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ABSTRACT

As monitoring multiple signals becomes more cost-effective, combining them through a data fusion-aware
denoising method can produce a more robust estimation of the underlying process. Here, we present a method
based on the Haar wavelet transform that trades off resolution against accuracy based on statistical significance.
By taking advantage of correlations between channels, it offers a superior performance compared to denoising
each channel separately. It outperforms standard wavelet methods when the magnitude of interest in the data-
fusion process involves a non-linear transformation or reduction of a multichannel signal. We demonstrate
its efficacy by benchmarking our method against standard wavelet thresholding for synthetic single and
multichannel time series, and a multichannel two-dimensional image. The method has a simple interpretation
as an adaptive binning of the signal, and neither requires training data nor specialized hardware to run fast.
In addition, a reference Python implementation is available on GitHub and PyPI, making it simple to integrate

into any analysis pipeline.

1. Introduction

Monitoring multiple observables simultaneously is becoming
widespread, as acquiring and storing them is now more cost-effective.
When these observables are a partial view of an underlying process,
it can be reconstructed through data fusion. An existing challenge is
to obtain a robust estimation of the time evolution of this process of
interest. As natural signals are continuous, data fusion-aware denoising
techniques could be leveraged to derive precise and accurate results.

Denoising, the removal of noise from a signal, is an important area
of research in signal processing as it can increase the accuracy in the
quantification of observables. In turn, this has an impact on experimen-
tal methods. For instance, in microscopy, better denoising algorithms
enable lower-light conditions or shorter exposure times, which allows
for longer observation times and reduced toxicity for samples in biolog-
ical experiments. Additionally, since data visualization is an essential
task in data analysis, as exemplified by the well-known Anscombe’s
quartet [1], denoising improves the reliability of data analysis and
interpretation.

Several methods have been developed to address denoising, which
can be broadly classified as spatial, transform-based, sparse repre-
sentation, and patch-based methods, among other categories [2-4].
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Transform-based methods expand the signal in a basis in which most
coefficients are small and can be discarded. Among these, the wavelet
transform has been extensively studied [5] as it is particularly effective
for signals with multiscale characteristics. Moreover, it can be per-
formed efficiently using a recursive algorithm that decomposes the sig-
nal into approximation and detail coefficients. These detail coefficients
correspond to different space-frequency scales, where high-frequency
coefficients are highly localized in space.

To discard these coefficients, several thresholding schemes have
been proposed [5]. The simpler is hard thresholding, which involves
setting coefficients smaller than a given threshold to zero while re-
taining larger coefficients as they are. For normally-distributed noise,
thresholding can be interpreted as a statistical test at a given sig-
nificance [6]. Nevertheless, in many imaging applications, such as
microscopy, signals are corrupted by Poisson or Poisson-Gaussian noise
[2]. Variance-stabilizing transforms, such as Anscombe’s transform [7],
are used to transform the data into an approximately Gaussian distribu-
tion, which can then be denoised using standard thresholding methods.
Other methods consider how noise is distributed among coefficients
for a specific wavelet. For instance, the Haar wavelet is particularly
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suitable for Poisson denoising [8,9], although it produces discontinuous
estimates with block-like artifacts.

Wavelet analysis has been extended in many directions. For de-
noising, redundant or translation-invariant decompositions have been
studied, which average the denoising over several translations of the
signal, yielding a smoother estimate [10]. In addition, it has been
expanded to handle vector-valued or multichannel signals, such as color
images, where the coefficients are vectors and are thresholded as a
whole [11,12]. While analyzing each channel independently is possible,
as was done in [13] for fluorescence lifetime imaging microscopy
(FLIM), we have shown that considering all channels simultaneously
achieves much better performance [14].

In recent years, machine learning methods, particularly deep learn-
ing, have dominated the scene in terms of denoising [15]. These
methods are not based on statistical modeling of the processes involved
in the generation and acquisition of a signal, but are trained to learn a
transformation of the signal from pairs of inputs and desired output.
In general, this training produces ad-hoc models that cannot be reused
for samples with different properties, and the recommendation is to
train them from scratch [16]. This not only involves a computationally
expensive process that requires specialized hardware (GPUs), but also
the acquisition of large datasets with ground truth images [17]. As
they might be costly, difficult or impossible to obtain experimentally,
methods that do not require a ground truth have also been studied [18].
Nevertheless, these black-box models tend to be biased toward pre-
viously seen structures, generate artifacts [19], and have no a priori
knowledge of when they will fail.

