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Background estimation is the first step in quantitative analysis of images. It has an impact on all subse-
quent analysis, in particular for segmentation and calculation of ratiometric quantities. Most methods
recover only a single value such as the median or yield a biased estimation in non-trivial cases. We intro-
duce the first method to recover an unbiased estimation of the background distribution. It leverages the
lack of local spatial correlation in background pixels to robustly select a subset that accurately represent
the background. The resulting background distribution can be used to test for foreground membership
of individual pixels or estimate confidence intervals in derived quantities. © 2023 Optica Publishing Group
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1. INTRODUCTION

In the age of quantitative high-throughput microscopy, auto-
mated image analysis is not only a valuable tool, but a require-
ment to analyze the ever-increasing amount of collected data.
In comparison to manual analysis, not only it provides speed
and scalability, but also enables a repeatable objective quan-
tification, which is independent of user bias and can be easily
transferable [1].

An image analysis pipeline deals with transforming the pho-
tophysical signal, detected light, into biological observables of
interest. While each pipeline is tailor-made for each particular
application, they can be usually divided in three major steps:
preprocessing, which involves whole image corrections such as
illumination correction [2], background subtraction, and regis-
tration; segmentation and tracking, to identify objects of inter-
est in the image and follow them through space and time; and
measuring, to compute observables of interest over these ob-
jects, such as object shapes or mean intensities.

In fluorescence microscopy, the objects of interest are labeled
with fluorophores, but the collected light not only belongs to
them, as there are contributions from other sources of signal,
such as autofluorescence, out-of-focus fluorescence, stray light
or detector noise, collectively referred to as background noise
[3]. Hence, it is important to estimate the background to ac-
count for its effect, as it has an impact on all subsequent analy-
sis. Accurate knowledge of the background distribution can im-
prove the segmentation, allowing the detection of dim objects
and yielding better defined borders, which in turn impacts the
tracking step. More importantly, it can have a major effect in the

calculation of some photophysical quantities, as in ratiometric
calcium imaging, in which inaccurate background subtraction
leads to large errors in the range of 100% [4, 5]. Additionally,
any quantification of its precision would require an estimation
of the background dispersion.

Several methods have been developed to deal with the back-
ground. They can be broadly classified into intensity threshold-
ing, such as Otsu’s method [6], and mathematical morphology
methods, such as rolling ball, which is one of the most pop-
ular methods to subtract the image background. Usually de-
scribed as rolling a ball under the intensity surface, the rolling
ball method consists of applying a grayscale erosion followed
by a dilation with a spherical structuring element [7]. But, these
morphological methods depend on parameters whose optimal
value is closely related to object sizes [8]. Moreover, these meth-
ods do not estimate a background distribution, but only a single
value at each pixel.

On the other hand, intensity thresholding methods can ob-
tain a background intensity distribution. Most standard meth-
ods, such as Otsu’s, assume that the foreground and back-
ground distributions can be separated in the image’s intensity
histogram. Then, they provide an automated way to compute
a threshold value from it, where all pixels below this threshold
correspond to background. These methods tend to fail when
the proportion of foreground and background is not balanced,
or in low signal-to-noise scenarios [9]. In the latter case, as
foreground and background intensity distributions overlap, no
threshold value can fully split them: some background pixels
end up classified as foreground and vice versa. In turn, this
yields a biased estimation for the background distribution.
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Fig. 1. Breakdown of the Silver Mountain Operator (SMO). A) Intensity image simulated as constant intensity followed by a lin-
early increasing region, plus standard normal noise. On the bottom row, a line profile along a row before (orange) and after (blue)
adding noise. B and C) Gradient direction and its local average, respectively, color-coded by angle. The red square indicates the av-
eraging kernel. D) Resulting SMO image, which is the length of the averaged gradient direction.

As the background is not always uniform, spatially adaptive
intensity thresholding methods were developed that apply the
same idea locally, over a user-defined window or kernel [10].
Nevertheless, as these methods usually focus on the intensity
histogram, they lose all spatial information in the process. In
particular, the fact that objects are spatially structured, while
the background is usually not.

