV.0.1V96)(300m)(0.004  sm  Note that L is the size of the bar measured in a 
direction that is perpendicular to both the magnetic field and the velocity of the bar. Since 
a positive charge moving to the east would be deflected upward, the top of the bullet will 
be at a higher potential. 
 b) For a bullet that travels south, the induced emf is zero. 
 c) In the direction parallel to the velocity the induced emf is zero. 
 
 



29.59:      From Ampere’s law (Example 28.9), the magnetic field inside the wire, a 
distance r from the axis, is .2)( 2

0 RIrrB   

 Consider a small strip of length W and width dr that  
is a distance r from the axis of the wire. 
The flux through the strip is 

drr
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IW

drWrBd B 2
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     The total flux through the rectangle is 
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Note that the result is independent of the radius R of the wire. 
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    d)  Evaluating the emf at 21021.1 t s, using the equations of part (b): 

,V6067.0  and the current flows clockwise, from b to a through the resistor. 
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29.61:  a) 
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     b)  The magnetic force is strongest at the top end, closest to the current carrying wire. 
Therefore, the top end, point a, is the higher potential since the force on positive charges 
is greatest there, leading to more positives gathering at that end. 
     c)  If the single bar was replaced by a rectangular loop, the edges parallel to the wire 
would have no emf induced, but the edges perpendicular to the wire will have an emf 
induced, just as in part (b). However, no current will flow because each edge will have its 
highest potential closest to the current carrying wire. It would be like having two batteries 
of opposite polarity connected in a loop. 
 

29.62: Wire .00:A 


Bv  
Wire C: .V0.014845sinm)(0.500T)(0.120)sm(0.350sin   vBL  
Wire 
D: .V0.021045sinm)(0.5002T)(0.120)sm(0.350sin   vBL  

 



29.63:  a)  
 L

BωLrBdrεBdrrddε
0

2

2
1)( rBv   

.V0.164
2

T)(0.650m)(0.24)secrad(8.80 2

  

    b) The  potential difference between its ends is the same as the induced emf. 
    c) Zero, since the force acting on each end points toward the center.   

 

 .V0410.0
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center 
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29.64: a)  From Example 29.7, the power required to keep the bar moving at a constant 
velocity is .Ω0.090W25

)]sm(3.00T)[(0.25)()( 222

 P
BLv

R
BLv RP  

       b)  For a 50 W power dissipation we would require that the resistance be 
decreased to half the previous value. 
       c)  Using the resistance from part (a) and a bar length of 0.20 m 

   W0.11
Ω0.090
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29.66: a)  LkjiiLBv  )ˆT)(0.0900ˆT)(0.220ˆT)((0.120ˆ)sm20.4()( --

  

       
   

V.0567.09.36sin)250.0)(378.0(
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29.67: At point  ,
22

and: 2

dt
dBqr

r
qqEF

dt
dBr

dt
dBA

dt
da B 




  to the 

left. At point b , the field is the same magnitude as at a since they are the same distance 

from the center. So ,
2 dt

dBqrF   but upward. 

At point ,c  there is no force by symmetry arguments: one cannot have one 
direction picked out over any other, so the force must be zero. 

 
 

29.68: 


 .
dt

dd BlE


 

  If  


 .0,0then constant B lEB


dso
dt

d
 

         .0Eso0Ebut,0  LLELEd dadadaabcda ablE


 

But since we assumed ,0abE  this contradicts Faraday’s law. Thus, we can’t have a 
uniform electric field abruptly drop to zero in a region in which the magnetic field is 
constant. 
 

 
 
 
29.69: At the terminal speed, the upward force BF  exerted on the loop due to the induced 
current equals the downward force of gravity: mgFB   
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        Using these expressions for m and R gives 216 Bgρρv RmT   
 
 



29.70:   0lB


d  (no currents in the region). Using the figure, let 

0.for 0 and0forˆ
0  yByBB i  
 
         

abcde cdab LBLBd ,0lB


 

 
but .0but,0.0  ababcd BLBB  This is a contradiction and violates Ampere’s Law.  
See the figure on the next page. 
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29.72: a)  .mA1096.1
m2300
mV450.0(max) 240 





E

jc  

     b)  )mV450.0)(Hz120(22(max) 000000   fEE
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   .mA1000.3(max) 29 Dj  
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ωf  

     d)  The two current densities are out of phase by 90  because one has a sine function 
and the other has a cosine, so the displacement current leads the conduction current by 

.90  
 

 



29.73: a)  ,grτ mcmG   summed over each leg, 
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  sinIABB  Bµτ (counterclockwise). 

  .sinsincos 
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I   The current is going 

counterclockwise looking to the k̂  direction. 
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LBmgL   opposite to the direction of the rotation. 

    b)  Iτ  ( I  being the moment of inertia). 

         About this axis .
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     c)  The magnetic torque slows down the fall (since it opposes the gravitational torque). 
     d)  Some energy is lost through heat from the resistance of the loop. 
 



29.74: a)  For clarity, figure is rotated so B  comes out of the page. 
 

 
 
      
b) To work out the amount of the electric field that is in the direction of the loop at a 

general position, we will use the geometry shown in the diagram below. 
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  which is exactly the value for a ring, obtained in 

Exercise 29.29, and has no dependence on the part of the loop we pick. 

     c)  A.1037.7
1.90

)sT0350.0(m)20.0( 4
22
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    d)  .V1075.1
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8
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8
1 4

2
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dt
dBLab   

But there is potential drop ,V1075.1 4 IRV  so the potential difference is zero. 
 



29.75: a)  
 

 
 

       b)  The induced emf on the side ac  is zero, because the electric field is always 
perpendicular to the line .ac  

       c)  To calculate the total emf in the loop, 
dt
dBL

dt
dBA

dt
d B 2


  

 V.101.40)sT035.0(m)20.0( 32  ε  

      d)  A.1037.7
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V1040.1 4
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R
I   

      e)  Since the loop is uniform, the resistance in length ac  is one quarter of the total 
resistance. Therefore the potential difference between a and c is: 

 V,103.50)4A)(1.901037.7( 44 -
acac IRV   and the point a is at a higher 

potential since the current is flowing from c.toa  
 
 
29.76: a)  As the bar starts to slide, the flux is decreasing, so the current flows to increase 
the flux, which means it flows from .to ba  
       b)  The magnetic force on the bar must eventually equal that of gravity. 
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  which is 

the same as found in part (d). 
 



29.77: The primary assumption throughout the problem is that the square patch is small enough so 
that the velocity is constant over its whole areas, that is, .drv    

      a)  :page intoclockwise,  B  
             BLdvBL     

       Bv  Since.




 dBA

L
A

R
I  points outward, A  is just the cross-sectional 

area .tL  

             


dBLtI   flowing radially outward since Bv   points outward. 

                  b)  ILBIBb  BLFFdτ ;  pointing counterclockwise. 

                  So  


 tLBd 222

  pointing out of the page (a counterclockwise torque opposing the 

clockwise rotation). 
                   c)  If page,intoandckwisecounterclo  B  
             I flow inward radially since Bv


  points inward. 

              clockwise (again opposing the motion); 
If  counterclockwise and B  out of the page 

 I  radially outward 
     clockwise (opposing the motion) 
The magnitudes of andI  are the same as in part (a). 
 
 



30.1: a) V,0.270/s)A830(H)1025.3()/( 4
12  dtdiM  and is constant. 

 b) If the second coil has the same changing current, then the induced voltage is the 
same and V.270.01   
 
 
30.2: For a toroidal solenoid, .2/and,/ 110B12 22

rAiNiNM B   
So, .2/210 rNANM   
 
 
30.3: a) H.1.96A)(6.52/Wb)0320.0()400(/ 12 2

 iNM B  

 b) When Wb.107.11(700)/H)(1.96A)54.2(/A,54.2 3
12B2 1

 NMii  
 
 
30.4: a) H.106.82s)/A0.242(/V1065.1)/(/ 33

2
  dtdiM   

 b) A,20.1,25 12  iN  

   
Wb.103.27

25/H)10(6.82A)20.1(/
4

3
212







 NMiB  

 c) mV.2.45s)/A(0.360H)1082.6(/ands/A360.0/ 3
212  dtMdidtdi   

 
 
30.5: Ωs.1A)s/(V1AC)s/(J1A/J1A/Nm1A/Tm1A/Wb1H1 222   
 
 

30.6: For a toroidal solenoid, )./(// dtdiiNL B   So solving for N  we have: 
 
 
 

 
 

turns.238
s)/A(0.0260Wb)(0.00285

A)(1.40V)106.12()/(/
3







dtdiiN B

30.7: a) V.104.68s)/A (0.0180H)260.0()/( 3
1

 dtdiL  
 b) Terminal a is at a higher potential since the coil pushes current through from b to 
a and if replaced by a battery it would have the   terminal at .a  
 
 

30.8: a) H.130.0
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)m1080.4()1800()500(2/
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 b) Without the material, H.102.60H)130.0(
500
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m
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 KL
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L  

 
 



30.9: For a long, straight solenoid: 
.//and/ 2

00 lANµLlNiAµiNL BB   
 
 
30.10: a) Note that points a and b  are reversed from that of figure 30.6. Thus, according 
to Equation 30.8, s./A00.4H0.260

V04.1  
L

VV
dt
di ab  Thus, the current is decreasing. 

    b) From above we have that .)s/A00.4( dtdi   After integrating both sides of this 
expression with respect to ,t  we obtain 

A.4.00s)(2.00A/s)(4.00A)0.12(s)/A00.4(  iti  
 
 
30.11: a) H.0.250A/s)(0.0640/V)0160.0()/(/  dtdiL   
    b) Wb.104.50(400)/H)(0.250A)720.0(/ 4 NiLB  
 
 

30.12: a) J.540.02/A)(0.300H)0.12(
2
1 22  LIU  

    b) W.2.16)180(A)300.0( 22  RIP  
 c) No. Magnetic energy and thermal energy are independent. As long as the current is 
constant, constant.U  
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30.15: Starting with Eq. (30.9), follow exactly the same steps as in the text except that 
the magnetic permeability   is used in place of .0  
 
 



30.16: a) free space: J.3619)m0290.0(
2

T)(0.560V
2

V 3

0

2

0

2




BuU  

 b) material with J.04.8)m0290.0(
)450(2
T)(0.560V

2
V450 3

0

2

0m

2

m 
K

BuUK  

 
 

30.17: a) 3
2

6
0

2
0

0

2

m1.25
T)(0.600

J)1060.3(22
Volume

2






 B

UB
Vol
Uu . 

 b) T.9.11T4.141
m)(0.400

J)1060.3(22 2
3

6
002 


 B

Vol
UB   

 
 

30.18: a) .mT35.4
)m0690.0(2

)A50.2()600(
2

00 






r

NIB   

    b) From Eq. (30.10), .m/J53.7
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    c) Volume .m1052.1)m1050.3()m0690.0(22V 3626   rA  
    d) .J1014.1)m1052.1()m/J53.7( 5363   uVU  
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30.20: (a) mA,30A030.01000
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30.21: a) RLeRi t /),1(/ /      
 2

1
2
1

maxmax and,)(1when2/so/   τ/tτ/t eeiiRεi  
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30.24: a) .V60and00At  bcab vvt   
 b) .0andV60As  bcab vvt  
 c) .V0.24V0.36V0.60andV0.36A150.0When  bcab viRvi  
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).()W50.4( )s40.6()s20.3( 11 tt
L eeP

    
 
    d) Note that if we expand the exponential in part (b), then parts (b) and (c) add to 
give part (a),  and the total power delivered is dissipated in the resistor and inductor. 
 
 



30.26: When switch 1 is closed and switch 2 is open: 
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30.27: Units of  s/)s(/H/ RL units of time. 
 
 

30.28: a) πf
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30.29: a) )F1000.6()H50.1(222 5 πLCπ
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      C.1043.5 4 Signs on plates are opposite to those at .0t  
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Positive charge flowing away from plate which had positive charge at .0t  

    f) Capacitor: .J102.46
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30.30: (a) Energy conservation says (max) = (max) CL UU   
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The charge on the capacitor is zero because all the energy is in the inductor. 
    (b)  

     LCT 

 22
  

               at 41  period: F)10(18H)10(12
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1 63  


 LCT   

                                             s1030.7 4       

               at 43  period: s1019.2)s1030.7(3
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    (c) CCVq  405)V(22.5F)18(0    
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 (must double the frequency since it takes the required value twice per period). 
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30.36: Equation (30.20) is .01
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 q
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qd  We will solve the equation using: 
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  is a constant. 
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30.39: Subbing ,1,,,
C

kRbLmqx  we find: 

    a) Eq. (13.41): .0:)27.30.(Eq0 2
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    c) Eq. (13.42): ).cos(:)28.30.(Eq)cos( )2/()2/(    tωAeqtωAex tLRtmb  
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30.42: a) When s.rad298
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30.43: a)  

 
    b) Since the voltage is determined by the derivative of the current, the V versus t graph 
is indeed proportional to the derivative of the current graph. 
 
 



30.44: a) ]s)240cos[()A124.0(( tπ
dt
dL

dt
diLε   

       ).)s240((sin)V4.23())s240sin(()240()A124.0()H250.0( tπtε    
 

 
 
    b) ,0;V4.23max  i since the emf and current are 90 out of phase. 
    c) ,0;A124.0max  i since the emf and current are 90  out of phase. 
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30.49: a) Series: ,eq
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30.55: a) After one time constant has passed: 
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    Or, using Problem (30.25(c)): 
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The energy dissipated over the inductor (part (a)), plus the energy lost over the resistor 
(part (c)), sums to the total energy output (part (b)). 
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30.57: Multiplying Eq. (30.27) by i, yields: 
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That is, the rate of energy dissipation throughout the circuit must balance over all of the 
circuit elements. 
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30.61: The energy density in the sunspot is ./mJ10366.62/ 34
0

2  µBuB  

The total energy stored in the sunspot is .VuU BB   

The mass of the material in the sunspot is .ρVm   

;
2
1 so 2

BB UmvUK   VuVvρ B2

2
1  

The volume divides out, and /sm102/2 4 ρuv B  
 

30.62: (a) The voltage behaves the same as the current. Since ,   iVR  the scope must be 
across the 150 resistor. 

    (b) From the graph, as ,V25,  RVt so there is no voltage drop across the 
inductor, so its internal resistance must be zero. 

  )1( /
max

rt
R eVV   

when .63.0)1(, max
1

max VVVt eR   From the graph, when 
τtVV  ms5.0  ,V16  63.0 max  

  H075.0)150()ms5.0(ms5.0/  LRL  

    (c) Scope across the inductor: 

 
 



30.63: a) In the R-L circuit the voltage across the resistor starts at zero and increases to 
the battery voltage. The voltage across the solenoid (inductor) starts at the battery voltage 
and decreases to zero. In the graph, the voltage drops, so the oscilloscope is across the 
solenoid. 

    b) At t the current in the circuit approaches its final, constant value. The voltage 
doesn’t go to zero because the solenoid has some resistance .LR The final voltage across 
the solenoid is ,LIR where I is the final current in the circuit. 

    c) The emf of the battery is the initial voltage across the inductor, 50 V. Just after the 
switch is closed, the current is zero and there is no voltage drop across any of the 
resistance in the circuit. 

    d) As 0,  LIRIRεt  

V50ε  and from the graph V15LRI  (the final voltage across the inductor), so  

A3.5/RV)35(andV35  IRI  

e)  4.3A)(3.5/V)15(so V,15 LRRI L  

LL ViRVε where,0  includes the voltage across the resistance of the solenoid. 

V9.27,whenso,3.14,10V,50

)]1(1[ so  ),1(,

tot

/

tot

/

tot



 

l

τt
L

t
L

VτtRRε

e
R
RεVe

R
εiiRεV 

 

From the graph, LV  has this value when t = 3.0 ms (read approximately from the 
graph), so .mH43)3.14()ms0.3(Thenms.0.3/ tot  LRLτ  

 



30.64: (a) Initially the inductor blocks current through it, so the simplified equivalent 
circuit is 

  A333.0
150

V50





R
εi  

0,A333.0
resistor)50withparallelin(inductorV7.16

it.throughflowscurrentnosince0
V16.7A)333.0()50(
V33.3A)333.0()100(

231

42

3

4

1








AAA
VV

V
V
V

 

(b) Long after S is closed, steady state is reached, so the inductor has no potential 
drop across it. Simplified circuit becomes 

 

A230.0
50

V5.11

A153.0
75

V5.11A,385.0

V11.5V38.5V50
0;V5.38)A385.0()100(

A385.0
130

V50/

3

21

43

21
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ii

VV
VV

Rεi

 

 



30.65:    a) Just after the switch is closed the voltage 5V  across the capacitor is zero and there 
is also no current through the inductor, so ,.0 54323 VVVVV   and since 

243 and,0and0 VVV   are also zero. 04 V  means 3V  reads zero. 

1V  then must equal 40.0 V, and this means the current read by 1A  is 
A.0.800)(50.0/V)0.40   

 A.800.0 so 0but, 14321432  AAAAAAAA  

 A;800.041  AA  all other ammeters read zero. 

 V0.401 V  and all other voltmeters read zero. 

b) After a long time the capacitor is fully charged so .04 A  The current through 
the inductor isn’t changing, so .02 V  The currents can be calculated from the equivalent 
circuit that replaces the inductor by a short-circuit.: 

 

V0.24)0.50(
A480.0readsA;480.0)33.83(/V)0.40(

1

1




IV
AI

 

The voltage across each parallel branch is V16.0V4.02V0.40   

V0.16,0 5432  VVVV  

.thatNote
zero.readsA.320.0readsmeansV0.16.A160.0readsmeansV0.16

132

43423

AAA
AAVAV




C192)V(16.0F)0.12(soV0.16)c 5   CVQV  

d) At t = 0 and .0, 2  Vt  As the current in this branch increases from zero to 
0.160 A the voltage 2V  reflects the rate of change of current. 



30.66: (a) Initially the capacitor behaves like a short circuit and the inductor like an open 
circuit. The simplified circuit becomes 

 A500.0
150

V75





R
i   

0A,500.0
V0.50parallel)(in

V50.0A)50.0()100(,0
V25.0A)50.0()50(

231

4

43

1







AAA
VV

VV
RiV

2
 

(b) Long after S is closed, capacitor stops all current. Circuit becomes 

  V0.753 V  and all other meters read zero. 

(c) nC,5630V)(75nF)75(  CVq  long after S is closed. 
 
 



30.67:    a) Just after the switch is closed there is no current through either inductor and 
they act like breaks in the circuit. The current is the same through the  15.0and0.40  
resistors and is equal to A;455.0A.455.0)0.150.40(V)0.25( 41  AA  

.032  AA  

    b) After a long time the currents are constant, there is no voltage across either inductor, 
and each inductor can be treated as a short-circuit . The circuit is equivalent to: 

 

 A585.0)73.42(V)0.25( I  

A.0.585reads1A  The voltage across each parallel branch is  )(40.0A)(0.585V0.25

A.107.0)0.15(V)60.1(reads
 A.160.0)0.10V)60.1(readsA.320.0)0.5(V)60.1(readsV.1.60 432


 AAA

 

 

30.68: (a) ,s50.0sincems40.025
mH10 τRLτ    steady state has been reached, for 

all practical purposes. 

A00.225V50  Ri   
The upper limit of the energy that the capacitor can get is the energy stored in the 

inductor initially. 

C1090.0)F1020()H1010()A00.2(
2
1

2
363

max

0max
2
0

2
max

 



Q

LCiQLi
C

QUU LC  

    (b) Eventually all the energy in the inductor is dissipated as heat in the resistor. 

J100.2

)A00.2()H1010(
2
1

2
1

2

232
0







 LiUU LR  



30.69: a) At ,0t all the current passes through the resistor ,1R so the voltage abv is the 
total voltage of 60.0 V. 
 
    b) Point a is at a higher potential than point .b  c) V0.60cdv since there is no 
current through .2R  
    d) Point c is at a higher potential than point .b  
    e) After a long time, the switch is opened, and the inductor initially maintains the 

current of .A40.2
25.0

V0.60

2
2





R

iR
  Therefore the potential between a and b is 

.V0.96)0.40()A40.2(R1  ivab  
    f) Point b is at a higher potential than point a. 
    g) V156)2540()A40.2()( 21  RRivcd  
    h) Point d is at a higher potential than point c. 
 
 
30.70: a) Switch is closed, then at some later time: 

 .V0.15)A/s0.50()H300.0(A/s0.50 
dt
diLv

dt
di

cd  

The top circuit loop: 60.0 .A50.1
0.40

V0.60V 111 


 iRi  

The bottom loop: A.80.1
0.25

V45.00V0.15V60 222 


 iRi  

    b) After a long time: ,A40.2
0.25

V0.60
2 


i and immediately when the switch is 

opened, the inductor maintains this current, so .A40.221  ii  
 
 



30.71: a) Immediately after 1S  is closed, ,V0.36and,0,00  cbac vvi  since the 
inductor stops the current flow. 

 b) After a long time, 0i A180.0
15050
V0.36

0





 RR
 , 

 .V0.27V00.9V0.36and,V00.9)50()A18.0(00  cbac vRiv  

 c) ),1()A180.0()()1()( )s50()(

total

1total ttLR etie
R

ti
 

  

      
 

   .3)V00.9(1)V00.9(V0.36)()(v

and1)V00.9()()(
)50()50(

0

)s50(
0

11

1

tsts
cb

t
ac

eeRtiεt

eRtitv











 

Below are the graphs of current and voltage found above. 
 

 
 
 
 
 



30.72: a) Immediately after 2S is closed, the inductor maintains the current A180.0i  
through .R  The Kirchoff’s Rules around the outside of the circuit yield: 

 
.0andV0.36)V50()A72.0(,A072.0

Ω50
V36

0)50()150()18.0()150()18.0(V0.36

0

000





cbac

L

vvi

iRiiRεε
 

    b) After a long time, ,V0.36acv  and .0cbv  Thus 

    ,A720.0
50

V0.36

0
0 




R
εi  

A720.0and,0 2  sR ii  

    c) and,)A180.0()()(,A720.0 )s5.12()(

total
0

1 t
R

tLR
R etie

R
εtii

   

          tt
s eeAti )s5.12()s5.12( 11

2 4)A180.0()180.0()A720.0()(
    

Below are the graphs of currents found above. 
 

 
 
 



30.73: a) Just after the switch is closed there is no current in the inductors. There is no 
current in the resistors so there is no voltage drop across either resistor. A reads zero and 
V  reads 20.0 V. 
       b) After a long time the currents are no longer changing, there is no voltage across 
the inductors, and the inductors can be replaced by short-circuits. The circuit becomes 
equivalent to 
 

  A267.0)0.75()V0.20( aI  
 

The voltage between points a and b is zero, so the voltmeter reads zero. 
       c) Use the results of problem 30.49 to combine the inductor network into its 
equivalent: 

 
 

 0.75R  is the equivalent resistance. 

      

V0.9VV0.20so0V0.20
V0.11)0.75)(A147.0(

A147.0so,ms115.0,0.75,0.20
ms144.0)(75.0mH)8.10(/with),1)((says Eq.(30.14)
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30.74: (a) Steady state: A600.0
125

V0.75





R
i   

    (b) Equivalent circuit: 
 

 
F6.14

F35
1

F25
11
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C
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 Energy conservation: 2
0

2

2
1

2
Li

C
q

  

 )F106.14()H1020()A600.0( 63
0

  LCiq  
               C41024.3   
 

 
 

 
s1049.8)F106.14()H1020(
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30.75: a) Using Kirchhoff’s Rules: and,0
1

111 R
εiRiε   

 ).1(0 )(

2
222

2 2 tLRe
R

iRi
dt
diL 

  

    b) After a long time, .andstill,
2

2
1

1 R
εi

R
εi    

    c) After the switch is opened, ,))((
21

21

2

tLRRe
R
εii   and the current drops off. 

    d) A 40-W light bulb implies .360
W40
V)(120 22


P

VR If the switch is opened, 

and the current is to fall from 0.600A to 0.150 A in 0.0800 s, 
then: )s0800.0)(H0.22)360(())((

2
221 )A600.0(A150.0)A600.0( RtLRR eei    

 
.V7.12)2.21)(A600.0(

0.21360)00.4ln(
0800.0

H0.22

22

22





Riε

RR
s  

    e) Before the switch is opened, A0354.0
360

V7.12

1
0 




R
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30.76: Series: .eq
2

12
1

21
2

2
1

1 dt
diL

dt
diM

dt
diM

dt
diL

dt
diL   

But .and 2112
21

21 MMM
dt
di

dt
di

dt
diiii   

.andwith

,and

haveWe:Parallel

.2or

,)2(So

2112
21

1
21

2
2

eq
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1

21eq

eq21

MMM
dt
di

dt
di

dt
di

dt
diL

dt
diM

dt
diL

dt
diL

dt
diM

dt
diL

MLLL
dt
diL

dt
diMLL

eq











 

To simplify the algebra let . and ,, 21

dt
diC

dt
diB

dt
diA   

So .,, eq2eq1 CBACLMABLCLMBAL   
Now solve for .oftermsinand CBA   
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or .
2 21

2 C
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LMA



 Substitute A in B back into original equation. 

So CLC
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      Finally, 
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30.77: a) Using Kirchhoff’s Rules on the top and bottom branches of the circuit: 

).1(
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t
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    b) .A1060.9
5000

V0.48,0)1()0( 30

2
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0

1
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 e
R
εie

R
εi  

    c) As .0,A92.1
0.25

V0.48)1()(:
2

2
11

1 


  e
R
εi

R
εe

R
εit  

 A good definition of a “long time” is many time constants later. 

    d) .)1()1( )1(
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 Expanding the exponentials like :findwe,
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  if we have assumed that .1t  Therefore: 
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    e) At .A104.9)1(
25

V48)1(:s1057.1 3)825()(

1
1

3 1  


 ttLR ee
R

it   

    f) We want to know when the current is half its final value. We note that the current 
2i is very small to begin with, and just gets smaller, so we ignore it and find: 

 ).1)(A92.1()1(A960.0 )()(

1
121

11 tLRtLR ee
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ii  
  

         s22.0)5.0ln(
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30.78: a) Using Kirchoff’s Rules on the left and right branches: 

 Left: .)(0)( 1
21

1
21 ε

dt
diLiiR

dt
diLRiiε   

 Right: .)(0)( 2
21

2
21 ε

C
qiiR

C
qRiiε   

    b) Initially, with the switch just closed, .0and,0 221  q
R
εii  

    c) The substitution of the solutions into the circuit equations to show that they satisfy 
the equations is a somewhat tedious exercise in bookkeeping that is left to the reader. 
  We will show that the initial conditions are satisfied: 

 
.0)])0[cos(1()0()]cos()sin()2[(1()(

0)0sin()sin(,0At
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    d) When does 2i  first equal zero? rad/s625
)2(

11
2 

RCLC
ω  

 

.s10256.1
rad/s625

785.00.7851.00)arctan(

1.00.F)1000.2)(400)(rad/s625(22)tan(

01)tan()2()]cos()sin()2([0)(
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30.79: a)  )())(( 00
AirAir dW

W
NiKµWdD

W
NiµABABBA LLB  

])[(0 KddDNiµ   

 
.and,where,
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b) Using 1 mK   we can find the inductance for any height .10 





 

D
dLL m  

__________________________________________________________________ 
Height of Fluid Inductance of Liquid Oxygen  Inductance of Mercury 
     4Dd     0.63024 H    0.63000 H 
     2Dd     0.63048 H    0.62999 H 
     43Dd     0.63072 H    0.62999 H 
     Dd     0.63096 H    0.62998 H 
__________________________________________________________________ 
Where are used the values .5

m
3

2 109.2 (Hg)and1052.1)O(   m  
 d) The volume gauge is much better for the liquid oxygen than the mercury because 
there is an easily detectable spread of values for the liquid oxygen, but not for the mercury.
     
 



31.1: a) V.8.31
2

V0.45
2rms 

VV  

 b) Since the voltage is sinusoidal, the average is zero. 
 
31.2: a) A.97.2)A10.2(22 rms  II  

 b) A.89.1)A97.2(22
rav 


II  

 c) The root-mean-square voltage is always greater than the rectified average, because 
squaring the current before averaging, then square-rooting to get the root-mean-square 
value will always give a larger value than just averaging. 
 

31.3: a) A.120.0
)H00.5()srad100(

V0.60


ωL
VILIωIXV L  

 b) A.0120.0
)H00.5()srad1000(

V0.60


ωL
VI  

 c) A.00120.0
)H00.5()srad000,10(

V0.60


ωL
VI  

 

 
 



31.4: a) A.0132.0)F1020.2()srad100()V0.60( 6  CVωI
ωC

IIXV C  

 b) A.132.0)F1020.2()srad10000()V0.60( 6  CVωI  
 c) A.32.1)F1020.2()srad000,10()V0.60( 6  CVωI  
 d) 

 
 
 
31.5: a) .1508)H00.3()Hz80(22  ππfLωLX L  

 b) H.239.0
)Hz80(2

120
2

2 



ππf

XLπfLωLX L
L  

 c) .497
)F100.4()Hz80(2

1
2

11
6 


  fCC

X C   

 d) F.1066.1
)120()Hz80(2

1
2

1
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1 5



 C

C fX
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fC
X  

 
 
31.6: a) .1700Hz,600If.170H)Hz)(0.45060(22  LL XfππfLωLX   

 b) 


  CC Xf
πfCωC

X ,Hz600If.1061
)F1050.2()Hz60(2

1
2

11
6

 

.1.106   

 c) rad/s,943
)Hz1050.2()H450.0(

111
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LC

ωωL
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XX LC  

Hz.150so f  
 
 

31.7: F.1032.1
)V170()Hz60(2

A)850.0( 5
πωV

IC
ωC

IV
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C  

 
 



31.8: Hz.1063.1
)H1050.4()A1060.2(2

)V0.12(
2

6
43 


 ππIL

VfLIωV L
L  

 
 

31.9: a) ).)srad720((cos)A0253.0(
150

))srad720((cosV)80.3( tt
R
vi 


  

 b) .180)H250.0()srad720(  ωLX L  

 c) ).)srad720(sin()V55.4())srad720((sinA)0253.0()( ttωL
dt
diLvL   

 
 

31.10: a) .1736
)F1080.4()srad120(

11
6 


 ωC

X C  

 b) To find the voltage across the resistor we need to know the current, which can be 
found from the capacitor (remembering that it is out of phase by o90  from the capacitor’s 
voltage). 

 
).)srad012(cos(V)10.1())srad120(cos()250()A1038.4(
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31.11: a) If .0111
0 

LCCLC
LX

ωC
ωLX

LC
ωω  

 b) When .00  Xωω  
 c) When .00  Xωω  
 d) The graph of X against ω  is on the following page. 
 

 
 
 



31.12: a)  .224H))400.0(rad/s)250(()200()( 2222  ωLRZ  

    b) A134.0
224

V0.30





Z
VI  

    c) V;8.26)200()A134.0(  IRVR  
        H)400.0(rad/s)250(A)134.0(L  LIωV  
 V.4.13 LV  

 d) ,6.26
V8.26
V4.13arctanarctan 


















R

L

v
v  and the voltage leads the current. 

 e) 
 

 
 
 
31.13: a) 26222 ))F1000.6(rad/s)250/((1)200()/1(  ωCRZ  
                 .696  

 b) A.0431.0
696

V0.30





Z
VI  

 c) 
V.7.28

)F1000.6()rad/s250(
)A0431.0(

V;62.8)200()A0431.0(

6C 






ωC
IV

IRVR

 

 d) ,3.73
V62.8
V7.28arctanarctan 


















R
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V

  and the voltage lags the current. 

  



31.14: a) 

.567
)F1000.6()ad/s250(

1)H400.0()rad/s250()/1( 6 


 ωCωLZ  

 b) A.0529.0
567

V0.30





Z
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 c) V29.5)H400.0()rad/s250()0529.0(  LIωVC   

         V.3.35
F)10(6.00rad/s)250(

)A0529.0(
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ωC
IVC  

 d) ,0.90)(arctanarctan 
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VV

  and the voltage lags the current. 

 e) 
 

 
 
 
31.15: a) 
 

 
 
 b) The different voltages are: 

.Note.V85.12,V60.7,V5.20:ms20At
90250cos()V4.13(),cos(250V)8.26(),26.6cos(250V)0.30(

vvvvvvt
tvtvtv

LRLR

LR




 
 c) .Note.V29.7,V49.22,V2.15:ms40At vvvvvvt LRL   Be 
careful with radians vs. degrees in above expressions! 
 
 



31.16: a)  
 

 
 
 b) The different voltage are: 

.Note.V5.27,V45.2,V1.25:ms20At
)90250cos()V7.28(),250cos()V62.8(),3.73250cos()V0.30(

vvvvvvt
tvtvtv

CRCR

CR




 

c) .NoteV.6.15,V23.7,V9.22:ms40At vvvvvvt CRCR   Careful 
with radians vs. degrees! 
 