In this article, we present a data fusion-based method to denoise
multichannel and multidimensional signals using a translation-
invariant Haar wavelet decomposition. Unlike previous wavelet-based
methods, which discard detail coefficients based on their values, we
perform a comparison on a different transformation of the approxi-
mation coefficients from which the detail coefficients are computed.
This new method allows us to take advantage of correlations between
channels, offering a superior performance specially when a non-linear
transformation of the signal is involved. We show that computing
the wavelet decomposition in the original space, but deciding to de-
noise based on the transformed space, results in substantially better
precision and accuracy compared to the standard wavelet approach
which denoises each channel separately. Additionally, it is grounded in
solid statistical modeling, allowing an understanding of its limitations,
and offers a simple interpretation as a spatially-adaptive binning of
multichannel and multidimensional data.

In the section Theory section, we present a short review of the
wavelet transform and the connection between coefficient thresholding
and statistical testing. In the Results section, we first present a single-
channel signal to compare this algorithm to the standard wavelet
approach. Then, for a dual-channel signal, we compare the joint denois-
ing enabled by binlets against denoising each channel separately with
the standard approach. Lastly, we show the joint denoising of another
dual-channel signal using as a target transformation a single-channel
observable which is derived from them.

2. Theory

The wavelet transform provides a time-frequency decomposition of
a signal, half-way to the Fourier transform. In contrast to the latter,
there are many orthogonal wavelet basis functions to choose from,
which provide multiresolution approximations of the signal. Then, a
non-linear denoising can be performed by setting small coefficients to
zero, although there are alternative thresholding methods. An extension
that is more suitable for denoising is the translation-invariant dyadic
transform, which provides an overcomplete decomposition. Addition-
ally, there are extensions for N-dimensional signals and multichannel
or vector-valued signals. An in-depth explanation of this can be found
in [10].
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Our method, binlets, consists of a translation-invariant wavelet
transform with the non-normalized Haar wavelet. In general, we apply
it to an x € R” signal, from which we intend to compute a derived
f(x) € R™ signal. We perform the wavelet decomposition on x, but the
decision to threshold each coefficient is performed in the R™ space. For
non-linear f(x), there is an additional condition: the coefficients of the
previous levels must also have been thresholded. In this last case, it is
equivalent to an adaptive binning of the signal; hence, the name binlets.
A full description in pseudocode is available in Appendix.

In the following subsections, we provide a brief review of the Haar
transform. We show that thresholding is equivalent to performing a
statistical test, and the denoised signal results in an adaptive binning
of the original signal.

2.1. Haar wavelet and multiresolution analysis

The (non-normalized) Haar wavelet is the simplest wavelet, which
computes its coefficients as sums and differences from the original
signal {x;}. Starting with the assignment a? = x;, for a given level L,
we compute the approximation a and detail d* coefficients as:

L+l _ L L

{ai =a; tag o)
L+l _ L _ L
di =

a4 = iy

where s = 2L is the shift at this level. This can be inverted as
al™! =@ +dly/2
all =(aF-dby /2.

i+s

@

In Fig. 1, we show this decomposition for / = 0, where instead of
showing the a! coefficients, we show a] /2.

To produce a multiresolution analysis, this process is recursively re-
peated for the next level L. If we downsample the approximation signal,
keeping only the aé. coefficients (as shown in Fig. 1), it results in a de-
composition in an orthogonal basis. If not, it results in an overcomplete

or redundant decomposition, which makes it translation-invariant.
2.2. Denoising and statistical testing

To denoise a signal, we set the detail coefficients d; to 0 if they are
smaller than a given threshold; that is, if x; and x,,; are close. Then,
when we perform the inverse transform (2), we obtain

a;, x;+Xx;
5‘i=f‘i+1=§'=—’ 21+1- (3
The reconstructed coefficients %; and %,,; are the averages of the orig-
inal coefficients. This results in an adaptive averaging of the signal, a
trade-off between spatial resolution and accuracy, which is schematized
in Fig. 1.

