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Preface

This Special Issue is within a wider realm of physical and biological effects 
of irradiation of tissue and tissue-like targets by energetic heavy ions of 
high relevance to hadron therapy.  The main goal is to review the lead-
ing theories describing fast collisions of ions with atoms and molecules 
by emphasizing the possibilities for improving the existing data bases for 
energy losses of heavy charged particles during their passage through 
matter. Ion-atom collisions are included in this topic by presenting those 
theoretical formalisms that are universally applicable to general targets, 
including molecules from tissue. Although the main focus is on energy 
losses due to electromagnetic interactions, also reviewed are the pertinent 
cross sections and stopping powers for nuclear reactions. Data bases of elec-
tronic and nuclear stopping powers coupled with the associated modeling 
of biological responses of cells to irradiation are essential to hadron therapy.

When determining a treatment plan for a patient with cancer, the radia-
tion oncologist must make a key assumption on the actual amount of dose 
needed to eradicate all the tumor cells. It is here that the biophysical input is 
required, accounting for the precise extent  of the deposited physical doses, 
as well as for their biological counterparts that modify the initial impact 
of radiation by the cell repair processes. The overall success of radiotherapy 
is contingent upon the dose planning, dose delivery and dose verification 
systems. To meet with success, radiotherapy must include the most adequate 
descriptions of energy losses of particle beams in tissue and the cell recov-
ery. Deep-seated tumors are usually treated with energetic hadrons because 
of the optimal conformity of heavy ions to the targets by way of a very 
precise local deposition of doses in the vicinity of the Bragg peak. 

Versatile biophysical aspects of the topics of this Special Issue are 
expounded through 14 chapters with the following specific themes:  

Chapter 1 (H. Bichsel) examines the stochastic variations of energy 
losses and biological effects of protons and carbon nuclei in their high-
energy collisions with water.

Chapter 2 (H. Paul) performs a comparative analysis of the accuracy of 
different methods and simulation codes for stopping powers and ion ranges. 

Chapter 3 (J.R. Sabin, J. Oddershede and S.P.A. Saue) reviews the theo-
retical and experimental aspects of determination of the mean excitation 
energy of water.

xiii



xiv Preface

Chapter 4 (F. Ziad) studies the molecular scale Monte Carlo simulations 
of ion tracks using the GEANT4-DNA code with the inclusion of the 
effects of secondary electrons.

Chapter 5 (J. Beebe-Wang, P. Vaska, F.A. Dilmanian, S.G. Peggs and 
D.J. Schlyer) investigates the radiation treatment verifications in proton 
therapy using positron-emission tomographic imaging and Monte Carlo 
simulations.

Chapter 6 (I. Abril, R. Garcia-Molina, P. de Vera, I. Kyriakou and D. 
Emfietzoglou) reports on inelastic collisions of energetic protons in tissue-
like media using a combination of molecular dynamics and Monte Carlo 
simulations.

Chapter 7 (C.C. Montanari and J.E. Miraglia) presents a combination 
of the dielectric formalism  with the shell-wise local plasma approximation 
for inelastic processes in high-energy  ion-matter collisions.

Chapter 8 (M.A. Bernal-Rodriguez and J.A. Liendo) assesses the useful-
ness of the available empirical cross sections relative to the continuum dis-
torted wave theories and experimental data for single ionization of liquid 
water by protons, alpha particles and carbon nuclei.

Chapter 9 (R.D. Rivarola, M.E. Galassi, P.D. Fainstein and C. Champion) 
reviews distorted wave methods for electron capture, ionization and excita-
tion processes in high-energy inelastic collisions of ions with water.

Chapter 10 (C. Champion, J. Hanssen and R.D. Rivarola) presents the 
results of the first Born approximation for ionization and electron transfer 
in energetic collisions between multiply-charged ions and water.

Chapter 11 (T. Kirchner, M. Murakami, M. Horbatsch and H.J. Lüdde) 
reports  on cross sections for single- and multiple-electron processes in ion-
water collisions using the time-dependent density functional theory in the 
independent electron model.

Chapter 12 (Dž. Belkić, I. Mančev and N. Milojević) deals with the 
four-body formalism of distorted wave second-order perturbation methods 
for double electron transitions through simultaneous electron transfer and 
ionization processes in ion-atom collisions at high impact energies.

Chapter 13 (V.Yu. Lazur and M.V. Khoma)  reviews  the theoretical con-
cept of the Dodd-Greider integral equations with Coulomb interactions 
for one- and two-electron  capture processes in fast ion-atom collisions.

Chapter 14 (Dž. Belkić and K. Belkić) contributes to a further 
improvement of the effectiveness of the current radiation  treatments of 
cancer through the amended dose planning systems based on an adequate 



description of cell survival valid at all doses as predicted by the new   
mechanistic repair-based Padé linear-quadratic biophysical model.

 Dževad Belkić, Guest Editor
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Stochastics of Energy Loss and 
Biological Effects of Heavy Ions  
in Radiation Therapy

CHAPTER ONE
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1. INTRODUCTION
This review is a supplemental study of the theory of energetic colli-

sions of heavy ions with matter, including tissue, by using stochastic as well 
as analytic methods. The theory in this field offers a wealth of important data 
bases of immediate usefulness in many research areas including health sci-
ences.1 The most frequently used data from this branch of collision physics 
are differential and total cross sections, electronic stopping power, ranges, and 
mean excitation energies. They constitute critical input data for modeling 
energy losses of heavy ions passing through matter. The accuracy of these data 
is of direct relevance to biological effects of ions, especially near the position 
of the Bragg peak.2, 3 The theory used here for the calculations is based on 
the Bethe–Fano method. It is outlined in the Appendix and the text. It gives 
agreement of 1% or better with existing experimental and calculated data for 
particle energies above 2–5 MeV/u for ions from protons to Carbon ions.

In radiation therapy a major problem is the determination of the effect 
of the radiation dose on the irradiated tissues. It has been found that dose-
effect functions are steep: to achieve tumor control4 between 25% and 75% 
the difference in dose is about 20%. It thus is reasonable to aim for uncer-
tainties of ±2% in physical quantities in dosimetry.5

The biological effects of radiation therapy occur in cells. Therefore we 
must study energy losses and energy deposition in microscopic volumes. 
In medical radiation therapy the cells of interest usually are located deep 
inside the body. For heavy charged particles (protons, M0c2

= 938 MeV, 
Carbon ions, M0c2

= 11178 MeV) beams of ions are used to penetrate to 
these volumes. One method used for therapy is the scanning of the tumor 
volume with pencil beams.6, 7

This method is studied here. Since the calculations described are made 
with computers, they can readily be extended for other beam geometries 
as well as cell geometries.

Abstract

Energy loss functions for protons and Carbon ions (not including fragmentation) are 
calculated with convolutions. For C-ions a treatment dose D = 2 Gy at the Bragg peak 
needs only ten ions traversing a cell of area 100 μm2. Therefore the use of a mean par-
ticle fluence per cell ND rather than D is used to assess the primary source of stochastic 
effects. The stochastics of specific energy z are calculated. It shows large variations 
because the particle fluence per cell as well as the energy spectrum of the ions have 
large variations. A new interpretation of the relation between energy deposition and 
cell survival must be found.
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The study consists of several parts:
•	 Calculation	of	Bragg	functions	with	major	emphasis	of	generating	the	

energy spectra of the particles for each layer of absorber along the tra-
jectories of the particles, Sections 2 and 3.

•	 Calculation	of	detailed	energy deposition spectra for therapy doses at the 
Bragg peak, Sections 4–6.

•	 For	the	biological	effects	a	major	problem	is	the	stochastics	of	particle	
fluence per cell, Section 5.2.

•	 Conclusions.

In order to explicitly evaluate the stochastic nature of the energy deposition 
in cells the interaction of particles with matter cannot be explored on the basis 
of the Bethe mean energy loss dE/dx. Instead the detailed nature of the indi-
vidual collisions of the particles with the absorber must be studied, using “col-
lision cross sections” CCS. Cross sections are described in Appendices A and B.

The CCS are needed for the convolution method which is used here,8–12 
Sections 2.2 and 2.3 as well as for Monte Carlo calculations, Section 2.4.13–15

It must be understood that in general energy loss and energy deposition 
must be clearly distinguished, Section 4.2. For many of the particle inter-
actions the particle speed υ = βc is the relevant parameter rather than the 
energy. The parameter γ =

√

1/(1 − β2) is also used, where M0c2(γ − 1) 
is the kinetic energy of the ion with mass l MeV.

To study the limitations of calculations and measurements of the physi-
cal processes in biological cells we explore the spectra of specific energy z 
imparted16, 17 to cubic volumes

by particles incident perpendicularly on one of the surfaces. For vol-
umes with different shapes the data derived here will have larger spreads. 
Methods to determine energy loss and energy deposition are described in 
Sections 2–5. Bio-effects are explored briefly in Section 6.

In this paper it is assumed that all calculations are made numerically on 
computers because none of the functions can easily be written in analytic 
form. It is an advantage of numerical results (i.e., tables) that it is trivial to invert 
a function such as given in Eq. (3) and Figures B.3 and B.4.† Calculations made 
with continuous functions will be called “analytic” here in contrast to Monte 
Carlo calculations. A mean particle fluence ND per cell is used to quantify radiation.

(1)Vc = 10 × 10 × 10 µm
3

†  One inverts the columns of numbers of the data, then uses cubic spline interpolation to get a 
convenient scale for the inverted primary variable.



Hans Bichsel4

2. ENERGY LOSS AT MACROSCOPIC LEVEL

The “classical” approach based on Bohr, Bethe and Fano theories of 
continuous energy losses, i.e., stopping power, is discussed in Section 2.1. The 
more detailed study using straggling functions is described in Sections 2.2, 2.3, 
and Appendices A and B. The method of following individual particles along 
their tracks with Monte Carlo simulations is discussed in Section 2.4. Multiple 
elastic scattering is relegated to Appendix C, and nuclear interactions to Section 
3.1 and Appendix D. The macroscopic properties of the energy deposition 
field are described by Bragg functions, Section 3. Microscopic energy loss and 
energy deposition are described in Section 4 and stochastic variations in 
Section 5. Consequences for biological effects are outlined in Section 6.

Calculations are made for T = 200 MeV protons (βγ = 0. 687) and 
T = 3600 MeV C-ions (βγ = 0. 865) traversing water (see Appendix B 
about organic matter). For simplicity a cubic cell of water is used to approx-
imate the microscopic volume Vc for which energy deposition is calculated, 
see Section 5. The ion beam is incident perpendicularly on the cube.

Since pencil beams are used for the scanning treatment of tumors6, 7 
they are used here for the calculations.

The most important interaction of the ions with matter is the collision 
with molecular electrons, see Appendix B for details. The elastic interac-
tion with atoms produces multiple scattering, Appendix C. It broadens a 
pencil beam and is of some importance for protons, but can be neglected 
for C-ions. Nuclear reactions are infrequent and not correlated with the 
above interactions and can be dealt with independently for the continuous 
transport and convolution methods, Section 3.1 and Appendix D.

2.1  Continuous transport of particles through matter: 
Classical approach

In classic theory the Bethe stopping power S(T), frequently written18 as dT/dx, or  
M1(β) in Eq. (B.6), is used to calculate the mean energy loss 〈�〉 of particles with 
energy T traversing absorbers of thickness ξ (units: length). If the mean energy 
of the ions is reduced by less than ∼ 5% we can use the approximation

For larger energy losses, the analytic range calculation can be used to  
follow the ions through the absorber with

(2)��� = ξ · S(T ).

(3)y =

∫ T0

T0−���

dT

S(T )
and R(T ) =

∫ T

0

dT

S(T )
,
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where y is the distance traversed in the absorber and R(T ) is the “mean 
CSDA range” of the particles. It is practical to calculate a range table R(T ) 
as a function of T (Refs. 19,20).

Range approximations have been used extensively for the calculation of 
“radiation doses”.21–24

In the nonrelativistic Bohr approximation25 the spectrum of energies 
T of the particles emerging from the absorber of thickness y is assumed to 
be a Gaussian of width σ related to the second moment M2 of the collision 
cross section,26, 27 Eq. (B.6).‡

where ze is the electric charge of the particle, Z the atomic number of the 
absorber, A its number of nucleons per molecule. Note that M ′

2 does not 
depend on particle speed. A more sophisticated method was derived by 
Tschalär.28§

The energy loss spectra (“straggling”) implicit in Eq. (2) actually are not 
symmetric.9, 10, 29–31 This can be taken into account by the use of convolu-
tions for Eq. (3).

2.2 Convolutions for range straggling
For the transport through thick absorbers a convolution calculation can be 
used.8, 10–12, 29, 32 Assume that we know the energy spectrum �(y, T ) 
(T2 < T < T1) at a plane surface at y, see Figure 1.1. To calculate the 
spectrum �(y + ξ , T ) after the traversal of a thin layer ξ, we use straggling 
functions V (ξ , �, T ) to determine the energy loss for ions with energy 
between T and T + δT  (where δT ≪ (T1 − T2)), for each energy bin δT  
between T1 and T2. These energy losses are then added together to produce 
the spectrum at y + ξ at T − �. The process is shown in Figure 1.1. The 
straggling spectra V (ξ , �, T ) for thin absorbers are calculated with the 
methods described in Section 2.3.

For one track segment ξ, Figure 1.1, a convolution integral for each 
energy interval T , T + δT  between T1 and T2 is calculated (s is the range 
in � of V (ξ , �, T + �), Figure 1.1)

‡  The density of water is approximated by 1.00. Both g and cm3 are used as units interchangeably, as 
convenient. We also assume that LET is the same as dT/dx.

(4)
M ′

2
= 0. 1569z2

Z

A
(MeVcm)2/g, σ =

√

yM ′

2
MeV,

§  Measurements for 70 MeV protons at NIRS11 were analyzed with this method and that of Section 
2.2 for T < 20 MeV. The reproducibility of the measurements was better than 1%. The I-value for 
water was derived as 79.7 ± 0.5 eV.
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The reader is invited to select the equation which looks more plausible. 
This integral then is calculated for each energy between T1 and T2.

For present purposes (e.g., total range of 200 MeV protons11, 33 or 
3600 MeV C-ions12 in water) Vavilov–Fano straggling functions V  are used. 
The results of the calculations are given in Section 3. This method is of the 
order of 50 times faster than corresponding MC calculations.

(5)�(y + ξ ; T ) =

∫ s

0

�(y, T + �) × V (ξ , �, T + �)d� or

(6)�(y + ξ ; T − �) =

∫

�(y, T ) × V (ξ , �, T )d�.

Figure 1.1 Illustration of the convolution method. The initial energy spectrum �(y; T ) 
is shown at the top. For each narrow band of energies δT  (shown by the vertical paral-
lel lines) the straggling spectrum V(ξ ,�,T + �) is added successively to the spectrum 
�(y + ξ ; T ) shown at the bottom.
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2.3 Straggling in thin segments
Analytic methods to calculate straggling for thin absorbers have been 
developed for over 80 years.29–31, 34–37 One of the most comprehensive 
calculations and comparison with experimental data for Si detectors is in 
Ref. 9. Here the convolution method for straggling9, 30, 31 has been used. 
The agreement between measurements and calculations is good. The reader 
is invited to assess the data.

2.4 Monte Carlo methods
Many computer programs use Monte Carlo (MC) methods to calculate 
particle spectra.13, 14, 38–42 Time consuming computations are needed to  
obtain accurate data for the functions describing the depth dose functions.33  
An outline of the method is given here, details are given in Section 4. In one 
system the interactions occurring during the passage of the particles through 
matter are simulated one at a time, collision by collision,43, 44 and include 
secondary collisions by the δ-rays produced. For the calculations shown in 
Figure 1.7, the following procedure was used: A particle j travels random 
distances xi between successive collisions, calculated by selecting a random 
number rr and determining the distance xi to the next collision from the 
mean free path between collisions λ(v) = 1/Mo(v) (particle speed v is used 
here rather than T )

The energy loss Ei is selected with a second random number from the 
cumulative collision spectrum, Eq. (B.6), shown in Figures B.3 and B.4. This 
process is repeated until 

∑

xi exceeds the segment length x. The total energy 
loss �j of the particle is �j =

∑

i
Ei. To get Ei practically, the inverse function 

E(�; βγ ) of �(E; βγ ) is calculated with e.g., cubic spline interpolation44 (see 
footnote †). By binning the �j the straggling function f (�) is obtained.44, 45

The Monte Carlo method can be used for all absorber thicknesses, but 
with decreasing particle speed44 it is necessary to change λ(υ) (Fig. B.4) 
and �(E; v) (Figs. 1.3 and 1.6) at appropriate values of υ. It may not be very 
practical for very thick absorbers, e.g., for the full range of one 200 MeV 
proton in water (R ∼ 25 cm) the number of collisions is of the order of 
3 million. In order to get reasonable straggling functions, tracks for 2 million 
protons may be needed.33**

(7)xi = −λ(v) ln rr.

** A study of the equivalence of the convolution and MC methods is being prepared.
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In several systems of MC calculations a “condensed history” approach 
is used.13, 15, 40, 46 It consists of using energy loss straggling functions for 
the determination of successive random electronic energy losses in short 
track segments. Since the convolution method also uses such functions, any 
problems†† found in their use will also appear in MC calculations, but will 
be more difficult to evaluate in the MC.

3. BRAGG FUNCTIONS

A Bragg function describes the properties of the energy spectrum 
�(y, T ) of the ions in the absorber as a function of penetration y in the 
absorber. The methods described in Section 2 have been used to calculate 
�(y, T ) and its properties at y (Eqs. (8)–(11) and B.7):
•	 particle	fluence	N (y);
•	 particle	mean	energy	〈T 〉(y);
•	 mean	energy	loss	D(y) in a thin layer ξ;
•	 standard	deviation	σ(y) of �(y, T );
•	 the	specific	energy	imparted	z to cells at y;
•	 number	of	particle	s(y) stopping in ξ.

The Bragg functions shown here have been calculated with the con-
volution method. In most publications about Bragg functions the only 
function shown is D(y) (Figs. 1.2 and 1.5). If Bragg functions are evaluated 
with the ‘‘classical” methods of Section 2.1, there will be differences from 
the data given in Table 1.1.

Since the major features of the Bragg peak result from the interactions 
of particles with atomic electrons, I have excluded nuclear interactions and 
multiple scattering to show the features of the electron interactions clearly, 12 
also see Section 3.1 and Appendices C and D.

†† Such as problems related to effective particle energy at the center of segments etc.

Table 1.1 Properties (Eqs. (8)–(12)) of the fluence functions �(y,T ) shown in 
Figure 1.3 for protons. Five functions are shown from a total of 1400 functions 
 calculated. The skewness of �(y,T ) is given by 3, for  see Sect. 3.2

N0 y cm 〈T 〉 σ γ 3 N (y) D (y) r%

0 24.52 42.68 3.822 0.299 1.00 14.0 0
2 25.532 25.68 5.827 0.576 0.9945 21.9 0.04
3 26.046 15.35 6.214 0.030 0.7598 28.7 0.55
4 26.27 12.06 5.616 −0.212 0.4624 26.6 0.95
7 26.58 9.03 4.643 −0.464 0.1058 6.2 1.6
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The quantities defined above are calculated as follows using the method 
shown in Figure 1.1

In each track interval ξ the number N (y) is reduced by the number of 
ions reaching T = 0, as given by s(y) in Figure 1.4. The specific dose Ds(y) 
at y is given in terms of an average stopping power

where S(T ) is the stopping power for ion energy T. The mean ion energy 
at y is given by

(8)
N (y) =

∫

�(y; T )dT .

(9)Ds(y) =

∫

�(y; T )S(T )dT ,

(10)�T �(y) =

∫

�(y; T )T dT .

Figure 1.2 Bragg functions for 200 MeV protons traversing water. The thickness 
of water traversed is y, the dose is D(y), the number of residual protons is N(y), the 
mean energy of the spectrum �(y; T ) is 〈T 〉 , and the standard deviation of �(y; T ) 
is σ(y).
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There will be a small difference between Ds(y) and S(〈T 〉(y)), Figure 1.4.
The variance σ 2 of the energy loss distribution at y is calculated with

The above functions are shown in Figures 1.2–1.6.

3.1 Nuclear interactions
Three aspects of nuclear interactions can be distinguished:
•	 reduction	of	fluence	�(y; T ) of primary particles. This can be taken into 

account in Eqs. (5) and (6) by reducing �(y; T ) by δ� = Nξσn(T ) 
where N is the number of nuclei per unit volume and σn(T ) is the cross 
section for nuclear interactions. For protons it can be approximated by 
Bichsel47

(11)σ 2(y) =

∫

�(y; T )(T − �T �)2
dT .

(12)σn(T ) = 5. 3 · 10
−26A2/3

cm
2
.

Figure 1.3 Proton spectra �(T ; y) (straggling functions for energy loss of T
0

= 200 MeV 
protons) at different depths y in water. Data are given in Table 1.1: 〈T 〉  is the mean ener-
gy of �(T ; y), σ its standard deviation, γ

3
 its skewness and N(y) the residual number of 

protons in the beam. For each function 〈T 〉  is indicated by a vertical line near the peak.
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 For water, Nσn(T ) ∼ 0. 012/cm, for a mean free path � = 82 cm, for 
C-ions in water � ∼ 25 cm (Ref. 48), in PMMA � ∼ 20 cm (Ref. 49).

•	 electronic	energy	losses	by	secondary	particles	from	the	nuclear	interac-
tions. It will be necessary to make a supplemental MC simulation for this 
process. See Appendix D for other details.

•	 multiple	scattering	of	the	particles.	Since	this	process	produces	negli-
gible energy losses it will not change the spectrum �(y; T ) of primary 
particles. For broad beams of particles, the lateral displacement of the 
particles will only affect the edges of the beam.11 There is a shorten-
ing of the projected track length which can be calculated analytically 
with the Bichsel–Uehling method.50 For 200 MeV protons in water 
the range shortening is given as 0.12% or 0.3 mm in.19 For pencil 
beams the analytic form of the Moliere theory can be used51 to cal-
culate lateral scattering, see Appendix C. For 3600 MeV C-ions it is 
negligible.12

Figure 1.4 Additional Bragg functions for 200 MeV protons traversing water. The thick-
ness of water traversed is y, the number of residual protons is N(y) , and the range 
straggling function is s(y). Its FWHM is w = 6.4 mm. Two dose functions are given: the 
dashed line is D(y) given by Eq. (9), the solid line gives the energy deposited Dd(y), in 
each segment ξ. The number of ions stopping inside ξ at R

0
 is ∼ 0.2 %.
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3.2 Practical details for protons
Calculations were made for protons with kinetic energy T = 200 MeV. 
Their csda range is Ro(T ) ∼26.2 cm, Figure 1.2. The use of Vavilov strag-
gling functions V (ξ ; T + �, �) requires a choice of ξ for which � ≪ T . 
This means that ξ must be reduced with decreasing T. For the calculations 
described here, for y < 24.5 cm (at a mean energy of 42.2 MeV, with a 
spread from 28 to 68 MeV) ξ = 1 mm was used, for y > 24.5 cm ξ = 20 µ

m was used. The functions �(y; T ) given here must be considered prelimi-
nary because even with ξ = 20 µm some problems with accuracy remain. 
Results for the Bragg peak are given in Figures 1.2 and 1.4. Some approxi-
mations are used in the program to simplify it. They cause errors of the 
order of 0.2% in the mean range R0. Also they contribute the irregularity in 
the spectra in Figure 1.3. For present purposes they are insignificant. Good 
agreement between calculations and measurements for 70 MeV protons 
was found,11 also with MC calculations for 200 MeV.‡‡ For y > 25. 3 cm 
the energy Dd(y) deposited in each segment consists of the energy lost by 
particles traversing ξ and the residual energy lost by particles stopping inside 

ξ, see s(y) (the range straggling function) in Figure 1.4. Energy deposited§§ 
is recorded in two parts: Dh for protons with initial energy T 〉1. 5 MeV and 
Dl for T 〈1. 5 MeV, Dd(y) = Dh + Dl.

The ratio r = Dl/Dd is given in Table 1.1. The largest number of pro-
tons stopping inside of ξ = 20 µm at the peak of s(y) is 0.3% and their 
contribution Dl to dose is less than 1%. Thus they are unlikely to contribute 
to an increase in RBE.

3.3 Practical details for C-ions
Calculations were made for C-ions with kinetic energy T = 3600 MeV. 
Their csda range is Ro(T ) ∼17.31 cm. For the calculations described here, 
for y < 15.26 cm (at a mean energy of 1057 MeV, with a spread from 970 to 
1175 MeV) ξ = 0. 5 mm was used, for y >15.26 cm ξ = 100 µm. Results 
for the Bragg peak are given in Table 1.2 and in Figure 1.5. The spectra in 
selected layers ξ = 100 µm are shown in Figure 1.6. The functions given 
must be considered preliminary because ξ is too large and the Vavilov 
functions were calculated with a spacing of 3 MeV in T. This causes the 
structures seen for functions 3–5.
‡‡  In a comparison in 2008 with Monte Carlo functions calculated at Karolinska Institute with 

SHIELD-HIT52 differences of less than 0.5 mm were seen for the functions.
§§  This is an arbitrary choice: S(1.5MeV)∼20 keV/µm =LET (∞) corresponds to the calculations in 

Ref. 53.
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The range of C-ions with T = 10 MeV is ∼10 µm (Refs. 20, 54). Because  
they will deposit all their energy in one or two cells, details about their inter-
actions (e.g., charge state of ion) are not important, see Sections 4.3 and 5. 
The number of ions stopping in one cell at the Bragg peak is ∼0. 8%.

Table 1.2 Properties (Eqs (8)–(12)) of the fluence functions of C-ions with initial 
T

0
= 3600 MeV shown in Figure 1.6. Data are given for six from a total of 220 functions 

calculated. Depth in water is y. T and σ in MeV, D(y) in MeV/cm. For r see Sect. 3.2.

# y cm 〈T〉 σ γ3 N (y) D (y) r%

1 16.05 809 17.27 −1.06 0.99 346 0
2 16.55 617 21.30 −1.06 0.984 425 0.04
3 16.95 419 28.52 −0.75 0.975 575 0.55
4 17.15 285 39.24 −0.15 0.972 792 0.95
5 17.31 136 50.39 −1.19 0.794 1350 1.6
6 17.35 106 44.4 −2.0 0.526 1113 1.6

Figure 1.5 Bragg functions for 3600 MeV C-ions traversing water. The thickness of 
water traversed is y, the number of residual ions is N(y). The mean energy of the ions 
at y is 〈T (y)〉, the dose is D(y), Eq. (9), dashed line, σ is the standard deviation of the 
functions shown in Figure 1.6. Nuclear fragments are not included in order to show the 
nature of electronic collisions more clearly, see Section 3.1.



Hans Bichsel14

The mean range is R0, it is given at N (y) = N (0)/2 and corresponds to 
the csda range. Numerical values of 〈T 〉 are given in Table 1.1.

Good agreement between calculations and measurements for 3600 MeV 
C-ions was found.12

4.  ENERGY LOSS AND DEPOSITION AT  
MICROSCOPIC LEVELS

4.1 Energy loss
In order to assess the limitations of calculations and measurements we 
explore the spectra of specific energy z imparted16, 17 to cubic volumes 
Vc = 10 × 10 × 10 µm

3. Here, z is a stochastic quantity and the determina-
tion of its local values and variations is a major purpose of this study. Since the 
stochastic variation of the particle fluence is largest for C-ions we consider 

Figure 1.6 C-ion spectra �(T ; y) = f (T ) (straggling functions for energy loss) at differ-
ent depths y in water. Data are given in Table 1.2: 〈T 〉 is the mean energy of �(T ; y), σ its 
standard deviation, γ3 its skewness and N(T ) the residual number of ions in the beam. 
For function 5 the value 〈T 〉 is indicated by a vertical line near the peak. The narrow 
peaks in functions 3-5 are due to a coarse table of V(xi,�, t) of Figure 1.1.
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primarily C-ion beams with kinetic energy T = 3600 MeV (or 300 MeV/u). 
In addition we restrict the absorber to be water for most of the study (see 
Appendix B). Three kinds of interactions of the ions are considered:
•	 inelastic	collisions	with	atomic	electrons	(‘‘electronic”),	Appendices A, B;
•	 elastic	collisions	with	atoms,	Appendix C;
•	 nuclear	interactions,	Section	3.1 and Appendix D.

Interactions are described as collisions and the effect on the particle is an 
energy loss, Figure 1.7.

The cross sections are described in Appendices A and B. A schematic 
description of the electronic collisions is given in Figure 1.7. Further details 
are given in Appendices B, C, and D.

For particles heavier than electrons, elastic collisions cause small energy 
losses (of order of eV) and angular deflections of the particles leading to 
multiple scattering, described in Appendix C.

4.2 Energy deposition
For large volumes (>1 ml in solids, >1 l in gases) energy loss approximates 
energy deposition closely. For smaller volumes wall effects must be taken 
into account. In particular, delta rays and secondary photons can be shared 
by neighboring volumes. For cells the conversion of the primary energy 
into heating and chemical effects is complex (radicals, diffusion etc.55, 56) 
and is of minor relevance for the present study. The collisions of particles 
traversing matter occur at random. This is shown in Figure 1.7 for protons. 
For C-ions with T = 150 MeV (at Bragg peak) the mean free path between 
collisions is λ ∼ 0. 4 nm (Table A.1), but, presumably, the pattern is still 
similar. Note that for protons λ is much larger than the diameter of DNA 
(∼2. 5 nm), but for C-ions with T < 1000 MeV it is less.

4.3 Energy deposition in microscopic volumes
For fast C-ions the energy deposition is in-homogeneous in space. As an 
example T = 150 MeV ions are described. Their LET is 136 keV/μm, and 
the mean free path between collisions is 0.4 nm, Table A.1. The procedure 
of Figure 1.7 is used, for one ion, with data from Figure B.4. It is assumed 
that for energy losses E > 30 eV a secondary electron (“delta ray”) is 
produced. The delta rays in turn will lose their energies in multiple colli-
sions. Frequently ‘‘radial dose distributions” are used to describe the energy 
deposition and to assess radiation effects.57 Here a different method is used 
which demonstrates the stochastics of energy deposition. Consider water layers 
of thickness ξ = 1 µm. Numbers are listed in Table 1.3: four cylindrical 
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volumes Vu around the center of the track are studied. They are based on 
the regions of energy loss shown in Figure B.4. The radii of the volumes 
are defined by the mean radial range r(Eu)  in nm (Ref. 58) of the delta ray 
associated with the highest energy loss Eu (eV) in each region.*** The outer 
volumes are exclusive of the inner††† ones as are the values of �0 and �1, 
Figure B.4. The total energy loss of the ion to the delta rays stopping in a 
cylinder is �1 keV. The energy deposition by one C-ion is given. The sums 
are �0 = 2250 primary collisions/μm, �1 = 137. 3 keV/μm total energy 
loss. The average energy loss per collision is �E� = 61 eV.

Note: On the average, a single delta ray carries away 10% of the energy 
loss into volume D.‡‡‡

The average energy deposition per ion collision in volume A is 32 eV.
One primary collective excitation fills a volume of ∼ 14 nm3 (Ref.60) 

for a total volume in cylinder A of 2160 · 14 = 30240 nm
3, i.e., volume 

A is a solid tube of collective excitation with specific energy z ∼ 365 
kGy, Table 1.3. This does not include the contributions from the collisions 
by delta rays going into the outer volumes.

A reader wishing to know this contribution is invited to calculate it.§§§

In cylinder B, �0 = 78 electrons deposit energy into individual volumes 
from 5 to 40 nm3, i.e., at most ∼ 1000 nm

3 of the total volume VB = 4 
million nm3.

***  No correction is made for the reduction of the energy of the delta ray due to the binding of the elec-
trons (K-shell and collective excitations). Thus for the outer three volumes the energy deposition is 
equal to the energy loss by delta rays. For cylinder A the energy density is so high that this is irrelevant.

††† “Annular space between cylinders.”
‡‡‡  Delta rays lose energy at the rate of 30 to 50 eV/collision, with mean free paths from 50 nm to 1 

nm along their track.59 The volume of a collective excitation along the electron tracks is estimated 
to be from 15 to 1 nm3 (Ref.60). Some energy may be carried into neighboring layers, “wall effect.”

§§§  For electrons with E < 0.8 keV S∼25 eV/nm, for E < 0.8 keV S∼13.5/E0.767 eV/nm. For details 
see Refs. 59, 61, 62.

Table 1.3 Data for energy deposition around the track of one C-ion (T = 150 MeV) 
traversing ξ = 1 µm of water, based on Figure B.4. Eu(eV), r(nm), V(nm3), �

0
 number 

of ion collisions per µm, �
1

 (keV/μm) energy lost per ion per cylinder, z (Gy) specific 
energy inside each sylinder

cyl. Eu r Vu �0 �1 z

A 152 3 3 104 2160 68.5 365000
B 1012 35 4 106 78 28.6 1100
C 8371 1000 4 109 11 26.6 1
D 28000 15000 7 1011 1 14.0 0.003
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In cylinder C the energy deposition is by 11 electrons filling volumes 
between 40 and 1000 nm3, inside the total volume VC = 4 billion nm3.

In cylinder D one electron (with an energy between 8 and 28 keV) on 
the average fills volumes between 1000 and 100000 nm3. This electron will 
usually deposit its energy in more than one layer of water. Its contribution 
to z on the track is between 0 and 20%.

This suggests that the LEM model57, 63 will have large stochas-
tic variations outside of cylinder A and will not be applicable outside 
of cylinder C. Similar descriptions have been given in chapter 9 of 
IAEA-TECDOC-799,64 but without the concept of localized collective 
excitations.

Readers are encouraged to explore patterns of collective excitations in 
volumes B, C, and D and explore their effects on DNA.

This energy deposition pattern by heavy ions differs greatly from that 
expected for X-rays.

5. STOCHASTICS OF ENERGY LOSS IN CELLS
5.1 General features

We calculate the details of energy loss of C-ions in the “cell volume” 
Vc = 1000 µm

3, Eq. (1), the surface area of Ac = 100 µm
2 and the thick-

ness ξ = 10 µm with the method shown in Figure 1.7. Let us consider 
 segment 5 of Table 1.2, y = 17. 31 cm with mean energy �T � = 136 MeV. 
The mean energy loss is ��� = ξ · M1 = 1443 keV (Table A.1), the mean 
number of collisions is n ∼ 25000. The uncertainty of this number is less 
than 1% and thus we can disregard straggling (but see Section 4.3). The aver-
age energy loss per collision is �E� = M1/M0 ∼ 60 eV.

To explore the stochastics of the physical processes we must use the specific 
energy deposited per ion in the cells rather than the dose. As a reference 
concept for z, for one C-ion with kinetic energy T to a cell with volume 
Vc, we use the approximation

where S(T) has units MeV/cm.**** If we assume a mean fluence ND = 20 
ions cell the irradiation dose is D = 4 Gy. Next we calculate the actual 

(13)z1 = S(T )/6250 Gy,

****  One ion per Ac corresponds to � = 10
6 ions/cm2, Eq. (9). As an example, assume <T> = 

136 MeV and S(T) = 1443 MeV/cm (near the mean energy at the Bragg peak). The dose D then 
is D = �(T )S(T ) = 144×10

15 eV/g=1.44 × 1018 eV/kg= 0.231 Gy. With S(T) = 1443 in Eq. 
(13), z = 0.231 Gy.
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process in cells at the Bragg peak for a therapy irradiation. There are many 
stochastic variations which occur during the irradiation:
•	 From	Figure 1.8 we see that T has values between 10 and 280 MeV, 

with LET between 700 and 80 keV/ μm.†††† Within these limits we 
have no control over T or z for any ion in any cell.

•	 The	ions	intercept	a	flat	layer	of	cells	at	random	locations	and	the	number	
of ions traversing a cell is given by a Poisson distribution Pn(ND), Eq. (6.1) 
in Ref 9. We assume the mean value �T � = 136 MeV (Table A.1)  

†††† We are not interested in details for energies below 10 MeV, see Section 3.3.

Figure 1.7 Monte Carlo simulation, Section 2.3, of the passage of T = 16  MeV 
(β2

= 0.033 at Bragg peak) protons (index j), through one layer of water of thickness 
ξ = 6λ, where λ = 20 nm, Table A.2, is the mean free path between collisions. The 
direction of travel is given by the arrows. Inside the absorber, the tracks are straight 
lines defined by the symbols showing the location of collisions (total number �nj = 56). 
At each collision point a random energy loss Ei is selected from the distribution func-
tion �(E; T ), similar to Figure 1.13. Two symbols are used to represent energy losses: o 
for Ei < 33 eV, × for Ei > 33 eV. Segment statistics are shown to the right: the number 
of collisions for each track is given by nj, with a nominal mean value �n� = x/λ = 6. 
The total energy loss is �j =

∑

Ei, with the nominal mean value ��� = xdT/dx = 370 
eV, where dT/dx is the stopping power, M1, in Table A.2.  The largest energy loss Et on 
each track is also given. The mean value of the �j is 325 ± 314 eV and is 15% less than 
〈�〉. Note that the largest possible energy loss in a single collision is EM = 33000 eV, 
Eq. (A.1).
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(S(T ) = 1443 MeV/cm) and make a calculation for ND = 20 ions.‡‡‡‡ 
The “mean dose” then is

The results of the MC simulation in Figure 1.9 will show us whether 
this use of 〈T 〉 is appropriate.
•	 In	experiments to determine survival functions Sv, the effects on a limited 

number of cells are measured.
•	 The	ions	traverse	cells	at	random	time	intervals.

‡‡‡‡  The practice of defining a mean S(T) at the mean energy <T> of the spectrum of the ions to 
calculate the dose in cell irradiations is frequently used.

(14)
D = ND · z1 = 4. 6 Gy.

Figure 1.8 Enlarged energy spectrum f (T ) of C-ions traversing water at Bragg peak 
(function 5 in Figure 1.6). The mean value of the energy of the ions is �T � ∼ 136 MeV. 
The structure of f (T ) is due to an approximation of using a limited number of Vavilov 
functions (V(ξ ,�,T ) in Fig. 1.1) for the convolutions, Eq. (6). The cumulative function 
�(T ), Eq. (B.7), normalized to 1, is also given. It is used for the MC calculations in Section 
5.2.2, also see footnote §§. The jagged structure of f (T ) is due to the coarseness of the 
energy loss grid.
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•	 Nuclear	 interactions	 in	 the	cell	 layer	are	 infrequent,	Appendix D, and 
fragments from earlier layers traverse the cell and contribute to the dose, 
but they are disregarded.§§§§

•	 Delta	rays	with	large	energies	E and K-shell X-rays occur infrequently.
•	 Several	other	stochastic	variations	are	mentioned	in	Appendix D.

For the calculation of energy deposition we shall simulate the stochas-
tics of the first two items only. Variations thus obtained will be smaller than 
the total which would include all the above effects. Programs and results 
are described in the next sub sections.

5.2 MC simulation of stochastics at the Bragg peak
A Monte Carlo calculation simulates two primary effects given above.

§§§§  Fragments have smaller LET and only one or two will traverse the cell65 at ND = 10. The effect 
will increase the variance.

Figure 1.9 MC calculation of the spectrum of the number n of ions traversing cells 
is given by o. It approximates a Poisson distribution with mean value ND = 20. The 
spectrum of z per cell, Eq. (15), is given by ×, values of z are (n/10) Gy. The mean value 
is �z� = �D� ∼ 5.4 Gy, shown by the arrow. The value D(〈T 〉) is �z� ∼ 4.6 Gy, Eq. (14), 
shown by the short arrow.
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5.2.1 Simulation of random number nj of ions traversing cell j
The following simple minded algorithm is used: Place a square Ac the size 
of the cell (i.e., 10 × 10 μm) into the middle of a square with side length 
s = 100 µm. Select two random numbers for two sides (at 90° of the large 
square). If the point given by these coordinates is inside the cell use it as the 
location of an incident ion. Repeat this for ND · 100 ions, Eq. (14), which 
results in nj ions randomly distributed over Ac. For many cells it can be 
represented analytically by a Poisson distribution, as shown in Figure 1.9. 
The average value of nj is ND.

5.2.2 Energy deposition z in cells
With a second random number an energy Ti from �(T ), Figure 1.8, is 
selected for each ion. Its energy deposition z1 in the cell is approximated 
using Eq. (13) S(T), from Table A.1)***** and the corresponding total energy 
zj imparted to cell j is given by

The distribution (“spectrum”) of z for K = 10000 cells at the Bragg 
peak is given in Figure 1.9. The simulated Poisson distribution from 
Section 5.1 is also given. The average value of z for all cells is the dose D 
of the irradiation.

6. BIO-EFFECTS

A detailed study of biological effects on cells (e.g., cell survival) is 
beyond the scope of this paper. We conclude though that the broadness 
of the energy spectra of the ions seen in Figures 1.8 and 1.9 requires a 
more detailed study than that with the assumption of mean values shown 
in Figure 1.9, used e.g., in Ref. 66. For C-ion therapy the small number 
of ions passing through individual cells will cause a further spread in the 
radiation dose per cell.

Studies of these effects by the author are in progress.67 A difficulty 
which must be assessed is the wide spread in particle energies (and the 
associated LET66) at the Bragg peak, Figure 1.8.

***** The contribution from straggling9 is small and is not included. Also see Table 1.3.

(15)zj =

nj
∑

1

z1
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7. CONCLUSIONS

I. A remarkable result of this study is the wide spread of cell doses due 
to the random nature of the two independent functions in Figure 1.9.†††††

II. A major problem in determining the biological effects of irradiations 
with C-ions at the Bragg peak is in the large values and the wide varia-
tion of the specific energy z per cell Vc: the variation for T is from 20 to 
250 MeV, giving z1 from 1.1 to 0.14 Gy. For the most probable ion energy 
at the Bragg peak, Figure 1.8, T ∼ 160 MeV, it is z1 = 0. 2 Gy, footnote.†††

III. The second problem is the random number of ions traversing 
the cells given by the Poisson distribution Pn. A mean doseD = 2 Gy thus 
requires only ND = 10 ions traversing a cell. As a consequence the large 
spread in dose in Figure 1.9 would be even larger. Note that 〈D〉 and 
D(〈T 〉) differ by close to 20%, Figure 1.9. If 〈T 〉 is derived from the range 
energy function by using the thickness t at which the measured Bragg peak 
is located D may differ even more.

IV. For heavy charged particles the primary description of the beam should 
be made with the fluence ND per cell Vc. This will remind the user of the impor-
tance to consider the Poisson distribution. The dose D is a derived quantity 
which is spread out as seen in Figure 1.9.‡‡‡‡‡ In particular, D from Eq. (14) 
cannot readily be used in the derivation of survival values.

V. The physical processes described in Figures 1.1–1.9 and the 
Appendices are well understood and have been found to be accurate to 
about to 2% (Refs. 9, 10, 12, 18, 44, 45).

The stochastic nature for the biological effects become evident when we 
study small volumes and small doses: Figure 1.9. Further variations occur 
due to the nature of cell survival which is expressed by the exponential 
form of the relation between cell survival Sv and physical dose D (Ref. 66).

VI. At this time I have not considered the consequences for radiation 
therapy with C-ions. I suggest that a more detailed analysis of the physical 
parameters (or quantities) than just the “dose” should be made for cell sur-
vival experiments to establish survival functions. In particular the random-
ness due to the particle fluence, Eq. (14) should be studied. For Ne-ions the 
particle fluence would be half as much as that for C-ions.

VII. It is evident that for the doses currently considered for radia-
tion therapy with C-ions (2–6 Gy) the randomness of the number of ions 

†††††  It must be understood that all the data points of any one of the methods are represented by one 
single value on the survival curves of the biological measurements.66

‡‡‡‡‡ The agreement between calculations and measurements was good in Ref. 12.
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traversing cells will cause large variations in the survival of cells as well as 
on the local spectrum of the energies of the ions. These effects seem to have 
been taken into account in some methods of treatment planning41, 53, 57, 68 
but the procedures used are not evident to me.

VIII. To properly convert specific dose into bio-effect it may be neces-
sary to measure primary bio-effects for mono-energetic ions.

IX. The absolute accuracy of the data for water has not been deter-
mined. In view of the wide spread of the specific energy found in Figure 
1.9 it may not be very important, but a comparison with experiments 
similar to that for Si, Ref. 9, should be made.

X. Experimental data for 70 MeV protons and 3600 MeV C-ions 
agreed to better than 1% with calculations described in Sections 2 and 3, 
see Refs. 10, 11, 54.

APPENDIX A. COLLISION CROSS SECTIONS CCS

The most frequent interactions of heavy ions with matter occur 
between the electric charge ze of the ion and the electrons of matter, 
resulting in an energy transfer (or loss) E by the particle in inelastic collisions. 
The energy is transferred to excited states of atoms, to many electrons as a 
collective excitation or to single free electrons called delta rays. They can be 
considered as Secondary Radiations. Details about Auger electrons, fluo-
rescence, Bremsstrahlung, Cherenkov radiation, etc. are less important for 
current purposes and are not discussed.

To describe the probabilities for collisions cross sections are defined.

A.1 Rutherford cross section
For the collision process with free electrons the Rutherford or Coulomb 
collision cross section27, 69–71 σR(E) is used. It serves as a first approximation 
for cross sections.28, 30, 31, 35 For a heavy particle with charge ze and speed 
β = v/c colliding with an electron with mass m at rest it can be written 
as§§§§§

§§§§§  Additional factors for electrons and positrons and for particles with spin 1
2
 and spin 1 at high speeds 

(β ∽ 1) are given e.g. in Uehling.72 An extensive description can be found in Evans.69

(A.1)σR(E, β) =

k

β2

(1 − β2E/EM )

E2
,

k =

2πe4

mc2
· z2

= 2. 54955 · 10
−19z2

eVcm
2
,
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where EM ∼ 2mc2β2γ 2 is the maximum energy loss of the particle in one 
collision. The mass of the particle does not appear in the equation.69 This 
cross section has been used by Bohr,25 Landau,35 Vavilov,30 and Tschalär28 
for the derivation of straggling functions. The approximation is quite good 
for large energy losses, Figures B.1 and B.2.

For gases and solid matter a more complex structure must be used for the 
cross sections. It is my opinion that at present the Bethe–Fano cross section is 
closest to reality for particles with energies above a few MeV/A. In a study of 
straggling in Si9 the average difference between calculated and experimental 
data was less than ±0. 2% for one set of more than 30 measurements, with 
average uncertainties of ±2% for single measurements. The reader is invited 
to look at the other nine data sets and to form her own opinion.

Table A.1 Bethe functions of C-ions traversing water with kinetic energies T (MeV), cal-
culated with the FVP method. M1(keV/µm) is the “stopping power,” also called dT/dx, 
the number of collisions is M0/µm and λ(nm) is the mean free path between collisions. 
The accuracy of M1 is the order of 2%, but the uncertainty of M

0
 and λ may exceed 10%

T (MeV) M1 M0 λ

50.12 329.173 5723.27 .1747
63.10 274.492 4708.34 .2124
79.43 228.745 3870.74 .2583

100.00 190.147 3180.51 .3144
125.89 157.882 2612.56 .3828
158.49 131.100 2145.86 .4660
199.53 108.702 1762.86 .5673
251.19 90.190 1448.94 .6902
316.23 74.784 1191.94 .8390
398.11 62.101 981.81 1.0185
501.19 51.631 810.21 1.2343
630.96 42.977 670.25 1.4920
794.33 35.892 556.25 1.7978

1000.00 30.082 463.54 2.1573
1258.93 25.342 388.27 2.5755
1584.89 21.461 327.28 3.0554
1995.26 18.313 278.00 3.5971
2511.89 15.762 238.304 4.1964
3162.28 13.711 206.454 4.8439
3981.07 12.086 181.065 5.5230
5011.87 10.815 161.116 6.2070
6309.57 9.820 145.77 6.8603
7943.28 9.055 133.78 7.4752

10000.00 8.481 124.48 8.0331
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Table A.2 Bethe functions of protons traversing water with kinetic energies T (MeV), 
calculated with the FVP method and Dingfelder ε (I = 81.8 eV).78 M1 (keV/ µm) is the 
“stopping power,” also called dT/dx (or dE/dx), the number of collisions is M

0
/µ m 

and λ(nm), Eq. (7), is the mean free path between collisions. The accuracy of M
1

 is of 
the order of 2%, but the uncertainty of M

0
 and λ may exceed 10%

T (MeV) M1 M0 λ

1.000 26.6878 521.76 1.92
1.259 22.6437 432.76 2.31
1.585 19.1699 358.31 2.79
1.995 16.1517 296.18 3.38
2.512 13.5691 244.49 4.09
3.162 11.3836 201.57 4.96
3.981 9.5160 166.01 6.02
5.012 7.9388 136.60 7.32
6.310 6.6114 112.31 8.90
7.943 5.5032 92.29 10.83

10.000 4.5706 75.82 13.19
12.589 3.7959 62.27 16.06
15.849 3.1477 51.15 19.55
19.953 2.6095 42.04 23.79
25.119 2.1653 34.57 28.92
31.623 1.7977 28.47 35.13
39.811 1.4930 23.48 42.59
50.119 1.2430 19.41 51.51
63.096 1.0373 16.10 62.12
79.433 .8686 13.40 74.63

100.000 .7304 11.21 89.22
125.893 .6179 9.43 106.02
158.489 .5261 8.00 125.06
199.56 .4518 6.84 146.24
251.189 .3920 5.91 169.26
316.228 .3442 5.17 193.60
398.107 .3070 4.58 218.39
501.187 .2777 4.13 242.31
630.957 .2551 3.77 264.93

APPENDIX B. BETHE–FANO COLLISION CROSS SECTION

Bethe73 derived an expression for a cross section as a  function of 
energy loss E and momentum transfer K  using the first Born approximation 
for inelastic scattering by electrons of the atomic shells. Fano74 extended 
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the method for solids. In its nonrelativistic form it can be  written 
as the Rutherford cross section modified by the ‘‘inelastic form 
factor”:74–77

where Q = q2/2m, with q = �K the momentum transferred from the inci-
dent particle to the absorber, and F(E, K ) is the transition matrix element 
for the atomic excitations or ionizations. For large momentum transfers, 
Q ∼ E, Figure 1.2 in Ref. 74.

Usually, F(E, K) is replaced by the generalized oscillator strength (GOS) 
f (E, K ) defined by

(B.1)σ(E, Q) = σR(E)|F(E, K)|2
E2

Q2
,

(B.2)f (E, K ) =

E

Q
|F(E, K)|2,

Figure B.1 Collision cross section for T = 50 MeV protons in Si, relative to the 
Rutherford cross section for 14 electrons. Solid line: calculated with B-F approximation, 
dashed line: w ith FVP approximation. The horizontal line represents the Rutherford 
cross section, Eq. (A.1). The differences between B-F and FVP balance to some extent. 
This indeed is the case for M1, Eq. (B.6), but for the cumulative M0 (equal to �

0
 in Figure 

B.4, also Eq.(B.7)), the difference is 20% at E=20 eV, dropping to 8% at 10 keV.
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and Eq. (B.1) then is written as

The relativistic expression is given by Eq. (23) in Ref. 29 or Eq. (47) 
in Ref. 74.

In the limit K → 0, f (E, K ) becomes the optical dipole oscillator strength 
(DOS) f (E, 0) (Refs. 29, 45, 78).

The cross section as a function of energy loss E is obtained by integrat-
ing Eq. (B.3) over Q

with Qmin ∼ E2/2mυ2. The dependence on particle speed β enters via Qmin. 
In our current understanding, this approach to the calculation of σ(E) (solid 

(B.3)σ(E, Q) = σR(E)
E

Q
f (E, K ).

(B.4)σ(E; β) = σR(E; β)

∫

Qmin

Ef (E, K )
dQ

Q
.

Figure B.2 Inelastic Collision cross sections for water, calculated with FVP approxima-
tion, relative to the Rutherford cross section for 18 electrons. Solid line: T = 3600 MeV 
C-ions, dashed line: T = 50 MeV C-ions. The horizontal line represents the Rutherford 
cross section, Section A.
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line in Figure B.1) is closest to reality. Because of the factor 1/Q in Eqs. (B.2), 
(B.3), the accuracy of f (E, 0) enters significantly78 into the calculations of 
cross sections and their moments, Eqs. (B.4–B.7).******

In condensed matter energy losses of the order of 20 eV are considered 
to cause collective excitations of the outer electrons of the atoms as well as 
Coulomb collisions with single electrons.79 Energy losses greater than 40 
to 100 eV will be mainly to single electrons, producing delta rays.††††††

We follow the suggestion of Chatterjee and Holley60 by using a collec-
tive core (with a radius of 1.5 nm for T = 150 MeV C-ions) in which 50% 
of the energy loss is deposited by over 90% of the collisions, as described 
in Table 1.3 and Figure B.4.

The collective excitations have a similar nature for organic matter, espe-
cially DNA and proteins.80–86 For present purposes a detailed study of the 
differences is not necessary.‡‡‡‡‡‡

B.1 Fermi-virtual-photon (FVP) cross section
The FVP calculation is an approximation based on the use of photo 
absorption cross sections σγ (E) (where E = �ω is the photon energy) and 
of the dielectric function ε(ω) = ε1(ω) + iε2(ω) (Refs. 29, 74, 87).  §§§§§§ 
The collision cross section in the nonrelativistic form is given by Allison 
and Cobb88

where the integral over Q in Eq. (B.4) is approximated by the square 
bracket.

This model has the advantage that the generalized oscillator strength 
(GOS)29, 45 for the absorber is not needed. Data for f (E, 0) can be 
extracted from a variety of optical measurements or from electron energy 

******  A description of the approximations in the Bethe derivation of “stopping power” can be found 
in Ref. 18.

††††††  Details of the ionization of the inner shells of the atoms may have to be taken into account for 
specific biological effects.

‡‡‡‡‡‡  The collective excitations will form a full tube of energy deposition as long as the mean free path 
between collisions is small: λ < 1 nm, i.e. T < 400 MeV for C-ions, Table 1.3.

§§§§§§  The approach is also known under the names Photo-Absorption-Ionization model (PAI) and 
Weizsäcker–Williams approximation.

(B.5)
σ(E, β) = σR(E, β)

[

Ef (E, 0)2 ln(2mc2β2/E) +

∫ E

0

f (E′

, 0)dE′

]

,
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loss measurements.89 A detailed description of the relativistic PAI model is 
found e.g., in Refs. 29, 45, 88, 90. For E > EM, σ(E) = 0.

Examples of σ(E) for Si and water are given by the lines in Figures B.1 
and B.2.****** The FVP approximation has been used extensively for the 
calculation of straggling functions and Monte Carlo calculations. 