 
31.17: a) 22 )/1( ωCωLRZ   

 262 )))F1000.6()rad/s250((/1)H0400.0()rad/s250(()200(  Z  
      .601  

 b) A.0499.0
601

V30





Z
VI  

 c) ,6.70
200

667100arctan/1arctan 

















 


R
ωCωL  and the voltage lags 

the current. 
 d) V;98.9)200()A0499.0(  IRVR  
         
 ;V99.4)H400.0)(srad250()A0499.0(  LIωVL  

 V.3.33
)F1000.6()rad/s250(

)A0499.0(
6 


 ωC

IVC  

 e) Because of the charge-storing nature of the capacitor, its voltage will tag the source 
voltage. That is, the capacitor’s voltage will peak after the source voltage. 
 
 
 



31.18: a)  
 

 
 
 The different voltages plotted above are: 

 
).90250cos()V3.33()90250cos()V99.4(

),250cos()V98.9(),6.70250cos()V30(



tvtv
tvtv

CL

R  

 b) .V9.31,V79.4,V83.2,V3.24:ms20At  CLR vvvvt  
 c) V.1.18,V71.2,V37.8,V8.23:ms40At  CLR vvvvt  
 In both parts (b) and (c), note that the voltage equals the sum of the other voltages at 
the given instant. Be careful with degrees vs. radians! 
 
 
31.19: a) Current largest at the resonance frequency 

mA0.15/.andresonance,At.Hz113
2

1
0  RVIRZXX

LCπ
f CL  

 b)  160;500/1 ωLXωCX LC  

 
current.thelagsvoltagesourceso

mA61.7/
5.394)500160()200()(

C

2222

L

CL

XX
ZVI

XXRZ






 

 
 

31.20: Using ,)/(1arctan and 1 2
2 






 







 

R
ωCωL

ωC
ωLRZ   along with the 

values :F1000.6andH,400.0,200 6 CLR  
 a) ;4.49,307:rad/s1000  Zω  

        
.1.75,779:rad/s200
;7.10,204:rad/s600






Zω
Zω

 

 b) The current increases at first, then decreases again since .
Z
VI   

 c) The phase angle was calculated in part (a) for all frequencies. 



31.21: 222 )( CLR VVVV   

 V0.50)V0.90V0.50()V0.30( 22 V  
 
 
 
31.22: a) First, let us find the phase angle between the voltage and the current 













65
350

)H100.20()Hz1025.1(2
1

)tan( )C10140()Hz1025.1(2
133

93




 

R
ωC

ωL

The impedance of the circuit is 

 .830)752()350()1( 2222 
ωC

ωLRZ   

The average power provided by the supply is then 

W32.7)1.65cos(
830

)V120()cos()cos(
22

rms
rmsrms 


 

Z
VIVP   

b) The average power dissipated by the resistor is   W32.7)350(
2

 830
V1202

rms  RIPR  
 
 
31.23: a) Using the phasor diagram at right we can see: 

 .cos
222 Z

R

XXRI

IR

CL




  

 

    b)  coscos
2
1 2

rms
2

Z
V

Z
VPav   

 .2
rms

2
rms RI

Z
R

Z
VPav   

 
 



31.24:  
Z
R

Z
V

Z
VPav

2
rms

2
rms cos    

W.5.43)0.75(
)105(
)V0.80(
2

2

2

2
rms 


 R

Z
V  

 
 

31.25: a) 
2

2 1
cos







 



ωC
ωLR

R
Z
R  

                               

.8.45)698.0(cos

698.0
344
240

F)1030.7()Hz400(2
1)H120.0()Hz400(2)240(

240

1

2

6
2






























π
π

 

 
    b) .344),(From Za   
    c) V.155Ω)(344A)450.0(rmsrms  ZIV   
    d) W.7.48)698.0()A450.0()V155(cosrmsrms  IVPav   
    e) W.7.48 avR PP   
    f) Zero. 
    g) Zero. 
For pure capacitors and inductors there is no average energy flow. 
 
 
31.26: a) The power factor equals: 

 .181.0
))H20.5()s/rad60)2((()360(

)360(
)(

cos
2222










πωLR
R

Z
R

  

 b)

.W62.2)181.0(
))H(5.20s)/rad60)2((()360(

)V240(
2
1cos

2
1

22

22





πZ

VPav     

 



31.27: a) At the resonance frequency, .RZ   

 

V1290
;2582/)(/1

V1290;2582//1(

V150b)
V150Ω)(300A)500.0(










CC

C

LLL

R

IXV
CLωCX

IXVCLLCLωLX

IRV
IRIZV

 

 c) resonance.at1cosandsince,cos 2
2
1

2
1   IRVRIIVPav  

           W5.37)300()A500.0( 2
2
1 avP  

 
 
31.28: a) The amplitude of the current is given by 

  
212 )( ωCωLR

VI


  

Thus, the current will have a maximum amplitude when 
.F4.44

)H00.9()rad/s0.50(
111

222 



LC

CωL  
 b) With the capacitance calculated above we find that RZ  , and the amplitude 
of the current is A.300.0400

120  
V

R
VI Thus, the amplitude of the voltage across the 

inductor is .V135H)(9.00s)/rad(50.0A)300.0()(  ωLIV  
 
 
31.29: a) At resonance, the power factor is equal to one, because the impedance of the 

circuit is exactly equal to the resistance, so .1
Z
R  

 b) Average power:   W75
150

V150
2
1 2

rms
2





R

VPav . 

 c) If the capacitor is changed, and then resonance is again attained, the power 
factor again equals one. The average power still has no dependence on the capacitor, so 

W75avP  again. 
 

31.30: a) 
   

srad104.15
F1020.1H350.0

11 3

80 



LC

 . 

 b)       A102.0F101.20srad104.15V550 83  ωCVI
ωC

IV CC   

        V.8.40400A102.0max  IRV source  
 
 



31.31: a) At resonance: 

   
   F1000.6H400.0

11
60 


LC

ω  

        Hz103srad5.6450  . 
    b) 
 

 
 

   c)   


200
V2.21

Z
,V2.21

2
V0.30

2
rmsrms

rmsrms1 R
VVIVVV source  

          A106.0  

                
     

 
    ,V4.27

F1000.6srad645.5
A106.0

.V4.27H400.0srad5.645A106.0

26
0

rms
3

0rms2

V
Cω

IV

LωIV










 

      04 V , since the capacitor and inductor’s voltages cancel each other. 

        V2.21
2
V30

2rms5 
VVV source . 

d) If the resistance is changed, that has no affect upon the resonance frequency: 
 Hz103srad5.6450 ω  

      e) A212.0
100

V2.21rmsrms
rms 




R
V

Z
VI . 

 

31.32: a) 
  

srad945
F1000.4H280.0

11
60 




LC
ω . 

 b) I = 1.20 A at resonance, so:  6.70
A1.70
V120

I
VZR  

 c) At resonance: 
            H280.0srad945A70.1,V120 peakpeakpeak  LIωCVLVRV  
              V.450  
 



31.33: a) 10
12

120

2

1 
N
N

. 

 b) A2.40
Ω5.00
V12.0rms

rms 
R

VI  

 
 c)     W28.8V12.0A2.40rmsrms  VIPav . 

 d)  
 500

W28.8
V120 2

rms
2

P
VR , and note that this is the same as 

       














 500

0.12
12000.500.5

22

2

1

N
N

. 

 

31.34: a) .108
120

13000

1

2 
N
N

 

 b)     W5.110V13000A00850.022  VIP . 
 

 c)     A918.0108A0.00850
1

2
21 

N
NII . 

 
 

31.35: a) .40
00.8

108.12 3

2

1

2

1

2

2

1
21 














R
R

N
N

N
NRR  

 b)   V50.1
40
1V0.60

1

2
12 










N
NVV  

 
 
31.36: a) 22

tweeter )1( ωCRZ    

 b)  22
woofer ωLRZ   

 c) If woofertweeter ZZ  , then the current splits evenly through each branch. 
 d) At the crossover point, where currents are equal: 

      
LC

ωωLRωCR 11 2222  . 

 
 



31.37: 


 tan
2

tanarctan
f

R
ω
RL

R
ωL







  

        H.124.03.52tan
Hz802

0.48








 


π
 

 
 

31.38: a) If  22 1:srad200 ωCωLRZω   
 

           
.A0272.0

2
1A0385.0

779
V30

.779F1000.6srad2001H400.0srad200200

rms

262






 

I
Z
VI

Z
 

 So,     ,V44.5200A0.0272rms1  RIV  

 

     
 

   
.V21.2Vand,V5.20V18.2V7.22

,V7.22
F1000.6srad200

A0272.0
,V18.2H400.0srad200A0272.0

2
0.30

rms5234

6
rms

rms3

rmsrms2












εVVVV
ωC
IXIV

ωLIXIV

C

L

 

b) If s,rad1000ω  using the same steps as above in part  
(a): .V2.21,V1.16,V5.11,V6.27,V8.13,307 54321  VVVVVZ  
 
 

31.39: a)   .
ω
πtt

ω
πt,

ω
πtπnωtI  1221rav 2

3
2

21when0  

 b)           2

1

2

1

2

1

,222sin23sinsincos
t

t

t

t

t

t ω
I

ω
Iππ

ω
Iωt

ω
IdtωtIidt  

since it is rectified. 

 c) So,   .222
rav12rav 

I
ω
I

π
ωI

ω
IttI   

 
 

31.40: a)   


 332.0
Hz1202

250
πω

XLLωLX L   

 b)     .cos,472250400 2222

Z
RXRZ L    

                 .V668
400

W800472rms
rms

2





R

PZV
Z
R

Z
VP av

av  

 
 



31.41: a) If the original voltage was lagging the circuit current, the addition of an 
inductor will help it “catch up,” since a pure LR circuit would have the voltage 
leading. This will increase the power factor, because it is largest when the current 
and voltage are in phase. 

    b) Since the voltage is lagging, the impedance is dominated by a capacitive element so 
we need an inductor such that 00 where, XXX L   is the original capacitively dominated 
reactance (this could include inductors, but the capacitors “win”). 

  

 
   

  H132.0
Hz502

6.416.41

.6.412.4360

2.430.60720.0720.0
2222

0
22










πω
XLωLXX

RZXXRZ

ZR

C
CL

C  

 
 
31.42:   .0.500.80 2222

A00.3
V240

rms

rms  RXRZ CI
V  Thus, 

        .4.620.500.80 22 R . The average power supplied to this circuit is 
equal to the power dissipated by the resistor, which is  
        W5624.62A00.3 2

rms
2  RIP  

 
31.43: a) srad63242;srad31621 00  ωωLCω  
  62.31ωLX L ;     906.71 ωCX C  

  
    A10108.271.23V1000.5

71.23
43

22

 



ZVI

XXXXRZ CLCL   

 V;10667.1 3
CC

 IXV  this is the maximum voltage across the capacitor. 
     nC34.33V10667.1F100.20 36  

CCVQ  
 b) In part (a) we found I = 0.211 mA 

c) CL XX   and R = 0 gives that the source and inductor voltages are in phase; 
the voltage across the capacitor lags the source and inductor voltages by .180  

 
 

31.44: a) 4X422122
2

2

22
21

12 


















C

L
CL X

X
CωCω

LωLωX , and so the 

inductor’s reactance is greater than that of the capacitor. 

b) 
9
1

9
1

9
1

3
1

3
2

2

33
31

1
3 



















C

L
CL X

X
X

CωCω
LωLωX , and so the 

capacitor’s reactance is greater than that of the inductor. 
c) Since 1at ωXX CL  , that is the resonance frequency. 

 
 



31.45:  222222
out )( ωLR

Z
VLωRIVVV s

LR   

       
 

 
.

ωCωLR

ωLR
V

V

s
22

22
out

1


  

 It   is small: 
   

.
11 22222

out ωRC
CRω

ωR

ωCR

R
V
V

s







  

 If   is large: 
 
 

.1
2

2
out 

ωL

ωL
V
V

s

 

 

31.46: 
 

.
ωCωLRωCV

V
ωC

IVV
s

C 22

out
out

1

1


  

 If ω  is large: 
      .

ωLCωLωCωCωLRωCV
V

s
2222

out 11

1

1



  

 If   is small: 
 

.1
1

1
2

out 
ωC
ωC

ωCωCV
V

s

 

 



31.47: a) 
 

.
1 22 ωCωLR

V
Z
VI


  

     b) 
 

.
1
2

2
1

2
1

22

22
2

ωCωLR
RVR

Z
VRIPav 







  

     c) The average power and the current amplitude are both greatest when the 

denominator is smallest, which occurs for .
LC

ω
Cω

Lω 11
0

0
0   

     d)    
       .

F1000.51H00.2200
2200V100

262

2






ωω
Pav  

    .
,,ωω,

ωPav 222

2

0000002200040
25


  

 

 
 

Note that as the angular frequency goes to zero, the power and current are zero, 
just as they are when the angular frequency goes to infinity. This graph exhibits the same 
strongly peaked nature as the light red curve in Fig. (31.15). 
 
 



31.48: a) 
 

.
ωCωLR

LVω
Z

LVωIωωVL 22 1
  

 b) 
 

.
ωCωLRωCωCZ

I
ωC

IVC 22 1

1


  

 c)  

   
 
 d) When the angular frequency is zero, the inductor has zero voltage while the 
capacitor has voltage of 100 V (equal to the total source voltage). At very high 
frequencies, the capacitor voltage goes to zero, while the inductor’s voltage goes to 100 

V. At resonance, srad10001
0 

LC
ω , the two voltages are equal, and are a 

maximum, 1000 V. 
 



31.49: a) .
4
1

2
1

2
1

2
1

2
1

2
1 2

2
2

rms
22 LILLIiLULiU BB 






  

   .
4
1

22
1

2
1

2
1

2
1 2

2
2

rms
22 CVVCCVvCUCvU EE 






  

    b) Using Problem (31.47a): 

       
     .ωCωLR

LV

ωCωLR

VLLIU B 22

2
2

22

2
2

1414
1

4
1


















  

 Using Problem (31.47b): 

     .1414
1

4
1

222

2

2222

2
2

ωCωLRCω
V

ωCωLRCω
VCCVU CE 




  

    c) Below are the graphs of the magnetic and electric energies, the top two showing the 
general features, while the bottom two show the details close to angular frequency equal 
to zero. 
    d) When the angular frequency is zero, the magnetic energy stored in the inductor is 
zero, while the electric energy in the capacitor is 42CVU E  . As the frequency goes to 
infinity, the energy noted in both inductor and capacitor go to zero. The energies equal 

each other at the resonant frequency where  2

2

0 4
and1

R
LVUU

LC
ω EB . 

 

 
 
 



31.50: a) Since the voltage drop between any two points must always be equal, the 
parallel LRC circuit must have equal potential drops over the capacitor, inductor 
and resistor, so vvvv CLR  . Also, the sum of currents entering any junction 
must equal the current leaving the junction. Therefore, the sum of the currents in 
the branches must equal the current through the source: CLR iiii  . 

 

 
 
    b) R

v
Ri   is always in phase with the voltage. ωL

v
Li   lags the voltage by 90 , and 

CvωiC   leads the voltage by 90 . 
    c) From the diagram, 

    
22

222

















Lω
VCVω

R
VIIII LCR  

    d) From (c): 





 

2

2

11
ωL

ωC
R

VI   But 

                          .
ωL

ωC
RZZ

VI
2

2

111






   

 
 

31.51: a) At resonance, LC I
Lω

VCVωI
Lω

Cω
LC

ω 
0

0
0

00
11  so RII   

 and I is a minimum. 

    b) 
R

V
Z

VPav

22
rms cos    at resonance where R < Z so power is a maximum. 

    c) At 0ωω  , I and V are in phase, so the phase angle is zero, which is the same as a 
series resonance. 
 
 



31.52: a) .A778.0
400

V311;3112 rms 



R
VIVVV R  

    b)       A672.0F1000.6srad360V311 6  CVωIC . 

    c) 
















 8.40

A0.778
A0.672arctanarctan

R

C

I
I

 , leading the voltage. 

    d)     A03.1A672.0A778.0 2222  CR III . 
    e) Leads since 0 . 
 
 



31.53: a) 
ωL
VIC;VωI

R
VI LCR  ; . 

    b)  
 

 
 

    c) 000  LCLC I;I:ω.I;I:ω . 
 At low frequencies, the current is not changing much so the inductor’s back-emf 
doesn’t “resist.” This allows the current to pass fairly freely. However, the current in the 
capacitor goes to zero because it tends to “fill up” over the slow period, making it less 
effective at passing charge. 
 At high frequency, the induced emf in the inductor resists the violent changes and 
passes little current. The capacitor never gets a chance to fill up so passes charge freely. 

d) Hz159secrad1000
)1050.0)(H0.2(

11
6







f
fLC

ω  

 

 
 

e) 2
2

)
ωL
vC(Vω

R
VI 





  

A50.0
H)0.2)((1000s

100VF)1050.0)(sV)(1000100(
200

V100
2

1
61

2




















 
  

f) At resonance  andA0.05F)1050.0)(s1000)(v100( 61  CVωII CL  

.A50.0
200

V100





R
VIR  

 



31.54: a) Note that as .01and 
Cω

Lω,ω  Thus, at high frequencies the 

current through 1R is nearly zero and the power dissipated by the circuit is 

kW.44.1
0.40
V)240( 2

2

2
rms 




R
VP  

 b) Now we let 0ω , and so 0Lω and .1


Cω
Thus, at low frequencies the 

current through 2R is nearly zero and the power dissipated by the circuit is 

.kW960.0
0.60
V)240( 2

1

2
rms 




R
VP  

 
 
31.55: Connect the source, capacitor, resistor, and inductor in series. 
 
 

31.56: a) 
.6.20)560.0)(7.36(cos

7.36
W)220(

)560.0(V)120(coscos
22

rms
2

rms










ZR
P

VZ
Z

VP
av

av  

 b) .4.30)6.20()7.36( 222222  RZXXRZ LL But at 
0 this is resonance, so the inductive and capacitive reactances equal each other. So: 

.1005.1
)Hz)(30.40.50(2

1
2

111 4 F
πXfπωX

C
ωC

X
CC

C



  

 c)  At resonance, .W699
6.20
V)120( 22





R

VP  

 
 

31.57: a) .tantan  RXX
R

XX
CL

CL 


  

 .102)54tan()180(350   

 b) .A882.0
)180(
)W140(

rms
2
rms 




R
PIRIP av

av  

 c) 22
rmsrmsrms )( CL XXRIZIV   

   V.270)350102()(180A)882.0( 22
rms V  

 
 



31.58: a) For 22 )C1L(s,rad800 ωωRZω   

V.155H)s)(2.00rad800)(A0971.0(V

V.243
F)10s)(5.0rad(800

A0971.01V

V.48.6)A)(5000971.0(VA0971.0
1030

V100
1030F)))100.5(rad/s) ((8001H))(2.0rad/s800(()500(

7

272



















LIω
ωC

IR
Z
VI

Z

L

C

R

 

 Also note .9.601arctan 





 


R

C)(ωωL  

 

 
 
 b) Repeating exactly the same calculations as above for 

V.400V;100A;0.200 0.;;500Z:srad1000 CR  LVVVVIRω   
 

 
 
 c)  Repeating exactly the same calculations as part (a) for 

243;155;6.48;0971.0;9.60;1030  :srad1250  LCR VVVVVAIRZω 
 



31.59: a) .A75.0
480

V360





C

C
CC X

VIIXV  

 b) .160
A0.75
V120


I
VZ  

 c) 22 )( CL XXRZ   

. 341or 619
) 80() 160( 480 2222





L

CL

X
RZXX

 

 d) If . if341,usFor.1then 00 ωωXωLX
ωC

Xωω LLC   

 
 
31.60: We want ).(01.0)(Pmaximum,)( 121 ωPωωP avavav   Maximum power implies 

F.1086.2
Hz)]1094.12H)[100.1(

111 12
2662

0


 




π(Lω
C

LC
ω  

.126.0
Hz)(2.8610(94.02

1H)10Hz)(1.00100.94(2
99
1

99
1

99
11100

2100
1

1
2)(01.0)(

6
66

2
222

2

22

2

12
































R
π

πR

ωC)L(ωωC)L(ωRωC)/L(ωRR

R
V

ωC)L(ωR
RVωPωP avav

 
 This answer is very sensitive to the capacitance so you may have to carry the first part 
of the problem out to more significant figures. 
 
 
31.61: The average current is zero because the current is symmetrical above and below 
the axis. We must calculate the rms-current: 



























 

33326

63
442

0
2
0

2
0

2
02

2

0

2
0

2

0

3

2

2
02

2

22
020

IIIIττII

.τIt
τ
I(t)dtI

τ
tI(t)I

τ
tII(t)

rms

τ
τ

 

 
 



31.62: a) s.rad786
F)10H)(9.0080.1(

11
70 




LC
ω  

    b) 22 1 C)ωL(ωRZ   

 
A.200.0

300
V60

.300F)))10s)(9.00rad786((1H)s)(1.80rad786(()300(

rms
rms

272

0





 

Z
VI

Z
 

    c) We want 

 

.0142)(

0421

4)1(
1(2

1

22
rms

2
rms22222

2
rms

2
rms2

22
22

2
rms

2
rms22

22
rmsrms

rms

0

0

0

0




















CI
V

C
LRωLω

I
VR

C
L

Cω
Lω

I
VωCωLR

ωC)ωLR
V

Z
VII

 

 Substituting in the values for this problem, the equation becomes: )24.3()( 22ω  
.01023.1)1027.4( 1262 ω  

 Solving this quadratic equation in 2ω we find  4.28orsrad1090.8 2252ω  
s.rad654 orsrad943srad10 225  ω  

 d) (i) ,A2,30ii) sec.rad289,200.0,300
00 rms21rms  IRωωIR    

..ωωIRωω 882A,20,3(iii)sec.rad28 21rms21 0
   

 Width gets smaller as R gets smaller; 
0rmsI gets larger as R gets smaller. 

 
 



31.63: a) 
R
V

Z
VI 0  at resonance since .CL XX   

 b) ωωω  0  is small compared to .0ω  

.1 2
2 






 

ωC
ωLRZ  

.)111 22
22

2







  LC(ω

CωωC
ωL  

)2(
1 Thus.1 so 1

2
0

2
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31.69: a) From the current phasors we know that 
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   c) The electric field is in the x -direction, and the wave is propagating in the z-
direction. So the magnetic field is in the y-direction, since .BES  Thus: 
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32.5: a) y  direction. 
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32.20: a) The electric field is in the y -direction, and the magnetic filed is in the z -
direction, so .̂ˆ)ˆ(ˆˆˆ ikjBES   That is, the Poynting vector is in the x -
direction. 
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32.33: Using a Gaussian surface such that the front surface is ahead of the wave front (no 
electric or magnetic fields) and the back face is behind the wave front (as shown at right), 
we have: 
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   c) In one meter of the laser beam, the total energy is: 
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32.40: a) The change in the momentum vector determines .radp  If W  is the fraction 

absorbed, .)2()()1(inout pWppW 


PPP Here, )1( W is the fraction 
reflected. The positive direction was chosen in the direction of reflection. p is the 
magnitude of the incoming momentum. With Eq. 32.31, and taking the average, we 
get .)2(rad C

IWp   Be careful not to confuse p, the momentum of the incoming wave, 
with ,radp  the radiation pressure. 

   b) (i) totally absorbing 
C
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 These are just equations 32.32 and 32.33. 
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32.41: a) At the sun’s surface: 
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Halfway out from the sun’s center, the intensity is 4 times more intense, and so is the 
radiation pressure: Pa.85.0)2/( sunrad Rp   
 At the top of the earth’s atmosphere, the measured sunlight intensity is 

2mW1400  
,Pa105 6  which is about 100,000 times less than the values above. 

   b) The gas pressure at the sun’s surface is 50,000 times greater than the radiation 
pressure, and halfway out of the sun the gas pressure is believed to be about 6 1310  
times greater than the radiation, pressure. Therefore it is reasonable to ignore radiation 
pressure when modeling the sun’s interior structure. 
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which never happens. So the Poynting vector is always positive, which makes sense since 
the direction of wave propagation by definition is the direction of energy flow. 
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   b) The direction of the Poynting vector is radially inward, since the magnetic field is 
along the solenoid’s axis and the electric filed is circumferential. It’s magnitude 
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  and so the rate of 

energy increase due to the increasing current is given by .22
0 dt

diilan
dt
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   d) The in-flow of electromagnetic energy through a cylindrical surface located at the 

solenoid coils is   .2
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   e) The values from parts (c) and (d) are identical for the flow of energy, and hence we 
can consider the energy stored in a current carrying solenoid as having entered through its 
cylindrical walls while the current was attaining its steady-state value. 
 
 



32.44: a) The energy density, as a function of x, for the equations for the electrical and 
magnetic fields of Eqs. (32.34) and (32.35) is given by:  
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   c) the plots from part (a) can be interpreted as two waves passing through each other 
in opposite directions, adding constructively at certain times, and destructively at others. 
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lB  counterclockwise when looking into the current. 

   c) The direction of the Poynting vector ,ˆˆˆˆˆˆ ρkBES    where we have used 
cylindrical coordinates, with the current in the z-direction. 

   Its magnitude is 32
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   d) Over a length l, the rate of energy flowing in is .2
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The thermal power loss is ,2
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  which exactly equals the flow of 

electromagnetic energy. 
 

32.46: ,and,
2 2

00

0

r
qEqEAd

r
iB S 


  AE


 so the magnitude of the 

Poynting vector is .
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 Now, the rate of energy flow into the region between the plates is: 
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This is just rate of increase in electrostatic energy U stored in the capacitor. 
 

32.47: The power from the antenna is .4
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32.49: a) Find the force on you due to the momentum carried off by the light: 
ApFcIp radrad and   gives cPcAIF /av  
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h6.23s1049.8 4   
The radiation force is very small. In the calculation we have ignored any other forces on 
you. 
   b) You could throw the flashlight in the direction away from the ship. By conservation 
of linear momentum you would move toward the ship with the same magnitude of 
momentum as you gave the flashlight. 
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   b) Assuming that the sun’s radiation is intercepted by the particle’s cross-section, we 
can write the force on the particle as: 
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   c) So if the force of gravity and the force from the radiation pressure on a particle from 
the sun are equal, we can solve for the particle’s radius: 
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   d) If the particle has a radius smaller than that found in part (c), then the radiation 
pressure overcomes the gravitational force and results in an acceleration away from the 
sun, thus removing all such particles from the solar system. 
 



32.52: a) The momentum transfer is always greatest when reflecting surfaces are used 
(consider a ball colliding with a wallthe wall exerts a greater force if the ball rebounds 
rather than sticks). So in solar sailing one would want to use a reflecting sail. 
   b) The equation for repulsion comes from balancing the gravitational force and the 
force from the radiation pressure. As seen in Problem 32.51, the latter is: 
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   c) This answer is independent of the distance from the sun since both the gravitational 
force and the radiation pressure go down like one over the distance squared, and thus the 
distance cancels out of the problem. 
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   b) For a proton moving in a circle, the acceleration can be rewritten: 
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The rate at which it emits energy because of its acceleration is: 
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So the fraction of its energy that it radiates every second is: 
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   c) Carrying out the same calculations as in part (b), but now for an electron at the same 
speed and radius. That means the electron’s acceleration is the same as the proton, and 
thus so is the rate at which it emits energy, since they also have the same charge. 
However, the electron’s initial energy differs from the proton’s by the ratio of their 
masses: 
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So the fraction of its energy that it radiates every second is: 
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32.54: For the electron in the classical hydrogen atom, its acceleration is: 
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      Then using the formula for the rate of energy emission given in Pr. (33-49): 
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dE  which means that the electron would almost 

immediately lose all its energy! 
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   b) The hint basically answers the question. 
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33.7: bbaa nn  sinsin   
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33.8 (a)  
 

 
 
 
Apply Snell’s law at both interfaces. 

33.9: a) Let the light initially be in the material with refractive index na and let the third 
and final slab have refractive index nb Let the middle slab have refractive index n1 

11 sinsin :interface1st  nn aa   

bbnn  sinsin:interface 2nd 11   

.sinsingives equations  two theCombining bbaa nn    

  b) For N slabs, where the first slab has refractive index na and the final slab has 
.sinsin,,sinsin,sinsin,index refractive 22221111 bbNNaab nnnnnnn     

 of angle on the depends  travelofdirection  final The.sinsingives This bbaa nn    
incidence in the first slab and the indicies of the first and last slabs. 
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   b) This calculation has no dependence on the glass because we can omit that step in the 
.sinsinsin:chain waterwateglassglassairair rnθnθn   

 
 
33.11: As shown below, the angle between the beams and the prism is A/2 and the angle 
between the beams and the vertical is A, so the total angle between the two beams is 2A. 
 

 



33.12:  Rotating a mirror by an angle  while keeping the incoming beam constant leads  
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33.15: a) Going from the liquid into air: 
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33.18: (a) 
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33.19: a) The slower the speed  of the wave, the larger the index of refraction—so air has a larger index 
of refraction than water. 
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   c) Air. For total internal reflection, the wave must go from higher to lower index of refraction—in this 
case, from air to water. 
 

.24.4
2.42
1.00arcsinarcsincrit 

















a

b

n
n

:33.20  

 

.40.140.154.5tantana)  b
a

b
p n

n
n

:33.21  

.35.654.5sin
1.40
1.00arcsinsinarcsinb) 






 








 a

b

a
b n

n
  



:soand,0.37 page,next  on the picture  theFrom r:33.22  

1.77.
37sin
53sin1.33

sin
sin






b

a
ab nn




 

 

1.65.
tan31.2

1.00
tan

tana) 



p

b
a

a

b
p

nn
n
n


:33.23  

.58.731.2sin
1.00
1.65arcsinsinarcsinb) 






 








 a

b

a
b n

n
  

.58.9
1.00
1.66arctanarctanair In   )a 

















a

b
p n

n
:33.24  

.51.3
1.33
1.66arctanarctanIn water   b) 

















a

b
p n

n
  

.
2
1:filterfirst  eThrough th  a)  01 II :33.25  

.285.0)0.41(cos
2
1 :filter second The 0

2
02 III   

b) The light is linearly polarized. 
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33.28: Let the intensity of the light that exits the first polarizer be I1, then, according to repeated 
application of Malus’ law, the intensity of light that exits the third polarizer is 
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on the third polarizer after the second polarizer is removed. Thus, the intensity that exits the third polarizer 
after the second polarizer is removed is 
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33.30:  a) All the electric field is in the plane perpendicular to the propagation direction, 
and maximum intensity through the filters is at  to the filter orientation for the case of 
minimum intensity. Therefore rotating the second filter by 90 when the situation 
originally showed the maximum intensity means one ends with a dark cell. 
   b) If filter P1 is rotated by 90, then the electric field oscillates in the direction pointing 
toward the P2 filter, and hence no intensity passes through the second filter: see a dark 
cell. 
   c) Even if P2 is rotated back to its original position, the new plane of oscillation of the 
electric field, determined by the first filter, allows zero intensity to pass through the 
second filter. 
 
33.31: Consider three mirrors, M1 in the (x,y)-plane, M2 in the (y,z)-plane, and M3 in the 
(x,z)-plane. A light ray bouncing from M1 changes the sign of the z-component of the 
velocity, bouncing from M2 changes the x-component, and from M3 changes the y-
component. Thus the velocity, and hence also the path, of the light beam flips by 180  
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1n  as it did in part (a). 
   c) For reflection, .ar    These angles are still equal if r  becomes the incident 
angle; reflected rays are also reversible. 
 



33.34: It takes the light an additional 4.2 ns to travel 0.840 m after the glass slab is 
inserted into the beam. Thus, 
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We can now solve for the index of refraction: 

2.50.1
m0.840

)sm10(3.00s)10(4.2 89







n  

The wavelength inside of the glass is 
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33.37: The velocity vector “maps out” the path of the light beam, so the geometry as 
shown below leads to: 
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m)0.00250m(0.0180

λλ
λ#)λ(#λ# 77

glassair
glassair n

dd

.103.52(1.40) 4  
 

33.39:
7.40sin(

10.1arcsinarcsin7.40
m00310.0

2/)m00534.0(arctancrit 























 n

nn
n

a

b

Note: The radius is reduced by a factor of two since the beam must be incident at ,crit  then reflect 
on the glass-air interface to create the ring. 
 

33.40: 







 51

m2.1
m5.1arctana  

.3651sin
1.33
1.00arcsinsinarcsin 






 








 a

b

a
b n

n
  

So the distance along the bottom of the pool from directly below where the light 
enters to where it hits the bottom is: 
                                 .m2.936tanm)0.4(tanm)0.4(  bx   
                        .m4.4m2.9m5.1m5.1total  xx  
 

33.41 .14
cm16.0
cm4.0arctanand27
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cm8.0arctan 
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         So, .8.1
14sin

27sin00.1
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33.42: The beam of light will emerge at the same angle as it entered the fluid as seen by 
following what happens via Snell’s Law at each of the interfaces. That is, the emergent 
beam is at 5.42  from the normal. 
 