To select an appropriate threshold, it is important to understand
how the noise in the original signal propagates to the detail coefficients.

When the signal has Gaussian noise, x; ~ N(y;, %), the detail coef-
ficients d; are also Gaussian: d; ~ N (u; — ;. 2'6%), where ! is the level.
To threshold this coefficient, we can test whether it is significantly
different from 0 with a Z-score or y? test at a significance level a. For
this type of noise, it is more convenient to use the normalized Haar
wavelet, which has a \/5 factor in the forward transform (1), as the
detail coefficients have the same variance o2 at every level. Then, the
usual recipe of using a global threshold A is equivalent to performing
a test at a significance level a. For instance, 1 = 2¢ for a ~ 0.05.

For signals with Poisson noise, the non-normalized Haar wavelet
(1) is more appropriate as each approximation coefficient a; is also
Poisson-distributed. However, in this case, it is not appropriate to use a
global threshold for all the detail coefficients. Since we can estimate the
variance as x; (or g;), we can perform a y? test for d;, approximating
the Poisson x; as a Gaussian with mean and variance x;. We threshold
d; = x; — x;,, when

Mean[d,]>  (x; —x.,)? d?

=L <2 (C))

Variance[d;] X; + X a;

with A =2 for a significance a ~ 0.05.
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Fig. 1. (left) A schematic one-level decomposition of a signal into average and difference coefficients. Difference coefficients smaller than a given threshold were set to zero. In
those cases, the reconstructed signal consists of the average of neighbors at those locations, effectively trading spatial resolution for precision. (right) Three 2D points with their
covariance ellipses, and the marginal distributions in each axis. The green point cannot be identified as different from the other two points if only the information from channel

1 is used, as they overlap in that direction.

2.3. Multivariate transform and thresholding

In the case of a multichannel or vector-valued signal X;, the same
decomposition can be performed on each channel. Then, we obtain
vector coefficients &, and 4, in (1). Instead of denoising each channel
separately, we can leverage the multichannel information to apply a
threshold to the whole vector d,. As depicted in Fig. 1, the green point
is different from the blue and orange ones, when considering their
covariance ellipses. Nevertheless, we cannot distinguish between them
based on the channel 1 data alone, as shown in the marginal plot below.

In summary, these methods recursively decompose the signal as
an average of neighbors. The usual approach is to apply a single
global threshold, which works well for Gaussian noise. For a more
general noise distribution, if the variance is a function of the mean, a
variance-stabilizing transform can be applied to obtain a signal with ap-
proximately Gaussian noise. However, they do not leverage information
on the correlations between the channels.

3. Results

In this section, we compare binlets against standard wavelet thresh-
olding. First, for a single-channel one-dimensional signal with Poisson
noise, where it outperforms the standard approach of using a variance-
stabilizing transform. Then, for a multichannel one-dimensional signal
with normal noise, to show that thresholding the detail vector jointly
is better than considering each channel separately. Finally, for a multi-
channel signal that is non-linearly transformed to a scalar signal, binlets
shows the greatest difference from the standard approach. In this last
case, no variance-stabilizing transform is possible, since the variance is
not a function of the mean.

To evaluate the performance, we considered the weighted root mean
squared error (RMSE) and bias, defined as:

RMSE = 6

bias = Z; (6)

z|—
™M=

i=1

where Z; = (x; —x["“®)/c;"™ is the difference between the measured and
true values divided by the true standard deviation. These two measures
were calculated as a function of the significance level «, which is shown
as the equivalent standard deviation ¢ for a normal distribution.

For the signals, we used a test signal designed in [20], which is
widely used in the wavelet literature [10]. Code to reproduce the
analysis and figures is available in the GitHub repository: https://
github.com/maurosilber/binlets.