For convolutions and MC calculations the only parameter needed is M0 
and therefore the difference seen in Figure B.1 is of importance.

B.2 Collision cross sections for Si, water, and DNA
Cross section data for water and Si are given because both††††††† have 
been used for the dosimetry of heavy ion beams. For inelastic collisions of 
heavy ions the electronic structure of the atoms in the absorber (especially 
binding energies of the electrons) is important because probabilities for 
energy transfers E depend strongly on these structures, Figures B.1 and 
B.2. The collisions are also called the inelastic scattering of the particles. 
For a quantitative description the Bethe–Fano (B–F) method9, 18, 29, 31, 73, 74, 

77, 91 is closest to reality. For water a detailed study was made by Dingfelder, 
Inokuti and Paretzke,78, 92 and should be used for accurate calculations. The 
Fermi-Virtual-Photon (FVP) method34, 87, 88, 92, 93 requires less detailed 
input. Since the B–F method is accurate to about 1% (Ref. 9,18) it should 
be used for energy calibration of dosimeters and detectors. For current pur-
poses electrons appear only as delta rays. Usually most or all of their energy 
is deposited inside the cell volumes Vc, Table 1.3, therefore details of their 
interactions are not important. The interactions with the organic molecules 
(DNA) in cells show a structure quite similar to that of water.80 Delta rays 
with ranges larger than cell dimensions are infrequent: Table 1.3 and their 
contribution to z is small.‡‡‡‡‡‡‡

B.3 Integrals: cumulative functions and moments for water
The cumulative functions �ν and the moments Mν of the collision cross 
sections45 are defined by

******* Calculations have also been made for several gases.45

†††††††  For simplicity it is assumed that DNA and other constituents of cells have the same dipole 
oscillator strength as water.80

‡‡‡‡‡‡‡  The reader is encouraged to consider the geometry and stochastics in greater detail and compare 
it to the description in Refs. 13, 57.

(B.6)

�ν(E, υ) = N

∫ E

Em

Eν
s σ(Es; υ)dEs Mν(υ) = N

∫ EM

Em

Eν
s σ(Es; υ)dEs,
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where N is the number of electrons per unit volume, and ν = 0, 1, 2, 3 . . . 
They are calculated numerically with Eq. (B.5). Examples are given in 
Figures B.3 and B.4.

For water moments for C-ions are given in Table A.1, for protons in 
Table A.2.§§§§§§§ The moment M0(v), which is also written as �t(υ), is the 
mean number of collisions per unit track length. It is an important quantity 
for the calculation of straggling functions9, 31 f (�; x, υ) because it is used 
to calculate mc = ξ · M0, the mean number of collisions in a track segment  
ξ, Figure 1.7. From Figures B.1 and B.2 it is evident that the exact shape of 
σ(E) for small E will greatly influence values of M0 because of the factor 
1

E
 in Eq. (B.4).

A calculation of M0 with the Rutherford spectrum, Eq. (A.1) cannot be 
made because the lower limit in Eq. (B.4) is not defined.

§§§§§§§ For Si and some gases momentsM0 and M1 are given in Ref. 29, 45.

Figure B.3 Cumulative energy loss functions �(E), Eq. (B.7), for single collisions in Si 
are shown for several values of βγ . The excitation energy for L2 electrons is 100 eV, for 
K  electrons it is 1840 eV. 43 A table of the functions is given in Ref. 44.
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The moment M1(υ) is usually known as the Bethe–Fano stopping 
power dT/dx, i.e., the mean energy loss per unit track length.********

For Si it was found that B–F and FVP calculations differ in M1 by less 
than 1%, but for M0 the differences may exceed 10% (Refs. 29, 45). M2 is 
the Bohr straggling parameter.

In many publications it is customary to write the particle kinetic energy 
as E, then the stopping power is dE/dx. Here the names Barkas and Bloch 
are not included in the name for the stopping power because the expression 
for σ(E; υ) does not contain these corrections. On the other hand, Fano74 
formulated the expression for solids given in Ref. 78.

The higher moments can be used to calculate the shape of straggling 
functions for large energy losses.26, 28, 71 For thin absorbers M1(v) will 
result in misleading information.9 For the studies in his paper, the moments 
are calculated numerically with Eq. (B.6). Only M0 and M1 are used.  

******** A detailed study was made for Al and Si.9, 18

Figure B.4 The cumulative collision cross sections �(E; v) of Eq. (B.7) calculated with 
FVP for C-ions in water for two values of T. The functions are normalized to 1.0. The solid 
line is for T = 50 MeV, the dashed line for T = 3600  MeV. The difference between the 
two functions is less than 1%. Also shown are functions for the cumulative stopping 
power M1, normalized to coincide at the largest energy loss for 50 MeV ions, EM = 9 keV.
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The dependence of M0(βγ ) and M1(βγ) on particle speed is given in Tables 
A.1 and A.2. The normalized zeroth cumulative moment

is used extensively for the MC calculations. Examples are shown in Figures 
1.8, B.3, and B.4.

A quantity which is of great importance for dealing with stochastic pro-
cesses is the number of collisions per unit track length M0 of Eq. (B.6)(Refs. 
78, 94, 95). It is the inverse of the mean free path λ between collisions.

APPENDIX C. MULTIPLE SCATTERING

For this study the effects of multiple scattering are small and have 
been neglected. For a detailed study use the papers by Molière.96–98 
Experimental measurements give good agreement with the Molière the-
ory.51 For the determination of lateral displacement in ion trajectories, cal-
culations have been made using98 with results given in Ref. 99. For broad 
beams of protons and C-ions the effect was discussed in Refs. 11, 12. For a 
1 mm pencil beam of 200 MeV protons after a distance of 26.2 cm in water 
(residual mean energy 6 MeV) the lateral spread has a FWHM ∼ 8 mm. For 
C-ion beams a description is given in Ref. 7.

For measurements with a broad beam (several cm in diameter), multiple 
scattering will influence the dose distribution only at the edges of the beam. 
In the central part of the beam the range of the particles is reduced.11, 12, 32, 50 
Since the number of elastic collisions is of the same order of magnitude as that 
of electronic collisions, the effect can be calculated analytically with Moliere 
theory.96–98

For 3600 MeV C-ions the influence of multiple scattering on the 
CSDA range was less than 0.1% (Ref. 12).

APPENDIX D. NUCLEAR REACTIONS

The mean free paths �, Eq. (12), for nuclear interactions are large, so 
that only a fraction of the ions will interact. The net effect for the convolu-
tion method in Section 2.2 is to reduce the fluence �(y, T ) at each layer 
by δ� = ξ/�, Eq. (6). With ξ = 0. 01 cm for the C-ion calculations, the 

(B.7)�(E, υ) =

∫ E

0

σ(E′

; υ)dE′/

∫

∞

0

σ(E′

; υ)dE′
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reduction would be −dE/ρdℓ per layer, for a total reduction of about 30% at 
the Bragg peak. Further details for these estimates are given in Ref. 12, in par-
ticular it was found that the nuclear interactions in the passage across the peak 
will change the shape of the peak only slightly. For a study of effects of nuclear 
interactions a Monte Carlo calculation is needed. I am using results obtained 
with SHIELD-HIT14, 15 to consider the influence of nuclear products for the 
radiation effects discussed in Section 6. The contribution to the dose at the 
Bragg peak estimated in Ref. 12 agree approximately with those shown in 
Ref. 14. The spectrum of fragments calculated in Ref. 65 shows mostly low 
LET particles which will have a small effect on the cell survival functions.

APPENDIX E. CELL SURVIVAL

Cell survival is a complex process, in particular the study of sub-
volumes and sub-lesions53,100–102 goes beyond the scope of this study.67 The 
description of radial distribution of energy deposition, Section 4.3, Table 
1.3, may be more suitable for this purpose than “radial dose distribution”.41 
Some effects contributing53 to stochastic or systematic variations in addi-
tion to those described in Section 5 are listed here:
a. The randomness of the energy deposition due to straggling.
b. The randomness in cell shape and size.
c. “Wall effects” due to multiple scattering, oblique traversals or delta rays.
d. The use of “linear-quadratic” survival assumptions.
e. Assumptions about the nature of cell survival, e.g., interactions of sub-

lesions etc.53

f.  The variety of responses for different cell types.66
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Abstract

Various stopping power theories and codes are compared statistically to available 
experimental data, in view of judging their reliability for hadron therapy. Both stopping 
powers and ranges are taken into consideration. The mean ionization energy of water 
is discussed in detail.

1. INTRODUCTION

One of the main characteristics of therapeutical hadron beams is the 
range which is mainly determined by the mean ionization potential I of the 
material. According to the relativistic Bethe formula (without  corrections),1, 2 
the mass stopping power is given by

(1)S/ρ = (0. 307075 MeVcm
2
g
−1)
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where S = −dE/dx is the linear stopping power (or linear energy transfer, 
LET), x is the distance, ρ is the density of the material; Z1, E, and υ are 
charge number, energy and velocity of the ion; Z2 and A2 are charge num-
ber and mass number of the target; β = υ/c, c is the speed of light; and the 
stopping number L is given by

where m is the mass of the electron. Eq. (2) is reliable at energies high 
enough (but not so high that the density correction becomes appreciable2). 
To extend the validity to lower energy, one customarily adds shell,  Barkas–
Andersen and Bloch corrections2 to Eq. (2) if necessary.

In place of the mass stopping power, one also uses the stopping cross 
section S/n (where n is the atomic density), usually expressed in units of 
10−15 eVcm2/atom. For a solid absorber, this corresponds roughly to the 
energy loss per atomic layer.

For a compound, following the custom of Ziegler,18 we express 
the stopping cross section in terms of 10−15 eVcm2/atom, dividing the 
 molecular cross section by the number of atoms in the molecule. This has 
the advantage that stopping cross sections are nearly the same for substances 
of similar composition but different A2 (e.g., for polymers).

Since stopping power depends essentially on velocity rather than energy, 
one usually lists or plots it as a function of specific energy, i.e., energy per 
nucleon, or of velocity squared† (e.g., in MeV/u).

For a mixture or, assuming Bragg’s additivity rule,3 for a compound, the 
mass stopping power is obtained by a linear combination of the constituent 
stopping powers:2

where wj is the fraction by weight, and (S/ρ)j is the mass stopping power 
of the jth constituent.

Deviations from Bragg’s additivity have been investigated for many 
years (see, e.g., Ref. 49). In Ziegler’s SRIM program,18 a correction is built 
in that can be used for many compounds (see Section 4.1). The SRIM 
program also provides a correction for the negative solid-gas difference that 
exists between the mass stopping powers of substances in different phases, 

(2)L(β) = ln
2mυ2

(1 − β2)
− ln I − β2,

† Velocity squared in MeV/u is often incorrectly called “energy.”

(3)
S

ρ
=

∑

j

wj

(

S

ρ

)

j

,
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at low energy.4 The positive solid-gas difference at high energy is, however, 
only described31 by CasP,8 not by SRIM.

The relation for the mean ionization energy corresponding to Eq. (3) is

where

where Z2j and A2j define the jth constituent.
Lists of mean ionization energies can be found in ICRU Report 49.2 

Some of these values are probably outdated, and a Report Committee of 
the ICRU is working to improve the values for water and graphite.

To find the simplest approximation to the range R, it suffices to inte-
grate the reciprocal of the linear stopping power over energy:

where E0 is the initial energy. This is called the continuous-slowing-down 
(CSDA) approximation.2 Due to scattering, actual ranges are somewhat 
smaller; this fact can be described by the “detour factor”.2 Projected ranges, 
i.e., the projection of the range onto the axis of the original direction of 
travel, are calculated by program SRIM.18

The therapeutic value of hadron beams lies in the fact that the mean 
ionization per unit length has its maximum (the “Bragg peak”) close to the 
end of path.

2. TABLES AND PROGRAMS

The stopping power tables and computer programs discussed here are 
listed in Table 2.1. Program PASS (on which the tables in ICRU Report 73 
and in the Erratum are based) and the program by Lindhard and Sørensen5 
(LS) are based on first principles only. The same is true for CasP, except that 
empirical values are used here for the ionic charge. The tables by Janni, by 
Hubert et al. and by Ziegler, and the program MSTAR are semi-empirical. 
Program LET is not further considered here since it is not independent, 
but based on Ziegler’s programs. Program BEST has been used to produce 
the high energy parts of the tables in ICRU Report 49;2 it is useful in that 

(4)ln I =

(

∑

wj

Z2j

A2j
ln Ij

)

/

〈
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〉
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the value of I can be changed, but it assumes a bare nucleus and is therefore 
not reliable below about 1 MeV/nucleon.

To represent stopping for heavy ions at the highest energies  correctly, 
it is necessary to use the non-perturbative LS theory which is fully 
 relativistic and, in addition, assumes projectile nuclei of finite size. For con-
venience, we have employed the program ATIMA instead which is based 
on the LS  program above 30 MeV/u and which includes shell, Barkas and 
 Fermi-density effect corrections and in addition, a correction for projectile 
mean charge. Results for ions heavier than Ar are shown in Ref. 31. But 
the use of the LS program will hardly be necessary for radiation therapy, 
since even for oxygen ions at 690 MeV/u, there is no difference between 
LS theory and Bethe theory [Eq. (1)].20

3. LIQUID WATER AS A TARGET

Because of the large water content of the human body, liquid water 
is one of the most important substances to be considered.

3.1 Stopping power of water for hydrogen ions
Figure 2.1, taken from our large collection of stopping graphs and data,21 
shows experimental values and theoretical or semi-theoretical descriptions 
of the stopping power of liquid and solid water for protons. In particular, it 
shows the recent measurements by the Kyoto group26, 27 who used a liquid 
water jet in vacuum, and by the Jyväskylä group28 who used a thin water 
sheet (enclosed between two thin copper sheets) in transmission. Figure 2.2 
shows some of the same data again, but divided by the data from the proton 
table of ICRU Report 49,2 to make small differences visible.

For the curves in Figure 2.2, the I value is given where known. On the 
average, above 10000 keV, the BEST (Bethe) curve (I = 78 eV) is 0.52% 
below the ICRU 49 curve at unity (I = 75 eV), as one expects comparing 
L(β) for the two different I-values; for the PASS curve, the difference with 
respect to unity is slightly larger.

Inspection of Figure 2.2 shows a problem:30, 31 the Bethe equation (i.e., 
BEST) is generally reliable32 and depends essentially only on I and on the 
shell correction in the region above 10000 keV, and the latter correction is 
quite small here. The GarM09 curve and the PASS curve are very close to 
BEST, about 1% below ICRU 49 (i.e., unity), and they therefore all seem 
reliable. Hence it appears that the Kyoto measurements (and the Emf 09 
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theory)‡ might be too low by about 10%. But Shimizu et al.33 checked the 
accuracy of their stopping data by using He ions on their water jet target, 
and by measuring proton energy loss and scattering from an Al wire; in 
both cases, the results agreed with the data from ICRU 49. This discrepancy 
is not yet understood.

As seen in Figure 2.2, the Jyväskylä measurement (Sn11) is in good 
 agreement with the GarM09, PASS, and BEST curves. The average value 
of the normalized Sn11 points is 0.986, i.e., 0.6% below the BEST curve. 
This corresponds to an experimental I value of 81.7 eV, but with a rather 
large error of 28 eV, due to the systematic error of 4.6% stated by Siiskonen 
et al.28 for the stopping power values.

‡  The low value is due to an unusually large shell correction in the Emf09 theory (priv. communication 
from D. Emfietzoglou to H. Paul, 2012).

Figure 2.1 Electronic stopping power of solid and liquid water (we assume that the 
I-values for solid and liquid water are equal46) for protons, versus energy. The letters 
show experimental data; the corresponding data references can be found in Ref. 21. 
Some of the general tables and theories are listed in Table 1. In addition, there are the 
following theoretical curves: Emf06,22 Emf09,23 GarM09,24 and PASS.25
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For He ions in liquid water, there are four data sets in the  literature 
 spanning the range from 300 to 7500 keV (see Ref. 21). The data points 
agree with the curve of ICRU 49 within 3%, on the average; this  corresponds 
roughly to the experimental accuracies stated.

For heavier ions, there is only one data set: the stopping power for Li 
ions of 0.025–0.1 MeV/nucleon, measured by the inverted Doppler shift 
attenuation method.34

3.2  Range measurements for water, and mean  
ionization energy

Evidently, stopping power measurements are not yet sufficiently accurate for a 
precise determination of the I value of water, but one might hope that range 
measurements are better suited. Table 2.2 gives an overview of calculated 
and measured values of the mean ionization energy of liquid water,31 based 
mostly on range and ionization measurements, and on theory (using optical 
data). On the basis of the data available in 1984, the value I = 75.0  eV was 

Figure 2.2 Electronic stopping power of liquid water for protons, normalized by the 
data from the proton table of ICRU Report 49.2 The designations for tables and for 
experimental points are as in Figure 2.1. I values are shown in parentheses. The correc-
tion to Eq. (2) is −0.68% at 10 MeV, and even smaller beyond.
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chosen in ICRU Report 3735 and again in ICRU Report 49.2 But evidently, 
all the more recent determinations indicate a larger I value.

Using a precision water column, Schardt et al.36 have recently mea-
sured Bragg peak positions for 1H, 7Li, 12C, and 16O beams at altogether 
22 different energies, see Tables 2.3 and 2.4. To deduce mean ranges from 
Bragg peak positions, they used Bichsel’s37 empirical rule that the mean 
range is the depth at which the Bragg curve has dropped to p = 82% of its 
maximum value. Bichsel et al.37 deduced this rule for high energy carbon 
ions. The value p = 80% was originally derived by Berger38 for protons, 
and it has been confirmed by Bortfeld.39 Figure 2.3 shows a comparison 
of an analytical calculation by Bichsel40 with a Monte Carlo calculation by 
Gudowska41 for 200 MeV protons in water.§ The values found (p = 82% 
and p = 80%) are in fair agreement with Berger’s value. Schardt et al.,42 

§  All attempts to determine p by means of SRIM Monte Carlo calculations gave lower values: p = 76% 
for 200 MeV protons, and even lower values for carbon ions. This probably points to some error in 
the scattering cross sections used in SRIM.

Table 2.2 I values of liquid water. The missing references can be found in Ref. 31

I (eV) Reference Method or remark

75.4 ± 1.9 Thompson, 1952 Range, 340–200 MeV p, 
assuming. ICu = 322 eV

74.6 ± 2.7 Nordin et al. 1979 Stopping power, 60 MeV pions
75 Ritchie et al. 1978 Dielectric response function
75.4 Ashley, 1982 Dielectric response function
81.77 Janni, 1982 Averaging data for H and O
79.7 ± 2 Bichsel et al. 1992 Ionization curves, 70 MeV p
81.8 Dingfelder et al. 1998 Dielectric response function
80.0 ± 1.3 Bichsela et al. 200037 Ionization curves, C ions, 

290 MeV/u
77 Kramer et al. 2000 Depth dose curves for C ions
78.4 ± 1 Kumazaki et al. 200729 Depth dose curves for protons
77.8 ± 1 Emfietzoglou et al. 200923 Dielectric response function
79.4 Garcia-Molina et al. 200924 Dielectric response, MELF-

GOS model

75.0 ± 3 Chosen in ICRU 37 and 49
78.0 Chosen in Sigmund et al.12 Erratum; replaces the value 

67.2 eV implicit in ICRU 
Report 73

a The error is quite small due to the high precision of measurements (±0.05 mm).
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using CR39 sheets to count particles, obtained p = 85% for 3He ions in 
water at 170 MeV/u; they state that this agrees within uncertainties with 
Bichsel’s p = 82%. It seems appropriate therefore to assume an average 
value p = (82 ± 3)% for this conversion. Using the shape of the Bragg peak 
(see Fig. 2.3), this leads to an (additional) error of 0.08% or 0.2 mm, to be 
added to the error of the Bragg peak position. Assuming that both error 

Table 2.3 Bragg peak (BP) positions of Li, C and O ion beams in water measured by 
Schardt et al.36 at a density of 0.997 g/cm3 (error 0.20 mm), deduced mean ranges, and 
comparison to the ICRU 73 range tablea(based on I = 78 eV)12

Ion v2 Spec. energy BP pos. Mean range ICRU12 Ratio
(MeV/u) (MeV/A1) (mm) (mm) (g/cm2) (g/cm2)

7Li 100 100.201 60.65 60.89 6.0707 6.031 0.9935
200 200.410 203.7 204.5 20.389 20.206 0.9910

12C 100 100 26.16 26.26 2.6181 2.601 0.9935
150 150 53.16 53.32 5.316 5.296 0.9962
200 200 87.22 87.49 8.7228 8.705 0.9980
250 250 127.32 127.7 12.732 12.72 0.9991
300 300 172.50 172.9 17.238 17.24 1.0001
400 400 275.36 276.1 27.527 27.51 0.9994

16O 200 199.881 65.44 65.6 6.5403 6.514 0.9960
250 249.852 95.43 95.67 9.5383 9.513 0.9973
300 299.822 129.27 129.6 12.921 12.888 0.9974
400 399.763 206.24 206.7 20.608 20.572 0.9983

Average 0.9966 ± 
 0.0028

a Only those measured values are shown that are close to calculated range values in the ICRU table.

Table 2.4 Bragg peak (BP) positions (error 0.2 mm) and deduced ranges for protons 
in water measured by Schardt et al.36 at a density of 0.997 g/cm3, compared to a 
 combination of the ICRU 49 table with BEST (I = 78 eV)

Ion v2 
(MeV/u)

Spec. energy 
(MeV/A1)

BP pos.  
(mm)

Mean range 
(mm) (g/cm2)

ICRU49& 
BEST(78)

Ratio

p 125 125.91 115.8 117 11.665 11.664 0.9999
150 151.092 159.4 161 16.052 16.056 1.0002
175 176.274 208.4 210.3 20.967 20.986 1.0009
200 201.456 262.1 264.6 26.381 26.410 1.0011

Average 1.00054 ± 
 0.00055
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contributions are systematic, we arrive, conservatively, at a total range error 
of 0.4 mm.

Table 2.3 also lists the calculated ranges from the ICRU Erratum12 and 
compares them to the measured ranges. Evidently, the calculated ranges 
(for I = 78 eV) are (0.34 ± 0.28)% below measured ranges, on the average.**

To do a proper comparison between measured ranges and  theoretical 
stopping power it would seem necessary to use a theory that has been 
tested against experiment. But unfortunately, there are no stopping power 
measurements for C and O ions, and almost none for Li ions, so a compari-
son is presently impossible. It seems better therefore, to resort to Schardt’s 
proton measurements (Table 2.4), since here, comparisons with stopping 
power measurements are possible (see Figs. 2.1 and 2.2). For this purpose, 
we use the table from ICRU Report 49, merge it with the BEST curve for 
78 eV at about 500 keV and integrate the reciprocal.††

** The standard deviations given here are always based on Eq. (9).
†† Actually, the part of ICRU 49 makes an insignificant contribution to the integral.

Figure 2.3 Bragg curve (ionization per unit distance) and integral range distribution for 
protons of 200 MeV in water, as calculated by Gudowska41 (dashed) and by Bichsel40 
(full lines), respectively.
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The resulting ratio (1.00054 ± 0.00055) shows complete agreement 
with BEST.

Note that irrespective of the value of I, the range of the ions, with an 
accuracy of 0.4 mm, may be taken from Tables 2.3 and 2.4.

An additional comparison using PASS is shown in Table 2.5, which leads 
to a slightly larger ratio. A simple average of the ratios 0.9966, 1.0005, and 
1.0053 from Tables 2.3–2.5 leads to an average ratio 1.0008 between calcu-
lated and measured ranges, with an estimated error of 0.008 (including the 
error of the range measurements), and hence,‡‡ to a value I = (78.5 ± 5) eV, 
in agreement with the unweighted average I = (79.2 ± 1.6) eV of the val-
ues§§ from the period 1992 to 2007 listed in Table 2.2.

4.  OTHER TARGET SUBSTANCES AND STATISTICAL 
COMPARISONS

Many other substances are of interest in hadron therapy. A list of 
compositions of many non-elemental substances can be found in connec-
tion to the ESTAR program at NIST.43 For some of these, stopping powers 
are given in ICRU Reports 49 and 73. Bragg functions and ranges have 
been measured for several substances by Bichsel et al. 37 Average I values for 

‡‡  The conversion from range error to error of I is conveniently done using program BEST in which I 
can be changed. This comparison shows that the relative error of I is 8 times larger than the relative 
error of range.

§§  The Report Committee of the ICRU is probably arriving at a value around I = 78 eV (pers. comm. 
from Dr. Fernandez-Varea to H. Paul, February. 2012.

Table 2.5 Like Table 2.4, but comparing to range values obtained from PASS 
(I = 78 eV) by integration

Ion v2 
(MeV/u)

Spec. energy 
(MeV/A1)

Bragg peak 
pos. (mm)

Mean range 
(mm) (g/cm2)

PASS 
(I = 78 eV)

Ratio

p 125 125.91 115.8 117 11.665 11.722 1.0049
150 151.092 159.4 161 16.052 16.134 1.0051
175 176.274 208.4 210.3 20.967 21.086 1.0057
200 201.456 262.1 264.6 26.381 26.532 1.0057

Average 1.0053 ± 
 0.0004
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various “soft tissues” have been presented in Ref. 44, showing considerable 
variation.

Moyers et al.45 have recently measured the linear stopping powers for 
protons at 135, 175, and 225 MeV in many compounds of interest to par-
ticle therapy, relative to a water target. They compared their results to the 
Janni13 or LET15 tables, finding agreement within 1 to 3%. As examples, 
Figure 2.4 shows a few results by Moyers et al., compared to the Janni, 
BEST, and SRIM tables. The BEST calculation uses the I-values of ICRU 
Report 49, except that I = 78 eV was taken for water.

Inspection of Figure 2.4 shows that the curves are essentially  determined 
by the I values. In particular, the Janni curves are always above the BEST 
curves because of Janni’s rather high I value for water and his low I values 
for the other substances. Evidently, BEST agrees best with the Al measure-
ments. For the compounds, BEST appears slightly low; this might point 
to slight errors of the I values used. Even so, if such high energy stopping 
powers are required and if I values are known or calculable using Eq. (4), a 
calculation using BEST should be useful.

Figure 2.4 The linear stopping power of Al, clear polystyrene (CLPS), high density poly-
ethylene (HDPE), and polymethyl methacrylate (PMMA), for protons relative to that of 
water, compared to the tables Janni, BEST, and SRIM. The 3-digit ID numbers from ICRU 
49 are shown in parentheses. For the curves, the I values for both substances are shown 
in parentheses, where available. Experimental data are from Moyers et al.45, 47
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A fairly complete collection of experimental stopping powers and many 
graphical presentations can be found in Ref. 21. Additional information is 
given in Ref. 31.

To determine the accuracy of various stopping tables and programs by 
statistics, we use our program ‘‘Judge”.46 This program calculates the nor-
malized differences

for every data point. Here, Sexp is the experimental value, and Stab the cor-
responding table value for the same ion, same target, and same energy. In 
every range of specific energy, i.e., energy per nucleon, it then determines 
the average normalized difference:

and its standard deviation

The averages are unweighted, except that obviously discrepant data are 
rejected (see “Statistical analysis” in Ref. 21). A small Δ usually signifies 
good agreement between table and experimental data; in such a case, σ is 
related to the mean experimental accuracy, and σ may be taken as a measure 
of the accuracy of the table, as determined from experiment.

In the following, “condensed” or “gaseous” means a substance con-
densed or gaseous at normal temperature and pressure.

Note that all the experimental data analyzed in the following chapter 
can be downloaded from our collection.21

4.1 Statistical comparisons for H and He ions
In Tables 2.6 and 2.7, the reliability of various stopping power tables for 
H and He ions in solid elements is given in terms of Δ ± σ. Here, E is 
the energy and A1 is the mass number of the ion. These tables were origi-
nally published by Paul and Schinner,32 but many new data have since 
been added.31 This has not changed the results much, but it adds to the 
reliability.

One can see that σ always decreases with increasing energy, due to the 
higher accuracy of measurements at high energy. The numbers of experi-
mental points averaged are also shown, to give an idea of the accuracy.  

(7)δ = (Sexp − Stab)/Sexp

(8)� = �δ�

(9)σ =

√

�δ2
� − �δ�2.
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To provide a fair comparison with the smaller number of targets in the 
ICRU table, we compare only with the targets of that table, even though 
we have many more targets in our files.21 We see that generally, σ has 
decreased and hence, the overall agreement between the experimental 
data and the tables has improved in time, with the exception of the TRIM 
program by Ziegler et al. (1985); but this was the first method capable of 
treating all ions and all targets.

Table 2.8 gives results for H ions in elemental gases. Here, we exclude 
measurements for low energy H ions in helium (see Ref. 31). Due to 
the threshold effect48 these data would produce a very large Δ and thus 
obscure any other discrepancy. Except for the tables by Ziegler et al. (1985) 
(due to large discrepancies for H and He targets), the gas measurements 
appear here more reliable than those on solids.

Table 2.9 shows results for He ions in elemental gases. Again, the agree-
ment with the data is much better than for solids, and we can observe a 
gradual improvement in time.

Table 2.7 Mean normalized deviations Δ ± σ (in %) for He ions in the same solid 
 elements as in Table 2.6 covered by the ICRU Table (except for U), compared to vari-
ous tables

E/A1 (MeV) 0.01–0.1 0.1–1 1–10 10–100 0.01–100
No. of points 1036 1913 400 11 3360

Ziegler et al., 
198519

3.2 ± 8.7 0.6 ± 5.6 −0.8 ± 3.3 0.8 ± 2.4 1.2 ± 6.7

ICRU, 19932 2.6 ± 8.3 0.2 ± 5.6 0.1 ± 3.3 0.9 ± 0.9 0.9 ± 6.4
SRIM, 200318 3.5 ± 8.2 0.6 ± 5.2 −0.3 ± 3.1 0.2 ± 0.9 1.4 ± 6.3

Table 2.6 Mean normalized deviations Δ ± σ (in %) for H ions in 17 solid elements  
(Ag, Al, Au, Be, C, Cu, Fe, Gd, Ge, Mo, Pb, Pt, Si, Sn, Ti, U, W) covered by the ICRU  
Table,  compared to various tables

E/A1 (MeV) 0.01–0.1 0.1–1 1–10 10–100 0.01–100
No. of points 1357 2492 1212 225 5286

Janni, 198213 2.1 ± 11 −1.1 ± 7.1 −0.9 ± 3.6 −0.3 ± 0.5 −0.2 ± 7.7
Ziegler et al., 
198519

−1.3 ± 11 −3.1 ± 7.8 −0.4 ± 4.2 0.4 ± 2.2 −1.9 ± 8.2

ICRU, 19932 0.8 ± 11 −0.7 ± 7.0 −0.3 ± 4.0 −0.1 ± 0.5 −0.2 ± 7.5
SRIM, 200318 0.6 ± 10.3 −0.9 ± 6.7 −0.6 ± 3.7 −0.2 ± 0.6 −0.4 ± 7.2
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Data for compounds have been treated in Ref. 49. In our data base,21 
we have data for 150 different compounds. Table 2.10 shows results for 
hydrogen and helium ions in some of these compounds, compared to 
SRIM. Some of the normally liquid substances have been measured also in 
gaseous form at reduced pressure. Because of the different low energy limit 
chosen,*** some of the results appear somewhat better than for elements. 
Again, the errors σ tend to be smaller for gases than for solids.

For the SRIM calculations in Table 2.10, Ziegler’s built-in corrections 
for dependence on the target phase, and his corrections for deviations 
from the Bragg additivity rule Eq. (3) have been applied. These corrections 
amount to a few percent and exist only below 1 MeV/nucleon.49

Table 2.11 shows a comparison between SRIM 2003 and ICRU 
Report 49, for the smaller number of compounds covered by the latter 

*** This is to avoid large deviations due to the threshold effect in LiF.54

Table 2.8 Mean normalized difference Δ ± σ (in %) for H ions in all elemental gases 
except F, Cl, Rn

E/A1 (MeV) 0.001–0.01 0.01–0.1 0.1–1.0 1–10 10–100 0.001–100
No. of 
points

124 335 535 303 11 1308

Janni, 
198213

−0.9 ± 9.2 −0.0 ± 4.6 0.5 ± 3.9 0.9 ± 3.2 3.2 ± 0.6 0.4 ± 4.7

Ziegler  
et al., 
198519

22 ± 14 22 ± 11 0.4 ± 6.8 −1.1 ± 1.7 −1.0 ± 0.5 7.7 ± 14

ICRU, 
19932

−0.6 ± 6.7 −1.2 ± 5.0 −1.2 ± 3.7 −0.8 ± 1.6 −0.2 ± 0.5−1.0 ± 4.1

SRIM, 
200318

2.1 ± 5.2 −0.1 ± 4.7 −0.4 ± 3.6 −0.2 ± 1.6 0.2 ± 0.3−0.1 ± 3.9

Table 2.9 Mean normalized difference Δ ± σ (in %) for He ions in all elemental gases 
except F, Cl, Rn

E/A1 (MeV) 0.001–0.01 0.01–0.1 0.1–1.0 1–10 0–10
No. of points 5 267 863 238 1373

Ziegler et al. 
198519

7.2 ± 13 2.5 ± 5.9 3.0 ± 4.9 −0.5 ± 2.5 2.3 ± 5.0

ICRU, 1993 0.5 ± 6.8 −1.0 ± 4.2 0.1 ± 4.2 0.7 ± 2.3 0.0 ± 4.0
SRIM, 2003 −5.4 ± 6.1 0.3 ± 3.9 0.1 ± 3.8 −0.2 ± 2.2 0.1 ± 3.7
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Table 2.11 Mean normalized deviations Δ ± σ (in %) for H and He ions in 23 (solid or 
gaseous) compounds covered by ICRU Report 49

E/A1 (MeV) 0–0.03 0.03–0.3 0.3–3.0 3–30 0–30
No. of points 116 1036 1237 135 2524

ICRU, 1993    0.2 ± 8.9    1.4 ± 5.9 1.3 ± 5.2    1.0 ± 4.4    1.3 ± 5.7
SRIM, 2003 −7.8 ± 12 −1.0 ± 6.4 0.4 ± 5.6 −0.6 ± 4.0 −0.6 ± 6.6

Table 2.10 Mean normalized deviations Δ ± σ (in %) for H and He ions in condensed 
or gaseous compounds, as compared to SRIM (2003)

Ions Targets E/A1 (MeV) 0.025–0.25 0.25–2.5 2.5–30 0.025–30

H cond.a No. of pts 441 947 251 1639
Δ ± σ −1.1 ± 8.8 1.4 ± 6.3 −0.1 ± 3.9 0.5 ± 6.9

gasb No. of pts 508 378 24 910
Δ ± σ −0.9 ± 4.3 0.1 ± 3.3 −0.9 ± 2.1 −0.5 ± 3.9

He cond.c No. of pts 479 1471 14 1964
Δ ± σ 0.4 ± 6.7 −0.5 ± 4.3 −2.0 ± 3.1 −0.3 ± 5.0

gasd No. of pts 997 1742 0 2739
Δ ± σ −2.6 ± 7.2 1.1 ± 2.9 −0.3 ± 5.2

a A150 tissue equiv. plastic, Al2O3, Anthracene, CaF2, CdTe, CR39 nuclear track material, D2O, Er2O3, 
Formvar, GaAs, GaN, GaP, Graphite, H2O, Havar, In2O3, InP, KCl, LR115 cellulose nitrate, LiF, 
LiNbO3, MuMetal, Mylar, Permalloy, Pliolite S-5A, Polyvinyltoluene, Polycarbonate, Polyethylene, 
Polyimide, Polypropylene, Polystyrene, Polysulfone, Sc2O3, SiO2, Styrene, Terphenyl, TiO2, Vyns, 
ZnSe, ZnSiP2, ZnTe.

b Air, Butane, Butadiene, Butene, C2H2, C2H6, C3H8, C6H6, CCl4, CH4, CO2, Cyclopropane, Decane, 
Ethylene, H2O vapor, H2S, Heptane, Hexane, Heptyne, Hexyne, N2O, NH3, NO, Nonane, Octane, 
Pentane, Pentyne, Propelene, Tissue equivalent gas.

c Al2O3, BaCl2, BaF2, C2BrF, CCl4, CdTe, CH5Br, CH5I, Chloroform, CO2 solid, CR39, Cyclohexane, 
Dichloromethane, Ethyl alcohol, Er2O3, Ethyl cellulose, Formvar, GaAs, Graphite, H2O, Havar, 
Heptane, Hexane, InP, LR-115, LiF, Methyl alcohol, MuMetal, Mylar, NE-111 scintillator, Octane, 
Propyl alcohol, Pentane, Pliolite S-5A, Polyvinyltoluene, Polycarbonate, Polyethylene, Polyimide, 
Polypropylene, Polystyrene, Polysulfone, SiC, SiO2, Ta2O5, Teflon, TiN1.1O0.27, UO2, Vyns, WO3, 
ZnSe. ZnTe.

d Acetaldehyde, Acetone, Air, Allene, Benzene, Butyraldehyde, Butane, Butadiene, Butene, 2-Butanone, 
Butyne, C2F6, C2H2, C2H2F2, C2H4F2, C2H6, C3F8, C3H8, C4F8, CBrF3, CCl2F2, CCl4, CClF3, 
CF4, CH3Br, CH4, CHCl2F, Chloroform, CO2, CS2, Cyclohexane, Cyclooctane, Cyclopropane, 
Cyclopentane, Cyclohexadiene, Cyclohexene, Cyclohexanone, Cyclopentene, Dichloromethane, 
Diethyl ether, Dioxane, Dimethylamine, Dimethyldisulfide, Dimethyl ether, Dimethyl sulfide, 
Ethyl alcohol, Ethylamine, Ethynylbenzene, Ethylene oxide, Ethylene sulfide, Ethylene, H2O, H2S, 
Heptane, Hexane, Hexene, Heptyne, Hexyne, Methyl alcohol, Methylamine, N2O, NH3, NO, 
Octane, Propyl alcohol, Pentane, Pentene, Pentanone, Pentyne, Propelene, Propyne, Propylene oxide, 
Propylene  sulfide, SF6, SO2, Tissue eq. gas, Thiophene, Trimethylamine, Trimethylene sulfide, Toluene, 
Vinylmethyl ether.
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table, for H and He ions together.49 For this restricted number of targets, 
ICRU Report 49 is clearly better than SRIM.

4.2 Application to therapy using H ions
Inspection of  Tables 2.6 and 2.8 shows that, for protons in elements, in the 
range 10–100 MeV, the value of Δ is negligible for the ICRU and SRIM 
tables, and σ is 0.5%, on the average. Hence, in this energy range important 
for therapy, the ICRU and SRIM tables can be expected to be accurate 
to 0.5%. And the same accuracy may be expected up to 1000 MeV, if the 
ICRU or SRIM tables are extended††† using the pure Bethe theory Eq. (2), 
since the corrections to Bethe are minimal (cf. Fig. 2.2).

For protons in compounds, the highest energy range (Table 2.10) goes 
only up to 30 MeV, and σ is larger (2–4%). Hence, the predictive quality 
of SRIM appears worse for compounds. On the other hand, since Bragg’s 
additivity holds at high energy, the stopping power of compounds at high 
energy may be calculated using Eq. (3), and in this way, the accuracy could 
be improved.

In therapy applications, the particle range is of greatest importance. 
The range for therapeutically relevant energies depends essentially on the I 
value, as has been discussed in Section 3.2 above. Range uncertainties have 
recently been considered by Andreo44 and by Paganetti.50 Unfortunately, 
Andreo’s paper is based on an unrealistic variation of possible I values for 
water (67, 75, and 80 eV), due to the fact that his paper was published 
before the ICRU value I = 67 eV was officially declared as erroneous.12 
In the discussion by Paganetti,50 the low value I = 67 eV has already been 
discarded.

Using our numbers from Section 3.2 (I = 79.2 eV with an error of 2.0%, 
and a conversion factor of 8), we arrive at a range error in water (due to the 
uncertainty of I) of 0.25%. Paganetti50 arrives at the much larger estimate 
of 1.5% (for 1.5 standard deviations) for tissues because of the much larger 
variability of I values for tissues (see, e.g., Figs. 2.3 and 2.4 by Andreo).44

Concerning the conversion from dose distribution to range 
(see Section. 3.2), Paganetti states that ideally, p = 80% should be taken for 
proton therapy, but that, for historic reasons, p = 90% is used in most proton 
therapy facilities.

Monte Carlo programs like SHIELD-HIT51 are an important tool 
to describe the passage of ions in all cases relevant to hadron therapy.  

††† In the case of ICRU, this simply means using the ICRU table up to 1000 MeV.
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Such programs require a description of the stopping power over a large 
range of energies: the lowest energies are important for a proper descrip-
tion of the Bragg peak. But as we have seen above (Figs. 2.1 and 2.2), 
there is no reliable theory or table for the entire range of energy required. 
Hopefully, the Continuum Distorted Wave Method52 will help to bridge 
this gap.

4.3 Statistical comparisons for carbon ions
Because of the importance of carbon ions for therapy, we treat these 
 separately. As an example, Figure 2.5 shows stopping powers for carbon ions 
in carbon. Here, there is good agreement between the experimental data 
and the MSTAR, SRIM, HISTOP, and ICRU 73 tables in most energy 
regions, while CasP is too low at low energy.‡‡‡

Table 2.12 shows statistical results for carbon ions in solid elements 
 covered by MSTAR. Since ICRU Report 73 does not treat Gd and Ta 
targets, the number of points is somewhat smaller for that table. The results 

‡‡‡ This discrepancy has not changed much from CasP v. 3.1 to v. 5.0.

Figure 2.5 Electronic stopping power as a function of specific energy for C-ions in C, com-
pared to various tables (cf. Table 2.1). Experimental points are marked by letters; the refer-
ences corresponding to the reference codes given in the margin can be found in Ref. 21.
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are similar to those shown in Ref. 53, except that there, ions from 3Li to 
18Ar were treated together. We find again that MSTAR and SRIM describe 
the data about equally well, but that the values from ICRU Report 73 are 
too high,§§§ on the average, especially at low energies.

Similarly, Table 2.13 shows results for carbon ions in condensed 
compounds.

Table 2.14 shows results for carbon ions in gases. This table is of limited 
usefulness because of the small number of measured data points available 
for carbon ions that leads to rather erratic results. Possibly, if better results 

§§§ Note that a negative D means that the table value is too high, according to the definition Eq. (7).

Table 2.12 Mean normalized deviations Δ ± σ (in %) for carbon ions in Ag, Al, Au, Be, 
C, Cu, (Gd), Ge, Mo, Ni, Pb, Si, Sn, (Ta), and Ti

E/A1 (MeV) 0.025–0.1 0.1–1.0 1–10 10–100 0.025–100
No. of points 202 632 229 8 1071

MSTAR −1.6 ± 9.6 0.6 ± 5.8 0.9 ± 5.1 0.0 ± 2.8 0.2 ± 6.6
SRIM, 2003 0.4 ± 8.3 −0.5 ± 5.3 −0.6 ± 5.2 1.0 ± 3.0 −0.3 ± 6.0
ICRU  
Rep. 73

−13 ± 12 −9.2 ± 10.9 −2.6 ± 5.8 −0.6 ± 3.8 −8.5 ± 10.8

Table 2.13 Mean normalized deviations Δ ± σ (in %) for carbon ions in condensed 
compounds (Al2O3, Kapton, Mylar, Polycarbonate, Polyethylene, Polypropylene (not 
covered by ICRU 73), PVC, SiO2)

E/A1 (MeV) 0.025–0.1 0.1–1 1–10 10–100 0.025–100
No. of points 27 95 98 0 220

MSTAR 4.2 ± 8.8 −1.9 ± 5.3 3.8 ± 2.9 1.4 ± 5.8
SRIM, 2003 0.5 ± 5.4 −2.9 ± 4.4 −1.8 ± 3.4 −2.0 ± 4.3
ICRU Rep. 73 −6.9 ± 8.3 −8.1 ± 4.9 −2.6 ± 3.3 −5.8 ± 5.6

Table 2.14 Mean normalized deviations Δ ± σ (in %) for carbon ions in gases (Air, Ar, 
H2, He, N2, Ne, O2)

E/A1 (MeV) 0.025–0.1 0.1–1 1–10 10–100 0.025–100
No. of points 13 2 38 4 57

MSTAR −3.2 ± 8.9 0.6 ± 2.4 −1.1 ± 3.4 0.1 ± 4.2 −1.4 ± 5.3
SRIM, 2003 9.7 ± 7.1 −22 ± 2.3 −1.4 ± 7.2 −1.2 ± 8.3 0.4 ± 9.5
ICRU Rep. 73 −42 ± 21 −16 ± 0.7 −2.6 ± 5.0 0.4 ± 4.2 −12 ± 20
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are required, the use of Table 2.3 from Ref. 53 (for ions from 3Li to 18Ar) 
may be preferable.

5. CONCLUSIONS

An overview of available tables and computer programs  describing 
the stopping power of matter for positive ions is given. Experimental 
and table values for the stopping power of water for hydrogen ions are 
 discussed in detail. An overview of measured and calculated values for the 
mean ionization energy of water is given; the average of recent values is 
found to be I = (79.2 ± 1.6) eV. The recent measurements of Bragg peak 
positions for light ions in water by Schardt et al. are discussed in detail; 
due to the uncertainty of converting these positions to range values, the I 
value 78.5 eV deduced from these is found to have the rather large error 
of 5 eV. Statistical comparisons of measured stopping powers with various 
tables for H, He, and C ions for many targets are given. The SRIM, ICRU 
49, and MSTAR tables are found to describe the data best, on the average, 
but SRIM describes many more cases than the other tables. For protons of 
10–100 MeV in elements, it is found that the ICRU 49 and SRIM tables 
may be expected to be accurate to 0.5%.

6. LIST OF ACRONYMS

ASTAR NIST program for alpha stopping powers
ATIMA Atomic Interactions in MAtter (a program)
BEST BEthe Stopping program
BP Bragg Peak
CasP Convolution approximation for swift Particles
CR39 Nuclear track detector material
CSDA Continuous slowing down approximation
ESTAR NIST program for electron stopping powers
HISTOP Heavy Ion Stopping program
ICRU International Commission on Radiation Units and 

Measurements
ICRU 49 ICRU Report 49 for protons and alphas
ICRU 73 ICRU Report 73 for ions from 3Li to 18Ar
Judge Statistical analysis program by Paul & Schinner
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LET Linear energy transfer
LS Lindhard-Sørensen
MSTAR MoreSTAR (going beyond PSTAR and ASTAR)
NIST US National Institute of Standards and Technology
PASS Peter-Andreas-Sigmund-Schinner
PSTAR NIST program for proton stopping powers
SHIELD Code for the simulation of the interaction of hadrons and 

arbitrary atomic nuclei with complex extended targets
SHIELD-HIT Medical version of the code SHIELD
SRIM The Stopping and Range of Ions in Matter
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Abstract

Water is a ubiquitous substance in nature, and thus the mean excitation energy of 
water is an important quantity for understanding and prediction of the details of many 
fast ion/molecule collision processes such as those involved in external beam radio-
therapy of tumors. There are several methods for determining numerical values for a 
mean excitation energy for water, both theoretical and experimental. Here the factors 
affecting the determination of the value of the mean excitation energy of water, espe-
cially from experiment, are discussed.

1. INTRODUCTION

“The mean excitation energy of water is 75.0 eV.” What is the mean-
ing of such a statement?

As the use of fast ions for medical purposes, especially tumor therapy, 
becomes more usual, the understanding of the basic physics of the interac-
tion of swift ions with biomaterial in combination with water at clinically 
relevant energies (≈3–300 MeV/u) becomes more crucial. For example, 
the end result of ion radiation should be destruction of tumors without, 
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or with only minimal, damage to surrounding tissue. Thus, understanding 
of the dosimetry for the interaction of fast ions with tissue becomes of 
primary importance for prediction of dose-depth curves and the spatial 
resolution of such radiotherapy beams.1 However there are uncertainties2 
which also must be addressed.

As biological tissue is predominantly water, and as radiation damage to 
cells is predominantly due to reaction of secondary water fragments with 
cellular biomolecules,3, 4 it is of primary importance to understand the 
interaction of fast ions with water, in particular the details of the energy 
transfer from the fast ion to water. In this process, the kinetic energy of 
the fast ion is transferred to water, resulting in electronic and vibrational 
excitation, ionization, and/or fragmentation. In this regard, an accurate 
determination of the ratio of ion beam energy deposition per unit path-
length in water to that in air [the stopping power ratio—STPR] is the most 
important quantity for external beam radiotherapy dosimetry according to 
the Code of Practice of the International Atomic Energy Agency.5 This 
ratio thus becomes critically important for accurate clinical dosimetry,6 as 
it is this ratio that determines the mean projected range and thus the dose-
depth curves. The ratio of the mass stopping power for an ion in water and 
in air, s0

water, air
, is conventionally written:6, 7

where Z2 and A2 are the electron number and relative mass of the target, 
ρ is the scatterer density of the medium, Se(E) is the stopping power at 
projectile energy E, and m and v are the projectile mass and velocity. Thus, 
the quantity I0 becomes the critical quantity. I0 measures the ease with 
which energy can be deposited by the ion in the target material; in other 
words, I0 is a measure of the ability of a target system to absorb kinetic 
energy from a projectile, and is called the mean excitation energy of the 
target (sometimes referred to as the average ionization potential). I0 is thus 
central to the determination of the stopping power of the target. The mean 
excitation energy, which is specific to each target, may be obtained either 
theoretically or experimentally, and “Thereby hangs a tale”.8 Although the 
mean excitation energy is a well-defined quantity (vide infra), values of the 
mean excitation energy of water obtained by experimental and theoretical 
means are found to vary by as much as 20% (vide infra), with those values 
deduced from experiment generally being higher. Such a large uncertainty 

(1)s0
water, air

=

(Se(E)/ρ)water

(Se(E)/ρ)air

=

(Z2/A2)water

(Z2/A2)air

ln(2mv
2/Iwater

0
)

ln(2mv
2/I air

0
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is unacceptable for many applications, including external beam radio-
therapy dosimetry. To quote Gottschalk:9 “Unfortunately, I0 is particularly 
problematic for water.”

In this report we explore one aspect of that problem; namely the deter-
mination of the mean excitation energy of water, a quantity necessary 
to the understanding of the physics of the characteristics of ion energy 
deposition in water. Which values should be used for understanding and 
predicting external beam radiotherapy dosimetry and dose/depth curves? 
The theoretical or the experimental? We maintain that the value of the 
mean excitation energy obtained from theory and the value extracted from 
stopping experiments can be quite different, and that their usage should 
not be confused. Although there is only one mean excitation energy for 
any target substance such as water in a particular phase, we will refer to the 
values extracted from theory as I theo

0
 and the values extracted from experi-

ment as I0exp in order to be clear as to the origin of the value of the mean 
excitation energy under discussion.

2. SOME BASIC THEORY

The energy loss per unit pathlength in a material, or stopping power 
of the material, for a fast ion is generally written as a function of projectile 
velocity (ν):

where S(v) is referred to as the stopping cross section, n is the target scat-
terer density, Z1 and Z2 are the projectile charge and target electron number, 
respectively, and me is the electron rest mass. L( v), known as the target 
stopping number, is frequently expanded in a Born series in the projectile 
charge, which, for fixed projectile charge, can be written as:

Each term can then be expanded, suppressing ν, as:

(2)−

dE

dx
= n S (v) =

4 π n e4 Z2

1
Z2

me v
2

L (v) ,

(3)L(v) =

∑

i=0

Zi
1Li(v).

(4)Li =

∑

j=0

Lij .
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In the following, we ignore relativistic − ln(1 − β2) − β2 and density 
(δ/2) corrections which are small in the energy range of interest here.10 
Although there are several ways to express L, Li, and Li j, for the purposes 
here, the most convenient and most commonly employed are the Bethe 
term L0:11

the Lindhard12 version of the Barkas correction:13

and the Bloch correction:14

Here, v0 is the Bohr velocity (2.187691 × 106 m/s).
The quantity of interest for describing energy deposition, the mean 

excitation energy, was first introduced in this context by Bethe.11 His origi-
nal derivation considered that the projectile velocity was much larger than 
that of the target electrons with which it collided and exchanged energy. 
As this assumption is not applicable to slow ions nor to collisions with 
core electrons in atoms or molecules, the shell corrections, C(v)/Z2, were 
added to correct for this. However, the mean excitation energy is a well-
defined quantity, namely the first energy weighted moment of the dipole 
oscillator strength distribution (DOSD) of the target system in whatever 
overall state the system finds itself:

Thus, were the entire set of excitation energies and oscillator strengths 
of the system (molecule, liquid, or mixture, and gas, liquid, or solid) known, 
the unique mean excitation energy of the system would be obtainable, 
either theoretically or experimentally. It should be noted that, in principle, 
the mean excitation energy is not a parameter. It is a well-defined function 
of the electronic excitation properties of the target and only of the target. 
It is not a function of projectile velocity, and, in principle, does not depend 
in any way on the properties of the projectile.
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3. THEORETICAL DETERMINATION OF I0
The mean excitation energy was originally defined by Bethe11 in 

his derivation of the stopping cross section, and is defined in Eq. (8). The 
definition is unique, and given the exact quantum mechanical solution of 
the target electronic structure, that is, the DOSD, or the complete set of 
all electronic transitions and their dipole oscillator strengths, the integrals 
could be carried out. In practice, this is not possible, as various theoretical 
approximations must be made in order to carry out the calculation of the 
DOSD: level of theory, molecular geometry, basis set size, target orientation 
with respect to the beam, isolated molecule or condensed system, and oth-
ers. However, at least for most atoms, one can approximate13 I0 ≈ 10Z2 eV 
and then one can obtain an approximation for the value of I0 for a single 
molecule by application of the Bragg rule.15

We, on the other hand, have carried out a number of calculations on 
the DOSD of an isolated water molecule,16–21 using the polarization 
propagator scheme22 in the dipole length formulation at the random phase 
approximation (RPA) level of theory. Calculations were carried out using 
various extended basis sets23–25 at the water equilibrium geometry. The 
calculations yielded values of the mean excitation energy of water with an 
average value of 73.0 ± 0.6 eV for the various bases employed. Calculations 
of the DOSD in the length, velocity, and mixed formulations gave only 
slightly different results: 73.2 ± 0.1 eV, while density functional theory cal-
culations26 with the B3LYP exchange-correlation functional in the length 
formulation and a somewhat larger basis set27 gave with 72.2 eV a slightly 
smaller result.