In intensity thresholding methods, background estimation
is closely tied with segmentation, as the background is the left-
over of finding the foreground objects. An alternative approach
could be to use specialized segmentation methods, which could
leverage spatial information in the intensity image. For in-
stance, algorithms based on convolutional neural networks
such as Stardist [11] and Cellpose [12]. In particular, these two
provide networks pre-trained on different phenotypes of cells,
which lowers the barrier for entry, as no large manually anno-
tated datasets and GPUs are required for training. Neverthe-
less, as these methods focus on learning cell-like characteristics,
non-cell-like features will be classified as background, possibly
yielding a biased intensity distribution.

In this work, we demonstrate the first method to recover an
unbiased estimation of the background distribution from an in-
tensity image. Through a robust statistical test, it leverages the
lack of local spatial correlation in background pixels to select a
subset of pixels that accurately represent the background distri-
bution. We show that it outperforms other methods in precision
and accuracy. This novel method is both fast and simple to im-
plement, as it only uses standard mathematical operations and
an averaging filter. Additionally, its only parameter, the size of
the averaging filter, does not require fine-tuning.

2. METHODS

A. Exploiting the lack of local correlation for background esti-
mation

To generate an estimation of the background intensity distribu-
tion, we exploit the lack of spatial structure in the background
regions of fluorescence images. In particular, our method trans-

forms an intensity image into values that measure local regular-
ity in the direction of the intensity gradient, which we called the
Silver Mountain Operator (SMO) image (Fig. 1). Then, assuming
a structureless background, it performs a statistical test which
selects only a subset of background pixels, but discards almost
all the foreground regions. That subset of pixels forms an un-
biased estimation of the background distribution. A key aspect
of the method is that, being approximately non-parametric, a
threshold value for the test can be selected independently of
the intensity image, without any a priori knowledge of its back-
ground distribution.

A step-by-step mathematical description of the Silver Moun-
tain Operator (SMO), which takes an intensity image I and two
smoothing filters S1 and S2, is:

procedure SMO(I, S1, S2)
I ← S1 ∗ I ▷ (optional) apply filter S1
∇I ← (∆x I, ∆y I) ▷ calculate the image gradient

n̂← ∇I/||∇I|| ▷ normalize each gradient vector
n̂S2 ← S2 ∗ I ▷ apply filter S2
return ||n̂S2 || ▷ length of each average vector

where the gradient is calculated with finite differences:
∆x I = I(x + 1, y)− I(x− 1, y) and ∆y I = I(x, y + 1)− I(x, y−
1). In this work, we used a isotropic gaussian filter of width
σ = 1 for S1, and a uniform filter with a square shape of size 7
for S2.

To demonstrate the fundamentals of the method, we synthet-
ically generated an image consisting of a flat, constant intensity
region followed by a linearly increasing intensity region, with
added standard normal noise (Fig. 1A).

For this image, we computed its gradient, a vector measur-
ing of both the rate and direction of greater intensity increase,
and then normalized by its length, which results in an image of
unit vectors (Fig. 1B). Normalizing is what makes this method
non-parametric, that is, independent of the underlying distribu-
tion. It can be thought of as a multidimensional extension of the
Sign test, another non-parametric test, as the normalized gradi-
ent in 1D is either +1 or -1, if the intensity increases or decreases
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Fig. 2. SMO distribution for uncorrelated noise images. A) Simulated random image sampled from a uniform distribution and its
corresponding SMO image. B) (top) Joint and marginal distributions of intensity and SMO values. (bottom) Conditional distribu-
tions of intensity, corresponding to 0.1-quantile wide slices of SMO ranges as shown above. C) Intensity (top) and SMO (bottom)
histograms for uncorrelated noise images generated from different intensity distributions.

from one pixel to the next.

To measure the local variation in gradient direction, we used
a local average to calculate a resultant vector for each pixel (red
box, fig 1B, and red pixel, fig 1C). The size of the window must
be chosen to be smaller than the typical lengths of the gradients.

Finally, each vector was reduced to a scalar value, the
SMO value, by calculating its length (Fig. 1D). SMO values
range from 1, when unit vectors in the averaging windows are
aligned, to 0, when they are disordered. As expected from the
simulation characteristics, the left and right sides of the SMO
image have low and high values, respectively.

