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Abstract

In this chapter we analyze the possibilities and ranges of validity of the dielectric 

formalism to deal with correlated bound electrons in matter by using the shellwise 

local plasma approximation. This model describes the response of the electrons of 

the same binding energy as a whole (collectively), screening the interaction with 

the impinging ion. It considers separately each sub-shell of target electrons, with the 

corresponding dielectric response. The density of electrons and the energy gap are 

included explicitly by employing the Levine and Louie dielectric function. The goal 

of this chapter is to summarize and review the capability of this model to deal with 

fundamental magnitudes of the atomic collisions expressed as different moments of 
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the energy loss: ionization cross sections (single or multiple, differential, and total), 

stopping power (and mean excitation energy), and energy loss straggling. This review 

covers a wide range of the collisions of ions with gases and solids, paying special 

attention to multi-electronic targets. The advantages and disadvantages of the model 

in comparison with independent electron ones, ranges of validity and future prospect 

will be considered.

1. INTRODUCTION

When a swift heavy particle travels through matter, different inelastic 

processes take place. The atomic electrons are excited or ionized, making 

the particle to lose energy. The probability of these events to happen, the 

mean energy loss during the ion passage, the effects on the target atoms 

(i.e., how deep are the ionized shells, what is the final charge state of the 

atom) are subjects of study for the different theories on heavy particle 

collisions.1, 2 This research branch finds important applications in many 

fields, including medicine within hadron therapy (for recent reviews, see 

Refs. 3–6).

In this chapter we discuss the possibilities and ranges of validity of 

the shellwise local plasma approximation (SLPA) to deal with some of 

the fundamental inelastic collisions mentioned above. This is a many-

electron model within the frame of the dielectric formalism, especially 

suitable for multi-electronic targets and high energy collisions in which 

target deep shells are involved.7, 8 The SLPA describes the electronic 

response of each sub-shell of target electrons as a whole, including 

screening among electrons.9 This is of particular interest when describ-

ing many-electron sub-shells such as 4f  or 3d, for example. The main 

characteristics of the SLPA are the independent-shell approximation (a 

dielectric function for each sub-shell of target electrons, meaning that 

only the electrons of the same binding energy respond collectively to 

the ion perturbation and screen among them) and the inclusion of the 

binding energy explicitly (not free-electron gas, but electron gas with 

an energy threshold).

It must be stressed that the SLPA is an ab initio calculation (no param-

eters included) whose only inputs are the atomic densities of the different 

sub-shells and the corresponding binding energies. It allows us to calculate 

the different moments of the energy loss: ionization cross sections (single 

or multiple, differential, and total), stopping power (and mean excitation 

energy), and energy loss straggling. The advantages and disadvantages of the 
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model, as well as ranges of validity and future prospects will be discussed 

in the following pages.

2.  THE SHELLWISE LOCAL PLASMA  

APPROXIMATION

2.1 Historical aspects

When a fast heavy ion moves in a medium, it polarizes the target electron 

cloud. This gives rise to an induced potential, which can be described as a 

trailing wake that follows the motion of the projectile (see Ref. 9 and ref-

erences therein). The many-body consistent treatment for an ion traveling 

through an homogeneous free-electron gas was developed by Lindhard10 

and by Ritchie,11 within the linear response approximation (LRA).

This dielectric formalism was extended to deal with atomic bound 

electrons as a free-electron gas of local density, known as the local plasma 

approximation (LPA). It was applied to stopping power (energy loss per unit 

length) of heavy ions in matter using the logarithmic high energy limit.12, 13 

Later on developments of the LPA included the extension to isolated 

atoms by Rosseau et al.14 and to intermediate energies by employing 

the fully dielectric formulation.15–17 In the LPA by Lindhard and sub-

sequent works, the response of bound electrons, even local, considers 

the electronic cloud as a whole by using the total density of electrons 

in the atom.

In the last years we have improved and extended the use of the 

dielectric formalism to deal with bound electrons of gaseous and solid 

targets (insulators and metals), not only for energy loss calculations, but 

also for ionization probabilities and energy loss straggling.7, 8, 18–33 The 

full dielectric formalism was employed together with the theoretical 

description of bound electrons through the atomic wave functions and 

binding energies.

Our developments for the SLPA had two main steps. First the separate 

dielectric response for each shell, by considering the independent-shell 

approximation. Physically, this independent-shell approximation means that 

when an electron of the nl sub-shell is ionized only the other nl-electrons 

are included in the screening of the ion potential. This gave very good 

results for the energy loss even at intermediate energies,18–25 as far as the 

perturbative approximation is valid. A previous proposal of the independent 

shells within the LPA, known as the orbital OLPA, is due to Meltzer et al.34 
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However, this approach uses the logarithmic high energy limit for the stop-

ping power.

The second step was the inclusion of the ionization gap using the 

Levine and Louie dielectric function.35 This is a very important point to 

advance in the calculation of ionization probabilities, not only for inner-

shells of metals, but also for insulators26 and gases.27 In this sense, the SLPA 

provides an interesting alternative to the independent electron models, with 

very good results as compared with complex formulations such as the con-

tinuum distorted wave eikonal initial state (CDW-EIS) approximation,28 

and with great advantages in the computational effort and time.

The Levine and Louie dielectric function35 keeps the characteristics 

of Lindhard’s,10 i.e., electron–electron correlation to all orders, collective 

response, and f-sum rule (particle number conservation). It must be noted 

that the SLPA is a first order approximation (as far as the dielectric functions 

are calculated in LRA, like Lindhard’s 10 or variations, such as Mermin’s36 

or Levin–Louie’s35). It means that it is a perturbative description valid for 

ZP/v < ZT and v > ve with ve being the mean velocity of the electrons 

of the nl-shell. The SLPA with this dielectric function proved to give good 

results in stopping power calculations7, 29–33 in an extended energy range 

that includes the maximum of the stopping, and for inner-shell ionization 

of very heavy targets at high enough impact velocities.8

2.2  Theoretical details: The Levine–Louie dielectric function 
and the independent-shell approximation

Consider a bare ion of charge ZP moving at velocity v in a free-electron gas 

(FEG) of homogeneous density ρ, a Fermi momentum kF = [3π2ρ]−1/3 

and a Seitz radio rS = [(4/3)πρ]1/3. Following the dielectric formalism, the 

stopping power per unit length is expressed as

with ε(k, ω) being the quantum dielectric function of the medium.9 

Different approximations are employed for the dielectric function, with 

the Mermin–Lindhard dielectric function36 being the most accurate one 

to account for the plasmon time decay. This dielectric function depends 

on the constant density of electrons ρ and the plasmon damping γ, both 

characteristics obtained from the optical properties of each material37 and 

from tabulations.38
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The SLPA formulation has a general expression for the different 

moments of the energy loss. It describes the inelastic collision consider-

ing the interaction with each nl sub-shell of target electrons separately, 

with S
(t)

nl
 being its energy moment of order t (t = 0 the ionization cross 

section, t = 1 the stopping power, t = 2 the square energy loss straggling) 

given by

The total moment will be the addition of the shell contributions 

S
(t)

=

∑
nl

S
(t)

nl
.29 In the case of metals, electrons are treated differently 

depending on whether they belong to the free-electron gas (FEG) or to 

the inner-shells (bound electrons).