33.43: a) .61.48
333.1
000.1arcsin

90sin
arcsin 














 


w
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i n

n
  

The ice does not come into the calculation since .sinsin90sin iceair iwc nnn    
   b) Same as part (a). 
 

33.44: .9.1
45sin

90sin33.1
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sin
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33.45:   
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bbbaa n
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sin
arcsinsinsin  

.6.44
00.1

)0.25(sin66.1arcsin 





 

  

 So the angle below the horizontal is ,6.190.256.440.25 b and thus 
the angle between the two emerging beams is .2.39   
 

33.46: .40.1
90sin

60sin62.1
sin

sinsinsin 
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33.47: .28.1
90sin

2.57sin52.1
sin

sin
sinsin 
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33.48: a) For light in air incident on a parallel-faced plate, Snell’s Law yields: 

.sinsinsinsinsinsin aaaaabba nnnn    
   b) Adding more plates just adds extra steps in the middle of the above equation that 
always cancel out. The requirement of parallel faces ensures that the angle nn    and   
the chain of equations can continue. 
   c) The lateral displacement of the beam can be calculated using geometry: 

        .
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)sin(
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and)sin(
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ba
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   d) 
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0.66sinarcsinsinarcsin
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     .cm62.1
5.30cos

)5.300.66sin()cm40.2(
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33.49: a) For sunlight entering the earth’s atmosphere from the sun BELOW the 
horizon, we can calculate the angle  as follows: 
     nnnnn bbabbaa  where,sinsin)00.1(sinsin   is the atmosphere’s 
index of refraction. But the geometry of the situation tells us: 
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   b) 
























m102.0m1064.
m106.4arcsin

m)102.0m106.4
m)10(6.4(1.0003)arcsin 46

6

46

6

  

     .22.0   This is about the same as the angular radius of the sun, .25.0   
 
 



33.50: A quarter-wave plate shifts the phase of the light by  90 . Circularly polarized 
light is out of phase by 90 , so the use of a quarter-wave plate will bring it back into 
phase, resulting in linearly polarized light. 
 

33.51: a) .2sin
8
1)sin(cos

2
1)90(coscos

2
1 2

0
2

0
22

0  IIII   

b) For maximum transmission, we need .45so,902    
 
 
33.52: a) The distance traveled by the light ray is the sum of the two diagonal segments: 

    .)( 212
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2212
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2 yxlyxd   
       Then the time taken to travel that distance is just: 
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    b) Taking the derivative with respect to x of the time and setting it to zero yields: 
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33.53: a) The time taken to travel from point A to point B is just: 
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  Taking the derivative with respect to x of the time and setting it to zero yields: 
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33.54: a) n decreases with increasing λ , so n is smaller for red than for blue. So beam a 
is the red one. 
   b) The separation of the emerging beams is given by some elementary geometry. 

,
tantan

tantan
vr

vrvr
xdddxxx





  where x is the vertical beam 

separation as they emerge from the glass  .mm2.92
20sin
mm00.1




x From the ray 

geometry, we also have 

.cm9
5.34tan7.35tan

mm92.2
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:so,5.34
66.1
70sinarcsinand7.35
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70sinarcsin
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33.55: a) .
2

sinsinsinsin Annn babbaa    

       But .
2

sin
2
2sin

2
sin

2
AnAAA
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At each face of the prism the deviation is .
2

sin
2

sin2so, AnA






  

   b) From part  (a), AAn 







2
sinarcsin2  

 .9.380.60
2
0.60sin)52.1(arcsin2 





 

   

   c) If two colors have different indices of refraction for the glass, then the deflection 
angles for them will differ: 

         
.0.52.472.522.520.60

2
0.60sin)66.1(arcsin2

2.470.60
2
0.60sin)61.1(arcsin2

violet

red







 









 






 

 



33.56:  

 
 

          Direction of ray A:  by law of reflection. 
          Direction of ray B: 
          At upper surface:  sinsin 21 nn    
          The lower surface reflects at . Ray B returns to upper surface at angle of 
incidence  sinsin: 12 nn   
          Thus 
      sinsin 11 nn    
         
           Therefore rays A and B are parallel. 
 
33.57:  Both l-leucine and d-glutamic acid exhibit linear relationships between 
concentration and rotation angle. The dependence for l-leucine is:   
           Rotation angle   :isacidglutamic-forandml),(g/100)gml10011.0( dC  
           Rotation angle   ml).(g/100)gml100124.0( C  
 
33.58: a) A birefringent material has different speeds (or equivalently, wavelengths) in 
two different directions, so: 
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33.59: a) The maximum intensity from the table is at ,35  so the polarized 
component of the wave is in that direction (or else we would not have maximum intensity 
at that angle). 

     b) At )3540(cos
2
1mW8.24:40 2

0
2  pIII   

         pII 996.0500.0mW8.24 0
2   (1). 

   At )35120(cos
2
1mW2.5:120 2

0
2  pIII  

        pII 3
0

2 1060.7500.0mW2.5    (2). 
    Solving equations (1) and (2) we find: 
        .mW8.19989.0mW6.19 22  pp II  
     Then if one subs this back into equation  (1), we find: 
        5.049 = .mW1.10500.0 2

00  II  
 
33.60: a) To let the most light possible through N polarizers, with a total rotation of ,90
we need as little shift from one polarizer to the next. That is, the angle between 

successive polarizers should be constant and equal to .
2N
  Then: 
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N   for large N.  

 



33.61: a) Multiplying Eq. (1) by sin   and Eq. (2) by sin   yields: 

       (1):  sinsincossincossinsin tβαωt
a
x

  

       (2):  sinsincossincossinsin tt
a
y

   

       Subtracting yields: ).sincossin(cossinsinsin





 t
a

yx    

       b) Multiplying Eq. (1) by cos   and Eq. (2) by cos  yields: 

       




cossincoscoscossincos:)2(

cossincoscoscossincos:)1(

tt
a
y

tt
a
x




 

        Subtracting yields: ).cossincos(sincoscoscos 


 t
a

yx  

        (c) Squaring and adding the results of parts  (a) and  (b) yields: 
        2222 )cossincos(sin)coscos()sinsin(   ayxyx  
        (d) Expanding the left-hand side, we have: 

        
).cos(2)coscossin(sin2

)coscossin(sin2)cos(sin)cos(sin
2222

222222







xyyxxyyx
xyyx  

 The right-hand side can be rewritten: 
).(sin)cossincos(sin 2222   aa  

        Therefore: ).(sin)cos(2 2222   axyyx   
        Or: .where,sincos2 2222   axyyx  
          (e) ,0)(2:0 222 yxyxxyyx    which is a straight diagonal line. 

          
circle.aiswhich,:
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.ellipseaniswhich,
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2:
4

222

2
22

ayx

axyyx








  

           This pattern repeats for the remaining phase differences. 
 



33.62: a) By the symmetry of the triangles, .and, A
b

B
a

B
r

C
a

B
a

A
b    

   Therefore, .sinsinsinsin A
a

C
b

A
a

A
b

C
a

C
b nn    

   b) The total angular deflection of the ray is: 
   .422   A

b
A
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C
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C
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B
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A
b

A
a    

   c) From Snell’s Law, sin 
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   e) For violet: 
















 89.58)1342.1(

3
1arccos)1(

3
1arccos 22

1 n  

   .8.402.139 violetviolet    

             For red: 
















 58.59)1330.1(

3
1arccos)1(

3
1arccos 22

1 n  

  .5.425.137 redred     
             Therefore the color that appears higher is red. 
 



33.63: a) For the secondary rainbow, we will follow similar steps to Pr. (34-51). The 
total angular deflection of the ray is: 
      ,26222   A

b
A
a

A
b

A
a

A
b

A
b

A
b

A
a  where we have used 

the fact from the previous problem that all the internal angles are equal and the two 
external equals are equal. Also using the Snell’s Law relationship, we have: 

.sin1arcsin 
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c) For violet: 
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  .2.532.233 violetviolet    

For red: .94.71)1330.1(
8
1arccos)1(

8
1arccos 22
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 n  

 .1.501.230 redred     
Therefore the color that appears higher is violet. 
  



34.1: If up is the y -direction and right is the x -direction, then the object is at 
),,(atis),,( 00200 yxPyx  and mirror 1 flips the y -values, so the image is at 

),( 00 yx which is .3P  
 
 
34.2: Using similar triangles, 

 m.3.24
m0.350

m0.350m28.0m040.0
mirror

tree
mirrortree

mirror

tree

mirror

tree 



d
dhh

d
d

h
h

 

 
 
34.3: A plane mirror does not change the height of the object in the image, nor does the 
distance from the mirror change. So, the image is cm2.39 to the right of the mirror, and 
its height is cm.85.4  
 

34.4: a) cm.0.17
2

cm0.34
2


Rf  

 b) If the spherical mirror is immersed in water, its focal length is unchanged—it 
just depends upon the physical geometry of the mirror. 
 
 
34.5: a) 

 
 

 b) cm,0.33
cm5.16

1
cm0.22

21111






 s

sfss
to the left of the 

mirror. 

 cm,20.1
cm16.5
cm33.0cm)600.0( 




s
syy and the image is inverted and real. 

 



34.6: a) 
 

 
 

 b) cm,60.6
cm5.16

1
cm0.22

21111






 s

sfss
to the right of the 

mirror. 

 cm,240.0
cm16.5
cm).606(cm)600.0( 







s
syy and the image is upright and 

virtual. 
 
 

34.7: m.75.1
m1058.5

1
m75.1

11111
10 








 s

sfss
 

   
m.1013.2)m106794)(1014.3(

1014.3
1058.5

75.1

4311

11
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 myym
 

 
 

34.8: cm40.1
cm0.21

1
cm00.3

21111,cm00.3 





 s
sfss

R (in the 

ball). The magnification is .0667.0
cm0.21
cm40.1








s
sm   

 
 



34.9: a) .Also.111111
sf

f
s
sm

fs
sfs

fs
fs

sfsfss 















  

 b) For ,0,0  sfsf so the image is always on the outgoing side and is 

real. The magnification is ,0



sf

fm since .sf   

 c) For ,12 



f

fmfs which means the image is always smaller and 

inverted since the magnification is negative. 

 For .102 
f
fmffsfsf  

 d) Concave mirror: ,00  sfs and we have a virtual image to the right 

of the mirror. ,1
f
fm so the image is upright and larger than the object. 

 
 

34.10: For a convex mirror, .00 






fs

fs
fs

sfsf  Therefore the image is 

always virtual. Also ,0











sf
f

sf
f

sf
fm so the image is erect, and 

,since1 fsfm  so the image is smaller. 
 



34.11: a)  
 

 
 
    b) .0,for0  sfss  
    c) .0for0 fss   
    d) If the object is just outside the focal point, then the image position approaches 
positive infinity. 
    e) If the object is just inside the focal point, the image is at negative infinity, “behind” 
the mirror. 
    f) If the object is at infinity, then the image is at the focal point. 
    g) If the object is next to the mirror, then the image is also at the mirror. 
    h)  
 

 
 
    i) The image is erect if .fs   
    j) The image is inverted if .fs   
    k) The image is larger if .20 fs   
    l) The image is smaller if .0or2  sfs  
    m) As the object is moved closer and closer to the focal point, the magnification 
INCREASES  to infinite values. 
 



34.12: a) 
 

 
    a) 0.for0  sfs  

    b) .0andsfor0  sfs  
    c) If the object is at infinity, the image is at the outward going focal point. 
    d) If the object is next to the mirror, then the image is also at the mirror. For the 
answers to (e), (f), (g), and (h), refer to the graph on the next page. 
    e) The image is erect (magnification greater than zero) for .fs   

    f) The image is inverted (magnification less than zero) for .fs   
    g) The image is larger than the object (magnification greater than one) for 

.02  sf  
    h) The image is smaller than the object (magnification less than one) for 

.2and0 fss   
 

 
  
 



34.13: a) 
 

 
 

 b) cm,45.5
cm0.12

1
cm0.20

21111






 s

sfss
to the right of the 

mirror. 

 cm,409.0
cm12.0
cm5.45cm)9.0( 







s
syy and the image is upright and virtual. 

 

34.14: a) ,00.4
0.12
0.48








s
sm where s comes from part (b). 

 b)  cm.0.48
cm0.12

1
cm0.32

21111






 s

sfss
Since s is negative, 

the image is virtual.  
 c)  
 

 
 
 
 

34.15: cm.67.2000.1
cm50.3

309.10 





 s
ss

n
s

n ba  

 
 



34.16: a) cm,26.5000.1
cm00.7

33.10 





 s
ss

n
s

n ba so the fish appears 

cm26.5 below the surface. 

 b)  cm,8.24000.1
cm0.33

33.10 





 s
ss

n
s

n ba so the image of the fish 

appears cm8.24 below the surface. 
 
 
34.17: a) For ,ndwith,and0   baba annR we have: 
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  so subbing them in one finds: 
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Also, the magnification calculation yields: 
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 b) For   abbaba nnnnR :havewe,andwith,and0  
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  so subbing them 

in one finds: .)(
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  Also, the magnification calculation yields: 
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34.18: a)  cm.00.8
cm00.3

60.060.11
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 b)  cm.7.13
cm00.3

60.060.1
cm0.12

1
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 c)  cm.33.5
cm00.3
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   .52.1)60.1(
cm)3.00cm0.90(
cm)3.00cm601(

cm160
cm.090





 an  

 
 

34.20: cm.8.14
cm00.4

60.060.1
cm0.24

1









 s
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n abba  

 mm,0.578mm50.1
)cm0.24)(60.1(

cm8.14








 








 
 y

sn
sny

b

a so the image height 

is mm,578.0 and is inverted. 
 
 

34.21: cm.35.8
cm00.4
60.060.1

cm0.24
1
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n abba  

 mm,0.326mm50.1
)cm0.24)(60.1(

cm)35.8(
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sn
sny

b

a so the image height is 

mm,326.0 and is erect. 
 
 

34.22: a) cm,0.14
cm0.14

33.000.1
cm0.14

33.1














 s
sR
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s
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s
n abba so the fish 

appears to be at the center of the bowl. 

  .33.1
cm)0.17)(00.1(

cm)0.17)(33.1(
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 b) cm,4.56
cm0.14

33.033.100.1
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n abba which is outside 

the bowl. 
 
 



34.23: For :cm18s  

 a) cm.0.63
cm0.18

1
cm0.14

11111






 s

sfss
 

 b) .50.3
0.18
0.63





s
sm  

 c) and d) From the magnification, we see that the image is real and inverted. 
 

 
 

For :cm00.7s  

 a)  cm.0.14
cm00.7

1
cm0.14

11111






 s

sfss
 

 b)  .00.2
00.7

0.14








s
sm  

 c) and d) From the magnification, we see that the image is virtual and erect. 
 

 
 



34.24: a)  cm,0.48
cm0.12

1
cm0.16

11111






 f

ffss
and the lens is 

diverging. 

 b) cm,638.0
16.0
12.0)(cm)850.0( 
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syy and is erect. 
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34.25: .25.3
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30.1
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  Also: 

 cm75.1525.31
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1
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11111












 ss
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(to the left). 

cm,85.4
cm75.15

1
cm0.7
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 s

s
and the image is virtual 

).0since( s  
 
 

34.26: :Also.711.0
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50.4 ss
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 cm217
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11
711.0

1111









 s
ssfss

(to the right). 

 cm,154cm)217(711.0  s and the image is real (since ).0s  
 
 

34.27: 
























cm50.3
1

cm00.5
1)48.0(1

cm0.18
111)1(11

21 sRR
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ss
 

 cm3.10 s (to the left of the lens). 
 
 



34.28: a) Given m0.0741m6.0081.00m00.6and,0.80  ssssss   
m.5.93and s   

 b) The image is inverted since both the image and object are real ).0,0(  ss  

 c) m,0732.0
m93.5

1
m0741.0

1111



 f

ssf
and the lens is converging. 

 
 

34.29: 
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1
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1)60.0(11)1(1
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 cm.13.3cm,44.4  f  

 
 

cm.44.4cm;44.4
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34.30: We have a converging lens if the focal length is positive, which requires:  

.011011)1(1

2121




















RRRR
n

f
 This can occur in one of three ways: 

 (i) 0,0)ii(}0,{}{ 212121  RRRRRR  
 (iii)  }.0,{|}||{| 2121  RRRR Hence the three lenses in Fig. (35.29a). 
 We have a diverging lens if the focal length is negative, which requires: 

 .011011)1(1

2121




















RRRR
n

f
 This can occur in one of three 

ways: 
 .0,0)iii(0)ii(}0,{}{)i( 21212121  RRRRRRRR  
 Hence the three lenses in Fig. (34.29b). 
 
 



34.31: a) The lens equation is the same for both thin lenses and spherical mirrors, so the 
derivation of the equations in Ex. (34.9) is identical and one gets: 
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 b) Again, one gets exactly the same equations for a converging lens rather than a 
concave mirror because the equations are identical. The difference lies in the 
interpretation of the results. For a lens, the outgoing side is not that on which the object 
lies, unlike for a mirror. So for an object on the left side of the lens, a positive image 
distance means that the image is on the right of the lens, and a negative image distance 
means that the image is on the left side of the lens. 
 c) Again, for Ex. (34.10) and (34.12), the change from a convex mirror to a 
diverging lens changes nothing in the exercises, except for the interpretation of the 
location of the images, as explained in part (b) above. 
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 So one should use the 

85-mm lens. 

 b) mm.150m15.0
m9.6
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 So one should use the 

135-mm lens. 
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36-mm film. 
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34.40: a) cm.1211 1

 fss  
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34.41: a) mm.75
4
mm300
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 b) ,
8

8 fDf  so the diameter is 0.5 times smaller, and the area is 0.25 times 

smaller. Therefore only a quarter of the light entered the aperture, and the film must be 
exposed four times as long for the correct exposure. 
 
 
34.42: The square of the aperture diameter (~ the area) is proportional to the length of the 

exposure time required. .
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34.43: a) A real image is formed at the film, so the lens must be convex. 
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 For mm.56smm,450cm45 s  
 For mm.50,  fss  
 The range of distances between the lens and film is mm.56tomm50  
 
 



34.44: a)  cm.15.3m153.0
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34.45: a) .cm4.36m364.0
m75.2
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1  f  The near-point is normally at 
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 in front of the eye. 

b) .cm9.76m769.0
m30.1
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 f  The far point is ideally at 

infinity, so: .cm9.76
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34.47: a) 33.21power
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 diopters.   

b) 67.11power
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 diopters. 

 
 

34.48: a) Angular magnification .17.4
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34.49: a) .cm06.6
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34.50: .cm00.8mm0.80
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34.52: a) .317
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34.53: a) The image from the objective is at the focal point of the eyepiece, so 

cm9.17cm80.1cm7.1921  fds oe  
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b) .4.21
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c) The overall magnification is .297
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34.54: Using the approximation ,1 fs   and then ,
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The eyepiece magnifies by either 5 or 10, so:  
a) The maximum magnification occurs for the 1.9-mm objective and 10x 

eyepiece: 
.640)10)(64(1  emmM  

b) The minimum magnification occurs for the 16-mm objective and 5x eyepiece: 
.43)5)(5.8(1  emmM  

 
 

34.55: a) .33.6
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 so the height of an 

image of a building is .m019.0m)0.60(
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c) .rad127.0)3000()0.60(33.6)30000.60arctan(33.6   M  
 
 
34.56: m71.1m0900.0m80.12121   fdfdff ssss  
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34.59: a) .m661.0m650.0
2 211  ffdRf  

b) .1.59
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34.60: 
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m50.11
m12.0m75.0

1
m3.1m75.0

1111  

m.0.32 f  
 So the smaller mirror must be convex (negative focal length) and have a radius of 
curvature equal to 3.0 m. 
 
 
34.61: If you move away from the mirror at s,m40.2  then your image moves away 
from the mirror at the same speed, but in the opposite direction. Therefore you see the 
image receding at s,m80.4  the sum of your speed and that of the image in the mirror. 
 
 
34.62: a) There are three images formed. 
 

 
 
 
34.63: The minimum length mirror for a woman to see her full height h, is 2h , as 
shown in the figure below. 
 

 
 

 



34.64: .m2.3m00.425.1m00.425.2 
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7.20 m from the wall. Also: 
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34.65: a) 133.0
0.60
m00.80.60
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ym  m is where the filament 

should be placed. 

b) .m261.0
m00.8
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34.66: .m0894.0
m180.0
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  m.0103.0
0.13

0894.0m50.1 
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b) The height of the image is less then 1% of the true height of the car, and is less 
than the image would appear in a plane mirror at the same location. This gives the 
illusion that the car is further away then “expected.” 
 
 
34.67: a) and0R )0(imagerealaso,0  ss  is produced for virtual object 
positions between the focal point and vertex of the mirror. So for a 24.0 cm radius mirror, 
the virtual object positions must be between the vertex and 12.0 cm to the right of the 

mirror. b) The image orientation is erect, since .0
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c) 
 

 
 

 



34.68: The derivations of Eqs. (34.6) and (34.7) are identical for convex mirrors, as long 
as one recalls that R and s  are negative. Consider the diagram below: 
 

 
We have: ,and1211
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 since s

is not on the outgoing side of the mirror. 
 
 

34.69: a) ,cm46
cm4.19
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cm0.8
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 so the image is virtual. 

b) ,8.5
0.8
46
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sm  so the image is erect, and its height is: 

.mm29mm)0.5)(8.5()8.5(  yy  
c) When the filament is 8 cm from the mirror, there is no place where a real 

image can be formed. 
 
 

34.70: sR
Rss

smss
s
sm 












4
321

2
5,0,0since

5
2

2
5

.
4
3and

10
3 RsRs   

 
 



34.71: a) 
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  and taking its derivative with respect to s we have 
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.2m  Images are always inverted longitudinally. 

b) (i) Front face: .cm000.120
cm000.150

21
cm000.200
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Rear face: .cm964.119
cm000.150

21
cm100.200
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(ii) Front face:   


 22 600000.0,600000.0
000.200
000.120 mm

s
sm  

.360.0  

Rear face:   


 22 599520.0,599520.0
100.200
964.119 mm

s
sm  

.359425.0  
(iii) So the front legs are magnified by 0.600000, the back legs by 0.599520, and 

the side legs by 0.359425, the average of the front and back longitudinal magnifications. 
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  and taking its derivative with respect to s we have: 
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34.73: a) R < 0 for convex so 
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b) 
 

   
  

s.m142.0
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m25.1sm50.2
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Note: The signs are somewhat confusing. If a real object is moving with v > 0, 
this implies it is moving away from the mirror. However, if a virtual image is moving 
with v > 0, this implies it is moving from “behind” the mirror toward the vertex. 
 
 
34.74: In this context, the microscope just takes an image and makes it visible. The real 
optics are at the glass surfaces. 
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Note that the object and image are measured from the front surface of the second 
plate, making the image virtual. 
 
34.75: a) Reflection from the front face of the glass means that the image is just h 
below the glass surface, like a normal mirror. 

b) The reflection from the mirrored surface behind the glass will not be affected 
because of the intervening glass. The light travels through a distance 2d of glass, so the 

path through the glass appears to be ,2
n
d  and the image appears to be 

n
dh 2

  behind the 

front surface of the glass. 

c) The distance between the two images is just .2
n
d  

 
 



34.76: a) The image from the left end acts as the object for the right end of the rod. 
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So the second object distance is .cm7.11cm3.28cm0.402 s  

Also:    .769.0
0.2360.1

3.28
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c) The object is real and inverted. 

d) .cm5.11
cm0.12
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Also:       .21.157.1769.057.1
7.11

5.1160.1
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e) So the final image is virtual, and inverted. 
f)    mm.82.121.1mm50.1 y  
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So the second object distance is .cm3.3cm3.28cm0.252 s  

Also:    .769.0
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b) The object is virtual. 

c) .cm87.1
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Also: 
      .693.0901.0769.0901.0
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  d) So the final image is real and inverted. 
e)    mm.04.1693.0mm50.1  ymy  

 
 
34.78: For the water-benzene interface to get the apparent water depth: 
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For the benzene-air interface, to get the total apparent distance to the bottom: 
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34.80: a) .cm9.36
cm0.15
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object distance for the far end of the rod is cm.9.86)cm9.36(cm0.50   
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b) The magnification is the product of the two magnifications: 
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34.81: cm.00.9
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for the far side of the ball is .cm00.1cm00.9cm00.8   

,cm50.0
cm00.4

80.01
cm00.1

80.1

















 s
sR

nn
s
n

s
n abba  which is 

4.50 cm from the center of the sphere. 
 
 

34.82: .58.1
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When viewed from the curved end of the rod: 
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so the image is 21.1 cm within the rod from the curved end. 
 
 



34.83: a) From the diagram: 
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190.0sinBut.sin50.1190.0sin
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cm190.0
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So the diameter of the light hitting the surface is cm.254.02 r  

 
 
b) There is no dependence on the radius of the glass sphere in the calculation 

above. 



34.84: a) Treating each of the goblet surfaces as spherical surfaces, we have to pass, 
from left to right, through four interfaces. For the empty goblet: 
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 So the image is cm9.29)cm0.4(2cm9.37  to the left of the goblet. 
b) For the wine-filled goblet: 
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cm,73.3
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to the right of the goblet. 
 
 

34.85: Entering the sphere: .
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So the final image is a distance 3R from the right-hand side of the sphere, or 4R to 
the right of the center of the globe. 
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Note that the first two equations on the second line can be rewritten as 
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34.87: Below, x is the distance from object to the screen’s original position. 

fxfxfss
1

cm22
1

cm26
1and1

cm30
1

cm30
1111

111










  

.cm72.9,cm3.460cm45056 22  xxx  But the object must be to the 
left of the lens, so cm 16.3cm 30cm 6.34 s . The corresponding focal length is 
10.56 cm. 
 
 
34.88: We have images formed from both ends. From the first: 
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This image becomes the object for the second end: 
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cm.3.50cm3.20cm0.30  dd  
 
 



34.89: a) For the first lens: cm.0.30
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So .50.1
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For the second lens: .cm0.21cm0.30cm00.9 s  
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 So the image is 28.0 cm to the left of the second lens, and is therefore 19.0 cm to 
the left of the first lens. 

b) The final image is virtual. 
c) Since the magnification is ,00.2)33.1)(50.1(21  mmm  the final image 

is erect and has a height mm.5.00mm)50.2)(00.2( y  
 
 

34.90: a)  cm.0.35
cm0.28

1
cm0.12

1)60.0(11)1(1

21


















 f

RR
n

f

  cm,158
cm35
11

cm45
1111







 s
sfss

and 
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b) Adding a second identical lens 315 cm to the right of the first means that the 
first lens’s image becomes an object for the second, a distance of 157 cm from that 
second lens. 
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cm,5.0
157
45cm)1.76(cm,0.45 
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and the image is erect. 

c) Putting an identical lens just 45 cm from the first means that the first lens’s 
image becomes an object for the second, a distance of 113 cm to the right of the second 
lens. 
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and the image is inverted. 
 



34.91: cm.0.80
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So the object distance for the second lens is 52.0 cm – (8.00 cm) = cm.0.28  

cm.47.16
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So the object distance for the third lens in 52.0 cm – (16.47 cm) = 35.53 cm. 
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 so the final image is 

virtual and 318 cm to the left of the third mirror, or equivalently 214 cm to the left of the 
first mirror. 
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s.sss  cm3.80cm,14.20cm0.54)cm0.18()( 22  So the screen 
must either be 3.80 cm or 14.2 cm from the object. 
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34.93: a) Bouncing first off the convex mirror, then the concave mirror: 
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But the object distance for the concave mirror is just 
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So for the concave mirror:
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m.24.0,m72.0020.38.175.18 2  xxx  
But the object position must be between the mirrors, so the distance must be the 

smaller of the two above, 0.24 m, from the concave mirror. 
b) Now having the light bounce first from the concave mirror, and then the convex 

mirror, we have: 
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But the object distance for the convex mirror is just 

.
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m600.02.33m600.0 1 
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So for the convex mirror:
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0.24m.m,13.00600.000.25.18 2  xxx  
But the object position must be between the mirrors, so the distance must be 0.24 m 

from the concave mirror. 
 
 



34.94: Light passing straight through the lens: 
 a) 
 

 
 

    b) cm,3.51
cm0.32

11
cm0.85
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 to the right of the lens. 

    c) The image is real. 
    d) The image is inverted. 
 For light reflecting off the mirror, and then passing through the lens: 
 
    a) 
 

 
 

 cm,0.20
cm0.10
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cm0.20
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 so the image from the 

mirror, which becomes the new object for the lens, is at the same location as the object. 
So the final image position is 51.3 cm to the right of the lens, as in the first case above. 
 c) The image is real 
 d) The image is erect. 
 
 
34.95: Parallel light coming in from the left is focused 12.0 cm from the left lens, which 
is 8.00 cm to right of the second lens. Therefore: 

cm,80.4
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cm00.8
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 to the right of the second lens, 

and this is where the first focal point of the eyepiece is located. The second focal point is 
obtained by sending in parallel light from the right, and the symmetry of the lens set-up 
enables us to immediately state that the second focal point is 4.80 cm to the left of the 
first lens. 
 
 



34.96: a) With two lenses of different focal length in contact, the image distance from 
the first lens becomes exactly minus the object distance for the second lens. So we have: 
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 But overall for the lens system, .111111
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 b) With carbon tetrachloride sitting in a meniscus lens, we have two lenses in contact. 
All we need in order to calculate the system’s focal length is calculate the individual 
focal lengths, and then use the formula from part (a). 

 For the meniscus: 
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34.97: At the first surface, cm.23.04cm)4.14(
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 At the second surface,
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 (Note, as many significant figures as possible should be kept during the calculation, 
since numbers comparable in size are subtracted.) 
 
 



34.98: a) Starting with the two equations: 
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 b) Comparing the equations for focal length in and out of air we have: 
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34.99: The image formed by the converging lens is 30.0 cm from the converging lens, 
and becomes a virtual object for the diverging lens at a position 15.0 cm to the right of 
the diverging lens. The final image is projected cm2.342.1915   from the diverging 
lens. 
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34.100:  The first image formed by the spherical mirror is the one where the light 
immediately strikes its surface, without bouncing from the plane mirror. 
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and the image height: 
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 The second image is of the plane mirror image, located cm)10.0cm0.20(   from the 
vertex of the spherical mirror. So: 
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 and the image height. 
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34.101: cm30.9055.1
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cm.26.801
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So the image is 8.26 cm below the top glass surface, or 1.24 cm above the page. 
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 At the air–lens interface: 
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 At the lens–water interface: cm.491
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 The mirror reflects the image back (since there is just 90 cm between the lens and 
mirror.) So, the position of the image is 401 cm to the left of the mirror, or 311 cm to the 
left of the lens. So: 

 At the water–lens interface: cm.173
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 At the lens–air interface: cm,0.47
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lens. 
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 (Note all the indices of refraction cancel out.) 
 b) The image is real. 
 c) The image is inverted. 
 d) The final height is mm.4.24mm)00.4()06.1(  myy  
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 b) To just fill the frame, the magnification must be 31059.1   so: 
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34.104:   mm.05.35
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 The resolution of 120 lines per millimeter means that the image line width is  
0.0083 mm between lines. That is mm.0083.0y But: 
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separation between two lines 25.0 m away from the camera. 
 
 

34.105:   a) From the diagram below, we see that .1
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  But when the object is 

much larger than the image we have the approximation: 
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 b) The film is mm,36mm24  so the diagonal length is just: 
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34.107:   a) cm.5.3cm70.2:cm7:10ageAt  f
f

Mf n  

    b) cm.0.7cm140.2:cm14:03ageAt  f
f

Mf n  

     c) cm.100cm2000.2:cm200:06ageAt  f
f

Mf n  

 d) If the 2.8 cm focal length lens is used by the 60-year old, then 

.1.57
cm3.5
cm200cm200


f
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 e) This does not mean that the older viewer sees a more magnified image. The 
object is over 28 times further away from the 60-year old, which is exactly the ratio 
needed to result in the magnification of 2.0 as seen by the 10-year old. 
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 d) If .5.3
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cm25cm10cm10 


 Mf This is 1.4 times greater than the 

magnification obtained if the image if formed at infinity ).5.2cm25(  f
M  

 e) Having the first image form just within the focal length puts one in the 
situation described above, where it acts as a source that yields an enlarged virtual image. 
If the first image fell just outside the second focal point, then the image would be real and 
diminished. 
 