These results are in reasonable agreement with the semiempirical result 
of Zeiss and Meath28 (ZM) of 71.62 eV. However, we note that although 
theoretical, the ZM method does not directly evaluate Eq. (8).

In a theoretical determination of the mean excitation energy of a mol-
ecule, there are other considerations as well.

As the electronic structure of a molecule changes with its geometry, 
so does the DOSD and thus the mean excitation energy. Calculation 
gives a ground state mean excitation energy of 72.92 eV16 for H2O while 
vibrational averaging, using the Morse-oscillator-rigid-bender scheme of 
Jensen,29 yields a value of 71.61 eV, nearly 2% smaller. Although isotopic 
composition will not change the DOSD of the target molecule, it will 
influence the vibrationally averaged values of the mean excitation energy 
through the vibrational wavefunction.
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Although the target mean excitation energy does not depend at all 
on the projectile, it does depend on the orientation of a non-spherically 
symmetric target molecule such as water with respect to the beam, as only 
molecular electronic states with the correct polarization with respect to the 
beam direction can be excited.30 Calculations on water in its equilibrium 
geometry, fixed in the x–z plane with the z axis as the C2 symmetry axis,18 
give a rotationally averaged mean excitation energy of 72.91 eV, having 
directional components in the x, y, and z directions of 69.21, 76.76, and 
72.87 eV, respectively.

Finally, as water seldom exists as a single molecule, the effect of 
hydrogen bonding on the mean excitation energy of water is of interest. 
Calculations of the mean excitation energy of H2O and of (H2O)2 give 
mean excitation energies20 of  73.56 and 73.18 eV, respectively, a difference 
of less than 1%.

Consideration of the effect of a few hydrogen bonds on the mean 
excitation energy of a water molecule is not sufficient to determine the 
mean excitation energy of bulk (liquid) water. However, the mean excita-
tion energy for a bulk system can also be determined from a study of the 
dielectric response of the bulk system.31 In this approach, the mean excita-
tion energy can be obtained from:

Using a Drude-like dielectric function of the form

where Ep = 2
√

nπa0 is the nominal plasmon energy of the medium and 
n is the electronic density (for water, Ep = 21. 4 eV). Here, the quantities 
[Ej , γj , fj] refer to the energy, lifetime, and oscillator strength of each of the 
j electronic transitions. Using this dielectric function in Eq. (9), the mean 
excitation energy for liquid water obtained from the dielectric response 
model is 77.8 eV.31 We note that a detailed description of the dielectric 
response of the system is given in Ref. 31.

Thus, using theory, one can investigate the properties of the DODS and 
thus the behavior of the mean excitation energy under various conditions 
without reference to experiment.
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4. EXPERIMENTAL DETERMINATION OF I0
On the other hand, clinical application of swift ion radiation in 

terms of tumor therapy is concerned with energy deposition to a specific 
place, and thus with dosimetry: prediction of dose/depth properties of ion 
radiation. In order to determine the relevant quantities for proper dosim-
etry determinations, the ratio of stopping powers for air (a) and water (w) 
s0
water, air

, for the ion beam is needed.32–34 A good approximation to the 
water/air mass stopping ratio for a particular projectile species at a particu-
lar energy (velocity), or with a delta function fluence differential in energy, 
can be written35 as Eq. (1). Thus, the mean excitation energy is of primary 
importance. Although practitioners, due to the difficulties discussed in 
this contribution, may simply measure dose/depth curves directly rather 
than attempting to calibrate beam energies closely and then construct 
s0
water, air

 from experimentally determined mean excitation energies, I0 is 
still reported in the literature. The question arises as to how the appropriate 
mean excitation energies should be obtained.

As it is not feasible to evaluate Eq. (8) directly from experiment, the 
value of the mean excitation energy is frequently deduced from experi-
ment. There are several ways to obtain I exp

0
.

Perhaps the most reasonable way to extract the mean excitation energy 
from experiment while invoking the least number of assumptions is to use 
an experimental dielectric response function in Eq. (9).36 This procedure 
gives an experimental value of the mean excitation energy of water of 
81.8 eV.

Another, and in the radiological community more usual, way to obtain 
the mean excitation energy of a bulk substance is to fit stopping power data 
from energy deposition experiments. In principle, one chooses an ansatz for 
the stopping power or range of an ion as a function of projectile kinetic 
energy† and then treats the mean excitation energy as a fitting parameter 
determined by adjusting it to get the best fit of the ansatz function to 
the experimental stopping or range data. Programs such as the Monte 
Carlo based SHIELD-HIT37, 38 or FLUKA39 are frequently used for this 
purpose.1

†  In fact, projectile velocity is the relevant quantity (see Eqs. (2)–(7)). However, velocities are gener-
ally expressed in terms of the corresponding kinetic energy per nucleon: eV/u, keV/u, or MeV/u. 
Energy/u has units of projectile velocity squared, but must be scaled by the one half the projectile 
mass in appropriate units to give projectile velocity squared [see articles in volumes 45 and 46 (1994), 
Theory of the Interaction of Swift Ions with Matter, for details].
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The problem then arises as to how the relevant quantities such as shell 
corrections and the Barkas and Bloch corrections are to be chosen, as the 
choice of the ansatz fitting function will affect the resulting value of I0.  
To extract the mean excitation energy of water from experiment, one 
might choose values of the shell corrections and the Barkas correction, and 
then, using the mean excitation energy as a fitting parameter to Eqs. (2–6),  
determine the “experimental” value of I0 yielding the best fit to the experi-
mental data over a range of projectile velocities. The result is then reported 
as the experimentally determined value of the mean excitation energy, 
namely I exp

0
.

However, problems and uncertainties arise. Previous work has shown 
that shell corrections may vary considerably according to the method of 
calculation.40 In addition, shell corrections are generally not available for 
molecules, so the approximate Bragg additivity rule:41

or

is frequently employed,42 introducing further uncertainty into the experi-
mental value of the mean excitation energy.

To illustrate the effect of variation in the shell corrections on the mean 
excitation energy extracted from experiment, we consider the simplest, or 
Bethe, case where the stopping cross section is written

A formula for extraction of a value of the mean excitation energy, I exp

0
, 

from experimental values of the stopping cross section can be written
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Consider the effect of differing shell corrections when used in extract-
ing an experimental mean excitation energy for protons with v = 6 v0, and 
thus a kinetic energy of 900 keV, impinging on water. We choose a proton 
energy which is low from the radiological standpoint as the corrections to 
the Bethe term are largest for lower ion velocities, and thus the deviations 
and variations will represent maximum encountered values. Shell correc-
tions for such a situation run from 0.1543 up to 0.50,44 with various values 
in between also reported.45 Table 3.1 illustrates the variation in I0 from Eq. 
(14) for 900 keV protons on water using a typical value of the stopping cross 
section [S(6) = 11. 52 a.u.] and various values of the shell corrections.

Similarly, the Barkas correction, L1, can be determined in several ways, 
the most usual being the numerical scheme of Ashley et al.46 or the ana-
lytical form of Lindhard.12 Again, uncertainties are introduced which will 
affect the value of the mean excitation energy obtained from experimental 
data.47, 48 In Table 3.2 we present some values of Lindhard’s L1 as calculated 
from Eq. (6).

Over this range of mean excitation energies, the Barkas correction does 
not vary much, consistent with observation.49–51 Thus, the choice of Barkas 
correction is less critical to the extraction of a mean excitation energy from 
experiment than is the choice of shell corrections.

Table 3.1 Mean excitation energies from equation 14 for 900 keV protons on water 
for various values of the shell corrections

C/Z2 I0 (eV)

0.00 72.3
0.10 65.4
0.15 62.2
0.25 56.3
0.32 52.5
0.40 48.5
0.50 43.9

Table 3.2 Barkas correction using the Lindhard form for 900 keV protons on water 
using various values of the mean excitation energy

I0 (eV) L1 (a.u.)

72.30 0.191
62.23 0.172
56.31 0.160
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If one measures the oscillator strength distribution for water in its dif-
ferent phases, it is seen that the distribution is different, especially near the 
maximum, depending on the target phase.52 Target phase thus affects the 
value of the measured mean excitation energy. As water readily exists in all 
three phases, the mean excitation energy of water depends somewhat on 
the sample phase, with the liquid phase having a value of I exp

0
 that is some 

few percent greater than the gas.10, 53 Although there is no direct evalua-
tion of Eq. (8) for liquid water, comparison of direct calculation of I0 for 
an isolated water molecule and for its hydrogen bonded dimer shows the 
isolated molecule to have a larger value of the mean excitation energy by 
a fraction of a percent.20

The mean excitation energy is a property of the target only, by defini-
tion. It thus does not depend on any property of the projectile, in particular 
the projectile speed. Thus, in the simplest, or Bethe, case where the stopping 
cross section is written as in Eq. (13), the formula for extraction of I0 from 
experimental values of the stopping cross section is written as Eq. (14). This 
presents another problem, as values of the experimental mean excitation 
energy extracted from S(v) measured at different projectile velocities54 
using calculated, Bragg rule based, shell corrections,41 yield quite different 
experimental values of I0, depending on to which velocity the stopping 
cross section corresponds. This is clearly incorrect behavior for a quantity 
that should be independent of the projectile.

The addition of Barkas and Bloch corrections leads to the expression:

This equation must be solved iteratively to determine a value for a I exp

0
.  

However, there is still no independence of the experimental value of the 
mean excitation energy extracted in this manner on projectile velocity.

Another problem which must be confronted when extracting a value 
of I0 from measured data is that of projectile charge exchange. As a pro-
jectile travels through a target sample, charge exchanging collisions are 
expected.55, 56 Thus, a measured depth-dose curve or stopping power 
curve for a projectile in a condensed phase target will, in fact, contain con-
tributions for the various charge states available to the projectile under the 
circumstances. For example, one would expect contributions from both 
H+ and H in measuring the stopping of a beam of protons in water. The 
description of the energy loss under these circumstances using Eqs. (2), (3), 
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(5), (6), (7) will thus involve a value of I0 which, rather than being deter-
mined directly as mean excitation energy, will again be an effective fitting 
parameter which includes charge exchange and gives a best fit to the mea-
sured depth/dose or stopping curve.

The range of an ion in a condensed phase target is of greatest inter-
est in radiological terms, as it is at the end of the projectile trajectory that 
the greatest amount of projectile energy is deposited in the target.57 Were 
one to calculate the range in the continuous slowing down approximation, 
one would integrate the stopping cross section from the initial energy, E0

to when the ion stops.

This would return the length of the pathway, in a straight line, from 
the entrance of the ion into the medium to the point where it stopped. 
However, in an experimental situation, the projectile ion undergoes many 
collisions, with concomitant changes in velocity, along its pathway, and 
thus the actual penetration depth, d, could differ significantly from the 
pathlength.58 A mean excitation energy extracted from experiment using 
Eq. (2), if depth data is used, will then have this ambiguity included.

Mean excitation energies for water varying from 68 eV59 to 81.1 eV36 
have been reported resulting from both theoretical evaluations of Eq. (8) 
and from fitting of experimental data. This corresponds to an uncertainty 
of some 18.5%, which is certainly significant, and is unacceptable when I0 
is being used to determine details of hadron therapy.

5. CONCLUSION

The conclusion is that while the mean excitation energy is well-
defined and can consistently be determined theoretically, values of the 
mean excitation energy extracted from experiment are not well-defined. 
Rather, they depend significantly on the assumptions made concerning 
the method of extraction of the mean excitation energy from, typically, a 
stopping power or range measurement. Thus, if high accuracy s0

water, air
 are 

needed for calculation of dose-depth curves for radiation therapy as opposed 
to direct measurement, both the ansatz equation and parameters used to 
obtain the experimental mean excitation energy by fitting to experimental 
data need to be specified when reporting the experimental mean excitation 
energy. Values of I0 obtained from theory and experiment are in principle 

(16)R(E0) = −

∫

0

E0

1

nS(E)
dE.
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identical, and, from a practical standpoint, would be expected to be of the 
same order. However they are not the same, as the theoretical values come 
from the definition of the quantity [Eq. (8)] and the experimental values 
come from using the mean excitation energy as a free fitting parameter 
to experimental data. Their differences can lead to clinically unacceptable 
uncertainties in dosimetry prediction. The experimental values of the mean 
excitation energy should thus be reported only with reference to the details 
of its determination. Thus, using I0 in Monte Carlo or other simulations 
for energy deposition in hadrontherapy should only be done with care and 
attention to the method by which I0 was determined.

For reasons cited, we would recommend that values of the mean excita-
tion energy derived from experiment be referred to as an effective value of 
the mean excitation energy rather than as an experimental mean excitation 
energy.

“The mean excitation energy of water is 75.0 eV.” What is the meaning 
of such a statement? Clearly the statement itself is not meaningful with-
out qualification of exactly how the reported mean excitation energy was 
determined.
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Abstract

This study looks into Monte-Carlo simulation methods that are used for radiotherapy 
and radiobiology studies. Although simulation methodologies for the two mentioned 
fields are quite different since one deals with macroscopic effects rather than the 
cellular scale effects in the case of the other, the results obtained by both fields are 
complementary for understanding radiation effects on cellular substructures and the 
resulting reactions of irradiated biological tissues. It has been concluded through the 
literature that the deoxyribonucleic acid (DNA) damage is the most important result 
to look at among other radio-induced lesions in the cell. Thus, most of the research 
projects on radiation damage including Monte-Carlo studies are now concentrated on 
radio-induced DNA breaks and cell repair activities. Among the simulation programs 
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we can distinguish the general purpose codes that are mostly used for macroscopic 
calculations and the step by step track structure codes that are dedicated for sub- 
cellular scale simulations mostly dealing with particles interactions with the DNA struc-
ture. However, none of the proposed toolkits can completely cover all the simulation 
cases since we are usually limited by the lack of cross sections for a certain particle type 
and in a certain energy domain depending on the code content. This obstacle can be 
overridden by some approximations on the macroscopic scale but when it comes to 
submicron calculations the energy deposit patterns should be as precise as possible 
for radiobiological analysis. On the DNA scale, chemical reactions and free radicals dif-
fusion through target media were taken into account in some studies considering also 
the DNA structure geometry in the simulation. Although this type of approaches is 
aiming to be as realistic as possible, it can be a complex task to reproduce and also very 
time consuming requiring an important computing power. So in an effort to simplify 
and accelerate the calculations, several alternative methods were developed by differ-
ent authors giving an acceptable estimation of radio-induced DNA damage quantifica-
tion and making this issue more accessible for quick studies. The work described in this 
chapter reviews some of the numerical calculations of basic microdosimetric quantities 
for particles that are generally used in hadrontherapy, mainly protons and carbon ions, 
taking into account the secondary electrons tracks that are generated in tissue-like 
media (water). Using the Geant4-DNA package of the Geant4 Monte-Carlo simulation 
toolkit it is possible to track particles in a step by step mode taking also advantage of 
the available geometry modules and the standard physics processes of the standard 
Geant4 toolkit. Simulations are then described and the DNA damage quantification 
algorithms are studied with an effort to show the link between ionizing track structure 
and the resulting damage yields. The results obtained by different numerical methods 
are compared together then a discussion describes the advantages of each of the 
mentioned calculations.

1. INTRODUCTION

Generally and for a long period of time treatment planning in  radiotherapy 
was mostly based on observations obtained from experimental data of cell 
survival rates after irradiations. The linear quadratic model of cell population 
survival is still in use by the medical community especially for X-ray irradia-
tions. The safety of this model was studied and confirmed by Brenner et al.1 
concluding that no noticeable improvement can be added by using more 
sophisticated models. However, in the case of ions the energy deposit pattern 
is denser than for X-rays and ions proved to be more effective for deep seated 
tumors taking advantage from the so called “Bragg peak” of the energy depo-
sition profile. Recently the number of protons and ions treatment facilities 
was increasing through the world. Protons are used in the United States, e.g., 
Massachusetts, Boston, and Loma Linda, California, while heavier ions ther-
apy is still missing. In Japan we may cite the Heavy Ion Medical Accelerator 
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in Chiba (HIMAC), another accelerator in Hyogo and recently the Gunma 
University facility. In Germany the Heidelberg Ion-Beam Therapy (HIT) 
center started ion treatments in 2009, with parallel research activities focusing 
on ions interactions in tissue and improving treatment protocols for a better 
tumor control probability. Other countries in Europe are also using proton 
beams for therapy or therapeutic research we can cite among many the 
National Institute of Nuclear Physics (INFN) accelerator in Italy (Catania), 
the Uppsala Svedberg laboratory in Sweden and one treatment facility in 
the United Kingdom. In France protons are used at the Proton Therapy 
Center of the Curie Institute at Orsay (ICPO) and the Lacassagne Center 
Biomedical Cyclotron (CLCB) in Nice along with new projects that are in 
progress for heavy ions therapy and research installations, e.g., Hadrontherapy 
project opening in Lyon (France) in 2016 and the Advanced Resource 
Center for Hadrontherapy in Europe (ARCHADE) mainly dedicated for 
research activities. As a general observation, developed countries are now 
tending to invest in heavy ions irradiation facilities with several emerging 
projects especially after the success of the Heidelberg treatment center. With 
the spread of ions accelerators, research emphasis was put on new treatment 
protocols and new cell survival models development, since these two latter 
are major database sets that are needed in the medical medium. One of the 
ions specific models that are presently in use in the medical medium is the 
Local Effect Model (LEM). The idea was developed by Kramer and Scholz2 
where the carbon ions Relative Biological Effectiveness (RBE) could be 
calculated using numerical computation and based on X-rays RBE database. 
The main advantage of the LEM is that it proved its reliability in RBE pre-
diction for several tissue types and over a wide range of atomic numbers and 
particle energies without the need to perform cell irradiation experiments. 
Treatment planning programs were further developed by Kramer et al.3 and 
reviewed by Jakel et al.4 in order to provide the essential data base for ion 
treatment. In comparison with X-rays, ions have a high linear energy trans-
fer (LET) in tissue and consequently a high biological effectiveness, and in 
this case the dose delivered to the tumor should be as accurate as possible in 
order to avoid normal tissue damage around the tumor. Also, the difference 
between the treatment planning and the treatment delivery is of high impor-
tance in the case of ions. Since this difference can have a non-negligible 
impact on the surroundings of the irradiated tumor, the range accuracy in 
carbon ion treatment planning was investigated by Rietzel et al.5 concluding 
that carbon ranges can be controlled within ∼1 mm in soft tissue for typical 
treatments of head and neck tumors.
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Although at this stage studies are able to define the basics for ions treat-
ment planning they do not provide any precise information about processes 
occurring on the single cell level, and the damage yields within the sub-
cellular structures. In fact, the cell survival probability depends on many 
factors like the type of the irradiated cell, the severity of the damage that 
is induced to the DNA molecule, the replication phase of the cell being 
irradiated, the repair activities within the cell and also on the irradiation 
properties like the beam type and energy. Understanding the cell reaction 
to different types of radiation requires a tight collaborative work involv-
ing biologists and physicists studying single cell irradiation experiments. 
Measurements of DNA damages including strand breaks and base lesions 
were carried out by some studies using different analysis techniques like 
gel electrophoresis, e.g., Stypczynska et al.,6 X-ray photoelectron spectros-
copy, e.g., Ptasinska et al.7 and the Enzyme-Linked Immunosorbent Assay 
(ELISA) experiment, e.g., Smialek et al.8 Moreover, the effect of the DNA 
surrounding conditions were also investigated like the presence of amino 
acids combined to DNA during irradiation by Stypczynska et al.,6 the pres-
ence of scavengers and repair enzymes in the medium by Milligan,9 and 
Gulston et al.10 and the influence of the chromatin organization on damage 
yields by Magnander et al.11

In parallel, microdosimetry studies were carried out on different par-
ticle beams using micrometric Tissue Equivalent Proportional Counters 
(TEPC), e.g., Borak et al.12 With microdosimetry techniques it is possible 
to measure the lineal energy distribution of a particle type revealing the 
energy deposit characteristics on the micrometric and the nanometric 
scale (see Refs. 13–15). However, the literature does not cover all typical 
radiation cases that are encountered in the radiotherapy field. Monte-Carlo 
method simulations can be a theoretical alternative providing a good esti-
mation of such measurements.

During the last 20 years numerical modeling became the most acces-
sible method to study interactions of particles crossing biological targets 
and other materials enabling users to obtain the energy deposit distribu-
tions in the target volumes. General purpose Monte-Carlo codes like Fluka 
(Fluctuating Kaskade, see Ref. 16), Geant4 (Geometry and Tracking, see 
Ref. 17), MCNP (Monte-Carlo N-Particle transport code, see Ref. 18) 
and the SHIELD-HIT code (Heavy Ion Therapy code, see Refs. 19, 20) 
are able to simulate photons and ions interactions with different materials 
taking into account the secondary particles that are created in the medium. 
However, these codes are practical and adapted for macroscopic simulations 
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and cannot be used for submicron scale calculations. In fact, simulations can 
be very lengthy in many cases and in order to save computing time, using 
an energy cut-off is a common solution for most of these codes. This means 
that when a particle’s energy drops below the chosen cut-off the particle 
is killed and its energy is deposed locally at that point. Other techniques 
are also used, an energy production threshold is chosen by the user for 
each particle, in this way only secondary particles with energies above this 
threshold are created and simulated, this approach is adopted in the Geant4 
toolkit. In this way one can avoid generating a big number of low energy 
secondary particles losing all their energy within few nanometers from the 
primary particle’s track and cannot be distinguished from this latter from 
a macroscopic point of view. On the sub-cellular level, simulations should 
include all the secondary particles that are created in the target as low as 
their kinetic energy can be and these particles should be followed nearly 
until complete energy loss. In other words the energy cut-off should be set 
to the minimum and physics processes should take into account all the pos-
sible occurring interactions. This type of detailed simulation is also called 
the “step by step” particle tracking and its use is restricted to simulations 
confined within volumes of few micrometers, due to the lengthy required 
computing time. However, for this method the results precision is reason-
able for molecular scale analysis. Many studies are based on track structure 
modeling of DNA damage after irradiation.

In general, in the simulations we can distinguish among the different 
levels of the complexity of the DNA damage since the repair activities are 
strongly dependent on the type of the damage and the damage yields in 
the cell. Some of the detailed history Monte-Carlo codes are able to track 
chemical species and free radicals creation and diffusion to estimate the 
indirect radiation effect on DNA. For the sake of completeness the DNA 
structure is also modeled in some studies (Ref. 21–23, and others) show-
ing the effect of the geometrical shape and distribution of the DNA on  
the resulting damages. On another hand, more approximate approaches 
were developed enabling DNA damage estimation after irradiations, like 
the work of Semenenko et al.24 where cell repair activities are also taken 
into account, and Francis et al.25, 26 where the energy deposit spatial dis-
tribution is directly linked to DNA damage using clustering algorithms on 
track structures of different particles.

In the following sections, we will briefly summarize the cross sec-
tions that are of use for submicron simulations and review the micro-
dosimetry basics citing some experiments that can be interesting for the 
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radiobiology community and also for Monte-Carlo codes validation. 
Then the emphasis is put on the discussion of DNA damage estima-
tion following different methodologies from the detailed event by event 
modeling to the fast approximate statistical procedures that can be found 
in the literature.

2.  DETAILED STEP BY STEP TRACK STRUCTURE  
CODES

2.1 Monte-Carlo codes
General purpose Monte-Carlo codes are now available for public use 
providing also users support mostly through manuals and forums available 
on the Web. Among these codes that are specific for radiation interactions 
we can mention MCNPX,18 FLUKA,16 GEANT4,17 Penelope (A Code 
System for Monte-Carlo Simulation of Electron and Photon Transport, 
see Ref. 27), and the SHIELD-HIT code that was tested for tissue-like 
media by Gudowska et al.19 These codes are well adapted for large scale 
simulations and they offer good results precision for a reasonable amount 
of computing time, and some benefit from integrated variance reduction 
techniques (e.g., MCNPX) in order to further improve the results statis-
tics. Generally, in these codes the tracking is done in a condensed history 
steps, interactions with energy loss values less than the fixed energy cut-
off and occurring between two major energy transfers are skipped and 
the total energy loss is accounted for in one point situated at the end of 
the mentioned step of interaction. In this case, the total cross section is 
obtained by integrating the single differential cross section between the 
energy cut-off Ecut and the maximum energy that can be transferred 
to the medium in one single interaction noted as Emax. It follows the 
expression:

where E represents the energy transfer per single interaction.
And the energy loss per distance unit taking into account only the 

skipped interactions with energy transfers below the energy cut-off value 
is obtained by:

(1)σ =

∫ Emax

Ecut

dσ

dE
dE,

(2)

dE

dx
=

∫ Ecut

0

dσ

dE
E · dE.
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Depending on the step size the energy loss dE is calculated using the 
previous expression and it is added on the energy deposit value at the end 
of the step.

This method is used by several codes (e.g., MCNP and Geant4) as it 
avoids loosing time on small energy transfers and generating a big number 
of secondary particles (mostly electrons) that are not important on the 
whole simulation scale from the macroscopic point of view. The energies 
of the skipped secondary electrons in this case do not exceed the energy 
cut-off values, usually set between 250 eV and 1 keV noting that their ranges 
in water and tissue remains within 1 μm from the primary particle’s track.28 
One may generally conclude that the adopted spatial resolution in these 
simulations is about 0.5–1 μm. We should note here that the dimensions of 
a biological cell can vary depending on its type, and its nucleus dimensions 
are around 10–20 μm as a rough approximation. As for a chromatin fiber 
the typical dimension scale is of the order of few nanometers depending 
on the number of the considered nucleosomes. DNA double strand breaks 
can be formed by two single strand breaks separated by less than 10 base 
pairs which is equivalent to a maximum distance of ∼3.2 nm. So for DNA 
damage calculations, simulations should have a nanometer scale precision 
and this is not provided by the general purpose MC codes. For this reason 
detailed interactions track structure codes were developed with physics pro-
cesses and cross sections that are especially dedicated for precise molecular 
scale calculations, e.g., code of Gervais et al.,29 PARTRAC (Particle Tracks, 
see Ref. [21, 30, 31]), PITS (Positive Ion Track Simulation32), NOREC 
(National Oak Ridge Electron Transport Code, see Ref. 33), Geant4-DNA 
which is an extension to the previously introduced Geant4 code enabling 
simulations on the DNA scale,34 and others. Here it is important to note 
that most of the cross sections are calculated for water as we consider that 
the stopping powers of water and tissue are almost equivalent.

2.2 Collision processes: cross sections
Cross sections for protons inelastic collisions (excitation and ionization) can 
be calculated using different methods like the First Born Approximation 
(FBA) and the Rudd semi-empirical formula as it is the case in Geant4-
DNA35 and PARTRAC36 codes. The dielectric response function of water 
is fitted to experimental data of Heller et al.37 and Hayashi et al.38 using 
Drude equations and the double differential cross section is obtained and 
integrated to calculate the single differential and the total cross sections. 
This approach works well for high incident energies and fails when the 
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incident particle speed becomes comparable to the speed of the target 
orbiting electrons. So for low energy protons (below 500 keV) the FBA 
should be replaced by an alternative model. The Rudd semi-empirical for-
mula gives the energy differential cross section down to incident energies as 
low as 1 keV. A relativistic approach of the Rudd model was also presented 
by Plante and Cucinotta43 for protons and heavier ions enabling calcula-
tions of ionization cross sections for energies between ∼1 MeV/amu and 
∼105 MeV/amu using no additional alternative models. The mentioned 
relativistic Rudd formula was also implemented in Geant4-DNA allow-
ing Geant4 users to simulate relativistic ions in water taking into account 
ionization processes.26 Theories of ionization collisions for fast incident 
ions were thoroughly reviewed and discussed by Belkić39 where ioniza-
tion cross sections are calculated according to different theoretical assump-
tions including the continuum distorted waves approximations and the 
results were compared to experimental data. It was shown that while the 
FBA diverges from the experimental results for intermediate and slow ion 
velocities, the Modified Coulomb Born (MCB) method, which is related 
to Continuum Distorted Wave-Eikonal Initial State (CDW-EIS) method 
gives better cross sections in a wider energy region. Track codes usually do 
not use the second-order theories, such as the MCB, Continuum Distorted 
Wave (CDW)39 or CDW-EIS approaches. One of such codes described by 
Gervais et al.29 employs the CDW-EIS method for ion interaction with 
water and the Rudd semi-empirical formula is used to track the generated 
secondary electrons. This code also takes into account the chemical reac-
tions that take place after the physical interactions in the target medium. 
However, since it is configured in a way that the projectile energy is held 
constant over the whole simulation length, so that the simulation cor-
responds to a well-defined energy and a constant particle LET, it is not 
possible to simulate a complete ion range and to retrieve the Bragg peak 
position in this case.

Charge change contribution to energy loss cannot be neglected espe-
cially in the Bragg peak area where it reaches 30% of the total energy loss 
in the case of protons. Charge transfer cross sections for protons and alpha 
particles are well described by Dingfelder et al.36, 40 For heavier ions when 
the cross sections for each of the charge change channels are not available 
the common procedure that is followed is to consider an effective charge 
that takes into account all the possible charge states of the ion depending 
on its stripped charge number and also on its velocity. High energy ions 
tend to be stripped and charge change contribution increases when the ion 
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energy decreases. Modeling the effective charge of an ion can be achieved 
by using semi-empirical formulas that were fitted so that the calculated 
stopping power agrees with the corresponding experimental values. We 
may cite the model of Barkas et al.,41 Booth and Grant model42 that is 
used in the simulation code described by Plante and Cucinotta43 and also 
in Geant4-DNA for ions heavier than protons by Francis et al.26 A detailed 
study on the effect of the Barkas correction to the Bethe-Bloch stopping 
power can be found in Porter.44

For inelastic collisions of electrons, the FBA can be used for sufficiently 
high energies in water as described by Dingfelder et al.45 and Emfietzoglou 
and Nikjoo.46 For relativistic energies above ∼35 keV an adapted formalism 
is applied to the FBA by Bousis et al.47 And for low kinetic energies, cor-
rections can be applied to the cross sections as described by Emfietzoglou 
and Nikjoo.46 The mentioned corrections may vary from a simple fitting 
factor bringing the calculated cross section closer to the experimental 
values to more theoretical models taking into account higher order pertur-
bations. In Dingfelder et al.45 the differential cross section was multiplied 
by an empirical factor and the final values agree with the experimental 
data of electrons collisions in vapor water. Alternative corrections have 
been studied like the classic coulomb field correction by Vriens48 and the 
second order perturbation term described by Emfietzoglou and Nikjoo.46 
The latter correction considers a second order perturbation term based 
on the work of Ashley et al.49 Also Kim and Rudd50 proposed a binary 
dipole semi-empirical model providing reasonable values of ionization 
cross sections.

Although no energy loss is induced by elastic collisions of electrons, 
the effect of this process on the particle diffusion and consequently on the 
track pattern is non-negligible. Elastic scattering cross sections were fitted 
by Brenner and Zaider51 mainly based on values obtained by experiments 
for electrons below 200 eV. For higher energies the screened Rutherford 
model is applied. A recent model was published by Champion et al.52 and 
implemented into Geant4-DNA. Michaud et al.53 have also published elas-
tic scattering cross sections for electrons collisions with ice, however, these 
values are not expected to be the same as for liquid water. In fact, cross sec-
tions of electron collisions have been abundantly studied in the literature; 
for the sake of simplicity it is not possible to state all the proposed models 
in this work. The main challenge for Monte-Carlo studies today remains in 
simulating the so called sub-excitation electrons. When the electron energy 
drops below about 12–8 eV its wave length size approaches the target 
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molecule dimensions and reaches ∼1 nm for energies around 1.5 eV. For 
these energies the dominating processes are elastic scattering, vibrational 
and rotational excitations. Experiments on sub-excitation electrons and 
on electrons thermalization processes in water are technically very difficult 
to realize so the data published in the literature is very scarce and the few 
available sources are not in full agreement. Since there are no theoretical 
models that are able to reproduce or predict the inelastic cross section shape 
for such low energy electrons in water a commonly adopted procedure is 
to take the data presented by Michaud et al.53 for ice and scale its values 
to liquid water. The scaling is usually done by enhancing the cross section 
values by a factor of 2.29 This procedure is very approximate but it can be 
used as an extrapolation of electron tracks till complete energy loss, con-
sidering that the cross sections for energies below 2 eV are obtained by a 
simple extrapolation of the lowest energy cross section. One way to verify 
the reliability of the so obtained simulations is to compare the ranges of 
sub-excitation electrons with the ranges published by the mentioned work 
of Michaud et al.

2.3 Sub excitation electrons and the chemical phase
Moreover, investigations of the effect of electrons with energies below 
20 eV on DNA molecules are still in progress by many authors, e.g.,  
Boudaiffa et al.,54 Huels et al.,55 Sanche.56 It has been proven that for  
specific energies of electrons (around 8–10 eV) there is a certain resonance 
leading to a peak in the yields of DNA strand breaks. An example of low 
energy electrons calculations showed that ranges of such electrons can reach 
values as high as ∼30 nm which is relatively high in comparison with DNA 
nucleosome size according to Uehara and Nikjoo,57 Meesungnoen et al.,58 
and Munoz et al.59 Thus, numerical simulations for such electrons should 
be reviewed and improved through accurate cross-sections calculations or 
measurements.

The interest in these low energy electrons comes not only from the fact 
that they can induce direct damage in the DNA but also at the end of its 
track an electron becomes aqueous and can interact with water molecules, 
oxygen or hydrogen in the medium leading to a free radical creation. Free 
radicals are very reactive species and can interact with the DNA causing 
strand breaks. Also the local energy depositions can lead to chemical reac-
tions in the medium creating new interactive species that can modify the 
DNA structure and cause strand breaks. Creation of chemical elements 
depends on the initial preceding physical process at the interaction point. 
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For numerical simulations chemical species creation may be summarized 
as following; an ionized water molecule (H2O+) decays into H3O+ and 
OH, and an excited water molecule (H2O*) decays into one of seven chan-
nels depending on the excitation state leading to H, OH, H2O2, H3O+, 
or aqueous electrons production. The branching ratios for the different 
channels may vary slightly in the literature from one source to another. 
Differences can be due to the adjustments that are made by authors in order 
to agree with the data obtained by experiments. In fact, using different cross 
section models in the physical phase leads to differences in the initial energy 
deposit distributions that can be corrected when handling chemistry. Then 
the created species are diffused in the medium during the chemical phase 
which happens between 10−12 and 10−6 s after the passage of the ionizing 
particle. Diffusion follows a Brownian dynamics and the simulation at this 
phase is processed using time steps that are usually of the order of 10−12 of 
a second. The reason behind using time steps is that the different species can 
interact with each other’s and for every time step new positions are assigned 
for each element and a test runs over the different radicals in the simula-
tion to check their separating distances. Each radical type has an interaction 
radius and the interaction of neighboring radicals can lead to new chemical 
elements creation. The reaction radius depends on both neighboring free 
radicals and can vary from 2.5 × 10−5 nm to 0.94 nm according to calcula-
tions of Uehara and Nikjoo.57 This simulation approach was also adopted 
by Frongillo et al.60 and the yields of H2 and aqueous electrons from 10−12 
to 10−6 s after 5 MeV and 300 MeV protons irradiations were compared to 
experimental measurements showing good agreement. The chemical phase 
simulation is also taken into account by other codes that we will not detail 
in this chapter for the sake of brevity. However, most of the mentioned 
codes are very specific and somehow difficult to access since they were built 
for single type of local applications in their development laboratories. For 
this reason chemistry processes were included in the Geant4-DNA toolkit 
and will be released in the future public versions of Geant4 after going 
through the required validation phase.

3. RADIATION MICRODOSIMETRY ANALYSIS
 3.1 Theoretical and experimental microdosimetry
Radiation can be characterized using concepts introduced by the micro-
dosimetry formalism and that can be obtained numerically and experi-
mentally. Microdosimetry was first introduced by Rossi in the sixties in an 
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effort to improve the classic dosimetry through more accurate concepts. A 
global review about Rossi and his work with the historical development 
of microdosimetry can be found in Kellerer et al.61 Numerical methods 
for microdosimetry quantities calculations were reviewed and thoroughly 
explained by Kellerer and Chmelevsky.62, 63 Then the mentioned formal-
ism found its most important applications in measurement techniques for 
radiation protection purposes and in radiation therapy.

In order to show the separating edge between dosimetry and micro-
dosimetry, a simple simulation of 400 MeV/amu carbon ions crossing a 
spherical volume of water was realized using Geant4.9.5 standard pro-
cesses. The energy deposit points were scored in the target and the total 
energy per mass unit was calculated for different target dimensions. The 
results were reported in Figure 4.1 showing the variation of the energy 
deposit with the different mass values. We can notice that for targets 

Figure 4.1 Energy deposit per mass unit for spherical targets of different dimensions 
irradiated with 400 MeV/amu carbon ions. The results are presented versus the mass of 
the irradiated target and were obtained using Geant4.9.5 Monte-Carlo simulation. The 
lines on the plot are kept to guide the eye.
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below ∼500 g the energy deposit varies quickly with the target mass while 
showing a more stable behavior for targets above this mass threshold. Note 
that this threshold depends on the mean free path of the particle in the 
medium that will strongly affect the energy deposition distribution inside 
of the target. In fact, in large volumes the total energy deposited by a par-
ticle is not a stochastic value and remains almost the same using different 
calculation methods but for relatively small volumes, e.g., in the presented 
example volumes with less than 500 g of water, the particle energy loss 
within the target varies from one event to another so it is considered a 
stochastic variable that we call the “imparted energy” in the microdosim-
etry formalism. The specific energy is the imparted energy per mass unit 
and is generally noted by the letter “z,” it is the analog of the deposited 
dose in classic dosimetry. The lineal energy transfer is obtained by dividing 
the imparted energy in a target over the mean cord length of the tracks 
crossing the target volume, and it is the analog of the linear energy trans-
fer in classic dosimetry. The specific energy and the lineal energy transfer 
are stochastic quantities and their distributions can be of importance for 
radiation quality assessment. Lindborg and Nikjoo64 studied the radiation 
quality factors for radiotherapy applications using X-ray, protons, neutrons, 
and carbon ions irradiations and Nikjoo et al.65 presented a database of 
microdosimetry quantities calculated for electrons, protons, alpha par-
ticles and carbon ions. At the HIMAC facility, experiments published by 
Tsuda et al.66 were carried out measuring the lineal energy distributions 
for carbon ions and also for five ion fragments (proton, helium, lithium, 
beryllium, and boron) in the lineal-energy range of 0.1–1000 keV/μm 
at eight different depths between 7.9 and 147.9 mm in an acrylic phan-
tom.67 These kinds of measurements are mostly done using adapted tissue 
proportional equivalent counters (TEPC). Tissue-equivalent gas volumes 
are used to simulate the presence of a tissue volume with micrometric or 
nanometric dimensions. This assumption considers that the energy loss 
of an energetic particle would be the same through both targets. This is 
achieved by considering that the energy loss in tissue and gas is obtained 
respectively by:

where ρ represents the density of the tissue and l the mean chord length 
of the target volume.
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As detailed in the International Commission on Radiation Units and 
Measurements (ICRU) report 16 on Microdosimetry,68 the volume of a 
biological tissue can be simulated by a gas volume when the atomic com-
positions of the tissue and the gas are identical and the mass stopping power 
is independent of the density. In spite of the technical difficulties, e.g., 
detector’s wall effect and others, the challenge using this type of dosimeters 
was always to reach the finest resolution of energy deposit measurements 
on the nanometric level. This inspired new techniques that are able to 
reach this scale for different radiation types, some related details can be 
found in De Nardo et al.69 and Grosswendt et al.70

These measurements are now frequently used to characterize radiation 
fields and are also of interest for Monte-Carlo codes validation. Using the 
code described by Bigildeev and Michalik,71 Palajova et al.72 calculated the 
lineal energy distributions for protons with energies 47, 62, 76, 93, 115, 139, 
and 172 MeV crossing a spherical volume of water with 3 μm diameter. 
The dimensions of the target are chosen to match with the TEPC detector 
that is used in the experiments of Borak et al.12 The distributions and the 
mean values of the calculated lineal energies were compared to the results 
obtained by the experiment. Two experimental sets of data were presented; 
one was obtained using the mentioned TEPC and the other set using a 
position-sensitive silicon spectrometer. A better agreement was obtained 
with simulations involving only ionization processes. For the sake of 
validation, the Geant4-DNA package was also used to generate frequency 
distributions and mean lineal energies for the same target geometry. The 
results of mean lineal energies are reported in Table 4.1 showing data of 
Borak et al. and calculations of Palajova et al. compared with Geant4-DNA 

Table 4.1 Frequency mean lineal energy obtained by the experiments of Borak et al.12 
using TEPC counter and a silicon detector, by the calculations of Palajova et al.79 and 
calculations of Francis et al.80 using the Geant4-DNA processes of the Geant4 toolkit

Protons  
energy (MeV)

TEPC12 Silicon 
detector12

Palajova et al.79 
calculations

Geant4-DNA 
calculations80

47 1.03 1.5 – 1.36
62 0.94 1.06 0.84 1.06
76 0.81 0.86 – 0.88
93 0.69 0.73 0.63 0.725
115 0.58 0.63 – –
139 0.5 0.55 0.5 –
172 0.43 0.51 0.42 –
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calculations and a good agreement was obtained for protons with the previ-
ously mentioned energies.35

Another comparison between Geant4-DNA and the code by Bigildeev 
and Michalik71 consisted on shooting 1 MeV protons through separate 
spherical water targets of 30 nm and 2 nm of diameter. Then the total 
energy deposit is computed taking into account the build-up effect by 
placing the source at a certain distance from the target achieving electronic 
equilibrium. The results consisted on showing the total energy deposit 
per mean track length in the target versus the eccentricity of the incident 
beam which is the distance between the beam and a parallel segment going 
through the target center. The two codes are in agreement for both target 
sizes and the results are reported in Tables 4.2 and 4.3.

Table 4.2 Energy deposition per track length unit of 1 MeV protons crossing spherical 
water target with 30 nm diameter versus the incident beam eccentricity. The compari-
son between the 2 codes calculations shows a good agreement

Eccentricity (nm) Code by Bigildeev and 
Michalik71 (eV/nm)

Geant4-DNA (eV/nm)

0 21.65 22.6
5 20.34 21.35
10 15.77 16.6
12 12.47 12.4
15  3.29  3.46
18  0.98  0.9
20  0.63  0.7

Table 4.3 Energy deposition per track length unit of 1 MeV protons crossing spherical 
water target with 2 nm diameter versus the incident beam eccentricity

Eccentricity (nm) Code by Bigildeev and 
Michalik71 (eV/nm)

Geant4-DNA (eV/nm)

0 9.6 9.7
0.2 9.34 9.6
0.4 8.73 9.25
0.6 7.68 8.09
0.8 6.04 6.2
1 1.71 2.28
1.2 1.32 1.15
1.4 1.07 0.916
1.8 0.69 0.799
2.5 0.35 0.33
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3.2 Ions RBE estimation
Most of the numerical studies on energy deposition in small nanometric 
volumes were influenced by the scale of the DNA fragments size. The 
outcome of these studies started to be put in practice for radioprotec-
tion and radiobiology as summarized by Lindborg and Nikjoo.64 Gerlach 
et al.73 have already used a derivate formalism to calculate radiation RBE 
for radiotherapy use. Experiments in microdosimetry started mostly using 
X-rays and gamma radiation due to the accessibility of such sources 
and the data is somehow abundantly available for this type of particles. 
However, with the new needs in the ion therapy domain, studies had to 
be made on a wider range of particles covering configurations that are in 
use today in the medical medium. Moreover, for carbon ions, due to the 
fragmentation effects the radiation field becomes very complex includ-
ing more than seven secondary particles that can contribute significantly 
to the total energy delivered in the irradiated medium, e.g., protons, 
alpha particles, lithium ions, tritons, deuterons, beryllium, and boron ions 
including also the different elements isotopes. A simulation of carbon ions 
crossing a water volume was carried out using Geant4 version 9.5. The 
energy of the beam was 400 MeV/amu since this is the highest energy that 
is used for medical accelerators and this would show the upper limit of 
secondary contributions in radiotherapy irradiations. For more precision, 
the quantum molecular dynamics model was used instead of the binary 
ion cascade. The obtained results showed that 64.1% of the global dose 
is deposited by carbon ions and up to 35.9% by the produced fragments 
including all their isotopes. Protons contribution was about 14% against 
13% for alpha particles. Other fragments contributions include lithium 
1.7%, boron 4.2%, beryllium 1.3%, deuteron 1.3%, and triton 0.4%, 
approximately. Neutrons are produced abundantly in the fragmentation 
processes and most of their interactions in water are with hydrogen atoms 
producing recoil protons so their contribution is indirectly accounted for 
with protons contribution.

It is to mention here that the Geant4 fragmentation models were inves-
tigated and benchmarked with the Fluka code74 in comparison with some 
experimental values. The comparison included total nuclear cross sections 
for carbon interaction with hydrogen and oxygen between 10 MeV/amu 
and 500 MeV/amu, total and partial charge change cross sections in water 
and polycarbonate as well as other results obtained from simulations like 
angular yields of H, He, Li, and B and yields of fragments with respect to 
the depth of the track in water. Although an agreement can be seen for the 



Molecular Scale Simulation of Ionizing Particles Tracks for Radiobiology 95

general trend of the obtained results, in the case of single differential values 
discrepancies of 10% are noticed between the two codes. However, since 
data is still scarce for this kind of validations, and here we are only pre-
senting a general approximate idea about fragmentation yields and energy 
deposition, we will assume that the present state of fragmentation processes 
in Geant4 is reliable for our study.

The energy deposition by 400 MeV/amu carbon ions versus the beam 
depth in water is shown in Figure 4.2 revealing a Bragg peak around 
27.5 cm. The total fragments contribution and individual contributions of 
protons, alphas, and boron ions are also illustrated. We can notice that the 
energy deposition by fragments can reach distances over 40 cm from the tar-
get entry point mainly due to protons and alpha particles especially beyond 

Figure 4.2 Energy deposition by 400 MeV/amu carbon ions at different depths crossing 
a water volume. Simulations were done using Geant4 (version 9.5) and the quantum 
molecular dynamics for fragmentation processes. The results include total contribution 
of fragments to the energy deposition and individual contributions for protons, alpha 
particles, and boron ions.
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∼37 cm. As a rough approximation we can conclude from the plot that 
the energy deposition per distance unit at 40 cm depth is about 20 MeV/
cm which correspond to 10 eV of deposition per 5 nm of particle distance 
mainly due to protons and alphas. Theoretically, assuming that we need at 
least ∼8.2 eV of energy deposition to ionize a DNA base, it is obvious that 
the fragments energy deposition tail at this depth can still induce DNA 
strand breaks and have an effect on biological cells. Thus, this part of the 
energy profile cannot be neglected.

On another side the kinetic energy profiles of protons and He nuclei at 
30 cm depth are shown in Figure 4.3. The mean kinetic energy for protons 
at this point is around ∼100 MeV and for He nuclei it is ∼212 MeV/amu. 
The range of particles at these energies easily exceeds 5 cm and may reach 
28 cm in the case of He nuclei which leads to an overall depth of 58 cm in 
the mentioned water volume. Thus, the risk of mutation and radio-induced 
cancer probability should be further investigated for such type of ions.

Figure 4.3 Energy distribution of protons and alphas at 30 cm depth in water target. 
Particles are issued form 400 MeV/amu carbon ions fragmentation in the medium.
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Figures 4.4 and 4.5 show the fragments build-up through the target in 
number of ions per primary event for B, Be, Li, triton, He, protons, and 
neutrons. Gamma photons were also abundantly produced in the medium 
but are not represented on our plots. Here also it is easy to notice that pro-
tons and He yields are the highest among other charged ions in the target. 
This is also reflected in the fragments energy deposition curves presented in 
Figure 4.2 where most of this energy is carried by He and protons.

The previously mentioned study of Gerlach et al.73 was mainly 
focused on the analysis of the carbon complex radiation field and the 
related RBE calculations for medical applications. Using a TEPC detector, 
measurements of microdosimetric spectra were performed near a perspex 
phantom surface for carbon ion beam with energies between 89 MeV/
amu and 430 MeV/amu and at different depths including the neighbor-
hood of the Bragg peak area. The advantage of such an experiment is 
that measurements are done for the whole field including the fragments 

Figure 4.4 Build-up of B, Be, Li, and triton ions issued from the fragmentation of carbon 
ions of 400 MeV/amu crossing a water volume.
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cascade effects and their contribution to the dose deposition. Then the 
total RBE including contributions of all the secondary particles can be 
calculated by weighting the measured lineal energies spectra d(y) with the 
so called biological weighting function r(y) as described by the following 
expression:

The biological weighting function depends on the cell type and on the 
irradiation conditions; it can be obtained only after experimental trials. In 
the study of Gerlach et al.73 the RBE of neutrons were measured at nine 
different neutron irradiation facilities for mice crypt cells. The absorbed 
dose was the same for the nine irradiations (8 Gy) given in one single frac-
tion. Also the lineal energies of the irradiation facilities were measured for 
the same conditions using a special TEPC detector developed for therapy 

(4)RBE =

∫

r(y)d(y)dy.

Figure 4.5 Build-up of He, protons, and neutrons issued from the fragmentation of 
carbon ions of 400 MeV/amu crossing a water volume.
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radiation simulating a tissue volume of 1 μm of diameter. The biological 
function was then calculated for the mentioned cell types as a solution 
function for the nine irradiation cases. In an attempt to calculate the carbon 
ions RBE the same algorithm was used taking into account the biological 
function that was obtained after neutron irradiations. Although this method 
is an interesting step toward ions RBE calculation using microdosimetry, 
the effect of radiation type on the biological function is not clearly known 
yet, so the obtained RBE can only be considered as an approximation that 
should be validated by experimental RBE measurements in carbon ion 
fields and for the same cell type. So far, numerical RBE estimation often 
lacks of experimental data in the case of heavy ions irradiation. Although 
recent data is being published (e.g., Ref. 66), experiments and RBE mea-
surements regarding therapy ion beams are still scarce in the literature. In 
fact, due to the restricted access to the few available carbon irradiation 
facilities, data sets that are usually needed to further develop and validate 
the related numerical algorithms for microdosimetry properties or RBE 
calculations, are somehow hard to obtain and most of the studies are still 
based on the results coming from X-rays or other available sources.

4. DNA DAMAGE ESTIMATION
 4.1 Track structure detailed approach
Understanding the cell reaction to radiation and the resulting RBE of 
different radiation types requires a detailed knowledge of the molecular 
characteristics of the damage that is created within the cell. Calculations 
of DNA damage might generally be differentiated according to the com-
plexity of the adopted approach and the details that are taken into account 
in the DNA modeling phase. In fact the first set of simulations started by 
taking particle tracks crossing small cylinders of water with nanometric 
dimensions and randomly placed in a water volume. The cylinders pre-
sented an approximation of the chromatin fiber fragments and energy 
deposits within such small volumes were studied mainly for X-rays and ions 
like protons and alpha particles of different energies. This kind of simula-
tion played an important role in understanding the differences between low 
versus high LET radiation effects.75 Then progress was carried out toward 
more detailed methods like the complete atomistic DNA modeling, e.g., 
Friedland et al.30 where the PARTRAC code was used to generate tracks 
of particles through the target geometries taking into account the chemical 
effects in the medium. Simulations included different chromosome shapes 
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(lymphocytes and fibroblasts) and different DNA arrangements. The yields 
of single and double strand breaks and the frequency distributions of DNA 
fragments with different lengths after irradiations were calculated. Further 
details about similar procedures can be found in the literature and by other 
references that are not mentioned here for the sake of brevity; in fact hav-
ing a geometrical model for the DNA was a principal point for many 
projects trying to pre-estimate DNA damage effects using Monte-Carlo 
track structure codes. In spite of the many differences between the different 
adopted models, the DNA configurations might have a common standard 
that was followed by almost all the authors where the DNA double helix is 
surrounding the histone volume of few nanometers (6–7 nm of diameter) 
forming the nucleosomes. These latter are then placed together in different 
configurations to form the chromatin fibers. It is more frequent that at this 
level, differences will arise from one author to another since configurations 
of nucleosomes and even of chromatin fragments that constitute the whole 
chromosome can be completely random or can follow some imposed 
criteria to reach a certain DNA density or a desired base pair number in 
a fixed volume of the target. Having the DNA geometry at hand one can 
distinguish between the contributions of direct versus indirect effects of 
radiation and have access to data like DNA damage complexity and result-
ing DNA fragments lengths. As advanced as this procedure can be, having 
the complete perfect model of the DNA geometry is a very complex task 
not to mention the required computing power that is needed in this case 
due to the big number of elements one has to introduce in the simulation.

4.2 Stewart and Semenenko MCDS method
In parallel to the mentioned studies, other methods were found with sim-
pler requirements and leading to a fair approximation of DNA damage cal-
culations. An interestingly fast approach is the one adopted by Semenenko  
et al.,24,76 where the initial damage is generated randomly on the DNA  
array taking into account the initial particle energy and LET. So the num-
ber of damages is directly related to the particle’s properties but their spatial 
distribution is sampled randomly. This approximation avoids the particle 
tracks simulation phase and also the chemical species diffusion phase thus 
accelerating the simulation by a considerable amount of time. Then the 
emphasis is put on the damage analysis, damages on opposite strands sepa-
rated by less than 10 base pairs of distance can form a double strand break 
and if more than two damages are present in such a limited area they are 
considered as a complex damage. This latter type is considered lethal for 
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the cell since it cannot be handled by the repair mechanisms, also its pres-
ence might stop the cell reproduction cycle and lead to the cell death. In 
fact, in the work of Nikjoo et al.77 damages were classified into categories; 
single strand breaks representing only one strand damage and are referred 
to as SSB, complex single strand breaks when more than one damage 
occur on the same strand within a distance of 10 base pairs and are noted 
as SSB+, double strand breaks (DSB) represent two damages on opposite 
strands located within the 10 base pairs distance, damages noted by DSB+ 
are formed by a SSB and a SSB+ located on opposite strands and DSB++ 
are the most complex damages as they can be formed by a combination of 
DSB damages within a limited base pairs distance. This classification was 
then adopted by many other studies and other authors since it summarizes 
somehow most of the occurring configurations of DNA damage types.

The work of Semenenko and Stewart included also cell repair  
activities through Base excision repair and Nucleotide excision repair path-
ways, however, this subject is not to be discussed here since it is out of the 
scope of this paragraph. The results obtained by Semenenko and Stewart 
showed good agreement with the detailed calculation methods discussed 
previously and with the experimental values on DNA mutation frequency 
after irradiation. Hereafter when referring to Semenenko and Stewart 
approach we mean the Monte-Carlo Damage Simulation (MCDS) that 
does not take into account any repair activities in the calculations. This 
is seen as an appropriate choice for a comparison with other algorithms 
where the repair activities are also neglected.