The dielectric function εnl(k, ω) in Eq. (2) is a mean value of a local 

response that depends on the density of electrons of the shell ρnl(r) and the 

ionization gap ǫnl

with kF

nl
(r) = [3π2ρnl(r)]

1/3 the local Fermi velocity. The dielectric func-

tion employed εLL, is the Levine–Louie one,35 which includes explicitly 

the energy gap of each shell. It is defined as

with ωg =

√

ω
2 + ǫ

2

nl  and εL(q, ω, kF
nl(r)) being the usual Lindhard 

dielectric function.10 Note that if we consider no binding energy, 

ǫnl = 0, the usual expression for the probability in the dielectric for-

malism (Lindhard) is recovered. Once the imaginary part is defined, 

the real part, Re
[

εLL(q, ω, kF
nl(r))

]

 is obtained in closed form through 

the Kramers–Kronig relation, as shown in Ref. 35. This model for the 

dielectric function, proposed originally for semiconductors and insula-

tors,35 satisfies the so-called f-sum rule, or particle number conservation, 

that is the desirable feature for a dielectric function. In fact, this modified 

version of the SLPA was first applied to calculation of stopping power 

in insulators.26
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The density of electrons of the shell ρnl(r) and the ionization gap ǫnl 

are the only inputs for the SLPA. For atoms they can be obtained from the 

Hartree–Fock wave functions tabulated by Clementi and Roetti39 or by 

Bunge et al.40 For very heavy atoms (Z > 54) they can be calculated using 

the relativistic solutions of the Schrödinger equation.7, 8, 32

In the case of an ion with N bound electrons and charge state 

q = ZP −N , the interaction with target electrons can be expressed 

through a screened ion-charge Z
(q)

P
(r) that depends on the distance to the 

nucleus (with the ion electrons frozen, just screening the nucleus). It veri-

fies Z
(q)

P
(r) → q for long distance collisions and Z

(q)

P
(r) → ZP for close 

collisions.

In order to include this inhomogeneous screened ion-charge in Eq. (2), 

instead of ZP, we need the Fourier transform of Z
(q)

P
(r) given by

Using Flannery integrals41 and the Slater-type expansion for the projectile 

wave functions (Clementi and Roetti tables39 for neutral atoms and for 

positive ions), Z
(q)
P

(k) has an analytical closed form (see the Appendix in 

Ref. 8 for the details).

We calculated Z
(q)

P
(r) for different ions from He+q (q = 0, 1) up to 

Ne+q (q = 0, . . . , 9). In order to express it in a simple way to be included 

in the programs of calculus we fitted the exact Z
(q)

P
(r) with two exponen-

tials as follows:

In Tables 7.1 and 7.2 we include the parameters Zj , aj for the different ions 

and charge states.

The inclusion of Z
(q)
P

(k) in Eq. (2) is straightforward. The SLPA for 

the total energy moment of order t due to the interaction with an ion of 

nucleus charge ZP and charge state q is

(5)Z
(q)
P

(k) = ZP −

N
∑
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In the following sections we present and discuss the current state of 

the SLPA to deal with energy loss (Section 3), its straggling (Section 4), 

and with ionization cross sections (Section 5). The order was chosen by 

Table 7.1 Parameters to fit the screened ion-charge as function of the distance to 

the nucleus for He+q to N+q. These functions were obtained using Hartree–Fock wave 

functions by Clementi and Roetti.39 for neutral atoms and for positive ions

Ion q Z1 a1 Z2 a2

He
+ 1 −1.289 4.722 2.289 3.529

He
0 0 −0.288 7.784 2.288 2.359

Li
2+ 2 −0.101 1.017 1.101 3.411

Li
+ 1 −0.195 0.957 2.195 3.024

Li
0 0 1.123 0.531 1.877 3.347

Be
3+ 3 −0.100 1.359 1.100 4.554

Be
2+ 2 −0.334 16.900 2.334 5.298

Be
+ 1 1.172 0.942 1.828 4.635

Be
0 0 2.412 0.824 1.588 5.161

B
4+ 4 −0.106 1.730 1.106 5.674

B
3+ 3 3.684 7.832 −1.684 11.561

B
2+ 2 1.250 1.376 1.750 6.138

B
+ 1 2.532 1.255 1.468 6.823

B
0 0 3.631 1.075 1.369 7.285

C
5+ 5 −0.097 2.101 1.097 6.891

C
4+ 4 −0.208 2.120 2.208 6.459

C
3+ 3 1.783 7.227 1.217 1.731

C
2+ 2 2.591 1.661 1.409 8.473

C
+ 1 3.753 1.520 1.247 9.114

C
0 0 4.801 1.331 1.199 9.446

N
6+ 6 −0.058 2.353 1.058 8.420

N
5+ 5 −0.216 2.452 2.216 7.553

N
4+ 4 1.805 8.357 1.195 2.086

N
3+ 3 2.639 2.077 1.361 10.093

N
2+ 2 3.846 1.965 1.154 11.027

N
+ 1 4.953 1.792 1.047 11.776

N
0 0 5.973 1.596 1.027 12.094
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historical reasons: the dielectric formalism, and more specifically, the local 

plasma approximation, was developed to describe the energy loss of heavy 

particles in solids. Instead, using a collective formalism to calculate ioniza-

tion probabilities of solids and, even more of gaseous targets, is much more 

demanding and is new theoretical development due to the SLPA.