3.1. Denoising a single-channel time series

An established way of handling a signal with Poisson noise (Fig. 2)
is to use the Anscombe transform [7], which produces a signal whose
noise follows approximately a standard normal distribution. Then, as
discussed before, we can perform a decomposition with the normal-
ized Haar wavelet and apply a single global threshold to all detail
coefficients, which is equivalent to performing a statistical test at
a significance level «. Finally, we can apply the inverse Anscombe
transform to obtain the denoised signal. Alternatively, we can directly
apply the test of Eq. (4) to each detail coefficient using binlets, without
using the Anscombe transform.

In Fig. 2, we compared both methods for different mean values
of the true signal. The difference between the methods is negligible
for high mean values (left) as the Poisson tends towards a normal
distribution. In contrast, binlets performs better for lower mean values
(right) as we are considering the exact distribution for each coefficient
instead of an approximation.

3.2. Denoising a multi-channel time series

Wavelet denoising can easily be extended to multichannel signals.
Here, we consider a multichannel or vector-valued signal that alternates
between four vectors, as depicted in Fig. 3. For the noise distribu-
tion, we used independent standard normal noise, as no (co)variance-
stabilization was needed for the standard wavelet approach. In the
more general case, a covariance-stabilizing transform might not exist
[21]. Hence, the standard approach of applying a single threshold
globally would not be statistically optimal. However, we could take into
account the covariance between the vector components with binlets.

To denoise this signal, we consider two alternatives: analyzing each
channel separately (standard wavelet approach) or thresholding them
jointly (binlets). Some of the true vectors (black dots) differ only
slightly in one channel, while having a large difference in the other
channel. For instance, the top and bottom vectors differ slightly in the
channel 1 value whereas they exhibit a large difference in the channel
2. When considering each channel separately, these vectors tend to
have only their channel 1 averaged, while no averaging will be made
when considering both channels simultaneously. As a result, the RMSE
for the joint denoising reached lower values.

3.3. Denoising a multi-channel data with a non-linear target transformation

Some signals of interest are non-linear transforms and/or reductions
from a higher-dimensional vectors to a lower-dimensional ones. In
these cases, a variance-stabilizing transform might not be possible since
the variance might not be a function of the mean.

As an example, consider a simulation of fluorescence anisotropy
measurements. Light intensity was measured in two channels, parallel
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Fig. 2. Sampling from a Poisson distribution with a mean given by the true signal (black) produces a measured signal (gray), which is denoised via standard wavelet thresholding
after applying an Anscombe transform (blue) and binlets with a Z-score test (orange). The chosen threshold ¢ is indicated by a black vertical line. For both methods, the RMSE and
bias were calculated as functions of the threshold for several measurements. Binlets achieves a 1.75x improvement in the RMSE value in the last case, relative to the Anscombe

transform-based denoising.
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Fig. 3. A two-channel true signal (black line) was generated from four true vectors (black dots) by randomly alternating between them after an exponentially-distributed delay.
The measured signal (gray) was generated by adding standard normal noise. The RMSE is calculated jointly for both channels as a function of the denoising threshold for two
methods: independent, which analyzes each channel separately, and joint, which analyzes both channels jointly.

I and perpendicular ;. The total intensity I; and anisotropy r was
calculated as [22]:

Ir
r

Hence, we have a two-dimensional vector [I, R which was reduced to
a scalar r with a non-linear transform. A variance-stabilizing transform
of the anisotropy signal r is not possible, as the same value of r can
come from different intensity values and have different variances.

=1, +21,
=Uy—-1D/Iy.

@)

In Fig. 4, we start from the true anisotropy r and total intensity I
signals, generate [I}, I, ] by inverting (7), and add Poisson noise to each
channel. We consider two cases in which the true anisotropy signal is
given by the blocks signal [20]. In one case, the true total intensity
was constant, generating two clean signals for the true parallel and
perpendicular intensities. In the other case, the true total intensity was
chosen by sampling from a uniform distribution, giving true parallel
and perpendicular intensities which already seem to be noisy. Never-
theless, if we computed the anisotropy from these, that is, before adding
Poisson noise, we would obtain the true anisotropy signal (black).