4.3 Garty statistical approach
Another study that is more based on microdosimetry is the one published 
by Garty et al.78 Garty and co-workers assumed that there is a one-to-
one correspondence between the ionizations formed within a considered 
sensitive volume and those formed within a DNA segment of equivalent 
size. Distributions of ionizations occurring in the sensitive volume can be 
obtained experimentally using a gas tissue equivalent counter or by numeri-
cal simulations using a track structure code. The size of the sensitive volume 
is chosen to be equivalent to the size of a DNA segment of one or two 
helical turns. Thus the sensitive volume is represented by a cylinder of about 
∼6 nm of length and ∼4 nm of diameter. These dimensions are based on 
the assumption that damages occurring within such a distance can interact 
together to form double strand breaks or more complex lesions. Assuming 
also that every single ionization has a fixed probability to be converted into a 
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DNA lesion and an equal chance to fall on one of the two strands, yields of 
single and double strand breaks can be obtained by the following expressions:

where C is a conversion factor, and for C = 9.6 × 10−10 the yield G is 
obtained in (Gy−1 Da−1). The sensitive volume VSV is in (nm3), pSB is the 
probability that an ionization is transformed into a strand break (usually taken 
between ∼9% and ∼12%) and W is the mean energy deposited (in eV) by 
a single event in the sensitive volume. f (nion) is the frequency probability of 
ionization number nion induced within the sensitive volume for one event, it 
can be obtained experimentally by taking a tissue equivalent detector volume 
of the same size of the studied target or also by simulating tracks crossing a 
similar sensitive volume. Note that this procedure is purely statistical and its 
main advantage is that it requires only one input parameter to be fixed by 
the user, which is the strand break induction probability. For pSB = 11. 7% 
this approach leads to good agreement with experimental results of gel elec-
trophoresis analysis on plasmid DNA irradiated with electrons and X-rays.

4.4 DBSCAN clustering estimation
Another study based on clustering algorithms is described in Francis et al.26 
In this case the DNA distribution inside of the cell nucleus is considered to 
be overall homogenous. So the radiation track structure simulations are car-
ried out in a water volume with the same size as the nucleus of the studied 
cell type. The energy deposition locations and values are scored in a separate 
file that is treated by the algorithm after the simulation phase is completed. 
Chemical reactions are not modeled directly only the physical track structure 
is calculated, however, in our calculation we take into account that an energy 
deposition that is sufficiently close to DNA can induce indirect damage to 
this latter. So we consider that there is a certain sensitive area surrounding the 
DNA geometry which might also be explained as a geometrical cross sec-
tion defining the percentage of the volume where an energy deposition may 
lead to DNA damage. The damage sampling follows also a linear distribution 
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function having 0 probability of damage induction for energy deposition 
below 5 eV and a probability of 1 above 35 eV depositions. At the final stage a 
Density Based Clustering Algorithm with Noise (DBSCAN) runs over all the 
sampled damage points and according to their separating distances clusters of 
several damages are formed. The calculated damages here follow also the clas-
sification of Nikjoo et al.77 for single strand breaks and double strand breaks. 
The obtained results for protons with energies between 0.5 MeV and 50 MeV 
were compared with the calculations of the PARTRAC code and with 
experimental data of plasmid damage after irradiation showing a good agree-
ment. This model takes three main input parameters, the already introduced 
geometrical cross section (∼16%), the maximum distance within which dam-
ages belong to the same cluster and its value should remain close to a 10 base 
pairs distance (∼3.2  nm) and the damage probability function equation.

Figure 4.6 shows a comparison of the predicted DSB/SSB ratio induced 
by protons irradiations with energies between 0.5 MeV and 50 MeV.  

Figure 4.6 Comparison of double strand breaks over single strand breaks ratio 
obtained with the PARTRAC code,21 the approach described by Garty et al.,78 the clus-
tering method of Francis et al.,25 and the MCDS model described by Semenenko and 
Stewart.76
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The comparison includes values from PARTRAC code simulations com-
pared to the results obtained by using the approach of Garty combined 
with ionization distributions simulated using the Geant4-DNA processes. 
Also the results obtained by the DBSCAN clustering algorithm and tracks 
generated with Geant4-DNA are shown with the predictions of the 
MCDS of Semenenko and Stewart76 A general agreement can be noticed 
between the different approaches although differences start to grow for low 
energies meaning with higher LET. In fact in the PARTRAC calculations 
the chemical phase was completely modeled including the scavenging 
effect that is enhanced at high LET due to the high density of chemical 
species created in the medium. Since the chemical species diffusion was not 
taken into account in the other calculations, differences may increase with 
increasing radiation LET.

In general, these models agree with each other’s and with some experi-
ments on plasmid DNA, although track structures are generated in liquid 
water without taking into account the DNA interaction cross sections. It 
has been shown in the literature that the differences between water and 
DNA bases cross sections cannot be neglected and DNA cross sections 
should be used instead of water for DNA simulations. Moreover experi-
ments with sub-excitation electrons showed that these latter can cause 
DNA damage even at very low kinetic energies that are not considered 
to induce direct ionizations. In fact, studies of Boudaiffa et al.54 showed 
that there is a resonant formation of DNA strand breaks irradiated with 
electrons of energies between 3 and 20 eV and surprisingly double strand 
breaks can still be induced by electrons with energies as low as 5 eV. In most 
of the track structure codes that are in use today these low energy electrons 
are either killed assuming that their energy is not high enough to induce 
direct DNA ionizations or simply transported with one single step of con-
densed history until their end of track location. Few specific codes studying 
only sub-excitation electrons can model detailed and precise tracking in 
this case. It is clear that in their present state, the approximation algorithms 
that were mentioned here before cannot reproduce the results of Boudaiffa 
et al. where most of the damages are induced by vibrational and rotational 
excitations and by electron attachment processes.

5. CONCLUSION

Here in this chapter a brief summary was presented reviewing the 
different basic approaches that can be used for modeling ionizing particles 
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tracks with molecular scale resolution. An emphasis on the importance of 
such studies for the radiobiology and the hadrontherapy fields was built up 
during the whole text showing some of the examples that were published 
in the literature and presenting a clear idea of the different methodologies 
that can be used to study DNA radiation damage.

In the second paragraph describing track structure codes, most of the 
mentioned physics models are based on the processes that were included 
in the Geant4-DNA package. Although, other existing codes are well 
developed in the field, the main difficulty remains mostly in the acces-
sibility of these “homemade” programs that are often built for one single 
or a restricted application type. The Geant4-DNA project aims to present 
a detailed track structure code that enables all Geant4 users to simulate 
particles interactions in biological tissue following a detailed step by step 
tracking with nanometric scale precision. The presented particles and their 
physical processes are already available to download with the public version 
of Geant4 and a typical example of a microdosimetry application is also 
provided in the Geant4 examples folder. The particles that can be modeled 
with the present version are electrons, protons, alphas and some heavier 
ions like carbon, only for a restricted energy range according to the avail-
able cross sections. On another hand, cross sections of particles interactions 
in DNA material are under development and the molecules diffusion pro-
cesses that are needed for the chemical phase simulation are going through 
validation tests and will be published in the upcoming releases. Also a typi-
cal atomistic model of DNA is under construction and will be included in 
one of the examples in the future Geant4 releases. These efforts aim to pres-
ent a publicly available library that can be used by any researcher interested 
in the mentioned applications taking benefit from a user support forum and 
a publicly available manual that is under continuous development.

In spite of the multiple efforts that are put by the different communi-
ties, improvements are still required to take care of some of the commonly 
adopted approximations. Here, tracking sub-excitation electrons in water 
and modeling their interactions with DNA material is still an open field. So 
far, the angular inelastic diffusion of sub-excitation electrons is considered 
isotropic which was never precisely confirmed by theoretical studies nor by  
adequate experiments. It is important here to mention the need of a reli-
able set of double differential cross sections taking into account both energy 
and angular diffusions of electrons. The importance of these latter par-
ticles is underlined in the previously mentioned study of Boudaiffa et al.54 
showing an unexpected sensitivity of DNA toward low incident energies.  
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Another point worth to mention is the DNA geometry models that are used 
in detailed simulations. These models often represent one single specific chro-
mosome structure while a big variety of configurations are encountered in 
reality which limits the applicability of the simulations to very specific cases 
of cell irradiations. In fact the genome geometry depends on the cell type 
and on the cell replication phase so simulations should include several geo-
metrical models to extend the applicability of their results to a wider range 
of irradiation configurations. As far as the author is aware, such advanced 
investigations were started by Friedland et al.30 but no other efforts were 
published regarding calculations with chromosomes irradiated in different cell 
replication phases.

For hadrontherapy, carbon ions fragmentation is now under the scope 
of several investigations. The fragmentation gives arise to secondary ions 
that are responsible for the tail of energy deposition after the “Bragg peak.” 
In order to make a numerical estimation of the RBE of these ions and 
their effect on the treatment area, important information can be found 
through nanometric scale track structure simulations. In the Geant4-DNA 
framework, using a speed scaling procedure with the previously calculated  
protons ionization cross sections and an effective charge model, it is possible 
to derive ionization cross sections for most of the fragmentation products. 
This process is already included in Geant4-DNA and a step by step model 
is used to track ions heavier than alpha particles for energies above 1 MeV/
amu taking into account ionization interactions. At the end of its track when 
the ion energy drops below the mentioned threshold inaccuracies arise since 
nuclear collisions are not taken into account. An adapted model of ions elas-
tic scattering is being studied in an effort to fill the gap of the lacking cross 
sections, the final goal would be to follow all the fragmentation products in 
a step by step mode until complete ion stop. Also here improvements are 
needed regarding the interactions cross sections since most of the discrepan-
cies between nucleus collisions models arise in the low energy parts.

For validation purposes, experiments using microdosimetry techniques 
for carbon ion beams analysis are of extreme importance for numerical 
codes control and should be supported in order to provide a wider data 
base. The required data may include lineal energies spectra in nanometric 
targets of different sizes and for different beam energies. Also DNA dam-
age experiments using typical DNA samples like plasmid are of importance 
for the validation of the different damage estimation algorithms. Most of 
the presented approaches that were developed for damage prediction are 
validated with the results of experiments using different radiation sources 
sometimes of different types. However, DNA damage yields depend 
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strongly on the particle type even for different particles of the same LET as 
demonstrated in Francis et al.26 So for hadrontherapy applications, a precise 
validation of DNA damage prediction methods should mainly rely on val-
ues issued from experiments that are done using, to an extent, the same real 
conditions and parameters as in the treatment cases. Finally, we can men-
tion that a comparison between the RBE calculations obtained using the 
multiple different studies would be of importance for the medical purposes.
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Abstract

Positron Emission Topography (PET) is a promising technique to verify the dose distri-
bution from proton therapy, a precise treatment modality increasingly used in radia-
tion oncology because its radiation pattern conforms more closely to the configuration 
of a tumor than does that from X-ray radiation, thereby sparing normal healthy tissue. 
Proton therapy produces positron-emitting isotopes along the beam’s path, allowing 
PET to image the distribution of therapeutic energy, viz., a form of quality assurance 
of the treatment. This ability is especially important when treating heterogeneous 
organs, such as the lungs or the head-and-neck, where calculating the expected dose 
distribution for treatment is complex. Here, we present the findings from our Monte 
Carlo simulations of the yield of positron emitters produced by proton beams of up 
to 250 MeV, followed by our statistically realistic Monte Carlo simulation of the images 
expected from a clinical PET scanner. Our emphases lay in predicting accurately the 
distribution of positron emitters, and in determining the quality of the PET signal near 
the Bragg peak that is critical to the success of PET imaging for verifying the proton 
beam’s location and dosimetry. We also demonstrate that the results depend strongly 
on the accuracy of the available nuclear reaction cross section data. Accordingly, we 
quantify the differences in the calculated positron-emitter yields from four different 
sets of such data, comparing them to the simulated distributions of positron-emitter 
production and absorbed proton energies.
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1. INTRODUCTION

The subject of the present study relates to the main topic of this book, 
namely high-energy collisions of heavy ions with matter, if we extend the 
subject to cover (a) biological tissues and (b) hadron therapy of cancer.1, 2 
The goal is to use Monte Carlo simulations for evaluating the applicability 
of positron emission tomography (PET)3 for monitoring dose distributions 
produced in biological subjects in proton therapy. This chapter presents 
such a simulation using a voxel-based Monte Carlo algorithm.  Application 
of PET to proton therapy dose monitoring rests upon detecting positron 
annihilation γ rays following the decay of the small amounts of positron 
emitters (typically 11C, 13N, and 15O) produced via the non-elastic nuclear 
reaction of protons with the target nuclei of the irradiated tissue. The input 
data for such simulations are mainly electronic and nuclear stopping powers 
of protons in matter, and the attenuation of the resulting 511 keV gamma 
rays in their way out of the subject towards the detector.4,  5 To arrive at real-
istic estimates, we employ several data sets from a comprehensive database of 
the available cross sections and stopping powers.

The present work clearly shows that PET is potentially a very useful 
tool for monitoring the distribution of the dose deposited in a patient dur-
ing proton therapy. The adequacy of the implementation of the therapy can 
be verified by comparing PET images revealing the distribution of positron 
activity with the predicted target dose-distribution used in planning treat-
ment. The most important feature of this technique is that the resulting 
PET images are the inverse of the deposited energy distribution in the sub-
ject because the bulk of the positron-emitting isotopes are produced in the 
tissues proximal to the target and in fact such isotope production is dimin-
ished at the target itself. This is because the non-elastic nuclear reaction 
cross sections, where the largest amount of protons’ energies are deposited, 
are the largest at the protons’ entrance to the subject and gradually dimin-
ish towards reaching the Bragg peak. However, effective dose verification 
still can be made by focusing at the tissue volume at target’s edges and by 
comparing the radioisotope distribution produced in that region as mea-
sured by PET with the yield of the positron emitters predicted from the 
treatment planning code.

Various researchers explored the possibility of monitoring proton ther-
apy with PET through experimental measurements6–10 and by computer 
simulations.11–14 So far, most of the simulations studies were performed 
with general particle transport codes originally developed for high-energy 
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physics, such as FLUKA,15 GEANT4,16 and SHIELD-HIT.17 Some efforts 
have been made to improve and evaluate the underlying physics in the low 
energy range incorporated in the general codes, as well as to implement 
them into clinical applications.18–22 However, there is a need to benchmark 
them against one or more dedicated proton transport codes. In addition, 
the reliability of nuclear reaction cross section data is essential to predicting 
positron-emitter production. However, such data are very limited currently, 
either incomplete or not compiled, because there are very few experimen-
tal measurements of these reactions, especially in the energy range below 
50 MeV. Therefore, an investigation of the impact of cross section data on 
the predicted positron-emitter production is also needed.

In this study, we examine the positron-emitter production through 
nuclear interactions of a proton beam in a full range of proton energy 
(0.1–250 MeV) with a dedicated simulation code SRNA-BNL,13 and assess 
the quality of the PET signal in the region near the Bragg peak that is criti-
cal to the success of PET imaging in verifying the location and dosimetry 
of the proton beam. In addition, the results are calculated with four sets of 
nuclear reaction cross section data to demonstrate dependence of the result 
on the reliability of nuclear reaction cross section data.

2. POSITRON EMITTER PRODUCTION

Although many isotopes are produced through different nuclear 
interactions during proton therapy, only six major channels produce the 
positron emitters 11C, 13N, and 15O in human tissue (Table 5.1).

Table 5.1 Major channels of nuclear interactions leading to the production of posi-
tron-emitters in human tissue during proton therapy

Nuclear reactions Threshold energy 
(MeV)

Half-life (min) Positron max. 
energy (MeV)

16O(p, pn)15O 16.79 2.037 1.72
16O(p, 2p2n)13Na 5.66c 9.965 1.19
14N(p, pn)13N 11.44 9.965 1.19
12C(p, pn)11C 20.61 20.39 0.96
14N(p, 2p2n)11Ca 3.22c 20.39 0.96
16O(p, 3p3n)11Cb 27.50c 20.39 0.96
a (p, 2p2n) includes (p, α).
b (p, 3p3n) includes (p, α pn).
c The thresholds refer to (p, α) and (p, α pn).
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Table 5.2 summarizes the other 15 more exotic nuclear reactions that 
generate positron emitters. Since 13C, 15N, and 18O have very low abun-
dances in the human body, the reactions induced by protons with them 
are negligible. The cross sections of the radioactive capture reactions, (p, γ), 
typically are in the order of microbarns; they are three orders-of-magnitude 
smaller than the six main channels listed in Table 5.1. Also, due to the very 
small quantities of the 10C and 14O isotopes generated, the uncertainties 
in their cross sectional data render calculations meaningless. Therefore, we 
excluded from our study the reactions listed in Table 5.2.

3. NUCLEAR REACTION CROSS SECTIONS

Three factors govern the expected number of positron-emitters: 
nuclear reaction cross sections; the number of incoming particles limited 
by target dose; and the number of target particles. If the flux of the incom-
ing proton beam and the target’s particle-density are fixed, the production 
of positron emitters is determined by the cross section data used in the 
simulations. Therefore, the reliability of such data is essential to predict-
ing positron-emitter production. However, the available data are very 
limited because there are very few experimental measurements of these 

Table 5.2 Low-probability reactions that produce positron-emitting nuclei

Nuclear reactions Threshold energy 
(MeV)

Half-life (min) Positron max. 
energy (MeV)

12C(p, p2n)10C 34.5 0.32 1.87
12C(p, γ)13N 0 9.97 1.19
13C(p, p2n)11C 25.5 20.3 0.96
13C(p, n)13N 3.2 9.97 1.19
14N(p, nα)10C 17.2 0.32 1.87
14N(p, γ)15O 0 2.04 1.72
14N(p, n)14O 6.6 1.18 1.81
15N(p, nα)11C 14.7 20.3 0.96
15N(p, nd)13N 20.4 9.97 1.19
15N(p, t)13N 13.8 9.97 1.19
15N(p, n)15O 3.8 2.04 1.72
16O(p, γ)17F 0 1.07 1.74
16O(p, 3p4n)10C 39.1 0.32 1.87
16O(p, p2n)14O 30.7 1.18 1.81
18O(p, n)18F 2.6 109.8 0.64
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reactions, especially in the energy range below 50 MeV. To demonstrate the 
 differences in the results, in this study, we used four sets of nuclear reaction 
cross section data for comparison:
1. Data extracted from the emission spectra of recoils in the ENDF 

electronic file of the ICRU Report 6323 (2000) used by Beebe-Wang 
et al.13

2. Data from “Experimental Nuclear Reaction Data File (EXFOR)”24 
maintained by the National Nuclear Data Center (BNL) used by Parodi 
et al.8

3. Data from TERA 95/19 TRA1525 (1995) used by Del Guerra et al.26 
4. Data from eight different resources published during 1962-1996, and 

collected by Litzenberg for his Ph.D. dissertation.18

The cross section data on the six main production channels amongst 
these four sources are compared in Figures 5.1–5.6. In the higher energy 
range, where some data were lacking, extrapolation was used to extend the 
data to 250 MeV.
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Figure 5.1 Nuclear reaction cross sections of 12C(p, pn)11C. The data from four different 
resources are compared.
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Figure 5.3 Nuclear reaction cross section of 16O(p, 2p2n)13N. The data from three dif-
ferent resources are compared.
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Figure 5.2 Nuclear reaction cross sections of 16O(p, pn)15O. The data from four differ-
ent resources are compared.
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Figure 5.4 Nuclear reaction cross section of 16O(p, 3p3n)11C. The data from three  
different resources are compared.
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Figure 5.5 Nuclear reaction cross section of 14N(p, pn)13N. The data from three differ-
ent resources are compared.
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Figure 5.7 Total non-elastic nuclear reaction cross sections of protons incident on 16O, 
14N, and 12C as functions of kinetic energy.23
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ferent resources are compared.
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The number of particles, protons, and produced particles through 
nuclear interactions deposited at the end of the proton beam’s track is 
governed by the initial flux of the proton beam and the probabilities 
of proton interactions with nuclei. The total non-elastic nuclear cross 
sections of protons incident on 16O, 14N, and 12C are important to this 
study, as well as to treatment planning, since the accuracy of predict-
ing the dose in the target volume (tumor) is limited by their exactness. 
Figure 5.7 shows the total non-elastic cross section of protons incident 
on 16O, 14O, and 12C as functions of the proton’s kinetic energy used in 
our simulation.23

4. MONTE CARLO SIMULATIONS

We used the SRNA-BNL software package originally developed 
as SRNA-2KG by Ilić et al.;27–29 we modified the simulation code for  
this work to include the production of positron-emitter nuclei. SRNA-
2KG is a Monte Carlo code employed for assessing proton transport, 
radiotherapy, and dosimetry. It transports protons, within an energy 
range of 100 keV–250 MeV, with pre-specified spectra in a 3D geom-
etry through material zones confined by planes and second-order sur-
faces. SRNA-2KG can treat proton transport in 279 different materials, 
including elements from Z = 1 to Z = 98, and in 181 compounds and 
mixtures.

The simulation of proton transport is based on the multiple-scattering 
theory of charged particles, and on a model for compound-nucleus decay 
after proton absorption in non-elastic nuclear interactions. For each part 
of the range, the code calculates an average loss of energy30 with a fluc-
tuation from Vavilov’s distribution and with Schulek’s correction, and 
then samples the deflection angle of the protons from Moliere’s distribu-
tion.27–29 Benchmarking SRNA-2KG against the well-known programs 
GEANT,17 and PETRA31 demonstrated very good agreement under the 
same conditions.

The positron emitters 11C, 13N, and 15O are created through the decay 
processes of compound nuclei that include the emission of protons, deuter-
ons, tritons, alpha particles, or photons. The decay products are sampled using 
Poisson’s distribution, with the appropriate average multiplication factors for 
each particle. The energy and angle of particle emissions, and the multiplica-
tion factors, are obtained from comparing the direct cross sections available 
for reaching the daughter nuclei with that from integrating the differential 
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cross sections for non-elastic nuclear interactions (see Figs. 5.1–5.6). Sampling 
of the emission spectra yields the energy and angle of secondary neutron 
emission. The transport of secondary protons follows that of primary protons 
of that particular energy. The spatial location and the angle of the neutron 
and the photon are recorded, but are not treated further. The emitted deu-
terons, tritons, and alpha particles are assumed to be absorbed where they 
were created.

The study was for a typical absorbed dose (2 Gy) in a typical target 
volume (5 cm diameter), achieved by modulating the kinetic energies 
of five beam pulses so that the depths of the Bragg peaks are located 
1 cm apart. The relative beam intensities were 1.0, 0.39, 0.31, 0.24, and 
0.22 from the highest to the lowest energy pulse. Proton beams of 2 mm 
diameter, with kinetic energies up to 250 MeV and a zero divergence 
angle were transported in a human tissue using the SRNA-BNL simula-
tion code. The soft tissue in the simulation had a 0.55 ratio of the aver-
aged atomic number to atomic mass (Z/A), and a density of 1.0 g/cm.3 
Its elemental composition was 10.11% hydrogen, 11.11% carbon, 2.60% 
nitrogen, and 76.18% oxygen (ICRU 4-component). The estimated num-
ber of protons producing an absorbed dose of 2 Gy at the Bragg peak of 
a single pulse was 2 × 107.

The positron emitter spatial distributions were simulated with the cross 
section data from ICRU Report 63 (see Ref. 23) shown by the curves with 
the circle markers in Figures 5.1–5.6; these data are more recent and more 
complete in the low-energy range than those from other sources. To reduce 
random noise, the values are obtained from averaging 45 sets of simulation data.

To obtain a realistic PET image from the resulting distribution of 
positron emitters, we simulated PET data using the SimSET Monte 
Carlo PET scanner simulation package.32 SimSET handles the most 
important aspects of the image formation process, including photon 
attenuation and scatter, the geometry and photon acceptance of the 
tomograph, and binning of the coincidence data. For this study, we 
introduced modifications at BNL to accommodate a block detec-
tor layout, and standard 3D sinogram binning. We simulated a clini-
cal whole-body HR+ tomograph (Siemens, Knoxville, TN) with the 
proton beam direction aligned with the scanner’s axis. The attenuation 
map of a typical human head (ellipse with axes of 15 cm and 18 cm in 
the transaxial planes) provided more realistic statistics. We reconstructed 
the output sinograms into volumetric images using the standard filtered 
backprojection technique.
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In order to estimate the mean and variance of the PET signal, we 
produced 100 statistically independent PET data sets with SimSET 
using the same input positron distribution. Each PET image was pro-
cessed by summing the activity over each transaxial plane, resulting in 
a 1D depth profile of the PET image. From all 100 profiles, an aver-
age and standard deviation were calculated for each depth position. 
Furthermore in order to reduce statistical fluctuations, each profile was 
also fit to a polynomial and the mean and standard deviation vs. depth 
similarly calculated.

5. RESULTS

The results of linear production densities of 15O, 13N, and 11C are 
presented, respectively, in Figures 5.8–5.10. On the right-hand side of 
these figures, we added a vertical scale of the energy absorbed by the tissue 
to allow comparisons at depth. These positron emitter distributions were 
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Figure 5.10 The estimated production of 11C isotopes during a single pulse-proton-
therapy session. The distributions are shown from the simulation and the calculations 
with four different cross section data resources.
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Figure 5.9 The estimated production of 13N isotopes during a single pulse-proton-
therapy session. The distributions are shown from the simulation and the calculations 
with four different cross section data resources.
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used as inputs to obtain the PET images using the SimSET Monte Carlo 
tomograph simulation.

Figure 5.11 is a coronal slice from a reconstructed PET image. Despite 
only about 14,000 coincidence counts in the entire image, the narrow trans-
axial distribution and lack of background activity afford sufficient contrast to 
define the distribution. Figure 5.12 depicts the expected PET image’s activity 

Figure 5.11 A 1.7 mm thick coronal slice through the activity distribution of the 3D PET 
image. The beam entered from the left. The horizontal (axial) dimension is 15.5 cm (full 
scanner FOV). Pixel size is 2.4 mm horizontal by 1.7 mm vertical.
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Figure 5.12 Average PET activity (dark gray curves) and its standard deviation (light 
gray curves), determined from 100 statistically independent PET images. The “spread-
out Bragg peak” (thick black curve), created by five proton beam pulses (thin black 
curves), is superimposed with a right-side vertical scale for depth comparison. The PET 
results were also processed with a simple algorithm of polynomial curve fit. The aver-
age value of the processed data (the thin curve through the middle of the error bars) is 
coincident with the expected PET image activity (dark gray curve) with a much smaller 
standard deviation (error bars) compared to unprocessed data (light gray curves).
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signal (dark gray curve) and its standard deviation (light gray curves), deter-
mined by the data extracted from the 100 sets of PET images. The “spread-
out Bragg peak” (thick black curve), created by five proton beam pulses (thin 
black curves), is superimposed with a right-side vertical scale in Figure 5.12 
for depth  comparison. Figure 5.12 reveals that, with the help of a simple 
polynomial fit, the fitted data (the thin curve through the middle of the error 
bars) retains its fidelity to the raw data (dark gray curve) but has a much 
smaller standard deviation (error bars) compared to unprocessed data (light 
gray curves). We assessed that the depth at half maximum of the distribution 
of the PET-image activity was 6.3 mm from the end of the “spread-out Bragg 
peak” in the soft tissue. Based on the projection of the error bars onto the 
depth axis at that point, we estimate an error of about 1 mm.

6. DISCUSSION AND CONCLUSIONS

Our study has demonstrated that for a typical absorbed dose (2 Gy) 
in a typical target volume (5 cm diameter) during a proton therapy session, 
the PET image subsequently acquired has a sufficiently good signal-to-noise 
ratio to determine the depth of the Bragg peak to approximately 1 mm accu-
racy. Note that this accuracy reflects the error due only to the PET imaging 
process, as the error analysis was carried out with multiple statistical realiza-
tions of a fixed input positron distribution. The accuracy of this method in 
a clinical setting is expected to be lower for a variety of practical reasons, 
including cross section estimates as discussed below. We also demonstrated, 
using our simple algorithm of polynomial curve fit, that simple PET image 
analysis software could increase the prediction accuracy on the depth of the 
Bragg peak. Future clinical applications require the development of a more 
advanced and robust algorithm for fitting the PET data in the presence of 
noise. The ultimate goal of such work is comparing the radioisotope dis-
tribution measured by PET with the yield of positron emitters predicted 
from the treatment planning code. Matching these two implies that the 
treatment conformed to the plan. For treatment involving multiple ports, 
including some with opposing angles, the centroid of the target dose can 
be also computed with that of the PET image.

We also demonstrated the differences in the predicted distributions of 
the positron emitters produced by employing cross section data from dif-
ferent resources. In depths less than 30 cm, the linear density of the isotopes 
is almost without structure, reflecting the fact that the cross sections remain 
almost unchanged in the energy range above 100 MeV.  Within this range, the 
yields calculated with cross section data from four different resources agree 
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fairly well with each other. The exception is the level of 11C isotope produc-
tion obtained with data used in Ref. 8. Its production is only about 30% of 
that obtained using other data sources. Apparently, this is mainly because the 
cross section data used in Ref. 8 accounts for only one of the three major 
channels producing the 11C isotope.26 In the depth range between 30 cm 
and 38 cm where the Bragg peak is located, the calculated productions for 
all three isotopes are significantly different (Figs. 5.8–5.10). The high yield of 
13N and 15O calculated with information from ICRU 63 report23 is credited 
to the cross section data on reactions 16O(p, 2p2n)13N and 16O(p, pn)15O in 
the low-energy range that became available only during year 2000.

As we mentioned in Section 3 the total non-elastic nuclear-reaction 
cross sections for protons incident on 16O, 14N, and 12C are also important 
to this study and to the treatment planning, since their accuracy limits the 
precision of dose prediction in the target volume (tumor).

This investigation points to the on-going need to develop a library of 
accurate cross section data for proton- and neutron-induced reactions on the 
elements in human tissue. A reliable simulation or calculation depends upon 
the accuracy of such data, especially for investigations in the region near 
the Bragg peak where accurate cross section information in the low energy 
range (below 50 MeV) is needed. This is critical to the success of PET imag-
ing for verifying the location of the Bragg peak of the proton beam, and for 
dosimetry.
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Abstract

We study the energy deposited by swift proton beams on materials of biological inter-
est, such as liquid water, DNA, and PMMA. An appropriate description of the target 
energy-loss function, which provides its electronic excitation spectrum, is obtained 
from available experimental optical data properly extended to non-vanishing momen-
tum transfers. The main magnitudes characterizing the energy-loss distribution of the 
beam particles in the target are calculated analytically (in the dielectric framework) 
and compared with available experimental data. The depth–dose distribution of the 
energy delivered by the proton beam on the biological targets is simulated by the 
SEICS (Simulation of Energetic Ions and Clusters through Solids) code, which includes 
the main interaction phenomena between the projectile and the target constituents 
by means of Molecular Dynamics and Monte Carlo techniques. Also, the proton-beam 
energy distribution at several depths in the target for liquid water and PMMA are simu-
lated, and finally, the properties of PMMA as a water-equivalent material are discussed.
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1. INTRODUCTION

The destruction of malignant tumor cells by using energetic proton 
beams was suggested in 1946 by Wilson.1 In less than a decade after this 
pioneering proposal, animal studies were performed,2 and later ion therapy 
was applied to human patients.3 Presently, there are over 30 ion therapy 
facilities worldwide, most of which use proton beams either exclusively 
or in addition to other light ions, and the number is expected to double 
within the next 5–10 years.4 The energy delivered by swift ions as a func-
tion of the target depth has a nearly flat shape at the entrance of the target 
and gradually grows up to having a notorious peak almost at the end of 
their trajectories; this is the so-called Bragg curve. The position and inten-
sity of the Bragg peak depend on the projectile energy and type, as well as 
on the target nature. The success of using ion, instead of photon or electron, 
beams for cancer treatment lies in the high energy they can deposit in a 
delimited region of the tumor volume with a sparing effect to the sur-
rounding healthy tissue. Another important advantage of ion therapy is that 
the beam particles have larger biological effectiveness than other ionizing 
radiations,5 and lower lateral scattering.

The primary beam energies used in ion therapy are typically hundreds 
of MeV/u for deep-seated tumors; see Ref. 6 for a recent state-of-the-art-
review. The energy range below a few MeV/u (for light ions) becomes 
relevant around the Bragg peak, where the particles exhibit their highest 
RBE.7 At the energy range of interest to ion therapy, the dominant slowing 
down mechanism of the swift projectiles is the electronic energy loss due 
to ionization and excitation of target atoms.

For a long time the standard input data to Monte Carlo simulation 
for energy losses due to ionization came from the Bethe–Bloch stopping 
power formula,8 which provides energy-loss values for light ions over a 
wide variety of materials.9, 10 However, this formula is only sufficiently 
accurate at high energies. The usefulness of the Bethe–Bloch formula 
within the Monte Carlo users’ community is due to the lack of a general 
awareness on the existence of better theoretical predictions derived from 
purely quantum-mechanical methodologies, such as the continuum dis-
torted wave (CDW) method11 or its simplified version, the continuum 
distorted wave-eikonal initial state (CDW-EIS) approximation.12 The 
interested reader is referred to Ref. 6 for a detailed discussion of the com-
putational advances of these methodologies to obtain cross sections for 
energetic ion collisions aimed at hadrontherapy applications.
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A fundamental problem in extending the Bethe–Bloch theory down 
to the Bragg peak region is that its two main assumptions, namely, the 
Born and dipole (or optical) approximations, turn gradually invalid.13 
Specifically, as the projectile velocity decreases, the minimum momen-
tum transfer increases and non-dipole collisions practically dominate over 
dipole collisions, rendering the dipole approximation invalid. The effect is 
more pronounced for inner shells associated with large binding energies, 
the contribution of which to the energy-loss process gradually vanishes at 
low projectile energy. The so-called shell-corrections to Bethe’s theory are 
meant to account (to first order) for the above effect,14 but their formal 
evaluation proceeds through the, generally unknown, generalized-oscillator 
strength (GOS) or, for condensed targets, the dielectric response func-
tion.15 A common approach is to employ hydrogen-like GOSs for the 
inner shells and scaling laws for the outer shells ignoring any aggregation 
and phase effects.14, 16

An alternative approach, which becomes particularly suitable for con-
densed-phase targets, is to use a dynamic and non-local dielectric response 
function.17 This is the so-called dielectric approach, having the advantage 
that shell-corrections are automatically included (as a matter of fact, they 
are build into the model to all orders); in this manner, the electronic 
energy loss in the Born approximation can be calculated without resorting 
to Bethe’s dipole approximation. The Lindhard dielectric function of the 
homogeneous electron gas within the random-phase-approximation (RPA) 
is most represented in the literature due to its analytic properties which 
extend over the whole energy–momentum plane.18

An analytic dielectric function from first-principles (similar to the one 
derived by Lindhard) is not available for realistic materials and alterna-
tive approaches must be sought for. The extended-optical-data models 
(or, simply, optical-data models) currently represent the state of the art for 
constructing an analytic description of the dielectric response function of 
condensed phase targets regardless of their nature (insulators, semiconduc-
tors, or conductors). Powell19 was perhaps the first to suggest that experi-
mental optical data can be used in inelastic scattering calculations within 
the dielectric framework. Soon after, Ritchie and Howie20 put forward a 
semi-empirical scheme whereby experimental optical data were used to 
obtain the dependence of the dielectric function on the energy transfer, 
with physically motivated extension algorithms providing the dependence 
of the dielectric function on momentum transfer. Besides its simplicity, the 
main advantage of this scheme was that the use of optical data specific to 
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the material being studied automatically accounts for electronic-structure 
effects in a realistic manner not always possible within the electron gas 
models. The first application of the Ritchie–Howie recipe to ion stopping  
in solids was made by Ashley21 using a very simple extension scheme based on  
the (undamped) plasmon-pole approximation with a quadratic dispersion 
relation for the dependence of the plasmon energy on momentum transfer.

Several modifications over the original work of Ritchie and Howie20 
have been published (see Ref. 22 for more details). One of the most fruit-
ful is based on the use of the Mermin dielectric function23 instead of the 
Drude dielectric function, because the former automatically provides the 
extension to nonzero momentum transfers. This scheme will be the basis of 
the target description that enters in the dielectric formalism, to be presented 
in Section 2. The charge-exchange processes affecting the charge-state of 
the projectile will be discussed in Section 3, whereas in Section 4 we obtain 
the main inelastic energy-loss magnitudes for targets of biological inter-
est (liquid water, DNA, and PMMA). These magnitudes are used as input 
to simulate the depth–dose distribution and the energy delivery of the 
proton beam through the target, which is discussed in detail in Section 5.  
Finally, the main conclusions are summarized in Section 6.

2.  DIELECTRIC FORMALISM FOR INELASTIC 
SCATTERING

Based on the plane-wave Born approximation, the dielectric formal-
ism24, 25 gives simple expressions for the differential inelastic scattering cross 
section in condensed media, where the charged particle interacts simulta-
neously with a large number of electrons belonging to different atoms or 
molecules of the target, which is suitably described by its dielectric func-
tion ǫ(k, ω), where �k and �ω are, respectively, the transferred momentum 
and energy from the projectile to the target electrons. When a swift pro-
jectile (with mass M1, atomic number Z1, kinetic energy T, and charge q) 
moves through a target, it induces electronic excitations and ionizations in 
the material, losing energy in the process. Thus, the double-differential (in 
energy and momentum transfer) inverse inelastic mean free path (IIMFP) 
�q of the projectile, is given by

(1)
d

2�q(T , ω)

dω dk
=

e2

�2π

M1[Z1 − ρq(k)]
2

T

1

k
Im

[

−1

ǫ(k, ω)

]

,
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where e is the absolute value of the electron charge and ρq(k) is the Fourier 
transform of the projectile electronic charge density. It can clearly be 
observed the contribution of two factors: one of them only depends on 
the projectile, M1[Z1 − ρq(k)]

2/T , and the other only depending on the 
target properties through the energy-loss function (ELF), Im [−1/ǫ(k, ω)]. 
The latter accounts in an effective and compact way for the target electronic 
spectrum corresponding to excitations or ionizations of individual elec-
trons or even excitations of collective modes in the condensed medium. 
The macroscopic inelastic scattering cross section σ is related to the IIMFP 
by the relation � = Nσ, where N  is the atomic (or molecular) density of 
the target.

The dielectric formalism avoids the difficulty of multi-electron transi-
tions by considering either individual ionizations or collective excitations, 
but the interested reader should be aware of recent advances in treating 
two-electron transitions in atomic targets.26

Within the dielectric formalism the relevant magnitudes describing 
the projectile energy-loss distribution can be obtained from the double-
differential inelastic cross section (Eq. (1)) by suitable integrations over the 
energy �ω and momentum �k transfers. The single-differential (in energy 
transfer) inverse inelastic mean free path is found by integrating Eq. (1) over 
the momentum transfer �k, which represents the probability per unit path 
length Pq(T , ω) that a projectile with charge-state q and energy T produces 
in the target an inelastic process of energy �ω (i.e., individual and collective 
electronic excitations as well as ionizations), irrespective of the momentum 
transferred. This probability is

for heavy projectiles, when M1 ≫ me (where me is the electron mass), the 
integration limits can be approximated by kmax ≈ ∞ and kmin = ω/

√

2T/M1.
Hence, the moments of the electronic energy-loss distribution can be 

found by integrating Eq. (2) over the transferred energy �ω. In conse-
quence the total inverse inelastic mean free path, will be obtained by

(2)

Pq(T , ω) =

d�q(T , ω)

dω
=

M1e2

π�2T

∫ kmax

kmin

dk

k
[Z1 − ρq(k)]

2
Im

[

−1

ǫ(k, ω)

]

;

(3)�q(T ) =

∫

∞

0

d(�ω)Pq(T , ω).
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The stopping power (or stopping force) represents the mean electronic 
energy lost by the projectile per unit path length, and is given by

Analogously, the energy-loss straggling, which represents the mean 
square deviation per unit path length of the energy-loss distribution, can 
be obtained through

In order to obtain these stopping magnitudes, Eqs. 3–5, the descrip-
tion of the projectile charge density and the target excitation spectrum by 
means of its energy-loss function (ELF) are needed. In particular in this 
work we will restrict to the study of energetic protons beams incident in 
media of biological, such as liquid water, DNA, or PMMA.

2.1 Projectile description: electronic charge density
The charge density of the projectile is described by the statistical model 
proposed by Brandt and Kitagawa (BK),27 where the effective charge of 
energetic ions is calculated in the dielectric response approximation. The 
projectile, with atomic number Z1 has N bound electrons and moves with 
velocity v with respect to the target electrons. The BK model presupposes 
that the cloud of bound electrons is screening the projectile nucleus over a 
radius ϒ that depends on the projectile velocity. Therefore, target electrons 
that approach the projectile with impact parameters larger than ϒ (that 
is, distant collisions) perceive the projectile as a point charge with charge 
q = (Z1 − N )e, irrespective of its internal structure. However, when the 
impact parameter is smaller than ϒ (i.e., close collisions) the target electrons 
penetrate the screening cloud of the bound electrons of the projectile, sens-
ing a partially screened potential corresponding to a projectile charge larger 
than q. An average over all the impact parameters will give the charge of 
the projectile, that determines their energy loss.

The Brandt and Kitagawa model27 characterizes the bound electrons of 
the projectile by a generic orbital, where the screening radius ϒ is treated 
as a variational parameter. In order to derive analytical results, the electronic 
charge density of the projectile is described by the simple expression:

(4)Sq(T ) =

∫

∞

0

d(�ω)�ωPq(T , ω).

(5)�2

q(T ) =

∫

∞

0

d(�ω)(�ω)2Pq(T , ω).

(6)
ρq(r) =

N

4πϒ3

ϒ

r
e−r/ϒ ,
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where r is the distance to the projectile nucleus. The internal energy of the 
projectile can be written as:

where Een is the potential energy from electron–nucleus interaction, Eee 
is the potential energy from the electron–electron interaction weighted by 
the variational parameter λ, and Ekin is the electron kinetic energy. After 
applying the following conditions to the energy:

the following value for the screening radius ϒ is obtained:

with λ = 4/7, and a0 is the Bohr radius (a0 = 0. 529 × 10
−10

m).
A modification of the parameter ϒ was introduced when there are 

N = 1 or 2 bound electrons:28

From Eq. (6) we obtain the Fourier transform of the electronic charge 
density of the projectile

with ϒ given by Eq. (10) (or Eq. (11) when the projectile has only 1 or 2 
bound electrons).

2.2 Target description: Electronic excitation spectrum
The ELF of the material as a function of the momentum and energy trans-
fer is known as the Bethe surface, and it contains all the information about 
the electronic excitations that the target can sustain.

(7)E = Een + λEee + Ekin,

(8)
dE

dϒ
= 0,

(9)
dE

dN

∣

∣

∣

∣

N=Z1

= 0,

(10)ϒ =

0. 48N 2/3

Z1 − λN/4
a0,

(11)ϒ =

3

2[Z1 − 0. 3(N − 1)]
a0.

(12)ρq(k) =

N

1 + (kϒ)2
,
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Experimental information of the ELF of a medium can be obtained from 
the analysis of the spectra of photon or electron beams interacting with the 
material. For many materials there are available optical data of the ELF (i.e., 
at zero momentum transfer, k = 0 ) over the valence excitation range up to 
∼100 eV. To obtain information of the ELF at k �= 0, electron-energy-loss 
spectroscopy (EELS) is typically used, where the spectra of the electrons 
at different scattering angles correspond to different momentum transfers. 
However, due to multiple scattering effects it is almost impracticable to 
obtain information of the ELF at high momentum transfers. Therefore 
to avoid this experimental difficulty it is necessary to have theoretical  
models that provide the Bethe surface in a broad range of energy and 
momentum transfers. Theoretical calculations from first-principles are very 
hard for condensed media, then semi-empirical calculations using optical-
data models are generally employed.19, 20 They utilize the ELF at the optical 
limit, k = 0, from the experimental data together with a theoretical model 
to make the proper extension at k �= 0. These models can be applied to 
study the inelastic scattering of swift projectiles in any material (metal, 
semiconductor, or insulator), and their major advantage consists in the 
incorporation of the (individual and collective) excitations of the target, 
taking into account the aggregation and chemical effects inherent to con-
densed matter, since they are based on experimental ELF.29

In this work we use the MELF–GOS model (Mermin-Energy-Loss-
Function–Generalized-Oscillator Strength) to describe the energy-loss spec-
trum of the target.30, 31 Here the target electron excitations are split into two 
parts, one related to excitations of the inner-shell electrons, and the other 
resulting from excitations of the outer (weakly bound) electrons, namely

The inner-shell electrons keep their atomic character due to their large 
binding energies, where the excitation spectrum is insensitive to the target 
phase. So a suitable and useful approximation is to describe those electrons 
by their generalized oscillator strengths in the hydrogenic approach, as if 
they were bound to isolated atoms. The connection between the ELF and 
the GOS model for a compound Aα1

Bα2
. . . is given by15

(13)Im

[

−1

ǫ(k, ω)

]

= Im
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−1

ǫ(k, ω)

]

inner

+ Im

[
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.
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j
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where N  is the molecular density of the target, αj is the stoichiometric 
contribution of the different elements in the compound, df

(j)

nl (k, ω)/dω 
and ω(j)

ioniz,nl are, respectively, the GOS and the ionization energy of the (n, l) 
sub-shell of the j-element of the target, finally, � is the step function. The 
summation in Eq. (14) must be extended over all the inner shells of all the 
atoms in the compound.

The collective and single-particle excitations of the outer electrons of 
the target are described by fitting the experimental optical ELF (k = 0) to 
a linear combination of Mermin-type ELFs,23

where ǫM is the Mermin dielectric function,23 which can be expressed in 
terms of the Lindhard dielectric function ǫL of complex energy as

The Mermin dielectric function goes beyond the Lindhard dielectric 
function, since it includes plasmons with a finite lifetime (i.e., damped) at 
any momentum transfer, as it happens in real materials. In the above expres-
sion γ is a phenomenological damping constant that represents phonon-
assisted electronic transitions via electron–ion collisions. At the limit of zero 
damping, the Mermin dielectric function recovers the Lindhard dielectric 
function.

The parameters ωi, γi, and Ai in Eq. (15) are related, respectively, to the 
position, width, and intensity of the ith peak in the target experimental-
ELF, which are determined by a fitting to experimental optical data; �ωth,i 
is a threshold energy. At the optical limit (k = 0), the Mermin-ELF is iden-
tical to the Drude-ELF, therefore the following expression can be used to 
obtain the fitting parameters ωi, γi, and Ai:

One of the main benefits of the MELF–GOS method is that once the 
fitting of the ELF in the optical limit is made, the ELF is analytically and 
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automatically extended to k �= 0 through the properties of the Mermin 
dielectric function and the GOS model.31, 32 So, dispersion relations 
schemes, as in other optical-data models, are not necessary (see Refs. 22, 33 
for a detailed discussion of different dispersion relation schemes). Thus, from 
the experimental optical-ELF the MELF–GOS model provides the whole 
Bethe surface of the target.

The ELF constructed in this manner must be consistent with physically 
motivated constrains. Then, the ELF must satisfy the f-sum rule at any k 
(Ref. 22)

which gives the effective number of target electrons per molecule that par-
ticipate in inelastic collisions with energy transfer up to a maximum value 
�ω. When the transferred energy �ω goes to infinity, then Neff(ω → ∞) 
tends to the target atomic number. As the f-sum rule of Eq. (18) is more 
sensible to high-energy transfers (corresponding to inner-shell electrons), 
the ELF must also fulfill further sum rules, such as the Kramers–Kronig 
(KK) (or perfect screening) sum-rule, which is more sensitive to the low-
part of the excitation spectrum. The KK sum rule is given by22

where n(0) is the refractive index at low-energy transfer. When the energy 
transfer goes to infinity the KK-sum rule tends to unity.

2.2.1 Optical energy-loss function of biological materials
As we did mention previously, the key parameter to obtain reliable 
results for the inelastic energy-loss magnitudes is the ELF of the mate-
rial, Im [−1/ǫ(k, ω)], for the whole k–ω plane. Fortunately, experimental 
information about the ELF in the optical limit, k = 0, exists for important 
biological materials, such as liquid water, DNA, or PMMA. We show in 
Table 6.1 some characteristic data of these materials, such as their chemical 
composition, atomic number, molecular mass, and mass density.

In Figure 6.1 we show by symbols the available experimental optical-
ELF for liquid water (circles),36 dry DNA (squares)37, and PMMA (tri-
angles),38 as a function of the energy transfer �ω corresponding to the 
excitation of outer-shell electrons. All these optical-ELFs look rather 
similar, since they show only a single peak at ∼21 eV, but there are sizeable 
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differences in the values of their ELF magnitude. The curves in Figure 6.1 
represent the results of fitting the experimental data by the MELF–GOS 
model using a linear combination of Mermin-type ELFs.

At high energy excitations usually there are not measurements of the 
ELF, in particular for the biological materials here analyzed. So, in this 
energy range, the optical-ELF of a compound target Aα1

Bα2
. . . will be 

Table 6.1 Properties of the biological targets studied in this work: liquid water, DNA, 
and PMMA. We show their chemical composition, atomic number (Z2), molecular mass 
(M2), and mass density.

Target Liquid water DNA34 PMMA35

Chemical formula H2O (C20H27N7O13P2)n (C5H8O2)n

Z2 10 330 54
M2 18.0152 635.42 100.117
Density (g/cm

3) 1.000 1.350 1.188

Figure 6.1 Energy-loss function, or ELF, for liquid water, DNA, and PMMA in the optical 
limit (k = 0), as a function of the energy transfer, �ω. Circles represent experimental 
data of liquid water,36 squares correspond to DNA,37 and triangles are data for PMMA.38 
The curves are the result of fitting those data by using the MELF–GOS model.
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derived from the optical-ELFs of its elemental constituents applying the 
weighted additivity rule:31, 39

where nj and Im [−1/ǫ(k = 0, ω)]j are the atomic density and the ELF, 
respectively, of the jth element of the target. The ELF of each elemental 
constituent of the target can be obtained from the X-ray measurements 
of the atomic scattering factors, which are available up to very high 
energies.40

In Figure 6.2 we depict the optical-ELF of liquid water, dry DNA, and 
PMMA at high-energy transfer as obtained with the MELF–GOS model 
(solid lines). For comparison purposes we also show by dotted lines the 
corresponding ELF obtained from experimental X-ray scattering factors40 
for the inner-shell electrons of the elements in each compound target, 
according to Eq. (20). In the case of liquid water we have added the results 
(triangles) from the FFAST database of NIST for the water molecule.41 
Notice that the optical ELF in Figure 6.2 contains the contribution from 
the outer (Eq. (15)) as well as from the inner-shell electron excitations 
(Eq. (14)). Sharp edges can be observed in the figure, corresponding to the 
threshold energy of each inner shell. In our model we treated as inner shell 
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Figure 6.2 Energy-loss function, or ELF, in the optical limit (k = 0) of liquid water, dry 
DNA, and PMMA at high-energy transfer. Solid lines correspond to the ELF resulting 
from the MELF–GOS model. Dotted lines represent the results derived from X-ray atom-
ic scattering factors.40 Triangles correspond to calculations from the FFAST database of 
NIST for the water molecule.41
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(using hydrogenic GOS) the K-shell of O for liquid water, the K-shell of 
C, N, O, and P for dry DNA, and the K-shell of C and O for PMMA.

In summary, the optical-ELF is constructed in such a wide region of 
energy transfer by using the optical-ELF experimental data (in the low-
energy region) and the GOS for the elemental atoms forming the target 
(in the high-energy region). These two regions are connected by a reason-
able matching by imposing the fulfillment of the sum rules, Eqs. (18) and 
(19), which are satisfied to better than 99%. Proceeding in this manner, we 
obtain analytical expressions for the optical-ELF that properly reproduce 
the energy-loss spectra of the different targets to be discussed in this work.

2.2.2 Bethe surface of biological materials
Once we build, from the MELF–GOS methodology, the optical ELF 
(k = 0) as a function of the energy transfer, the analytical properties of the 
Mermin-ELF and the GOS will extend automatically the ELF to finite 
values of the momentum transfer, k �= 0, without ad hoc dispersion rela-
tions,22 which allow to obtain the Bethe surface, i.e., the target electronic 
excitations in the whole k–ω plane. It is worth to emphasize that chemi-
cal bonding, and aggregation effects, as well as the characteristic collective 
excitations of condensed phase are included in the MELF–GOS descrip-
tion of the target excitation spectrum.

In order to check the reliability of the MELF–GOS model at finite 
momentum transfers it is desirable to compare the calculated Bethe surface 
with existing experimental data,32, 42 although experimental information 
of the ELF at k �= 0 is scarce. Luckily for liquid water there are experi-
mental data of ELF at several finite momentum transfers (k ≈ 0–3.6 a.u.) 
obtained from inelastic X-ray scattering spectroscopy measurements  
(IXSS).43, 44 The experimental ELF of liquid water at k = 0.85, 1.34, and 
2.79 a.u... are compared with the results obtained from the MELF–GOS 
model (solid lines) in Figure 6.3. We observe a good agreement between 
the experimental ELF of liquid water at k �= 0 and our model, which 
reproduces the experimental broadening and shifting toward high-energy 
transfers as the momentum transfer increases, and it is consistent with the 
theoretical expectation that single-particle excitations should gradually 
prevail over collective excitations at large momentum transfer.  A detailed 
discussion of different optical-data models applied to liquid water can be 
found in Ref. 22.

The calculated Bethe surface from the MELF–GOS model are pre-
sented for (a) liquid water, (b) dry DNA, and (c) PMMA in Figure 6.4. 
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As we did mention before the Bethe surface is required in the dielectric 
formalism to evaluate the inelastic scattering cross section as a function of 
the particle energy. In all the biological targets analyzed here we observe 
that an increase in the momentum transfer k shifts the maximum of the 
ELF to higher energies and decreases its amplitude. Thus, the Bethe ridge 
is broadened due to chemical and/or phase effects, and its behavior is not 
a delta function as it happens for two-body collision where the struck 
electron is free and stationary, which implies a quadratic relation between 
energy and momentum transfer and a sharply peaked Bethe ridge of zero 
width. So, with the present description of the Bethe surface we have con-
sidered the many-body effects that take place in real condensed media, 
which cause a smearing on the otherwise delta-like profile of the ELF over 
the energy–momentum plane.