Table 7.2 Similar to Table 7.1 for O+q to Ne+q ions

Ion q Z1 a1 Z2 a2

O
7+ 7 −0.093 2.776 1.093 9.228

O
6+ 6 −0.207 2.825 2.207 8.744

O
5+ 5 1.766 9.774 1.234 2.514

O
4+ 4 1.299 10.976 2.701 2.591

O
3+ 3 3.899 2.395 1.101 12.836

O
2+ 2 5.043 2.237 0.957 13.962

O
+ 1 6.113 2.052 0.887 14.782

O
0 0 7.087 1.824 0.913 14.749

F
8+ 8 −0.043 2.881 1.043 11.032

F
7+ 7 −0.130 2.543 2.130 10.157

F
6+ 6 1.754 11.088 1.246 2.912

F
5+ 5 1.296 13.463 2.704 2.896

F
4+ 4 3.958 2.834 1.042 15.007

F
3+ 3 5.190 2.750 0.810 16.145

F
2+ 2 6.277 2.554 0.723 17.556

F
+ 1 7.245 2.286 0.755 18.684

F
0 0 8.213 2.064 0.787 18.438

Ne
9+ 9 −0.095 3.316 1.095 11.422

Ne
8+ 8 −0.166 3.366 2.166 11.214

Ne
7+ 7 1.787 12.100 1.213 3.247

Ne
6+ 6 1.309 14.616 2.691 3.279

Ne
5+ 5 1.024 16.471 3.976 3.256

Ne
4+ 4 5.181 3.129 0.819 19.045

Ne
3+ 3 6.299 2.953 0.701 21.086

Ne
2+ 2 7.350 2.738 0.650 22.470

Ne
+ 1 8.360 2.524 0.640 23.075

Ne
0 0 9.326 2.306 0.674 22.586
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3.  ENERGY LOSS IN PARTICLE PENETRATION  

OF MATTER

The mean value of the energy loss of particles in matter, also 

known as stopping power, is a necessary ingredient of many parts of 

basic science, of medical and technological applications.42, 43 It is an 

average of the ion energy loss per unit path length. At intermediate to 

high impact velocities, this energy loss is related to ionization of target 

electrons. The higher the ion energy, the deeper the excited electrons. In 

the case of metals, it means that at intermediate and high impact ener-

gies, the description of the stopping power due to excitation of valence 

electrons (the FEG of metals) is not enough, and target inner-shells must 

be included.

Different experimental methods are used to determine stopping 

powers44 and important collections of data, statistics, and semiem-

pirical functions are available in the web.45, 46 Many semiempirical and 

theoretical models have been developed (see Refs. 47–50 and references 

therein). However, the description of very heavy targets, i.e., those with 

the close 4f  sub-shell with 14 electrons, remains a heavy task for first 

principle theoretical calculations. On the contrary, the SLPA, being a 

many-electron model, describes with the same degree of complexity 

Ne, Cu, or Au targets. Furthermore, the more electrons the shell has, 

the more suitable the method is. On the other hand, this model works 

within the dielectric formalism, so dynamical screening effects among 

electrons are included. This proved to be of particular interest for the 

case of the f-shells.32

The only inputs for the SLPA are the density of electrons around the 

nucleus for each sub-shell and the binding energy. As far as these inputs are 

known, the SLPA calculations reduce to rather simple numerical integra-

tions, given by Eqs. (2) and (7). Moreover, the extension of this formalism 

to deal with complex targets (compounds, molecules of biological interest, 

water) is straightforward if these inputs are known.

3.1 The SLPA in stopping power of metals for protons

The SLPA gives good results for energy loss by protons in metal targets.7,  31,  32 

We consider and discuss here three cases of special interest , Cu (Z = 29), 

W (Z = 74), and Au (Z = 79). This choice is founded on their experimental 
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and technological interest, and on the availability of data. Cu and Au are 

the two targets with the largest amounts of stopping measurements. For 

W, new interest is related to its properties as inner-wall of fusion reac-

tors.51 For our theoretical interest, these are targets for which outer elec-

trons can be described as FEG and we can deal separately with bound 

electrons using the SLPA. This separate description of the response of 

bound and valence electrons as inhomogeneous and homogeneous elec-

tron gases, respectively, is part of the good agreement obtained. On the 

other hand, the separate calculations allow using different models in each 

case (i.e., the SLPA for bound electrons and a non-perturbative formalism 

for the FEG).

For Cu, the densities and binding energies were obtained from the 

tabulated Hartree–Fock wave functions.39, 40 For Au and W, the atomic 

wave functions are the solutions of the relativistic Dirac equation instead 

the nonrelativistic Schrödinger equation. We employed to this end the fully 

relativistic ab initio wave functions obtained by using the HULLAC
52 code (see 

Ref. 7 for the details). The binding energies were compared with tabulated 

experimental binding energies in solids by Williams.53

For H ions in solids we calculate the stopping cross section just consid-

ering H+(Refs. 7, 32). At low velocities, the screening of the H+ nucleus is 

strong enough to have very loose or directly no bound electron.54, 55

The total stopping of protons in Cu is displayed in Figure 7.1. This 

value was obtained by adding the bound electron and the FEG contribu-

tions. The former was calculated with the SLPA formalism (Eq. (2) with 

t = 1) and adding the contributions of the different sub-shells to get 

total stopping of bound electrons. The latter by employing the dielec-

tric formalism (perturbative approximation) with the Mermin–Lindhard 

dielectric function.36 The characteristic plasmon frequency and width 

employed here for Cu FEG are ωp = 0. 703 a.u. and γ = 0. 950 a.u., 

respectively. This yields a mean value of electrons in the FEG as Ne = 3. 14, 

and a Seitz radius as rS = 1. 82 a.u. These values were obtained from the 

optical data of the energy loss function37 by considering only the first 

important peak. These number of electrons in the FEG is similar to the 

experimental value recommended by Isaacson.38 To keep the total num-

ber of electrons, we considered Cu as [Ar] 3d
7.86 and the "3. 14" electrons 

as FEG.

In Figure 7.1 we compare our total stopping cross sections of Cu 

for protons, with the experimental data available,45 and with SRIM08 

results.46 The contribution from the FEG and the bound electrons are 
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displayed separately. About the experimental data, we indicate separately 

only the data since 1980, while earlier data is plotted together with a 

single type of symbol. The agreement with the experimental data and 

with the SRIM08 curve46 is very good in the whole energy range. The 

stopping maximum is correctly described in energy and value. The dif-

ferential description for the FEG and the bound electron contribution is 

the basis for this agreement.56

We display in Figures 7.2 and 7.3 the stopping cross sections of Au 

and W for protons.7, 32 These are very interesting targets because the 4f  

sub-shell plays a major role. For solid Au, we describe the FEG with the 

Mermin–Lindhard dielectric function and the following parameters (in 

atomic units): Seitz radio rS = 1. 17 a.u. (17 electrons in the FEG), plasmon 

energy ωP = 1. 37 a.u., and a damping γ = 1. 37 a.u. These values were 

obtained as a first approximation to optical energy loss function tabulated 

in the Handbook of Optical Constants by Palik and Ghosh.37 This means 

that the atomic 5p6, 5d10 and 6s
1 electrons are considered as the homoge-

neous FEG, and the first bound electrons are those of the 4f  sub-shell. The 

bound electron contribution was calculated using the SLPA with the fully 

relativistic wave functions and binding energies.7

Figure 7.1 Stopping cross sections of Cu for protons. Curves: solid line, total stopping 

adding the contributions by bound electrons (blue dashed line, SLPA) and by the FEG 