In the averaging step, high spatial frequency structures are
averaged out and therefore are not detected. For example, a
saw-like structure in which the derivative changes direction
faster than the averaging kernel will yield a small SMO value
and therefore indistinguishable from uncorrelated noise (Fig.
S1). Therefore, the averaging kernel size must be smaller than
the foreground structures, while being large enough to produce
a robust estimate (Fig. S2).

However, since the normalization step is a nonlinear trans-
formation, the whole process benefits from a previous smooth-
ing step when the gradient is dominated by the high frequency
components of the noise, concealing the signal. In these cases,
the gradient direction in each pixel will be determined by the
noise and therefore will be averaged out in the last step. In
turn, this will overestimate the background region (Fig. S3).

B. The SMO distribution is independent of the underlying
background intensity distribution

As this method is approximately non-parametric or
distribution-free, no a priori knowledge of the underlying
background distribution is needed. Additionally, it also im-
plies that SMO values of uncorrelated noise are independent
of their intensity values, which is the key for the unbiased
estimation of the background distribution.

To demonstrate these properties, we generated uncorrelated
noise-only images drawn from different intensity distributions.
As no spatial correlation is present, the gradient fluctuates
wildly in direction, yielding an SMO image with mostly low
values (Fig. 2A).

The information contained in the SMO values is indepen-
dent of its corresponding intensity values. Such independence
can be seen by the agreement between conditional distributions
(Fig.2B, bottom), or by computing its copula from its joint dis-
tribution (Fig. S5). Each of these conditional distributions corre-
sponds to a 10 percentile-wide slice of SMO values, as depicted
in the joint distribution (Fig. 2B, top), and yields the same esti-
mation of the intensity distribution. Hence, any subset of SMO
values can provide an unbiased estimation for the background
intensity distribution.

To showcase that the method is robust against different in-
tensity distributions, we repeated the same procedure for other
distributions (fig 2C, top), which produced overlapping SMO
distributions (fig 2C, bottom), and independent joint distribu-
tions (Fig. S5).
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Fig. 3. Background estimation in a simulated image. A) Intensity image of a 2D gaussian structure over a constant zero background,
plus standard normal noise. Below, the corresponding gradient direction and SMO images. B) Joint and marginal distribution for in-
tensity and SMO, showing separately foreground (red) and background (green) distributions. C and D) Masks and recovered back-
ground distributions via intensity (orange) and SMO (blue) thresholding, respectively. Lines and arrows in B show the respective
thresholds.

In summary, the SMO distribution of a random, structure-
less image is independent of the underlying intensity distribu-
tion, and can be estimated by sampling from any distribution.
In particular, to select an appropriate threshold, we generate an
image sampled from a uniform distribution, calculate its SMO
image, and compute a desired percentile. For instance, the 5th
percentile to include only 5% of the background.

C. Intensity thresholding methods always yield a biased dis-
tribution

Due to low photon counts, foreground and background inten-
sity distributions overlap in fluorescence imaging. Hence, in-
tensity thresholding methods are not well suited to the estima-
tion of the background distribution, as it is fundamentally im-
possible to find a threshold value that splits them. In contrast,
our method does not attempt to find the whole background pix-
els, but only a subset that accurately represents the background
distribution.

To simulate this scenario, we generated a 200×200 pixels im-
age containing a 100-pixel wide circular structure, which has
2D gaussian intensity profile with a peak amplitude of 10, over
a constant background of zero intensity, plus standard normal
noise (Fig. 3A). As the noise amplitude is low compared to the
intensity slope, the gradient presents a locally-defined direction
in the structure, yielding high SMO values. Instead, low SMO
values are assigned to background regions, where the noise
level is high compared to the underlying intensity slope (zero),
making the gradient direction fluctuate randomly from pixel to
pixel.

The SMO also assigns low values in the center of the struc-
ture, which corresponds to a local maximum in intensity, where

the gradient direction changes abruptly. Although the gradi-
ent direction has a regularity which distinguishes it from back-
ground, as they all point towards the maximum, the average
vector is small and yields a low SMO value, which makes it in-
distinguishable from noise.