On the right, we compare three different approaches to denoising:
the first corresponds to analyzing each channel separately, with a Z-
score test for Poisson noise (4), as in Section 3.1. The second method
thresholds both channels simultaneously, as in Section 3.2, considering
a diagonal covariance matrix for independent Poisson noise in each
channel. Lastly, we also consider both channels simultaneously, but
perform the test to threshold the detail coefficients in the anisotropy
space using binlets. That is, for each [, I, ] vector, we compute the
anisotropy r and its variance, using linear error propagation, and do a
Z-score test.

In the case of constant total intensity, we recovered the result of
the previous section, where analyzing both channels simultaneously im-
proved the denoising. However, when the total intensity fluctuated, the
third approach, comparing in the anisotropy space, outperformed the
other two methods by a large margin. This was expected as two com-
pletely different intensity vectors, which might not be averaged based
on their intensity values, could correspond to the same anisotropy
value; hence, it would be correct to average them.

We extended this example to a two dimensional signal with the
same anisotropy profile, but regions with different distributions for the
total intensity (Fig. 5). Where the true total intensity is homogeneous,
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Fig. 4. Fluorescence anisotropy signals with different total intensity characteristics. (left) Two signals with the same true anisotropy profile (black), but homogeneous (first
column) and non-homogeneous (second column) true total intensity (black). From these, the true parallel and perpendicular polarization intensity channels were computed, and
the measurement (gray) simulated by adding Poisson noise. (right) RMSE and bias in the denoised anisotropy signal for three signals which have the same anisotropy pattern but

different (true) total intensities.
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Fig. 5. Denoising of fluorescence anisotropy signals in two spatial dimensions. The top-left image corresponds to a simulated two-dimensional image of total intensity with a
horizontal stripes pattern. It was divided into four regions, sampled from uniform distributions with different widths. Colored lines correspond to line profiles shown below. On
its right, there are anisotropy images with a vertical stripes pattern, which correspond to the blocks [20] pattern used in the 1D case. From left to right, the columns correspond
to the ground-truth, simulated measurement (no-denoising), independent denoising of each channel, and joint denoising with binlets.

both methods denoised the image correctly. However, in the noisier
regions, only binlets was able to recognize the underlying regularity to
correctly average neighboring pixels.

3.4. Denoising an experimental microscopy dataset

To test our method on experimental data, we used a publicly
available dataset [17] consisting of fluorescence microscopy images
obtained using different techniques. Each field of view was captured
50 times under the same instrumental settings, and a ground truth
was constructed as the average of the images. In particular, we used
the ones corresponding to confocal images of fixed bovine pulmonary
artery endothelial (BPAE) cells labeled with DAPI to show the nucleus.

In [17], the authors trained two deep learning (DL) models, for
which they made the weights available and we used to compare our

method. One of the models is a feed-forward denoising convolutional
neural network (DnCNN) [23], which requires pairs of noisy and
ground truth images for testing. The other, Noise2Noise [18], does not
require a ground truth and is trained from the noisy image itself.

While our method does not require training, it requires knowledge
of the noise distribution. For microscopy images, it can be modeled as
a Poisson distribution for the photon sensing, and an offset and scale
factors due to the detector settings [24]. We used the 50 samples for
the first field-of-view to fit this scale and offset.

Visually, our method showed a high resemblance to the ground-
truth image (Fig. 6, left) and outperformed both deep learning methods.
Considering the normalized residuals, binlets showed randomly dis-
tributed residuals, while both DL methods showed a bias towards
lower intensity values: DnCNN in the nucleus, and N2N in the areas
surrounding the nucleus and background.
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Fig. 6. Denoising applied to fluorescence microscopy images of cells. (left) Intensity images for the ground truth, raw, and raw denoised with binlets and two deep learning
methods (N2N and DnCNN). The color scale changes slope at 9 to highlight differences in three areas: nucleus, the rest of the cell, and background. Residuals were calculated
against the ground truth, which is the average of 50 raw images, and normalized with their standard deviation. (top-right) Mean and standard deviation for the metrics applied
to the whole dataset: root mean squared error improvement (RMSE improv., normalized to raw) and mean bias. They were calculated in three regions: the whole image (all),
background and cell areas. (bottom right) Residual mean intensity for each nucleus between the denoised and ground truth images as a function of the ground truth mean intensity.

The error bars correspond to the standard deviation of the 50 samples.