(red dotted line, Mermin–Lindhard dielectric calculation); orange dash dotted line, 

SRIM08 results.46 Symbols: experiments as reported by Paul;45 different symbols marked 

within the figure, experimental data since 1980; black hollow circles, experimental data 

corresponding to (1935–1979).
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In Figure 7.2 we display our theoretical results for the stopping cross 

section together with the large amount of experimental data available,45 

and the SRIM 2008 values. The contributions of the FEG and the bound 

electrons are displayed separately. The FEG contribution in gold, even the 

main one, cannot explain the total results for energies above 100 keV. As 

observed in the figure, there is an important dispersion of experimental 

values, mainly around the stopping maximum, which makes any theoretical 

description not conclusive. In order to have a cleaner picture of the situa-

tion, we displayed separately the stopping measurements of the last 25 years. 

This arbitrary classification allowed us to note that, except for the results 

by Martinez-Tamayo et al.57 the latest stopping measurements tend to be 

close to a single curve. The semiempirical SRIM08 code 46 gives a curve in 

accordance with these latest experimental data.

The total stopping cross section obtained using the SLPA for bound 

electrons describes well the experimental data in the whole energy range. It 

has a maximum at 130 keV, shifted and higher than SRIM08,46 and in rather 

good agreement with theoretical predictions by Heredia-Avalos et al.58 and 

Figure 7.2 Stopping cross section of Au for protons. Curves: dashed line, present SLPA 

calculation for the bound electrons; dotted line, FEG contribution using the Mermin–

Lindhard dielectric function;36 solid line, total stopping as the addition of the previous 

two contributions; dashed dotted line, SRIM08.46 Symbols: experiments as reported by 

Paul;45 different symbols within the figure are data since 1987; hollow circles, previous 

measurements.
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with the measurements by Martinez-Tamayo et al.57 and to previous ones 

by Kreussler et al.59 and Santry and Werner.60

It is worth mentioning that the relativistic results for the binding ener-

gies of Au show spin-orbit split in energy E
n,l,l±

1

2
 (see Fig. 1 in Ref. 7). 

It is an important point, because these are sub-shells that are very close in 

energy. As mentioned before, the SLPA describes collectively those elec-

trons with equal binding energy, allowing screening among them. We use 

Ei±1Ei as criterion of equal binding energy, with 1Ei being the quantum 

uncertainty

with Ei and 〈r〉i being the energies and mean radius of the sub-shell.

Using this criterion we have found that in the cases studied, the spin-

orbit split is not resolved. Physically this implies that the 14 electrons of 

the 4f  sub-shell respond together shielding the projectile, and not the 8 

electrons 4f7/2 and the 6 electrons 4f5/2 separately. This separated or not-

separated response of the sub-shells is very clear in the case of protons in 

W, as displayed in Figure 7.3. For W, not only cannot the 4f7/2 and 4f5/2 be 

resolved, but there is also inter-shell screening between 5p and 4f  electrons. 

As displayed in Table 7.3, these sub-shells are very close in energy and 

respond collectively to the ion passage. The importance of this effect is clear  

(8)1Ei ≈
1

1ti

=
v

〈r〉i

,

Table 7.3 Fully-relativistic binding energies of the N and O-shells of Au and W. These 

results have been calculated by Mitnik and collaborators7, 32 with the HULLAC code52 

for isolated atom. Also included are the experimental values, Eexpt, compiled by 

Williams.53 The binding energies are in atomic units

E
expt

Au
E

th

Au
E

expt

W
E

th

W

4s 28.0 26.0 21.8 20.8
4p1/2 23.6 22.8 18.0 17.3
4p3/2 20.1 19.2 15.6 14.8
4d3/2 13.0 12.5 9.40 9.0
4d5/2 12.3 11.9 8.95 8.5

5s 3.94 4.1 2.78 2.9
4f5/2 3.22 3.2 1.23 1.3
4f7/2 3.08 3.1 1.16 1.2
5p1/2 1.66 1.9
5p3/2 1.35 1.5
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while comparing total theoretical and experimental stopping in Figure 7.3. 

Note that the screening among electrons reduces the stopping cross section 

in all the cases (in Au, too). This effect can only be taken into account with 

a many-electron model and a collective description of bound electrons. 

The results displayed in Figure 7.3 describe the stopping maximum quite 

well. However an overestimation of the experimental data around 2 MeV 

is found. We will return to this matter in the following section in relation 

to the Bethe high energy limit.61

3.2 Stopping number and Bethe limit

The SLPA provides an interesting alternative to describe the energy loss of 

different materials for energetic ions. At high energies the ion losses energy 

due to the interaction with deep bound electrons, so the behavior of the 

stopping power at high energies is a good test for the model.

The stopping power can be expressed in terms of the dimensionless 

stopping number L(v) as

(9)S(v) =

4πZ
2

P
ZT

v
2

L(v).

Figure 7.3 Stopping cross sections of W for protons. Curves: solid lines, present theo-

retical results for the contributions by bound electrons (SLPA) and the FEG, and total 

stopping as the addition of the previous two; dash lines, results obtained using the 

SLPA with independent 5p and 4f  responses. Symbols: different symbols within the 

figure are the experimental data as reported by Paul.45
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In the high-but-nonrelativistic velocity regime, the stopping number is 

described by the Bethe asymptotic formulae61

with I being the mean excitation energy, characteristic of each target.62 

Our theoretical description of the energy loss should converge to the Bethe 

high (but nonrelativistic) energy limit.

In Figure 7.4 we display the stopping number comparing the SLPA, 

Bethe limit, and SRIM08 values,46 the latter representing the behavior of the 

experimental data for each target. Using the Lindhard and Scharff scaling 

with v2/ZT (valid for elements of high atomic number63) we plot together 

the SLPA results for the stopping number of W and Au. The straight-line 

in the logarithmic scale of v2 is the Bethe limit.