Knowing the ground truth, both background and fore-
ground can be visualized separately in joint and marginal distri-
butions (Fig. 3B). As they overlap, no single threshold can fully
split them, either in intensity or SMO values. Any estimation
of the background distribution from an intensity thresholding
yields a biased distribution, with either a missing or a larger
tail (Fig. 3C). Instead, as we have shown that any slice of SMO
values samples fairly from a structureless background, we can
recover an accurate estimation of the background distribution
by using a sufficiently small SMO threshold such as to exclude
as much foreground as possible (Fig. 3D). As we know a priori
the distribution of SMO values for structureless backgrounds
(Fig. 2C, bottom), we can select an appropriate threshold as a
low percentile of that distribution, such as the 10th percentile.

3. RESULTS

A. The SMO matches a manually-recovered background in flu-
orescence microscopy images

To validate our method in real-world conditions, we used a
fluorescence microscopy image of HeLa cells (Fig. 4A) trans-
fected with CASPAM, a cytosolic biosensor described in [13].
The image was taken on a custom built setup as described in
[14, 15]. Briefly, it was composed of an Olympus IX81 inverted
microscope (Olympus, Germany) equipped with a MT20 illu-
mination system, an Orca CCD camera (Hamamatsu Photonics,
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Fig. 4. Background estimation in a fluorescence microscopy image. A) Intensity, gradient angle and SMO images. The orange rect-
angle corresponds to a manually selected background region used as ground truth. B) Grey: joint and marginal distributions of in-
tensity and SMO values. Blue dashed and solid lines: distribution and 5th percentile of SMO values from a simulated structureless
image. Green line: Otsu intensity threshold. C) Otsu and SMO and Rolling Ball background estimations. Grayscale regions corre-
spond to excluded areas in the former two methods. D) Comparison of background distributions obtained from ground truth, Otsu,
SMO and rolling ball. As cumulative (top) and density (bottom) distribution functions.

Japan), and a 20× 0.7 NA air objective. It shows a collection
of cells with a broad range of intensities, spanning the whole
dynamic range of the camera. The gradient angle image clearly
shows a spatial regularity for each cell, even for very dim ones.
In contrast, the background regions lack any spatial structure.
Hence, background areas have low SMO values, while cells
have mostly high SMO values.

As in the simulated example (Fig. 3A), cells present low
SMO values in their centers, corresponding to local maxima in
their intensities. These can also be appreciated as collections
of pixels forming an upside-down L shape in the joint distribu-
tion of intensity and SMO values (Fig. 4B). Likewise, there is
no separation between foreground and background in the in-
tensity histogram (Fig. 4B, top).

Applying the Otsu intensity thresholding method [6], it cal-
culates a threshold so high (Fig. 4B, green line) as to exclude
only the most bright cell (Fig. 4C, left). It yields a background
distribution which starts to strongly deviate from the manually-
selected ground truth (Fig. 4A, orange box) at around the 75th
percentile (Fig. 4D, green and orange curves). As an additional
comparison, we included the rolling ball method [7], which is
the standard background correction method in ImageJ/FIJI [16].
As it has some similarities to a local minimum filter, it produces
a biased distribution in images where the background distribu-
tion spans a wide range of intensity values, such as in fluores-
cence microscopy images. The amount of bias depends on the
chosen radius for the ball (Fig. S4).

In contrast, thresholding the SMO image at the 5th percentile

(Fig. 4B, blue line, see Methods for threshold selection) pro-
duces a mask that excludes all cells (Fig. 4C, middle). While
the mask only includes 5% of the background pixels, those con-
stitute an unbiased estimation of the background distribution.
In summary, SMO can estimate the background distribution as
obtained from manual segmentation in an automatic and robust
manner (Fig. 4D).

B. The SMO outperforms standard intensity thresholding
methods

Intensity thresholding methods not only yield a biased inten-
sity distribution, but are more sensitive to variations in the fore-
ground intensity distribution. When the intensity histogram is
not bimodal, standard intensity thresholding methods fail to
produce a good threshold [17]. In particular, images from flu-
orescence microscopy have a strongly unimodal intensity dis-
tribution [18].