2.3 Mean excitation energy
At high projectile energies it is appropriate to use the relativistic Bethe 
formula for the stopping power,8 namely:

where υ and c are, respectively, the projectile and the light velocities. Here 
I denotes the so-called mean excitation energy of the material, which only 
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Figure 6.3 Energy-loss function, or ELF, of liquid water at the finite momentum trans-
fers k = 0.85, 1.34, and 2.79 a.u. Dotted lines are experimental data43, 44 and solid lines 
represent the results of the MELF–GOS model.
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Figure 6.4 Bethe surface obtained from the MELF–GOS model for (a) liquid water, (b) 
DNA, and (c) PMMA.
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depends on the electronic structure of the target, and is defined in terms of 
the target ELF by the relation:

Note that in the high-energy limit, the Bethe stopping formula depends 
on the material through the mean excitation energy I. Therefore accurate 
values of I are desirable, in particular for biological materials, where a few 
percent in the uncertainty of the I values might cause sizeable changes in 
the range and stopping maximum (i.e., the Bragg peak) of therapeutic ion 
beams,45, 46 which have energies of the order of several hundred of MeV/u.

The mean excitation energy I of a biological material can be evaluated 
through Eq. (22), with the optical-ELF Im[−1/ǫ(k = 0, ω)] provided by 
the MELF–GOS method. We show in Table 6.2 the I values obtained from 
the MELF–GOS model corresponding to liquid water, DNA, and PMMA 
targets. Our calculations predict that the outer and inner-shell electron 
excitations contribute in almost the same proportion to the mean excita-
tion energy.

It is worth to notice that the I value of PMMA (70.3 eV) is consider-
ably smaller than the ones corresponding to liquid water (79.4 eV) or DNA 
(81.5 eV), which implies a larger stopping of projectiles in PMMA. In Table 
6.2 a comparison with other I-values from the literature is presented; for 
a detailed analysis see Ref. 50. For liquid water a I-value 80 eV prevails 
in most of sources, while for DNA there is more dispersion between the 
I-values obtained from different sources.

(22)ln I =

∫

∞

0
dω′ ω′

ln ω′

Im[−1/ǫ(k = 0, ω′)]
∫

∞

0
dω′ ω′ Im[−1/ǫ(k = 0, ω′)]

.

Table 6.2 Mean excitation energy I (eV) obtained from the MELF–GOS model for liq-
uid water, DNA, and PMMA. A comparison with other values is also presented.

Liquid water DNA PMMA

MELF–GOS model 79.447 81.534 70.335

Bragg rule (ICRU49)14 75 ± 3 85 74.0 ± 1.5
Tan et al. 72.548 86.6449 68.3748

Paul50 80.8 ± 2.0
Kumazaki et al.51 78.4 ± 1.0
Emfietzoglou et al.52 77.8
LaVerne and Pimblott53 77.9
Akkerman and Akkerman54 68.5
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3. CHARGE-EXCHANGE PROCESSES

The charge-state q of a projectile, with atomic number Z1, moving 
through a condensed medium can vary due to electron-capture and -loss 
processes. Thus at low and intermediate projectile energies, these processes 
give a continuous dynamic charge-exchange of the projectile in its path 
through the target, therefore affecting its energy loss.

When charge equilibrium is reached, usually a few femtoseconds 
after the projectile penetrates into the target, the energy-loss magnitudes 
(Eqs. (2)–(5)) can be obtained from a weighted sum of the corresponding 
energy-loss magnitudes for each charge-state q of the projectile,31 namely

where φq(T ) is the probability of finding the projectile in a given charge-
state q at the energy T. The sums in Eqs. (23)–(26) extend over all pos-
sible charge-states q of the projectile. We assume the charge-state fractions 
at equilibrium, which depend on the target nature, the projectile and its 
energy. The values of φq are obtained from a parameterization to experi-
mental data,55 which uses Bragg’s additivity rule for compound targets. In 
Figure 6.5 we show the charge-state fractions of a proton beam incident in 
water, DNA, and PMMA as a function of the beam energy. No differences 
appear in the charge-state fractions for these three biological targets, due to 
their similar composition by light elements. It is worth to notice that the 
fraction of neutral hydrogen is zero at energies 200 keV.

(23)P(T , ω) =

Z1
∑

q=0

φq(T )Pq(T , ω),

(24)�(T ) =

Z1
∑

q=0

φq(T )�q(T ),

(25)S(T ) =

Z1
∑

q=0

φq(T )Sq(T ),

(26)�2(T ) =

Z1
∑

q=0

φq(T )�2

q(T ),
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4. INELASTIC ENERGY-LOSS MAGNITUDES

The inelastic collisions that a projectile experiences in its travel 
through a target can be characterized by several energy-loss magnitudes, as 
we discussed previously in Section 2. Now we present results of these mag-
nitudes for proton beams impinging in liquid water, dry DNA, and PMMA. 
All the calculations are based in the dielectric formalism, with a realistic 
description of the electronic properties of the target by the MELF–GOS 
model, and taking into account charge-exchange processes of the projectile.

Figure 6.6 shows the electronic excitation probability P(T , ω), as given 
by Eqs. (2) and (23), which represents the probability to produce electronic 
excitations of energy �ω per unit path length in liquid water (solid line), 
dry DNA (dashed line), and PMMA (dotted line) by a proton with incident 
energy T = 0.5, 1, 5, and 10 MeV.

We find that independently of the projectile energy T these three bio-
materials present the maximum of the electronic excitations at the same 
values of the transferred energy �ω, although the absolute value and shape 

Figure 6.5 Charge-state fractions of H0 and H+ in water (solid line), DNA (crosses), and 
PMMA (circles) as a function of the projectile energy.
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of P(T , ω) is different in each case. As the projectile energy increases the 
energy for the maximum of the electronic excitations slightly shifts to 
higher incident energies, going from ∼22 eV at T = 0.5 MeV up to ∼33 eV 
at T = 10 MeV. Also the intensity of the maximum probability P to pro-
duce electronic excitations decreases as the proton energy increases, indi-
cating that a larger number of electronic excitations are created when the 
projectile has lower energies, a circumstance that takes place at the Bragg 
peak. It is remarkable to mention that the most probable electronic excita-
tions have energies in the range ∼10 − 50 eV for the analyzed targets. This 
result is significant because although the damage in DNA can be produced 
by direct ionization of inner shells of the target constituents, recent works 
point to electrons with sub-ionizing energies as the ones responsible for 
producing lethal damage in DNA.56, 57

Due to the stochastic nature of the inelastic collisions of charged 
particles moving through condensed media, their electronic energy-loss 
distribution can be evaluated by integrating the different moments of 

(a)

(c)

(b)

(d)

Figure 6.6 Probability per unit path length P(T ,ω) that a proton beam induces 
electronic excitations of energy �ω in liquid water (solid line), dry DNA (dashed line), 
and PMMA (dotted line). Results for several projectile energies are displayed: (a) 
T = 0. 5 MeV, (b) T = 1 MeV, (c) T = 5 MeV, and (d) T = 10 MeV.
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the electronic excitation probability P(T , ω) over the energy transfer, �ω.  
In what follows we present our calculations for the main stopping mag-
nitudes: the inverse inelastic mean free path, the stopping power, and the 
energy-loss straggling for proton beams traveling through liquid water, dry 
DNA, and PMMA.

Figure 6.7 shows the inverse inelastic mean free path, or IIMFP, for 
protons in liquid water (solid line), dry DNA (dashed line), and PMMA 
(dotted line) calculated from the dielectric formalism and the MELF–GOS 
model (Eqs. (3) and (24)). At proton energies lower than ∼1 MeV, sizeable 
differences between the IIMFP corresponding to the three materials are 
obtained, which can be ascribed to their different energy-loss function. 
At the maximum value of the IIMFP, corresponding to a proton energy 
∼75 keV for the three biological materials, the IIMFP in DNA is 35% 
larger than in liquid water, whereas the IIMFP in PMMA is more than 50% 
greater than in liquid water.

Figure 6.7 Inverse inelastic mean free path, or IIMFP, of a proton beam in liquid water 
(solid line), in DNA (dashed line), and PMMA (dotted line) calculated with the dielectric 
formalism and the MELF–GOS model. Squares correspond to the IIMFP in water from 
Uehara et al.59 stars are the calculations in liquid water from Dingfelder et al.60 circles 
correspond to the IIMFP in liquid water obtained by Emfietzoglou et al.61 and asterisks 
and triangles are, respectively, theoretical calculations in liquid water and DNA from 
Tan et al.62
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Usually the IIMFP is required as basic input data in Monte Carlo 
simulations, to account for electronic interactions and evaluate the damage  
on biological tissue by the irradiation with energetic charged particles. 
Although in this work we will use the IIMFP, and related magnitudes, 
derived from the dielectric formalism, cross sections obtained from first 
principles, like the continuum distorted wave-eikonal initial state approxi-
mation, have recently been implemented in Monte Carlo studies of the 
interaction of swift ions with liquid water.58

It is important to know that all the biomaterials have not similar IIMFP, 
but there are sizeable variations in their value. In Figure 6.7 we also com-
pare our calculated IIMFP with results from other models. For protons in 
water we present results from Uehara et al.59 (squares), who obtain high 
IIMFP values since in their model they use water vapor cross sections, 
calculations from Dingfelder et al.60 (starts) and from Emfietzoglou et al.61 
(circles); the latter two sets of results agree rather well with our calculations. 
Results from Tan et al.62 give similar IIMFP for liquid water (asterisks) and 
DNA (triangles) contrary to our findings; this coincidence of IIMFP for 
liquid water and DNA may have its origin in that these calculations62 are 
based in the optical data model of Ashley21 and on an evaluation approach 
for the optical energy-loss function.

The calculated stopping power S (Eqs. (4) and (25)) of liquid water 
(solid line), dry DNA (dashed line), and PMMA (dotted line) for proton 
beams is shown as a function of the projectile energy in Figure 6.8. Our 
model predicts that these biomaterials present the maximum values of S at 
the same projectile energy, around 100 keV. However the stopping power 
values of liquid water are always lower than those of dry DNA and PMMA; 
at T = 100 keV their differences are ∼30%, but even at high proton 
energies there are substantial differences between the stopping power of 
liquid water and the other biomaterials. The stopping power of DNA and 
PMMA are rather similar at intermediate and high proton energies, which 
can be due to the balance between their ELF (larger for PMMA than 
for DNA) and their different electron densities (smaller for PMMA than 
for DNA: N e

PMMA
= 0. 385 electron/Å

3
, N e

DNA
= 0. 421 electron/Å

3. 
However, when comparing the electronic properties of liquid 
water and DNA or PMMA, both the ELF and the electron density 
(N e

liq. water
= 0. 334 electron/Å

3) for liquid water are smaller than for DNA 
and PMMA, which explains the smaller stopping power of liquid water as 
compared to the other biomaterials. We also include in Figure 6.8, experi-
mental data of the stopping power of liquid water63, 64, 65 and ice.66–68  
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We find an excellent agreement of our stopping calculations with the new-
est experimental data in liquid water at high proton energies,65 which does 
mean that the mean excitation energy I of liquid water obtained from the 
MELF–GOS model, I = 79. 4 eV,47, 69 is in very good agreement with the 
features of the recent experimental results.65 Note also that experimental 
results for liquid water from Refs. 63, 64, covering the range from 0.3 to 
2 MeV, were obtained with a thin liquid jet in vacuum, whose diameter was 
treated as a fitting parameter.

The calculated stopping power by the dielectric formalism and by the 
MELF–GOS model at lower energies differs from the available experi-
mental data of protons in ice. The close similarity70, 71 between the exci-
tation spectra of liquid water36 and ice72 implies that the corresponding 
mean excitation energies are comparable and, therefore, the stopping 
power at high projectile energies coincides for both liquid water and ice. 

Figure 6.8 Stopping power of liquid water (solid line), dry DNA (dashed line), 
and PMMA (dotted line) for a proton beam, as a function of the incident 
energy, obtained with the dielectric formalism and the MELF–GOS method. 
Experimental data for protons in liquid water63-65 and ice66–68 are depicted by 
symbols. The  stopping power of DNA calculated by Tan et al.49 is shown by empty 
triangles.
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But, nevertheless there are small differences in the band structure of liquid 
water and ice, which lead to the observed differences in the stopping power 
at low projectile energies.

Finally, we also depict in Figure 6.8 by triangles the stopping power 
of DNA calculated by Tan et al.49 which also were evaluated applying 
the dielectric formalism to the optical-ELF of DNA, but with a different 
extension algorithm to k �= 0 values.

The second moment in the energy-loss distribution corresponds to the 
energy-loss straggling �2, which is related to the variance in the distribution 
of the stochastic inelastic collision phenomena. We show in Figure 6.9 the 
energy-loss straggling �2 of liquid water (solid line), dry DNA (dashed line), 
and PMMA (dotted line) for a proton beam as a function of its energy, cal-
culated from Eqs. (5) and (26). The �2 for liquid water is appreciably smaller 
than for DNA or PMMA in the whole proton energy range. The arguments 
to explain this behavior are the same that we discussed in relation to the 
stopping power. It is worth to notice that the contribution of the inner-shell 
electrons to the energy-loss straggling is larger than in the stopping power, 
representing a considerable percentage at high projectile energies. Therefore, 
an accurate description of electron inner-shell excitations is desirable, which 

Figure 6.9 Energy-loss straggling, calculated with the dielectric formalism and the 
MELF–GOS method, of liquid water (solid line), dry DNA (dashed line), and PMMA 
(dotted line) for a proton beam as a function of the incident energy.
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are accounted for in this work by the GOS (in the hydrogenic approach) of 
the elemental constituent of the compound target.

A proper description of the energy-loss straggling is important because 
recent detailed simulations of the spatial distribution of the energy depo-
sition by proton beams in liquid water did show that the position of the 
Bragg peak is determined mainly by the stopping power, whereas its width 
can be attributed to the energy-loss straggling.69

In order to evaluate the possible damage induced in biological materials 
due to the irradiation with energetic particles, another interesting magni-
tude is the average energy Waverage(T ) transferred by a projectile of energy 
T to the target producing electronic excitations and ionizations, which is 
defined by:

Figure 6.10 shows Waverage(T ) as a function of the energy of a proton 
beam in liquid water (solid line), DNA (dashed line), and PMMA (dotted 
line). We can observe that Waverage(T ) is rather similar for liquid water and 
DNA, however the average energy is smaller for PMMA in all the range 
of proton energies analyzed here. This fact is related to the behavior of the 
probability to induce electronic excitations P(T , ω) in terms of the trans-
ferred energy �ω, which, as has been shown in Figure 6.6, is quite smaller for 
PMMA than for liquid water or DNA at high-energy transfers. Waverage(T ) 
increases with proton energy T, being ∼20 eV at T = 10 keV for liquid 
water and DNA (∼10 eV for PMMA) up to ∼70 eV for T = 50 MeV 
(∼60 eV for PMMA). We also show by dots in Figure 6.10 the values 
reported by Pimblott and LaVerne73 for the average energy of the secondary 
electrons generated by swift protons. These results derive from Monte Carlo 
simulations of the proton tracks based on experimental optical-ELF for 
liquid water, but using the quadratic extension to finite k. We can observe 
that the agreement with our calculations is quite good, the small discrepan-
cies being due probably to the different extension algorithm used in each 
methodology, and because we also include electronic excitations.

As the probability of electronic excitations, characterized by P(T , ω), 
decreases with the projectile energy T (see Fig. 6.6), and the average energy 
of the excitations increases with T, hence a maximum in the stopping 
power is clearly expected, which is found around T = 100 keV for liquid 
water, DNA, and PMMA (see Fig. 6.8).

(27)Waverage(T ) =

∑Z1

q=0
φq(T )

∫

∞

0
dω(�ω)Pq(T , ω)

∑Z1

q=0
φq(T )

∫

∞

0
dω Pq(T , ω)

.
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An estimation of the energy carried by the secondary electrons gener-
ated by energetic protons is obtained as Waverage − Ebind, where Ebind is a 
representative value characterizing the binding energy of the target elec-
trons, which is Ebind ∼ 10 eV for biomaterials.74 Therefore, the generated 
secondary electrons produced in liquid water, DNA, or PMMA could be 
very effective in producing DNA strand breaks, due to the low threshold 
energy for radiation damage in biomolecules,75 with the average energy of 
the secondary electrons produced by proton beam being similar in liquid 
water and DNA, and a little bit smaller in PMMA.

5. SIMULATION OF THE DEPTH–DOSE DISTRIBUTIONS

The depth–dose profile of energetic protons in biological materials 
as well as the energy distribution of the beam as a function of the depth is 
simulated by the SEICS code (Simulation of Energetic Ions and Clusters 

Figure 6.10 Average energy Waverage transferred by the projectile producing electronic 
excitations and ionizations in liquid water (solid line), dry DNA (dashed line), and PMMA 
(dotted line) induced by a proton beam as a function of its energy. The calculations 
were obtained with the dielectric formalism and the MELF–GOS model. Circles cor-
respond to results for ionization processes from a proton beam in liquid water from 
Pimblott and LaVerne.73
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through Solids). In brief, this code uses Molecular Dynamics to follow 
in detail the motion of the charged projectiles through the target, and 
a Monte Carlo procedure to treat the statistical nature of the elastic and 
inelastic scattering as well as the charge-exchange processes between the 
projectile and the target. In what follows we present the basic features of 
the simulation code; for more details the reader is referred to Refs. 69, 76.

The trajectory of an energetic particle through the target is obtained by 
numerically solving its equation of motion. Given the instantaneous posi-
tion �r(t), velocity �v(t), and force �F(t) acting on the projectile at a given 
time t, its new position �r(t + �t) and velocity �v(t + �t) after a time step 
�t, are obtained by using the velocity variant of Verlet’s algorithm77

where c is the speed of light and the term in brackets is an ad hoc modi-
fication of the original algorithm to account for the relativistic effects on 
the motion of the projectile, which must be considered when studying 
the interaction of high energetic beams in biomaterials, as in the case of 
hadrontherapy.

The force F(t) that slows down an energetic particle travelling with 
charge-state q through the target is the electronic stopping force. But due 
to the stochastic nature of the inelastic energy-loss processes, the stopping 
force is obtained from a randomly sampled Gaussian distribution:

where the mean value of the distribution is the stopping power Sq and its 

variance σ is related to the energy-loss straggling �2

q
 through σ =

√

�2
q/�s, 

with �s = v(t)�t being the distance traveled in a time step �t, and ξ1 and 

ξ2 are two random numbers uniformly distributed between 0 and 1.
We use in the SEICS code the stopping power and the energy-loss strag-

gling for a projectile with charge q, calculated with the dielectric formalism 
together with the MELF–GOS model, see Eqs. (4) and (5). Nonetheless, 
at high projectile energies (E � 10 MeV/u), analytical formulas from the 

(28)
�r(t + �t) = �r(t) + �v(t)�t +

�F(t)

2M1
(�t)2 [

1 − (v(t)/c)2]3/2
,

(29)
�v(t + �t) = �v(t) +

�F(t) + �F(t + �t)

2M1
(�t)

[

1 − (v(t)/c)2]3/2
,

(30)F = −

[

Sq + �q/
√

�s
√

−2 ln ξ1 cos (2πξ2)
]

,
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relativistic Bethe stopping power8 and the relativistic Bohr energy-loss 
straggling are used.

Although inelastic scattering is the main responsible of the energy 
loss of the projectile, the SEICS code also includes the elastic scattering 
between the projectile and the target constituent atoms. These mainly result 
in angular deflection of the projectile trajectory and also contributes to the 
energy loss at low energies. The code uses a Monte Carlo algorithm to treat 
multiple scattering based in Ref. 78.

As the electronic energy loss strongly depends on the charge state of the 
projectile, which varies during its travel through the target, then electronic 
capture and loss processes by the projectile are included in the SEICS code 
in order to know the charge state of the projectile at each time during its 
trajectory.

The simulated depth–dose distribution obtained by the SEICS code for a 
100 MeV proton beam in liquid water and PMMA is shown in Figure 6.11. 
Solid lines are the results when all the interactions are included in the simula-
tion, whereas dotted lines represent results obtained when energy-loss straggling 

Figure 6.11 Simulated depth–dose distribution of a 100 MeV proton beam in liquid 
water (black curves) and in PMMA (grey curves). Solid lines are the results obtained 
from the SEICS code when all the interactions are taken into account, whereas dotted 
lines represent results of the same simulation without energy-loss straggling.
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was not considered. Nuclear fragmentation processes are not included in the 
simulation since they do not affect significantly the depth–dose curves for 
protons below 100 MeV. The plateau and peak position of the Bragg curve 
are mostly determined by the electronic stopping force, but the shape of the 
Bragg peak strongly depends on the fluctuations of the projectile energy loss 
along its full path, accounted for by the energy-loss straggling. The Bragg 
peak for liquid water (black curves) is deeper than for PMMA (grey curves), 
because the PMMA stopping power (see Fig. 6.8) and its density is larger than 
for liquid water, so protons in PMMA slow down faster than in liquid water, 
reaching lower depths. Also, the differences in their stopping powers translate 
in a higher dose in PMMA than in liquid water at all depths.

In Figure 6.12 we show the results provided by the SEICS code for 
the average energy 〈E〉 (dashed lines) of 100 MeV protons incident on 
liquid water (black dashed curve) and on PMMA (grey dashed curve), as a 
function of the depth. The energy distributions of the protons at different 
depths in these biomaterials are depicted by solid lines, showing the broad-
ening with depth of the initially monoenergetic beam. For comparison 
purposes the depth–dose distributions corresponding to each material are 

Figure 6.12 Left axis: Average energy 〈E〉 (dashed lines) of protons incident with 
100 MeV in liquid water and in PMMA, as a function of the depth. The beam energy 
distribution at each depth is depicted by solid lines. Right axis: Depth–dose distribu-
tion for liquid water and PMMA (dotted lines). Black (or grey) lines correspond to liquid 
water (or PMMA).
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shown by dotted lines (right axis). The average energy of protons in liquid 
water and in PMMA decreases with depth mostly due to inelastic colli-
sions with target electrons, and the initially monoenergetic proton beam 
becomes broader as the depth inside the target increases.

It is interesting to notice that at the Bragg peak the projectile energy 
distribution is asymmetric since around that depth some projectiles start to 
stop, with the consequent increase in the lower energy tail of the energy 
distribution. From the previous discussion we emphasize the importance 
of taking into account the energy distribution of the protons around the 
Bragg peak because proton energy determines the spectrum of the gen-
erated secondary electrons, which are mainly responsible for the DNA 
damage.75

The SEICS code is also a useful tool to evaluate the water-equivalent 
properties of PMMA. This target is a plastic commonly used as a water-
equivalent material in dosimetry measurements, since it has relatively simi-
lar properties and since it is easier to manipulate a solid target than a liquid 
one. The water-equivalence is based in the fact that a measured thickness 
in PMMA can be converted to an equivalent thickness in liquid water 
through79, 80

where zwater and zPMMA are the equivalent depths in water and PMMA, 
respectively, and cPMMA is the depth-scaling factor (or water-equivalent 
ratio, WER), which depends on the density and mean mass stopping power 
ratios, ρPMMA/ρwater and SPMMA/Swater, respectively.

The WER is usually calculated as the ratio of the continuous slowing 
down approximation (CSDA) ranges of protons in PMMA and water. An 
alternative is to use the Bragg curves calculated within the SEICS code, 
defining the range as the thickness in which the dose is 80% after the maxi-
mum. We have determined the WER of PMMA in this way for 75 MeV 
and 100 MeV proton beams, obtaining in both cases a value of 1.174. This 
value can be compared with the ones reported by other authors, which 
are summarized in Table 6.3. Note that the WER depends on the density, 
according to Eq. (31), and then we have corrected all the values to match 
the density ρPMMA

= 1. 188 g/cm
3 used by us.

In Figure 6.13 we show the Bragg curves for a 100 MeV proton beam 
in water and PMMA, normalized to the entrance dose, and with the 

(31)zwater = zPMMAcPMMA = zPMMA

ρPMMA

ρwater

SPMMA

Swater

,
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thickness in PMMA scaled according to Eq. (31), with WER = 1.174. As 
it can be seen, the two curves are totally superimposed, indicating excel-
lent water-equivalent properties of PMMA when nuclear fragmentation 
processes are neglected.

Regarding the differences between the WERs shown in Table 6.3, the 
maximum difference is observed between our value of 1.174 and the one 
by ICRU49 CSDA ranges14 of 1.157 (1.45%). Such a difference translates, 
for a 100 MeV proton beam, in an uncertainty of the order of 1.2 mm in 
the Bragg peak position. Therefore, it is important to count on the most 
reliable values of stopping magnitudes (and also with realistic radiation 
transport codes, which allow a precise calculation of WER) if a submil-
limetric accuracy is desired.

Other useful information the SEICS code can evaluate regarding the 
water equivalence of PMMA is the energy distribution of projectiles at the 
Bragg peak in both targets. Although the macroscopic dose is completely 
equivalent, as we have already shown, the knowledge of the equivalence 
of the energy distribution is also important from a microscopic point of 

Figure 6.13 Normalized (at the entrance) depth–dose curves of a 100 MeV proton beam 
in liquid water (black solid line) and in PMMA at water-equivalent depth (grey solid line). 
The inset shows the energy distribution of the proton beam just at the Bragg peak in 
liquid water (black solid line) and PMMA (grey solid line); see the text for more details.
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view, since the energy of the particles will affect the emission of secondary 
electrons. This issue is relevant if further analysis of radiation damage will 
be carried out using PMMA as a water substitute. The inset of Figure 6.13 
shows the energy distribution of particles, at the Bragg peak depth, for both 
liquid water (black line) and PMMA (grey line), i.e., the number of projec-
tiles, N, which travel, at this depth, with a certain energy, E, divided by the 
bin width, �E. This division is performed in order to avoid differences in 
height due to different widths of the histogram bin. As it can be seen, the 
proton beam is also equivalent for water and PMMA from a microscopic 
point of view. This point remarks the water equivalence of PMMA when 
nuclear fragmentation reactions are neglected, and of course when the 
WER is accurately known.

6. CONCLUSIONS

We have presented in this paper an account of our recent work 
applied to the interaction of proton beams with materials of biological 
interest, such as liquid water (∼70% constituent of living beings), DNA 
(the biomaterial per excellence), and PMMA (a plastic widely used in 
dosimetry). This research is linked to the recent use of proton beams in 
cancer therapy, a promising and successful technique known as ion therapy 
(or hadrontherapy).

The main magnitudes useful for describing the energy deposited 
by a projectile moving through a biological target with charge-state q 
are the stopping power Sq and the energy-loss straggling �2

q, which can 
conveniently be evaluated in the dielectric formalism. We use a suitable 

Table 6.3 Water-equivalent ratios, or WER, for protons in PMMA from different sources.

ρPMMA (g/cm3) WER WER (ρ PMMA = 1. 188 g/cm3)

This work (75 MeV, 
100 MeV)

1.188 1.174 1.174

ICRU49 (CSDA)14 
(75 MeV)

1.195 1.164 1.157

Palmans et al.79 
(75 MeV)

1.186 1.159 1.161

Zhang et al.80 
(75–250 MeV)

1.185 1.157–1.167 1.160–1.170
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description of the target excitation spectrum, based in optical experimental 
data for the outer electronic excitations and hydrogenic generalized oscil-
lator strengths for the inner-shell electrons of the target, properly extended 
to finite momentum transfers conveniently extended to finite momentum 
transfers; this procedure constitutes the fundamentals of the so-called 
Mermin Energy Loss Function–Generalized Oscillator Strength method, 
from which we can easily obtain, besides Sq and �2

q
, the target mean exci-

tation energy, the projectile inverse inelastic mean free path, the average 
energy transferred to electronic excitations and ionizations, or the prob-
ability that the projectile induces electronic excitations of a given energy. 
The projectile electronic density is accounted for by the Brandt–Kitagawa 
model.

There are sizeable differences among the calculated stopping powers of 
liquid water and those of DNA and PMMA, which are rather similar. Our 
stopping power of liquid water for protons compares fairly well with the 
available experimental data explicitly measured for liquid water, with differ-
ences appearing for ice water stopping power (probably due to the different 
phase state of the target).

The average energy transferred by the beam to the targets lies in the ∼10 
and ∼70 eV range, showing the same increasing trend as the projectile energy 
grows, although being slightly larger for liquid water, DNA, and PMMA (in 
this order). Our results are a little bit larger than previously published results73 
for liquid water, because we also consider electronic excitations.

By means of the Simulation of Energetic Ions and Clusters through 
Solids code, which is based in Molecular Dynamics and Monte Carlo to 
follow the trajectories of the projectiles through the target, we are able to 
obtain the depth–dose curves (Bragg curves), as well as the energy distri-
bution of the proton beam as a function of the depth in liquid water and 
PMMA, both materials being widely studied for the propagation of proton 
beams. From these simulations we obtain the water-equivalent thickness of 
PMMA as well as other interesting magnitudes in dosimetry, such as the 
water-equivalent ratio, which is compared to values available in the litera-
ture, obtained by different methods. Comparing the extreme values (ours 
and ICRU4914) of the water-equivalent ratio for a 100 MeV proton beam, 
an uncertainty of ∼1.2 mm in the Bragg peak appears.

Finally, we have shown that the energy distributions of a 100 MeV proton 
beam at the Bragg peak are practically identical in liquid water and PMMA 
(when nuclear fragmentation is not taken into account), which means that 
both materials are equivalent with respect to the energy distribution.
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Abstract

In this chapter we analyze the possibilities and ranges of validity of the dielectric 
formalism to deal with correlated bound electrons in matter by using the shellwise 
local plasma approximation. This model describes the response of the electrons of 
the same binding energy as a whole (collectively), screening the interaction with 
the impinging ion. It considers separately each sub-shell of target electrons, with the 
corresponding dielectric response. The density of electrons and the energy gap are 
included explicitly by employing the Levine and Louie dielectric function. The goal 
of this chapter is to summarize and review the capability of this model to deal with 
fundamental magnitudes of the atomic collisions expressed as different moments of 
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the energy loss: ionization cross sections (single or multiple, differential, and total), 
stopping power (and mean excitation energy), and energy loss straggling. This review 
covers a wide range of the collisions of ions with gases and solids, paying special 
attention to multi-electronic targets. The advantages and disadvantages of the model 
in comparison with independent electron ones, ranges of validity and future prospect 
will be considered.

1. INTRODUCTION

When a swift heavy particle travels through matter, different inelastic 
processes take place. The atomic electrons are excited or ionized, making 
the particle to lose energy. The probability of these events to happen, the 
mean energy loss during the ion passage, the effects on the target atoms 
(i.e., how deep are the ionized shells, what is the final charge state of the 
atom) are subjects of study for the different theories on heavy particle 
collisions.1, 2 This research branch finds important applications in many 
fields, including medicine within hadron therapy (for recent reviews, see 
Refs. 3–6).

In this chapter we discuss the possibilities and ranges of validity of 
the shellwise local plasma approximation (SLPA) to deal with some of 
the fundamental inelastic collisions mentioned above. This is a many-
electron model within the frame of the dielectric formalism, especially 
suitable for multi-electronic targets and high energy collisions in which 
target deep shells are involved.7, 8 The SLPA describes the electronic 
response of each sub-shell of target electrons as a whole, including 
screening among electrons.9 This is of particular interest when describ-
ing many-electron sub-shells such as 4f  or 3d, for example. The main 
characteristics of the SLPA are the independent-shell approximation (a 
dielectric function for each sub-shell of target electrons, meaning that 
only the electrons of the same binding energy respond collectively to 
the ion perturbation and screen among them) and the inclusion of the 
binding energy explicitly (not free-electron gas, but electron gas with 
an energy threshold).

It must be stressed that the SLPA is an ab initio calculation (no param-
eters included) whose only inputs are the atomic densities of the different 
sub-shells and the corresponding binding energies. It allows us to calculate 
the different moments of the energy loss: ionization cross sections (single 
or multiple, differential, and total), stopping power (and mean excitation 
energy), and energy loss straggling. The advantages and disadvantages of the 
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model, as well as ranges of validity and future prospects will be discussed 
in the following pages.

2.  THE SHELLWISE LOCAL PLASMA  
APPROXIMATION

2.1 Historical aspects
When a fast heavy ion moves in a medium, it polarizes the target electron 
cloud. This gives rise to an induced potential, which can be described as a 
trailing wake that follows the motion of the projectile (see Ref. 9 and ref-
erences therein). The many-body consistent treatment for an ion traveling 
through an homogeneous free-electron gas was developed by Lindhard10 
and by Ritchie,11 within the linear response approximation (LRA).

This dielectric formalism was extended to deal with atomic bound 
electrons as a free-electron gas of local density, known as the local plasma 
approximation (LPA). It was applied to stopping power (energy loss per unit 
length) of heavy ions in matter using the logarithmic high energy limit.12, 13 
Later on developments of the LPA included the extension to isolated 
atoms by Rosseau et al.14 and to intermediate energies by employing 
the fully dielectric formulation.15–17 In the LPA by Lindhard and sub-
sequent works, the response of bound electrons, even local, considers 
the electronic cloud as a whole by using the total density of electrons 
in the atom.

In the last years we have improved and extended the use of the 
dielectric formalism to deal with bound electrons of gaseous and solid 
targets (insulators and metals), not only for energy loss calculations, but 
also for ionization probabilities and energy loss straggling.7, 8, 18–33 The 
full dielectric formalism was employed together with the theoretical 
description of bound electrons through the atomic wave functions and 
binding energies.

Our developments for the SLPA had two main steps. First the separate 
dielectric response for each shell, by considering the independent-shell 
approximation. Physically, this independent-shell approximation means that 
when an electron of the nl sub-shell is ionized only the other nl-electrons 
are included in the screening of the ion potential. This gave very good 
results for the energy loss even at intermediate energies,18–25 as far as the 
perturbative approximation is valid. A previous proposal of the independent 
shells within the LPA, known as the orbital OLPA, is due to Meltzer et al.34 
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However, this approach uses the logarithmic high energy limit for the stop-
ping power.

The second step was the inclusion of the ionization gap using the 
Levine and Louie dielectric function.35 This is a very important point to 
advance in the calculation of ionization probabilities, not only for inner-
shells of metals, but also for insulators26 and gases.27 In this sense, the SLPA 
provides an interesting alternative to the independent electron models, with 
very good results as compared with complex formulations such as the con-
tinuum distorted wave eikonal initial state (CDW-EIS) approximation,28 
and with great advantages in the computational effort and time.

The Levine and Louie dielectric function35 keeps the characteristics 
of Lindhard’s,10 i.e., electron–electron correlation to all orders, collective 
response, and f-sum rule (particle number conservation). It must be noted 
that the SLPA is a first order approximation (as far as the dielectric functions 
are calculated in LRA, like Lindhard’s 10 or variations, such as Mermin’s36 
or Levin–Louie’s35). It means that it is a perturbative description valid for 
ZP/v < ZT and v > ve with ve being the mean velocity of the electrons 
of the nl-shell. The SLPA with this dielectric function proved to give good 
results in stopping power calculations7, 29–33 in an extended energy range 
that includes the maximum of the stopping, and for inner-shell ionization 
of very heavy targets at high enough impact velocities.8

2.2  Theoretical details: The Levine–Louie dielectric function 
and the independent-shell approximation

Consider a bare ion of charge ZP moving at velocity v in a free-electron gas 
(FEG) of homogeneous density ρ, a Fermi momentum kF

= [3π2ρ]
−1/3 

and a Seitz radio rS = [(4/3)πρ]
1/3. Following the dielectric formalism, the 

stopping power per unit length is expressed as

with ε(k, ω) being the quantum dielectric function of the medium.9 
Different approximations are employed for the dielectric function, with 
the Mermin–Lindhard dielectric function36 being the most accurate one 
to account for the plasmon time decay. This dielectric function depends 
on the constant density of electrons ρ and the plasmon damping γ, both 
characteristics obtained from the optical properties of each material37 and 
from tabulations.38

(1)S =

2Z2

P

πv
2

∫
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ω Im
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The SLPA formulation has a general expression for the different 
moments of the energy loss. It describes the inelastic collision consider-
ing the interaction with each nl sub-shell of target electrons separately, 
with S(t)

nl
 being its energy moment of order t (t = 0 the ionization cross 

section, t = 1 the stopping power, t = 2 the square energy loss straggling) 
given by

The total moment will be the addition of the shell contributions 
S(t)

=

∑

nl S
(t)
nl

.29 In the case of metals, electrons are treated differently 
depending on whether they belong to the free-electron gas (FEG) or to 
the inner-shells (bound electrons).

The dielectric function εnl(k, ω) in Eq. (2) is a mean value of a local 
response that depends on the density of electrons of the shell ρnl(r) and the 
ionization gap ǫnl

with kF

nl(r) = [3π2ρnl(r)]
1/3 the local Fermi velocity. The dielectric func-

tion employed εLL, is the Levine–Louie one,35 which includes explicitly 
the energy gap of each shell. It is defined as

with ωg =

√

ω2
+ ǫ2

nl  and εL(q, ω, kF

nl(r)) being the usual Lindhard 
dielectric function.10 Note that if we consider no binding energy, 
ǫnl = 0, the usual expression for the probability in the dielectric for-
malism (Lindhard) is recovered. Once the imaginary part is defined, 
the real part, Re

[

εLL(q, ω, kF

nl(r))
]

 is obtained in closed form through 
the Kramers–Kronig relation, as shown in Ref. 35. This model for the 
dielectric function, proposed originally for semiconductors and insula-
tors,35 satisfies the so-called f-sum rule, or particle number conservation, 
that is the desirable feature for a dielectric function. In fact, this modified 
version of the SLPA was first applied to calculation of stopping power 
in insulators.26

(2)S
(t)
nl =

2

πv
2

∫

∞

0

Z2

P
dk

k

∫ kv

0

ωt
Im

[

−1

εnl(k, ω)

]

dω.

(3)Im

[

−1

εnl(k, ω)

]

=

∫

Im

[

−1

εLL(k, ω, kF

nl(r), ǫnl)

]

dr

(4)Im
[

εLL(q, ω, kF

nl(r))
]

=

{

Im
[

εL(q, ωg , kF

nl(r))
]

, ω > |ǫnl|

0, ω < |ǫnl|
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The density of electrons of the shell ρnl(r) and the ionization gap ǫnl 
are the only inputs for the SLPA. For atoms they can be obtained from the 
Hartree–Fock wave functions tabulated by Clementi and Roetti39 or by 
Bunge et al.40 For very heavy atoms (Z > 54) they can be calculated using 
the relativistic solutions of the Schrödinger equation.7, 8, 32

In the case of an ion with N bound electrons and charge state 
q = ZP − N , the interaction with target electrons can be expressed 
through a screened ion-charge Z

(q)
P

(r) that depends on the distance to the 
nucleus (with the ion electrons frozen, just screening the nucleus). It veri-
fies Z

(q)
P

(r) → q for long distance collisions and Z
(q)
P

(r) → ZP for close 
collisions.

In order to include this inhomogeneous screened ion-charge in Eq. (2), 
instead of ZP, we need the Fourier transform of Z

(q)
P

(r) given by

Using Flannery integrals41 and the Slater-type expansion for the projectile 
wave functions (Clementi and Roetti tables39 for neutral atoms and for 
positive ions), Z (q)

P
(k) has an analytical closed form (see the Appendix in 

Ref. 8 for the details).
We calculated Z

(q)
P

(r) for different ions from He
+q (q = 0, 1) up to 

Ne
+q (q = 0, . . . , 9). In order to express it in a simple way to be included 

in the programs of calculus we fitted the exact Z (q)
P

(r) with two exponen-
tials as follows:

In Tables 7.1 and 7.2 we include the parameters Zj , aj for the different ions 
and charge states.

The inclusion of Z (q)
P

(k) in Eq. (2) is straightforward. The SLPA for 
the total energy moment of order t due to the interaction with an ion of 
nucleus charge ZP and charge state q is

(5)Z
(q)
P

(k) = ZP −

N
∑

j=1

〈

ϕj

∣

∣

∣e
ik.r

∣

∣

∣ ϕj

〉

.

(6)Z
(q)
P

(r) = q +

2
∑

j=1

Zj exp(−ajr).

(7)S
(t)
(q) =

∑

n,l

2

πv
2

∫

∞

0

[Z
(q)
P

(k)]2 dk

k

∫ kv

0

ωt
Im

[

−1

εnl(k, ω)

]

dω.
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In the following sections we present and discuss the current state of 
the SLPA to deal with energy loss (Section 3), its straggling (Section 4), 
and with ionization cross sections (Section 5). The order was chosen by 

Table 7.1 Parameters to fit the screened ion-charge as function of the distance to 
the nucleus for He+q to N+q. These functions were obtained using Hartree–Fock wave 
functions by Clementi and Roetti.39 for neutral atoms and for positive ions

Ion q Z1 a1 Z2 a2

He
+ 1 −1.289 4.722 2.289 3.529

He
0 0 −0.288 7.784 2.288 2.359

Li
2+ 2 −0.101 1.017 1.101 3.411

Li
+ 1 −0.195 0.957 2.195 3.024

Li
0 0 1.123 0.531 1.877 3.347

Be
3+ 3 −0.100 1.359 1.100 4.554

Be
2+ 2 −0.334 16.900 2.334 5.298

Be
+ 1 1.172 0.942 1.828 4.635

Be
0 0 2.412 0.824 1.588 5.161

B
4+ 4 −0.106 1.730 1.106 5.674

B
3+ 3 3.684 7.832 −1.684 11.561

B
2+ 2 1.250 1.376 1.750 6.138

B
+ 1 2.532 1.255 1.468 6.823

B
0 0 3.631 1.075 1.369 7.285

C
5+ 5 −0.097 2.101 1.097 6.891

C
4+ 4 −0.208 2.120 2.208 6.459

C
3+ 3 1.783 7.227 1.217 1.731

C
2+ 2 2.591 1.661 1.409 8.473

C
+ 1 3.753 1.520 1.247 9.114

C
0 0 4.801 1.331 1.199 9.446

N
6+ 6 −0.058 2.353 1.058 8.420

N
5+ 5 −0.216 2.452 2.216 7.553

N
4+ 4 1.805 8.357 1.195 2.086

N
3+ 3 2.639 2.077 1.361 10.093

N
2+ 2 3.846 1.965 1.154 11.027

N
+ 1 4.953 1.792 1.047 11.776

N
0 0 5.973 1.596 1.027 12.094
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historical reasons: the dielectric formalism, and more specifically, the local 
plasma approximation, was developed to describe the energy loss of heavy 
particles in solids. Instead, using a collective formalism to calculate ioniza-
tion probabilities of solids and, even more of gaseous targets, is much more 
demanding and is new theoretical development due to the SLPA.

Table 7.2 Similar to Table 7.1 for O+q to Ne+q ions

Ion q Z1 a1 Z2 a2

O
7+ 7 −0.093 2.776 1.093 9.228

O
6+ 6 −0.207 2.825 2.207 8.744

O
5+ 5 1.766 9.774 1.234 2.514

O
4+ 4 1.299 10.976 2.701 2.591

O
3+ 3 3.899 2.395 1.101 12.836

O
2+ 2 5.043 2.237 0.957 13.962

O
+ 1 6.113 2.052 0.887 14.782

O
0 0 7.087 1.824 0.913 14.749

F
8+ 8 −0.043 2.881 1.043 11.032

F
7+ 7 −0.130 2.543 2.130 10.157

F
6+ 6 1.754 11.088 1.246 2.912

F
5+ 5 1.296 13.463 2.704 2.896

F
4+ 4 3.958 2.834 1.042 15.007

F
3+ 3 5.190 2.750 0.810 16.145

F
2+ 2 6.277 2.554 0.723 17.556

F
+ 1 7.245 2.286 0.755 18.684

F
0 0 8.213 2.064 0.787 18.438

Ne
9+ 9 −0.095 3.316 1.095 11.422

Ne
8+ 8 −0.166 3.366 2.166 11.214

Ne
7+ 7 1.787 12.100 1.213 3.247

Ne
6+ 6 1.309 14.616 2.691 3.279

Ne
5+ 5 1.024 16.471 3.976 3.256

Ne
4+ 4 5.181 3.129 0.819 19.045

Ne
3+ 3 6.299 2.953 0.701 21.086

Ne
2+ 2 7.350 2.738 0.650 22.470

Ne
+ 1 8.360 2.524 0.640 23.075

Ne
0 0 9.326 2.306 0.674 22.586
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3.  ENERGY LOSS IN PARTICLE PENETRATION  
OF MATTER

The mean value of the energy loss of particles in matter, also 
known as stopping power, is a necessary ingredient of many parts of 
basic science, of medical and technological applications.42, 43 It is an 
average of the ion energy loss per unit path length. At intermediate to 
high impact velocities, this energy loss is related to ionization of target 
electrons. The higher the ion energy, the deeper the excited electrons. In 
the case of metals, it means that at intermediate and high impact ener-
gies, the description of the stopping power due to excitation of valence 
electrons (the FEG of metals) is not enough, and target inner-shells must 
be included.

Different experimental methods are used to determine stopping 
powers44 and important collections of data, statistics, and semiem-
pirical functions are available in the web.45, 46 Many semiempirical and 
theoretical models have been developed (see Refs. 47–50 and references 
therein). However, the description of very heavy targets, i.e., those with 
the close 4f  sub-shell with 14 electrons, remains a heavy task for first 
principle theoretical calculations. On the contrary, the SLPA, being a 
many-electron model, describes with the same degree of complexity 
Ne, Cu, or Au targets. Furthermore, the more electrons the shell has, 
the more suitable the method is. On the other hand, this model works 
within the dielectric formalism, so dynamical screening effects among 
electrons are included. This proved to be of particular interest for the 
case of the f-shells.32

The only inputs for the SLPA are the density of electrons around the 
nucleus for each sub-shell and the binding energy. As far as these inputs are 
known, the SLPA calculations reduce to rather simple numerical integra-
tions, given by Eqs. (2) and (7). Moreover, the extension of this formalism 
to deal with complex targets (compounds, molecules of biological interest, 
water) is straightforward if these inputs are known.

3.1 The SLPA in stopping power of metals for protons
The SLPA gives good results for energy loss by protons in metal targets.7,  31,  32 
We consider and discuss here three cases of special interest , Cu (Z = 29), 
W (Z = 74), and Au (Z = 79). This choice is founded on their experimental 
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and technological interest, and on the availability of data. Cu and Au are 
the two targets with the largest amounts of stopping measurements. For 
W, new interest is related to its properties as inner-wall of fusion reac-
tors.51 For our theoretical interest, these are targets for which outer elec-
trons can be described as FEG and we can deal separately with bound 
electrons using the SLPA. This separate description of the response of 
bound and valence electrons as inhomogeneous and homogeneous elec-
tron gases, respectively, is part of the good agreement obtained. On the 
other hand, the separate calculations allow using different models in each 
case (i.e., the SLPA for bound electrons and a non-perturbative formalism 
for the FEG).

For Cu, the densities and binding energies were obtained from the 
tabulated Hartree–Fock wave functions.39, 40 For Au and W, the atomic 
wave functions are the solutions of the relativistic Dirac equation instead 
the nonrelativistic Schrödinger equation. We employed to this end the fully 
relativistic ab initio wave functions obtained by using the hullac52 code (see 
Ref. 7 for the details). The binding energies were compared with tabulated 
experimental binding energies in solids by Williams.53

For H ions in solids we calculate the stopping cross section just consid-
ering H+(Refs. 7, 32). At low velocities, the screening of the H+ nucleus is 
strong enough to have very loose or directly no bound electron.54, 55

The total stopping of protons in Cu is displayed in Figure 7.1. This 
value was obtained by adding the bound electron and the FEG contribu-
tions. The former was calculated with the SLPA formalism (Eq. (2) with 
t = 1) and adding the contributions of the different sub-shells to get 
total stopping of bound electrons. The latter by employing the dielec-
tric formalism (perturbative approximation) with the Mermin–Lindhard 
dielectric function.36 The characteristic plasmon frequency and width 
employed here for Cu FEG are ωp = 0. 703 a.u. and γ = 0. 950 a.u., 
respectively. This yields a mean value of electrons in the FEG as Ne = 3. 14, 
and a Seitz radius as rS = 1. 82 a.u. These values were obtained from the 
optical data of the energy loss function37 by considering only the first 
important peak. These number of electrons in the FEG is similar to the 
experimental value recommended by Isaacson.38 To keep the total num-
ber of electrons, we considered Cu as [Ar] 3d7.86 and the "3. 14" electrons 
as FEG.

In Figure 7.1 we compare our total stopping cross sections of Cu 
for protons, with the experimental data available,45 and with srim08 
results.46 The contribution from the FEG and the bound electrons are 
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displayed separately. About the experimental data, we indicate separately 
only the data since 1980, while earlier data is plotted together with a 
single type of symbol. The agreement with the experimental data and 
with the srim08 curve46 is very good in the whole energy range. The 
stopping maximum is correctly described in energy and value. The dif-
ferential description for the FEG and the bound electron contribution is 
the basis for this agreement.56

We display in Figures 7.2 and 7.3 the stopping cross sections of Au 
and W for protons.7, 32 These are very interesting targets because the 4f  
sub-shell plays a major role. For solid Au, we describe the FEG with the 
Mermin–Lindhard dielectric function and the following parameters (in 
atomic units): Seitz radio rS = 1. 17 a.u. (17 electrons in the FEG), plasmon 
energy ωP = 1. 37 a.u., and a damping γ = 1. 37 a.u. These values were 
obtained as a first approximation to optical energy loss function tabulated 
in the Handbook of Optical Constants by Palik and Ghosh.37 This means 
that the atomic 5p6

, 5d10 and 6s1 electrons are considered as the homoge-
neous FEG, and the first bound electrons are those of the 4f  sub-shell. The 
bound electron contribution was calculated using the SLPA with the fully 
relativistic wave functions and binding energies.7

Figure 7.1 Stopping cross sections of Cu for protons. Curves: solid line, total stopping 
adding the contributions by bound electrons (blue dashed line, SLPA) and by the FEG 
(red dotted line, Mermin–Lindhard dielectric calculation); orange dash dotted line, 
srim08 results.46 Symbols: experiments as reported by Paul;45 different symbols marked 
within the figure, experimental data since 1980; black hollow circles, experimental data 
corresponding to (1935–1979).
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In Figure 7.2 we display our theoretical results for the stopping cross 
section together with the large amount of experimental data available,45 
and the srim 2008 values. The contributions of the FEG and the bound 
electrons are displayed separately. The FEG contribution in gold, even the 
main one, cannot explain the total results for energies above 100 keV. As 
observed in the figure, there is an important dispersion of experimental 
values, mainly around the stopping maximum, which makes any theoretical 
description not conclusive. In order to have a cleaner picture of the situa-
tion, we displayed separately the stopping measurements of the last 25 years. 
This arbitrary classification allowed us to note that, except for the results 
by Martinez-Tamayo et al.57 the latest stopping measurements tend to be 
close to a single curve. The semiempirical srim08 code 46 gives a curve in 
accordance with these latest experimental data.

The total stopping cross section obtained using the SLPA for bound 
electrons describes well the experimental data in the whole energy range. It 
has a maximum at 130 keV, shifted and higher than srim08,46 and in rather 
good agreement with theoretical predictions by Heredia-Avalos et al.58 and 

Figure 7.2 Stopping cross section of Au for protons. Curves: dashed line, present SLPA 
calculation for the bound electrons; dotted line, FEG contribution using the Mermin–
Lindhard dielectric function;36 solid line, total stopping as the addition of the previous 
two contributions; dashed dotted line, srim08.46 Symbols: experiments as reported by 
Paul;45 different symbols within the figure are data since 1987; hollow circles, previous 
measurements.
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with the measurements by Martinez-Tamayo et al.57 and to previous ones 
by Kreussler et al.59 and Santry and Werner.60

It is worth mentioning that the relativistic results for the binding ener-
gies of Au show spin-orbit split in energy En,l,l± 1

2

 (see Fig. 1 in Ref. 7). 
It is an important point, because these are sub-shells that are very close in 
energy. As mentioned before, the SLPA describes collectively those elec-
trons with equal binding energy, allowing screening among them. We use 
Ei±�Ei as criterion of equal binding energy, with �Ei being the quantum 
uncertainty

with Ei and 〈r〉i being the energies and mean radius of the sub-shell.
Using this criterion we have found that in the cases studied, the spin-

orbit split is not resolved. Physically this implies that the 14 electrons of 
the 4f  sub-shell respond together shielding the projectile, and not the 8 
electrons 4f7/2 and the 6 electrons 4f5/2 separately. This separated or not-
separated response of the sub-shells is very clear in the case of protons in 
W, as displayed in Figure 7.3. For W, not only cannot the 4f7/2 and 4f5/2 be 
resolved, but there is also inter-shell screening between 5p and 4f  electrons. 
As displayed in Table 7.3, these sub-shells are very close in energy and 
respond collectively to the ion passage. The importance of this effect is clear  

(8)�Ei ≈

1

�ti
=

v

�r�i
,

Table 7.3 Fully-relativistic binding energies of the N and O-shells of Au and W. These 
results have been calculated by Mitnik and collaborators7, 32 with the HULLAC code52 
for isolated atom. Also included are the experimental values, Eexpt, compiled by 
Williams.53 The binding energies are in atomic units

E
expt
Au E

th
Au E

expt
W E

th
W

4s 28.0 26.0 21.8 20.8
4p1/2 23.6 22.8 18.0 17.3
4p3/2 20.1 19.2 15.6 14.8
4d3/2 13.0 12.5 9.40 9.0
4d5/2 12.3 11.9 8.95 8.5
5s 3.94 4.1 2.78 2.9
4f5/2 3.22 3.2 1.23 1.3
4f7/2 3.08 3.1 1.16 1.2
5p1/2 1.66 1.9
5p3/2 1.35 1.5
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while comparing total theoretical and experimental stopping in Figure 7.3. 
Note that the screening among electrons reduces the stopping cross section 
in all the cases (in Au, too). This effect can only be taken into account with 
a many-electron model and a collective description of bound electrons. 
The results displayed in Figure 7.3 describe the stopping maximum quite 
well. However an overestimation of the experimental data around 2 MeV 
is found. We will return to this matter in the following section in relation 
to the Bethe high energy limit.61

3.2 Stopping number and Bethe limit
The SLPA provides an interesting alternative to describe the energy loss of 
different materials for energetic ions. At high energies the ion losses energy 
due to the interaction with deep bound electrons, so the behavior of the 
stopping power at high energies is a good test for the model.

The stopping power can be expressed in terms of the dimensionless 
stopping number L(v) as

(9)S(v) =

4πZ2
PZT

v
2 L(v).