It is an interesting figure because different aspects can be observed: 

the Lindhard and Scharff scaling is valid for W and Au; the SLPA tends to 

the Bethe limit, as expected theoretically; the description of the experi-

mental data with the SLPA is good at the lower energies displayed in this 

figure, but in the high energy region the SLPA is closer to Bethe than to 

the experiments. This is a 10% of theoretical-experimental difference in 

the energy region 1–4 MeV, the energy region observed in Figure 7.3.  

(10)lim
v→∞

L(v) = L
Bethe(v) = ln

(

2v
2

I

)

,

Figure 7.4 Lindhard scaling for the stopping number L. Curves: SLPA results for Au 

(solid line) and W (dashed line); Bethe high energy limit obtained using Eq. (10) and the 

mean excitation energies I suggested by the ICRU49 Report (Ref. 44) IW = 727 ± 30 eV,  

and IAu = 790 ± 30 eV. Symbols: SRIM08 values for Au (hollow circles) and W (stars).
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This means a certain overestimation by the SLPA in the high energy 

region, which is related to the theoretical tie to the Bethe limit.

3.3 Stopping for dressed ions

By dressed ions we mean those ions with bound electrons, whether they 

be neutral or with a certain charge state. In this case, while the ion moves 

through a medium, loss and capture processes take place until reaching 

an equilibrium distribution of charge states q (q = 0, . . . , ZP) within the 

foil, depending on the ion velocity v. In the equilibrium regime, the mean 

energy loss will be the average of the stopping cross sections S(q) given 

by Eq. (7), with the calculated screened ion-charge (Tables 7.1 and 7.2), 

weighted with the data of fraction of ions with charge q at that velocity, 

φq(v). Namely

The equilibrium charge fractions at each impact velocity, φq(v), are exter-

nal inputs. A fitting of a large amount of experimental values of charge 

states exiting the solid, combining different ions and targets is due to 

Schiwietz and Grande.64 It is available within the CasP5.0 code.65

On the other hand, for ions with nuclear charge ZP > 2, the 

 perturbative description for the FEG contribution is found to underesti-

mate the experimental data for energies below that of the maximum of 

stopping power. For this reason for He and heavier ions we combine the 

SLPA for the bound electrons with a non-perturbative model for the FEG. 

As the energy loss by ionization of inner-shells contributes at high  energies, 

the perturbative approximation used in the SLPA is still valid. In fact, for 

the stopping power of Zn for different ions we found the description of 

bound electrons (1s up to 3d
9 ) with the SLPA to be valid for He up to C 

projectiles, as displayed in Figure 7.5. For O ions in Zn the perturbative 

SLPA overestimates the total stopping cross section.33

Figure 7.5 summarizes previous results for the different ions22, 29, 30, 33 in 

Zn. The non-perturbative model for the FEG employed in these calculations 

is the Transport Cross Section-Extended Friedel Sum Rule (TCS-EFSR) 

approach by Arista and coworkers.66, 67

To analyze in detail the stopping of dressed ions in matter, we consider 

the stopping of Cu and Au targets for He. In Figure 7.6 we display the 

(11)S =

ZP∑

q=0

φq(v)S(q).
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Figure 7.5 Total stopping cross sections of different ions in Zn. Curves: theoretical 

calculations adding SLPA for bound electrons and HISTOP (non-perturbative) for the 

FEG.22, 29, 30, 33 Symbols: experimental data for He, Li, Be, and B ions as in Figure 6 of 

Cantero et al.;30 for C ions, Cantero et al.33
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Figure 7.6 Stopping cross sections of Cu for He ions. Curves: (a) dashed line, the bound 

electron contribution obtained using the SLPA; dotted line, the FEG contribution with 

Mermin dielectric function (perturbative); solid line, total stopping adding both contri-

butions (similar to Figure 7.1); (b) black solid line, total stopping adding the SLPA results 

for bound electrons and a perturbative description for the FEG with Mermin dielectric 

function as in (a); gray solid line, total stopping adding the SLPA results for bound elec-

trons and a non-perturbative model for the FEG by Arista for He in Zn;22 dashed dotted 

line, SRIM08;46 dashed double-dotted line, Casp5.0.65 Symbols: experiments as reported 

by Paul;45 different symbols within the figure are data since 1980; hollow circles, previ-

ous measurements.
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partial and total stopping cross section for He in Cu. In Figure 7.6a the 

contributions of bound electrons and FEG are displayed separately. The 

former calculated with the SLPA, the latter with the dielectric formal-

ism (perturbative, LRA), using the Mermin–Lindhard dielectric function 

(similar to the case of protons in Cu). The behavior of the total stopping 

displayed in Figure 7.6a has already been found for Zn (Ref. 22), i.e., below 

100 keV/amu (v < 2 a.u.) the perturbative model does not describe the 

experimental data. The replacement of the perturbative FEG-stopping by 

the non-perturbative one gives the total stopping displayed in Figure 7.6b. 

For the FEG we employed, as first approximation, the results for the FEG 

of Zn for He (with rs = 2. 02) by Arista using the TCS-EFSR in Ref. 22. 

The theoretical-experimental disagreement at low energies may be related 

to this. However, the tendency to correct the underestimation due to the 

perturbative calculation is clear. We also include in Figure 7.6b Schiwietz 

and Grande results with the unitary convolution approximation (UCA) for 

swift particles (available in the CasP5.0 code65), and the semiempirical val-

ues by the SRIM08 code.46 Above the stopping maximum all the theoretical 

results agree quite well. For energies below this value the combination of 

different calculations, for bound electrons and FEG shows very good agree-

ment if the non-perturbative FEG model is used.

For He in Au, in Figure 7.7 we display the theoretical results obtained 

in perturbative approximation, with the SLPA for bound electrons and 

Mermin–Lindhard dielectric function for valence electrons. As observed in 

the case of protons in Au, for He in Au the dispersion of the experimental 

data is important for impact energies below the stopping maximum. The 

theoretical description is quite good for impact energies above 400 keV. 

The maximum of the stopping is correctly described around 1 MeV. For 

energies below 400 keV we are outside the limit of validity of the pertur-

bative approximation. The combination of SLPA with a non-perturbative 

description for stopping due to valence electrons of Au (as for Cu or Zn 

targets) is expected to improve these results.

4. ENERGY LOSS STRAGGLING

The theoretical square energy loss straggling, �2, or the second 

moment of the energy loss (t = 2 in Eqs. (1) and (7)), describes the statisti-

cal dispersion of the energy loss. It represents the energy loss variance per 

unit path length of a Gaussian-type energy loss distribution.68 The condi-

tion for obtaining a Gaussian distribution is that the energies transferred in 
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the individual collisions should be small as compared to the width of the 

final distribution.69

The high energy limit for the energy loss straggling was calculated by 

Bohr69 as

which is proportional to ZT, the total number of target electrons active in 

the collision at sufficiently high energies.