 
34.109:   The near point is at infinity, so that is where the image must be found for any 
objects that are close. So: 
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34.110:   .cm77.2
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is greater than the normal eye, which has a cornea vertex to retina distance of about 
cm.6.2  

 
 
34.111:   a) From Figure 34.56, we define 
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 If the effective focal length is 30 cm, then the separation can be calculated: 
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34.112:   First recall that ,
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 But since the image formed by the objective is used as the object for the eyepiece, 
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 Therefore, cm,33.1
36

cm0.481
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M
fs and this is just outside the eyepiece 

focal point. 
 Now the distance from the mirror vertex to the lens is cm,3.4921  sf and so 
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 Thus we have a final image 

which is real and cm3.12 from the eyepiece. (Take care to carry plenty of figures in the 
calculation because two close numbers are subtracted.) 
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     b) .cm8.25cm79.7cm0.1821  ssd  

 
 

34.114:   a) From the figure, .and
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 So the angular magnification is: .
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b) cm.0.15
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c) The length of the telescope is ,cm0.80cm0.15cm0.95  compared to the  
length of cm110 for the telescope in Ex. 34.55. 
 
 
 



34.115:  
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 cm0.12)cm0.15(
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s
sy , so the image of point C is cm0.36 to 

the right of the lens, and cm0.12 below the axis. 
 For point A: cm7.50)45(coscm00.8cm0.45 s  
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 cm,10.6))45(sincm00.8cm0.15(
0.45
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s
sy so the image of 

point A is cm0.33 to the right of the lens, and 6.10 cm below the axis. For point 
B: cm3.39)45(coscm00.8cm0.45 s  
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 cm,21.4))45(sincm00.8cm0.15(
3.39
7.40
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s
sy so the image of 

point B is 40.7 cm to the right of the lens, and 21.4 cm below the axis. 
 b) The length of the pencil is the distance from point A to B: 
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34.116:   a) Using the diagram and law of sines 
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 Bisecting the triangle: 
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34.117:   a) The distance between image and object can be calculated by taking the 
derivative of the separation distance and minimizing it. 
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 ,2,00)2(022 sfsfsssfs  so for a real image, the 
minimum separation between object and image is 4f. 
 b) 

 
 
Note that the minimum does occur for D=4f. 
 
 



34.118:   a) By the symmetry of image production, any image must be the same distance 
D as the object from the mirror intersection point. But if the images and the object are 
equal distances from the mirror intersection, they lie on a circle with radius equal to D. 

b) The center of the circle lies at the mirror intersection as discussed above. 
c)  
 

 
 

 
34.119:   a) People with normal vision cannot focus on distant objects under water 
because the image is unable to be focused in a short enough distance to form on the 
retina. Equivalently, the radius of curvature of the normal eye is about five or six times 
too great for focusing at the retina to occur. 
 b) When introducing glasses, let’s first consider what happens at the eye: 
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object for the cornea must be 3.00 cm behind the cornea. Now, assume the glasses are 
2.00 cm in front of the eye, then: 
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 This is the focal length in water, but to get it in air, we use the formula from  

Problem 34.98: cm34.1
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35.1: Measuring with a ruler from both 21 and SS to there different points in the 
antinodal line labeled m  = 3, we find that the difference in path length is three times the 
wavelength of the wave, as measured from one crest to the next on the diagram. 
 
 
35.2: a) At ,λ4, 121  rrS and this path difference stays the same all along the 

axis,-y so ,rrSm λ4,At.4 122   and the path difference below this point, along 
the negative y -axis, stays the same, so .4m  
    b) 
 

 
 
    c) The maximum and minimum m-values are determined by the largest integer less 

than or equal to .
λ
d

 

    d) If ,77λ
2
17  md  so there will be a total of 15 antinodes between the 

sources. (Another antinode cannot be squeezed in until the separation becomes six times 
the wavelength.) 
 
 
35.3: a) For constructive interference the path diference is ...,2,1,0,λ nm  The 
separation between sources is 5.00 m, so for points between the sources the largest 
possible path difference is 5.00 m. Thus only the path difference of zero is possible. This 
occurs midway between the two sources, 2.50 m from A. 
    b) For destructive interference the path difference is ...,2,1,0,λ)( 2

1  mm  
A path difference of 00.32λ  /  m is possible but a path difference as large as 

00.92/λ3  m is not possible. For a point a distance x from A and Bx from00.5   the 
path difference is 

m00.1givesm00.3)m00.5(
m00.4givesm00.3)m00.5(

).m00.5(
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35.4: a) The path difference is 120 m, so for destructive interference: 

    .m024λm120
2
λ

  

    b) The longest wavelength for constructive interference is .m120λ   
 
35.5: For constructive interference, we need λ)m00.9(λ12 mxxmrr   

    
,10,1,2,3,Form.8.25m,7.00m,5.75m,4.50m,3.25m,2.00m,75.0
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.3,2   (Don’t confuse this m with the unit meters, also represented by an “m”). 
 
35.6: a) The brightest wavelengths are when constructive interference occurs: 
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    b) The path-length difference is the same, so the wavelengths are the same as part 
(a). 
 
35.7: Destructive interference occurs for: 
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35.8: a) For the number of antinodes we have: 
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    the maximum integer value is four. The angles are  9.67and,0.44,6.27,4.13  
for .4,3,2,1,0 m  

     b) The nodes are given by sin ).21(2317.0λ)21(



 m

d
m So the angles are 

.3,2,1,0for2.54,4.35,3.20,65.6  m  
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35.10: For bright fringes: 
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35.11: Recall 
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35.12: The width of a bright fringe can be defined to be the distance between its two 
adjacent destructive minima. Assuming the small angle formula for destructive 
interference 
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    the distance between any two successive minima is 
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    Thus, the answer to both part (a) and part (b) is that the width is 8.00 mm. 
 
35.13: Use the information given about the bright fringe to find the distance d between 

the two slits: .m103.72
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(R is much greater than d, so Eq.35.6 is valid.) 
The dark fringes are located by ...,2,1,0,λ)(sin 2

1  mmd   The first order dark 
fringe is located by sin 22 λ where,2λ d  is the wavelength we are seeking. 
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2
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35.14: Using Eq.35.6 for small angles, 
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    we see that the distance between corresponding bright fringes is 
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35.15: We need to find the positions of the first and second dark lines: 
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    m.0.1805tan(27.30)m)035.0(tan 22  θRy  
    The fringe separation is then .m0.1264m0.0541m1805.012  yyy  
 
35.16: (a) Dark fringe implies destructive interference. 
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 (b) Bright fringes: λsin maxmax mθd   

The largest that θ  can be is mdm  Since6.2λ/so,90
m10624
m101.64

max 9
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  is an integer, its 

maximum value is 2. There are 5 bright fringes, the central spot and 2 on each side of it. 
Dark fringes:   .λsin 2

1 mθd  This equation has solutions for ;9.34;0.11 θ  and 
.6.72   Therefore, there are 6 dark fringes. 

 
 
35.17: Bright fringes for wavelength λ are located by .λsin md   First-order )1( m  
is closest to the central bright line, so ./λsin d  
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The angular width of the visible spectrum is thus .0.1720.2290.401   
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35.19: The phase difference   is given by )Eq.35.13(sin)λ/2(  d  

rad16700.23sin]m)10(500m)10340.0(2[ 93    
 
 



35.20: 
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35.21: a) Eq.(35.10): 0

2
0

2
0 750.0)0.30(cos)2(cos IIII    

b) rad)3/(0.60   
Eq. so),)(λ/2(:)11.35( 12 rr    

  nm806/λλ2/)3/(λ)2/()( 12  rr  
 
 
35.22: a) The source separation is 9.00 m, and the wavelength of the wave is 

m.0.20
Hz1050.1
m/s1000.3λ 7

8






f
c  So there is only one antinode between the sources 

),0( m  and it is a perpendicular bisector of the line connecting the sources. 
 

b) 
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m)(20.0
m)00.9(cossincos

2
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dIII  

         )sin)41.1((cos2
0 I  

  ;295045580030forSo, 00 I.I,;θI.I,θ   
         .026090117060 00 I.I,;θI.I,θ   
 
 
35.23: a) The distance from the central maximum to the first minimum is half the 
distance to the first maximum, so: 

  m.1088.8
m)102(2.60

m)10(6.60m)700.0(
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    b) The intensity is half that of the maximum intensity when you are halfway to the 
first minimum, which is m.1044.4 4 Remember, all angles are .small  
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f
c and we have: 
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35.25: a) To the first maximum: m.1081.3
m101.30

m)10(5.50m)900.0(λ 3
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So the distance to the first minimum is one half this, 1.91 mm. 
 
    b) The first maximum and minimum are where the waves have phase differences of 
zero and pi, respectively. Halfway between these points, the phase difference between the 

waves is :So.
2
  

  .W/m1000.2
24

cos
2

cos 2602
0
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35.26: From Eq. (35.14), .sin
λ

cos2
0 






 dII So the intensity goes to zero when the 

cosine’s argument becomes an odd integer of  
 )2/1(sin
λ

:isThat.
2

md  

),2/1(λsin  md   which is Eq. (35.5). 
 
 
35.27: By placing the paper between the pieces of glass, the space forms a cavity whose 
height varies along the length. If twice the height at any given point is one wavelength 
(recall it has to make a return trip), constructive interference occurs. The distance 
between the maxima (i.e., the # of meters per fringe) will be 

0.0235rad10095.4
m))1500/1((2
m105.46arctan

2
λarctan

tan2
λ

2
λ 4
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35.28: The distance between maxima is 

  cm.0369.0
m)102(8.00

cm)(9.00m)1056.6(
2
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  So the number of fringes per centimeter is 1.271


x
fringes/cm. 

 



35.29: Both parts of the light undergo half-cycle phase shifts when they reflect, so for 

destructive interference nm.114m1014.1
)42.1(4

m1050.6
4
λ

4
λ 7

7
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35.30: There is a half-cycle phase shift at both interfaces, so for destructive 
interference: 

    nm.5.80
4(1.49)

nm480
4
λ

4
λ 0 

n
t  

 
35.31: Destructive interference for 800λ1  nm incident light. Let n be the refractive 
index of the oil. There is a 2/λ  phase shift for the reflection at the air-oil interface but no 
phase shift for the reflection at the oil-water interface. Therefore, there is a net 2/λ  
phase difference due to the reflections, and the condition for destructive interference is 

)./λ(2 nmt   Smallest nonzero thickness means .λ2so,1 1 tnm  
The condition for constructive interference with incident wavelength λ is 

onsoandnm,320λ2,for
nm533λ,1for

nm1600λ,0for
nm.800λwhere),/(λλso,λ2But

.λ)(2 and)/λ)((2
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The visible wavelength for which there is constructive interference is 533 nm. 
 
35.32: a) The number of wavelengths is given by the total extra distance traveled, 
divided by the wavelength, so the number is 

   .5.36
m106.48
(1.35)m)1076.8(2

λ
2

λ 7

6

0





 

tnx  

 b) The phase difference for the two parts of the light is zero because the path 
difference is a half-integer multiple of the wavelength and the top surface reflection has a 
half-cycle phase shift, while the bottom surface does not. 
 
35.33: Both rays, the one reflected from the pit and the one reflected from the flat 
region between the pits, undergo the same phase change due to reflection. The condition 
for destructive interference is ),/λ)((2 2

1 nmt   where n  is the refractive index of the 
plastic substrate. The minimum thickness is for ,0m  and equals 

m.0.11nm1108)]nm/[(4)(1.790)4/(λ  nt  
 
35.34: A half-cycle phase change occurs, so for destructive interference 

nm.180
2(1.33)

nm480
2
λ

2
λ 0 

n
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35.35: a) To have a strong reflection, constructive interference is desired. One part of 
the light undergoes a half-cycle phase shift, so: 
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md  For an integer 

value of zero, the wavelength is not visible (infrared) but for 1m , the wavelength is 
514 nm, which is green. 
    b) When the wall thickness is 340 nm, the first visible constructive interference  

occurs again for 






 



2
1

nm904λyieldsand1
m

m = 603 nm, which is orange. 

 
35.36: a) Since there is a half-cycle phase shift at just one of the interfaces, the 
minimum thickness for constructive interference is: 

    nm.3.74
4(1.85)

nm550
4
λ

4
λ 0 

n
t    

 b) The next smallest thickness for constructive interference is with another half 

wavelength thickness added: 
  nm.223

)85.1(4
nm5503

4
λ3

4
λ3 0 

n
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35.37: mm.0.570m1070.5
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35.38: a) For Jan, the total shift was m.1048.2
2

m)1006.6(818
2

1λ 4
7

1








mx  

  For Linda, the total shift was m.1005.2
2

m)1002.5(818
2
λ 4

72

2
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 b) The net displacement of the mirror is the difference of the above values: 
  mm.0.043mm0.205mm248.021  xxx  
 
 
35.39: Immersion in water just changes the wavelength of the light from Exercise 

35.11, so: mm,626.0
1.33

mm833.0λ vacuum 
n

y
dn
Ry using the solution from Exercise 

35.11. 
 
 



35.40: Destructive interference occurs 1.7 m from the centerline. 
 

 
 
  22

1 m)2.6(m)0.12( r =13.51 m 

  22
2 m)8.2(m)0.12( r =12.32 m 

For destructive interference, m19.12/λ21  rr and m.4.2λ  The wavelength we 
have calculated is the distance between the wave crests. 
Note: The distance of the person from the gaps is not large compared to the separation of 
the gaps, so the path length is not accurately given by .sin d  
 
35.41: a) Hearing minimum intensity sound means that the path lengths from the 
individual speakers to you differ by a half-cycle, and are hence out of phase by 180  at 
that position. 
 b) By moving the speakers toward you by 0.398 m, a maximum is heard, which means 
that you moved the speakers one-half wavelength from the min and the signals are back 
in phase. Therefore the wavelength of the signals is 0.796 m, and the frequency is 

m0.796
m/s340

λ


vf =427 Hz. 

 c) To reach the next maximum, one must move an additional distance of one 
wavelength, a distance of 0.796 m. 
 



35.42:  To find destructive interference, λ
2
1)200( 22
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The wavelength is calculated by .m7.51
Hz1080.5

sm1000.3λ 6

8






f
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.m0.20;3andm,1.90:2andm,219:1andm,761:0  xmxmxmxm
 

35.43: At points on the same side of the centerline as point ,A the path from B  is 
longer than the path from ,A  and the path difference d  sin θ  puts speaker A  ahead of 
speaker B  in phase. Constructive interference occurs when 

    ...,2,1,0,2381.0
3
2λ

3
2sin

,2 ,1,0,λ
2
16λsin







 






 







 

mmdm

mmd



 

 

,4;8.60,3;4.39,2;4.23,1;13.9 ,0  mmmmm no solution 
At points on the other side of the centerline, the path from A  is longer than the path from 
B , and the path difference d sinθ  puts speaker A  behind speaker B  in phase. 
Constructive interference occurs when 

    ,...2,1,0,2381.0
3
1λ

3
2sin

...,2,1,0,λ
2
16λ sin
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,4;5.52,3;7.33,2;5.18,1;55.4 ,0  mmmmm  no solution 



35.44: First find out what fraction the 0.159 ms time lag is of the period. 

 )Hz(1570s)10159.0()s10159.0(10159.0 33
3







 f
T

st  

 ,250.0t so the speakers are 41  period out of phase. Let A be ahead of B in 
phase. 
 

 
 

m210.0
Hz1570

sm330λ  fv  

centerlineofsidesAOn ' : Since A is ahead by 41  period, the path difference must 
retard B’s phase enough so the waves are in phase. 























6.60
m422.0
m210.0

4
7sin

9.21
m0.422
m0.210

4
3sin
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4
7,λ

4
3sin
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      centerlineofsidesBOn ' : The path difference must now retard A’s sound by 
,λ,λ 4

5
4
1  

       5.38,2.7gives,λ
4
5,λ

4
1sin d  

 
 
35.45: a) If the two sources are out of phase by one half-cycle, we must add an extra 
half a wavelength to the path difference equations Eq. (35.1) and Eq. (35.2). 

This exactly changes one for the other, for ,and 2
1

2
1 mmmm   since m  

in any integer. 
    b) If one source leads the other by a phase angle , the fraction of a cycle difference is 

.
2
  Thus the path length difference for the two sources must be adjusted for both 

destructive and constructive interference, by this amount. So for constructive 
inference: ,λ)2(21  mrr  and for destructive interference, 

.λ)221(21  mrr   
 
 



35.46: a) The electric field is the sum of the two wave functions, and can be written: 
2)./cos(2)/cos(2)()cos()cos()()(( 12   ωtEtEtEtEtEtEt)E pp  

    b) ),2/cos()(   tAtE p  so comparing with part (a), we see that the amplitude of 
the wave (which is always positive) must be .|)2/cos(|2 EA   

    c) To have an interference maximum, m 2
2
 . So, for example, using ,1m the 

relative phases are  2
2

:;4:;0: 12  pEEE , and all waves are in 

phase. 

    d) To have an interference minimum, .
2
1

2






  m


So, for example using 

,0m relative phases are ,22:;:;0: 12   pEEE  and the resulting 
wave is out of phase by a quarter of a cycle from both of the original waves. 
    e) The instantaneous magnitude of the Poynting vector is: 
  )).2(cos)2(cos4()(|| 222

0
2

0   tEctcE pS  

 For a time average, ).2(cos2||so,
2
1)2(cos 22

0
2  cESt av   

 
 
35.47: a)  mλr   
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    b) The definition of hyperbola is the locus of points such that the difference between 
12 toandto SPSP is a constant. So, for a given λandm  we get a hyperbola. Or, in the 

case of all m  for a given λ , a family of hyperbola. 
    c) .λ)()()( 2

12222  mdyxdyx  
 
 



35.48: a) )cos(2 21
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    b) odd).(whenoccurswhich
9
1

0min nnII    

 
 
 
35.49: For this film on this glass, there is a net 2λ  phase change due to reflection and 
the condition for destructive interference is .750.1where),λ(2  nnmt  
Smallest nonzero thickness is given by .2λ nt   

15
00

0

0

0

)C(108.6)](150Cnm)[(166.4nm)7.1()()(

so)1(
nm.168.1(1.750)][(2)nm)5.588(,C170At
nm.166.4(1.750)][(2)nm)(582.4,C20.0At
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35.50: For constructive interference: nm.2100nm)700(3sinλsin 1   dmd  

    For destructive interference: .nm2100sinλλ
2
1sin

2
1

2
122 










 

mm
dmd   

    So the possible wavelengths are .4fornm,467λand,3fornm,600λ 22  mm  
    Both andd  drop out of the calculation since their combination is just the path 
difference, which is the same for both types of light. 
 
 
35.51: First we need to find the angles at which the intensity drops by one-half from the 
value of the m th bright fringe. 
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so there is no dependence on the -m value of the fringe. 
 
 
35.52: There is just one half-cycle phase change upon reflection, so for constructive 
interference: .λ)(λ)(2 22

1
212

1
1  mmt  But the two different wavelengths differ by 

just one .1value,- 12  mmm  
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35.53: a) There is a half-cycle phase change at the glass, so for constructive 
interference: 

 

.λ
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Similarly for destructive interference: 
 .λ4 22 mxhx   
 

 
 
    b) The longest wavelength for constructive interference is when :0m  

  cm.72
21

cm14cm)24(4cm)14(4 22

2
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35.54: a) At the water (or cytoplasm) to guanine interface, is a half-cycle phase shift for 
the reflected light, but there is not one at the guanine to cytoplasm interface. Therefore 
there will always be one half-cycle phase difference between two neighboring reflected 
beams. For the guanine layers: 

 ).0nm(533λ
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 For the cytoplasm layers: 

).0nm(533λ
)(

nm267
)(

(1.333)nm)100(2
)(

2λλ
2
12

2
1

2
1

2
1
















  m

mmm
nt

n
mt cc

c
c  

    b) By having many layers the reflection is strengthened, because at each interface 
some more of the transmitted light gets reflected back, increasing the total percentage 
reflected. 
    c) At different angles, the path length in the layers change (always to a larger value 
than the normal incidence case). If the path length changes, then so do the wavelengths 
that will interfere constructively upon reflection. 
 



35.55: a) Intensified reflected light means we have constructive interference. There is 
one half-cycle phase shift, so: 
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    b) Intensified transmitted light means we have destructive interference at the upper 
surface. There is still a one half-cycle phase shift, so: 

  .nm1484(1.53)nm)485(22λλ2
mmm
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n

mt    

    )3(nm495λ  m  
is the only wavelength of visible light that is intensified. We could also think of this as 
the result of internal reflections interfering with the outgoing ray without any extra phase 
shifts. 
 
35.56: a) There is one half-cycle phase shift, so for constructive interference: 
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Therefore, we have constructive interference at ),2(nm441  mλ  which corresponds 
to blue-violet. 
 b) Beneath the water, looking for maximum intensity means that the reflected 
part of the wave at the wavelength must be weak, or have interfered destructively. So: 

 .nm1102(1.45)nm)380(22λλ2 0
0

mmm
tn

n
mt   

Therefore, the strongest transmitted wavelength (as measured in air) is 
),2(nm551λ  m  which corresponds to green. 

 
35.57: For maximum intensity, with a half-cycle phase shift, 
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The second bright ring is when :1m  

 mm.0.910m1010.9
2

m)(0.952m)1080.5()1)1(2( 4
7




 


r  

 So the diameter of the third bright ring is 1.82 mm. 
 



35.58: As found in Problem (35.51), the radius of the thm  bright ring is in general: 

    ,
2

λ)12( Rmr 
  

for .λR  Introducing a liquid between the lens and the plate just changes the 

wavelength from .λλ
n

  

 So:  
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35.59: a) Adding glass over the top slit increases the effective path length from that slit 
to the screen. The interference pattern will therefore change, with the central maximum 
shifting downwards. 

    b) Normally the phase shift is ,sin2 
λ
d

  but now there is an added shift from the 

glass, so the total phase shift is now 
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 So the intensity becomes .))1(sin(
λ
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cos 2
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 c) The maxima occur at )1(λsin))1(sin(
λ

 nLmdmnLd   

 
35.60: The passage of fringes indicates an effective change in path length, since the 
wavelength of the light is getting shorter as more gas enters the tube. 
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 So here:  
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35.61: There are two effects to be considered: first, the expansion of the rod, and second, 
the change in the rod’s refractive index. The extra length of rod replaces a little of the air 
so that the change in the number of wavelengths due to this is given by: 
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 The change in the number of wavelengths due to the change in refractive index of 
the rod is: 

.73.12
m105.89

m)(0.0300min)00.1()minC00.5()C1050.2(2
λ
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 So the total change in the number of wavelengths as the rod expands is 
0.1422.173.12 N  fringes/minute. 

 
35.62: a) Since we can approximate the angles of incidence on the prism as being small, 
Snell’s Law tells us that an incident angle of θ  on the flat side of the prism enters the prism 
at an angle of ,nθ  where n  is the index of refraction of the prism. Similarly on leaving the 
prism, the in-going angle is Anθ   from the normal, and the outgoing, relative to the prism, 
is ).( Anθn   So the beam leaving the prism is at an angle of AAnθnθ  )(  from the 
optical axis. So .)1( Anθθ   
    At the plane of the source ,0S  we can calculate the height of one image above the source: 

).1(2)1()()tan(
2

 naAdAanaad   

    b) To find the spacing of fringes on a screen, we use: 
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36.3: The angle to the first dark fringe is simply: 

      θ  arctan 
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λ  = arctan .0.15
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36.4: m.105.91
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36.5: The angle to the first minimum is   = arcsin 







a
λ  = arcsin .48.6

cm12.00
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So the distance from the central maximum to the first minimum is just  tan1 xy  
cm.45.4)(48.6tancm)(40.0   

 
36.6: a) According to Eq. 36.2 
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m
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mθ λλ1)0.90(sinλ)(sin   

        Thus,      mm.105.80nm580λ
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    b) According to Eq. 36.7 
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36.7: The diffraction minima are located by ...,2,1,sin  maλm  
       m1.00m;0.2752Hz)(1250)sm(344λ  afv  
       ;6.55,3;4.33,2;0.16,1  θmθmm    no solution for 
larger m  
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    b) λsin a  
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36.9: aθ λsin   locates the first minimum 
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36.11: a) m.105.43
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xy  So the width of the 

brightest fringe is twice this distance to the first minimum, 0.0109 m. 

    b) The next dark fringe is at m0.0109
m103.50

m)106.33(m)2(3.00λ2
4

7

2 



 



a
xy . 

So the width of the first bright fringe on the side of the central maximum is the distance 
from ,yto 12y  which is m1043.5 3 . 
 



36.12: .)m1520(
m)(3.00m)1020.6(

m)1005.4(2
λ

2sin
λ

2 1
7

4

yyπ
x
yaaβ 















  

    a)   .760.0
2

)m1000.1()m1520(
2

:m1000.1
31

3 





 βy   

     0

2

0

2

0 822.0
760.0

)760.0(sin
2

)2(sin II
β
βII 















                                          

    b)   .28.2
2

)m1000.3()m1520(
2

:m1000.3
31

3 





 βy  

            .111.0
28.2

)28.2(sin
2

)2(sin
0

2

0

2

0 II
β
βII 















  

    c)   .80.3
2

)m1000.5()m1520(
2

:m1000.5
31

3 





 βy   

                  .0259.0
80.3

)80.3(sin
2

)2(sin
0

2

0

2

0 II
β
βII 















  

 

36.13: a) m.10.756
m102.40

m)10(5.40m)(3.00λ 3
4

7

1












a
xy  

    b)  .
2
λ

λ
22

λ
2sin

λ
2 1 π

ax
xπa

x
yπaaβ 


  

       .mW1043.2
2

)2(sin)mW1000.6(
2

)2(sin 26
2

26
2

0
 



















π
π

β
βII  

 
 

36.14: a) .00sin2:0  o

λ
a

  

    b) At the second minimum from the center .4λ2
λ

2sin
λ

2 π
a

πaθπaβ   

    c) 1910.7sin
m1000.6
m)1050.1(2sin

λ
2

7

4





 

πθπaβ rad. 

 

36.15: m.1036.524.0sin
2

m)1020.3(2sin2λsin
λ

2 6
4




















aa  

 



36.16: The total intensity is given by drawing an arc of a circle that has length 0E  and 
finding the length of the cord which connects the starting and ending points of the curve. 
So graphically we can find the electric field at a point by examining the geometry as 
shown below for three cases. 

    a) .
2
λ

λ
2sin

λ
2  

a
aa  From the diagram, .2

2 00 EEE
E

p
p


   

    So the intensity is just: .42
2
0

0

2


III 






  

    This agrees with Eq. (36.5). 
 

 
    b) .2λ

λ
2sin

λ
2







 
a

aa  From the diagram, it is clear that the total amplitude 

is zero, as is the intensity. This also agrees with Eq. (36.5). 
 

 

    c) .3
2
λ3

λ
2sin

λ
2







 
a

aa  From the diagram, .
3
2

2
3 00 EEE

E
p

p


   So 

the intensity is just: 

.
9

4
3
2

020

2

III








  

This agrees with Eq. (36.5). 
 

 
 
 



36.17: a) 





25.3sin
rad0.56

m)1005.1(2sin2λsin
λ

2 4

 aa        

.m1068.6 7  

b) .)1036.9(
20.56

)20.56(sin
2

)2sin(
0

5
2

0

2

0 IIII 



















  

 
36.18: a) Ignoring diffraction, the first five maxima will occur as given by: 

.5,4,3,2,1for,
4
λarcsinλarcsinλsin 












 m

a
m

d
mmd    

 b) .2λ
λ

2sin
λ

2and,
2

λ
λ

2sin
λ

2 m
d

mddm
d

maa    

So including diffraction, the intensity: 
 

.
4/

)4/(sin
4/

)4/(sin
2

2cos
2

)2sin(
2

cos
2

0

2
2

0

2
2
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m
mI

m
mmIII   

So for 

;405.0
2

)2(sin:2;811.0
4

)4(sin:1 00

2

200

2

1 IIImIIIm 






















  

0)(sin:4;0901.0
43

)43(sin:3 0

2

400

2
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 IImIIIm





  

.0324.0
45

)45(sin:5 00

2

5 IIIm 










  

 

36.19: a) ,3If 
a
d  then there are five fringes: .2,1,0 m  

    b) The 6m  interference fringe coincides with the second diffraction minimum, so 
there are two fringes )5,4(  mm within the first diffraction maximum on one side 
of the central maximum. 
 
36.20: By examining the diagram, we see that every fourth slit cancels each other. 
 
 



36.21: a) If the slits are very narrow, then the first maximum is at 

.1sin
λ 1 
d   

    .0627.0
m1030.5
m1080.5arcsinλarcsin 4

7

1 
















 



d
  

Also, the second maximum is at 

2sin
λ 2 
d  

    .125.0
m105.30
m)102(5.80arcsinλ2arcsin 4

7

2 
















 



d
  

    b) ,1
2

cosbut
2

2)sin(
2

cos
2

2
0 












II since we are at the 2 slit maximum. So 

     
2

0

2

1

1
01

)sin(
λsin

)λsinsin(
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daI
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θaII





  

   .249.0
m)10(5.30m)1020.3(

m))10(5.30m)1020.3(sin(
0

2

44

44

01 III 










 




  

And 
 

   

.0256.0
m)1030.5(m)1020.3(2

))m10(5.30m)10(3.20(2sin

2
)sin(2

λsin
)λsinsin(

0

2

44

44
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36.22: We will use 
2

2
0 2

2)sin(
2

cos 










II , and must calculate the phases   and  . 

Using ,sin
λ

2and,sin
λ

2 






da

  we have: 

  a) .757.0)1.01(57.9and),0.177(10.12:rad1025.1 0
4 II     

  b) .268.0)2.03(116.3and),0.355(20.32:rad1050.2 0
4 II     

  c) .)114.0()2.43(139.2and),0.426(24.12:rad1000.3 0
4 II     

 



36.23: With four slits there must be four vectors in each phasor diagram, with the 
orientation of each successive one determined by the relative phase shifts. So: 
 

 
 

We see that destructive interference occurs from adjacent slits in case (ii) and from 
alternate slits in cases (i) and (iii). 
 

36.24: Diffraction dark fringes occur for ,λsin
a

md  and interference maxima occur 

for 
d

miλsin  . Setting them equal to each other yields a missing bright spot whenever 

the destructive interference matches the bright spots. That is: 

.3λλ
ddi

di mm
a
dm

a
m

d
m

  That is, the missing parts of the pattern occur for 

integers.for,3...9,6,3  mmmi  
 



36.25: a) Interference maxima:  Diffraction minima: 
mλθd i sin   and  .λsin nθa d   

        If  the thm interference maximum corresponds to the thn diffraction minimum then 
.di θθ   

or         
n
m

a
d
  

so  

mm.0.280mm)840.0(
3
1

 d
m
na  

    b) The diffraction minima will squelch the interference maxima for all 3
n
m  up to 

the highest seen order. For nm,630λ  the largest value of m will be when .90θ  

.1333
m1030.6
m1040.8

λ 7

4

max 



 

dm  

  .444
m)1030.6(3

m1040.8
λ 7

4

max 



 

an  

So after 444.,.,.3,2,1for1332.,.,.9,6,3  nmm  will also be missing. 
    c) By changing λ we only change the highest order seen. 

   
.666

3
2000

λ

.2000
m1020.4
m1040.8

λ

max

7

4

max







 



an

dm
 

So .666.,.,.3,2,1for1999.,.,.9,6,3  nm  
 



36.26: The third bright band is missing because the first order single slit minimum 
occurs at the same angle as the third order double slit maximum. 
 