Figure 7.3 Stopping cross sections of W for protons. Curves: solid lines, present theo-
retical results for the contributions by bound electrons (SLPA) and the FEG, and total 
stopping as the addition of the previous two; dash lines, results obtained using the 
SLPA with independent 5p and 4f  responses. Symbols: different symbols within the 
figure are the experimental data as reported by Paul.45
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In the high-but-nonrelativistic velocity regime, the stopping number is 
described by the Bethe asymptotic formulae61

with I being the mean excitation energy, characteristic of each target.62 
Our theoretical description of the energy loss should converge to the Bethe 
high (but nonrelativistic) energy limit.

In Figure 7.4 we display the stopping number comparing the SLPA, 
Bethe limit, and srim08 values,46 the latter representing the behavior of the 
experimental data for each target. Using the Lindhard and Scharff scaling 
with v2/ZT (valid for elements of high atomic number63) we plot together 
the SLPA results for the stopping number of W and Au. The straight-line 
in the logarithmic scale of v2 is the Bethe limit.

It is an interesting figure because different aspects can be observed: 
the Lindhard and Scharff scaling is valid for W and Au; the SLPA tends to 
the Bethe limit, as expected theoretically; the description of the experi-
mental data with the SLPA is good at the lower energies displayed in this 
figure, but in the high energy region the SLPA is closer to Bethe than to 
the experiments. This is a 10% of theoretical-experimental difference in 
the energy region 1–4 MeV, the energy region observed in Figure 7.3.  

(10)lim
v→∞

L(v) = LBethe(v) = ln

(

2v
2

I

)

,

Figure 7.4 Lindhard scaling for the stopping number L. Curves: SLPA results for Au 
(solid line) and W (dashed line); Bethe high energy limit obtained using Eq. (10) and the 
mean excitation energies I suggested by the ICRU49 Report (Ref. 44) IW = 727 ± 30 eV,  
and IAu = 790 ± 30 eV. Symbols: srim08 values for Au (hollow circles) and W (stars).
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This means a certain overestimation by the SLPA in the high energy 
region, which is related to the theoretical tie to the Bethe limit.

3.3 Stopping for dressed ions
By dressed ions we mean those ions with bound electrons, whether they 
be neutral or with a certain charge state. In this case, while the ion moves 
through a medium, loss and capture processes take place until reaching 
an equilibrium distribution of charge states q (q = 0, . . . , ZP) within the 
foil, depending on the ion velocity v. In the equilibrium regime, the mean 
energy loss will be the average of the stopping cross sections S(q) given 
by Eq. (7), with the calculated screened ion-charge (Tables 7.1 and 7.2), 
weighted with the data of fraction of ions with charge q at that velocity, 
φq(v). Namely

The equilibrium charge fractions at each impact velocity, φq(v), are exter-
nal inputs. A fitting of a large amount of experimental values of charge 
states exiting the solid, combining different ions and targets is due to 
Schiwietz and Grande.64 It is available within the CasP5.0 code.65

On the other hand, for ions with nuclear charge ZP � 2, the 
 perturbative description for the FEG contribution is found to underesti-
mate the experimental data for energies below that of the maximum of 
stopping power. For this reason for He and heavier ions we combine the 
SLPA for the bound electrons with a non-perturbative model for the FEG. 
As the energy loss by ionization of inner-shells contributes at high  energies, 
the perturbative approximation used in the SLPA is still valid. In fact, for 
the stopping power of Zn for different ions we found the description of 
bound electrons (1s up to 3d9 ) with the SLPA to be valid for He up to C 
projectiles, as displayed in Figure 7.5. For O ions in Zn the perturbative 
SLPA overestimates the total stopping cross section.33

Figure 7.5 summarizes previous results for the different ions22, 29, 30, 33 in 
Zn. The non-perturbative model for the FEG employed in these calculations 
is the Transport Cross Section-Extended Friedel Sum Rule (TCS-EFSR) 
approach by Arista and coworkers.66, 67

To analyze in detail the stopping of dressed ions in matter, we consider 
the stopping of Cu and Au targets for He. In Figure 7.6 we display the 

(11)S =

ZP
∑

q=0

φq(v)S(q).
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Figure 7.5 Total stopping cross sections of different ions in Zn. Curves: theoretical 
calculations adding SLPA for bound electrons and HISTOP (non-perturbative) for the 
FEG.22, 29, 30, 33 Symbols: experimental data for He, Li, Be, and B ions as in Figure 6 of 
Cantero et al.;30 for C ions, Cantero et al.33
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Figure 7.6 Stopping cross sections of Cu for He ions. Curves: (a) dashed line, the bound 
electron contribution obtained using the SLPA; dotted line, the FEG contribution with 
Mermin dielectric function (perturbative); solid line, total stopping adding both contri-
butions (similar to Figure 7.1); (b) black solid line, total stopping adding the SLPA results 
for bound electrons and a perturbative description for the FEG with Mermin dielectric 
function as in (a); gray solid line, total stopping adding the SLPA results for bound elec-
trons and a non-perturbative model for the FEG by Arista for He in Zn;22 dashed dotted 
line, srim08;46 dashed double-dotted line, Casp5.0.65 Symbols: experiments as reported 
by Paul;45 different symbols within the figure are data since 1980; hollow circles, previ-
ous measurements.
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partial and total stopping cross section for He in Cu. In Figure 7.6a the 
contributions of bound electrons and FEG are displayed separately. The 
former calculated with the SLPA, the latter with the dielectric formal-
ism (perturbative, LRA), using the Mermin–Lindhard dielectric function 
(similar to the case of protons in Cu). The behavior of the total stopping 
displayed in Figure 7.6a has already been found for Zn (Ref. 22), i.e., below 
100 keV/amu (v < 2 a.u.) the perturbative model does not describe the 
experimental data. The replacement of the perturbative FEG-stopping by 
the non-perturbative one gives the total stopping displayed in Figure 7.6b. 
For the FEG we employed, as first approximation, the results for the FEG 
of Zn for He (with rs = 2. 02) by Arista using the TCS-EFSR in Ref. 22. 
The theoretical-experimental disagreement at low energies may be related 
to this. However, the tendency to correct the underestimation due to the 
perturbative calculation is clear. We also include in Figure 7.6b Schiwietz 
and Grande results with the unitary convolution approximation (UCA) for 
swift particles (available in the CasP5.0 code65), and the semiempirical val-
ues by the srim08 code.46 Above the stopping maximum all the theoretical 
results agree quite well. For energies below this value the combination of 
different calculations, for bound electrons and FEG shows very good agree-
ment if the non-perturbative FEG model is used.

For He in Au, in Figure 7.7 we display the theoretical results obtained 
in perturbative approximation, with the SLPA for bound electrons and 
Mermin–Lindhard dielectric function for valence electrons. As observed in 
the case of protons in Au, for He in Au the dispersion of the experimental 
data is important for impact energies below the stopping maximum. The 
theoretical description is quite good for impact energies above 400 keV. 
The maximum of the stopping is correctly described around 1 MeV. For 
energies below 400 keV we are outside the limit of validity of the pertur-
bative approximation. The combination of SLPA with a non-perturbative 
description for stopping due to valence electrons of Au (as for Cu or Zn 
targets) is expected to improve these results.

4. ENERGY LOSS STRAGGLING

The theoretical square energy loss straggling, �2, or the second 
moment of the energy loss (t = 2 in Eqs. (1) and (7)), describes the statisti-
cal dispersion of the energy loss. It represents the energy loss variance per 
unit path length of a Gaussian-type energy loss distribution.68 The condi-
tion for obtaining a Gaussian distribution is that the energies transferred in 
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the individual collisions should be small as compared to the width of the 
final distribution.69

The high energy limit for the energy loss straggling was calculated by 
Bohr69 as

which is proportional to ZT, the total number of target electrons active in 
the collision at sufficiently high energies.

The energy loss straggling is an interesting parameter to study theoreti-
cally and experimentally. It represents a sensitive input for many calculations 
(Ziegler46 or Ma et al.70) and computer simulations, like simnra by Mayer71 
for material analysis, or seics by Garcia-Molina and coworkers72, 73 for ele-
ments of biological interest.

For the stopping power, there are important compilations of data avail-
able45 and wellknown and tested semiempirical programs46 and recommended 
values.44 However, the situation is completely different for energy loss strag-
gling. The most widely used electronic energy loss straggling is Yang empirical 
fitting74 included in modern ion beam analysis codes such as simnra, ndf, 
corteo, and mcerd.75 However the accuracy of this formulae is questioned 

(12)�2

B
= 4πZ2

P
ZT,

Figure 7.7 Stopping cross sections of Au for helium. Curves: dashed line, the bound 
electron contribution obtained using the SLPA; dotted line, the FEG contribution with 
Mermin dielectric function (perturbative); solid line, total stopping adding both con-
tributions (similar to Figure 7.1); dashed double-dotted line, srim08 results;46 dashed 
dotted line, ICRU49;44 dashed double-dotted line, Casp5.0.65 Symbols: experiments 
as reported by Paul;45 different symbols within the figure are data since 1982; hollow 
circles, previous measurements.
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for different reasons.25, 76 The source of the Yang expression is a compila-
tion of data prior to 1990 which presents serious problems. Measurements 
of energy loss straggling set severe requirements to target preparation (well 
defined thin films, uniformity, and homogeneity).77 Experimental methods, 
such as transmission or Rutherford back scattering, are very sensitive to 
roughness and inhomogeneity of the samples, which introduce important 
additional energy loss straggling, especially at low energies.68, 77, 78 It produces 
overestimation in a region around the stopping maximum68 and an important 
dispersion among data. The weight of this contribution in the experimental 
straggling is clear in some measurements previous to 1980 included in Yang’‘s 
compilation and fitting.74 Fortunately, there is a great number of recent 
measurements from different laboratories and using different techniques that 
show less spread and tend to be close to a single band.79–85

In this section we present different theoretical results calculated with the 
SLPA. These results improve those by Chu86 using the LPA with Hartree–
Fock densities and considering the electronic cloud as a whole. The differ-
ence between our results and those by Chu is the shell to shell description 
of the dielectric response.

In Figure 7.8 we display the SLPA results for square energy loss strag-
gling normalized to Bohr value69 for H and He ions in Cu. The different 

Figure 7.8 Squared straggling of Cu for H and He ions, normalized to Bohr high energy 
limit. Curves: solid lines, our SLPA results. Symbols: experimental data as indicated in 
the figure. For H+ in Cu (Refs. 80–82, 88); for He in Cu (Refs. 83, 87).
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charge states of He in Cu were considered to obtain these values, however 
no important differences with respect to He

2+ were obtained for energies 
above 200 keV/amu. We include in Figure 7.8 the experimental data by 
Hoffman and Powers87 and by Friedland and Kotze,88 which are not cor-
rected to exclude the inhomogeneity contribution. The overshooting of 
these values is clear, mainly in the data by Hoffman and Powers.87

The SLPA values for the energy loss straggling tend to the Bohr limit 
from below, and do not show the overshooting (Bethe–Livingston shoul-
der89) around the energy of maximum stopping power predicted by the 
binary collision formalisms.89, 90 At high energies, the square energy loss 
straggling tends to a value proportional to the total number of target elec-
trons, as predicted by Bohr.69 If we calculate the square straggling as

we can say that each term verifies that �2

nl/�2

B
→ Nnl/ZT, with Nnl being 

the number of electrons in the nl sub-shell.7, 25 This is an interesting point 
because it indicates the high energy limit expected for each shell. But it also 
represents a demanding requirement for the theoretical calculation, because 
all shells, even deep ones, contribute to the total straggling, i.e., the L-shell 
of Au with eight electrons is 10% of the Au energy loss straggling.

On the other hand, we found that the energy loss straggling normal-
ized to Z2

P
 (Bohr limit) is almost independent of the ion atomic number 

ZP, at least for low Z ions showing a perturbative dependence with the 
ion-charge.25 In order to test this in Figure 7.9 we plotted together the 
experimental data for different ions in Au together with the SLPA values 
for the bare ions in Au. The experimental data included are those that 
explicitly take into account the roughness and inhomogeneity of the  
sample. In the case of the experimental data by Andersen et al.91 they have  
been corrected in 10% due to the estimation of this contribution. The data 
by Møller et al. shows asymmetric error bars that correspond to Figure 5 
in Ref. 92.

We can observe that the soft dependence with the ion-charge of the 
experimental data normalized to Bohr limit is valid at least for H, He, and 
Li ions. The data for B in Au by Hsu et al.79 could indicate a deviation for 
higher Z ions. On the other hand, Figure 7.9 emphasizes the good descrip-
tion of the straggling obtained with the SLPA, even for unexpected low 
energies. Note that all target electrons have been considered in the calcula-
tion, even the very deep ones.

(13)�2/�2

B
=

∑

nl

�2

nl/�2

B
,
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Based on the interest in new general expressions for the energy loss 
straggling, we used Lindhard’s scaling, which proved to be valid for stop-
ping by high Z-targets. In Figure 7.10 we plotted the square energy loss 
straggling normalized to Bohr, as function of v2/ZT, including experi-
mental data for different ions (H to B) and targets (Cu, Au, Pb, and Bi). 
The theoretical SLPA results for Au to Bi are actually very close (they are 
hardly distinguishable in this figure). The SLPA results for Cu (dashed line) 
separates slightly from the others. This scaling for the energy loss straggling 
is an interesting proposal because it introduces the possibility of a simple 
universal function to describe it.

4.1 The SLPA for stopping and straggling of gases
The SLPA evolved from models developed to deal with solid targets. 
However there is no reason to restrict its use just to solid targets. The 
response of bound electrons employed is based on the atomic wave func-
tions and binding energies, described in full Hartree–Fock or Hartree–
Fock–Dirac methods (the latter for targets with ZT > 54) .

In the previous sections we show the performance of the SLPA, with 
good results for the description of the energy loss of ions in solid matter, is 

Figure 7.9 Squared straggling of Au for H, He, Li and B ions, normalized to Bohr high 
energy limit. Curves: solid line, SLPA straggling for bare ions; dashed line, Chu values.86 
Symbols: indicated in the figure; for H ions;68, 84, 85, 91, 92 for He ions;68, 79, 83 for Li and 
B ions.79
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the intermediate to high energy region. In Figures 7.11 and 7.12 we display 
the SLPA results for stopping and straggling of protons in four rare gases, 
and compare them with experimental data available.

Note that for gaseous targets we should include not only the ionization 
channel (as for solid Cu or Au, for which the valence electrons as FEG 
fills the outer bands). For gases, the excitation channel is allowed. For the 
rare gases we use the SLPA formulation given by Eq. (2) with energy gaps 
equal to that to the first excited state (i.e., in atomic units, we use for Ne, 
E3s = −0. 1809; for Ar, E4s = −0. 1666; for Kr, E5s = −0. 1598; for Xe, 
E6s = −0. 1517). The energy gap is a sensitive point in the SLPA. Different 
values for these excitation energies will change present results.

We display in Figures 7.11 and 7.12 the SLPA stopping and straggling 
of rare gases for protons. The stopping description in Figure 7.11 is good 
for proton impact above 300 keV in all the rare gases. Below this energy 
the theoretical values underestimate the data, especially for Ar. These results 
look quite different from those in metals. This is not surprising. In general 
stopping power in metals is better known and described than in gases. For 
example, for stopping of Ne, Ar, and Kr the very recent calculations by 

Figure 7.10 Scaling for the squared straggling normalized to Bohr as function of 
Lindhard parameter υ2/ZT. Curves: SLPA results for Au (solid line), Bi (dotted line) and 
Cu (dashed line). Symbols: similar to Figures 7.8 for H and He in Cu and to 7.9 for differ-
ent ions in Au; additional data included84, 93–95 as signed inside the figure.
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Grande and Schiwietz 65 with the UCA consider that the underestimation 
is due to the contribution of projectile electron capture and loss. The SLPA 
results displayed in Figure 7.11 are quite similar to CasP5.065 without loss. 
To this stage and related only to the SLPA calculations, we consider as first 
step to review the values for the excitation energy. Changes in this value 
affects more to outer-than to inner-shells, so the effect will be noted in the 
low to intermediate energy region.

In Figure 7.12 we display the SLPA results and the corresponding mea-
sured values for energy loss straggling of the four rare gases for protons. The 
results are good, but for Xe they seem to underestimate the experimental data. 
The comparison of this collective electron model with the other independent 
electron formalisms, such as the UCA, the CDW-EIS,96, 97 or the continuum 
distorted wave (CDW)98 methods would be a good framework for future 
developments. Note that the CDW98 and CDW-EIS96, 97 methods use the 
same scattering wave function for the final state in the exit channel. They dif-
fer in entrance channel, where the CDW method employs the full Coulomb 
wave function for the electronic continuum state, which is in the CDW-EIS 
method approximated by the associated asymptotic form given by the eikonal 
logarithmic Coulomb phase. This difference yields the corresponding differ-
ence in the perturbation potentials in the CDW and CDW-EIS methods.

Figure 7.11 Stopping cross section of rare gases for H+. The curves correspond to the 
SLPA results. The experimental data is available in Ref. 46.
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The SLPA presents no specific problem to deal with the straggling and the 
stopping power, its calculation is straightforward. On the  contrary, numerical 
difficulties are found to calculate the stopping power and straggling within 
the CDW-EIS approach. These magnitudes involve the  elements, first and 
second moments of the energy, which depend on the behavior of very 
 energetic electrons. The CDW-EIS approximation has  serious numerical 
problems in two fronts. First, a good description of energetic electrons is 
required, which demands not only a calculation of a substantial grid of 
energies in this region (that would not contribute to the ionization cross 
section). Second, these states require a large amount of angular momenta lmax 
to describe the final continuum state.

To illustrate this point, Figure 7.13 shows the straggling and the stopping 
power of protons in Ne as a function of the proton velocity. Three sets of 
values are displayed: the results of CDW-EIS calculations with lmax = 4, 8, 
and the exact value (lmax ≈ 28). This exact value agrees quite well with the 
SLPA, as can be observed in Figure 7.13. As the proton velocity increases, 
the straggling evidently requires a greater amount of angular momenta 
which makes the calculation more lengthy and harder. In addition, inner-
shells become very important sources for the straggling. Although these 
inner-shells hardly contribute to the ionization cross sections, or even 

Figure 7.12 Straggling of rare gases for H+. The curves correspond to the SLPA results. 
Experimental data by Besenbacher et al.68
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to the stopping power in our range of energy, they do contribute to the 
energy loss straggling. While the outer-shells are enough to calculate the 
cross section, for the straggling even deep shells are important. This makes 
the CDW-EIS calculation highly demanding in terms of computing time. 
This is a great advantage of the SLPA over distorted wave methods.

5. IONIZATION PROBABILITIES

As mentioned in the introduction, the energy moment of zero order, 
or cross section, is a much more sensitive parameter for the theoretical 
model than the stopping or straggling. In what follows we show the results 
of this dielectric model to deal with the description of a fundamental col-
lisional process, the ionization.

Figure 7.13 Stopping and straggling of H+ in Ne. The curves correspond to the SLPA 
and CDW-EIS results, as marked in the figures. CDW-EIS values for different Lmax are 
shown (see the text for details).
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5.1 Total ionization cross sections
The total ionization probabilities are calculated from Eq. (2) with t = 0. In 
Figure 7.14 we display the SLPA results for total ionization cross section of 
protons in four rare gases. We also include, as in the previous section, the 
comparison with the CDW-EIS values. The experimental total ionization 
cross sections include not only the direct ionization but also the post-
collisional ionization also. As proved from multiple ionization calculations 
including Auger-type post-collisional contributions, the theoretical total 
cross section must include this contribution too.

The total cross sections displayed in Figure 7.14 are calculated adding 
the ionization of each sub-shell, and are afterwards corrected to include 
post-collisional ionization. To this end we used the ratios between total 
cross sections with and without post-collisional ionization in Ref. 99. In 
fact, this contribution is negligible for Ne and Ar targets, so the total cross 
sections are just the addition over the sub-shell contributions. But post-
collisional influence increases with the target atomic number. For Kr it goes 

CDW-EIS

CDW-EIS CDW-EIS

CDW-EIS

Figure 7.14 Total ionization cross sections of rare gases by proton impact. Curves: solid 
lines, present SLPA results; dashed lines, CDW-EIS calculations.99 Symbols: experimen-
tal data by DuBois et al.100 and Cavalcanti et al.101 and recommended values by Rudd 
et al.102 For Xe, we also included the electron impact data at high energies by Schram 
et al.103 and by Nagy et al.104
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from 5% at 300 keV to 24% at 5 MeV, and for Xe from 15% at 300 keV to 
32% at 5 MeV (see Table 1 in Ref. 99). In Figure 7.14, for Xe target, we dis-
play both, direct ionization and total ionization including post-collisional 
ionization. We also include in Figure 7.14 the multiple-ionization data for 
electron in Xe in order to extend the description to high energies. The 
experimental values in Xe show the importance of post-collisional ioniza-
tion in the total ionization.

The SLPA total ionization cross sections displayed in Figure 7.14 are 
amazing. The SLPA is good in the same energy region that the CDW-EIS. 
These values for ionization cross sections together with the stopping and 
straggling comparison in Figures 7.11 and 7.12 establish the SLPA as a 
good framework for further calculations.

These results consider the contribution of every shell of target electrons. 
We have also test the model for ionization of certain shells, such as K-shell 
of low Z elements21 or, recent calculations for L- and M-shells of Au, Pb, 
and Bi,8 with good agreement with the experimental data.

5.2 Multiple ionization
Multiple ionization is a quite demanding calculation for any theoretical 
model. It depends on the probabilities as function of the impact parameter. 
The SLPA implies a space-mean value of the dielectric response as given 
by Eq. (3). In principle the capability to describe total values may not be 
valid for the differential description. Moreover, the SLPA depends directly 
on the density of electrons of each sub-shell. It is tight to the zeros of the 
density distribution.

In Figure 7.15 we display the SLPA results for multiple ionization of Kr 
by high energy proton impact. In a many-electron description like this, the 
multiple ionization follows a Poisson distribution (instead of the multino-
mial distribution of the independent electron models).

The high energy region is governed by the post-collisional ionization.27 
The values displayed in Figure 7.15 take into account the post-collisional 
ionization following the method described in Ref. 27. This method 
includes the post-collisional electron emission in a semiempirical way by 
employing branching ratios of ionization distribution measured in sophis-
ticated photo ionization experiments (see for example the values tabulated 
in Ref. 106).

We also display in Figure 7.15 the theoretical values for direct mul-
tiple ionization, in order to make the importance of the post-collisional 
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contribution clearer. The direct multiple ionization almost describes the 
single-ionization, but double-ionization cannot be explained only with 
direct ionization above 1 MeV. For higher orders of ionization, the impor-
tance of the post-collisional contribution increases at even lower energies 
than double-ionization, as can be noted for triple and quadruple ionization 
of Kr. As observed in Figure 7.15, the agreement of the SLPA with the 
experimental data is good. However some differences have been found for 
other targets (mainly for Ne) that require further research (analyzes of the 
branching ratios employed, other post-collisional contributions not consid-
ered, possibility of a semi-localized model, not so tied to the zeros of the 
density of electrons, etc.).

5.3 Differential cross sections
Another test for the SLPA is the differential cross section as function of 
the electron energy. In Figure 7.16 we display the SLPA results and com-
pare them with experimental data by Rudd 107, 108 and by Toburen.109 
Two kinds of differential values are displayed: the differential cross sec-
tions dσ/dω, with ω the energy transferred to the emitted electron; and 

Figure 7.15 Multiple ionization of Kr by proton impact. Curves: SLPA results with (solid 
line) and without (dashed line) post-collisional ionization. Symbols: stars, DuBois et 
al.;100 full up-triangles, Cavalcanti et al.;101 full down-triangles, Haugen et al.;105 open 
symbols for high energy electron impact data, open squares Schram et al.;103 open 
triangles, Nagy et al.104
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the Platzman plots Y, which is a ratio between dσ/dω and the modified 
Rutherford differential cross section (dσ/dω)R by impact of one electron 
with the same energy,110

where I is the binding energy of the outermost shell. The difference 
between the modified Rutherford expression and the “original” one is 
the presence of I. For the rare gases we used the values of Bunge et al.40 
(I = 0.850, 0.591, 0.524, and 0.457 a.u. for Ne, Ar, Kr, and Xe, respectively). 
The energy distributions present a scale involving several orders of mag-
nitudes and so the finer details could go unnoticed. An alternative way to 
plot this is the Platzman plot, whose physical interpretation is the effective 
number of electrons. The magnitude Y is a powerful tool for analyzing and 
identifying the different features in the differential cross sections in fine 
detail.110

(14)Y =

dσ/dω

(dσ/dω)R

=

v
2(ω + I )2

4π
dσ/dω,

Figure 7.16 SLPA Differential ionization cross sections as function of the energy of the 
emitted electron for protons in Ar and Xe targets. Platzman plots for protons in Ne and 
Kr targets. Experimental data in Refs. 107–109.
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In Figure 7.16 we present the theoretical Platzman plots for Ne and 
Kr, while for Ar and Xe we display the differential cross sections dσ/dω.  
The SLPA results displayed in this figure are actually overwhelming.  
The distribution in electron energy describes the experimental data quite 
well. The comparison with a much more sophisticated and computer-time 
consuming calculation as the CDW-EIS confirms this evaluation (see this 
comparison in Ref. 110).

6. CONCLUSIONS AND FUTURE PROSPECTS

In this chapter the properties, possibilities, and ranges of validity 
of the SLPA have been presented, analyzed, and compared with other 
theoretical descriptions and with experimental data. This comparison for 
stopping power, energy loss straggling, and ionization cross sections, estab-
lishes this model as a trustworthy alternative to the independent electron 
model calculations. In addition, the SLPA is a simple-low-time calculation, 
and allows to correctly describe the inner-shells, which proved to be very 
important in energy loss straggling calculations

The possibilities for further developments may start in three different 
areas:
 i.  The extension of the model to complex targets: As far as the space depen-

dent density of electrons in the shell and energies are available the 
SLPA calculation can be performed. This seems to be the next and 
most important step, with a wide spectrum of possibilities to deal with 
molecular, clusters, or even bio-structures.

 ii.  A delocalized approximation for multiple ionization: The SLPA describes 
the response of the bound electrons as function of their density. In 
this way the SLPA cancels where the density of electrons does. But 
the interaction with the ion should include a region around each 
point. This may be taken into account through a delocalized version 
that does not change the total values, which is currently under study.

iii.  Antiscreening: Finally the description of the inelastic processes of the 
target with a dielectric function states a difference between projec-
tile and target. Extending the SLPA to describe inelastic processes 
in the projectile should not be difficult, and would allow to extend 
the model to deal with antiscreening processes (inelastic processes 
in both centers111).
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Single ionization of liquid water by the impact of fast, but nonrelativistic heavy 
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and carbon ions. This phenomenon has been extensively studied by using theo-
retical methods during the last decades. Quantum-mechanical as well as semiclassical 
approaches have been developed. Nevertheless, experimental studies in this field 
are very scarce. Based upon both theoretical and experimental results, semiempirical 
formalisms have been reported. At the beginning, the first Born (B1) approximation 
emerged with some success in reproducing ionization cross sections corresponding 
to impact energies above a few hundreds of keV/u. The introduction of the distorted-
wave formalism brought a remarkable improvement with respect to B1, mainly 
because of reproduction of the well-known two-center effects. The B1 approxima-
tion is treated here in order to be used as a reference model for all the subsequent 
comparisons. Also presented are the distorted-wave formalism and its variants. On 
the other hand, available experimental works for measuring ionization cross sections 
corresponding to water vapor targeted by hydrogen, helium, and carbon ions are 
summarized. In addition, the most relevant semiempirical approaches intended to cal-
culate water ionization cross sections are addressed. Some of the experimental single 
ionization cross sections mentioned above are compared to those determined by the 
distorted-wave and semiempirical formalisms for liquid water. Finally, perspectives on 
the studies of the ionization problem are briefly commented.

1. INTRODUCTION

This chapter addresses the single ionization of water due to the 
impact of fast but not relativistic light ions (Z ∼ 1 − 6). The main interest 
is focused on protons, alpha particles, and carbon ions with energies from 
a few tens of keV/u to about 10 MeV/u. The physical process under con-
sideration has a great importance in areas such as medical radiation phys-
ics, space physics, plasma physics, material sciences, and others. Ionization 
cross sections (CS) are of critical importance in Monte Carlo codes used 
to simulate the passage of ionizing radiation through matter. In this work, 
the ionization problem is first explained from a phenomenological point 
of view. Later on, theoretical approaches to determine ionization CS are 
briefly reviewed: the first Born approximation and those based on the 
continuum-distorted wave approximation. Afterwards, a review of experi-
mental works carried out to determine ionization CS in water vapor due 
to the impact of light ions is presented. In addition, a few semiempiri-
cal methods to calculate these CS are treated. Finally, the theoretical and 
semiempirical methods expounded here are compared with corresponding 
experimental results.

Atomic units are used throughout this chapter, except otherwise 
stated. In this system, the mass is expressed in units of the electron 
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rest mass m; the length, in units of the Bohr radius a0 = �
2/me2; the 

energy, in units of Hartrees (1 Hartree = me4/�
2

= 2 Ry = 27. 2 eV); the 
momentum, in units of �/a0 = me2/�; and the speed, in units of e2/� 
(e = m = � = 1).

1.1 The liquid water in radiation physics
It is well known that water is used as the main reference medium to study 
interactions of ionizing radiation with tissue, not only experimentally but 
also theoretically. Human body is composed of about 70% of water and, 
therefore, the procedure of considering water molecules as the approximate 
tissue-like targets seems to be reasonably well justified.

Ionizing radiations affect the genetic material when impacting on living 
beings. The DNA molecule can be damaged through direct and indirect 
processes. In the former, ionizing particles impact this macromolecule caus-
ing single, double, or multiple strand breaks. In the latter, chemical species 
created after the interaction of radiation with the medium will react with 
DNA structures. The nanodosimetry is the branch of physics that studies 
the energy distribution at nanometric scale, which is a very important mat-
ter in investigations where the radiation induced DNA damage is simulated 
numerically.

It is well known that light ions are more efficient to produce biologi-
cal damage than electrons and photons, mainly because ions have higher 
linear energy transfer (LET). However, the LET does not determine the 
radiobiological effectiveness (RBE) of the radiation.1 It is very important 
to accurately know the RBE corresponding to each ion beam, specially for 
those beams used in the radiation therapy of cancer.

Many secondary particles are produced during the passage of fast ions 
through matter, most of them are electrons released by ionization of tar-
geted atoms or molecules. These very light charged particles are responsible 
for the deposition of the greatest fraction of incident energy no matter 
which the primary particles are. Consequently, electrons have to be taken 
into account in any application related to nanodosimetry and/or radiobiol-
ogy. For these reasons, among others, the knowledge of ion-related ioniza-
tion CS are extremely important.

The water molecule has 10 bound electrons. Its mass and molecular 
densities are about 1. 0 g/cm

3 and 3. 34 × 10
22

l/cm
3, respectively, in the 

liquid phase. Table 8.1 shows electron binding energy and occupation num-
ber corresponding to the five molecular orbitals of liquid and gaseous water. 
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The four most outer shells have energies up to a few tens of eV and they 
contribute to the total ionization cross section much more than the inner 
shell, which corresponds to the oxygen K-shell.

Unfortunately, no experimental determination of ionization CS has 
been carried out in liquid water, mainly due to the difficulty of having an 
adequate liquid target and problems associated to the detection of very low 
energy electrons. In a forthcoming section, all experiments, to the best of 
our knowledge, carried out to determine ionization CS due to the impact 
of light ions on water vapor are summarized (see Section 3).

1.2 The ionization problem
1.2.1 Brief description
When a totally stripped ion impacts a molecular or atomic target, it 
interacts with bound electrons through the Coulomb field. The magnetic 
component of the interaction potential is negligible at the incident veloci-
ties considered here. In this situation, a bound electron can be released 
to the continuum through the so-called direct ionization phenomenon. 
Otherwise, the electron can be excited to a higher energy state or captured 
into a projectile bound state. These mechanisms are known as electronic 
excitation and electronic capture, respectively. It should be remarked that 
in the latter process, the target is also left ionized as in the direct ionization 
case. Hereafter, direct ionizations will be simply referred to as ionizations.

The main difficulty in the theoretical treatment of the ionization prob-
lem is the representation of the initial and final system states. Hydrogen-
type wave functions have been a common choice used to describe the 
initial electron bound state,4 even when the target is not hydrogen.5–7 
The hydrogen atom has the particularity that can be solved analytically by 

Table 8.1 Electron occupation numbers and binding energies for liquid and gaseous 
water subshells

Shells N Ia
liquid (eV) Ib

vapor (eV)

1b1 2 10.79 12.61
3a1 2 13.39 14.73
1b2 2 16.05 18.55
2a1 2 32.30 32.2
1a1 2 539.0 539.7
a Values from Dingfelder et al.2
b Values from Rudd et al.3
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using quantum mechanics. In the exit channel, the electron moves under 
the influence of two Coulomb potentials (long range), due to its interac-
tion with the projectile and the residual target. An exact solution for the 
final electron wave function in the ion–atom ionization problem has not 
been found yet, but the continuum distorted wave (CDW) function has 
been derived.8 The CDW8 and the CDW-type4 approaches included in the 
present work satisfy asymptotic conditions both at the entrance and exit 
channels, but the first Born approximation (B1) does not.

Our efforts are focused on the single ionization mechanism described 
by reaction (1), although references will be made to the electron loss and 
electron capture processes. Double ionizations are relatively important 
at very low energies and for highly charged projectiles, but they are not 
treated in this work. Although the electron capture phenomenon is out of 
the scope of our work, it is marginally mentioned due to its relation with 
ionizations. In fact, these mechanisms are extremely competitive at impact 
energies below about 100 keV/u. More complex processes can take place 
when the incident ion carries one or more bound electrons:

Based on the fact that the projectile mass is much greater than that of the 
electron, the incident particle loses a small fraction of its original energy 
during a collision with the electron. When an impact between an ion and 
an electron, assumed initially at rest, is frontal, the energy transferred to 
the electron is maximum and equal to 2v

2, and the maximum fractional 
energy loss is given by �E/E = 4/M  where E, v, and M are the projectile 
incident energy, speed, and mass, respectively. In addition, the scattering of 
one nucleus by the other at impact energies above a few tens of keV/u 
is restricted to angles much lower than 1°. Furthermore, if the de Broglie 
wave length of the relative motion of the nuclei is much less than the tar-
get characteristic dimension, a trajectory can be assigned to the projectile. 
All said in this paragraph supports the idea that these energetic and rela-
tively massive particles travel along a straight path. This argument is used 
by impact-parameter-based approximations (see Section 2). Under these 
conditions, a straight-line trajectory can be associated to the projectile, so 
that the transferred momentum during the collision q is minimum. Then, 
neglecting terms of order (1/M )2 and higher,

(1)PZP+

+ T(ZT−1)+
→ PZP+

+ TZT+

+ e−.

(2)qmin = Ki − Kf = (2ME)1/2
[1 − (1 − �E/E)1/2

] ≈

�E

v

,
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where Ki(Kf) and �E are the initial(final) projectile momentum and 
energy loss, respectively.

1.2.2 Liquid water phase effects
The water aggregation state influences the cross sections corresponding to 
the interaction of charged particles with this medium. One of the effects is 
the decrement of the electron binding energies in liquid water relative to 
water vapor due to the intermolecular interaction present in the liquid water 
phase (see Table 8.1). Note that outer orbitals are the most affected while 
the inner ones are practically independent of the aggregation state. Another 
important effect is that described by Enrico Fermi many decades ago. For a 
given traversed medium mass thickness, he explained the reduction of the 
expected energy loss of a primary particle in a condensed medium relative 
to a rarefied one. Let us briefly describe this phenomenon by a classical 
approach. The quantity qmin is related to the maximum impact parameter 
ρmax (ρmax ∼ 1/qmin). In condensed media and for sufficiently high ion 
velocities, ρmax is much greater than the mean inter-target distance (mol-
ecules or atoms), so that the projectile interacts with many targets simul-
taneously producing electric polarization in the medium. This polarization 
screens the electric field generated by the projectile on the target, the inter-
action potential weakens and the energy lost by the projectile per unit mass 
path length decreases. The Fermi density effect is important at high impact 
velocities, where ρmax is large, and for low emitted electron energies, where 
ρmax is also large. For energies (velocities) up to about 10 MeV/u and the 
projectile charges analyzed in this work, the Fermi-density correction can 
be safely disregarded. There are other phase effects such as the controversial 
collective excitations occurring in liquid water but they are not related to 
ionization cross sections so that they are not treated in the current work.

2. THEORETICAL APPROACHES

The purpose of this section is to give an overall description of the 
ionization process that will help the reader to better understand the experi-
mental results shown below (see Section 3). Mathematical details on the 
approaches presented are not included in this work as they can be found in 
references given in this section.

Let us suppose the a totally stripped ion with charge, mass, velocity, and 
momentum along the z-axis ZP, MP, v, and K, respectively, impacts on a 1s 
hydrogen-like target with nuclear charge and mass ZT and MT, respectively. 
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In this case MP, MT ≫ 1 so that the electronic states can be considered 
as independent of the relative motion of the involved nuclei (Born–
Oppenheimer separation, see Chapters 1 and 4 of Ref. 9). The target recoil 
is neglected since the energy transferred to the electron is much greater than 
that imparted to the target nucleus, even in proton-hydrogen collisions. In 
addition, Ka ≫ 1, where a is the characteristic target dimension, so that a 
straight-line trajectory defined by ρ · v = 0 can be assigned to the projectile, 
where ρ is the 2D impact parameter vector. Under these conditions, the pro-
jectile position with respect to the target will always be R = ρ + vt.

For the reasons given just above, the theoretical approaches treated here 
are based on the straight-line impact parameter model (IPM),9 which is 
considered semiclassical due to the assigned projectile trajectory. The pro-
jectile–electron interaction is time-dependent and so is the perturbation 
theory used. Coupling with electron capture and excitation channels is not 
considered.The theoretical models addressed in this chapter describe the 
process shown in reaction (1). Consequently, we define

where re, rT, and rP are the position vectors of the electron, target nucleus 
and projectile, respectively measured with respect to the laboratory frame 
of reference. Figure 8.1 depicts relevant vectors used for clarity purposes.

Schrödinger’s equation for reaction (1) is

x = re − rT, s = re − rP,

R = rP − rT, r = 1/2(x + s),

(3)
(

He − i
∂

∂ tr

)

� = 0,

Figure 8.1 Relevant vectors used in theoretical models.
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where

is the electronic Hamiltonian, and (r, tr) are the independent variables. It 
is important to notice that ionization cross sections do not depend on the 
chosen origin O if this point belongs to the line joining the target and 
the projectile, and the resulting potential due to the projectile vanishes as 
R → ∞ (Ref. 9).

2.1 The first Born approximation (B1)
In this approximation, the interaction potential between the projectile 
and the target electron is treated as a first-order perturbation. This is jus-
tified if this potential satisfies the condition |U | ≪ v/d, where d is its 
action radius.11 Taking U ∼ ZP/d, this approximation can be written as 
ZP/v ≪ 1. The inter-nuclear potential is discarded since it only introduces 
a phase factor in the transition amplitude, producing no change in the ion-
ization differential cross section with respect to the electron parameters.4, 8 
In this approximation, the initial state is described by a stationary bound 
electron wave function modified by translational phases depending on v 
due to the coordinate transformation existing between frames of reference 
centered at the positions of the target and point O. In the exit channel, 
the movement of the electron with respect to the target is represented by a 
Coulomb distorted plane wave plus translational factors. According to the 
B1 approximation, the presence of the projectile causes no perturbation 
on the electronic wave functions corresponding to both the entrance and 
exit channels. Mathematical details on this approximation can be found 
elsewhere (see Chapter 7, Section 2 of Ref. 9). After the  corresponding 
manipulations, for the ionization of a 1s hydrogen-like target, the B1 
 transition probability is given by8

with

(4)He = −

1

2
∇

2

r −

ZT

x
−

ZP

s
+

ZTZP

R

(5)

∣

∣

∣R
(B1)
if

(η)

∣

∣

∣

2

=

(

2
7Z5

T
Z2

P

π2
v

2q4

)

|N (ξ)|2

× exp

[

−2ξ tan
−1

(

2ZTk

q2
+ Z2

T
− k2

)]

×

[(q2
+ q · k)2

+ (q · k)2ξ2
]

[Z2

T
+ (q + k)2

][Z2

T
+ (q − k)2

][Z2

T
+ (q + k)2

]
4
,

(6)
q = −η −

�E

v

v̂,
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where η is the transverse momentum transfer, k is the ejected electron 
momentum and ξ = ZT/k.

This transition probability shows a local maximum at high electron 
energies. The leading term, shown between brackets with exponent 
4, has a minimum when (q + k) → 0. Based on the fact that a large 
amount of moment is transferred during a head-on collision, the initial 
electron momentum can be safely neglected so that q + k = 0. In this 
case, the final electron momentum is equal to the momentum transfer. 
Combining this equation with Eq. (6) and having into account that 
η · v = 0, we have

This equation defines the binary sphere,12 which describes the kinemat-
ics of a binary projectile–electron encounter. The double differential 
cross sections (DDCS) show a maximum at electron momenta satisfying 
Eq. (7), which represents the binary encounter (BE) peak. Furthermore, 
�E = εf − εi =

1

2
k2

− εi, so that the solutions for the final electron 
momentum in this sphere, up to first order, are

where θ is the electron ejection angle with respect to the incident particle 
direction.

Firstly, the BE peak is observed in experimental DDCS (e.g., see 
Ref. 16) for electron momenta close to k+

BE. When the initial elec-
tron energy is disregarded, the result for k+

BE is the one obtained for a 
binary encounter of a heavy particle (MP ≫ 1) with an electron at rest 
(kBE = 2v cos θ). Secondly, it can be concluded, from the analysis of Eq. 
(5), that the maximum DDCS is obtained at k ≈ 0, which conforms the 
“soft collision” (SC) region. The k−

BE solution is usually close to zero and 
the corresponding peak is overlapped by the SC region, therefore it is 
commonly unspotted.

Summarizing, the B1 approximation treats the projectile–electron inter-
action as a first-order perturbation, condition that is not fulfilled in the 
following situations: (i) the projectile moves with velocities of the order of 

(7)k · v̂ −

�E

v

= 0.

(8)k+

BE
= v cos(θ)

[

1 +

(

1 +

2εi

v
2 cos2 θ

)

1/2
]

≈ 2v cos θ +

εi

v cos θ
,

(9)
k−

BE
= v cos(θ)

[

1 −

(

1 +

2εi

v
2 cos2 θ

)

1/2
]

≈ −

εi

v cos θ
,
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those of the bound electrons, (ii) the projectile is very close to the electron, 
for example when k ≈ v, and (iii) the projectile charge is large. According 
to the transition amplitude (5), differential and total ionization cross sec-
tions scale as (ZP/v)2. Moreover, B1 cross sections depend on the projectile 
velocity, instead of its energy.

Hansen and Kocbach5 used a variant of the B1 approximation to study 
electron emission after K-shell ionization due to protons. In fact, they fol-
lowed an impact parameter plane-wave formulation of this approximation 
(IP-PWBA). Furthermore, they described the initial and final electron 
states through 1s hydrogen-type and plane wave functions, respectively. In 
this case, the transition amplitude is

where q is the minimum momentum transfer (see Eq. (2)), �i(x) and �f(x) are 
the initial and final electron wave functions and V (s) is the Coulomb projectile–
electron potential. If the final wave function �f(x) = (2π)−3/2

exp(−ik · x) 
is substituted in Eq. (10) and the initial wave function is represented by a 1s 
hydrogen-like wave function (�i(x) = π−1/2p3/2

exp(−px)), then by using 
the Bethe integral, the peaking approximation and neglecting the initial 
electron momentum with respect to the final one, the integral shown in Eq. 
(10) can be solved. Thus, the Hansen–Kocbach (HK) transition amplitude is 
given by

where k�
= k · v̂, k

⊥
 is the electron momentum normal to v and K1 is the 

first-order modified Bessel function of second kind.
Notice that this transition amplitude is maximum when 

k · v̂ − �E/v = 0, which reproduces the binary encounter sphere 
described above (see Eqs. (7) and (2)). Based on this theoretical approach, 
Stolterfoht developed a semiempirical method to determine ionization 
cross sections for the impact of light ions on matter.13, 14 This is the so-
called HKS model which is treated in Section 4.

(10)aHK

if
=

−i

v

∫

+∞

−∞

dz exp(iqz)��f(x)|V (s)|�i(x)�,

(11)aHK

if
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−i23/2ZPp5/2
exp(−iρ · k

⊥
)

πvk2

ρK1(ρ[p2
+ (q − k

�
)2

]
1/2)

[p2
+ (q − k

�
)2

]
1/2
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2.2 The distorted wave formalism and its main variants
The CDW formalism was introduced by Cheshire10 to study the resonant 
charge transfer in proton-hydrogen collisions. Subsequently, this methodol-
ogy was extended by Belkić8 to investigate the ionization problem when 
ions impact on atomic systems. Afterwards, working within the CDW 
theory,8 Crothers and McCann4 introduced a modification in the nor-
malization of the initial electron state and replaced the perturbation in the 
entrance channel by an eikonal phase (CDW-EIS).

2.2.1 The continuum-distorted wave approximation (CDW)
In this approximation, the Hamiltonian shown in Eq. (4), for both entrance 
and exit channels, is separated as follows:8

The perturbation potentials Wi and Wf  are chosen such that the Schrödinger 
equations

can be solved exactly. The unperturbed parts of the initial and final distorted 

wave functions χ
(CDW)±
i,f

 are written in terms of the B1 wave functions in 
the entrance and exit channels, respectively. In the CDW approximation, 
the perturbation potentials are given by the scalar products of two gradient 
operators applied to the pertinent electronic wave functions of the bound 
and continuum states.

2.2.2  The continuum distorted wave eikonal initial state 
approximation (CDW-EIS)

In this case, the exit channel is treated as in the pure CDW approximation, 
but the wave function distortion in the entrance channel is accounted for 
through an eikonal phase.4 In addition to the mentioned gradient operators 
in the perturbation potential from the transition amplitude, this phase for 
the eikonal initial state yields an extra term given by the electronic kinetic 
energy operator. In the CDW-EIS approximation, the final CDW states 
corresponding to different k are regarded as orthonormal and uncoupled, 
which is not an exact assumption because they are not the eigenfunctions  
of the total Hamiltonian. Moreover, the initial and final states are not 
orthogonal since their corresponding Hamiltonians are different. However, 
this is not an important problem for ionization as it is for charge transfer. 
Note that the distorted wave Born (DWB) approximation has also been 

(12)He = H0 + Ui + Wi = H0 + Uf + Wf.

(13)
(

H0 + Ui,f − i
∂

∂ tr

)

χ
(CDW)±
i,f

= 0
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obtained8 as an alternative hybrid model when the B1 and the CDW wave 
functions are used in the entrance and exit channels, respectively.

The expression for the triple differential cross sections (TDCS) obtained 
by means of the CDW and CDW-EIS approximations can be found in Refs. 
8 and 4, respectively. Some important results can be extracted from that 
expression: (a) the CDW-EIS cross sections depend directly on the transi-
tion amplitude obtained from the B1 approximation and the other terms 
represent the effect of the distortion produced by the projectile (which is 
neglected within the B1 approach). As the projectile speed increases, the 
TDCS in the CDW and CDW-EIS approximations tend to the one obtained 
in the B1 case, (b) the BE peak is reproduced once again, and (c) the factor

with ζ = ZP/p, is maximized as p → 0, where p is the electron momentum 
in the projectile reference system. This means that when the final electron 
momentum relative to that of the projectile is close to zero (k ≈ v), a peak 
is produced in the TDCS as well as in the DDCS. This is the so-called 
electron capture into the continuum (ECC) peak, which is one of the two-
center effects (see Section 5). This factor represents the density of electron 
continuum states around the projectile.

3. EXPERIMENTAL WORKS

Experiments for the determination of ionization cross sections due to 
the impact of ions on water are very scarce. All of them have been carried 
out by using water vapor as a target. Many research areas, such as nanodosim-
etry and radiobiology require of the knowledge of liquid water target cross 
sections but to setup experiments with this aggregation state has been very 
difficult. Table 8.2 summarizes these experiments for reference purposes.

(14)|N (ζ )|2 =

2πζ

1 − e−2πζ

Table 8.2 Summary of experiments for the determination of ion–water interaction 
cross sections. All experiments were carried out by using water vapor as a target

Reference Projectile Energy (MeV/u) Cross sections Uncertainties

Toburen et al.15
H

+

, H
0 0.1–2.5 Single electron 

 capture and loss
10–12%

Toburen and 
Wilson16

H
+ 0.3, 0.5, 1.0,  

and 1.5
Single ionization 20%

Toburen et al.17
He

+ 0.075, 0.2, 0.3, 
0.4, and 0.5

Single ionization 20%
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4. SEMIEMPIRICAL METHODS

Various semiempirical models have been developed to reproduce 
ionization cross sections due to the impact of ions on water.3, 2, 13, 25 In this 
section only three of them will be addressed.

4.1 The Rudd model
Rudd et al.3, 26 built a semiempirical model to determine single ionization 
cross sections corresponding to proton impact on water as a function of 
secondary electron energy. It is based on pioneer works of E. Rutherford 
and J.J. Thomson on the impact of charged particles with matter (binary 
encounter approximation). The single differential cross sections (SDCS) 
depend only on the ejected and bound electron energies and the projectile 
velocity. The formulae to determine the ionization cross section differential 
in the secondary electron energy can be found in Ref. 3. This model can 
also be applied to multi-electronic targets by using the electron binding 
energy in each molecular or atomic shell.

Rudd and coworkers made a distinction between inner and outer sub-
shells in multielectron targets. Those with binding energy higher and lower 
than twice that of the outermost subshell are regarded as inner and outer 
subshells, respectively. Dingfelder et al.2 used this model to obtain liquid 
water stopping powers reported by ICRU27 for proton energies below 

He
2+ 0.2, 0.3, 0.4,  

and 0.5
Single ionization 20%

Wilson et al.18
H

+ 3.0 and 4.2 Single ionization 20%
Rudd et al.19

H
+ 0.007–4.0 Single ionization  

and electron capture
8–20%

Rudd et al.20
He

+ 0.005–0.45 Single ionization, 
electron capture  
and loss

5–12%

Bolorizadeh  
and Rudd21

H
+ 0.015–0.15 Single ionization 20%

Werner et al.22
H

+ 0.1–0.35 Water fragmentation ∼10–50%
He

2+ 0.25 Water fragmentation ∼10–50%
Gobet et al.23

H
+ 0.02–0.15 Water fragmentation N/A

Ohsawa et al.24
He

2+ 6.0 and 10.0 Single ionization ∼13%

Table 8.2 (Continued)

Reference Projectile Energy (MeV/u) Cross sections Uncertainties
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0.5 MeV. In addition, they introduced a partition factor to weight the cross 
sections corresponding to each subshell in order to reproduce B1 approxi-
mation results at impact energies above 0.5 MeV. They determined a com-
plete set of parameters and partition factors for liquid water. All parameters 
used in this model, corresponding to inner and outer subshells of liquid 
water (Dingfelder) and water vapor (Rudd) can be found in Table 3 of  
Ref. 2. Binding energies and partition factors for both water phases are 
displayed in Table 4 of the same reference.

4.2 The HKS method
Stolterfoht13 used the transition amplitude (Eq. (11)) determined previously 
by Hansen and Kocbach5 to develop a semiempirical method to calculate 
ionization cross sections for light ions. He found that these cross sections 
diverged as k → 0 due to the neglect of the initial electron momentum. A 
semiempirical term was then included in the transition amplitude to remove 
that singularity. In addition, other modifications were incorporated in the 
original formalism to reproduce the results determined by using the B1 
approximation formula published by Landau and Lifshitz.11 This is the so-
called HKS method. However, Bernal and Liendo6 realized that previously 
published HKS expressions13, 14 had some misprints so that they carried out 
all calculations analytically and corrected the HKS formulae. In addition, they 
compared the results obtained from the corrected HKS expressions for water 
ionization due to the impact of protons and alpha particles (see Section 5).

4.3 Formalism based on the dielectric response function
As pointed out by Fano,28 macroscopic differential cross sections for energy 
and momentum transfer in a condense medium can be obtained within the 
B1 approximation from the expressions

where ǫ(E, K ) is the medium dielectric response function (DRF); E and 
q represent the energy and momentum transfer, respectively; qmin is given 

(15)d�2

dE dq
=

2Z2

P

πv
2q

Im

[

−1

ǫ(E, K )

]

,

(16)
d�

dE
=

2Z2

P

πv
2

∫ qmax

qmin

Im

[

−1

ǫ(E, K )

]

dq

q
,
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by Eq. (2), qmax = (2MP)1/2
[τ 1/2

+ (τ − E)1/2
] ≈ 2MPv is the maximum 

momentum transfer, and τ = MPv
2/2 is the projectile kinetic energy.

This approach accounts for the polarization of the medium, collective exci-
tations and many-body interactions in a consistent manner. The correspond-
ing cross sections scale as (ZP/v)2 because they are determined within the 
B1 approximation. An important advantage of this treatment is that available 
experimental data for liquid water (see Ref. 29, and references therein) can 
be used to fit the corresponding DRF. Dingfelder et al.30 and Emfietzoglou  
et al.25 based a series of works on this methodology to construct semiempirical 
formalisms for the determination of ionization and excitation cross sections 
due to the impact of electrons on liquid water. Later on, they extended these 
formalisms to protons impinging on this medium.2, 25 These authors obtained 
the DRF from a linear superposition of Drude-type functions. In this case, 
bound electrons were supposed to move in a forced and damped oscillator. 
The group of Dingfelder used experimental optical reflectance data obtained 
by Heller et al.31 while that of Emfietzoglou have used more recent inelastic 
X-ray scattering spectroscopy (IXSS) data reported by Hayashi et al.29 The idea 
was to separate the discrete and continuum parts of the term Im [-1/ (E, K)] 

in Eq. (15), also known as the energy-loss function (ELF). In addition, deriva-
tive Drude-type DRF were used for excitations, leading to more pronounce 
peaks. Experimental data were fitted to obtain the optical dielectric response 
function (ODRF), satisfying some physical constraints (see Ref. 32). For 
instance, as IXXS data were only reported for transferred energies in the range 
6–160 eV, Emfietzoglou and Moscovitch32 only included the four outermost 
subshells of the liquid water molecule. Parameters for the K-shell were deter-
mined by use of the NIST photoelectric database.33

In a more recent publication,25 the oxygen K-shell was treated sepa-
rately and a hydrogen-type generalized oscillator strength (GOS)2 was 
employed to determine the ELF of this shell, using the same NIST data-
base. It should be pointed out that several approximations have been used 
to extend transition energies to finite momentum transfers, many of them 
have been reviewed and compared in Ref. 25.