The energy loss straggling is an interesting parameter to study theoreti-

cally and experimentally. It represents a sensitive input for many calculations 

(Ziegler46 or Ma et al.70) and computer simulations, like SIMNRA by Mayer71 

for material analysis, or SEICS by Garcia-Molina and coworkers72, 73 for ele-

ments of biological interest.

For the stopping power, there are important compilations of data avail-

able45 and wellknown and tested semiempirical programs46 and recommended 

values.44 However, the situation is completely different for energy loss strag-

gling. The most widely used electronic energy loss straggling is Yang empirical 

fitting74 included in modern ion beam analysis codes such as SIMNRA, NDF, 

CORTEO, and MCERD.75 However the accuracy of this formulae is questioned 

(12)�
2
B = 4πZ

2
PZT,

Figure 7.7 Stopping cross sections of Au for helium. Curves: dashed line, the bound 

electron contribution obtained using the SLPA; dotted line, the FEG contribution with 

Mermin dielectric function (perturbative); solid line, total stopping adding both con-

tributions (similar to Figure 7.1); dashed double-dotted line, SRIM08 results;46 dashed 

dotted line, ICRU49;44 dashed double-dotted line, Casp5.0.65 Symbols: experiments 

as reported by Paul;45 different symbols within the figure are data since 1982; hollow 

circles, previous measurements.
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for different reasons.25, 76 The source of the Yang expression is a compila-

tion of data prior to 1990 which presents serious problems. Measurements 

of energy loss straggling set severe requirements to target preparation (well 

defined thin films, uniformity, and homogeneity).77 Experimental methods, 

such as transmission or Rutherford back scattering, are very sensitive to 

roughness and inhomogeneity of the samples, which introduce important 

additional energy loss straggling, especially at low energies.68, 77, 78 It produces 

overestimation in a region around the stopping maximum68 and an important 

dispersion among data. The weight of this contribution in the experimental 

straggling is clear in some measurements previous to 1980 included in Yang’‘s 

compilation and fitting.74 Fortunately, there is a great number of recent 

measurements from different laboratories and using different techniques that 

show less spread and tend to be close to a single band.79–85

In this section we present different theoretical results calculated with the 

SLPA. These results improve those by Chu86 using the LPA with Hartree–

Fock densities and considering the electronic cloud as a whole. The differ-

ence between our results and those by Chu is the shell to shell description 

of the dielectric response.

In Figure 7.8 we display the SLPA results for square energy loss strag-

gling normalized to Bohr value69 for H and He ions in Cu. The different 

Figure 7.8 Squared straggling of Cu for H and He ions, normalized to Bohr high energy 

limit. Curves: solid lines, our SLPA results. Symbols: experimental data as indicated in 

the figure. For H+ in Cu (Refs. 80–82, 88); for He in Cu (Refs. 83, 87).
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charge states of He in Cu were considered to obtain these values, however 

no important differences with respect to He
2+ were obtained for energies 

above 200 keV/amu. We include in Figure 7.8 the experimental data by 

Hoffman and Powers87 and by Friedland and Kotze,88 which are not cor-

rected to exclude the inhomogeneity contribution. The overshooting of 

these values is clear, mainly in the data by Hoffman and Powers.87

The SLPA values for the energy loss straggling tend to the Bohr limit 

from below, and do not show the overshooting (Bethe–Livingston shoul-

der89) around the energy of maximum stopping power predicted by the 

binary collision formalisms.89, 90 At high energies, the square energy loss 

straggling tends to a value proportional to the total number of target elec-

trons, as predicted by Bohr.69 If we calculate the square straggling as

we can say that each term verifies that �
2

nl
/�2

B
→ Nnl/ZT, with Nnl being 

the number of electrons in the nl sub-shell.7, 25 This is an interesting point 

because it indicates the high energy limit expected for each shell. But it also 

represents a demanding requirement for the theoretical calculation, because 

all shells, even deep ones, contribute to the total straggling, i.e., the L-shell 

of Au with eight electrons is 10% of the Au energy loss straggling.

On the other hand, we found that the energy loss straggling normal-

ized to Z2

P
 (Bohr limit) is almost independent of the ion atomic number 

ZP, at least for low Z ions showing a perturbative dependence with the 

ion-charge.25 In order to test this in Figure 7.9 we plotted together the 

experimental data for different ions in Au together with the SLPA values 

for the bare ions in Au. The experimental data included are those that 

explicitly take into account the roughness and inhomogeneity of the  

sample. In the case of the experimental data by Andersen et al.91 they have  

been corrected in 10% due to the estimation of this contribution. The data 

by Møller et al. shows asymmetric error bars that correspond to Figure 5 

in Ref. 92.

We can observe that the soft dependence with the ion-charge of the 

experimental data normalized to Bohr limit is valid at least for H, He, and 

Li ions. The data for B in Au by Hsu et al.79 could indicate a deviation for 

higher Z ions. On the other hand, Figure 7.9 emphasizes the good descrip-

tion of the straggling obtained with the SLPA, even for unexpected low 

energies. Note that all target electrons have been considered in the calcula-

tion, even the very deep ones.

(13)�2/�2
B =

∑

nl

�2
nl
/�2

B,
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Based on the interest in new general expressions for the energy loss 

straggling, we used Lindhard’s scaling, which proved to be valid for stop-

ping by high Z-targets. In Figure 7.10 we plotted the square energy loss 

straggling normalized to Bohr, as function of v2/ZT, including experi-

mental data for different ions (H to B) and targets (Cu, Au, Pb, and Bi). 

The theoretical SLPA results for Au to Bi are actually very close (they are 

hardly distinguishable in this figure). The SLPA results for Cu (dashed line) 

separates slightly from the others. This scaling for the energy loss straggling 

is an interesting proposal because it introduces the possibility of a simple 

universal function to describe it.

4.1 The SLPA for stopping and straggling of gases

The SLPA evolved from models developed to deal with solid targets. 

However there is no reason to restrict its use just to solid targets. The 

response of bound electrons employed is based on the atomic wave func-

tions and binding energies, described in full Hartree–Fock or Hartree–

Fock–Dirac methods (the latter for targets with ZT > 54) .