    




91.1

tan cm90
cm3

θ

θ  

 
Single-slit dark spot: λsin θa  

nm(width)1050.1
91.1sin
nm500

sin
λ 4




θ
a  

Double-slit bright fringe: 
λ3sin d  

          ion)nm(separat1050.4
91.1sin
nm)500(3

sin
λ3 4




θ
d  

 
36.27: a) Find λsin: mθdd   
    cm10086.2sinλso,nm681λand3for4.78 4  mdm  
    The number of slits per cm is cmslits47901 d  
    b) 1st order:   1.19and)m10086.2()m10681(λsinso,1 69  dm  
    2nd order:  40.8and/2λsinso,2 θdm   
    c) For dm /4sin,4    is greater than 1.00, so there is no 4th-order bright band. 
36.28: First-order: λsin 1 θd  
       Fourth-order: λ4sin 1 θd  
 
 
 

   






4.38
94.8sin4sin4sin

λ
λ4

sin
sin

4

14

1

4

θ
θθ

θd
θd

 

 



36.29: a)   m10111.1cm 5
900
1 d  

       For .106.3λnm,700λ 4 d  The first-order lines are located at 
θd sin;λsin  is small enough for θθ sin  to be an excellent approximation. 

    b) m.2.50where,λ  xdxy  
The distance on the screen between 1st order bright bands for two different 

wavelengths is  xyddyxy )(λso,)(   
                    nm13.3m)(2.50m)103.00()m10111.1( 35    

 
36.30:
 a)

slits.1820
m)106.5627m102(6.5645

m105645.6
λ

λ
λ
λ

77

7











 



m
NNmR  

 b)     





 

d
md λsin)mslits000,500()mmslits500( 111   

.0137.0
41.0160500,000)m)105627.6()2((sin

41.0297500,000)m)105645.6()2((sin
71

2

71
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θ




 

 

36.31: ))396.0((arcsin
m101.60

m)10m(6.328arcsinλarcsin 6

7

m
d

m


















 



  

 .3.52:2;3.23:1 1   mm  All other m-values lead to angles greater than 
.90o  

 

36.32: m.1000.2
m1000.5

1cmslits5000 6
15


 


 d  

 a) m.1067.4
1

13.5sin m)1000.2(sinλλsin 7
6










m
dmd   

 b) .8.27
m102.00
m)1067.4(2arcsinarcsin:2 6

7
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d
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36.33: :Thenm.1086.2
m1050.3

1mmslits350 6
15


 


 d  

 
.1.33:3;3.21:2;5.10:1

))182.0((arcsin
m102.86
m)1020.5(arcsinλarcsinλsin 6

7




















 







mmm
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36.34:   .mdd λsinand,m.1086.2
m1050.3

1mmslits350 6
15 


 

 

 

.5.228.243.47

.3.47
m102.86
m)1000.7(3arcsinλ3arcsin

.8.24
m102.86
m)1000.4(3arcsinλ3arcsin:3

.13.605.818.14

.18.14
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m1000.7arcsinλarcsin
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36.35: m.1050.2
m1000.4

1cmslits4000 6
15


 


 d  So for the - hydrogen 

line, we have: 

 
.

.
.
.

6

 31.6:2;15.2:1

)((0.262)arcsin
m10502

)m10566(arcsinλarcsin

1

7




















 



θmθm

mm
d

m
 

And for the - hydrogen line, the angle is given by: 

 
.77.8b),00.4a)so,;9.22:2;2.11:1

).)194.0((arcsin
m102.50
m)1086.4(arcsinλarcsin

211
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36.36: 
178.0
8002.587

nm)587.8002nm9782.587(
nm8002.587

λ
λ

λ











m
NNm  

   .
cm
slits2752

cm20.1
3302

cm1.20

slits.2330




N

N
 

 
36.37: For x-ray diffraction, 

 m.1032.2
21.5sin2

m)1050.8(2
sin2
λλsin2 10

11










dmdmd


  

 



36.38: For the first order maximum in Bragg reflection: 

 m.1059.5
1

39.4sinm)1040.4(2sin2λλsin2 10
10










m
dmd   

 
36.39: The best resolution is 0.3 arcseconds, which is about .1033.8 5   

 a) m.0.5m46.0
)10sin(8.33

m)105.5(22.1
sin

λ22.1
5

7

1





 




D  

 b) The Keck telescopes are able to gather more light than the Hale telescope, and  
hence they can detect fainter objects. However, their larger size does not allow them to 
have greater resolutionatmospheric conditions limit the resolution. 
 

36.40: mm.2.3m1031.2
)60/1sin(

)m105.5(22.1
sin

λ22.1 3
7

1




 



D  

 

36.41: 
m102.8
m101.2m)036.0(22.122.1

sin
λ22.1λ22.1sin 4

6

1
1 




W
hλD

D 


 m.88.1 D  
 

36.42: 
22.1

)10(1.00m)1000.8(
22.122.1

sinλλ22.1sin
86

11
1




 DD
D

  

  cm.6.56m0656.0λ   
 

36.43: .102.0
m107.4
m1020.622.1λ22.1sin 6

7

1 



 



D
  The screen is 4.5 m away, so the 

diameter of the Airy ring is given by trigonometry: 
 cm.8.91)102.0()m5.4(2sin2tan22  θxθxyD  
 
 
36.44: The image is 25.0 cm from the lens, and from the diagram and Rayleigh’s criteria, 
the diameter of the circles is twice the “height” as given by: 

 mm.0.115m1015.1
m25.0

)m 10m)(8.00180.0(222||2 4
3







 


s
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s
syD  

 

36.45: 
W
RλD

D
λ22.1

sin
22.1λ22.1sin

1
1 


  

 m.45.1
m102.50
m105.93m)100.5(22.1 5

11
7 




   

 



36.46: m.429
)m101.22(5.50
m)m)(0.07201000.4(

λ22.1
λ22.1sin 7

3

1 



 

yDs
s
y

D
  

 
36.47: Let y be the separation between the two points being resolved and let s be their 

distance from the telescope. Then the limit of resolution corresponds to 1.22
s
y

D


λ  

    a) Let the two points being resolved be the opposite edges of the crater, so y is the 
diameter of the crater. For the moon, m.108.3 8s  
    Dsy λ22.1  
    Hubble:  D = 2.4 m and 400λ  nm gives the maximum resolution, so y = 77 m 
    Arecibo:  D = 305 m and 6101.1;m75.0λ  y  m 

    b) 
λ22.1

yDs   

    Let 30.0y (the size of a license plate) 
    km1500m)]100[(1.22)(40m)(2.4m)30.0( 9  s  
36.48: Smallest resolving angle is for short-wavelength light(400 nm) 

  rad1061.9
m5.08

m10400)22.1(λ22.1 8
9








D

  

 

  
R

mi000,10
  

 

 km107.1
rad106.9

km000,16mi000,10 11
8 


 

R  

This is less than a light year, so there are no stars this close. 
 
 
36.49: Let y be the separation between the two points being resolved and let s be their 
distance from the telescope. The limit of resolution corresponds to 1.22 syD λ  
    m1005.4ly28.4 16s  
    Assume visible light, with m400λ  
    m102.0m)(10.0m10(4.05m)10400(22.1λ22.1 9169  Dsy  
    The diameter of Jupiter is m,1038.1 8 so the resolution is insufficient, by about one 
order of magnitude. 
 
 



36.50: a) For dark spots, ,mθa λsin  so .1sin aθ   Heating the sheet causes the slit 
width to increase due to thermal expansion, so sin and hence   will decrease. 
Therefore the bright region gets narrower. 
    b) At the lower temperature: 

  
nm002,80

35809.0sin
nm500

35809.0
cm800

cm5tanwhere
sin
λ

1

11
1

1









a

a 
  

At the higher temperature:  

  35802.0
cm800

cm001.0cm5tan 22 


    

      nm018,80
35802.0sin

nm500
sin
λ

1
1

2 


aa


 

Thermal expansion: Taa  1  

  
16

1

105.2

C)nm)(80002(80,
nm002,80nm018,80
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36.51: a)  .7071.0sin
λsin

)λsinsin(
2

120 
x

x
θa
θaII


  Solving for x through 

trial and error, and remembering to use radians throughout, one finds 39.1x  rad and 
,2  Also,rad.78.22    x  and 

    .λ442.0
rad2
rad78.2λ

2
λsinsin

λ
2

aaa
a









  

  

    i) .25.3rad0.446rad223.0221.0sin2
λ

  a  

    ii) ..110rad0.177rad0886.00885.0sin5
λ

  a  

    iii)  .5.07rad0.885rad0443.00442.0sin10
λ

  
a  

  

    b) For the first minimum, .λsin 0 a
   

    i)  .2.60rad05.12rad524.0
2
1arcsin2

λ 00 





 a  

  

    ii) .23.0rad402.02rad201.0
5
1arcsin5

λ 00







 a  

    iii) .11.5rad200.02rad100.0
10
1arcsin10

λ 00







 a  

    Both methods show the central width getting smaller as the slit width a is increased. 
 
36.52: If the apparatus of Exercise 36.4 is placed in water, then all that changes is the 

wavelength 








33.1
m1091.5λ2λ22:So.λλλ

3

1 n
D
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a
xyD
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mm.4.44m1044.4 3    
 
36.53: aθ λsin   locates the first dark band 

aa
liquid

liquid
air

air

λ
sin;λsin    

 4836.0
sin

sin
λλ

air

liquid
airliquid 













 

 07.24836.01λλ so(Eq.33.5),λλ liquidairair  nn  
 



36.54: For bright spots, λsin1 N  
 Red: nm700sin R

1 θN  
 Violet: nm400sin V

1 θN  

     
4
7

sin
sin


V

R


  

   
4
7

sin
)15sin(

1515

V

RVR











V

V

 

 Expand: 47
sin

15sincos15cossin

V

VV 


θ
θθ  

  4715sincot15cos V  θ  
   3.18330.0tan VV θθ  
 
   3.33153.1815VR θθ  
 
Line density: nm700sin R

1 N  

 
cmlines7840

mlines1084.7
m10700

3.33sin
nm700

sin 5
9

R






 

θN
 

The spectrum begins at 18 o3. and ends at o3.33  
 

36.55:  a) m.1080.1
m103.60

m)10m)(5.4020.1(λ 3
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1












a
xy  

    b) 39.1
λ
sin

2
1

λsin
)λsinsin(


θa

a
a 


  

    
mm.0.797m1097.7)1064.6)(m20.1(sintan

1064.6
m)10(3.60

m)1040.5)(39.1(sin

44
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xxy
 

 



36.56: a) .sin
2

0 









γ
γII The maximum intensity occurs when the derivative of the 

intensity function with respect to  is zero. 

 

γ.γ

γγγ
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γ
γ

γ
γ

γ
γ

γ
γ

γ
γ

dγ
dI
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tan
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0sincossin2sin

2

2

2

0

































 

 
 
 
 
 
 
 
 
    b) 
 
 
 

 
 

    The graph above is a plot of f( ) =  tan . So when it equals zero, one has an 
intensity maximum. Getting estimates from the graph, and then using trial and error to 
narrow in on the value, we find that the three smallest  -values are  = 4.49 rad 7.73 rad, 
and 10.9 rad. 
 



36.57:  The phase shift for adjacent slits is .
2
λ

λ
2sin

λ
2

d
dθθd


   

    So, with the principal maxima at phase shift values of πm,2 and )1(N   minima 
between the maxima, the phase shift between the minima adjacent to the maximum, and 

the maximum itself, must be .2
N


  

    Therefore total phase shifts of these minima are .22
N

m 
   

    Hence the angle at which they are found, and the angular width, will be: 
 

 .λ2λλ22
2
λ

dN
θ

dNd
m

N
m

d







  




  

 
 



36.58: a) .222
yx ppp EEE  So, from the diagram at right, 

 we have: 

   

).cos21()cos21(

)cos21)(sin(cos
)cossin2(sin)coscos2(

)2sin(sin)2coscos1(

0
2

2
0

2

222
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EE
E
E

E
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p
p
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    b) .
λ
sin2cos21sin2

2

0 















θdIIθ
λ
d

p
  This is graphed below: 

 
 
    c) (i) At .9))0cos(21(,0 0

20
0 IIIθ p   

    (ii) The principal maximum is when λsin2
λ
sin2

0 mθdmθdI    

    (iii) & (iv) The minima occur at 2 cos 
3

2
λ
sin21

λ
sin2 mθdd 







  

    ,
3
λsin mθd  with m not divisible by 3. Thus there are two minima between every 

principal maximum. 
 

    (v) The secondary maxima occur when cos .
9

1
λ
sin2 max

0
IIIθd

p 





   

.
2
λsin

λ
sin2Also mθdmθd

   

    All of these findings agree with the slit-N statements in Section 35.5. 
    d) Below are phasor diagrams for specific phase shifts. 
 



36.59: a) For eight slits, the phasor diagrams must have eight vectors: 
 

 
 

    b) For ,
4

7and,
4

5,
4

3    totally destructive interference occurs between 

slits four apart. For ,
2

3
   totally destructive interference occurs with every second slit. 

 

 
 
 



36.60: For six slits, the phasor diagrams must have six vectors. 
    a) Zero phase difference between adjacent slits means that the total amplitude is 

,6E and the intensity is .36I  
 

    
 b) If the phase difference is ,2  then we have the same phasor diagram as above, and 
equal amplitude, ,6E and intensity, .36I  
    c) There is an interference minimum whenever the phasor diagrams close on 
themselves, such as in the five cases below. 
 

 
 
 
36.61: a) For the maxima to occur for N  slits, the sum of all the phase differences 
between the slits must add to zero (the phasor diagram closes on itself). This requires 
that, adding up all the relative phase shifts, ,2 mN    for some integer m . Therefore 

,2
N
m

   for m not an integer multiple of ,N  which would give a maximum. 

    b) The sum of N  phase shifts 
N
m 2

  brings you full circle back to the maximum, 

so only the 1N  previous phases yield minima between each pair of principal maxima. 
 
 



36.62: As shown below, a pair of slits whose width and separation are equal is the same 
as having a single slit, of twice the width. 

 .sin
λ

2so,sin
λ

2   θaθd   

 
 
 So then the intensity is 

,
)2(

)2(sinsin

))2cos()2sin(2(
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2

02

2

0

2
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III

III
 

 ,sin
λ

)2(2where  a
  which is Eq. (35.5) with double the slit width. 
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one barely gets the 3rd order. 
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36.64: a) As the rays first reach the slits there is already a phase difference between 

adjacent slits of .
λ
sin2  d  

 This, added to the usual phase difference introduced after passing through the 
slits, yields the condition for an intensity maximum: 
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So the third order does not contain the violet end of the spectrum, and therefore only the 
first and second diffraction patterns contain all colors of the spectrum. 
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    So for .1.70:3and,8.38:2,3.18:1 ooo   mmm  No larger m  values 
yield answers. 
 
36.67: a) .90oratmaximum1Place.λsin st   md  

    
maximum.principalsingleaonly

isthere,λif,Thus."beyond"maximumfirsttheputsthisλIfλ  d,d.d
 

    b)  2scalesjustThis.
λ

sin2path 







d radians by the fraction the wavelength is 

of the path difference between adjacent sources. 
 If we add a relative phase  between sources, we still must maintain a total phase 
difference of zero to keep our principal maximum. 

  





 

d
d



2
λsinor  

λ
sin20 1

path  

    c) m0200.0
14

m280.0
d (count the number of spaces between 15 points). 
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36.69: To resolve two objects, according to Rayleigh’s criterion, one must be located at 
the first minimum of the other. In this case, knowing the equation for the angle to the first 
minimum, and also the objects’ separation and distance away, the sine of the angle 
subtended by them is calculated to be: 
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36.71: Diffraction limited seeing and Rayleigh’s criterion tell us: 
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But now the altitude of the astronaut can be calculated from the angle (above) and the 
object separation (75 m). We have: 
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    000,10  times the diameter of the earth! Not enough resolution to see an earth-like 
planet! 
    3  times the distance from the earth to the sun. 
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 is small compared to the size of the planet. 

 



36.73: a) From the segment ,yd  the fraction of the amplitude of 0E  that gets through is 
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    b) The path difference between each little piece is 
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    c) So the total amplitude is given by the integral over the slit of the above. 
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36.74: a) Recall that the expression for the amplitude of a traveling wave is 
cos ).( tkx   Thus each source can be thought of as a traveling wave evaluated at 

Rx  with a maximum amplitude of .0E  However, each successive source will pick up 

an extra phase from its respective pathlength to point 







λ
sin2  d.P  which is just 

,2  the maximum phase, scaled by whatever fraction the path difference, ,sin d is of 
the wavelength, λ.By adding up the contributions from each source (including the 
accumulating phase difference) this gives the expression provided. 
    b) ).sin()cos()(  ntkRintkRe ntkRi   
    The real part is just cos ).(  ntkR   
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    Putting everything together: 

  

























2222

2222
0

1

0

))1((
0

)(
0

sincossincos
sincossincos)sin()cos(

)ee(

)ee(e
22

22
2














ii
iintkRintkRE

EeEE

NNNN

ii

iNN

n

NtkRintkRi

iN

 

Taking only the real part gives .
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    b) The location of the first minimum is when the numerator first goes to zero at 

.2or
2 minmin N
N   The width of the central maximum goes like ,2 min  so it is 

proportional to .1
N

 

    c) Whenever  nN


2
where n  is an integer, the numerator goes to zero, giving a 

minimum in intensity. That is, I  is a minimum wherever .2
N
n

   This is true 

assuming that the denominator doesn’t go to zero as well, which occurs when 

,
2

 m where m  is an integer. When both go to zero, using the result from part(a), 

there is a maximum. That is, if 
N
n is an integer, there will be a maximum. 

    d) From part  c), if 
N
n  is an integer we get a maximum. Thus, there will be 

1N minima. (Places where 
N
n  is not an integer for fixed N  and integer n .) For 

example, 0n  will be a maximum, but 1.,..2,1  Nn  will be minima with another 
maximum at .Nn   
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37.1: If O  sees simultaneous flashes then O will see the )AA(   flash first since O 
would believe that the A  flash must have traveled longer to reach O , and hence started 
first. 
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        The clock on the plane shows the shorter elapsed time. 
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37.6: 667.1γ   a) s.300.0
)800.0(γ
m1020.1

γ

8

0 






c
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       b) m.107.20)(0.800s)300.0( 7c  
       c) s.180.0γs300.00 t  (This is what the racer measures your clock to read at 

that instant.) At your origin you read the original s.5.0
)sm10(3(0.800)

m1020.1
8
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       Clearly the observes (you and the racer) will not agree on the order of events! 
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 The least time elapses on the rocket’s clock because it had to be in two inertial 
frames whereas the earth was only in one. 
 
37.8: a) The frame in which the source (the searchlight) is stationary is the spacecraft’s 
frame, so 12.0 ms is the proper time. b) To three figures, .cu   Solving Eq. (37.7) for 

cu in terms of ,γ  
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so the results agree but the particle’s 

lifetime is dilated in the frame of the earth. 
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37.14: Multiplying the last equation of (37.21) by u and adding to the first to eliminate t  
gives 
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and multiplying the first by 2c
u  and adding to the last to eliminate x gives  
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),(γand)(γso 2cxutttuxx   
which is indeed the same as Eq. (37.21) with the primed coordinates replacing the 

unprimed, and a change of sign of u. 
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37.16: ).)54(if35γ(667.1γ cu   a) In Mavis’s frame the event “light on” has 
space-time coordinates 0x  and 00.5t s, so from the result of Exercise 37.14 or 

Example  37.7,  )(γ tuxx  and 
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 b) The 5.00-s interval in Mavis’s frame is the proper time 0t  in Eq. (37.6), so 

,s33.8γ 0  tt as in part (a). 
 c) 91000.2)800.0()s33.8( c  m, which is the distance x found in part (a). 
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37.18: Starting from Eq. (37.22), 
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from which Eq. (37.23) follows. This is the same as switching the primed and unprimed 
coordinates and changing the sign of u . 
 
37.19: Let the unprimed frame be Tatooine and let the primed frame be the pursuit ship. 
We want the velocity v  of the cruiser knowing the velocity of the primed frame u  and 
the velocity of the cruiser v  in the unprimed frame (Tatooine). 
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 the cruiser is moving toward the pursuit ship at .385.0 c  
 



37.20: In the frame of one of the particles, u and v are both c9520.0  but with opposite 
sign. 
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 Thus, one particle moves at a speed c9988.0  toward the other in the other 
particle’s frame. 
 

37.21: .784.0
)650.0)(950.0(1

650.0950.0

1 2

ccc

c
vu
uvv 










  

 

37.22: a) In Eq.(39-24), 
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   moving opposite the rocket, i.e., away from Arrakis. 
 
37.24: Solving Eq. (37.25) for cu , (see solution to Exercise 37.25) 
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and so (a) if   ,0202.0,98.00  cuff  the source and observer are moving away 
from each other. b) if   ,882.0,40  cuff  they are moving toward each other. 
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37.26: Using  ccu 53600.0   in Eq. (37.25) gives 
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       b) If  the force is perpendicular to velocity then denominator is constant 
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37.28: The force is found from Eq. (37.32) or Eq. (37.33). (a) Indistinguishable from 

N.145.0 maF  b) .N75.1γ3 ma  c) N.7.51γ3 ma  d) N,145.0γ ma  
N.03.1,N333.0  
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37.30: a)   s.m1021.4and140.0so,01.1γ 8 vcv  b) The relativistic 
expression is always larger in magnitude than the non-relativistic expression. 
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37.34: a) .)1007.4()1γ( 232

f mcmcKW   b) ( .79.4)γγ 22
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 c) The result of part (b) is far larger than that of part (a). 
 
37.35: a) Your total energy E increases because your potential energy increases; 
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 This increase is much, much too small to be noticed. 
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 Energy increases so mass increases. The mass increase is much, much too small 
to be noticed. 
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37.38: The work that must be done is the kinetic energy of the proton. 
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the sum of the rest mass energy and the classical kinetic energy. 
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37.44: a) According to Eq. 37.38 and conservation of mass-energy 
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b) According to Eq. 37.36, the kinetic energy of each proton is 
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c) The rest energy of 0 is   


J101.60
MeV00.128282

13)sm10kg)(3.001075.9(mc   
MeV.548  

 
d) The kinetic energy lost by the protons is the energy that produces the ,0  
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37.46: a) The fraction of the initial mass that becomes energy is 
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37.47: a) kg102.4)sm10(2.998J)108.3(, 9282622  cEmmcE  
1 kg is equivalent to 2.2 lbs, so 6106.4 m  tons 
b) The current mass of the sun is kg,1099.1 30  so it would take it 

y101.5s104.7)skg10(4.2kg)1099.1( 1320930  to use up all its mass. 
 
37.48: a) Using the classical work-energy theorem we obtain 
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b) Using the relativistic work-energy theorem for a constant force (Eq. 37.35) we obtain 
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37.50: One dimension of the cube appears contracted by a factor of ,
γ
1  so the volume in 
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37.52: The change in the astronaut’s biological age is 0t in Eq. (37.6), and t  is the 
distance to the star as measured from earth, divided by the speed. Combining, the 
astronaut’s biological age is 
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37.54: a) Note that the initial velocity is parallel to the x-axis. Thus, according to Eqn. 
37.30, 
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Now note that the initial velocity is perpendicular to the y-axis. Thus, according to Eqn. 
37.33, 
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b) The angle between the force and acceleration is given by 
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37.60: a) sm0.80 is non-relativistic, and J.186
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37.62: a) From Eq. (37.37), 
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37.64: Setting 0x  in Eq. (37.21), the first equation becomes utx   and the last, 
upon multiplication by ,c  becomes .cttc  Squaring and subtracting gives 
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 There’s no physical solution for .tcx
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37.66: a) m.1080.1)sm103.00s)(0.600)(100( 108   b) In Sebulbas frame, the 
relative speed of the tachyons and the ship is ,40.3 c  and so the time  s1002t  

s.118
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c
 At 2t  Sebulba measures that Watto is a distance from him of 

m.1012.2)sm103.00s)(0.600)(118( 108   c) From Eq. (37.23), with 
,43.2,600.0 and00.4 cvcucv   with the plus sign indicating a direction in the 

same direction as Watto’s motion (that is, away from Sebulba). d) As the result of part 
(c) suggests, Sebulba would see the tachyons moving toward Watto and hence 3t  is the 
time they would have left Sebulba in order to reach Watto at the distance found in part 

(b), or 118 s s,89
43.2

m1012.2 10





c

and so Sebulba receives Watto’s message before 

even sending it! Tachyons seem to violate causality. 
 



37.67: Longer wavelength (redshift) implies recession. (The emitting atoms are moving 

away.) Using the result of Ex. 37.26: 
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37.68: The baseball had better be moving non-relativistically, so the Doppler shift 
formula (Eq. (37.25)) becomes )).(1(0 cuff   In the baseball’s frame, this is the 
frequency with which the radar waves strike the baseball, and the baseball reradiates at f. 
But in the coach’s frame, the reflected waves are Doppler shifted again, so the detected 
frequency is )(2so)),(21())(1())(1( 00

2
0 cuffcufcufcuf  and the 

fractional frequency shift is ).(2
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37.69: a) Since the two triangles are similar: 

.2 EmcAH   

b) .)( 22222 pcmcEAHO   
c) .2mcEK   

The kinetic energy can be obtained by the difference  between the hypoteneuse and 
adjacent edge lengths. 
 

37.70: a) As in the hint, both the sender and the receiver measure the same distance. 
However, in our frame, the ship has moved between emission of successive wavefronts, 
and we can use the time fT 1 as the proper time, with the result that .00 fff   
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   c) .MHz183,MHz52853.1γ 000  ffff The shift is still bigger than 0f , 
but not as large as the approaching frequency. 
 
 



37.71: The crux of this problem is the question of simultaneity. To be “in the barn at one 
time” for the runner is different than for a stationary observer in the barn. 

The diagram below, at left, shows the rod fitting into the barn at time 0t , 
according to the stationary observer. 

The diagram below, at right, is in the runner’s frame of reference. 
The front of the rod enters the barn at time 1t and leaves the back of the barn at 

time .2t  
However, the back of the rod does not enter the front of the barn until the later  

time .3t  
 

 
 
 
 



37.72: In Eq. (37.23), ),(, ncvVu   and so 
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37.74: a) The speed v is measured relative to the rocket, and so for the rocket and its 
occupant, .0v  The acceleration as seen in the rocket is given to be ,ga   and so the 
acceleration as measured on the earth is 
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c) ,1/ 22 cudtdttd  so the relation in part (b) between dt and du, 
expressed in terms of td  and du, is 
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Integrating as above (perhaps using the substitution cuz  ) gives 
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For those who wish to avoid inverse hyperbolic functions, the above integral may be 
done by the method of partial fractions; 
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d) Solving the expression from part (c) for 1v in terms of ),tanh()(, 111 ctgcvt   so that 

),(cosh1)(1 1
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Using this in the expression found in part (b), 
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which may be rearranged slightly as 
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If hyperbolic functions are not used, 1v  in terms of 1t   is found to be 
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where u  is the velocity of the center of mass and v  is the orbital velocity. 
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   sm1063.2sm1025.5 44  vuvu  
         sm1031.1 4u moving toward at 13.1 s.km  
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Also the gravitational force between them (a distance of 2R) must equal the 
centripetal force from the center of mass: 
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37.76: For any function ),( txff  and ),,(),,( txtttxxx   let  ),( txF  
)),(),,(( txttxxf   and use the standard (but mathematically improper) notation 
).,(),( txftxF   The chain rule is then 
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In this solution, the explicit dependence of the functions on the sets of dependent 
variables is suppressed, and the above relations are then 
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  To find the second time derivative, the chain rule 

must be applied to both terms; that is, 

.

,

2

22

2

2

2

t
E

tx
Ev

t
E

t

xt
E

x
Ev

x
E

t































 

Using these in ,2
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  collecting terms and equating the mixed partial derivatives gives 
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and using this and the above expression for 2
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b) For the Lorentz transformation, .γand /,,γ 2 
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and the second partials are (again equating the mixed partials) 
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Substituting into the wave equation and combining terms (note that the mixed 

partials cancel), 
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37.77: a) In the center of momentum frame, the two protons approach each other with 
equal velocities (since the protons have the same mass). After the collision, the two protons 
are at rest─but now there are kaons as well. In this situation the kinetic energy of the 
protons must equal the total rest energy of the two kaons  22

cm 2)1γ(2 cmcm kp  

.526.11γcm 
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m
m  The velocity of a proton in the center of momentum frame is then 
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2
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To get the velocity of this proton in the lab frame, we must use the Lorentz 
velocity transformations. This is the same as “hopping” into the proton that will be our 
target and asking what the velocity of the projectile proton is. Taking the lab frame to be 
the unprimed frame moving to the left, cmcm and vvvu  (the velocity of the projectile 
proton in the center of momentum frame). 
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b) .526.2
MeV)7.493(2

MeV2494
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lab 
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K
 

c) The center of momentum case considered in part (a) is the same as this 
situation. Thus, the kinetic energy required is just twice the rest mass energy of the kaons. 

MeV.987.4MeV)7.493(2cm K This offers a substantial advantage over the fixed 
target experiment in part (b). It takes less energy to create two kaons in the proton center 
of momentum frame. 
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38.2: a) eV.107.49J0.0120s)10(20.0W)(0.600 163  Pt  
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    c) λ  is of the same magnitude as a nuclear radius. 
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38.6:  








  m102.72

Hz101.45 
λ 7

15

0

chhchfhfE   

    eV.1.44J102.30 19    
 



38.7: a) Hz105.0λ 14 cf  
    b) Each photon has energy J.10.313 19 hfE   
    Source emits sphotons102.3photons/s)10(3.31)sJ(75sosJ75 2019    
    c) No, they are different. The frequency depends on the energy of each photon and the 
number of photons per second depends on the power output of the source. 
 
38.8: For red light nm700λ   

eV1.77
J101.6

1eVJ102.84

m)10(700
)sm10(3.00s)J10(6.626
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38.9: a) For a particle with mass, .4means2.2 1212

2 KKppmpK   
    b) For a photon, .2means2. 1212 EEpppcE   
 
38.10:  hfKmax  
Use the information given for :findtonm400λ   

J103.204

eV)J10(1.602eV)(1.10
m10400
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Now calculate :nm300λformax K  

eV2.13J103.418

J103.204
m10300
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38.11: a) The work function 00 eV
λ

eV 
hchf  

J.107.53

V)(0.181C)10(1.60
m102.54

s)m10(3.00s)J10(6.63
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The threshold frequency implies 
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th  thλλ
 

m.102.64
J107.53

)sm10(3.00s)J10(6.63λ 7
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    b) eV,4.70J107.53 19    as found in part (a), and this is the value from Table 
38.1. 
 
38.12: a) From Eq. (38.4), 

V.2.7V2.3
m)10(2.50

s)m10(3.00s)eV10(4.136
λ
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hc
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    b) The stopping potential, multiplied by the electron charge, is the maximum kinetic 
energy, 2.7 eV. 

    c) s.m109.7
kg)10(9.11

V)(2.7C)102(1.6022 5
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38.13: a)  )sm10(3.00)smkg10(8.24 828  pcE  

         eV1.54
eVJ101.60
J102.47J102.47 19

19
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    b) m.108.05
s)mkg10(8.24

s)J10(6.63λ
λ

7
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    This is infrared radiation. 
 
38.14: a) The threshold frequency is found by setting V = 0 in Eq. (40.4), .0 hf   

    b) eV.3.34105.35
m1072.3λ

19
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38.15: a) .eV1.44J102.31
m108.60

)sm10(3.00s)J10(6.63
λ

19
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834





 



hcE  

So the internal energy of the atom increases by  eV1.44eV6.52toeV44.1 E  
eV.5.08  

    b) eV.2.96J104.74
m104.20

s)m10(3.00s)J10(6.63
λ

19
7
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hcE  

    So the final internal energy of the atom decreases to 
eV.5.64eV2.96eV2.68 E  

 
38.16: a) eV.201  E  b) The system starts in the n = 4 state. If we look at all paths 
to n = 1 we find the 4-3, 4-2, 4-1, 3-2, 3-1, and 2-1 transitions are possible (the last three 
are possible in combination with the others), with energies 3 eV, 8 eV, 18 eV, 5 eV, 15 
eV, and 10 eV, respectively. c) There is no energy level 8 eV above the ground state 
energy, so the photon will not be absorbed. d) The work function must be more than 3 
eV, but not larger than  
5 eV. 
 

38.17: a) 





  22

1
2
1 

λ
1

n
R  (Balmer series implies final state is n = 2) 

nm433m104.33m
)1021(1.10
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    b) Hz106.93
m104.33

sm103.00
λ

14
7
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cf   

    c) eV.2.87 hfE  
 

38.18: Lyman: largest is nm,122
)m10(1.097

)34()34(λ ,2 17 


 R
n in the ultraviolet. 

Smallest is nm,91.21λ, 
R

n  also ultraviolet. Paschen: largest is 

nm,1875)7144(λ,4 
R

n in the infrared. Smallest is nm,8209λ, 
R

n also 

infrared. 
 
