Estadística en Física Experimental (1er Cuatrimestre 2025)

Guía de Problemas Nº 5 | Teorema Central del Límite y Distribución Multinormal

- 1. Estudie el grado de validez del teorema central del límite dibujando las distribuciones siguientes, y superponiendo sobre ellas la gaussiana con el μ y σ correspondiente.
 - (a) $B_k(5,0.2)$, $B_k(30,0.4)$
 - (b) $P_n(4)$, $P_n(10)$, $P_n(40)$
- 2. El teorema central del límite permite evaluar probabilidades binomiales sin necesidad de sumar muchos términos que involucran factoriales de grandes números, a partir de la distribución acumulativa normal canónica $\Phi(x)$,

$$\sum_{k=a}^{b} B_k(n,p) = \sum_{k=a}^{b} \binom{n}{k} p^k q^{n-k} \simeq \Phi\left(\frac{b-np+\frac{1}{2}}{\sqrt{npq}}\right) - \Phi\left(\frac{a-np-\frac{1}{2}}{\sqrt{npq}}\right)$$

Discuta el origen de esta fórmula y utilícela para calcular la probabilidad de aprobar un examen multiple choice con 100 preguntas de tres opciones cada una, si se contesta al azar y se aprueba con 4 (40% de respuestas correctas). [Rta: 0.0966 con la suma exacta, y 0.0951 con la fórmula aproximada.]

- 3. Utilizando el teorema central del límite escribir un generador aproximado de números gaussianos N(0,1), a partir de variables aleatorias independientes $\{X_i\}$ con distribución uniforme en [0,1], como una función f(Z) siendo $Z = \sum_{i=1}^{n} X_i$.
 - (a) Si se elige n=50, ¿cuál debe ser f(Z)?
 - (b) ¿En qué rango de la abscisa seguro falla la aproximación a la normal?
 - (c) Genere de este modo 10000 números con la computadora, haga un histograma de su distribución, y grafique N(0,1) sobre éste.
 - (d) Muestre que el promedio de N variables independientes con distribución de Cauchy tiene a su vez distribución de Cauchy. ¿Por qué falla en este caso el teorema central del límite?
- 4. ¿Cuánta gente deberá encuestarse en Argentina si se desea conocer la intención de voto p para un cierto candidato dentro de un margen de 1% (en sentido absoluto) y con un nivel de confianza de 95%? Use para esto el dato de que aproximadamente (a) el 45% (b) el 5% del electorado votará efectivamente por dicho candidato. Discuta intuitivamente por qué obtiene resultados distintos para los casos (a) y (b). [Rta: 9900 y 1900]

Sugerencia: considerar que la población tiene muchos más individuos que cualquiera de estas muestras y usar la aproximación gaussiana.

- 5. Muestre que a distribución poissoniana tiende a la gaussiana en el límite $\mu \to \infty$. Para ello obtenga la función característica de $Y \equiv (n E(n))/\sigma_n$, con n poissoniana, y verifique la validez de $\lim_{\mu \to \infty} \phi_Y(t) = \phi_X(t)$, con X(t) gaussiana canónica.
- 6. Siendo que en el problema anterior no hay una suma de variables aleatorias ¿Por qué esta en esta guía? *Ayuda*: Estudie la distribución de la suma de variables aleatorias con distribución de Poisson.
- 7. La Distribución Multinormal es la generalización a n dimensiones de la normal (la gaussiana) y, al igual que ésta, juega un rol preponderante en probabilidades y estadística. Dadas n variables aleatorias correlacionadas $\{X_i\}$, con esperanza $E(X_i) = \mu_i$ y matriz de covarianza \mathbb{V} , ésto es $Cov(X_i, X_j) = V_{ij}$, se dice que su densidad de probabilidad conjunta $f(\underline{x})$ es multinormal si todas las distribuciones marginales $f(x_i)$ y todas las distribuciones condicionales unidimensionales $f(x_i|x_j, j \neq i)$ son gaussianas. La densidad de probabilidad conjunta $f(\underline{x})$ viene dada por

$$f(\underline{\mathbf{x}}) = \frac{1}{\sqrt{(2\pi)^n |\mathbb{V}|}} \exp\left[-\frac{1}{2} (\underline{\mathbf{x}} - \underline{\mu})^T \mathbb{V}^{-1} (\underline{\mathbf{x}} - \underline{\mu})\right]$$

donde $\underline{\mathbf{x}}$ y $\underline{\mu}$ son vectores columna de tamaño n, $\underline{\mathbf{x}}^T$ y $\underline{\mu}^T$ los respectivos vectores traspuestos (vectores fila) y \mathbb{V} es cuadrada (de $n \times n$), simétrica y definida positiva, con $|\mathbb{V}| \equiv \det(\mathbb{V})$.

(a) Verifique que para n = 1, $f(\underline{x})$ es una gaussiana.