In the previous sections we show the performance of the SLPA, with 

good results for the description of the energy loss of ions in solid matter, is 

Figure 7.9 Squared straggling of Au for H, He, Li and B ions, normalized to Bohr high 

energy limit. Curves: solid line, SLPA straggling for bare ions; dashed line, Chu values.86 

Symbols: indicated in the figure; for H ions;68, 84, 85, 91, 92 for He ions;68, 79, 83 for Li and 

B ions.79
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the intermediate to high energy region. In Figures 7.11 and 7.12 we display 

the SLPA results for stopping and straggling of protons in four rare gases, 

and compare them with experimental data available.

Note that for gaseous targets we should include not only the ionization 

channel (as for solid Cu or Au, for which the valence electrons as FEG 

fills the outer bands). For gases, the excitation channel is allowed. For the 

rare gases we use the SLPA formulation given by Eq. (2) with energy gaps 

equal to that to the first excited state (i.e., in atomic units, we use for Ne, 

E3s = −0. 1809; for Ar, E4s = −0. 1666; for Kr, E5s = −0. 1598; for Xe, 

E6s = −0. 1517). The energy gap is a sensitive point in the SLPA. Different 

values for these excitation energies will change present results.

We display in Figures 7.11 and 7.12 the SLPA stopping and straggling 

of rare gases for protons. The stopping description in Figure 7.11 is good 

for proton impact above 300 keV in all the rare gases. Below this energy 

the theoretical values underestimate the data, especially for Ar. These results 

look quite different from those in metals. This is not surprising. In general 

stopping power in metals is better known and described than in gases. For 

example, for stopping of Ne, Ar, and Kr the very recent calculations by 

Figure 7.10 Scaling for the squared straggling normalized to Bohr as function of 

Lindhard parameter υ2/ZT. Curves: SLPA results for Au (solid line), Bi (dotted line) and 

Cu (dashed line). Symbols: similar to Figures 7.8 for H and He in Cu and to 7.9 for differ-

ent ions in Au; additional data included84, 93–95 as signed inside the figure.
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Grande and Schiwietz 65 with the UCA consider that the underestimation 

is due to the contribution of projectile electron capture and loss. The SLPA 

results displayed in Figure 7.11 are quite similar to CasP5.065 without loss. 

To this stage and related only to the SLPA calculations, we consider as first 

step to review the values for the excitation energy. Changes in this value 

affects more to outer-than to inner-shells, so the effect will be noted in the 

low to intermediate energy region.

In Figure 7.12 we display the SLPA results and the corresponding mea-

sured values for energy loss straggling of the four rare gases for protons. The 

results are good, but for Xe they seem to underestimate the experimental data. 

The comparison of this collective electron model with the other independent 

electron formalisms, such as the UCA, the CDW-EIS,96, 97 or the continuum 

distorted wave (CDW)98 methods would be a good framework for future 

developments. Note that the CDW98 and CDW-EIS96, 97 methods use the 

same scattering wave function for the final state in the exit channel. They dif-

fer in entrance channel, where the CDW method employs the full Coulomb 

wave function for the electronic continuum state, which is in the CDW-EIS 

method approximated by the associated asymptotic form given by the eikonal 

logarithmic Coulomb phase. This difference yields the corresponding differ-

ence in the perturbation potentials in the CDW and CDW-EIS methods.

Figure 7.11 Stopping cross section of rare gases for H+. The curves correspond to the 

SLPA results. The experimental data is available in Ref. 46.
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The SLPA presents no specific problem to deal with the straggling and the 

stopping power, its calculation is straightforward. On the  contrary, numerical 

difficulties are found to calculate the stopping power and straggling within 

the CDW-EIS approach. These magnitudes involve the  elements, first and 

second moments of the energy, which depend on the behavior of very 

 energetic electrons. The CDW-EIS approximation has  serious numerical 

problems in two fronts. First, a good description of energetic electrons is 

required, which demands not only a calculation of a substantial grid of 

energies in this region (that would not contribute to the ionization cross 

section). Second, these states require a large amount of angular momenta lmax
 

to describe the final continuum state.

To illustrate this point, Figure 7.13 shows the straggling and the stopping 

power of protons in Ne as a function of the proton velocity. Three sets of 

values are displayed: the results of CDW-EIS calculations with lmax = 4, 8, 

and the exact value (lmax ≈ 28). This exact value agrees quite well with the 

SLPA, as can be observed in Figure 7.13. As the proton velocity increases, 

the straggling evidently requires a greater amount of angular momenta 

which makes the calculation more lengthy and harder. In addition, inner-

shells become very important sources for the straggling. Although these 

inner-shells hardly contribute to the ionization cross sections, or even 

Figure 7.12 Straggling of rare gases for H+. The curves correspond to the SLPA results. 

Experimental data by Besenbacher et al.68
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to the stopping power in our range of energy, they do contribute to the 

energy loss straggling. While the outer-shells are enough to calculate the 

cross section, for the straggling even deep shells are important. This makes 

the CDW-EIS calculation highly demanding in terms of computing time. 

This is a great advantage of the SLPA over distorted wave methods.

5. IONIZATION PROBABILITIES

As mentioned in the introduction, the energy moment of zero order, 

or cross section, is a much more sensitive parameter for the theoretical 

model than the stopping or straggling. In what follows we show the results 

of this dielectric model to deal with the description of a fundamental col-

lisional process, the ionization.

Figure 7.13 Stopping and straggling of H+ in Ne. The curves correspond to the SLPA 

and CDW-EIS results, as marked in the figures. CDW-EIS values for different Lmax are 

shown (see the text for details).
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5.1 Total ionization cross sections

The total ionization probabilities are calculated from Eq. (2) with t = 0. In 

Figure 7.14 we display the SLPA results for total ionization cross section of 

protons in four rare gases. We also include, as in the previous section, the 

comparison with the CDW-EIS values. The experimental total ionization 

cross sections include not only the direct ionization but also the post-

collisional ionization also. As proved from multiple ionization calculations 

including Auger-type post-collisional contributions, the theoretical total 

cross section must include this contribution too.

The total cross sections displayed in Figure 7.14 are calculated adding 

the ionization of each sub-shell, and are afterwards corrected to include 

post-collisional ionization. To this end we used the ratios between total 

cross sections with and without post-collisional ionization in Ref. 99. In 

fact, this contribution is negligible for Ne and Ar targets, so the total cross 

sections are just the addition over the sub-shell contributions. But post-

collisional influence increases with the target atomic number. For Kr it goes 

CDW-EIS

CDW-EIS CDW-EIS

CDW-EIS

Figure 7.14 Total ionization cross sections of rare gases by proton impact. Curves: solid 

lines, present SLPA results; dashed lines, CDW-EIS calculations.99 Symbols: experimen-

tal data by DuBois et al.100 and Cavalcanti et al.101 and recommended values by Rudd 

et al.102 For Xe, we also included the electron impact data at high energies by Schram 

et al.103 and by Nagy et al.104
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from 5% at 300 keV to 24% at 5 MeV, and for Xe from 15% at 300 keV to 

32% at 5 MeV (see Table 1 in Ref. 99). In Figure 7.14, for Xe target, we dis-

play both, direct ionization and total ionization including post-collisional 

ionization. We also include in Figure 7.14 the multiple-ionization data for 

electron in Xe in order to extend the description to high energies. The 

experimental values in Xe show the importance of post-collisional ioniza-

tion in the total ionization.