 



38.19: 
m105.890

)sm10(3.000s)J10(6.626
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eV.102.00
.eV2.107J103.371

m105.896
)sm10(3.000s)J10(6.626
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38.20: a) Equating initial kinetic energy and final potential energy and solving for the 
separation radius r, 

m.105.54
C)J10(4.78

C)10(1.60(184)
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    b) The above result may be substituted into Coulomb’s law, or, the relation between 
the magnitude of the force and the magnitude of the potential energy in a Coulombic field 
is 

N.13.8
m)10(5.54
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38.21: a)  
)m1050.6(4
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MeV.3.63eV103.63J105.81 613  U  
    b) MeV.3.63J105.81 13

212211  UKUKUK  

    c) .sm101.32
kg106.64

J)102(5.812
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38.22: Hz.103.09
λ

andnm97.0λso,
)4(
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λ
1 15
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cfR  

 



38.23: a) Following the derivation for the hydrogen atom we see that for 3Be  all we 
need do is replace Then.4by 22 ee  

. eV13.6016)(Be)H(16
8

)4(1)(Be 2
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22

22

2
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n
EE

hn
em

ε
E nnn  

So for the ground state, eV.218)(Be3
1 E  

    b) The ionization energy is the energy difference between the 1and  nn  levels. 
So it is just 218 eV for 3Be , which is 16 times that of hydrogen. 

    c) . 11)m10(1.7411
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So for m101.31
4
11)m10(1.74

λ
1,1to2 818 






  nn  

m.107.63λ 9  This is 16 times shorter than that from the hydrogen atom. 
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38.24: a), b) For either atom, the magnitude of the angular momentum is 
2
h

 

s.mkg101.05 234    
 
38.25: ,)eV6.13( 2nEn   so this state has .351.16.13 n  In the Bohr model.  

nL   so for this state .smkg103.163 234  L  
 
38.26: a) We can find the photon’s energy from Eq. 38.8 

J.104.58
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1)m10(1.097)sm10(3.00s)J10(6.631
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  The corresponding wavelength is nm.434λ  hc
E  

    b) In the Bohr model, the angular momentum of an electron with principal quantum 
number n is given by Eq. 38.10 

.
2
hnL   

Thus, when an electron makes a transition from n = 5 to n = 2 orbital, there is the 
following loss in angular momentum (which we would assume is transferred to the 
photon): 

s.J103.17
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s)J103(6.63
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)52( 34
34




 


π
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However, this prediction of the Bohr model is wrong (as shown in Chapter 41). 
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    b) Orbital period 4
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    c) number of orbits .102.8
s1022.1

s100.1 6
15
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38.28: a) Using the values from Appendix F, keeping eight significant figures, gives  

.m100973731.1 17 R  (Note: On some standard calculators, intermediate values in the 
calculation may have exponents that exceed 100 in magnitude. If this is the case, the 
numbers must be manipulated in a different order.) 

    b) Using the eight-figure value for 18101798741.2
λ

gives  hcRhcER  

eV.605670.13J   c) Using the value for the proton mass as given in Appendix F gives 
.m5970so,m100967758.1 117   RR  

 



38.29: kTEE
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s pse
n
n )(
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5 35   

 But   J10306.3eV66.20 18
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sE     

J103.14      

J10992.2eV70.18
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E

E p  

    a) .1015.1 33)K300KJ1038.1()J1014.3(

3

5 2319  


e
n
n

p

s  

    b) .1039.3 17)K600KJ1038.1()J1014.3( 2319  


e  

    c) .1082.5 9)K1200KJ1038.1()J1014.3( 2319  


e  
    d) The s5 state is not highly populated compared to the p3 state, so very few atoms 
are able to make the required energy jump to produce the 632.8 nm light. 
 
 

38.30: .)(
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    From the diagram .J10375.3
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s)m10000.3()J10626.6(
λ
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.J1000.4J10371.3J10375.3so

.J10371.3
m10896.5

s)m10000.3()J10626.6(
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221919
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    .944.0K).500K/1038.1()J1000.4(
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2 2322
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2/3    J
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 So more atoms are in the 212 p  state. 

 

38.31: .J1088.1
m1006.1

s)m1000.3()sJ1063.6(
λ
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hcE  

 
    Total energy in 1 second from the laser .J1050.7 3 PtE  So the number of 

photons emitted per second is .1000.4
J101.88
J1050.7 17

20

3
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38.32: 20.66 nm,632λandJ,103.14eV1.96eV18.70eV 19  

E
hc

f
c

in good 

agreement. 
 



38.33: 
min

max λ
hchfeVAC   

m1011.3
)V4000)(C1060.1(

)sm10s)(3.00J1063.6(λ 10
19

834

min












ACeV
hc  

This is the same answer as would be obtained if electrons of this energy were used. 
Electron beams are much more easily produced and accelerated than proton beams. 
 

38.34: a) kV.8.29V1029.8
λ

3 
e
hc  b) The shortest wavelength would correspond 

to the maximum electron energy, ,eV  and so .nm0414.0λ 
eV
hc

 

 
38.35: An electron’s energy after being accelerated by a voltage V is just .eVE   The 

most energetic photon able to be produced by the electron is just: 
V

λ
e
hc

E
hc

  

 .nm0829.0m1029.8
V)105.1)(C1060.1(

)sm1000.3)(sJ1063.6(λ 11
419

834





 




 

 

38.36: a) From Eq. (38.23), ,
)(

λ1cos
mch


 and so  a) 

nm,0.0500nm0542.0λ   

.137and,731.0
nm002426.0

nm0042.01cos    

    b) .3.82.134.0
nm002426.0

nm0021.01cos.nm0500.0nm0521.0λ    

    c) ,0λ  the photon is undeflected, 1cos   and .0  
 

38.37: )cos1(λλ 
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h  

 .)λmaximizetois180))(1(1(λλmax  chosen
mc
h
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h2λ   

 .m1014.7m)102(2.426m1065.6λ 111211
max

   
 



38.38: a)   m)10426.2()cos)(1λλb)nm.0691.0λ 12mc(h
eV
hc  

.nm0698.0λsom,1011.7)0.45cos1( 13    

    c) .keV8.17
λ





hcE  

 

38.39: )cos1(λλ 
mc
h  

mc
hλ 2λ;180,λλ    

 61070.9
λ

2
λ
λ 

mc
hΔ  

 
 
38.40: The change in wavelength of the scattered photon is given by Eq. 38.23 

   ).cos1(λ)cos1(
λλ

Δλ

λ
Δλ
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h
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Thus, 

 .m1065.2)11(
)100.0)(m/s1000.3)(kg1067.1(

)sJ1063.6(λ 14
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38.41: The derivation of Eq. (38.23) is explicitly shown in Equations (38.24) through  
(38.27) with the final substitution of 

).cos1(λλyieldingλandλ 
mc
hhphp  

 

38.42: .K1025.7
m10400
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38.43: mm.06.1m1006.1
K728.2

Km1090.2Km1090.2λ 3
33

m 





 


T
 This is in 

the microwave part of the electromagnetic spectrum. 
 
38.44: From Eq. (38.30),  

a) 





m

cf
λ

and,mm966.0
K00.3

Km10898.2λ
3

m .Hz1010.3 11   

Note that a more precise value of the Wien displacement law constant has been used. b) 
A factor of 100 increase in the temperature lowers mλ by a factor of 100 to 9.66 m  and 
raises the frequency by the same factor, to .Hz1010.3 13  c) Similarly, nm966λm   

.Hz1010.3and 14f  
 



38.45: a) lrATAeσH 24 ;   
41

42823

41

)KmW10671.5)(26.0)(m30.0(m)10(0.20
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K1006.2 4T  
    b) nm141λ;Km1090.2λ m

3
m  T  

Much of the emitted radiation is in the ultraviolet. 
 
38.46: (a) Wien’s law: T

k
m λ  

  nm97m107.9
K30,000

mK1090.2λ 8
3




 


m  

This peak is in the ultraviolet region, which is not visible. The star is blue because the 
largest part of the visible light radiated is in the violetblue part of the visible spectrum 
    (b) 4σATP  (Stefan-Boltzmann law) 
 

            
m102.8

)K000,30)(4(
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W105.67W)1086.3)(000,100(
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12
m106.96

m108.2
8

9

sunstar 



RR  

(c) The visual luminosity is proportional to the power radiated at visible wavelengths. 
Much of the power is radiated nonvisible wavelengths, which does not contribute to the 
visible luminosity. 
 

38.47: Eq. (38.32): for1...
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hcλIx  (38.31), which  is Rayleigh’s distribution. 

 
 



38.48: a) As in Example 38.10, using four-place values for the physical constants, 

,80.95
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hc  from which  

.1044.6λ)λ( 38
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    b) With T 2000 K and the same values for ,λandλ   
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and so   
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    c) With .1036.1λ)λ(and790.4
λ

,K6000 3
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hcT  

    d) For these temperatures, the intensity varies strongly with temperature, although for 
even higher temperatures the intensity in this wavelength interval would decrease. From 
the Wien displacement law, the temperature that has the peak of the corresponding 
distribution in this wavelength interval is 5800 K (see Example 38.10), close to that used 
in part (c). 
 
38.49: a) To find the maximum in the Planck distribution: 
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Its root is 4.965, so .
)965.4(

λ965.4
λ kT
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38.50: Combining Equations (38.28) and (38.30), 
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38.51: a) Energy to dissociate an AgBr molecule is just 
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    b) .m1020.1
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 hfE  

    e) Even though a 50-kW radio station emits huge numbers of photons, each individual 
photon has insufficient energy to dissociate the AgBr molecule. However, the individual 
photons in faint visible light do have enough energy. 
 
 

38.52:   a) Assume a non-relativistic velocity and conserve momentum 
λ
hmv    
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    c) .
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   Recoil becomes an important concern for small m and 

small   since this ratio becomes large in those limits. 
    d) 
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38.53: Given a source of spontaneous emission photons we can imagine we have a 
uniform source of photons over a long period of time (any one direction as likely as any 
other for emission). If a certain number of photons pass out though an area A, a distance 
D from the source, then at a distance 2D, those photons are spread out over an area 

4)2( 2  times the original area A (because of how surface areas of spheres increase). 
Thus the number of photons per unit area DECREASES as the inverse square of the 
distance from the source. 
 



38.54: a) ,λ0 E
hc

  and the wavelengths are: cesium: 590 nm, copper: 264 nm, 

potassium: 539 nm, zinc: 288 nm. b) The wavelenghts of copper and zinc are in the 
ultraviolet, and visible light is not energetic enough to overcome the threshold energy of 
these metals. 
 
 
38.55: a) Plot: Below is the graph of frequency versus stopping potential. 
 

 
 
    Threshold frequency is when the stopping potential is zero. 
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    b) Threshold wavelength is .m1052.6
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    d) The slope of the graph is meh
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38.56: a) See Problem 38.4: 
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38.57: a) Recall 
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    So the change in the stopping potential is an increase of 0.739 V. 
 
38.58: From Eq. (38.13), the speed in the ground state is ).sm1019.2( 6

1  Zv  Setting 

101
cv   gives Z = 13.7, or 14 as an integer. b) The ionization energy is 2ZE   (13.6 

eV), and the rest mass energy of an electron is 0.511 MeV, and setting 
100

2mcE   gives Z 

= 19.4, or 19 as an integer. 
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38.60: a) The change in wavelength of the scattered photon is given by Eq. 38.23 
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    b) Since the collision is one-dimensional, the magnitude of the electron’s momentum 
must be equal to the magnitude of the change in the photon’s momentum. Thus, 
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    c) Since the electron is non relativistic ),06.0(   
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38.61: a) kg.1069.1
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    b) The new energy levels are given by Eq. (38.18) with em  replaced by .rm  

    

.keV53.2eV1053.2

eV60.13
kg1011.9

1069.1

eV60.13
8

1

12

3

231

kg  28

222

4

2
0












 




















 















E
n

n

nm
m

hn
emE

e

rr
n 

 

    c) 
)sm10(3.00s)J1063.6(

))eVJ10(1.60eV))1053.2(4Ve1053.2()(1
λ
1

834

1933

21 


 



EE
hc

 

        19 m1053.1   
     m.1055.6λ 10  
 
 
38.62: a) The levels are 

eV.0.10andeV,0.8eV,0.5eV,0.1 1234  EEEE  
 

 
 
    b) We can go from 4-3(4 eV), 4-2(7 eV), and 4-1(9 eV) directly, but also 3-2(3 eV),  
3-1(5 eV), and 2-1(2 eV) after starting from 4. 
 
 
38.63: a) The maximum energy available to be deposited in the atom is 
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but  the  inoization  energy  of  hydrogen  is  13.6 eV,  so  the  maximum  kinetic energy 
is 14.5 eV eV.0.900eV6.13   

    b) If some of the electrons were in the 





 


 eV4.3

4
eV6.13state2 2En , then we 

would expect a maximum kinetic energy of eV11.1eV3.4eV5.14  , which is exactly 
10.2 eV above that measured in part (a), explaining the anomoly. 
 



38.64: a) In terms of the satellite’s mass M , orbital radius R and orbital period T , 
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Using the given numerical values,  461008.1n  b) The angular momentum of the 
satellite in terms of its orbital speed ,V  mass, and radius is ,MVRL  so 

,)( 22 MRLV  and its centripetal acceleration is  32
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 Newton’s law of gravitation can then be expressed as 
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    c) ,2 nknR   and for the next orbit, ).4(and,1 earth
22 MGMhnRn   

Insertion of numerical values from Appendix F and using n from part (a) gives 
m,105.1 39R which is (d) not observable. (e) The quantum and classical orbit do 

correspond, either would be correct, but only the classical calculation is useful. 
 

38.65: a) Quantization of angular momentum implies 
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    c) Photon energies  nh
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    d) This could describe a charged mass attached to a spring, being spun in a circle. 
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38.67: a) The H  line is emitted by an electron in the 3n  energy level, 
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E  The ground state energy is V,60.131 E  so one must 

add at least 1.51eV 13.60   eV=12.09 eV if the H  line is to be emitted. 
    b) The possible emitted photons are 1,2and,13,23   with the wavelengths 

given by  . 11eV60.13)(1
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  This yields the wavelengths of 

658 nm, 103 nm, and 122 nm for the respective photons above. 
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    d) For absorption to take place in the Balmer series, hydrogen must start  in the 2n  
state. From part (a), colder stars have fewer atoms in this state leading to weaker 
absorption lines. 
 



38.69: The transition energy equals the sum of the recoiling atom’s kinetic energy and 
the photon’s energy. 
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If the recoil is neglected 
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Conservation of momentum, assuming atom initially at rest, yields: 
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    b) For the hydrogen atom: 16
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it doesn’t depend on .n  
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    This will be the kinetic energy of the electron. c) The kinetic energy is far less than 
the rest mass energy, so a non-relativistic calculation is adequate; 
     .sm1002.82 6 mKv  
 



38.71: a) Largest wavelength shift: 
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38.72: a) Power delivered = pIV. 
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    d) A high melting point and heat capacity—tungsten and copper, for example. 
 

38.73: a) The photon’s energy change  
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which is a loss for the photon, but which is a gain for the electron. So, the kinetic energy 
of the electron is eV.319.5J10111.5 17    
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    b) If all the energy of the electron is lost in the emission of a photon, then 
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38.74: a) ),cos1)((λ),cos1)((λ 2211 θmchθmch   and so the overall 
wavelength shift is ).coscos2)((λ 21 θθmch   
    (b) For a single scattering through angle ).cos1)((λ, s θmchθ   
    For two successive scatterings through an angle of ,2  for each scattering, 
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    Equality holds only when .180  
    c) ),(500.0)60cos1()(d)).(268.0)0.30cos1(2)( mchmchmchmch   
which is indeed greater than the shift found in part (c). 
 
38.75: a) The wavelength of the gamma rays is 
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and the wavelength of the final visible photons is m.1000.5 7   So, the increase in 
wavelength per interaction (assuming about 2610  interactions) is 
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    c) 
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How far does light travel in this time?   )collisionsec10(3.15)sm1000.3( 138  
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38.76: a) The final energy of the photon is ,and,
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  where K is the 

kinetic energy of the electron after the collision. Then, 
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)1(( 2  mcK  since the relativistic expression must be used for three-figure accuracy). 
    b) )).(λ1arccos( mch  

    c) 
   m1043.2,250.0125.11

1

11 12
212

00.3
80.1





mc
h  

      

s)J10(6.63
(0.250))sm10(3.00kg)10(9.11m)10(5.101

mm105.10λ

34

83112

3















 

          
.74.0

m102.43
m)103.34m10(5.101arccos

nm.103.34

12

1212

3























 

  
 

38.77: a) 
f
c

e
hcI kThc 


 λbut

)1(λ
2)λ( λ5

2
 

)1(
2

)1()(
2)( 3

5

5

2





 kThfkThf ec

hf
efc
hcfI   

    b)  






 
  



2

0

0
)()λ(

f
cdffIdI   

                           

32

445

23

45
4

32

4

0

3

32

4

0 2

3

15
2

240
)()2()2(

240
1)(2

1
)(2

)1(
2

hc
Tk

ch
kT

hc
kT

dx
e

x
hc
kT

ec
dfhf

xkThf











 



 

    c) The expression 
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the constants we get 428 KmW1067.5  σ . 
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38.79: a) The period was found in Exercise 38.27b: 4
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38.80: Each photon has momentum ,
λ
hp   and if the rate at which the photons 

strike the surface is  ,dtdN  the force on the surface is ),()λ( dtdNh  and the pressure is 
.)()λ( AdtdNh  The intensity is  

   ,)λ()()()( AhcdtdNAEdtdNI   
and comparison of the two expressions gives the pressure as ).( cI  
 
 



38.81: Momentum: 
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    c) These photons are gamma rays. We have taken infrared radiation and converted it into 
gamma rays! Perhaps useful in nuclear medicine, nuclear spectroscopy, or high energy 
physics: wherever controlled gamma ray sources might be useful. 
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39.4: a) keV.2.6
m)1020.0(

)sm1000.3(s)eV10136.4(
λ 9

815





 

hcE  

      b) 
kg)1011.9(2

))m1020.0()sJ10626.6((
2

)λ(
2 31

293422









m

h
m

pK  

     eV.37J100.6 18    
Note that the kinetic energy found this way is much smaller than the rest energy, so the 
nonrelativistic approximation is appropriate. 
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5.2 meV. Again, the nonrelativistic approximation is appropriate. 

39.5: a) In the Bohr model .
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This equals the orbit circumference. 

 b) ,λ4
4

)16(2λ16)4(:4 0
400

2
4 

aπaarn  

       .m1033.1λ 9
4

  
The de Broglie wavelength is a quarter of the circumference of the orbit, .2 4πr  

39.6: a) For a nonrelativistic particle, so,
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      We should not expect the bullet to exhibit wavelike properties. 
 
39.8: Combining Equations 37.38 and 37.39 gives 
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39.9: a) photon 
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       c) You should use a probe of wavelength approximately 250 nm. An electron with  

250λ  nm has much less energy than a photon with 250λ   nm, so is less likely to damage the 
molecule. 
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      They will not have the same kinetic energy since they have different masses. 
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39.11: a) nm10.0λ   
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        d) The electron is a better probe because for the same λ  it has less energy and is less 
damaging to the structure being probed. 
39.12: (a) λλ mhvmvh   
       Energy conservation: 2
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39.13: For m =1, 
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39.14: Intensity maxima occur when .λsin mθd   
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       (Careful! Here, m is the order of the maxima, whereas M is the mass of the incoming 
particle.) 
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       b) m = 1 also gives a maximum. 
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       If we let ,3m  then there are no more maxima. 
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        Using this energy, if we let 2noisthereThus,.1sinthen,2  mθm  maximum in this 
case. 

 
39.15: Surface scattering implies .λsin mθd   
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39.16: The condition for a maximum is .arcsinso,λ.λsin 
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(Careful! Here, m is the order of the maximum, whereas M is the incoming particle mass.) 
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   b) For small angles (in radians!) so,Dθy   
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b) Knowing the position of a macroscopic object (like a car) to within 1.00 mµ  is, for all 
practical purposes, indistinguishable from knowing “exactly” where the object is. Even with 
this tiny position uncertainty of 1.00 mµ , the velocity uncertainty is insanely small by our 
standards. 
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b) For minimum uncertainty, 
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39.19: Heisenberg’s Uncertainty Principles tells us that: 
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2π
hpx x   We can treat the standard deviation as a direct measure of uncertainty. 
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39.20: a) ,2)()( πhvmx x  and setting xx vv )010.0( and the product of the uncertainties 
equal to πh 2/  (for the minimum uncertainty) gives .sm57.9)(0.010)2(  xπmhvx    

b)  Repeating with the proton mass gives 31.6 s.mm  
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    e) One is claiming to know both an exact momentum for each atom (giving rise to an exact 
kinetic energy of the system) and an exact position of each atom (giving rise to an exact potential 
energy of the system), in violation of Heisenberg’s uncertainty principle. 
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39.25: To find a particle’s lifetime we need to know the uncertainty in its energy. 
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V.229.0
kg1067.1
kg1011.9V)419( 27

31









 

39.27: a) We recall .
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       b) For a proton, all that changes is the mass, so 
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39.28: ,sinωtψ    so 

       ωtψωtψψ 222**2 sinsin  . 

       2  is not time-independent, so  is not the wavefunction for a stationary state. 
 
39.29: a)   kxAxψ sin . The probability density is ,sin222 kxAψ   and this is greatest when 
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  b) The probability is zero when 02 ψ , which requires 

  ...2,1,0,
2
λ0sin2  nn

k
nπxnπkxkx  

39.30: a) The uncertainty in the particle position is proportional to the width of  xψ , and is 
inversely proportional to  . This can be seen by either plotting the function for different 
values of  , finding the expectation value  dxxψx 222  for the normalized wave function or 
by finding the full width at half-maximum. The particle’s uncertainty in position decreases with 
increasing  . The dependence of the expectation value  2x  on   may be found by considering 
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where the substitution xu  has been made. (b) Since the uncertainty in position decreases, 
the uncertainty in momentum must increase. 
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39.32: The same. 
 ),,(),,(),,( *2 zyxψzyxψzyxψ   

             )),,()(),,((),,( *2  iii ezyxψezyxψezyxψ   

           ).,,(),,(* zyxψzyxψ   
The complex conjugate means convert all i ’s to i ’s and vice-versa. .1   ii ee  

39.33: Following the hint: 
    If we Taylor expand sin(ax ) about a point 0x , we get  ))(()( 000 xxxfxf  

.))(cos()sin( 000  xxaxaax 0If xx   is small we can even ignore the first order term and 
sin( ax )   sin ( 0ax ). 

     For us Lxx 01.00   which is small compared to 
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39.34: Eq. (39.18): EψUψ
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But each of 1ψ  and 2ψ  satisfy Schröedinger’s equation separately so the equation still 
holds true, for any A or B. 
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If ψwere a solution with energy E, then 
 212211 CEψBEψψCEψBE   or 
 .)()( 2211 ψEECψEEB   

This would mean that 1ψ  is a constant multiple of 212 andand, ψψψ  would be wave functions 
with the same energy. However, 21 EE  , so this is not possible, and ψ  cannot be a solution to 
Eq. (39.18). 
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  which is the same order of magnitude. 

 



39.37: a) 12eVλ  hcE  
       b) Find E for an electron with m.100.10λ 6  
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39.38: (a) Single slit diffraction: λsin mθa   
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39.39:     a) The first dark band is located by aθ λsin   
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       b)    Find λ for the electrons 
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      No electrons at locations of minima in the diffraction pattern. The angular position of these 
minima are given by:           
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39.40: According to Eq. 35.4 
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The velocity of an electron with this wavelength is given by Eq. 39.1 
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Since this velocity is much smaller than c we can calculate the energy of the electron classically 
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39.41: The de Broglie wavelength of the blood cell is 
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We need not be concerned about wave behavior. 
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b) For an alpha particle: 
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39.45: a) Since 2mcK   we must use the relativistic expression for energy.  
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       b) .MeV 0.82J101.3)()( 132222  mcmcpcK  
       c) The result of part (b), about eV101MeV1 6 , is many orders of magnitude larger than 
the potential energy of an electron in a hydrogen atom. 
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  c) The coulomb potential energy is 
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Hence there is not enough energy to “hold” the electron in the nucleus. 
39.50: a) Take the direction of the electron beam to be the x-direction and the direction of 
motion perpendicular to the beam to be the y-direction. Then, the uncertainty r  in the position 
of the point where the electrons strike the screen is 
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  which is (b) far too small to affect the clarity of the picture. 
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       b) We would roughly expect the length scale of the problem to go like 31V  (e.g., for a cube 
313 so vllV   and for a sphere ).
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multiplicative constant. 
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         STPV  is far larger than waveV  so the wave nature is not important.
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The real volume is much smaller than the wave limit volume. So, the wave nature of the 
electrons must be accounted for. 
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        Therefore, we will not notice diffraction effects while passing through doorways. 
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Note that this uncertainty is much larger than the real uncertainty as compared to the  
4.50 eV. 
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39.57: a) The maxima occur when λsin2 mθd   as described in Section 38.7. 
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       c) The work function of the metal acts like an attractive potential increasing the 
kinetic energy of incoming electrons by .e  An increase in kinetic energy is an increase 
in momentum that leads to a smaller wavelength. A smaller wavelength gives a smaller 
angle   (see part (b)). 
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39.60: For this wave function, so,21

21
tiωtiω eψeψ    

  

.eψψeψψψψψψ
eψeψeψeψ

tωωitωωi*

tiωtiωtiωtiω

)(
12

)(
212211

2121

2

1221

2121 ))((












 

The frequencies 21 and ωω  are given as not being the same, so 2
 is not time-independent, and 

 is not the wave function for a stationary state. 
39.61: The time-dependent equation, with the separated form for ),( tx  as given becomes 
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Since ψ  is a solution of the time-independent solution with energy ,E  the term in parenthesis is 
,Eψ  and so ).(and,  EωEω   
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b) From Problem 39.61 the time-dependent Schrödinger’s equation is 
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Putting this into the Schrödinger’s equation, ).sin(2)cos(2 ωtkxAωmiωtkxAk 








 

This is not generally true for all tx and  so is not a solution. 
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Putting this into the Schrödinger’s equation, 
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  Collect sin and cos terms.  kxkBiAωtkxkiBA (sin)()cos()( 22  

.0) ωt  This is only true if B = iA. 
 



39.63: a) The ball is in a cube of volume 3cm125  to start with, and hence has an uncertainty of 
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b)  ψ vanishes at ,0x   so the probability of finding the particle in the 0x  plane is zero. The 
wave function vanishes for .x  
39.65: a) )( 222
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volume integral in spherical coordinates where dωdθdrθrdzdydxdV sin2  Now 
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 r This is not the same as the maximum value of just 2)(rψ  (which has a 

maximum only at r = 0). The “extra” 2r  from looking at the function in spherical coordinates 
(that is, having the variable be “distance from the origin” rather than the cartesian coordinates) 
makes all the difference. 
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 d) No. The spacing between energy levels is so small that the energy appears 
continuous and the balls particle-like (as opposed to wave-like). 
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40.6: a) The wave function for 1n  vanishes only at 0x and Lx   in the range 

.0 Lx   b) In the range for ,x the sine term is a maximum only at the middle of the 
box, .2/Lx   c) The answers to parts (a) and (b) are consistent with the figure. 
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 b) The wave function must vanish at the rigid walls; the given function will vanish at 
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 b) This is not an acceptable wave function for a box with rigid walls since we need 
,0)()0(  Lψψ  but this )(xψ  has maxima there. It doesn’t satisfy the boundary 

condition. 
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40.13: a) EψUψ
dx
ψd

m



2

22

2
:Eq.(40.1)   

  Left-hand side: kxAUkxA
dx
d

m
sin)sin(

2 02

22


   

        kxAUkxA
m
k sinsin

2 0

22


  

         .
2 0

22

ψU
m
k











  

But EUU
m
k

 00

22

2
  for constant .k  But 0

22

2
U

m
k


  should equal E no solution. 

 b) If ,0UE   then EU
m
k

 0

22

2
 is consistent and so kxAψ sin is a solution of 

)1.40.(Eq for this case. 
 
40.14: According to Eq.40.17, the wavelength of the electron inside of the square well is 
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40.24:  Using Eq. 40.21 
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40.25: a) Probability of tunneling is LGeT 2  
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40.27: The ground state energy of a simple harmonic oscillator is, with ,0n  
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Such tiny energies are unimportant for the motion of the block so quantum effects are not 
important. 
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40.30: According to Eq.40.26, the energy released during the transition between two 
adjacent levels is twice the ground state energy 
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This is more or less what is shown in Fig. (40.19). 
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This figure cannot be read this precisely, but the qualitative decrease in amplitude with 
distance is clear. 
 



40.33: For an excited level of the harmonic oscillator 
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,)12(So  npx  which agrees for the ground state .with)0(  pxn  
The uncertainty is seen to increase with n. 
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 b) Repeating with limits of 2and4 LL  gives 
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about 0.0409. c) The particle is much likely to be nearer the middle of the box than the 
edge. d) The results sum to exactly 21 , which means that the particle is as likely to be 
between 2and0 Lx  as it is to be between .and2 LxLx   e) These results are 
represented in Fig. (40.5b). 
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 c) This is consistent with Fig. 40.5(b) since more of 1ψ  is between than
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and the proportions appear correct. 
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This is never larger than it is for .3and,1  Rn  b)  R approaches zero; in the classical 
limit, there is no quantization, and the spacing of successive levels is vanishingly small 
compared to the energy levels. 
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e) The slope of the wave function is greatest for )2(2 nψ  close to the walls of the box, 
as shown in Fig. 40.5. 
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 b) 1κL  implies either κ is large or L  is large (or both are large). If L  
is large, the barrier is wide. If  is large, EU 0  is big, which implies E  is small 
compared to .0U  
 c) κLκLκUE  sinh0,As 0  
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40.48: For a wave function ,,numberwavewith 2
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     b) The difference between energies is 
.J1095.9)Hz50.1)(sJ1063.6( 3434   hfω  This energy is too small to be 

detected with current technology 
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     b) Similar to the second graph in Fig. 40.18. 
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     b) Ground state energy .
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000 ωE   

First excited state energy .
2
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010001100 ωEEE   

     c) As seen in b) there is just one set of quantum numbers (0, 0, 0) for the ground state 
and three possibilities (1, 0, 0), (0, 1, 0) and (0, 0, 1) for the first excited state. 
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40.55: a) )2(0)2(andsin)( LψLψkxAxψ   
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 b) )2(0)2(andcos)( LψLψkxAxψ   
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 c) The combination of all the energies in parts (a) and (b) is the same energy 

levels as given in Eq. (40.9), where .
8 2

22

mL
hnEn   

 d) Part (a)’s wave functions are odd, and part (b)’s are even. 
 
40.56: a) As with the particle in a box, andconstantaiswhere,sin)( AkxAxψ   

.2 22 mEk   Unlike the particle in a box, however, k and hence E do not have simple 
forms.    b) For ,Lx   the wave function must have the form of Eq. (40.18). For the wave 
function to remain finite as ,)(2constantThe.0, 0

2 EUmκCx   as in  
Eq. (14.17) and Eq. (40.18). c) At .cosandsin, κLκL κDekLkADekLALx    
Dividing the second of these by the first gives 

,cot κkLk   
a transcendental equation that must be solved numerically for different values of the 
length L  and the ratio .0UE  
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   b) As ExUxU approaches)(.,(i.elargergets)( from below—
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  c) .)(λso,0)(),(When  xxUExUE  

  d)    



b

a

b

a

b

a

ndxxUEm
hxUEmh

dx
x

dx
2

))((21
))((2)(λ

 

         
b

a

hndxxUEm .
2

))((2  

  e) So,.and0atpointsturningclassicalwith0for0)( LxxLxxU   

 

.822
1

2
2

),(partfromSo,.222))((2

2

222
0 0

mL
nh

L
hn

m
EhnLmE

dLmEdxmEdxmEdxxUEm
b

a

L L









  
 

  f) Since 0)( xU  in the region between the turning points at the,and0 Lxx  results 
is the same as part (e). The height 0U  never enters the calculation. WKB is best used 
with smoothly varying potentials ).(xU  
 



40.58: a) At the turning points .2
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To evaluate the integral, we want to get it into a form that matches the standard integral 
given. 
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Using WKB, this is equal to .
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c) We are missing the zero-point-energy offset of .
2
1recall

2 













  nωEω


  

However, our approximation isn’t bad at all! 
 



40.59: a) At the turning points .TPTP A
ExxAE   

      b)   



A

E

A
E

A
E

dyAxEmydxAxEmdxxAEm
0

)(2Let.)(22(2  

So.2,0whenand,0,when2 mEyxy
A
ExdxmA   

   A
E

mE
dyy

mA
dxAxEm

0

0

2

211)(22  

 
2

toequalisthisWKB,Using.)2(
3

2
3

2 23
0

2

23 hnmE
mA

y
mA mE

 . 