For the entire dataset, we computed two summary metrics: the
root mean squared error (RMSE) and bias (Fig. 6, top-right). These
were computed for the whole image (all), but also separately for
the background and cell regions. Our method shows equivalent or
superior performance to the deep learning models, albeit with much
less computational and experimental costs, as no training dataset or
run is required. It must also be noted that most images were present in
their training set and only one was from the testing set.

In practice, we are not interested in the overall error in the image,
but we want to compute some observables of interest from it. A typical
one in cell microscopy is the mean intensity in the nucleus. Binlets did
not present any bias in the mean intensity for each nucleus (Fig. 6,
bottom-right), in contrast to both deep learning methods.

4. Discussion

In this article, we presented a wavelet-based denoising method for
single or multichannel signals of any dimensionality. It outperforms
standard wavelet methods when the magnitude of interest involves
a non-linear transformation or reduction of a multichannel signal.
Examples of these signals include any normalized value, such as ra-
tiometric observables, or more complex ones, such as phasor values in
fluorescence lifetime imaging microscopy (FLIM) [14]. In these cases,
the standard approach with wavelets can result in no denoising at all.

This method proposes to perform the denoising before the trans-
formation is applied, but considering the intended transformation to
discard coefficients. It presents a new thresholding method for de-
tail coefficients, which takes the approximation coefficients used to
compute them, applies the transformation, and compares them in that
transformed space. Hence, averaging is performed in the original space,
whereas the decision to average was made in the transformed space.

Additionally, this method allows to leverage information in the corre-
lation between channels. This might not be possible with the standard
approach as a covariance-stabilizing transform might not exist [21].

Our method does not assume any temporal or spatial dimension-
ality in the signal. However, in the current implementation, it can
only average square-shaped regions. As wavelet analysis has been
extended to use basis functions that are localized in orientation, such as
curvelets [10], future binlets extensions could overcome this limitation.
Our method’s only hypothesis is that neighboring data points might
correspond to the same value, which is assessed by providing a statisti-
cal test to compare them, and can be averaged together. While it does
not assume any type of noise distribution, it requires knowledge of the
instrument-dependent noise distribution. However, once a calibration
is performed, it can be used for any type of sample or signal. This is
in stark contrast to ad-hoc deep learning models, which should not be
reused for different samples [16].

Additionally, our method did not present any bias, either globally
or in the regions of interest in the experimental dataset used. This was
not the case for the deep learning methods considered, which might be
biased towards the structures seen in the training process. Moreover,
whereas deep learning methods are black boxes, our method offers
a simple interpretation: a spatially-adaptive binning of the data. It
provides a dial to adjust the trade-off between resolution and accuracy:
the significance of the statistical test. Hence, it is easy to understand
what it is doing and its limitations.

Finally, our method is simple to implement and fast without re-
quiring any particular hardware such as GPUs. We provide a Python
reference implementation which is available on GitHub (https://github.
com/maurosilber/binlets) and installable from PyPL. It is easy to inte-
grate into any pipeline analysis as it does not require any particular
data format.
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Appendix. Pseudocode

Algorithm 1 Pseudocode for 1D binlets

function Bmiers(x, L, f)
Require: x e ROV, L e N, f : R xR¢ = {0,1}
Ensure: 0 < L™ <log,(N)
> Decomposition and thresholding
« X; > Input is the first approx. coeff.
> Mask coefficients.
> For each level
> For each time-point

aiL=0
mt=0 « True

1
for L=0... L™ do

fori=0...N do

s« 2L > Temporal shift
al*l ol +al > Approx. coeff.
dil ol —al > Detail coeff.

> Up to here, standard Haar decomposition
> Now, test based on comparison of approx. coefficients
if f(al,ak ) and m; then > Compare approx from
previous level L
d* <o
else
m; < False
end if
end for
end for

> Discard detail coefficient of level L + 1.

> Reconstruction
> For each level in reverse order
> For each time-point

for L =L"> .. 0do
fori=0...N do
s« 2L
at! — (ah - dh))2
aiLJ:S1 - (aiLﬂ + diL)/Z
end for
end for

return a;_
end function
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