The SLPA total ionization cross sections displayed in Figure 7.14 are 

amazing. The SLPA is good in the same energy region that the CDW-EIS. 

These values for ionization cross sections together with the stopping and 

straggling comparison in Figures 7.11 and 7.12 establish the SLPA as a 

good framework for further calculations.

These results consider the contribution of every shell of target electrons. 

We have also test the model for ionization of certain shells, such as K-shell 

of low Z elements21 or, recent calculations for L- and M-shells of Au, Pb, 

and Bi,8 with good agreement with the experimental data.

5.2 Multiple ionization

Multiple ionization is a quite demanding calculation for any theoretical 

model. It depends on the probabilities as function of the impact parameter. 

The SLPA implies a space-mean value of the dielectric response as given 

by Eq. (3). In principle the capability to describe total values may not be 

valid for the differential description. Moreover, the SLPA depends directly 

on the density of electrons of each sub-shell. It is tight to the zeros of the 

density distribution.

In Figure 7.15 we display the SLPA results for multiple ionization of Kr 

by high energy proton impact. In a many-electron description like this, the 

multiple ionization follows a Poisson distribution (instead of the multino-

mial distribution of the independent electron models).

The high energy region is governed by the post-collisional ionization.27 

The values displayed in Figure 7.15 take into account the post-collisional 

ionization following the method described in Ref. 27. This method 

includes the post-collisional electron emission in a semiempirical way by 

employing branching ratios of ionization distribution measured in sophis-

ticated photo ionization experiments (see for example the values tabulated 

in Ref. 106).

We also display in Figure 7.15 the theoretical values for direct mul-

tiple ionization, in order to make the importance of the post-collisional 
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contribution clearer. The direct multiple ionization almost describes the 

single-ionization, but double-ionization cannot be explained only with 

direct ionization above 1 MeV. For higher orders of ionization, the impor-

tance of the post-collisional contribution increases at even lower energies 

than double-ionization, as can be noted for triple and quadruple ionization 

of Kr. As observed in Figure 7.15, the agreement of the SLPA with the 

experimental data is good. However some differences have been found for 

other targets (mainly for Ne) that require further research (analyzes of the 

branching ratios employed, other post-collisional contributions not consid-

ered, possibility of a semi-localized model, not so tied to the zeros of the 

density of electrons, etc.).

5.3 Differential cross sections

Another test for the SLPA is the differential cross section as function of 

the electron energy. In Figure 7.16 we display the SLPA results and com-

pare them with experimental data by Rudd 107, 108 and by Toburen.109 

Two kinds of differential values are displayed: the differential cross sec-

tions dσ/dω, with ω the energy transferred to the emitted electron; and 

Figure 7.15 Multiple ionization of Kr by proton impact. Curves: SLPA results with (solid 

line) and without (dashed line) post-collisional ionization. Symbols: stars, DuBois et 

al.;100 full up-triangles, Cavalcanti et al.;101 full down-triangles, Haugen et al.;105 open 

symbols for high energy electron impact data, open squares Schram et al.;103 open 

triangles, Nagy et al.104
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the Platzman plots Y, which is a ratio between dσ/dω and the modified 

Rutherford differential cross section (dσ/dω)R by impact of one electron 

with the same energy,110

where I is the binding energy of the outermost shell. The difference 

between the modified Rutherford expression and the “original” one is 

the presence of I. For the rare gases we used the values of Bunge et al.40 

(I = 0.850, 0.591, 0.524, and 0.457 a.u. for Ne, Ar, Kr, and Xe, respectively). 

The energy distributions present a scale involving several orders of mag-

nitudes and so the finer details could go unnoticed. An alternative way to 

plot this is the Platzman plot, whose physical interpretation is the effective 

number of electrons. The magnitude Y is a powerful tool for analyzing and 

identifying the different features in the differential cross sections in fine 

detail.110

(14)Y =
dσ/dω

(dσ/dω)R

=
v

2(ω + I )2

4π
dσ/dω,

Figure 7.16 SLPA Differential ionization cross sections as function of the energy of the 

emitted electron for protons in Ar and Xe targets. Platzman plots for protons in Ne and 

Kr targets. Experimental data in Refs. 107–109.
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In Figure 7.16 we present the theoretical Platzman plots for Ne and 

Kr, while for Ar and Xe we display the differential cross sections dσ/dω.  

The SLPA results displayed in this figure are actually overwhelming.  

The distribution in electron energy describes the experimental data quite 

well. The comparison with a much more sophisticated and computer-time 

consuming calculation as the CDW-EIS confirms this evaluation (see this 

comparison in Ref. 110).

6. CONCLUSIONS AND FUTURE PROSPECTS

In this chapter the properties, possibilities, and ranges of validity 

of the SLPA have been presented, analyzed, and compared with other 

theoretical descriptions and with experimental data. This comparison for 

stopping power, energy loss straggling, and ionization cross sections, estab-

lishes this model as a trustworthy alternative to the independent electron 

model calculations. In addition, the SLPA is a simple-low-time calculation, 

and allows to correctly describe the inner-shells, which proved to be very 

important in energy loss straggling calculations

The possibilities for further developments may start in three different 

areas:

 i.  The extension of the model to complex targets: As far as the space depen-

dent density of electrons in the shell and energies are available the 

SLPA calculation can be performed. This seems to be the next and 

most important step, with a wide spectrum of possibilities to deal with 

molecular, clusters, or even bio-structures.

 ii.  A delocalized approximation for multiple ionization: The SLPA describes 

the response of the bound electrons as function of their density. In 

this way the SLPA cancels where the density of electrons does. But 

the interaction with the ion should include a region around each 

point. This may be taken into account through a delocalized version 

that does not change the total values, which is currently under study.

iii.  Antiscreening: Finally the description of the inelastic processes of the 

target with a dielectric function states a difference between projec-

tile and target. Extending the SLPA to describe inelastic processes 

in the projectile should not be difficult, and would allow to extend 

the model to deal with antiscreening processes (inelastic processes 

in both centers111).
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