 So, .
4

3
2
1

2
)2(

3
2 32

32
23 nmAh

m
EhnmE

mA






  

     c) The difference in energy decreases between successive levels. For example:  
 ,...49.023,59.012,101 232332323232   
   • A sharp  step gave ever-increasing level differences ).(~ 2n  

  • A parabola ).(~levelsspacedevenlygave)(~ 2 nx  
   •  Now, a linear potential ).(~sdifferenceleveldecreasingevergives)(~ 32nx   
Roughly: If the curvature of the potential (~ second derivative) is bigger than that of a 
parabola, then the level differences will increase. If the curvature is less than a parabola, 
the differences will decrease. 
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41.2: a) .2so,2

maxmax
 zl Lm  b) .45.26)1(  ll  c) The angle is arccos 
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 lz m

L
L  and the angles are, for ,0.90,1.114,7.144,2to2  ll mm  

.3.35,9.65   The angle corresponding to lml   will always be larger for larger .l  
 
41.3: .)1(  llL  The maximum orbital quantum number :ifSo.1 nl  
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  The maximum angular momentum value gets closer to the Bohr model value the 
larger the value of .n  
 
41.4: The ),( lml  combinations are (0,  0), (1,  0), )1,1(  , (2,  0), ),1,2(   ),2,2(   
(3,  0), 4),(4,and),3,4(),2,4(),1,4(),0,4(),3,3(),2,3(),1,3(   a total 
of 25. 

  b) Each state has the same energy ( n  is the same), eV.544.0
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41.6: a) As in Example 41.3, the probability is 
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     b) The difference in the probabilities is 
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41.7: a) ))((|)(||)(||| 222  ll imim* AeAeθrRψψψ   
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For 12   transition, the coefficient is (0.75)(13.59 eV)=10.19 eV. 
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Similarly, the 12   transition, eV.095.5
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     c) If ,8.185 mmr   using the result from part (a), 
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and the 12   transition gives (10.19 eV)(185.8)=1893 eV. 
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41.10: ),sin()cos( 
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im mime l   and to be periodic with period πmπ l 2,2  must be an 

integer multiple of lmπ so,2  must be an integer. 
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41.12: a) ,2b),eV102.32T)400.0)(TVe1079.5( 55

B  
lmBµE  the 

lowest possible value of .lm  
 c)  

 
 
41.13: a) 4).3,2,1,,0(91)(2isstatesof#4state-  lmllg  
 b) .J1056.5eV1047.3)T600.0)(TVe1079.5( 2455

B
  BµU  

c) eV1078.2)T600.0)(TVe1079.5(88 45
B44


  BµU  

        .J1045.4 23  
 
41.14: a) According to Fig. 41.8 there are three different transitions that are consistent 
with the selection rules. The initial lm  values are 0, ;1  and the final lm  value is 0. 
        b) The transition from 0to0  ll mm  produces the same wavelength (122 nm) 
that was seen without the magnetic field. 
        c) The larger wavelength (smaller energy) is produced from the 0to1  ll mm  
transition. 
        d) The shorter wavelength (greater energy) is produced from the 0to1  ll mm  
transition. 
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       b) Since n = 1, l = 0 so there is no orbital magnetic dipole interaction. But if 0n  
there could be since l < n allows for .0l  
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41.18: The allowed ),( jl  combinations are .
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41.19: j  quantum numbers are either .4then,27and29ifSo,
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The letter used to describe is4l  “g” 
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       b) As in Example 41.6, the effective field is for,T101.52 2
B

 µEB smaller 
than that found in the example. 
 



41.21: a) Classically 2
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 b) .sm102.5)srad10(2.5m)10(1.0 133017  rωv  Since this is faster 
than the speed of light this model is invalid. 
 
41.22: For the outer electrons, there are more inner electrons to screen the nucleus. 
 

41.23: Using Eq. (41.27) for the ionization energy: eV).(13.62
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ZEn
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electron sees 5and771.2eff  nZ  
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41.24: However the number of electrons is obtained, the results must be consistent with 
Table (43-3); adding two more electrons to the zinc configuration gives 622 221 pss  

.43433 210262 pdsps  
 
41.25: The ten lowest energy levels for electrons are in the n = 1 and n = 2 shells. 
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41.26: For the s4  state, .26.2)6.13()339.4(4andeV339.4 eff  ZE  
Similarly, 79.1eff Z  for the 4p state and 1.05 for the 4d state. The electrons in the states 
with higher l tend to be further away from the filled subshells and the screening is more 
complete. 



41.27: a) Nitrogen is the seventh element (Z = 7). 2N  has two electrons removed, so 
there are 5 remaining electrons   electron configuration is .221 22 pss  
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       c) Phosphorous is the fifteenth element (Z = 15). 2P  has 13 electrons, so the 
electron configuration is .33221 2622 pspss  

        d) The least tightly held electron: eV.13.6eV)(13.6
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41.28: a) .26.1so,
4

e6.13
eff

2
eff2  ZZVE b) Similarly, 2.26.eff Z c) effZ  

becomes larger going down the columns in the periodic table. 
 

41.29: a) Again using eV),(13.62
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  the outermost electron of the LBe  shell 

(n = 2) sees the inner two electrons shield two protons so 2.eff Z  
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        b) For ,Ca   outer shell has n = 4, so eV.3.4eV)(13.6
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which corresponds to the element Nickel (Ni). 
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    c) m.105.47λkeV,22.7Hz,105.48:48 1118  EfZ  
 



41.32: See Example 41.3; )),2(2(, 22
22

/2222 arrCe
dr
ψdr

eCrψr arar    and for a 

maximum, r = a, the distance of the electron from the nucleus in the Bohr model. 
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41.34: a) For large values of n, the inner electrons will completely shield the nucleus, so 

1ff eZ  and the ionization energy would be 2

eV60.13
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41.35: a) If normalized, then 
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b) We carry out the same calculation as part (a) except now the upper limit on the 
integral is 4a, not infinity. 
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Now the necessary integral formulas are: 
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All the integrals are evaluated at the limits 0r and .4a  After carefully plugging in the 
limits and collecting like terms we have: 
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41.36: a) Since the given .||real,is)( 2222 ψrψrrψ   The probability density will be an 
extreme when 
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This occurs at ,0r a minimum, and when ,0ψ also a minimum. A maximum must 
correspond to .0 dr

dψrψ Within a multiplicative constant, 

,)22(1,)2()( 22 arar ear
adr

dψearrψ    

and the condition for a maximum is 
.046or),22()()2( 22  ararararar  

The solutions to the quadratic are ).53(  ar  The ratio of the probability densities at 
these radii is 3.68, with the larger density at .2at0)).53( arψbar   Parts (a) 
and (b) are consistent with Fig.(41.4); note the two relative maxima, one on each side of 
the minimum of zero at .2ar   
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41.38: a) .)1(so)1( 2222222222  lyxlzyx mllLLmllLLLL   
b) This is the magnitude of the component of angular momentum perpendicular to the 
z -axis. c) The maximum value is ,)( L1ll    when .0lm  That is, if the electron is 
known to have no z -component of angular momentum, the angular momentum must be 
perpendicular to the z -axis. The minimum is l when .lml   
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In the Bohr model, ,4so 2
2 aranrn  which agrees. 

41.40: The time required to transit the horizontal 50 cm region is 
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The force required to deflect each spin component by 0.50 mm is 
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According to Eq. 41.22, the value of zµ  is 
.mA1028.9|| 224  

zµ  
Thus, the required magnetic-field gradient is 
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41.41: Decay from a d3  to p2 state in hydrogen means that  lmnn and23  
.0,10,1,2  lm  However selection rules limit the possibilities for decay. The 

emitted photon carries off one unit of angular momentum so l must change by 1 and 
hence lm  must change by 0 or .1  The shift in the transition energy from the zero field 
value is just 
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where 
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m is the lmd3  value and 
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m is the lmp2  value. Thus there are only three 
different energy shifts. They and the transitions that have them, labeled by ,m  are: 
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41.42: a) The energy shift from zero field is  0B0 ,2For. UmBmU ll  
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(a).partfromeV1009.8eV1011.8eV1062.1andm10563.6 5547   E  
 Then, nm0281.0m1081.2|λ| 11   . The wavelength corresponds to a larger 
energy change, and so the wavelength is smaller. 
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41.44 Using Eq. 41.4 
,)1(  llmvrL  

and the Bohr radius from Eq. 38.15, we obtain the following value for v  
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The magnetic field generated by the “moving” proton at the electrons position can be 
calculated from Eq. 28.1 
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41.45: sm  can take on 4 different values: .,,, 2
3

2
1

2
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2
3 sm  Each lnlm  state can 

have 4 electrons, each with one of the four different sm values. 
        a) For a filled 1n  shell, the electron configuration would  be ;s1 4  four electrons 
and .4Z  For a filled 2n  shell, the electron configuration would be ;2p2ss1 1244  
twenty electrons and .20Z  
       b) Sodium has ;11Z  11 electrons. The ground-state electron configuration would 
be .2p2s1s 344  
41.46: a) eV.666eV)6.13((7)eV)6.13( 22 Z  b) The negative of the result of 
part (a), 666 eV. c) The radius of the ground state orbit is inversely proportional to the 

nuclear charge, and m.107.567m)10529.0( 1210  
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hc  where 0E  is the energy found in part (b), and nm.49.2λ   

41.47: a) The photon energy equals the atom’s transition energy. The hydrogen atom 
decays from 1,to2  nn  so: 
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     b) The change in an energy level due to an external magnetic field is just .BBµmU l  
The ground state has ,0lm and it is not shifted. The n = 2 state has ,1lm  so it is 
shifted by 
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Since the n = 2 level is lowered in energy (brought closer to the n = 1 level) the change in 
energy is less, and the photon wavelength increases due to the magnetic field. 
41.48: The effective field is that which gives rise to the observed difference in the energy 
level transition, 
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Substitution of numerical values gives ,T1064.3 3B  much smaller than that for 
sodium. 



41.49: a) The minimum wavelength means the largest transition energy. If we assume 
that the electron makes a transition from a high shell, then using the screening 
approximation outlined in Section 41.5, the transition energy is approximately the 
ionization energy of hydrogen. Then eV).6.13()1( 2

1  ZEE For vanadium, Z = 23. 
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For the longest wavelength, we need the smallest transition energy, so this is the 
12  nn  transition ).( K  So we use Moseley’s Law: 
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    b) The rhenium, Z = 45, the minimum wavelength is 
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The maximum wavelength is 215
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41.50: a) .
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41.51: a) To calculate the total number of states for the thn  principle quantum number 
shell we must multiply all the possibilities. The spin states multiply everything by 2. The 
maximum l value is (n –1), and each l value has lml )12(   values. 
 So the total number of states is 
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b) The n = 5 shell (O-shell) has 50 states. 



41.52: a) Apply Coulomb’s law to the orbiting electron and set it equal to the centripetal 
force. There is an attractive force with charge +2e a distance r away and a repulsive force 
a distance 2r away. So, 
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But, from the quantization of angular momentum in the first Bohr orbit, vmvrL 

So  
3

222

2
0

2

2
0

2

)4(44
2

mrr
m

r
mv

rπε
e

rπε
e mr 








  












 2

2
0

3

2
0

2

2 4
7
44

4
7

me
πεr

mr
πε

r
e   

m.103.02m)10529.0(
7
4

7
4 1110

0
  a  

 

And .sm1083.3
m)10kg)(0.52910(9.11

s)J10054.1(
4
7

4
7 6

1031

34

0








 



mamr
v   

   b) eV.5.83J1034.1)sm10(3.83kg1011.9
2
12 1726312 






 mvKE  

   c) 
)2(44

4
)2(44

22
0

2

0

2

0

2

0

2

rπE
e

rπε
e

rπε
e

rπε
ePE 










 
          

             eV.166.9J1067.2
42

7 17

0

2









 

rπε
e  

    d) eV,83.4eV]83.5eV9.166[ E  which is only off by about 5% from the 
real value of 79.0 eV. 



41.53: The potential 2

2
1)( xkxU   is that of a simple harmonic oscillator. Treated 

quantum mechanically (see Section 40.4) each energy state has energy ).( 2
1 nωEn   

Since electrons obey the exclusion principle, this allows us to put two electrons (one for 
each )2

1sm  for every value of neach quantum state is then defined by the ordered 
pair of quantum numbers ).,( smn  
 By placing two electrons in each energy level the lowest energy is then 
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Here we used the hint from Problem 41.51 to do the first sum, realizing that the first 
value of n is zero and the last value of n is N – 1, giving us a total of N energy levels 
filled. 
41.54: a) The radius is inversely proportional to Z, so the classical turning radius is 

.2 Za  
 b) The normalized wave function is 

 arZ
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and the probability of the electron being found outside the classical turning point is 
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Making the change of variable duZadraZru )(,   changes the integral to 

,4 22

2
duueP u

  

which is independent of Z. The probability is that found in Problem 41.33, 0.238, 
independent of Z.  



42.1: a) 
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c) The thermal energy associated with room temperature (300 K) is much greater than 
the bond energy of 2He  (calculated in part (a)), so the typical collision at room 
temperature will be more than enough to break up .He2  However, the thermal energy at 
300 K is much less than the bond energy of 2H , so we would expect it to remain intact at 
room temperature. 

42.2: a) .eV0.5
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b) .eV2.4)eV5.3eV3.4(eV0.5   

42.3: Let 1 refer to C and 2 to O. 
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b) ;mkg1045.1 2462
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2
11  rmrmI  yes, this agrees with Example 42.2. 

42.4:  The energy of the emitted photon is ,eV1001.1 5  and so its frequency and 
wavelength are 
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This frequency corresponds to that given for a microwave oven. 



42.5: a) From Example 42.2, 
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b) According the Eq. 42.7 the spacing between adjacent vibrational energy levels 
is twice the ground state energy: 
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Thus, using the E  specified in Example 42.3, it follows that its vibrational 
period is 
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           c) The vibrational period is shorter than the rotational period. 



42.7:  a) 2
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42.8: Each atom has a mass m and is at a distance 2L  from the center, so the moment 
of inertia is .mkg1021.22)2)((2 24422  mLLm  
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42.10: a) ,mkhcE rλ
   and solving for ,k   
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42.11: Energy levels are 
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Examples 42.2 and 42.3. 
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42.12: 2 where,eV196.0J1014.32 r
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used. 
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42.14: a) As a photon, 
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        b) As a matter wave, 
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42.15: The volume enclosing a single sodium and chlorine atom     310 m102.822  

329 m104.49  . So the density 
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42.16: For an average spacing a, the density is 3amρ  , where m is the average of the 
ionic masses, and so 
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and nm330.0m1030.3 10  a . b) The larger (higher atomic number) atoms have the 
larger spacing. 
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 eV101.34 6  

So the number of electrons that can be excited to the conduction band is 
eV12.1

eV1034.1 6
n

61020.1   electrons. 

42.18: a) nm227m1027.2 7 




E
hc , in the ultraviolet. 

        b) Visible light lacks enough energy to excite the electrons into the conduction 
band, so visible light passes through the diamond unabsorbed. 
        c) Impurities can lower the gap energy making it easier for the material to absorb 
shorter wavelength visible light. This allows longer wavelength visible light to pass 
through, giving the diamond color. 

42.19: a) To be detected the photon must have enough energy to bridge the gap width 
eV12.1E  
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E
hc , in the infrared. 

 b) Visible photons have more than enough energy to excite electrons from the 
valence to conduction band. Thus visible light is absorbed, making silicon opaque. 
42.20: sm1017.13 5

rms  mkTv , as found in Example 42.9. The equipartition 
theorem does not hold for the electrons at the Fermi energy. Although these electrons are 
very energetic, they cannot lose energy, unlike electrons in a free electron gas. 
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      b) Ground state 2
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The only degeneracy is from the two spin states. The first excited state    1,2,1or1,1,2
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so   232 LA   (assuming A to be real positive). 



42.23: Density of states: 
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42.24: Equation (42.13) may be solved for    πLmEn 
21

rs 2 , and substituting this 
into Eq. (42.12), using VL 3 , gives Eq. (42.14). 
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42.26: a) From Eq. (42.22), .eV94.1
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42.27: a)    
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 K.molJ194.00233.0  RCV  

 b) 31068.7
KmolJ25.3
KmolJ0.194  . 

 c) Mostly ions (see Section 18.4). 



42.28: a) See Example 42.10: The probabilities are 67 1037.2,1078.1   , and 
51051.1  . b) The Fermi distribution, Eq. (42.17), has the property that 

   EfEEf  1F  (see Problem (42.46)), and so the probability that a state at the top 
of the valence band is occupied is the same as the probability that a state of the bottom of 
the conduction band is filled (this result depends on having the Fermi energy in the 
middle of the gap). 

42.29:     1
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So the Fermi level is 0.20 eV below the conduction band. 

42.30: a) Solving Eq. (42.23) for the voltage as a function of current, 

  .V0645.01
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mA40.0ln1ln

S




















e
kT

I
I

e
kTV  

  b) From part (a), the quantity 11.12kTeVe , so far a reverse-bias voltage of the 
same magnitude, 

    mA30.31
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11 SS 





   IeII kTeV . 



42.31:   1SS
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 Now for 387.0,V0100.0  kTeVV  

     mA56.5A1056.51A0118.0 3387.0  eI   

 b) Now with 580.0,mV0.15 
kT
eVV  

     A1018.51A0118.0 3580.0   eI . 

 If 387.0mV 0.10 
kT
eVV  

     A1077.31A0118.0 3387.0   eI . 

42.32: See Problem (42.7): 248
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42.33: a)     mC103.8m102.4C101.60 291019  qdp  

 b) C10.31
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This is much less than for sodium chloride (part (c)). Therefore the bond for hydrogen 
iodide is more covalent in nature than ionic. 
 



42.34: The electrical potential energy is ,eV13.5U  and 

    m.108.2
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1 10
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0


U
e

πε
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42.35: a) For maximum separation of  ClandNa  for stability: 
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 b) For :BrandK   
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42.36: The energies corresponding to the observed wavelengths are J,1029.3 21  

.J101.65 andJ1006.2,J1047.2,J102.87 21212121    The average spacing of these 
energies is J10410.0 21  and using the result of Problem (44-4), these are seen to correspond 
to transition from levels 8, 7, 6, 5 and 4 to the respective next lower levels. 

Then, J10410.0 21
2


I
 , from which .mkg1071.2 247  I  



42.37: a) Pr. (44.36) yields 247 mkg1071.2  I , and so 
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λ
m104.84 4 . So the l-values that lead to the wavelength of Pr. (44-32) are: 
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Similarly for: 
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c) The longest wavelength means the least transition energy )01(  ll  
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d) If the hydrogen atom is replaced by deuterium, then the reduced mass changes 
to kg.1016.3 27

r
m   Now, 
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42.38:  From the result of Problem (42.9), the moment inertia of the molecule is  
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and from Eq. (42.6) the separation is 
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and there is an additional multiplicative factor of 2l + 1 because for each l state there are 
really lml 12   states with the same energy. 
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42.40:  a) .mkg10449.1 246  
coI  

 

 
.0E

J.1067.7
)mkg10449.1(2

)11()1()sJ10054.1
2

)1(

0

23
246

2342

1





















l

l I
llE 

 

 .eV1079.4J1067.7 423  E  
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b) Let’s compare the value of kT when T=20 K to that of E  for the 01  ll  
rotational transition: 
 

  
.60.3So(a)).part(fromJ1067.7

J.102.76K)(20K)J1038.1(

23
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E
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Therefore, although T is quite small, there is still plenty of energy to excite CO molecules 
into the first rotational level. This allows astronomers to detect the 2.59 mm wavelength 
radiation from such molecular clouds. 



42.41:  a) 2
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b) Carrying out exactly the same calculation for Cl,Na 37   where  354.2)37(rm  
kg10 26 and I(37) 245 mkg10312.1    we find for 

cm.347.2λandJ10465.8:01

Forcm.173.1λandJ10693.1:12
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So the differences in wavelength are: 

 
cm.050.0cm2.297cm347.2λ:01

cm.025.0cm1.148cm173.1λ:12
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42.42: The vibration frequency is, from Eq. (42.8), 141012.1 



h
Ef Hz.  The force 

constant is 
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2  mπfk  
 

42.43: 
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E  

This is much less than the 2H bond energy. 
 



42.44: a) The frequency is proportional to the reciprocal of the square root of the 
reduced mass, and in terms of the atomic masses, the frequency of the isotope with the 
deuterium atom is  
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 Using 0f from Exercise (42.13) and the given masses, Hz.1099.8 13f  

42.45: a) 2927
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 b) Vibration-rotation energy levels are: 
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42.46: The sum of the probabilities is 
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42.47: Since potassium is a metal we approximate .F0F EE   

.eV2.03J1024.3
)kg1011.9(2

)/m1031.1(s)J10054.1(3

melectron1031.1
kg1049.6

mkg851

ionconcentratelectrontheBut

2
3

19
31

323282343432

F

328
26

3

3223432

F























πE

n

m
ρn

m
nπE 

 

42.48: a) First we calculate the number-density of neutrons from the given mass-density: 
 .m102.4)neutronkg1067.1/)mkg100.7( 34427317  n  
Now use Eq. 44.21 
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 b) Set 0FEkT  (see Exercise 42.26) to obtain 
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42.49: a) Each unit cell has one atom at its center and 8 atoms at its corners that are each 
shared by 8 other unit cells. So there are 2881  atoms per unit cell. 

  328
39 matoms1066.4
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In this equation VN  is the number of free electrons per .m3  But the problem says to 
assume one free electron per atom, so this is the same as Vn  calculated in part (a). 
 kg10109.9 31m (the electron mass), so eV7.4J10563.7 19

0F  E  
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Setting this equal to zero when 0rr  gives 
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 b) To remove a ClNa ion pair from the crystal requires 7.85 .eV When neutral 
Na and Cl atoms are formed from the Na and Cl atoms there is a net release of energy 

eV,1.53eV3.61eV41.5  so the net energy required to remove a neutral Na, Cl 
pair from the crystal is eV.6.32eV1.53eV85.7   
 

42.51: a) ..
2

3
5
3

5
3

tot

3223432

0F avav NEE
V
N

m
πEE 









 

              

.
5

3

.
5

3

2
3

5
3

3
2

3523432
tot

3523432

2

3123432
tot























 











V
N

m
π

dV
dEP

V
N

m
π

V
N

V
N

m
πN

dV
dE







   

 b) 3281045.8  m
V
N  

 
)(!atm1076.3Pa1080.3

)m1045.8(
)kg1011.9(5

)sJ10054.1(3

510

35328
31

2343432







 



πp
 

 c) There is a large attractive force on the electrons by the copper ions. 



42.52: a) From Problem (42.51): 
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 The copper ions themselves make up the remaining 

fraction. 
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Since the real concentration of electrons in copper is less than one part in 410 of the 
concentration where relativistic effects are important, it is safe to ignore relativistic 
effects for most applications. 

 c) The number of electrons is .1003.6
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d) Comparing this to the result from part (a) 400
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 so relativistic effects 

will be very important. 



42.54: a) Following the hint, 
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where )2(m has been used for the reduced mass. b) The reduced mass is doubled, and 
the energy is reduced by a factor of 2  to 0.54 eV.  
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If we ignore the potential energy involved in forming each individual molecule, which 
just involves a different choice for the zero of potential energy, then the answers are: 

a) .
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rπε
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rπε
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43.1: a) Si28
14 has 14 protons and 14 neutrons. 

    b) Rb85
37 has 37 protons and 48 neutrons. 

    c) Tl205
81 has 81 protons and 124 neutrons. 

 
43.2: a) Using ,fm)2.1( 31AR   the radii are roughly 3.6 fm, 5.3 fm, and 7.1 fm. 
     b) Using 24 R for each of the radii in part (a), the areas are 163 andfm353,fm 22  

.fm 633 2  

     c) 3

3
4 R gives 195 ,fm3  624 3fm  and 1499 .fm3  

     d) The density is the same, since the volume and the mass are both proportional to A: 
317 mkg103.2   (see Example 43.1). 

     e) Dividing the result of part (d) by the mass of a nucleon, the number density is 
.m1040.1fm14.0 3443   

 
43.3: BµBµBµE zzz 2)(   
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43.4: a) As in Example 43.2, 
 eV.1077.2)T30.2)(TeV1015245.3)(9130.1(2 78  E  

Since 


SN and are in opposite directions for a neutron, the antiparallel configuration is 
lower energy. This result is smaller than but comparable to that found in the example for 
protons. 

b) m..484λMHz,9.66 
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43.5: a) 


 SNBµ and.BU z
  point in the same direction for a proton. So if the 

spin magnetic moment of the proton is parallel to the magnetic field, ,0U and if they 
are antiparallel, .0U  So the parallel case has lower energy. 
      The frequency of an emitted photon has a transition of the protons between the two 
states given by: 
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c  This is a radio wave. 

b) For electrons, the negative charge means that the argument from part (a) leads to 

the 
2
1

sm  state (antiparallel) having the lowest energy, since 


SN and point in 

opposite directions. So an emitted photon in a transition from one state to the other has a 
frequency 
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But from Eq. (41.22), 
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This is a microwave. 
 
43.6: a) %.0027.01066.2)eV10511.0()eV6.13( 56    

     b)  %.937.01037.9)MeV3.938()MeV795.8( 3    

 
43.7: The binding energy of a deuteron is eV.10224.2 6  The photon with this energy 

has wavelength equal to 

 .m10576.5
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43.8: a) u,112.0)(7 NHn  mmm  which is 105 MeV, or 7.48 MeV per nucleon. 

      b) Similarly, per MeV7.07orMeV,3.28u03038.0)(2 HenH  mmm  nucleon, 

slightly lower (compare to Fig. (43.2)). 

 
43.9: a) For B11

5 the mass defect is: 
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                MeV 76.21  

      b) From Eq. (43.11): 
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 and there is no 

fifth term since Z is odd and A is even. 
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)11(
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      MeV.76.68B  E  

      So the percentage difference is %62.0100
MeV76.21

MeV76.21MeV76.68


  

      Eq. (43.11) has a greater percentage accuracy for Ni.62  

 



43.10: a)  u62.929601u5)29(1.00782u5)34(1.008662934 CuHn mmm  

and
u

MeV 931.5 (usingnucleon per  MeV8.75orMeV,551iswhichu,0.592

).nucleons63  

b) In Eq. (43.11), Z = 29 and N = 34, so the fifth term is zero. The predicted binding 

energy is 
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(The fifth term is zero since the number of neutrons is even while the number of protons 

is odd, making the pairing term zero.) 

 This result differs from the binding energy found from the mass deficit by 0.86%, 

a very good agreement comparable to that found in Example 43.4. 

 
43.11: Z is a magic number of the elements helium (Z = 2), oxygen (Z = 8), calcium (Z = 

20), nickel (Z =28), tin (Z = 50) and lead (Z = 82). The elements are especially stable, 

with large energy jumps to the next allowed energy level. The binding energy for these 

elements is also large. The protons’ net magnetic moments are zero. 

 
43.12: a) u,1.9392146 UHn  mmm which is 

       b) MeV7.56c)orMeV,1080.1 3 per nucleon (using 931.5 u
MeV and 238 nucleons). 

 
43.13: a) 4by  decreases  2,by decreases:decay AZα  

     UPb 235
92

239
94  

     b)  :same  theremains  1,by decreases:decay AZβ   

     MgNa 24
12

24
11  

     c)  :same  theremains  1,by decreases:decay AZ  

     NO 15
7

15
8  

 



43.14: a)The energy released is the energy equivalent of u,108.40 4
epn

 mmm  

,b)keV.783or pn mm   and the decay is not possible. 

 
43.15:    Be)(He)(2 8

4
4
2 MMm   

                        u8.005305u)2(4.002603   

           u109.9 5 m  

 
43.16: a) A proton changes to a neutron, so the emitted particle is a positron ).(   

      b) The number of nucleons in the nucleus decreases by 4 and the number of protons 

by 2, so the emitted particle is an alpha-particle. c) A neutron changes to a proton, so the 

emitted particle is an electron ).(   

 
43.17: If Cdecay 14 is possible, then we are considering the decay .NC 14

7
14
6

   

keV156
MeV0.156)uMeVu)(931.51086.1(So:u101.68

0.0005491u))7(0.000549u(14.003074u))6(0.000549u003242.14(
)N()C(

44

e
14
7

14
6







 E

mMMm

 

43.18: a) As in the example, (0.000898 u)(931.5 MeV.0.836u)MeV   

 b) MeV.0.700MeV0.014MeV0.122MeV0.836   

 
43.19: a) If tritium is to be unstable with respect to  decay, then the mass of the 

products of the decay must be less than the parent nucleus. 

  
u3.014932u)582(0.000548u3.016029)He(

u3.015500u0.00054858u016049.3)H(
23

2

3
1








M
M

 

        u,100.2)He()H( 5
e

3
2

3
1

  mMMm  

so the decay is possible. 

 b) The energy of the products is just 

  keV.19MeV0.019u)MeV5.931)(u100.2( 5  E  



43.20: Note that Eq. 43.17 can be written as follows 

    .2 21/
0

TtNN   

 The amount of elapsed time since the source was created is roughly 2.5 years. 

Thus, we expect the current activity to be 

    Ci.3600Ci)25000( 5.271years
2.6years

 N  

The source is barely usable. Alternatively, we could calculate 1

21

s)0.132(year)2(lnλ 
T

 

and use the Eq. 43.17 directly to obtain the same answer. 
43.21: For yT 5730,C 21

14   

      mindecays0.180;so2lnλ; 0
)2ln(

021
λ

0
21   AeAATeAA Ttt  

       a) mindecays159,y1000  At  

       b) mindecays43.0,y000,50  At  

43.22: (a) XSr 90
39

90
39    

 X has 39 protons and 90 protons plus neutrons, so it must be Y.90  

 (b) Use base 2 because we know the half life. 

    

yr190
2log

01.0log)yr28(
2log

01.0log
201.0

2

21

00

0

21

21












T
t

AA

AA
Tt

Tt

 

43.23: a) HeeH 3
2

0
1

3
1   

      b) 210
λ

0 )2ln(λand100.0, TNNeNN t    

      ;100.0 21)2ln( Tte  );100.0(ln)2ln( 21  Tt  y9.40
2ln

)100.0ln( 21 



T

t  



43.24: a) )s1070.3)(10500(Ci500 1106   
dt
dN  

    sdec1085.1 7dtdN  

 s106.69
d)s(86,40012

2ln2lnλ
λ

2ln 7

21
21


dT

T   

 nuclei1077.2
s1069.6

s/dec1085.1
λ

λ 13
17

7





 

dtdNNN
dt
dN  

 The mass of this 131many Ba nuclei is 
 )nucleuskg1066.1131(nuclei1077.2 2713 m  
     ng0.6g100.6kg100.6 912    

            (b) teAA λ
0

  

  

days108
s400,86

d1s1029.9

s1069.6
)5001(ln

λ
)5001(ln

λ)500/1(ln
)Ci500(Ci1

6

17

λ





















t

t
eµµ t

 

43.25: 2/1/)2ln(
0

λ
0

Ttt eAeAA    

      )(ln)2ln(
0

2
1

AA
T

t
  

 days80.2
)83183091(ln
)days00.4)(2ln(

)(ln
)2ln(

0
2

1 
AA
tT  

 



43.26:  N
dt
dN λ  

  

111

7

s1036.1λ

yr1
s1015.3yr1620

2ln2lnλ
2

1










 


T
 

 atoms10665.2
g226

atoms10022.6g1 25
23








 
N  

 
Bq1062.3

s
dec1062.3)s1036.1)(10665.2(λ

10

1011125



 N
dt
dN

 

Convert to Ci: 

   Ci98.0
Bq1070.3

Ci1Bq1062.3 10
10 










  

 
43.27: Find the total number of carbon atoms in the sample. 

y5730s10807.1λ2)ln(

)s(10836.3)(λ;λ

sdecays3.00mindecays180
atoms14-carbon1082.7)10016.6()103.1(soatoms,10016.6

molkg10(12.011mol)atoms10022.6()kg100.12(

;

11
2/1

112

11231223
tot

3233
AAtot





















T
N

tNNtN

tN
N

MNmnNN
Mmn

 
43.28: a) Solving Eq. (43.19) for λ ,  

      .s1017.4
)hrsec(3600)dayhrs24)(yeardays365()y27.5(

2ln2lnλ 19

21


T

 

      b) .1061.3
)g1066.1()60(

g1060.3
u

17
24

5





 



A
mN  

       c) Bq,1051.1λ 9 N
dt
dN which is d) 0.0408 Ci. The same calculation for radium, 

with larger A and longer half-life (lower λ ) gives 

.Ci1057.3
)226()yrs600.1(

)60()yrs27.5(Ci0408.0λλ 5

Ra1/2Ra

Co1/2Co
CoCoRaRA




















AT
ATNN  

 
 



43.29: a) sdecays1056.7Bq1056.7)0( 1111 
dt

dN  

and  

             .s1075.3
min)s60(min)8.30(

693.0693.0λ 14

21


T

 

so  

 nuclei.102.02
s103.75

sdecays107.56)0(
λ
1)0( 15

14

11





 dt

dNN  

       b) The number of nuclei left after one half-life is 151001.1
2

)0(


N  nuclei, and the 

activity is half: .sdecays1078.3 11
dt
dN  

c) After three half lives (92.4 minutes) there is an eighth of the original amount 
141053.2 N  nuclei, and an eighth of the activity: 

.sdecays1045.9 10







dt
dN  

 

43.30: The activity of the sample is ,kgBq102
kg)(0.500min)sec(60

mindecays3070
  while the 

activity of atmospheric carbon is 255 kgBq  (see Example 43.9). The age of the sample 
is then  

.y7573
y1021.1
)255102(ln

λ
)255102(ln

4 


 t  

 

43.31: a) 
)ys10156.3()y1028.1(

693.0693.0
79

21 


T
 

      .s1072.1 117   
 In Kofg1063.1 406m  there are 

  nuclei.1045.2
)kg1066.1(40

kg1063.1 16
27

9





 



N  

So .sdecays0.421nuclei)10(2.45)s1072.1(λ 16117  N
dt
dN  

 b) .Ci1014.1
CiBq1070.3

Bq421.0 11
10





dt
dN  

 

43.32:  .Ci113.0Ci1013.1Bq1017.4
s86,400

decays10360 73
6

µ
   



43.33: a) .s1091.4
)ys10156.3()y1047.4(

693.0693.0λ 118
79

21





T

 

       b) decays/s.1044.4
Cis

decays1070.3)Ci1020.1(Ci1020.1 51055 








   

 

   .
s1091.4

sdecays1044.41But 118

5





dt
dNNN

dt
dN


  

   NmN u)238(nuclei1004.9 22   
   kg.0357.0)10kg)(9.041066.1)(238( 2227  m  
 
    c) Each decay emits one alpha particle. In 60.0 g of uranium there are 

523118

23
27

107.46nuclei)1052.1()s1091.4(λ

nuclei1052.1
)kg1066.1(238

kg0600.0












N
dt
dN

N
 

 alpha particles emitted each second. 
 