5.  COMPARISON BETWEEN EXPERIMENTAL, 
THEORETICAL, AND SEMIEMPIRICAL RESULTS

Experimental cross sections for the ionization of water due to the 
impact of ions are very scarce, as mentioned previously (see Section 3). 
Moreover, these data have been only determined for water vapor which 
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makes very difficult the validation of methods for the liquid water ionization 
cross section determination.

The B1 approximation has become a classical method to study ion–atom 
collisions. Most of the scientific publications generated in this field use this 
approach as a reference to compare their experimental and/or theoretical 
results. For this reason, the analysis of the B1 treatment is not carried out 
independently but together with CDW formalisms.

After the fundamental works of Cheshire,10 Belkić,8 and Crothers and 
McCann,4 the CDW methodologies have been used by several investiga-
tors to study ion–atom collision problems (see, e.g., Refs. 34–36). Many of 
these variants have been employed to investigate processes such as transfer 
ionization, direct ionization, electron interference during direct ionization, 
target excitation, electron loss from negative ions due to proton impact, and 
more complex phenomena like multiple ionizations and the simultaneous 
projectile ionization and target excitation and/or ionization. The success 
of the CDW theories is mainly based on the reproduction of two-center 
effects,34 which are due to the influence of both the projectile and residual 
target on the electron under consideration. Some of these effects are com-
mented in the light of CDW methodologies in the following paragraphs. 
On the contrary, the B1 approximation is not capable to explain these 
effects. Only the most prominent effects are analyzed just below.

5.1 Ionization cross sections for water
As far as the authors know, Olivera et al.35 published the first work on the use 
of the CDW-EIS formalism to determine single ionization cross sections for 
protons bombarding water. They employed the complete neglect of differen-
tial overlap (CNDO) method to obtain electron wave functions. However, 
their important work was aimed to the water vapor phase. Figure 8.2 shows 
total ionization cross sections reported by these authors in Ref. 37. Electron 
capture cross sections calculated using the Bragg’s additivity rule instead of 
molecular wave functions are also displayed. Excellent agreement between 
theoretical and experimental results was obtained for projectile energies 
above approximately 30 keV.

Bernal and Liendo published a work on the determination of inelastic 
cross sections for the interaction of protons, alpha particles, and carbon ions 
with liquid water.7 They calculated ionization cross sections by use of the 
CDW-EIS and HKS formalisms (see Section 2). In both methods hydro-
gen-like wave functions were used to represent the initial electron state. 
Occupation number and ionization energy values used in that research 
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are shown in Table 1 of Ref. 7. DDCS for 0.3 and 1.5 MeV protons, and 
0.3 and 0.5 MeV alpha particles impacting on liquid water calculated by 
those authors are shown in Figures 8.3 and 8.4, respectively. Each curve is 
for a given secondary electron energy. Corresponding experimental values 
for water vapor16, 17 are also displayed. The use of hydrogen-like wave 
functions to describe the electron initial state causes an underestimation 
of DDCS at backward angles.13 Furthermore, CDW-EIS accounts for 
the projectile–electron interaction explicitly so that the attraction of the 
positively charged projectile on the atomic electron tends to reduce the 
electron ejection probability at large angles. This is one of the well-known 
two-center effects34 and the reason why CDW-EIS underestimates the 
DDCS at backward angles more than HKS does. The attraction mentioned 
here also causes CDW-EIS to overestimate, for all projectile energies, the 
DDCS at forward angles with respect to the HKS values when the elec-
tron energy is close to the ECC peak energy WECC. This effect is more 
important for the strongest perturbation (ZP/v), currently represented by 
the alpha particle case where DDCS corresponding to the entire electron 
energy range are affected. The shift of the CDW-EIS binary encounter 

Figure 8.2 Total ionization and electron capture cross sections for the impact of pro-
tons on water vapor. Solid lines represent CDW-EIS calculations carried out by Olivera 
et al. squares are data obtained from experiments by Barnet et al. circles and triangles 
represent experimental results published in Ref.  19.  Reprinted from Publication,37 
Copyright (1996), with permission from Elsevier.
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peaks towards smaller angles with respect to those determined by the 
HKS method is another evidence of the presence of two-center effects. As 
expected, this fact is more conspicuous in the alpha particle case. Although 
the CDW-EIS approximation accounts for two-center effects, it was unable 
to reproduce experimental DDCS near 0°. This behavior could be caused 
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methods for (a) 0.3 MeV/u and (b) 0.5 MeV/u alpha particles. Corresponding experi-
mental values for water vapor extracted from Ref. 17 (Toburen80). Reprinted from 
Publication,7 Copyright (2007), with permission from Elsevier.
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by the use of hydrogen-like instead of realistic bound electron wave func-
tions. Neither of the CDW-EIS and HKS formalisms provides a good 
agreement with experimental water vapor DDCS.

SDCS for protons and alpha particles impacting on liquid water 
computed by the CDW-EIS and HKS models7 are displayed in Figure 
8.5a and b, respectively. Corresponding experimental values previously 
published for water vapor are also included for comparison.17, 18 In gen-
eral, the HKS method provides a better agreement with the experimental 
results than the CDW-EIS formalism, for protons as well as for alpha 
particles. CDW-EIS cross sections are lower than those predicted by the 
HKS approach for all projectile energies, probably due to the significant 
underestimation of the DDCS at large ejection angles (see Figs. 8.3 and 
8.4). At the same projectile speed (0.5 MeV/u), CDW-EIS and HKS 
SDCS are consistent with experimental data corresponding to W values 
above 10 eV and 30 eV for proton and alpha particle beams, respectively. 
This may be due to the fact that both CDW-EIS and HKS methods are 
first-order perturbative approaches. The greater the projectile charge, the 
worse the expected results for the same projectile velocity. Discrepancies 
below about 10 eV could be attributed to experimental difficulties, as 
commented in Ref. 18.

Figure 8.5 SDCS for (a) 0.5, 1.5, 3.0, and 4.2 MeV protons and (b) 0.3 and 0.5 MeV/u 
alpha particles impacting on liquid water calculated by the CDW-EIS (solid lines) and 
HKS (dashed lines) formalisms. Experimental results corresponding to water vapor are 
shown (symbols).18, 17 Reprinted from Publication,7 Copyright (2007), with permission 
from Elsevier.
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Figure 8.6 shows the total single ionization cross sections for H+

, He
2+,  

and C6+ ions impacting on liquid water calculated by the CDW-EIS and 
HKS formalisms. Corresponding experimental data for the H+ (Ref.19) and 
He

2+ (Ref. 20) ions bombarding water vapor are also displayed for com-
parison purposes. In addition, analog values obtained by Schutten et al.38 for 
electrons impinging on water vapor with the same speed as protons are also 
included in this figure. The agreement between the theoretical and experi-
mental values for protons is better for E0 below and above about 1 MeV/u 
for the CDW-EIS and HKS formalisms, respectively. The total cross section 
(TCS) obtained from experiments carried out with electrons as projectiles 
underestimate the theoretical values importantly for protons energies below 
about 1 MeV. Unfortunately, the experimental values for He

2+ are not 
enough to make a good comparison but they show a good high-energy 
tendency.

Bernal and Liendo calculated corresponding excitation cross sections 
to determine inelastic electronic stopping cross sections (SCS) for protons, 
alpha particles, and carbon ions and compared their results with those 
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Figure 8.6 Total single ionization cross sections for H+, He2+, and C6+ ions impacting 
on liquid water calculated by the CDW-EIS (solid lines) and HKS (dashed lines) formal-
isms. Available experimental values are also shown (symbols).38, 19, 20 Reprinted from 
Publication,7 Copyright (2007), with permission from Elsevier.
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provided by ICRU.27, 39 Figure 8.7 shows that the best SCS agreement 
with the reference values is obtained with the CDW-EIS formalism. It is 
important to remark that the CDW-EIS methodology is fully theoreti-
cal and only requires the knowledge of electron occupation numbers and 
binding energies of the target under study to be implemented.

Dal Cappello et al. published a work40 in which double, single, and 
total ionization cross sections for water vapor bombarded by 6 MeV/u C6+ 
ions were determined by means of three variants of the HKS model: one 
obtained directly from the Hansen and Kocbach work5(HKSorig), another 
modified by Stolterfoht13(HKSStol), and the corrected HKS expressions 
reported by Bernal and Liendo7(HKSBL). In addition, corresponding 
experimental and B1 approximation values, referred to as FBA-CW by 
Dal Cappello et al., were also reported. Moreover, the previously described 
model developed by Rudd (see Section 4.1) was included for SDCS 
comparison purposes. Figure 8.8 depicts SDCS reported in Ref. 40. In 
our opinion, the HKSBL model is the most successful, in contrast to the 
conclusions of Dal Cappello et al. The reader should be aware that the 

Figure 8.7 Electronic stopping cross sections for H+, He2+, and C6+ ions impacting 
on liquid water calculated by the CDW-EIS (solid lines) and HKS (dashed lines) formal-
isms. Corresponding reference values from ICRU reports are also shown (symbols).27, 39 
Reprinted from Publication,7 Copyright (2007), with permission from Elsevier.
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greatest TCS components come from low energy SDCS corresponding 
to the interval W < 100 eV, where the HKSBL variant provides better 
results than the other two HKS modifications. Among all the semiempiri-
cal models studied, the Rudd model produces the best agreement with 
the experiment. It is worth noting that the HKS expressions reported in 
Ref. 13,14 have some misprints. In other words, they cannot be obtained 
from the corresponding integration of the original transition probability 
reported by Hansen and Kocbach.5

Electronic stopping cross sections for protons on liquid water are 
shown in Figure 8.9. In this case, results from Emfietzoglou et al.41 were 

Figure 8.8 SDCS for the ionization of water vapor by the impact of 6 MeV/u C6+ ions. 
Solid circles show experimental values from the Ohsawa group (see Ref. 24). Results 
from the original HKS model5 are represented by the dashed line; the HKS variant 
due to Stolterfoht et al.,13 by the dotted line; the corrected HKS model due to Bernal 
and Liendo,7 by the dashed-dotted line; and the Rudd model,3 by the dashed-dotted- 
dotted line. Reprinted from Publication,40 Copyright (2009), with permission from 
Elsevier.
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obtained by use of the semiempirical model based on the electronic 
response function of the medium (see Section 4.3). Other calculations 
as well as experimental determinations are shown. The reference num-
bers shown in this figure are according to Ref. 41 instead of the cur-
rent work. In general, the agreement between all the methods shown 
is excellent for proton energies above 300 keV. Discrepancies arise near 
the Massey peak where the stopping cross section reaches a maximum. 
It should be remarked that the calculations carried out by Emfietzoglou 
et al.,41 based on IXS data, represent the best fit of the ICRU reference 
values.

The semiempirical models developed by Rudd et al. (see Section 
4.1) have been widely used to reproduce electron capture and single dif-
ferential and total ionization cross sections for the impact of light ions 
on water vapor19, 40 and liquid water.2 They have also been used to fit 
cross sections corresponding to water vapor fragmentation due to proton 
bombardment.22, 42 These models have the advantage of being easy to be 
implemented in Monte Carlo codes, providing a very high computing 

Figure 8.9 Electronic stopping power of liquid water for protons as reported by 
Emfietzoglou et al.41 Solid and dotted lines show results obtained by those authors 
from the fit of inelastic X-ray scattering (IXS)29 and optical reflectance data (REF),31 
respectively. The other results represent calculations and experimental determinations 
reported by the cited references. Printed from Publication,41 Copyright (2006), with 
permission from Elsevier.
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efficiency. The quality of the results obtained from them can be appreci-
ated in Figure 8.8.

6. CONCLUSIONS AND PERSPECTIVES

The CDW methodologies have proven to be very successful 
to reproduce experimental single ionization cross sections for several 
projectile-target combinations in a very wide projectile energy range. 
Among them, the CDW-EIS approximation has thus far been the most 
successful. In general, these formalisms are capable to explain, unlike the 
B1 approximation, certain complex phenomena involved in ion–atom 
collisions, such as the well-known two-center effects. However, realistic 
bound electron wave functions must be used to obtain more accurate 
DDCS that are sensible to the initial electron state. In some physical situ-
ations, such as the double ionization of a multielectron target and the 
interaction between a partially ionized projectile and a hydrogen-like 
target, the four-body extended CDW formalisms arise as powerful tools 
to determine the corresponding cross sections. Efforts have been made in 
this sense by Belkić36, 43 resulting in good agreement between theoretical 
and experimental cross sections for electron detachment from negative 
hydrogen ion by proton impact. This author and colleagues have recently 
reviewed four-body formalisms for various processes that take place in 
ion–atom collisions.44

To the best of our knowledge, all Monte Carlo codes developed 
to simulate energetic ion transport through matter use semiempirical 
methods to determine ion–atom interaction cross sections. Several of 
these methods lack a physical basis and are limited to fitting experi-
mental cross sections. In our opinion, the CDW-EIS approximation can 
be used to calculate all the electronic cross sections required by these 
Monte Carlo codes, including the case of relativistic projectile energies 
of heavy ions.

The determination of experimental ionization cross sections for liquid 
water is a topic which still presents a considerable challenge to experimen-
talists. Although it is a very difficult task, we are optimistic in this respect. 
Recently, Kaneda et al.45 have carried out the first experiment to measure 
the relative ion-fragment yields due to proton impact on liquid water. 
The availability of liquid water ionization cross sections will allow the needed 
tests of the corresponding theoretical models. This, in turn, would improve 
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our understanding of the role of the liquid water phase effects that influence 
the ionization process.
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Abstract

Irradiation of water and other molecules of biological interest by heavy ion beams is 
studied. Distorted wave models are employed to investigate the corresponding inelas-
tic collisions. Cross sections for electronic capture, ionization, and excitation processes 
are determined as well as equilibrium charge-states and electronic stopping power. 
The influence of multiple ionization in liquid water radiolysis is analyzed.
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1. INTRODUCTION

The interaction of charged particles with matter has been a subject of 
study since the pioneering works of Bethe.1 In these seminal works Bethe 
applied the first-Born approximation to calculate the total cross section 
for single ionization and excitation of H by swift electron and ion impact. 
Using a multipole expansion of the perturbation, and keeping only the 
dipole term, he was able to obtain closed formulas of the total cross sections 
and stopping power. The comparison with experimental results showed 
good agreement at high impact energy, where these reactions dominate, 
and that it largely overestimated the cross sections at intermediate and small 
impact energies. This showed that such a first-order theory could not give 
a complete representation of the processes. However, the simplicity of the 
calculation, the compact form of the result, the requirements from different 
applications for a large quantity of data, and the difficulty to develop higher 
order methods lead to the addition of semi-empirical corrections to the 
Bethe formula. This produced what is now called the Bethe–Bloch theory2 
which is the relativistic version of Bethe’s theory including the Barkas, 
shell and polarization corrections.3 Results with this theory for atomic 
and molecular targets, the later obtained employing Bragg’s rule, are readily 
available for electron and proton impact in a large range of impact energies.

The corrections included in the Bethe–Bloch theory are mainly related 
to the dependence of the total cross sections (or stopping power) on the 
properties of the target. They depend therefore on the number of electrons 
(shells) or the polarizability of the electron gas. It is well known that in 
first-order theories the total cross section and stopping power scale with 
the square of the projectile charge ZP. Experiments performed by Brandt 
and coworkers4 employing He

2+ and Li
3+ projectile ions impinging on 

heavy targets, showed for the first time large discrepancies as deviations 
from the Z2

P
-scaling law. These discrepancies were explained introducing 

the binding and polarization effects. The binding effect, which is important 
from intermediate to low impact energy, arises from the increasing binding 
of the active electron due to the combined projectile and target potential. 
This effect lowers the total cross section since the increased binding results 
in a lower emission probability. The polarization effect, which is important 
at intermediate to high energies, arises from the distortion of the initial 
state by the projectile potential. The experiments showed that this effect 
was responsible for an increase of the total cross section with respect to the 
prediction of the Bethe–Bloch theory. The projectile potential attracts the 
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electronic cloud, therefore increasing the effective impact parameter and 
thus increasing the transition probability. Basbas and coworkers developed 
the perturbed-stationary-state (PSS) theory where all these effects were 
taken into account as higher order corrections to the first-Born approxima-
tion and found very good agreement with the experimental data.5 In this 
approach the total cross section results in an expansion in powers of the 
ratio between the projectile and target nuclear charge. The first-term, pro-
portional to Z2

P
 corresponds to the first-Born approximation. The appear-

ance of even and odd powers indicated that there are not only higher order 
contributions but also that they differ on the sign of the projectile charge. 
In this way Brandt and Basbas6 explained the difference in the total cross 
sections and stopping power between particle and antiparticle which had 
already been found experimentally by Barkas and coworkers.7

The PSS model has been found to yield good agreement with experi-
ments for asymmetric systems, when the projectile charge ZP is much 
smaller than the target nuclear charge ZT. It is clear that when the projec-
tile charge increases, the parameter ZP/ZT will be large and unreasonable 
for a perturbative development. Therefore a different kind of theoretical 
approach is required to represent the total cross sections and stopping pow-
ers for all values of ZP and ZT.

A theoretical method which is well suited for this problem is the dis-
torted wave theory. Since all the particles involved are charged, the inter-
actions are governed by the long-range Coulomb forces. It is well known 
that the Coulomb potential acts even at infinite long distances. The inter-
action between two charged particles at long distances might be small but 
never zero. As a consequence the wavefunction representing this situation 
cannot be written as a product of free-particle (plane-waves) wavefunc-
tions. The long-range nature of the potential results in the appearance of a 
Coulomb phase or distortion. In distorted wave theory, the initial and final 
state wavefunctions are chosen in such a way as to represent the physi-
cal problem and the correct asymptotic conditions at very large distances. 
These wavefunctions can be chosen in different ways leading to different 
distorted wave models. The Continuum Distorted Wave (CDW) model 
was first proposed by Cheshire8 to investigate electron capture and after-
wards extended by Belkic9 for electron ionization. One of the most suc-
cessful theoretical descriptions is the Continuum Distorted Wave-Eikonal 
Initial State (CDW-EIS) model introduced by Crothers and McCann10 to 
study electron ionization of monoelectronic targets and latter extended 
by Fainstein et al.11 for multielectronic targets. The CDW-EIS model was 
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subsequently formulated to investigate the electron capture reaction.12 The 
CDW-EIS model was applied with great success in more symmetric sys-
tems by Fainstein et al.13 for single ionization of He by H+

, He
2+, and Li

3+ 
impact. A very good agreement was obtained with the experimental data 
available in whole energy range from a few keV/amu to a few MeV/amu. 
Moreover the calculations explained the large difference between results 
for proton and antiproton impact which had been found experimentally at 
CERN by Andersen et al.14 All these results could be interpreted in terms 
of the binding and polarization mechanisms of Brandt and coworkers.

For symmetric systems however, another kind of effect, not included 
in the Bethe and PSS models, must be considered. As the impact energy 
decreases the cross sections for electron capture increase and become even 
larger that the corresponding ones for ionization and excitation. As a result, 
a fraction of the particles in the projectile beam will suffer a change in 
charge-state. For example, a fraction of a proton beam will be neutralized 
and even, at very low impact energy, become negatively charged (H−).  
In equilibrium at a given impact energy there will be several charge-
states and their contribution must be considered to calculate accurately 
the stopping power. The difficulty in this approach is that a huge number 
of cross sections are required for all the open channels. Such an approach 
has been considered up to now with two different models. Schiwietz and 
coworkers15,16 calculated the cross sections employing the coupled-channel 
method using atomic orbitals while Fainstein et al.17 and Olivera et al.18 
employed the distorted-wave (DW) method. Both methods showed very 
good agreement with the experiments available for proton impact on H 
and He targets. Furthermore, the DW method was also successfully applied 
to stopping power calculations for simple molecular targets.19

2.  THE DISTORTED WAVE MODEL FOR INELASTIC 
COLLISIONS

When a fast bare ion beam impacts on atoms or molecules, three 
main electronic reactions are produced: electron ionization or excitation of 
the target and electron capture of target electrons by the projectile. This last 
reaction dominates at low-intermediate collision energies, corresponding 
to impact velocities v � ve, where ve is the velocity of the transferred 
electron in the initial unperturbed target orbital. As the energy increases 
electron ionization becomes the dominant channel whereas electron 
 excitation gives larger contributions than electron capture.
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In order to describe these one-electron processes in the penetration 
of light ion beams in a gaseous target a distorted wave model was formu-
lated.17 In such theoretical description the CDW-EIS model was employed 
for electron capture12 and electron ionization10, 11 while target excitation 
was included employing the Symmetric Eikonal (SE) one.20 These models 
were applied with success to study numerous collision systems (see Ref. 21 
and references therein) not only for processes involving one active electron. 
However, for e.g. two-electron capture from helium by alpha particles, the 
four-body version of the CDW-EIS model gives total cross sections that 
are smaller than the experimental data by a factor varying from 1000 to 10 
at impact energies 0.1-3 MeV (see review22a and references therein). These 
theoretical approximations introduce the effect of the distortion produced 
on the promoted electron by the presence of coulombic perturbative 
potentials in the entry and exit channels, paying particular attention to the 
asymptotic conditions corresponding to their long-range character.

2.1 The theoretical description for charged projectiles
For simplicity we will consider a three-body system composed by a bare pro-
jectile, an active electron, and a one-center residual target. Moreover, it is con-
sidered that the passive electrons (those ones that are not promoted) remain 
in their orbitals during the collision. This assumption is valid at high enough 
impact velocities for which the collision time is smaller than the one cor-
responding to relaxation of the passive electrons. For molecular targets it will 
correspond also to collision times smaller than the vibrational and rotational 
ones. In the following, the notation is that usually employed for distorted 
wave models and atomic units will be used except where otherwise stated.

The straight line version of the impact parameter approximations is 
used, for which:

where �R is the internuclear vector, �ρ the impact parameter, �v the collision 
velocity, and t the time evolution. The system is described from a reference 
frame fixed on the target nucleus.

In the α-entry channel, the initial one-active electron distorted wave-
function is chosen as:

(1)�R = �ρ + �vt,

(2)

χ+

α = ϕα(�x) exp (−iεα t) exp [−iν ln (vs + �v · �s)] exp

[

i
ZPZT

v

ln
(

vR − v
2t

)

]

= ψα exp

[

i
ZPZT

v

ln
(

vR − v
2t

)

]

,
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where the super-index (+) indicates that it preserves correct outgo-
ing boundary conditions. In Eq. (2), ϕα(�x) represents the non-perturbed 
initial electron bound orbital and εα the corresponding orbital energy, 
�x and �s are the electron position vectors with respect to the target and 
projectile nucleus, ZP and ZT are the projectile and target nuclear charges 
and ν = ZP/v (also called the Sommerfeld parameter). The eikonal phase 
included in the entrance channel depending of the �s coordinate, takes 
account of the fact that the electron bound to the target is simultaneously 
traveling in a continuum state of the projectile field. In fact, the electron is 
moving in a combined field of the residual target and of the projectile. In 
this sense χ+

α  is a two-center wavefunction which contains the informa-
tion on the long-range coulomb interaction between the projectile and the 
electron. The other eikonal phase depending on the internuclear distance 
corresponds to the Coulomb interaction between the nuclei present in the 
reaction.

The choice of the final distorting wavefunction in the β-exit channel 
depends on the process investigated. Thus, for electron capture this wave-
function is chosen as

Now, the super-index (−) indicates that correct ingoing conditions are 
satisfied, ϕβ(�s) represents the non-perturbed electron bound wavefunction 
in the exit channel with εβ the corresponding orbital energy. The other 
terms in the first phase factor are due to the Galilean transformation of the 
electron wavefunction from the projectile frame to the target nucleus one. 
Also in expression (3), 1F1 (−iς; 1; −ivx − i �v · �x) is a continuum factor 
of the electron–residual target interaction, ς = Z∗

T/v, with Z∗

T the effective 
target nuclear charge. Thus, the final distorted wavefunction presents again 
a two-center character associated with the fact that the electron evolves in 
the combined field of the projectile and residual target ones. The function 
N (a) = exp(πa/2)Ŵ(1 − ia) gives the normalization of the continuum 
factor and the eikonal phase depending on the internuclear distance repre-
sents again the interaction between the nuclei. According to the prescription 
of Belkic et al.22b the effective charge Z∗

T
 is chosen as Z∗

T
=

√

−2n2
αεα, 

where nα is the principal quantum number. This choice corresponds to 

(3)

χ
−(c)
β = ϕβ(�s) exp

(

−iεβ t + i �v · �x − i
v

2

2
t

)

× N ∗ (ς)1 F1 (−iς; 1; −ivx − i �v · �x) exp

[

−i
ZPZT

v

ln
(

vR + v
2t

)

]

= ψ
(c)
β exp

[

−i
ZPZT

v

ln
(

vR + v
2t

)

]

.
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consider an effective Coulomb potential to represent the interaction of the 
electron with the residual target in the exit channel, even in the case of 
 multielectron targets.

To describe the electron ionization process the final distorted wavefunction 
is taken as:

where �k and �p =
�k − �v are the linear momenta of the electron with respect 

to the target and projectile nucleus, respectively, ξ = Z∗

T
/k and ζ = ZP/p. 

The first part of Eq. (4), depending on the coordinate �x, is a wavefunction 
describing the electron in a continuum state of the residual target whereas 
the continuum factor depending on the coordinate �s corresponds to the 
electron–projectile interaction. Thus, the final distorted wavefunction indi-
cates that the electron is traveling in a continuum state of the projectile and 
residual target fields, and their actions on the emitted electron are consid-
ered on equal footing.

Finally, for the electron excitation reaction the final distorted wavefunc-
tion is chosen as:

with ϕβ(�x) representing an excited state of the target with orbital energy 
εβ and the eikonal phase depending on the coordinate �s describes the elec-
tron in a continuum state of the projectile. The last phase factor takes into 
account the internuclear interaction.

The first-order scattering amplitude for any of the cases mentioned 
above (the elastic scattering channel is not considered) can be written as:

and

(4)

χ
−(i)
β = (2π)−3/2

exp

(

i�k · �x − i
k2

2
t

)

N ∗ (ξ)1 F1

(

−iξ ; 1; −ikx − i�k · �x
)

× N ∗ (ζ )1 F1

(

−iζ ; 1; −ips − i�p · �s
)

exp

[

−i
ZPZT

v

ln
(

vR + v
2t

)

]

= ψ
(i)
β exp

[

−i
ZPZT

v

ln
(

vR + v
2t

)

]

,

(5)

χ
−(e)
β = ϕβ(�x) exp

(

−iεβ t
)

exp [iν ln (vs − �v · �s)] exp

[

−i
ZPZT

v

ln
(

vR + v
2t

)

]

= ψ
(e)
β exp

[

−i
ZPZT

v

ln
(

vR + v
2t

)

]

(6)
A

+

αβ( �ρ) = −i

∫

+∞

−∞

dt

〈

χ−

β

∣

∣

∣

∣

∣
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Hel − i
∂

∂ t

)

†
∣

∣

∣

∣

∣

χ+

α

〉

= (ρv)2iZPZT/va+

αβ( �ρ)
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−

αβ( �ρ) = −i
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〈
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∣

∣

∣

∣
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∂
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∣

∣

∣

χ+

α

〉

= (ρv)2iZPZT/va−

αβ( �ρ)
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in its post- and prior-versions, respectively, with Hel the electronic 
Hamiltonian which results from solving the full time-dependent Schrödinger 
equation in the eikonal approximation. In Eqs. (6) and (7), the final dis-
torted wavefunction must be replaced by the corresponding ones defined 
in Eqs. 3–5 if electron capture, electron ionization or electron excitation are 
considered, respectively. Also,

and

are scattering amplitudes where the internuclear potential is excluded. This 
interaction is completely contained in the phase factors (ρv)2iZPZT/v and 
not included in the electronic Hamiltonian ˜Hel. These scattering ampli-
tudes (in the prior- or post-versions) can be related to the transition matrix 
element:

by using the Fourier transform:

where �K is the total momentum transfer and �η its transverse component 
defined in a direction perpendicular to the incident velocity vector. It 
is interesting to note that the associated matrix elements Rαβ(�η) can be 
obtained in analytical forms for any of the single electron reactions consid-
ered. Thus, for example, a general analytical expression has been obtained 
by Martínez et al.23 for electron capture from any target orbital to any final 
projectile state. Then, for single electron capture and single electron excita-
tion of atomic targets the total cross sections can be obtained from:

(8)a+

αβ( �ρ) = −i

∫

+∞

−∞

dt

〈

ψβ

∣

∣

∣

∣

∣

(

˜Hel − i
∂

∂ t

)†
∣

∣

∣

∣

∣

ψα

〉

(9)a−

αβ( �ρ) = −i

∫

+∞

−∞

dt

〈

ψβ

∣

∣

∣

∣

(

˜Hel − i
∂

∂ t

)∣

∣

∣

∣

ψα

〉

(10)Tαβ( �K ) = i
4π2

v

Rαβ(�η)

(11)aαβ( �ρ) =

1

2π

∫

d�η e−i �ρ·�ηRαβ(�η),

(12)σαβ =

∫

d �ρ
∣

∣aαβ( �ρ)
∣

∣

2
=

∫

d�η
∣

∣Rαβ(�η)
∣

∣

2
,
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where the Parseval identity has been employed. In a similar way, for elec-
tron ionization doubly differential cross sections as a function of the final 
electron energy Ek and the solid angle �k subtended by the emitted elec-
tron can be found from:10, 24

Single differential cross sections dσαk/dEk and dσαk/d�k can be obtained 
by integrating Eq. (13) on �k and Ek, respectively. Total cross sections σαk 
can then be calculated by integration of dσαk/dEk on the final electron 
energy Ek or by integration of dσαk/d�k on the solid angle �k.

2.2 The theoretical description for neutral projectiles
For neutral projectiles the incoming nucleus is screened by its bound  electrons. 
The perturbation between the dressed projectile and the target electrons is 
of short-range, having thus a different character than for the case of charged 
projectiles. It has been shown25 that the DW model reduces to the first-Born 
approximation for neutral aggregates. We will restrict our analysis to the impact 
of hydrogen atom beams, neglecting the possibility of the double charge 
exchange reaction22c associated with the formation of H−. By  simplicity we 
will consider an effective monoelectronic target model.

In the present case several channels are opened because both collisions 
partners can be excited and/or ionized. The final state of the incoming 
projectile defines the projectile-elastic and projectile-inelastic channels 
if it remains in the initial ground state or is excited to a bound or con-
tinuum state, respectively. In a similar way, target-elastic and target-inelastic 
channels can be defined. Two-active electron processes like excitation or 
ionization of the target with simultaneous excitation or ionization of the 
projectile must be also considered. Following Bates and Griffing,26 we will 
investigate all these reactions by using the first-order Born approximation 
(B1). Initial and final wavefunctions are given now as:

and

(13)d
2σαk

dEkd�k
= k

∫

d �ρ
∣

∣aαβ( �ρ)
∣

∣

2
= k

∫

d�η
∣

∣Rαβ(�η)
∣

∣

2
.

(14)φαα′ = ϕα(�xt)ϕα′(�sp)e
i �v·�xp−iv2t/2−i(εα+εα′)t

,

(15)φββ ′ = ϕβ(�xt)ϕβ ′(�sp)e
i �v·�xp−iv2t/2−i(εβ+εβ′ )t

,
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where ϕα(�xt)(ϕα′(�sp)) describes the initial state of the target (projectile) 
electron and ϕβ(�xt)(ϕβ ′(�sp)) excitation or continuum states of the tar-
get (projectile) electron in the field of the parent nucleus. Also, �xt(�sp) is 
the target (projectile) electron coordinate referred to its parent nucleus. 
Furthermore, εα(εα′) and εβ(εβ ′) are the initial and final energies of the 
target (projectile) electron, respectively.

Excluding the elastic scattering between the aggregates of the collision 
and inserting the wavefunctions φαα′ instead of χ+

α  and φββ ′ instead of χ
−

β  
in Eqs. (6) and (7), we obtain the B1-scattering amplitude corresponding to 
its post- and prior-versions. Moreover, it is easy to prove24 that:

with

The first to third terms in expression (17) give, following this order, 
the interactions between the target nucleus and the projectile electron, 
between the projectile nucleus and the target electron and, between the 
projectile and target electrons. Moreover, the first (second) term does 
not contributes to the scattering amplitude if a change in the target 
(projectile) state is produced.27 For projectile (target) elastic scattering 
(monoelectronic reaction) the electron–electron interaction produces 
a screening of the projectile (target) charge. However, for dielectronic 
reactions where projectile and target states change simultaneously, this 
interaction produces an effect known as antiscreening. In fact, the pro-
jectile nucleus and the projectile electron act incoherently on the target 
electron, so that the target electron feels separately the influence of these 
particles. 28 This effect is present for large momentum transfer under close 
encounter collisions.

The combined use of the distorted wave approximations for ion beams 
and B1 approximation for neutral projectiles is known as the distorted wave 
model (DW).17, 18

(16)(

Hel − i
∂

∂ t

)

φαα′ = Vintφαα′

(17)
Vint = −

ZT
∣

∣ �R +�sp
∣

∣

−

ZP
∣

∣ �R − �xt

∣

∣

+

1
∣

∣ �R +�sp − �xt

∣

∣

.
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3. ELECTRONIC STOPPING POWER

In order to calculate the electronic stopping power for a bare ion 
beam penetrating a gaseous target we will consider the processes of excita-
tion, ionization, and electron capture involving only one active electron, so 
that it is given by:

where the super-indexes (e), (c), and (i) indicates the excitation, capture and ion-
ization processes with the corresponding energy changes �E

(e)
αβ = εβ − εα,

�E
(c)
αβ = εβ + v

2/2 − εα, and �E
(i)
αk = Ek − εα, respectively.

We illustrate in Figure 9.1 distorted wave (DW) calculations of the 
electronic stopping power S+

e  for protons impacting on an atomic hydrogen 
gas target. The only reactions that will give contributions to the energy loss 
are single excitation:

(18)
S+

e
=

∑

β

(

�E
(e)
αβ σ

(e)
αβ + �E

(c)
αβ σ

(c)
αβ

)

+

∫

∞

0

dEk�E
(i)
αk

dσ
(i)
αk

dEk
,

(19)H
+

+ H(1s) −→ H
+

+ H(nβ lβmβ),

Figure 9.1 Electronic stopping power for proton charge-state S+

e  on H target. Solid 
lines, DW from Ref. 17; dashed lines, B1 from Ref. 29.
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single ionization:

and single electron capture:

The contributions from each of these processes are taken into account (see 
review 22c and references therein). Electron capture has been considered 
to final states with principal quantum number nβ � 2 and excitation to 
final states with nβ � 3. It is found that electron capture dominates the low 
energy part of the spectrum whereas ionization gives the main contribu-
tion at larger collision velocities. At these velocities, the excitation process 
contributes to S+

e  in a percentage of the order of 30% with respect to the 
ionization reaction. A comparison is given with previous B1 predictions.29 
For energies lower than 100 keV, they overestimate the DW results for the 
three processes considered. This can be attributed to the limitations of B1 
to describe the case of charged beams. However, at high enough velocities 
results using both models converge to the same values for each one of the 
processes considered.

In the case of a proton beam, protons can capture electrons and become 
neutralized. The neutral beams may then be transformed back into protons 
by electron loss processes and an equilibrium between charge-state com-
ponents of the beam is consequently attained. At high enough collision 
energies, the beam consists of a mixture of neutral (H0) and proton (H+) 
charge-states. The fraction at equilibrium of each one of these charge-states 
is given by the expressions:

and

where σC is the total capture cross section and σL is the total loss cross 
section.

Denoting by S0

e
 the electronic stopping power for the neutral H0 beam, 

the total mean stopping power is given by:

(20)H
+

+ H(1s) −→ H
+

+ H
+

+ e−,

(21)H
+

+ H(1s) −→ H(nβ lβmβ) + H
+

.

(22)f (H+) =

σL

σC + σL

(23)f (H0) =

σC

σC + σL

,

(24)Se = f (H+)S+

e
+ f (H0)S0

e
.
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To calculate S0

e several processes are considered. They are the ones of 
single excitation:

single ionization:

double excitation:

with nβ , nβ ′ �= 1; double ionization:

and simultaneous excitation and ionization:

The possible formation of H− ions is neglected in this chapter (for the 
contribution from the electron capture process H(1s)+H(1s)→H-(1s2)+H+, 
see Figures 6.7 and 6.8 in Ref. 22c). Excited states with nβ , nβ ′ � 3 are 
considered, assuming that contributions from higher excited states can be 
neglected.26, 30 Then, S0

e
 is calculated using the expression:

where the first term accounts for target and projectile excitation whereas 
the second one for ionization from an initial state αα′.

Equilibrium charge-state fractions are given in Figure 9.2. DW calcula-
tions are in reasonable agreement with experiments, where Bragg’s rule has 
been used to obtain the data for H from measurements for H2.31 Results 
are also in qualitative agreement with B1 calculations.29 It is shown that 
the neutral beam fraction is larger than the charged beam fraction at low 
collision energies while the situation is reversed for energies larger that 

(25)
H(1s) + H(1s) −→ H(1s) + H(nβ lβmβ)

−→H(nβ ′ lβ ′mβ ′) + H(1s),

(26)
H(1s) + H(1s) −→ H(1s) + H+

+ e−

−→H+

+ e− + H(1s),

(27)H(1s) + H(1s) −→ H(nβ ′ lβ ′mβ ′) + H(nβ lβmβ)

(28)H(1s) + H(1s) −→ H
+

+ e− + H
+

+ e−

(29)
H(1s) + H(1s) −→ H(nβ ′ lβ ′mβ ′) + H+

+ e−

−→ H+

+ e− + H(nβ lβmβ).

(30)S0

e
=

∑

β,β ′

�E
(e)
αα′,ββ ′

σ
(e)
αα′,ββ ′

+

∫

∞

0

dEk �E
(i)
αα′,k

dσ
(i)
αα′,k

dEk
,
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approximately 50 keV.  The dominance at low energies can be attributed to 
the resonant condition of charge exchange.

The total mean electronic stopping power Se is shown in Figure 
9.3 for the case considered above. DW calculations are compared with 
B1 results29 and one-center coupled-channel calculations using atomic 
orbitals (AO)15, 18 corrected to include double transitions. In fact, AO 
results are obtained employing S+

e  computations from Refs. 15, 32 while 
S0

e was obtained with the B1 approximation.29 Experimental charge-
state fractions for H2from Ref. 31 were then used to determine the 
mean stopping power. We have tested that DW results are not essentially 
modified if experimental charge fractions are used instead of the theo-
retical ones. Also included in Figure 9.3 are Se recommended values from 
Andersen and Ziegler33 and various measurements. All calculations give 
a very good description of experimental data at energies larger than the 
ones corresponding to the Se maximum. However, while DW and AO 
give a good estimation of the corresponding peak, B1 largely overesti-
mates it. In principle, at energies lower than this peak, the best agreement 
with experiments is given by the AO calculations whereas DW results 
underestimate them. In order to explain this difference and considering 
that for the H + H collisional system target and projectile are identical, 

Figure 9.2 Equilibrium charge-state fractions for protons beams traversing H as a func-
tion of projectile energy. Solid line, DW calculation; (◦), B1 from Ref. 29; (•), experiments 
for H2 targets from Ref. 31.
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we included in DW the corresponding exchange contributions. The 
 agreement now is very good.

4. THE CASE OF WATER MOLECULES

In the case of water molecules we must deal with the molecular 
orbitals of the target. Different possibilities are to use simply Bragg’s rule, 
where the molecule is treated as the ensemble of its separated atomic 

Figure 9.3 Total mean electronic stopping power of proton beams on H targets as a 
function of projectile energy. Theory: solid line, DW calculations; dashed line, B1 results 
from Ref. 29; dash-dot line, one-center AO results from Ref. 15 corrected for double 
transitions; dash-dot-dot line, DW including exchange. Experiments for H2 targets: see 
Ref. 17. Stars, tabulated values from Ref. 33.
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compounds, or to treat it within a molecular representation. The first 
method only requires the atomic cross sections or stopping power values. 
The second case is much more difficult and for that purpose we have cho-
sen to describe the molecular orbitals using a method named Complete 
Neglect of Differential Overlap (CNDO). In this method the molecular 
orbitals are expanded in terms of atomic orbitals and both the weights of 
the expansion and the molecular energies are consequently determined.34 
This method was first proposed by Senger and Rechenmann35 who 
employed the B1 approximation considering that the molecular cross sec-
tion for each molecular orbital can be given by the addition of the atomic 
cross sections weighted with the corresponding parentage coefficients.

4.1 Differential and total cross sections
Double differential cross sections (DDCS) for single electron ionization 
from water vapor produced by 0.3 MeV-protons and 2 MeV-alpha particles 
are shown in Figure 9.4. CDW-EIS results are obtained using the CNDO 
representation of the initial orbitals and effective Coulomb continuum 
electron–residual target factors with corresponding effective charges given 
by Z∗

T
=

√

−2n2εα, where now εα is the orbital energy and n the principal 

Figure 9.4 Doubly differential cross section for ionization of water vapor: (a) 0.3 MeV  H+ 
and (b) 2 MeV He2+ ions. Theory: solid line, CDW-EIS; experiments: (•), extracted from 
Senger and Rechenmann.35
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quantum number corresponding to each one of the atomic components 
that constitutes the molecular orbital considered. To describe the oxygen 
orbitals Roothaan–Hartree–Fock wavefunctions were used.36 A good 
agreement with experimental data is obtained for fixed ejection energies 
as a function of the emission angle except in the backward direction where 
the theoretical results underestimate the experimental data. In a previous 
work,37 where hydrogenic wavefunctions have been used to describe the 
initial orbitals within the CDW-EIS formalism, some differences with 
experimental data were found, showing the importance of considering the 
molecular character of the target.

Single differential cross sections (SDCS) for single ionization as a func-
tion of the electron ejection energy are shown in Figure 9.5. CDW-EIS 

Figure 9.5 Single differential cross section for single ionization of water vapor by 70 
keV and 100 keV proton impact as a function of the electron energy. Theory: solid line, 
CDW-EIS molecular method; dashed line, CDW-EIS Bragg’s rule. Experimental data: (•),  
from Ref. 38.
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calculations are performed employing Bragg’s rule and the molecular 
method with CNDO orbital wavefunctions. Proton beams with 70 keV 
and 100 keV energies are considered, obtaining a good agreement with 
existing measurements,38 except at energies lower than 4 keV, for which 
the perturbative models are not adequate. Differences between theoretical 
singly differential cross sections calculated using the two different molecular 
methods are relatively small over all the energy domain considered.

Total cross sections (TCS) for the H
+

+ H2O collision system are 
presented in Figure 9.6. The one corresponding to single ionization is 
obtained by integrating the SDCS (calculated using the molecular CDW-
EIS model) on the electron ejection energy. Bragg’s rule has been employed 
to compute the TCS for electron capture. For both reactions CDW-EIS 
calculations give a very good description of experiments39, 40 for collision 
energies larger than 30 keV.

In Figure 9.7, ionization TCS for H
+ projectiles at energies larger 

that 100 keV show a very good agreement with experimental data.41, 42 
TCS for impact of He

2+ and C6+ ion beams are also presented. For He
2+ 

the agreement between theory and experiments is also very good. For 
C

6+ it is difficult to give any conclusion due to the fact that only one 
value exists for comparison. This value has been obtained by numerical 
integration of the corresponding experimental single differential cross 
section.43 Experimental results for Cl

6+ from Ref. 44 are also included 

Figure 9.6 Total cross sections for electron capture and single ionization of water 
vapor by proton impact. Solid lines, CDW-EIS calculations. Experiments: open squares, 
from Ref. 39; open circles and open triangles, from Ref. 40.
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Figure 9.7 Total cross section for single ionization of water vapor by H+, He2+, and C6+ 
ions. Theory: solid lines, CDW-EIS. Experiments: open squares and open circles from 
Refs. 40 and 41; close circles from Ref. 45; close triangles from Ref. 43; open stars from 
Ref. 42; close squares from Ref. 44; stars from Ref. 46.

Figure 9.8 Cross section ratios. Theory: Solid line, C6+; dashed line, He2+; dot dashed 
line, H+.
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in Figure 9.7. It is interesting also to analyze the cross section ratio 
σαβ(ZP)/[Z2

P
σαβ(ZP = 1)] (with σαβ(ZP) the ionization cross section for 

a projectile of charge ZP) to determine deviations from the Z2

P-scaling law 
of B1. The results presented in Figure 9.8 show a strong deviation from B1, 
which increases with ZP. This behavior can be attributed to the binding 
effect, which arises at low enough impact velocities. The electron moves in 
the combined fields of the attractive projectile and the attractive residual 
target. Thus, the electron feels a noticeable increasing of the binding energy 
and its emission to continuum states is strongly reduced.13

4.2 Electronic stopping power
When Bragg’s rule is employed, the DW mean electronic stopping power 
of atomic hydrogen and atomic oxygen are simply added, so that the stop-
ping power for H2O is given by:

where for H the channels considered are the ones indicated in expression 
19–21 and 25–29. In the case of atomic oxygen the reaction processes taken 
into account are:

indicating with asterisk projectile excitation and ionization channels. 
Oxygen excitation channels are not included, but their influence on the 
determination of Se(H2O) can be estimated using first-Born calculations 
for excitation produced by electron impact.47

(31)Se(H2O) = 2Se(H) + Se(O),

(32)
H

+

+ O −→ H
+

+ O
+

+ e−,

(33)H
+

+ O −→ H + O
+

,

(34)H+

+ O −→ H∗

+ O+,

(35)H + O −→ H + O
+

+ e−,

(36)
H + O −→ H

∗

+ O,

(37)
H + O −→ H

+

+ e− + O
+

+ e−
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Golser and Semrad48 proved that for a mixture of hydrogen and 
atomic gases, the electron stopping power deviates from Bragg’s rule. 
This has been attributed to the fact that the corresponding equilibrium 
charge-state fractions for the mixture differ from the ones predicted 
by the additivity rule. Thus, a molecular Bragg’s rule is considered so 
that the electronic stopping power for the neutral and charged beams 
is taken as:

The corresponding equilibrium charge-state fractions can be written as:

and

with

and

where σC(J) with J = H2O, H, O indicates electron capture cross sections 
from water, atomic hydrogen, and atomic oxygen, respectively. In a similar 
way σL(J) indicates the electron loss cross sections for hydrogen beams 
impacting on the corresponding targets. Thus, the total mean electronic 
stopping power can be obtained applying the expression:

Dissociative processes are not included in the calculations. In particular, the 
CNDO approximation of the molecular orbitals is applied only to describe 
the ionization channel:

(38)S0

e
(H2O) = 2S0

e
(H) + S0

e
(O),

(39)S+

e
(H2O) = 2S+

e
(H) + S+

e
(O).

(40)fH2O(H+) =

σL(H2O)

σC(H2O) + σL(H2O)

(41)fH2O(H0) =

σC(H2O)

σC(H2O) + σL(H2O)

(42)σC(H2O) = 2σC(H) + σC(O)

(43)σL(H2O) = 2σL(H) + σL(O),

(44)Se(H2O) = fH2O(H+)S+

e
(H2O) + fH2O(H)S0

e
(H2O).

(45)
H

+

+ H2O −→ H
+

+ (H2O)+ + e−.
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Expression (39) must be accordingly modified to incorporate this molecu-
lar description of the target ionization reaction.

Equilibrium charge-state fractions for impact of hydrogen beams on 
water vapor are displayed in Figure 9.9. DW calculations are found to be 
in qualitative agreement with existing experiments.39 Total mean electronic 
stopping power is compared in Figure 9.10 with tabulated49 and experi-
mental data. At the maximum of the stopping power and at larger energies 
molecular DW calculations give a good description of experiments and rec-
ommended values, except at the peak region when they are compared with 
the tabulated values from Ref. 49. At energies lower than around 50 keV, 
molecular DW underestimates the measured and recommended values. 

Figure 9.9 Equilibrium charge-state fractions of hydrogen beams in water vapor as 
a function of the impact energy. Theory: solid line, H+ charge-state fraction; dashed 
line, H0 charge-state fraction; both DW calculations. Experimental data: (•) and (◦), 
from Ref. 39.
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Contributions to the mean stopping power from the charged and neutral 
beams are discriminated, showing that protons dominates at large energies 
while neutral hydrogen plays the principal role at lower energies. Also in the 
figure DW calculations employing Bragg’s rule are included. They largely 
overestimate the stopping power peak region.

5. MULTIPLE IONIZATION OF WATER MOLECULES

The independent electron model has been used to study theoretically 
multiple transitions. In this picture each electron evolves independently in 
a mean field created by the projectile and the other electrons. Then, the 

Figure 9.10 Electronic stopping power of water vapor as a function of the impact energy 
(molecular approximation). Theory: solid line, DW mean stopping power; dash dotted line, 
contribution of the charged fraction to the mean stopping power; dotted line, contribu-
tion of the neutral fraction to the mean stopping power; dashed line, atomic DW Bragg’s 
rule. Tabulations: open diamonds, from ICRU.49 Experiments data obtained from Ref. 19.
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calculation of cross sections for multiple processes is done by employing a 
binomial distribution where the computation of single-particle  probabilities 
as a function of the impact parameter is required.50 The probability Pm to 
remove m electrons from one particular shell that contains N-equivalent 
electrons can be expressed as:

where m = 0, 1, 2, . . . , N  and p(ρ) is the probability per electron of single 
ionization of the shell. In this expression,

is a binomial coefficient. The cross section corresponding to this multielec-
tronic transition is given by:

This approximated expression for σ (N )
m  contains information both on 

the dynamics of one-single electron collision and on the statistics of several 
equivalent electrons in the target. The collision dynamics is included by the 
choice of a particular p(ρ), which depends on the single-electron potential 
used, and on the binomial statistics employed.51 Usually, σ (N )

m  is named 
exclusive cross section. If we do not explicit the final states of the remaining 
N − m electrons, we obtain the inclusive cross sections, expressed as:

with m = 0, 1, 2, . . . , N . The exclusion of the term 
(

1 − p(ρ)
)N−m

 is 
associated with the electrons that have a “passive” role in the collision. It 
must be noted that nowadays, due to the improvements in experimental 
techniques involving many particle detection in coincidence, the exclusive 
measured cross sections can be determined.

Exclusive cross sections can be related to the inclusive cross sections and 
vice versa using the binomial inverse pair relations:52

and

(46)
Pm(ρ) = Cm

N p(ρ)m
(

1 − p(ρ)
)N−m

,

(47)Cm
N =

N !

m!(N − m)!

(48)

σ (N )
m = 2π

∫

+∞

0

dρ ρPm(ρ) = 2πCm
N

∫

+∞

0

dρ ρp(ρ)m
(

1 − p(ρ)
)N−m

.

(49)s(N )
m = 2πCm

N

∫

+∞

0

dρ ρp(ρ)m

(50)σ (N )
m =

N
∑

j=m

(−1)j−mCm
j s

(N )
j
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In the m = 1 case, Cm
j = j, this equation reduces to:

It provides an example of an inclusive cross section that can be directly 
measured.50,53 The sum 

∑N
j=1

jσ
(N )
j  is a quantity directly obtained from 

experiments where the total current produced by all different ionization 
events is measured, without the knowledge of any particular σ (N )

j . This 
inclusive cross section is also called net ionization cross section or simply 
total ionization cross section.54

We focus here the interest in the calculation of exclusive cross sections 
for multiple ionization of the water molecule, which as it is well known 
presents five i-molecular orbitals with an occupancy number Ni = 2 for 
each one of them. After some algebra, exclusive probabilities Pq, for q-fold 
ionization are given by the expression:

where pi(ρ) is the probability to ionize one electron of the orbital iand qi 
its corresponding ionization degree. Then, the q-fold ionization cross sec-
tion σq is given by:

Following the previous definition of the total or net ionization cross sec-
tion, we obtain:

As in the case of single ionization, the different probabilities that appear 
in the previous equations are calculated employing the CDW-EIS approxi-
mation. We must mention that CDW-EIS has been used with success in 

(51)s(N )
m =

N
∑

j=m

Cm
j σ

(N )
j .

(52)
s
(N )
1

=

N
∑

j=1

jσ
(N )
j = 2πN

∫

+∞

0

dρ ρp(ρ).

(53)Pq(ρ) =

N1,...,N5
∑

q1,...,q5=0;q1+···+q5=q

5
∏

i=1

C
qi

Ni
[pi(ρ)]qi [1 − pi(ρ)]Ni−qi ,

(54)σq = 2π

∫

+∞

0

dρ ρPq(ρ).

(55)σT =

5
�

i=1

2πNi

�

+∞

0

dρ ρpi(ρ) = 2π

�

+∞

0

dρ ρ





10
�

q=1

qPq(ρ)





=

10
�

q=1

qσq.



Roberto D. Rivarola et al.256

the calculation of double ionization of He by heavy ion impact55 and 
direct multiple ionization of atoms and molecules by proton and multiply 
charged ion impact.54, 56–58 To describe the different molecular orbitals of 

Figure 9.11 Charge effects in the single particle probabilities corresponding to each 
molecular orbital.
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liquid water the CNDO approximation previously employed for water 
vapor has been used59 together with RHF initial atomic bound states 
wavefunctions. In this case, experimental orbital binding energies for liquid 
water were considered.60 As the biological tissue is mainly composed by 
liquid water we focuss our following analysis on this phase of the target.  
Probabilities pi(ρ) are obtained using the method given in Galassi et al.61

 Single ionization reduced probabilities ρpi(ρ) are presented in Figure 
9.11 for the case of 70 MeV/u-proton and Ar

18+ impact on liquid water. 
Ionization from different orbitals are discriminated, being the reduced 
probabilities normalized to unity at their maxima. For the 1b1 and 3a1 
external orbitals, with binding energies of −0.32 and −0.44 a.u., respec-
tively, some shift toward larger impact parameter is shown to appear for 
Ar

18+ with respect to the H+ case. However, in this perturbation regime 
(the Sommerfeld parameter being ν ≃ 0. 34 for Ar

18+ and ν = 0. 019 for 
H

+) this shift almost disappears for the inner shells 1b2, 2a1, and 1a1, with 
binding energies of −0.62, −1.19, and −19.84 a.u., respectively. Thus, the 
impact parameter at which the reduced probability presents its maximum 
is not very sensitive to the projectile charge. Moreover, we have tested that 

Figure 9.12 Reduced multiple ionization probabilities as a function of the impact 
parameter for 70 MeV/u–Ar18+ ions impact on liquid water.