To evaluate the performance of our method, we used fluo-
rescence microscopy images from the Broad Bioimage Bench-
mark Collection [19]. In particular, we used the BBBC025
dataset, which corresponds to U2OS cells treated with 315
unique shRNA sequences. Briefly, eight organelles and cell
compartments were labeled: nucleus (Hoechst 33342), endo-
plasmic reticulum (concanavalin A/AlexaFluor488 conjugate),
nucleoli and cytoplasmic RNA (SYTO14 green fluorescent
nucleic acid stain), Golgi apparatus and plasma membrane
(wheat germ agglutinin/AlexaFluor594 conjugate, WGA), F-
actin (phalloidin/AlexaFluor594 conjugate) and mitochondria
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(MitoTracker Deep Red) [20]. Image acquisition was performed
on 5 different fluorescent channels, as described in [21], which
we identify according to their filename.

This dataset provides us with different foreground charac-
teristics, which allows a fair comparison without assuming any
particular foreground distribution. From the channel measur-
ing the mitochondria, we selected three images displaying dif-
ferent foreground to background area ratios (Fig. 5). As no
ground truth for the background distribution was available, we
performed a manually supervised segmentation (Fig. 5, black
curve, see Methods).

As for the algorithms to compare against, we chose some
standard intensity thresholding methods which are available
both in ImageJ/FIJI [16] and scikit-image [22]: [6], [23], IsoData
[24], [25], and Triangle [26]. As these methods assume a spa-
tially homogeneous background, we cropped the images from
a size of 1080×1080 pixels to the middle 432×432 pixels region
to reduce the inhomogeneity due to the non-uniform illumina-
tion. Additionally, we used two algorithms based on convolu-
tional neural networks, Stardist [11] and Cellpose [12], dilating
the resulting mask to improve the exclusion of foreground (see
Image analysis for BBBC025 in Methods).

The quality of a blind background estimation method can
be assessed by its performance across widely different condi-
tions. For images with a low fraction of foreground pixels (Fig.
5, left), every method yields the same background distribution
up to the 0.8 quantile, since the incidence of foreground pixels
wrongly classified as background is not significant. As the frac-
tion of foreground pixels increases (Fig. 5, center and right),
the SMO method (blue curve) remains close to the manually se-
lected ground truth. Instead, in the other methods, up to half
of the background distribution actually corresponds to the fore-
ground, leading to a biased median and mean values. There-
fore, background correction, which is an essential step in all ra-
tiometric quantifications, will yield a wrong result.

C. Testing robustness with a high-throughput dataset

To compare the robustness of our method against standard in-
tensity thresholding methods, we used all 3456 fields of view

of image set BBBC025, series 37983, from the Broad Bioimage
Benchmark Collection [19].

As no ground truth for the background was available, and
manually computing one was unfeasible, we needed to find a
proxy to evaluate the performance of each method. Since all
images in the same channel and acquisition settings have the
same underlying background characteristics, we could use the
variation of the estimated background between images from a
single channel as a proxy for robustness. In particular, for each
image in the dataset, we computed its background distribution
and its median (Fig. 6A, blue histogram and orange line). For
SMO, averaging window of 7 pixels was chosen, with no pre-
vious smoothing. The threshold level was set as the 5th per-
centile as described before in Threshold selection for SMO. For
Stardist [11] and Cellpose [12], the pretrained models for 2D
cytoplasm were used (“2D_paper_dsb2018” and “cyto”, respec-
tively), and resulting mask was dilated with a disk of 10 pixels
to improve the exclusion of cell borders. The background was
selected from the inverse mask. Finally, for each method, we
built the distribution of median backgrounds (Fig. 6A, orange
histogram), from where we interpret a smaller variation in me-
dian backgrounds as a more robust method.

In the Hoechst channel (Fig. 6B, first column), which marks
the DNA, all methods behave properly, presenting a low varia-
tion, as indicated by the steep cumulative distribution function
(CDF, Fig. 6B, bottom row). As the fluorescence is localized
in the nucleus and has a low cell to cell variation, it gives rise
to a bimodal distribution (Fig. 6B, middle row), for which the
intensity thresholding methods perform well. While the varia-
tion is small, there is some bias for the intensity thresholding
methods with respect to SMO, Stardist, and Cellpose, as de-
picted by the shift to the right in their curves. Most methods
also perform well for the PhGolgi channel, which shows a bi-
modal distribution as well. The exceptions being Stardist and,
more markedly, Yen’s method, which resulted in significantly
larger median backgrounds for almost half of the dataset, as il-
lustrated by its change of trend around the 0.6 quantile.