43.34: (a) rem = rad   RBE 
                                  200 = x(10) 
                                    x = 20 rad 
      (b) 1 rad deposits 0.010 kgJ , so 20 rad deposit kgJ0.20 . This radiation affects 25 g 
(0.025 kg) of tissue, so the total energy is 
                      mJ5.0J105.0)kgJ(0.20kg)(0.025 3      
     (c) Since RBE = 1 for  -rays, so rem = rad. Therefore 
             20 rad = 20 rem 
 
43.35: 1 rad = 210  Gy, so 1 Gy = 100 rad and the dose was 500 rad 
 rem=(rad) (RBE) = (500 rad) (4.0) = 2000 rem 
 kgJ5.0so,kgJ1Gy1   
 
43.36: a) rem.540)Svrem(100Sv5.4   b) The RBE of 1 gives an absorbed dose of 
540 rad.  c) The absorbed dose is 5.4 Gy, so the total energy absorbed is kg)(65Gy)(5.4

J.351  The energy required to raise the temperature of 65 C010.0kg o  is (4190kg)(65  
kJ.3C)(0.01K)kgJ   

 



43.37: a) We need to know how many decays per second occur. 

 .s1079.1
)ys10156.3()y3.12(

693.0693.0λ 19
7

21





T

 

The number of tritium atoms is 19

10

s101.79
)CiBq10(3.70Ci)(0.35

λ
1)0( 




dt
dNN   

18102540.7)0(  N nuclei. The number of remaining nuclei after one week is just 
18)s3600()24()7()s1079.1(18λ 107.2462week)1()1025.7()0()week1(

19


 NeeNN t  

nuclei decays.107.8week)1()0( 15 NNN  So the energy absorbed is 
J.6.24)eVJ10(1.60eV)5000()108.7( 1915

total  
γENE So the absorbed dose 

is rad.5.12kgJ125.0
kg)(50

J)(6.24
  Since RBE = 1, then the equivalent dose is  

12.5 rem. 
      b) In the decay, antinentrinos are also emitted. These are not absorbed by the body, 
and so some of the energy of the decay is lost (about 12 keV ). 
 
43.38: a) From Table (43.3), the absorbed dose is 0.0900 rad. b)  The energy absorbed 
is J;101.35kg)(0.150)kgJ10(9.00 44    each proton has energy J,101.282 13  so 
the number absorbed is c)1005.1 9   The RBE for alpha particles is twice that for 
protons, so only half as many, ,1027.5 8  would be absorbed. 
 

43.39: a) 
m102.00

)sm10(3.00s)J10(6.63)10(6.50
11

83410

total 









NhcNEE  

 J.106.46 4
total

 E  
 
       b) The absorbed dose is the energy divided by tissue mass: 

`  rad.0.108
kgJ
rad100)kgJ10(1.08

kg0.600
J106.46dose 3

4












 



 

 The rem dose for x rays (RBE = 1) is just 0.108 rem. 
 
43.40: α117106 108.41s)10(3.156)CiBq10(3.7Ci)10(0.72    particles. The 
absorbed dose is 

 rad.108Gy1.08
kg)(0.50

)eVJ10(1.602eV)10(4.0)10(8.41 19611


 

 

The equivalent dose is (20) (108 rad) = 2160 rem. 



43.41: a)  241and7492SoHe.XBeH 4
2

9
4

2
1 ZAAA

Z  
Li.isXso,3 7

3Z  
       b) He)(Li)(Be)(H)( 4

2
7
3

9
4

2
1 MMMMm    

       
u.10678.7

u002603.4u016003.7u012182.9u014102.2
3


 

       So MeV.7.152)uMeV(931.5u)10(7.678)( 32  cmE  
       c) The threshold energy is taken to be the potential energy of the two reactants when 
they just “touch.” So we need to know their radii: 

 
m102.5(9)m)102.1(

m101.5(2)m)102.1(
153115

9

153115
2

Be

H









r

r
 

So the centers’ separation is m100.4 15r  

 Thus J013.2
)m100.4(4

C)1060.1(4
4

1 13
15

0

219
BeH

0












πεr
qq

πε
U  

  MeV.1.4eV101.4 6 U  
43.42: ,u1097.1 2

HHeHHe 1
1

4
2

2
1

3
2

 mmmm  so the energy released is 18.4 MeV. 

 
43.43: a) As in Ex. ,3571and,610142),a41.43(  ZZAA  

Li.Xso 6
3   

    b) As in Ex. (43.41b), using ,Li)(,u003074.14)N(,u014102.2)H( 6
3

14
7

2
1  MMM  

u,010882.0,u012937.10)B( u,6.01521 10
5  mMand  so energy is absorbed in the 

reaction. MeV.10.14u)MeV5.931(u)010882.0(  Q  

 c) From Eq. (43.24): K
mM

MK


cm  

so 

 MeV11.6MeV)14.10(
u0.14

u01.2u0.14
cm 









 

 K
M

mMK  

 
43.44:   1.93)molmolecules10(6.023)eVJ10(1.602eV)10(200 23196  

,molJ1013  which is far higher than typical heats of combustion. 
 
43.45: The mass defect is )U(U)( *236

92n
235
92 MmMm   

 
u007025.0

u045562.236u008665.1u043923.235


 m
 

So the internal excitation of the nucleus is: 
MeV544.6

)uMeV(931.5u)(0.007025)( 2


 cmQ  



43 .46: a) 10.174and5023  AZ  b) The nuclide is a boron nucleus, 
and u,1000.3 3

BnLiHe
 mmmm  and so 2.79 MeV of energy is absorbed. 

43.47: The energy liberated will be 

 
MeV.586.1

)vMeV(931.5
v)7.016929v4.002603v(3.016029Be)()He(He)( 7

4
4
2

3
2




 MMM
 

 
43.48: a) XZZAAA

Z 2.so14124.so2824.XMgSi 24
12

28
14    is an 

 particle. 
       b) )vMeV(931.5v)27.976927v4.002603v429850.23(2  mcKEγ  
                                     MeV9.984  
43.49: Nuclei: 


  24

2
)2(4

2 HeYX ZA
Z

zA
Z  

        Add the mass of Z  electrons to each side and we find:  
 Y)(X)( 4

2
A
Z

A
Z MMm  

He),(4
2M  where now we have the mass of the neutral atoms. So as long as the mass of 

the original neutral atom is greater than the sum of the neutral products masses,  the 
decay can happen. 
43.50: Denote the reaction as 

.YX 1


  eA
Z

A
Z  

The mass defect is related to the change in the neutral atomic masses by 
 ),(])1([][ YXeeYeX mmmmZmZmm   
where Xm and Ym  are the masses as tabulated in, for instance, Table (43.2). 
 
43.51: 


  )1(

1 YX ZA
Z

zA
Z  

       Adding (Z –1) electron to both sides yields 
       


  YX 1

A
Z

A
Z  

       So in terms of masses: 

     

   
    
    .2YX

YX

YX

e1

e1e

e1

mMM

mMmM

mMMm

A
Z

A
Z

A
Z

A
Z

A
Z

A
Z














 

So the decay will occur as long as the original neutral mass is greater than the sum of the 
neutral product mass and two electron masses. 
 
43.52: Denote the reaction as Y.X 1

A
Z

A
Z e 

   
The mass defect is related to the change in the neutral atomic masses by 
  ),(])1([][ YXeYeeX mmmZmmZmm   
where Xm  and Ym  are the masses as tabulated in, for instance, Table (43.2). 



43.53: a) Only the heavier one Al)(25
13 can decay into the lighter one Mg).(25

12   
       b) XZAA

Z  1,0X)Mg()Al( 25
12

25
13  is a positron  

                                                                                 decay 
       or XZA  1,0MgXAl)( 25

12
A
Z

25
13  is an electron  

                                                                            electron capture 
       c) Using the nuclear masses, we calculate the mass defect for   decay: 

                     
u10495.3

)u00054858.0(2u985837.24u990429.24
)12)Mg(()13)Al((

3

ee
25
12e

25
13




 mmMmMm

 

                   .MeV255.3)uVMe5.931()u10495.3()( 32  cmQ  
For electron capture: 

  
u104.592

u985837.24u990429.24Mg)()Al(
3

25
12

25
13



 MMm
 

MeV.277.4u)VMe(931.5u)10592.4()( 32  cmQ  
43.54: a) MeV.41.5or u,1081.5 3

HePbPo 4
2

206
82

210
84

  Qmmm  The energy of the 

alpha particle is )210206( times this, or MeV30.5 (see Example 43.5) 
 b) ,0u1035.5 3

HBiPo 1
1

209
83

210
84

 mmm  so the decay is not possible. 

c) 0,u1022.8 3
nPoPo 209

84
210
84

 mmm  so the decay is not possible. 

d) ,PoAt 210
84

210
85

mm   so the decay is not possible (see Problem (43.50)). 

e) ,2
PoeBi 210

84
210

83
mmm   so the decay is not possible (see Problem (43.51)). 

43.55: Using Eq: (43.12):  H
24
11

2
BnH 11Na)( MMcENmZMMA

Z  

%.022.0100
23.990963

23.985823.990963error%

u9858.23
uMeV931.5

MeV)(198.31u).008665 13(1u)511(1.00782Na)(

MeV.31.198(24)MeV)39(
24

))11(224()MeV69.23(

(24)
(10)(11)MeV7100.0((24)MeV)80.17()24(MeV75.15But.13

24
11

34
2

31
32

B
2

Bn















M

EcEm

 
If the binding energy term is neglected, u24.1987Na)(24

11 M and so the percentage error 

would be  %.87.0100
990963.23

990963.231987.24


  



43.56: The  -particle will have
230
226  of the mass energy (see Example 45.5) 

      MeV.4.69oru10032.5)(
230
226 3

RaTh
 mmm  

43.57:    u197.966752u968225.197)Hg()Au(HgAu 198
80

198
79

198
80

198
79 MMm

MeV.372.1uMeV(931.5u)10

473.1()( wasavailableenergy totaltheAndu.101.473
3

23






 QcmQ
 

The emitted photon has energy MeV,412.0 so the emitted electron must have kinetic 
energy equal to MeV.0.960MeV0.412MeV372.1   
43.58: (See Problem (43.51)) u.1003.12 3

eBC 11
5

11
6

 mmm  Decay is energetically 

possible. 
 
43.59:  CN 13

6
13
7  As in Problem 43.51, β decay has a mass defect in terms of 

neutral atoms of 

              
u101.287

u)582(0.00054813.003355u005739.13
2C)()N(

3

e
13
6

13
7




 mMMm

 

Therefore the decay is possible because the initial mass is greater than the final mass. 
43.60: a) A least-squares fit to log of the activity vs. time gives a slope of 

,hr5995.0λ 1 for a half-life of hr.16.1
λ

2ln
  b) The initial activity is so,λ0N  

                              .1020.1
s)3600hr1()hr(0.5995

Bq)1000.2( 8
1

4

0 

N  

c) .1081.1 6λ
0  teN  

43.61: The activity  )0(λ)0(so)(λ)(but)()( N
dt

dNtN
dt

tdN
dt

tdNtA  

.λ 00 AN   Taking the derivative of ttt e
dt

dNeN
dt

tdNeNtN λλ
0

λ
0

)0(λ)()(    

.)(or λ
0

teAtA   

43.62: From Eq.43.17 












  21T
2)ln(

0
λ

0
λ

0 but)(
t

tt eNeNeNtN  

  .where
2
1)(So.

21
0

)
2
1(ln

0
2)(ln

0

2121

T
tnNtNeNeN

nT
t

T
t












































 

Recall  .and,)(),ln(ln ln xeeexxa xaaxaxa   



43.63: 119
710

21

s1062.4
)ys10156.3()y1075.4(

693.0693.0 



T

 

87870
y)s10156.3()y106.4()s1062.4(

00

870087

0694.1
79119

8787

8787

NNeNN

eNNeNN tt












 

But we also know that 



 85

85
87

8785

87 3856.0
)2783.01(

2783.0
2783.0 N

N
N

NN
N

 

.2920.0
))3856.0(0694.11(

)3856.0(0694.1So.3856.0
8785

87

85
00

0
0 




 NN
N

N  

So the original percentage of 850
87

85
(29%.isRb NN   since it doesn’t decay.) 

43.64: a)   Gy0.0682kg)0.70()eVJ10(1.602MeV)1077.4()1025.6( 19612  

6.82 rad. b) (20)(6.82 rad)=136 rem    Bq1017.1)2ln(
u

λ(c) 9

21TA
mN   

d)mCi.31.6 s,1034.5
Bq1017.1

1025.6 3
9

12



 about an hour and a half. Note that this time is 

so small in comparison with the half-life that the decrease in activity of the source may be 
neglected. 

43.65: a) sdecays109.6Ci)sdecays10Ci(3.70106.2 6104  

dt
dN  so in one 

second there is an energy delivered of 

s.J1062.9

)eVJ10(1.60eV)10(1.25s)00.1()s106.9(
2
1

2
1

7

19616













 γEt

dt
dNE

 

     b)   Absorbed dose 
kg500.0

sJ106.9 7


m
E  

                                  rad.109.1
skgJ

rad100skgJ109.1 46  









  

     c) Equivalent dose rem.101.3rad)109.1(7.0 44    

     d) days.17s105.1
srem101.3

rem200 6
4 

        

 
43.66: a) After 4.0 min = 240 s, the ratio of the number of nuclei is  

.1242
2
2 2.122

1
9.26

1
)240(

9.26240

2.122240








 





 

       b) After 15.0 min = 900 s, the ratio is .1015.7 7  



43.67:               te
N
N λ

0

21.0    

                                          y13000
693.0

5730)21.0ln(
λ

)21.0ln(


yt  

43.68: The activity of the sample will have decreased by a factor of 

;210097.1
60s)min1(min)counts5.8(

Ci)Bq10(3.70Ci)102.4( 06.206
106


 

 

this corresponds to 20.06 half-lifes, and the elapsed time is 40.1 h. Note the retention of 
extra figures in the exponent to avoid roundoff error. To the given two figures the time is 
40 h. 
43.69: For deuterium: 
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       J105.231 13  
      c) A mole of deuterium has 2310022.6   molecules, so the energy per mole is 

J.103.150J)10231.5()10022.6( 111323    This is over a million times more than the 
heat of combustion. 
43.70: a) u,1030.1 2

HNO 1
1

15
7

16
8

 mmm  so the proton separation energy is 

u,1068.1b)MeV.1.12 2
nOO 15

8
16
8

 mmm so the neutron separation energy is 

MeV.7.15  c) It takes less energy to remove a proton. 
43.71: Mass of K40  atoms in 1.00 kg is kg.102.52kg)102.1()101.2( 743    

Number of atoms .10793.3
)ukg10u(1.66140

kg1052.2 18
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So in 50 years the energy absorbed  is:  y)decay10(2.054)y50(decay)MeV50.0( 9E
J.108.22MeV1014.5 310   So the absorbed dose is   rad)J100(J)1022.8( 3  

82.0 rad and since the RBE = 1.0, the equivalent dose is 0.82 rem. 



43.72: In terms of the number N of cesium atoms that decay in one week and the mass 
kg,0.1m  the equivalent dose is 
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The number 0N  of atoms present is related to so,by λ
0

tNeNN   
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b) For an endoenergetic reaction  0cm  QQK  at threshold. Putting this into part  

(a) gives  Q
M

mMKK
mM

MQ thth





  

43.74: 
 K

mM
MK


 , where K  is the energy that the  -particle would have if the 

nucleus were infinitely massive. Then,    MMKMMM OsOs  

  u94821.181MeV76.2
182
186 2 c  

43.75:       n
94
38

140
54
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92 SrXeU mMMMm     
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43.76: a) A least-squares fit of the log of the activity vs. time for the times later than 4.0 hr 
gives a fit with correlation  61021   and decay constant of 1hr361.0  , corresponding 
to a half-life of 1.92 hr. Extrapolating this back to time 0 gives a contribution to the rate of 
about 2500/s for this longer-lived species. A least-squares fit of the log of the activity vs. 
time for times earlier than 2.0 hr gives a fit with correlation = 0.994, indicating the 
presence of only two species. 
     b) By trial and error, the data is fit by a decay rate modeled by 
          hr361.0hr733.1 Bq2500Bq5000 tt eeR   . 
This would correspond to half-lives of 0.400 hr and 1.92 hr. 
     c) In this model, there are 71004.1   of the shorter-lived species and 71049.2   of the 
longer-lived species. 
     d) After 5.0 hr, there would be 31080.1   of the shorter-lived species and 61010.4   
of the longer-lived species. 



43.77: (a) There are two processes occurring: the creation of I128  by the neutron 

irradiation, and they decay of the newly produced I128 . So KNK
dt
dN whereλ  is the 

rate of production by the neutron irradiation. Then  
N t
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b) The activity of the sample is        sdecays105.11λ 6λteKtN  
























 t

e min25
693.0

1 . So the activity is    te 02772.06 1sdecays105.1  , with t in minutes. So 

the activity 





 

dt
Nd  at various times is: 
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 c)   atoms102.3
02772.0

)60()105.1(
λ

9
6

max 



KN . 

 d) The maximum activity is at saturation, when the rate being produced equals 
that decaying and so it equals .sdecays105.1 6  



43.78: The activity of the original iron, after 1000 hours of operation, would be 
Bq108306.12)CiBq103.7(Ci)104.9( 5)dhr24d45(hr)1000(106   . 

The activity of the oil is 84 Bq, or 4105886.4   of the total iron activity, and this must 
be the fraction of the mass worn, or mass of g1059.4 2 . The rate at which the piston 
rings lost their mass is then hrg1059.4 5 .  



44.1:   a) 2
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       J1027.1sokg,10109.9 1431   Km  
    b) The total energy of each electron or positron is  22 1547.1 mcmcKE  

J.1046.9 14  The total energy of the electron and positron is converted into the total 
energy of the two photons. The initial momentum of the system in the lab frame is zero 
(since the equal-mass particles have equal speeds in opposite directions), so the final 
momentum must also be zero. The photons must have equal wavelengths and must be 
traveling in opposite directions. Equal λ  means equal energy, so each photon has energy 

J.1046.9 14  
      c) pm10.2)J1046.9(λsoλ 14  hcEhchcE  
           The wavelength calculated in Example 44.1 is 2.43 pm. When the particles also                                             
have kinetic energy, the energy of each photon is greater, so its wavelength is less. 
44.2: The total energy of the positron is 

                MeV.5.51MeV0.511MeV00.52  mcKE  
 We can calculate the speed of the positron from Eq. 37.38 
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44.3: Each photon gets half of the energy of the pion 

 

ray.gammam108.1
Hz107.1

sm1000.3λ

Hz107.1
s)J1063.6(

)eVJ106.1()eV109.6(

MeV69MeV)511.0()270(
2
1)270(

2
1

2
1

14
22

8

22
34

197

2
e

2
γ





















f
c
h
Ef

cmcmE 

 

44.4: a) 
)sm10(3.00kg)10(9.11(207)

s)J10626.6(λ 831

34
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cm
h

cm
hc

E
hc

µµ

  

                                                      pm.0.0117m1017.1 14    
In this case, the muons are created at rest (no kinetic energy). b) Shorter wavelengths 
would mean higher photon energy, and the muons would be created with non-zero kinetic 
energy. 
44.5: a) eee 63207270 mmmmmm     
               MeV.32MeV)511.0(63  E  
      b) A positive muon has less mass than a positive pion, so if the decay from muon to 
pion was to happen, you could always find a frame where energy was not conserved. This 
cannot occur. 



44.6: a) The energy will be the proton rest energy, 938.3 MeV, corresponding to a 
 frequency of Hz1027.2 23  and a wavelength of m.1032.1 15  b) The energy of  
each photon will be MeV,1768MeV830MeV3.938   with frequency Hz108.42 22   
and wavelength m.1002.7 16  
44.7: J.1020.7)sm1000.3()kg400kg400()( 19282  cmE  
 
44.8: nCBeHe 1

0
12
6

9
4

4
2   

       We take the masses for these reactants from Table 43.2, and use Eq. 43.23 
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 The mass decreases so energy is released and the reaction is exoergic. 
44.10: a) The energy is so high that the total energy of each particle is half of the  
available energy, 50 GeV. b) Equation (44.11) is applicable, and MeV.226a E  

44.11:     a)  
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44.12: a) )cs.m1012.3)bs.1097.32 77 
m

eBRR
m
eBf 


 For three-

figure precision, the relativistic form of the kinetic energy must be used,   

,)mc(γeV 21 V.101151so1so 6
2

2 
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e
)mc(γV,)mc(γeV  



44.13: a) )(2 222
a mcEmcE m   

           2
2

2
a

2
mc

mc
EEm   

The mass of the alpha particle is that of a 4
2 He atomic mass, minus two electron masses. 

But to 3 significant figures this is just 
GeV.3.73)uGeV(0.9315u)(4.00u4.00He)(4

2 M  

GeV.30.6GeV73.3
GeV)2(3.73

GeV)0.16(
So

2

mE  

     b) For colliding beams of equal mass, each has half the available energy, so each  
has 8.0 GeV. 

44.14: a) .999999559.0so,8.1065
MeV938.3

MeV101000 3

cvγ 


  

       b) Nonrelativistic: 

 .srad1083.3 8
m
eB

  

Relativistic: 

 .srad1059.31 5
γm

eB  

44.15: a) With 2

2
a2

2
,

mc
EEmcE mm  Eq. (44.11). 

       So GeV.3190
GeV)938.0(2

GeV)]7.38(2[ 2

mE  

        b) For colliding beams the available energy aE  is that of both beams. So two 
 proton beams colliding would each need energy of 38.7 GeV to give a total of 77.4 GeV. 
44.16: The available energy aE  must be ,)2( 2

0 cmm ρη   so Eq. (44.10) becomes 
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44.17: Section 44.3 says .GeV2.91)Z( 20 cm   
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44.18: a) We shall assume that the kinetic energy of the 0  is negligible. In that case we 
can set the value of the photon’s energy equal to Q. 
                                  .MeV77MeV)11161193( photonEQ   
       b) The momentum of this photon is 

smkg104.1
)sm10(3.00

)eVJ10(1.60eV)10(77 20
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To justify our original assumption, we can calculate the kinetic energy of a 0  that has 
this value of momentum 

                   MeV.77MeV2.7
MeV)2(1116

MeV)(77
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2
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Q
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E

m
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Thus, we can ignore the momentum of the 0  without introducing a large error. 
 
44.19: .)( 0

mmMm p    Using Table (44.3): 
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44.20: From Table (44.2), MeV.2.105)2( 2
e  cmmm v  

 
44.21: Conservation of lepton number. 
     a)  110:,11:  

eue LLvve   
 so lepton numbers are not conserved. 
     b) 110:  

eτe Lvveτ  
       11: τL  
 so lepton numbers are conserved. 
  
      c) .γ  e  Lepton numbers are not conserved since just one lepton is 
 produced from zero original leptons. 
 
      d) ,110:γn  

ee Lep  so the lepton numbers are conserved. 
44.22: a) Conserved: Both the neutron and proton have baryon number 1, and the 
electron and neutrino have baryon number 0. b) Not conserved: The initial baryon 
number is 1 +1 = 2 and the final baryon number is 1. c) Not conserved: The proton has 
baryon number 1, and the pions have baryon number 0. d) Conserved: The initial and 
final baryon numbers are 1+1 = 1+1+0. 
 



44.23: Conservation of strangeness: 
 
       a) . vK     Strangeness is not conserved since there is just one strange  
particle, in the initial states. 
 
      b) .n 0  pK  Again there is just one strange particle so strangeness  
cannot be conserved. 
      c) ,011:00   SKK  so strangeness is conserved. 
      d) ,0110:00   SKp   so strangeness is conserved. 
 
44.24: a) Using the values of the constants from Appendix F, 
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or 1371 to three figures. 
      b) From Section 38.5 
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44.25: 1
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 and thus 
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2

 is dimensionless. (Recall 2f has units of energy times distance.) 



44.26: a) 

 
   
 The   particle has 1Q  (as its label suggests) and .3S  Its appears as a 
“hole”in an otherwise regular lattice in the QS   plane.  The mass difference between 
each S row is around 145 MeV (or so). This puts the  mass at about the right spot. As 
it turns out, all the other particles on this lattice had been discovered already and it was 
this “hole” and mass regularity that led to an accurate prediction of the properties of the 
 ! 

      b) See diagram. Use quark charges 
3
1and,

3
1,

3
2 




 sdu  as a guide. 
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44.28: a) 1S  indicates the presence of one s  antiquark and no s quark. To have 
baryon number 0 there can be only one other quark, and to have net charge + e that quark 
must be a u, and the quark content is .su  b) The particle has an s antiquark, and for a 
baryon number of –1 the particle must consist of three antiquarks. For a net charge of –e, 
the quark content must be .sdd  c) 2S  means that there are two s quarks, and for 
baryon number 1 there must be one more quark. For a charge of 0 the third quark must be 
a u quark and the quark content is uss. 
 
44.29: a) The antiparticle must consist of the antiquarks so: 
   .n ddu  
    b) So uddn is not its own antiparticle 
    c)  ψccψccψ  so so the ψ  is its own antiparticle. 
44.30: MeV5906MeV))2(1777MeV9460()2( 2

γ  cmm τ (see Sections 44.3 and 
44.4 for masses). 
44.31: In  decay, ev  nep 1

0
0
1

1
1  

       ,n,p 1
0

1
1 udduud  so in  decay a u quark changes to a d quark. 

44.32: a) Using the definition of z  from Example 44.9 we have that 
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Now we use Eq. 44.13 to obtain 
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b) Solving the above equation for   we obtain 
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Thus, .sm1015.13846.0 8 cv  
     c) We can use Eq. 44.15 to find the distance to the given galaxy, 
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44.33: a) .skm1004.1)Mly5210)(Mly)skm(20( 5
0  rHv  

      b) .44.1
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44.34: From Eq. (44.15), .Mly105.1
Mly)skm(20

sm1000.3 4
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H
cr  b) This distance 

represents looking back in time so far that the light has not been able to reach us. 



44.35:   a)  
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44.36: Squaring both sides of Eq. (44.13) and multiplying by 
 )(λgives 2

0 vcvc ),(λ2 vcs   and solving this for v gives Eq. (44.14). 

44.37: a) )He()H()H( 3
2

2
1

1
1 MMMm  where atomic masses are used to balance 

electron masses. 
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                         MeV.20.58u)VMe(931.5u)102209.0()( 2  cmE  
44.38: 3124 1080.7)C()He(3  mm u, or 7.27 MeV. 
44.39: ,0assumingso

ee vvnpe  mmmmmm  
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44.40: 3
OHeC 1069.716

8
4
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 mmm u, or 7.16 MeV, an exoergic reaction. 

44.41: For blackbody radiation  
121

λλλso,m1090.2λ 21
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mmmm TTKT  
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44.42: a) The dimensions of  are energy times time, the dimensions of G are energy times 
time per mass squared, and so the dimensions of 3/ cG are 
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44.43: a) TeV14TeV)7(2Ea   
       b) Fixed target; equal mass particles, 
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44.45: The available energy must be the sum of the final rest masses: (at least) 
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44.46: In Eq.(44.9), 
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44.47: The available energy must be at least the sum of the final rest masses. 
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      .)(MeV 1759 2 KcmE KK     
So the threshold energy K = 1759 MeV– 493.7 MeV=1265 MeV. 
 
44.48: a) The decay products must be neutral, so the only possible combinations are  

 0000 or  
       b) ,VMe3.1423 2

00
cmmη 


 so the kinetic energy of the 0  mesons is 142.3 

MeV. For the other reaction, .MeV1.133)( 2
00

  cmmmmK
  

44.49: a) If the   decays, it must end in an electron and neutrinos. The rest energy of 
(139.6 MeV) is shared between the electron rest energy (0.511 MeV) and kinetic energy 
(assuming the neutrino masses are negligible). So the energy released is 139.6 MeV – 
0.511 MeV = 139.1 MeV. 
      b) Conservation of momentum leads to the neutrinos carrying away most of the 
energy. 
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44.51: a) 222

p
2 )()()()( cmcmcmcmE KK    

                    
MeV.32.0

MeV)2(493.7MeV1019.4



 

Each kaon gets half the energy so the kinetic energy of the K is 16.0 MeV. 
     b) Since the 0 mass is greater than the energy left over in part (a), it could not have 
been produced in addition to the kaons. 
      c) Conservation of strangeness will not allow .   KorK  
 
44.52: a) The baryon number is 0, the charge is e , the strangeness is 1, all lepton 
numbers are zero, and the particle is .K  b) The baryon number is 0, the charge is e , 
the strangeness is 0, all lepton numbers are zero, and the particle is .  c) The baryon 
numbers is –1, the charge is 0, the strangeness is zero, all lepton numbers are 0, and the 
particle is an antineutron. d) The baryon number is 0, the charge is e , the strangeness 
is 0, the muonic lepton number is –1, all other lepton numbers are 0, and the particle is 

.  
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44.54: a) The number of protons in a kilogram is 

.106.7molecule)protons2(
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Note that only the protons in the hydrogen atoms are considered as possible sources of 
proton decay. The energy per decay is ,J10503.1MeV3.938 102

p
cm  and so the 

energy deposited in a year, per kilogram, is 
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 b) For an RBE of unity, the equivalent dose is (1) (0.70 rad) = 0.70 rem. 
 



44.55:  a) 222
Ξ
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       b) Using (nonrelativistic) conservation of momentum and energy: 
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Also EKK π  0  from part (a). 
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So the fractions of energy carried off by the particles are 11.0
65

2.7
  for the 0  and  

0.89 for the .  
 

44.56: a) For this model, ,so, H
R

HR
R

dtdRHR
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  presumed to be the same for 

all points on the surface. b) For constant , .HrHR
dt
dR

dt
dr

   c) See part (a), 

.0 R
dtdRH   d) The equation RH

dt
dR

0  is a differential equation, the solution to 

which, for constant ,)is 0
00

tHeRR(tH  where 0R  is the value of R at 0t . This equation 

may be solved by separation of variables, as 0)(ln HR
dt
d

R
dtdR

  and integrating both 

sides with respect to time. e) A constant 0H  would mean a constant critical density, 
which is inconsistent with uniform expansion. 



44.57: From Pr.(44.56): .
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 Now 
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  where K  is a constant. 
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 So the current value of the Hubble constant is 
T
1 where T is the present age of the 

universe. 



44.58: a) For mass m, in Eq. .
1
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For mass .so,0,, cmcm vvvvuM M  b) The condition for no net momentum in the 
center of mass frame is MmMMmm γandγvMγvmγ where,0 correspond to the velocities 
found in part (a). The algebra reduces to ,)( 00 Mmm γγγ   where 

,, cm0
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  and the condition for no net momentum becomes 
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      c) Substitution of the above expression into the expressions for the velocities found 
in part (a) gives the relatively simple forms 
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After some more algebra, 
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 , from which 
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This last expression, multiplied by ,2c  is the available energy aE in the center of mass 
frame, so that 
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which is Eq. (44.9). 
 



44.59: 00 n   
 a) 22

n
22 )()()()( 00 cmcmcmcmE
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b) Using conservation of momentum and kinetic energy; we know that the momentum of 
the neutron and pion must have the same magnitude, ppn   
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( .222)(2) 2222222222
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Collecting terms we find : 2222 2)222( cEmEcmEcmK nn   
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So the fractional energy carried by the pion is ,86.0
4.41

62.35
 and that of the neutron is 0.14.
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