(b) En el caso n=2 (multinormal bivariada) la matriz de covarianza de una multinormal depende de tres parámetros (¿por qué?). Elijamos σ_1 , σ_2 y el coeficiente de correlación ρ , ésto es, $V_{11} = \sigma_1^2$, $V_{22} = \sigma_2^2$ y $V_{12} = \rho \sigma_1 \sigma_2$. Muestre entonces que

$$f(x_1, x_2) = \left(2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}\right)^{-1} \exp\left(-\frac{Q}{2}\right)$$

con

$$Q = \frac{1}{1 - \rho^2} \left[\left(\frac{x_1 - \mu_1}{\sigma_1} \right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2} \right)^2 - 2\rho \left(\frac{x_1 - \mu_1}{\sigma_1} \right) \left(\frac{x_2 - \mu_2}{\sigma_2} \right) \right]$$

- (c) Compruebe que cuando $\rho = 0$, $f(x_1, x_2) = N(\mu_1, \sigma_1)N(\mu_2, \sigma_2)$. Esto es, para la multinormal, correlación nula implica que las variables son independientes.
 - En adelante, puede trabajar con $\mu_1 = \mu_2 = 0$ para simplificar las cuentas.
- (d) Muestre que la distribución marginal $f(x_2)$ es la gaussiana $N(\mu_2, \sigma_2)$, independientemente del valor del nivel de correlación ρ .
- (e) Una manera de visualizar la forma de una multinormal con n=2 es dibujar curvas de nivel de f en el plano x_1, x_2 . Considere las correspondientes a Q=1, y muestre que son elipses centradas en (μ_1, μ_2) , denominadas elipses de covarianza. Para $\mu_1 = \mu_2 = 0$, verifique que éstas están contenidas en el rectángulo $(\pm \sigma_1, \pm \sigma_2)$, que son tangentes a dicho rectángulo en los puntos $(\sigma_1, \rho \sigma_2)$ y $(\rho \sigma_1, \sigma_2)$.
- (f) Muestre que $f(x_2|x_1)$ es gaussiana, con $N(\mu_2 + \rho(\sigma_2/\sigma_1)(x_1 \mu_1), \sigma_2\sqrt{1-\rho^2})$. Discuta cómo varía la esperanza de x_2 en función de x_1 según el signo de ρ , y analice cómo varía el ancho de la distribución condicional con el grado de correlación. Interprete estos resultados cortando con líneas x_1 =cte las elipses dibujadas a mano alzada en el item anterior. ¿Qué ocurre en el caso límite $\rho = 1$?
- 8. Aplicando los resultados del ejercicio anterior para el caso de \underline{x} bidimensional,
 - (a) Dibuje a mano alzada elipses de covarianza con distintos ρ para el caso $\sigma_1 = \sigma_2$. Discuta la diferencia entre tomar como error para X_1 el rango máximo cubierto por la elipse sobre el eje x_1 , o el segmento entre los puntos de intersección de la elipse con el eje x_1 .
 - (b) ¿Por qué tiene más sentido considerar la elipse como rango de confianza, que el propio rectángulo $(\pm k\sigma_1, \pm k\sigma_2)$?
 - (c) Considere las elipses de covarianza encerradas dentro del rectángulo $(\pm k\sigma_1, \pm k\sigma_2)$ alrededor de (μ_1, μ_2) . Muestre que la probabilidad conjunta de que (x_1, x_2) se encuentre dentro de una de estas elipses con k=1 es 39.3%, independientemente del valor de la correlación ρ (este resultado es el equivalente al 68.3% obtenido para el caso n=1). Sugerencia: pensar en otro suceso que tenga la misma probabilidad que el suceso " (x_1, x_2) se encuentra dentro de una de estas elipses" y que involucre a la variable aleatoria Q.
 - (d) ¿Cuánto debería ser k para que la elipse corresponda a un nivel de confianza de 95%? Verifique que este resultado puede obtenerse también analíticamente (para el caso bidimensional), además de usando las tablas. [Rta: k=2.448]
- 9. La función característica $\phi(\underline{t})$ de la distribución multinormal esta dada por

$$\phi(\underline{t}) = \exp\left(i\,\underline{t}^T\underline{\mu} - \frac{1}{2}\,\underline{t}^T\mathbb{V}\,\underline{t}\right)$$

Muestre que $\underline{\mu}$ y $\mathbb V$ son en efecto la esperanza y la matriz de covarianza de la variable aleatoria multidimensional x.

Ayuda: alcanza con mostrar que μ_l es la esperanza de \mathbf{x}_l (la componente l-ésima de $\underline{\mathbf{x}}$) y que \mathbb{V}_{kl} (el elemento kl de la matriz \mathbb{V}) es la covarianza de \mathbf{x}_k con \mathbf{x}_l .

10. Al realizar mediciones de una variable continua X, se tiene un límite de resolución experimental δ (también conocido como error de cuantización, entre otros nombres). ¿Cómo nos afecta este límite?

Asumamos que la variable continua subyacente X, sin límite de resolución, tiene distribución normal $N(\mu, \sigma^2)$. Por lo tanto, el promedio de n muestras tendrá distribución $N(\mu, \sigma^2/n)$. Llamemos \widetilde{X} a la variable que medimos, limitada por la resolución.

- (a) ¿Cómo simularía el efecto del límite de resolución δ ? Es decir, ¿cómo obtendría una muestra de \widetilde{X} a partir de una muestra de X?
- (b) ¿Cambian la esperanza $E[\widetilde{X}]$, la varianza $Var(\widetilde{X})$, y la varianza del promedio de n de $Var(\frac{1}{n}\sum_{i}^{n}\widetilde{X}_{i})$ respecto de la de X? ¿Dependen de la resolución δ ?

Bibliografía:

- Kollar, I. (1994). Bias of mean value and mean square value measurements based on quantized data. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/19.328894
- Widrow, B., Kollar, I., & Ming-Chang Liu. (1996). Statistical theory of quantization. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/19.492748