For the case of the Mito, ERSytoBleed, and ERSyto channels,
which do not exhibit a marked bimodal distribution, the varia-
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tion in median background is much more pronounced for the
intensity thresholding methods. All methods deviate around
the 0.6 and 0.8 quantiles (20% to 40% of the dataset), yielding
higher estimates for the median background. A subsequent
analysis shows that this deviation is highly correlated with the
ratio of foreground to background areas in the images (Fig. S7).

4. SUMMARY AND DISCUSSION

A. Overview

We developed a statistical test that exploits the lack of correla-
tion between neighboring pixels in the background to select a
subset of pixels that accurately represent the background inten-
sity distribution. Furthermore, being a non-parametric test, no
a priori knowledge of the background distribution is needed.

Our method is limited to recover only the fraction of the

background which lacks a strong spatial correlation. Signal
from nearby optical planes and autofluorescence will not be
accurately estimated, as it correlates strongly with the desired
foreground. These contributions should be estimated with
methods that exploit other optical properties, such as a distinct
spectrum, as is the case for the autofluorescence.

We applied this method to a low signal-to-noise synthetic
image, where we showed that intensity thresholding yields a
biased distribution, while a range of SMO thresholds provide
an unbiased estimation of the background distribution. More-
over, an appropriate threshold can be computed independently
of the image. Also, we applied it to a fluorescence image of
a cytosolic biosensor, where it obtained a more accurate back-
ground distribution than both Otsu’s method and the rolling
ball method. For a large and diverse dataset, SMO was more ro-
bust than the other methods considered, as evidenced by mea-
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suring the variation in median background. We could not find
any dataset that included a ground truth for the background,
which can be an indication that proper background estimation
has been overlooked. In most cases, background is just what
remains after a foreground segmentation that targets specific
objects. As described before, a biased background estimation
will yield biased results in all intensity and ratiometric based
measurements.

In contrast to methods that only estimate a single back-
ground value, our method obtains an accurate estimate of the
background distribution. With this knowledge, it is possible to
evaluate the bias and uncertainty in the calculation of biological
observables, in particular in the case of ratiometric calculations
[27].

While most methods focus on segmenting the foreground,
our method aims to recover an estimate of the background dis-
tribution. It only requires that foreground structures present a
gradient, i.e. that objects do not have flat intensity profiles. This
is a common feature in fluorescence images of most cell types,
particularly when there is not a sharp separation between fore-
ground and background and, therefore, other methods that rely
on finding borders fail. It relies on calculating a measure of the
local average in gradient direction and has only one free param-
eter: the size of the averaging kernel. As long as it is smaller
than the typical foreground structure, It doesn’t require fine-
tuning, being robust across a wide range of values. Therefore,
it is only necessary to tune it for the first image.

B. Perspective

A possible improvement to the SMO could replace the local av-
erage of gradient directions with a filter that distinguishes lo-
cal maxima of intensity from uncorrelated background. For in-
stance, specialized tests for circular uniformity [28] might im-
prove discrimination of intensity valleys, albeit with a slower
run time. A simpler way is to combine SMO with other estab-
lished methods. For example, morphological operations could
be used to exclude both pixels from the ridge of cells and ar-
eas near their borders, which would improve the background
estimation, removing the spurious tail to the right (Fig. S6).

The method assumes that the background distribution is the
same for each pixel, that is, independent of the position. In
cases in which the assumption is not fulfilled, for instance, a
non-homogeneous illumination, the method can be applied lo-
cally, as long as the slope of the background is smaller than
changes due to noise. For example, a smooth surface could be
fitted to the intensity values selected with the mask obtained
via SMO thresholding.

Finally, the SMO image could be used as an input to segmen-
tation algorithms, such as those relying on global thresholds, or
machine learning based ones that use several input filters. Fur-
thermore, using the estimation of the background distribution,
the intensity image can be transformed to an image of probabil-
ity of belonging or not to background.
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