Roberto D. Rivarola et al.258

the impact parameter position corresponding to the maxima above dis-
cussed has a weak dependence with the projectile velocity.56

In Figure 9.12 we observe how the ionization degree affects the reduced 
probabilities ρPq(ρ). The case of 70 MeV/u-Ar

18+ is analyzed showing that, 
as expected, as the q-degree increases ρPq(ρ) decreases. Moreover, smaller 
impact parameters (closer collisions) give the main contribution to the reac-
tion as the ionization degree increases. Thus, postcollisional interorbital Auger 
and/or intraorbital Coster–Kronig ionization processes may dominate direct 
ionization (we understand by this the ionization produced by the interaction 
of the ejected electron with the projectile during the collision time) at high 
enough energies as q increases. As an example and just to show this effect, in 
Figure 9.13 we present q-ionization total cross sections for impact of protons 
on a Ne gas (which presents an isoelectronic character with water). The cases 
of q = 1, 2, and 3 are shown56 and compared with existing experimental 
data.62, 63 The direct interaction of the projectile produces the ionization of 
the target, generating thus holes in the orbitals that are filled through Auger 

Figure 9.13 Single and multiple ionization cross sections of Ne by proton impact as a 
function of the projectile energy.
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and Coster–Kronig transitions. In order to estimate the influence of these 
mechanisms, experimental photoionization probabilities were used.64 To do 
that, it is assumed that the postcollisional ionization reaction is independent 
of the nature of the primary vacancy production.65 This effect was also 
shown to appear for impact of protons on O2, N2, and CO molecular tar-
gets (see Ref. 57). Moreover, it has been proven for double ionization that 
when these molecules collide with multicharged ions, postcollisional mech-
anisms dominate the direct one for values ν =

Zp
v

� 0. 3 of the Sommerfeld 
parameter with a small shift to larger parameters ν as q increases.58 So, as the 
projectile charge increases, the effect appears at larger impact velocities. This 
behavior can be understood from the fact that as ZP increases direct single 
ionization probabilities pi present a Z2

P dependence at high enough ener-
gies. As a consequence, the production of qi electrons by direct ionization 
increases whereas the postcollisional emission gives the same contribution 
for any value of the projectile charge, independently of the collision veloc-
ity. Thus, for Ar

18+ the dominance of postcollisional effects should happen 
for collision energies larger than approximately 90 MeV/u.

Figure 9.14 Multiple ionization cross sections as a function of the ionization degree for 
proton and argon ions at different impact energies.
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In Figure 9.14 exclusive σq-direct ionization cross sections are  presented for 
q-degrees going from 1 to 4. The evolution of the cross section as the collision 
energy of proton beams increases is shown. The slope of the curves that can be 
drawn interpolating σq for the different q-values is more pronounced for larger 
impact velocities, proving that multiple ionization plays a weaker role as the veloc-
ity increases. For 70 MeV/u-Ar

18+ ions, exclusive cross sections take the values 
σ1 =9. 597×10

−16
cm

2
, σ2 = 0. 635×10

−16
cm

2
, σ3 =0. 103×10

−16
cm

2
, 

and σ4 = 0. 014 × 10
−16

cm
2. However, multiple ionization contributes at 

least by 14.56% to the total ionization cross section for this system. We will 
show in the following that multiple ionization may play a determinant role in 
the formation of free radicals with oxygen excess in water radiolysis. It must 
be also noted that for the case considered, K-shell ionization followed by 
Auger emission has been estimated to contribute with a value approximately 
equal to 0. 06 × 10

−16
cm

2 (Ref. 66).

5.1 Linear energy transfer
While mean stopping power refers to the energy lost by the particle beam 
traversing the surrounding media, linear energy transfer (LET) refers to the 
energy absorbed by the media per unit of distance travelled by the ionizing 
radiation. LET or restricted stopping power is defined as the ratio:

where dE�ε is the local mean energy absorbed by the media by means of 
collisions involving transfer energies lower than a specific value �ε (cut 
value) and dl is the distance traversed by the projectile. We understand by 
“local” the consideration of absorbed energies limited up by the maximum 
value �ε. Thus, L�ε is related to the part of the mean stopping power 
involving transfer energies smaller than the cut value �ε. It can also be 
related to the maximum distance reached (range) by electrons from the 
projectile track.

Different cut levels are usually selected to separate delta rays as they are 
appropriate for different reactions. L∞ is defined as the energy absorbed by 
the media per unit of distance traversed by the projectile when all possible 
energy transfers are considered. This quantity coincides numerically with 
the stopping power.

(56)
L�ε =

dE�ε

dl
,
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5.2 Free radicals formation in water radiolysis
The ionization of water molecules during the irradiation of biological 
matter with fast heavy ions produces the formation of free radicals. This 
process is known as water radiolysis. Three different consecutive stages can 
be distinguished in water radiolysis:
1. the physical stage where the interaction of the projectile with the water 

molecules and the subsequent electronic cascade is produced during the 
first femtoseconds,

2. the physico-chemical stage which deals with the fast dissociation pro-
cesses that results from molecular excitation and ionization and that 
ends at the picosecond time scale,

3. the chemical stage that accounts for the evolution of the radicals and 
molecular species during their diffusion through liquid, which ends at 
the microsecond scale.
Usually Monte Carlo simulations have been developed to analyze the 

time evolution of water radiolysis. In the physical stage the cross sections 
for all interaction processes of the projectile and of the electrons with the 
medium are calculated and used as input in the Monte Carlo codes.67–69

Water radiolysis is characterized by the radiolytical yields G. This is the 
number of species created per unit of deposited energy. A large amount of 
experimental work has been performed to measure the yields for solvated 
electrons, OH, H2O2, H, and H2, which are the main radicals produced by 
low-LET radiations. Monte Carlo simulations gave an adequate quantita-
tive description of the experimental results, explaining also the different 
mechanisms involved in the process.70 The situation is not the same for 
high LET, where the formation of HO2 radicals has been experimentally 
observed.71, 72 Moreover, recent experiments based on direct optical mea-
surements of HO2/O

−

2
 produced in deaerated water for 70 MeV/u Ar 

(LET = 280 keV/μm) and 77 MeV/u S (LET = 250 keV/μm) ions were 
measured.73 However, they are lower than the ones expected by extrapola-
tion of previous experiments for similar LET.72 It was suggested74,75 that 
multiple ionization of water could be responsible for this effect. The main 
idea is that multiple ionization generates the production of O atoms, which 
reacts with OH radicals to form HO2 ones. Moreover, the reaction of 
HO2 with hydroxyl radical will produce molecular oxygen. The complete 
process has been recently investigated by Gervais and coworkers68,69 con-
sidering water irradiation by carbon ions. To consider multiple ionization 
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the independent electron model described in the previous section was 
used. Their results are summarized in Figure 9.15. The inclusion of mul-
tiple ionization of liquid water in the physical stage of water radiolysis 
plays a main role to explain experiments where yields of HO2 + O

−

2
 and 

O2 + HO2 + O
−

2
 formation were measured. This can be concluded by 

comparison with the case where only single ionization of water is included 
in the Monte Carlo simulation. Resulting O2 + HO2 + O

−

2
 yields con-

sidering single and multiple ionization are included in the figure, showing 
the increasing influence of multiple ionization as the linear energy transfer 
is larger. If only single ionization is taken into account, negligible contri-
butions to the HO2 + O

−

2
 formation are obtained in comparison to the 

yields obtained with the inclusion of multiple ionization.

Figure 9.15 Monte Carlo simulation of HO2 and HO2 + O2 yields at 1 μs as a func-
tion of LET. Lines are square fit to simulation results. For C6+ ions: dot dashed 
line, MC simulation considering multiple ionization (MI) channels; dashed line, 
MC simulation considering only single ionization (SI); closed circles, experiments 
from.72 For Ar18+ ions: solid line, MC simulation considering MI; squares, experi-
ments from Ref. 73.
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6. CONCLUDING REMARKS

A detailed description of the distorted wave model has been revisited 
to study the different electronic channels resulting from charged or neutral 
heavy particles on atomic and molecular targets. This model includes the 
Continuum Distorted Wave-Eikonal Initial State approximation to describe 
both single electron ionization and single electron capture reactions for 
the case of impact of charged particle beams. This approximation takes 
account properly of the large range of Coulomb interactions present in 
the different electronic processes. For this type of beams the Symmetric 
Eikonal approximation is proposed to determine single excitation cross 
sections. However, in the cases where they were evaluated for molecular 
targets, estimations have been given from electron impact predictions. The 
case of impact of neutral charged beams is analyzed using the first-order 
of the Born approximation. Multiple electron processes that involve elec-
tronic reactions of both the projectile and target aggregates are also studied 
employing this last theoretical description. So, the combination of all these 
different approximations constitutes the distorted wave model.

The adequacy of this model is tested by comparison of its theoretical 
predictions with existing experimental differential and total cross sections 
not only for hydrogen atomic targets but also for water vapor molecules. 
The completeness of the model allows to extend this analysis to the obten-
tion of equilibrium charge fractions and the consequent calculation of 
mean electronic stopping power.

Multiple electron ionization of liquid water is investigated employing the 
Continuum Distorted Wave-Eikonal Initial State approximation within an 
independent particle model. The influence of postcollisional Auger-type and 
Coster–Kronig-type emissions on total cross sections is also estimated. The 
main role played by multiple ionization of water during the physical stage of 
radiolysis (until a time of the order of one picosecond) on the formation of 
free radicals with oxygen excess (after a few microseconds) is also revisited.
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 9. Belkić, Dž.  A quantum theory of ionisation in fast collisions between ions and atomic 
systems. J. Phys. B 1978, 11, 3529.

 10. Crothers D. S. F.; McCann J. F. Ionisation of atoms by ion impact. J. Phys. B 1983,  
16, 3229.

 11. Fainstein P. D.; Ponce V. H.; Rivarola R. D. A theoretical model for ionisation in 
ion–atom collisions. Application for the impact of multicharged projectiles on helium.  
J. Phys. B 1988, 21, 287.

 12. Martínez A. E.; Deco G. R.; Rivarola R. D.; Fainstein P. D. K-Shell vacancy production 
in asymmetric collisions. Nucl. Instrum. Methods B 1988, 34, 32.

 13. Fainstein P. D.; Ponce  V. H.; Rivarola R. D. Z3

P effects in the ionization of helium by 
ion impact. Phys. Rev. A 1987, 36, 3639.

 14. Andersen L. H.; Hvelplund P.; Knudsen H.; Møller S. P.; Elsener K.; Rensfelt K. G.; 
Uggerhøj E. Single and double ionization of helium by fast antiproton and proton 
impact. Phys. Rev. Lett. 1986, 57, 2147.

 15. Schiwietz G. Coupled-channel calculation of stopping powers for intermediate-energy 
light ions penetrating atomic H and He targets. Phys. Rev. A 1990, 42, 296.

 16. Grande P. L.; Schiwietz G. Nonperturbative stopping-power calculation for bare and 
neutral hydrogen incident on He. Phys. Rev. A 1993, 47, 1119.

 17. Fainstein P. D.; Ponce V. H.; Martínez A. E. Distorted-wave calculation of stopping pow-
ers for light ions traversing H targets. Phys. Rev. A 1993, 47, 3055.

 18. Olivera G. H.; Martínez A. E.; Rivarola R. D.; Fainstein P. D. Electron-capture contri-
bution to the stopping power of low-energy hydrogen beams passing through helium. 
Phys. Rev. A 1994, 49, 603.

 19. Olivera G. H.; Martínez A. E.; Rivarola R. D.; Fainstein P. D. Theoretical calculation of 
electronic stopping power of water vapor by proton impact. Rad. Res. 1995, 144, 241.

 20. Deco G. R.; Fainstein P. D.; Rivarola R. D. Symmetric eikonal approximation for elec-
tron excitation in ion–atom collisions. J. Phys. B 1986, 19, 213.

 21. Rivarola R. D.; Fainstein P. D. Electron emission in collisions of highly charged ions 
with atoms and diatomic molecules. Nucl. Instrum. Methods B 2005, 205, 448.
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Abstract

With the more and more regular use of ionizing radiations in medicine and more par-
ticularly in hadrontherapy, it is today necessary to describe—with the highest degree 
of accuracy—the biological consequences of irradiations. To model the track-structure 
of charged particles in biological matter and then to quantify the full spectra of radio-
induced cellular damages, Monte Carlo simulations are the preferential methods. The 
latter consist in modelling the history of the ionizing particles by means of a large set of 
input data, namely, the differential and total interaction cross sections in order to finely 
describe the complete kinematics of the ion-induced collisions. In these conditions, 
we clearly understand the necessity for the radiobiologists and the radiotherapists to 
access to accurate cross sections—in particular for collisions with water target—the 
latter being commonly used as surrogate of the cellular medium.
We here report a review of the existing 1st Born predictions for describing the ioniza-
tion and the charge transfer processes in the high-impact energy-regime particularly 
investigated in hadrontherapy.

1. INTRODUCTION

Interactions of light ions (Z ≤ 10) with water are of great interest in 
radiotherapy where protons (and carbon ions in rare cases) are today com-
monly used in cancer treatments.1 In fact, compared to photons, ion beams 
have much more favourable dose-depth distributions, the concentration of 
the energy deposits at the end of their range giving access to a better bal-
listic precision. However, the different treatments must be also compared in 
terms of preservation of the healthy tissues and organs at risk in the tumor 
vicinity. Indeed, to improve the dose-tumor control, it is essential to con-
form the delivered dose to the tumor: in this way, hadrontherapy—which 
uses hadrons i.e., collimated beams of compound particles made of quarks 
(like neutrons, protons, pions, and heavier ions)—was suggested to treat 
radio-resistant tumours.2 Thus, protons, neutrons, and carbon ions have 
been independently investigated for their dose-depth distribution particu-
larity, namely, the significant increase of the dose profile at the end of the 
particle range: the so-called Bragg peak.

Nowadays, neutron therapies have been progressively stopped in the 
most countries, essentially due to their poor depth-dose distribution what 
implies high effective dose in the tumor as well as in the surrounding 
healthy tissues.3 On the other hand, protons—which have been first used 
in treatments in 1954 at Berkeley4—are today clinically used in a large 
number of centres (with more than 40000 patients irradiated by January 
2005) as reported by Amaldi and Kraft1 who predict that protontherapy 
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will continue to spread with in particular an increasing number of treated 
patients reaching the value of about 1000–2000 for every 10 million inhab-
itants. Carbon ion beams have been till now less used in tumor treatments 
and we only report in 2005 two centres, namely, the GSI Laboratory at 
Darmstadt (with more than 250 patients treated at the end of 2004) and 
the Japanese centre HIMAC (for Heavy Ion Medical Accelerator Centre) 
with more than 2000 treated patients. In fact, despite the disadvantage to 
have dose deposition after the Bragg peak due to the projectile fragmen-
tation, carbon ions present numerous advantages compared to protons in 
radiotherapy like, for example, minor lateral and longitudinal straggling of 
about three times smaller than for protons and a relative biological effi-
ciency (RBE) which increases at the end of the particle range. Thus, as it 
has been the case for the evolution of the synchrotron radiation sources, 
hadron therapy is today part of the medical business landscape and numer-
ous centres are actually under construction (or in a planning stage) like for 
example in Europe (HIT at Heidelberg in Germany, CNAO at Pavia in 
Italy and ETOILE at Lyon in France).

Protons and carbon ions are advantageous in Intensity Modulated 
Hadron Therapy (IMHT) essentially for three physical properties: (i) the 
existence of a maximum energy deposit in a well localized near-Bragg 
peak region, (ii) a low diffusion during their penetration in matter, and (iii) 
the possibility to be formed as narrow focused and scanned pencil beams 
of variable penetration depth permitting an accurate and rapid irradiation 
of the tumours. In these conditions, a beam of protons or light ions allows 
highly conformal treatment of deep-seated tumours with millimetre accu-
racy, giving minimal doses to the surrounding tissues. Furthermore, note 
that to reach depths of more than 25 cm in soft tissues, proton, and carbon 
ion beams must have an initial energy greater than 200 MeV and 4500 MeV 
(i.e., 375 MeV/u), respectively.

Several dose calculation algorithms have been then proposed for treat-
ment planning in hadron therapy (especially for proton therapy), generally 
based on the pencil beam algorithm method, which consists in dividing the 
therapeutic beam into narrow pencil beams. Dose from the pencil beam is 
then usually calculated by using depth-dose distributions combined to the 
finest description of the beam profile in terms of lateral widening (due to 
the multiple scattering effects).

In this context, many dedicated Monte Carlo (MC) codes have been 
proposed since the pioneer works of Berger:5 see for example the recently 
published approaches developed in the framework of the SHIELD-HIT, 
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PHITS, and GEANT4 or FLUKA codes (for more details we refer the 
reader to our recent work6 and references therein). Indeed, in the field of 
hadron therapy, MC track structure simulations play an important rôle in 
particular for understanding the spatial pattern of energy depositions as well 
as the relative biological effectiveness of radiation qualities. However, MC 
simulations essentially rely on the accuracy of the cross sections used for 
describing the ion-induced interactions in matter and more particularly in 
water, this target being commonly used for modelling the living medium 
because of its abundance in biological cells (up to 70–80% in mass). In this 
context, total and multi differential cross sections for ionization and charge 
transfer in water appear as input data of prime importance, these two pro-
cesses bringing both the dominant contributions to the slowing-down of 
charged particles in matter.

The present chapter deals with the existing theoretical models—here 
limited to the perturbative treatments—as well as the available experimen-
tal measurements for ionization and electronic capture induced by heavy 
charged particles in water. Besides, let us add that more sophisticated models 
going beyond the perturbative framework may be found in the literature and 
for more details we refer the interested reader to the recent review of Belkić.7

2.  ION-INDUCED IONIZATION AND CHARGE TRANSFER 
CROSS SECTIONS IN WATER: A REVIEW OF THE 
EXISTING DATA

In spite of the broad range of interest, cross section measurements 
on ion-induced collisions in water are scarce and a number of details have 
not yet been investigated up to now. Indeed, most of the existing studies so 
far have been restricted to electron impact ionization while cross sections 
of water ionization by ion impact remain extremely rare (see for example 
Refs. 8, 9 for a review on the ionization process by proton and α-particle 
impact, respectively). Besides, the charge transfer process has been even 
more rarely investigated and despite the numerous studies on total capture 
cross sections for incident protons in various gases, there are today only few 
results on partial electron capture cross sections. With regard to the theory, 
only few theoretical works—quantum as well as classical—have been devel-
oped for describing the ionization and charge transfer processes in water. 
The existing approaches are essentially based on semi-empirical models 
which use—for a major part—analytical formulae fitted on experimental 
measurements. These are reported in the following and compared in terms 
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of differential as well as total cross sections with the 1st Born theoretical 
models hereafter reported.

2.1 Experimental background
Considering the ionization process, the first extensive work was given by 
Toburen and Wilson10 who measured doubly differential cross sections 
(DDCS) for 300–1500 keV protons and more recently for 300 to 2000 keV 
He+ and He2+ ions.11 Later on, Rudd and co-workers performed experi-
ments on the ionization of water vapour by protons and He+ ion impact12 
and reported total direct cross sections (without capture). More recently, 
Bolorizadeh and Rudd have extended these pioneer works to the DDCS 
measurements for the ejection of electrons during the ionization process 
of water vapour by 15–150 keV protons.13 Later on, Gibson and Reid14 
reported energy and angular distributions of secondary electrons ejected 
from various gases including water vapour by 50 keV protons. Finally, mul-
tiple ionization and fragmentation of water have been recently studied by 
Werner et al.15 for fast protons and He+ ions by using a position- and time-
sensitive multi-particle detector: a good agreement was also observed with 
the previous measurements of Rudd and co-workers12 for the total cross 
sections (TCS). Furthermore, Gobet et al.16 have determined a complete 
set of cross sections for the ionization of water molecule by proton impact 
in the energy range 20–150 keV including total and partial cross sections 
for H+ and H2O+ fragment production. They also found TCS in good 
agreement with the measurements of Rudd et al. and those of Werner et al. 
Recently, Gobet et al.16 have also presented a full set of absolute partial cross 
sections corresponding to H+, H2O+, OH+, O+, and O2+ which allows 
a detailed comparison between their cross sections for direct ionization of 
water by proton impact and the electron impact ionization data of Straub  
et al.17 Concerning helium ions, the literature remains very poor. We can 
nevertheless cite the pioneer work of Rudolph and Melton18 on 2.2 MeV 
He2+ ions, the extensive graphical representation given by Toburen et al.11 
in terms of secondary electron yields, differential in ejected electron energy 
and emission angle for 0.075 to 0.5 MeV/u helium ions, both singly and 
doubly charged and finally, the very recent differential cross sections reported 
by Ohsawa et al. for the energy and angular distributions of secondary 
electrons produced in collisions of 6- and 10-MeV/u He2+ ions in water 
vapour and more recently for 15-MeV/u α-particles (He2+ ions).19 In the 
latter, DDCS were presented and compared in the low-energy region to 
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the Toburen’s data by means of Fano plots and very good consistency was 
found. Singly differential cross sections (SDCS) were finally deduced and 
compared to the semi-empirical model introduced by Rudd.20 Considering 
carbon ions, the literature is much poorer since to our knowledge only few 
experimental measurements have been reported. Let us cite the group of 
Montenegro and co-workers21 who have published a study of great interest 
for the field of hadron therapy on the water molecule fragmentation by car-
bon ions at the distal region of the Bragg peak. In this work, measurements 
of the positive ion fragments resulting from the water fragmentation after 
ionization and electron capture have been reported, allowing for the first 
time a quantitative determination of the energy lost by carbon ions at the 
end of the particle range. Finally, note that Dal Cappello et al.22 have recently 
reported an extensive set of experimental doubly and singly differential cross 
sections for 6 MeV/u C6+ ions provided by Ohsawa and co-workers.

Considering the capture process, many experimental measurements 
have been reported since the pioneer works on protons in 1970s. Let us 
cite the work of Rudd and co-workers on electron capture induced by 
5–150 keV protons in many gases like H2 and O2 and later on the studies 
of Rudd et al.12 on the determination of electron and positive ion produc-
tion cross sections from which electron capture cross sections for protons in 
water vapour were extracted. More recently, Lindsay et al.23 reported mea-
surements of absolute differential cross sections for charge transfer scatter-
ing of 0.5-, 1.5-, and 5-keV protons by H2O at laboratory scattering angles 
between 0.01° and 2.60°. In their recent letter, Gobet et al.16 have also 
reported total and partial electron-capture cross sections for 20–150 keV 
protons in water vapour. Finally, high-energy protons (15–3500 keV) have 
been also recently investigated by Luna et al.24 who studied the water 
molecule dissociation by proton and hydrogen impact. Concerning helium 
ions, only few measurements have been reported. Thus, Rudd and co-
workers12 reported absolute total cross sections for 5–450 keV He+ ions 
and for 5–150 keV/u α-particles whereas the low-energy regime was 
only very recently investigated. Let us cite for example the study given by 
Abu-Haija et al.25 where total cross sections for 0.1–1 keV He2+ ions on 
triatomic molecules like H2O were reported, that of Greenwood et al.26 
where single and double capture processes were studied in the energy range 
0.05–5 keV/u and finally that of Seredyuk et al.27 where experimental 
one-electron capture cross sections have been carried out in the range 
0.025–12 keV/u. Heavy ions have been up to now only rarely studied. We 
can nevertheless mention the very recent study of Mawhorter et al.28 who 
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reported absolute single, double, and triple charge exchange cross sections 
for highly charged ions among which Cq+ ions (q = 5,6) colliding with 
molecular species like CO, CO2, and H2O. However, this study remains 
limited to low impact energies (7.0 qkeV), its aim being the interpretation 
of the x-ray emissions from comets as they interact with the solar wind. 
Similarly, Bodewits and Hoekstra29 have reported absolute total cross sec-
tions for 0.1–7.5 keV/u collisions of O6+ ions on H2O molecules.

2.2 Theoretical background
2.2.1  Semi-empirical approaches for describing the ionization process
On the theoretical side, we essentially find semi-empirical models which 
are limited, for the major part, to the calculation of singly differential and 
total ionization cross sections. Among them we can first cite the Rudd’s 
model—initially developed for protons—which offers a parameterization of 
secondary electron spectra after ion impact. This model may be used over 
the entire range of primary and secondary energies and is in the form of an 
analytic equation with parameters determined from experimental data. It 
is based on a simple version of the binary-encounter approximation (BEA) 
equation modified to yield the correct high-energy asymptotic dependence 
on energy in agreement with the Bethe equation prediction. It has been 
further modified by the use of the promotion model at low energies.20 In 
brief, the approximation made consists in treating the collision—between 
a projectile and a single target electron—as a classical one. The nucleus and 
the remaining target electrons play no rôle except that of providing a bind-
ing energy for the ejected electron, the energy transfer E and the kinetic 
energy Ee being related by E = Ee + I, where I denotes the binding energy 
of the ionized subshell of the target. The justification for using a classical 
model lies in the fact that doubly differential cross sections for Coulomb 
scattering between two particles are the same when calculated using either 
classical physics or quantum mechanics. Thus, the singly differential cross 
sections are simply expressed as (in atomic units)

where I refers to the binding energy (expressed in atomic units) whereas R 
denotes the Rydberg energy.

The reduced quantities w and ṽ are given by

(1)
dσRudd

dEe

=

S/I

2R

F1 + F2w

(1 + w)3
[1 + exp(α(w − wc)ṽ)]

,

(2)w = Ee/I , ṽ =

√

Ei/I ,
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where Ei denotes the incident projectile energy and with

N being the number of electrons of the ionized molecular subshell whereas 
F1, F2, and α are seen as adjustable fitting parameters. Thus, we have

and

The different needed parameters are reported hereafter (see Table 10.1).
Total ionization cross sections were then simply deduced by numerical 

integration of Eq. (1) over the kinetic energy transfers Ee, the latter ranging 
from a minimum value equal to 0 to a maximum value (Ee)max defined 
as (Ee)max =

4m0MP

(MP+m0)2
Ei

∼
=

4m0

MP
Ei where m0 and MP refer to the electron 

and projectile mass, respectively. Relatively good agreements were then 
observed for singly differential cross sections, in particular for ion energies 
lower than 300 keV/u whereas large discrepancies were recently reported 
by Uehara and Nikjoo30 for greater energies (up to about 30% at 2 MeV), 
what led the authors to propose a polynomial fit of existing experimental 
measurements for expressing the total ionization cross sections in their 
numerical track-structure code—called LEAHIST—recently developed for 
modelling the transport of α-particles in water.

The second semi-empirical and well-documented model—called 
HKS model developed by Hansen, Kocbach, and Stolterfoht31—consists 
in describing the ionization process in the impact parameter 1st Born 
approximation. In this approach, the initial and the final electron states are 
described by means of a hydrogenic function and a plane wave, respectively, 
i.e., without taking into account the electron momentum in its bound state. 
However, due to singularities observed when the ejected electron energy 

(3)wc = 4ṽ
2
− 2ṽ − 1/8I , S = πN/I 2

,

(4)F1(ṽ) = L1 + H1,

{

L1 = C1ṽ
D1/

[

1 + E1ṽ
(D1+4)

]

H1 = A1 ln(1 + ṽ
2)/(ṽ2

+ B1/ṽ
2)

(5)F2(ṽ) = L2H2/(L2 + H2),

{

L2 = C2ṽ
D2

H2 = A2/ṽ
2
+ B2/ṽ

4
.

Table 10.1 List of the semi-empirical parameters used in the Rudd’s model for fitting 
the singly differential cross sections of proton-induced ionization of isolated water 
molecules

A1 B1 C1 D1 E1 A2 B2 C2 D2 α

0.97 82.0 0.40 -0.30 0.38 1.04 17.3 0.76 0.04 0.64
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tends to zero, further empirical fittings were employed—simultaneously to 
other semi-empirical terms32, 33—to finally provide the well-known HKS 
model, which can be consequently regarded as an impact parameter-plane 
wave Born approximation (IP-PWBA).

In this approach, the authors have described the electron emission by 
heavy ions of charge Zion in terms of impact parameter dependent prob-
abilities P(b,θe,Ee) where b refers to the impact parameter whereas θe and 
Ee denote the ejection angle and the kinetic energy transfer, respectively. 
The DDCS (per target electron) were then obtained by means of analytical 
integrations of the corresponding probabilities over the impact parameter, 
yielding a simple expression recently reported in Ref. 33 as

where the function in the square brackets describes the binary-encounter 
maximum that resembles a Lorentzian whose width is governed by

where α =

√

2I  corresponds to the mean initial momentum parameter,  
I being the binding energy of the corresponding ionized molecular subshell.

In Eqs.(6) and (7), vi denotes the projectile velocity while ̂Km =
Km

αc
 

represents the normalized minimum momentum transfer with 
Km = (α2

+ k2

e
)/2vi.

Similarly, the authors defined the quantities kt (with ˆkt = kt/αc) and 
kc as small modifications of the momentum of the outgoing electron ke, 
respectively given by

Let us note that the original equations proposed by Hansen and 
Kocbach31 imply kc = ke due to the fact that in the peaking approximation 
one neglects the mean momentum of the bound electrons in compari-
son to that of the outgoing electron. However, as clearly emphasized by 
Stolterfoht et al.32 this approximation produces a singularity in the low-
electron energy regime, which can be simply removed by adjusting the 
value of kc to fit the model results to those of the Born approximation.  

(6)d
2σHKS

d�edEe

=

(

Zion

vi

)2
32

3παk3
c

[

α2

c

α2
c

+ (̂Km −
ˆkt cos θe)2

]3

,

(7)αc = α

(

1. 0 + 0. 7
v

2

i

v
2

i
+ k2

e

)

,

(8)kt =

√

k2
e
+ 0. 2α2

√

vi/α , kc =

√

k2
e
+ 2α2/ ln(2v

2

i
/α2).
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To do that, numerous expressions have been proposed like that reported in  
Eq. (8). We can also mention that reported in Ref. 32, namely,

In the same state of mind, Bernal and Liendo34 have recently slightly 
modified the original version of the HKS model, essentially to avoid the 
“non-physical” descending jump appearing for each electron binding 
energy in the SDCS due, in major part, to the use of the arctangent term 
(see Eq. (11)). To do that, the authors proposed a modified expression for 

the DDCS, denoted in the following 
[

d
2
σHKS

d�edEe

]

B−L

 and expressed as

However, as underlined by Uehara and Nikjoo30 and more recently by 
Bernal and Liendo,34 the DDCS also obtained give only a limited agree-
ment with the experimental data, especially in the backward and forward 
angle regions what could be relied to the use, in this model, of hydro-
genic wave functions instead of realistic bound electron wave functions to 
describe the target electron initial state.

Furthermore, the semi-empirical SDCS provided by the different exist-
ing HKS approaches, namely, the original version dσHKS

dEe

 and the recently 
modified version 

[

dσHKS

dEe
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where the factor N corresponds to the number of target electrons per 
molecular subshell.

Finally, note that for both the original HKS model and its more recent 
version, the total ionization cross sections are—like for the Rudd’s model—
numerically obtained by integration of Eq. (11) or Eq. (12), respectively.

2.2.2   Semi-empirical approaches for describing the charge  
transfer process

When the energy of the charged particles becomes sufficiently low 
(Ei ≤ 100 keV/u), the ionization probability diminishes rapidly, and the cap-
ture process becomes the predominant energy-loss pathway. However, only 
rare experimental measurements have been up to now reported for vapour 
water. To overcome this lack, many semi-empirical simulations have been 
proposed for modelling the electron capture process.

The first one refers to the approach proposed by Rudd et al.12 which 
consists in expressing the charge transfer cross section σ as σ = σ+ − σ− 
by means of adjustable parameters for fitting the measured cross sections 
of positive (ion) and negative (electron) charge production (σ+ and σ−, 
respectively). Thus, Rudd et al propose to write the (ionization + capture) 
cross section σ+ and the pure ionization cross section σ− as

where the low- and high-energy components σlow and σhigh (expressed in 
atomic units) were fitted as

where ki refers to the incident momentum. The used parameters are 
reported below (see Table 10.2).

The resulting cross sections agree well with the experimental data for 
proton energies of 1-100 keV but nevertheless exhibit large discrepancies 

(13)σ
±

=

1

1

(σlow)
±

+
1

σhigh

,

(14)
(σlow)

−
= 4πCk2D

i
,

(σlow)
+

= 4π [Ck2D
i

+ F],

σhigh = 4π [A ln(1 + k2

i
) + B]/k2

i
,

Table 10.2 List of the semi-empirical parameters used in the Rudd’s model for fitting 
the experimental cross sections of positive and negative charge production in proton 
on water molecule collisions

A B C D F

2.98 4.42 1.48 0.75 4.80
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with the experimental measurements of Toburen et al.35 for energies above 
100 keV. Moreover, they tend to a constant value for energies below 1 keV 
what is in complete contradiction with most of the existing experimental 
values which increase with decreasing proton energies.

The second model was more recently suggested by Dingfelder et al.36 
who expressed the charge transfer cross sections by analytical formula 
(straight lines for low and high proton energies on a doubly logarithmic 
scale, both connected by a power law) where the parameters were chosen 
by considering the experimental data of Lindsay et al.23 and of Dagnac 
et al.37 for low and medium energies, and those of Toburen et al.35 for 
higher energies. In detail, the charge transfer cross section is expressed by 

where X = log(τ ) (with τ in eV) and

where Θ(x) represents the Heaviside step function. The parameters a0, b0, 
a1, and b1 determine the low-energy straight line and the high-energy one, 
respectively, whereas c0 and d0 refer to the power law in between, connected 
to the low-energy straight line at x0. The connection point x1 to the high-
energy line and the parameter b1 are calculated as

by using the first derivative. The used parameters are reported below (see 
Table 10.3).

Finally, let us mention a third model based on the analytical functions 
developed by Green and co-workers38 and fitted to the experimental data 
of Toburen et al.35 and Dagnac et al.37 The obtained formula is nowadays 

(15)σ = 10
Y (X)

(16)
Y (X) =[a0X + b0 − c0(X − x0)

d0�(X − x0)]�(x1 − X)

+ (a1X + b1)�(X − x1),

(17)

{

x1 =

(

a0−a1

c0d0

)1/(d0−1)

+ x0

b1 = (a0 − a1)x1 + b0 − c0(x1 − x0)
d0

Table 10.3 List of the semi-empirical parameters used in the Dingfelder’s model for  
fitting the total charge transfer cross sections for protons in water

a0 b0 c0 d0 a1 b1 x0 x1

-0.180 -18.22 0.215 3.550 -3.600 -1.997 3.450 5.251
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commonly used in many track structure codes and is presented as follows 
(with Ei in keV)

where α, λ, J, Ω, Λ et C are different fitting parameters (see Table 10.4), 
I being the ionization threshold (in keV) of the impacted target and 
σ0 = 10−16 cm2.

For heavier charged particles like He+ ions, the electron capture cross 
sections were also fitted to experimental data, namely, those of Rudd et al. 12  
for impact energies between 1 and 100 keV/u and those of Sataka et al.40 
for impact energies between 75 keV/u and 500 keV/u. For He2+ ions, 
Rudd et al.12 have proposed—in the energy range 5 to 150 keV/u—least-
squares fitted total cross sections whereas for energies below 5 keV/u and 
above 150 keV/u, these functions were extrapolated assuming a smooth 
transition at the boundaries.30

Finally, let us note that in this last model the total cross sections for 
water target were simply obtained by means of the additivity rule from the 
relationship σH2O = σH2

 + 0. 5σO2
 , what remains still today one of the most 

common approach for describing the ionizing processes (capture as well as 
ionization) in complex target molecules like water. However, this technique 
completely conceals the molecular structure of the target whose influence 
may become primordial especially at the multi differential scale as it will 
be discussed hereafter.

3. MOLECULAR DESCRIPTION OF THE WATER TARGET

Describing the molecular ionization by a quantum-mechanical 
approach remains a difficult task essentially due to the multi-centred nature 
of the target. To overcome this difficulty, many attempts were made in par-
ticular by representing the molecular cross sections as a weighted sum of 

(18)σ = σ0

(Zα)�(Ei − I )λ

J (�+λ)
+ E

(�+λ)
i

+ (Zα)�Eλ
i
(Ei/C)�

,

Table 10.4 List of the fitting parameters used in the semi-empirical expression of 
total electron capture cross sections for protons in water39

λ J (keV) α (keV) Ω Λ C (keV)

H2 2.0 1.215 4084.0 0.271 4.80 75.8
O2 2.0 0.057 1038.0 0.258 3.50 125.0
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the cross sections of the different components of the molecule, namely, the 
well-known Bragg’s additivity rule whose applications to vapour water ion-
ization were first proposed by Olivera et al.41 for proton beams. A second 
technique, called complete neglect of differential overlap (CNDO) consists 
in writing the molecular orbitals in terms of atomic orbitals of the atomic 
constituents, namely, the orbitals H1s, O1s, O2s, and O2p (see Ref. 42). Note 
that this description was also used in the binary-encounter-dipole model 
developed by Kim and Rudd43 for providing singly and total ionization 
cross sections for a large set of molecules impacted by electrons. However, 
in both these models the calculated doubly differential cross sections exhibit 
some discrepancies with the experimental data at small angle regions. The 
authors linked these discrepancies to the fact that the electronic popula-
tions were not correctly reproduced in these two descriptions, especially for 
the calculations within the Bragg’s rule framework. Finally, a third method 
consists in describing the populations of the target by means of molecular 
orbitals constructed from a linear combination of atomic orbitals in a self-
consistent field approximation (MO-LCAO-SCF). In the past, Champion 
and co-workers have successfully applied this description for treating the 
ionization of simple molecules like CH4, NH3, and H2O by electrons44 
as well as by light-ion impact, namely, H+, He2+, and C6+ ions.8, 9, 22 In 
these works, the authors have used the simple molecular description pro-
vided by Moccia who reported one-centre ground state wave functions for 
molecules of the type HXn (see Ref. 45). The molecular orbitals were then 
expressed in terms of Slater-like functions all centred at a common origin 
coinciding, in this case, with the X nucleus. In fact, for these molecules, the 
electronic density is mainly governed by the central atom. Thus, provid-
ing suitable analytical wave functions is quite similar to the atomic case, in 
which the basis set consists of functions all referred to a common origin 
centred at the one nucleus.

Finally, note that the problem of evaluation of the above-cited multi-
centre integrals depends on the type of basis functions used. Indeed, 
whereas it appears that there are no convenient and practical ways to evalu-
ate such integrals for more than two non-aligned centres when Slater-type 
functions are used, it is worth noting that the use of Gaussian functions for 
the radial part decreases the difficulties even if it is clear that the Gaussian 
basis set needs probably 40% more such functions to achieve comparable 
results. Under these conditions, the ten bound electrons of the water 
molecule are distributed among five one centre molecular wave functions 
corresponding to the five molecular orbitals denoted 1b1, 3a1, 1b2, 2a1, 
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and 1a1, respectively, and whose respective ionization potentials (or bind-
ing energies)—denoted Ij in the following (with j varying from 1 to 5,  
respectively)—are equal to 0.4954 a.u., 0.5561 a.u., 0.6814 a.u., 1.3261 a.u., 
and 20.5249 a.u. (see Ref. 44 for more details). Let us note that these 
molecular wave functions refer to the calculated equilibrium configura-
tions, i.e., to the geometrical configurations which, among many others 
considered, give the minimum of the total energy, and agree with the 
experimental data in terms of HOH angle, bound O–H length, 1st ioniza-
tion potential IP, and electric dipole moment μ (see Ref. 45).

4. BORN APPROXIMATIONS

In the framework of quantum mechanics, the treatment of atomic 
(or molecular) ionization by charged particles may be divided into different 
classes according to the intensity of the interaction between the target elec-
tron and the incoming and outgoing charged particle. Thus, Rudd et al.46  
distinguished in their review three categories, namely, (i) a first one in 
which the electron-target is a strong interaction whereas the electron-
projectile is weak, (ii) a second one which treats the electron-target inter-
action as strong whereas the electron-projectile interaction is strong with 
the incoming particle and weak with the outgoing one, and finally (iii) a 
third class where the electron-target and the electron-projectile are both 
strong interactions.

In this scheme, it clearly appears the necessity to treat the ionization 
process by means of different approaches according to the investigated 
kinematical conditions. Among them, we distinguish the perturbative 
approaches—called Born approximations—from the continuum distorted 
wave methods whose main characteristic is that all two-particle Coulomb 
interactions are explicitly contained in the initial and final state wave 
functions. This last approach has been successfully employed for treating 
ionization as well as charge transfer in many atomic and molecular target 
systems including water and will be the subject of the next chapter of the 
present review.

In the perturbative regime, which corresponds to the major part of the 
cases investigated in the field of hadron therapy, the interaction between 
the electron and the projectile is ignored in the formation of the electron 
wave function and, as a result, appears only in the transition matrix ele-
ment. Furthermore, it is assumed that the projectile may be expressed as a 
plane wave: this well-known approximation is referred as the plane wave 
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Born approximation and is commonly denoted PWBA. As reported by 
Rudd et al.,46 this approximation will certainly be invalid if the projectile 
is deflected through a large angle (>1°) and is therefore usually called the 
standard straight-line trajectory semi-classical approximation. The distinc-
tion between the different calculations of this type then lies in the treat-
ment of the ejected electron. Thus, we speak of typical PW when the latter 
is described by a plane wave whereas the distorted wave (DW) refers to a 
description of the ejected electron by means of a wave function calculated 
as the eigenfunction of the potential used for representing the residual tar-
get ion (see in the following). Therefore, when letter B is appended to PW 
and DW, the resulting acronyms PWB and DWB will refer to the plane 
wave Born and the distorted wave Born approximation, respectively. Finally, 
if a pure Coulomb potential is preferred to a numerical potential obtained 
from Hartree–Fock wave functions for the target in question, we speak of 
the Coulomb Born wave function denoted by CW. In the present work, 
where we are interested in the impact of bare ions, we consider initial wave 
functions that include separately the long range Coulomb interactions of 
the projectile with the electron to be ionized and of the projectile with the 
rest of the target. Thus these wave functions verify correct boundary condi-
tions only in the initial channel, that’s why we will use for them the acronym 
CB1 to distinguish with the case of B1, where asymptotic conditions are 
not satisfied. Thus, throughout we will talk about CB1-PWB, CB1-CWB, 
and CB1-DWB models. To avoid confusion with the existing literature on 
ion-atom collisions,47 we re-emphasize that the term CB1, presently used 
in the hybrid models such as CB1-PWB, CB1-CWB, and CB1-DWB, 
will refer to the correct boundary condition satisfied only in the entrance 
channel. However, when the letters CB1 are employed, as a stand-alone 
acronym, they would refer to the first Born approximation with the cor-
rect boundary conditions fulfilled in both the initial and final states. We will 
then observe in the sequel that the differences between the CB1-CWB and 
the CB1-DWB models are more pronounced for DDCS than for SDCS 
and more particularly at large ejected angles where the CB1-DWB results 
generally underestimate the predictions given by the CB1-CWB model. 
Moreover, note that the CB1-DWB-type calculations can be performed 
by using different distortion potentials for the final states. In the following, 
we will essentially speak about the numerical potential issued from the 
above-cited wave functions taken from Moccia45 but the procedure here 
followed could be easily generalized to any potential. In brief, the final 
state of the active electron—described by means of wave function distorted 
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by the initial-state ion—is simply deduced from the initial self-consistent 
field one-centre-expanded molecular wave functions taken from Moccia 45  
by removing the active electron orbital without any modification of the 
remaining orbitals: this is the well-known frozen-core approximation. A 
spherically averaged local radial potential is then deduced from the charge 
distribution of the target ion represented by the remaining orbitals. The 
final state distorted wave for the ionized electron is then numerically calcu-
lated as an eigenfunction of this radial potential and expressed as distorted 
waves, not necessarily orthogonal to the initial bound state wave functions. 
Note that an orthogonalization procedure could be nevertheless used by 
using, for example, the Schmidt-type procedure.

Finally, it is important to note that the three 1st Born approximations 
type here reported, namely, the CB1-PWB, the CB1-CWB, and the CB1-
DWB, remain valid as far as the projectile velocity is fast in comparison to 
the orbital velocity of the active electron. In these conditions, plane waves 
are appropriate for describing the projectile whereas their use is no more 
valid in large angle scattering conditions. In addition, the present choice for 
the final state wave function of the active ejected electron should be satis-
factory as long as the interaction between the scattered projectile and the 
ejected electron is weak and the ionization takes place fast enough so that 
the inactive electron orbitals do not relax before the active electron leaves the 
target, what corresponds to the major part of the cases encountered in the 
radiotherapy field. On the contrary, when the ejected electron is leaving 
the target in the forward direction with a speed comparable to that of the 
projectile, the interaction between the ejected electron and the projectile 
can be not necessarily weak. Thus, the ejected electron angular distributions 
(DDCS) exhibit a big rise at low ejected angles i.e., in the forward direc-
tion. This process is called continuum electron capture to the continuum 
(ECC) or charge transfer to the continuum. Using theoretical models that 
do not include this effect becomes then inappropriate and results in a 
substantial underestimation of the doubly differential ionization cross sec-
tions (see in the following). Indeed, describing this effect requires taking 
into account of second order terms of perturbative theory, what is beyond 
the scope of the present chapter. However, Salin has proposed in Ref. 48 
a multiplicative correction factor—called Salin factor in the following—to 
account for the electron capture to the continuum. Under these conditions, 
the DDCS clearly present the ECC peak and improves the agreement with 
the experimental observations at small ejected angles: see for example the 
1st Born calculations provided by Madison49 for He targets impacted by 
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100 keV and 200 keV protons. Let us note nevertheless that the agreement 
becomes less satisfactory at large angles as reported in Ref. 49 and shown 
below for water target.

Furthermore, in view of the centre picture concept introduced by 
Stolterfoht et al.50—which consists in describing the electron production 
mechanism in terms of Coulomb centres associated to the different nuclei 
partners involved in the final state of the collision—we distinguish the free-
electron Born approximation (or fully plane-wave Born approximation, 
PWBA) in which a plane wave is used for describing the outgoing electron 
whose interaction with the nuclei is completely neglected from the 1st 
Born approximation (B1-CW) which includes the full target interaction in 
the final state. Then, the free-electron Born approximation which contains 
neither a projectile nor a target centre is usually referred to a zero-centre 
case whereas the B1-CW is associated with the target-centre case. Finally, 
note that if the interaction of the outgoing electron with the target nucleus 
is neglected (as in the PWBA framework), the ionization process is referred 
to as a binary-encounter electron emission, which may be described by a 
classical theory. In this approach, the target electron is assumed to be free 
and then interacts with the incident projectile independent of the target. 
Theoretical DDCS were then successfully compared to experimental data 
for 100 keV and 300 keV protons on He especially in the region of the 
binary-encounter peak as ke increases whereas large discrepancies were 
reported at small ke for small and large electron scattering angles (see Rudd 
et al.51).

Considering now the charge transfer process, let us first mention that 
most of the existing theories in fast ion-atom collisions fall naturally in one 
of the two following categories: (i) plane wave theories where the exact 
initial and the final states are described by means of products of bound states 
and plane waves describing the relative motion of the colliding partners and 
(ii) distorted wave theories, which represent the exact initial and final states 
by products of bound states, plane waves, and distortion factors.52

In this context, Oppenheimer and then Brinkman and Kramers53 were 
the first authors to propose a theoretical model for calculating the total 
cross section in the 1st Born approximation framework via the well-known 
OBK model. In this later, such as in many other theories, the calculations 
are simplified by approximating the many-electron collisional system by a 
one-active electron system. Thus, the remaining electrons screen the tar-
get nuclear charge seen by the projectile and the active electron and then 
provide an effective potential where the active electron evolves, while the 
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“non-captured” electrons are considered as being passive: this is the frozen 
core approximation previously reported for describing the ionization process. 
A few years later that the OBK model was proposed, Jackson and Schiff 54  
pointed out a strong disagreement between the experimental observations 
for protons in hydrogen gas and the theoretical OBK predictions, these 
latter being approximately four times greater than the experimental results 
at 100 keV and even higher at lower energies. The authors attributed this 
failure to the description of the perturbation Hamiltonian. Indeed, this 
latter consists in two terms, namely, the Coulomb interaction between the 
target active electron and the incident particle and the Coulomb interac-
tion between the target nucleus and the incident projectile. However, as 
underlined by Jackson and Schiff, the OBK approach only considers the 
first component of the Hamiltonian neglecting the second one, whose 
contribution was assumed to be of the order of m0/MP (i.e., negligible) 
by G. C. Wick (see added note in proof in Ref. 54). Thus, the agreement 
between theory and experiment for protons in hydrogen became better for 
all energies above 25 keV, even though the Born approximation was still 
used. Similarly, Omidvar et al.55 investigated the rôle played by the inter-
nuclear interaction in the behaviour of the cross sections in the 1st Born 
approximation for protons on helium and argon. Comparisons were then 
reported between different options of calculation, namely, by using different 
perturbative potentials, including: (i) only the projectile-electron interac-
tion, (ii) the projectile-electron and internuclear interactions, and (iii) the 
projectile-electron interaction added to an effective internuclear potential 
where the target nuclear charge was chosen equal to one. Strong discrepan-
cies were then observed exhibiting in particular that the inclusion of the 
perturbative potential (iii) gave the best fit of the experimental observations 
for helium and argon targets.

Later on, many authors among which Dollard,56 Mapleton,57 Carpenter 
and Tuan58 have pointed out divergences in the Born series. More recently 
Dewangan and Eichler59 showed that singularities appear in the transi-
tion matrix calculated within the Born series. These divergences come 
from the contribution of the intermediate elastic channel. Higher-order 
theories, like the impulse approximation (IA)60 and the strong potential 
Born approximation (SPB)61 were also developed providing an improve-
ment of the agreement with experiments, essentially due to the non 
negligible contribution of the high-order terms to the forward scattering. 
However, divergences from elastic contributions were shown to appear in 
the SPB model.59, 62 To correct the above reported divergences a proper 
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treatment of the Coulomb boundary conditions was proposed. Moreover, 
it was shown that the IA violates correct asymptotic conditions. A detailed 
description of the adequate treatment of boundary conditions was given 
by Belkić and co-workers63 who have shown that the effective internuclear 
additional term in the perturbative potential corresponds in fact to the 
correction of the coulombic tail of the projectile-electron interaction. The 
long-range Coulomb potentials are, in general, present even when the scat-
tering particles are at infinite separation from each other, what causes dis-
tortion of unperturbated channel states which, in turn, yields modifications 
of the perturbation potentials. Numerous investigations were proposed to 
include into both the initial- and the final-state wave functions the cor-
rect asymptotic behaviour at infinite internuclear separation, confirming 
that a first Born approximation satisfying Coulomb boundary conditions 
(referred in the literature as the CB1 model) was quite accurate in repro-
ducing the experimental data at no so high energies, where two-step colli-
sions (Thomas mechanism64) give an important contribution to differential 
cross sections. In the last case a second order of the Born series with correct 
boundary conditions is necessary. In particular, Belkić reported in Ref. 65  
that the sole introduction of the Coulomb phase into the exit channel 
within the Jackson–Schiff matrix element for H+-Ar charge exchange 
reduced the calculated total cross sections by about 200 times, leading to 
a better agreement with the experiment. In brief, these corrections refer 
to: (i) the Coulomb distortion of the unperturbated channel states and  
(ii) the perturbating potentials. Furthermore, it is worth noting that the 
CB1 transition amplitude coincides fortuitously with the Jackson–Schiff 
one for proton–hydrogen collisions, i.e., when the projectile charge equals 
the target charge.

Finally, let us note that such considerations support the development 
of first order continuum distorted wave (CDW) and continuum distorted 
wave-eikonal initial state (CDW-EIS) approximations, the last one being 
extensively detailed in chapter 9 of the present book.

4.1  Theoretical description of the ionization process  
within the 1st Born approximation

4.1.1 Basic formalisms
Let us here consider the direct ionization process schematized by

(19)X + H2O → X + H2O
+

+ e−,
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where the initial state of the system is characterized by an incident projec-
tile X (of charge ZP and of mass μ) with an initial momentum �ki , which 
ionizes a stationary water molecule whereas the final state of the system 
is characterized by a scattered projectile of momentum �ks and an ejected 
electron of momentum �ke.

In these conditions, the four-fold differential cross sections correspond-
ing to this process, namely, differential in the energy of the ejected electron 
k2

e
/2, differential in the direction of the ejected electron dΩe, differential in 

the energy of the scattered electron k2

s
/2µ, and differential in the direction 

of the scattered particle dΩs are simply given by

where I denotes the ionization energy i.e., the binding energy of the 
molecular subshell ionized. The transferred momentum—from the incident 
projectile to the water target—is here denoted �K =

�ki −
�ks, whereas Mion 

refers to the mass of the residual water ion.
Furthermore, the energy and the solid angle of the scattered projectile 

being not measured in the common experiments, we usually define the 
doubly differential cross sections (DDCS) as

Moreover, let us note also that since the amplitude Tfi decreases fast 
when the momentum transfer K increases only small values of K will con-
tribute to the integration over dΩs in Eq.(21). Thus, we can neglect the 
term ( �K−

�ke)
2

2Mion

 in the delta function of Eq. (21) and then recast the DDCS as

In this expression, the scattering matrix Tfi ≡ Tfi( �K ) is given by

(20)

d
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(23)Tfi( �K ) =
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∣ Vi |ψi� ,
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where �−

f
 and ψi are the exact final scattering wave function with correct 

incoming boundary conditions and the initial wave function, respectively, 
which both contain the information on the dynamics of all the particles 
involved in the total collisional system.

In Eq. (23), the perturbative potential Vi depends on the choice of ψi. 
Thus, extending the formulation given by Corchs et al.66 for single elec-
tron capture from molecules to the single ionization one (where all inter-
actions between the projectile and the target nuclei are treated into the 
eikonal approximation, the target nuclei being supposed to remain in their 
initial positions during the collision) and after a tedious algebra, the transi-
tion amplitude as a function of the impact parameter �b may be written as

where the straight line version of the impact parameter approximation 
�b = �r0 + �vit has been used with vi for the incident projectile velocity and 
where �r0 indicates the projectile position (see Figure 10.1).

In Eq. (24), bc defines the impact parameter with respect to the nucleus 
c of the target (composed in total by n nuclei) whereas Zc designates the 
corresponding nuclear charge. The transition amplitude afi (�b) is a purely 
electronic one which accounts the interaction of all target electrons with 
the projectile.

Moreover, considering that all passive electrons, namely, the target 
electrons which are not ionized, all remain as frozen during the collision, 
Fainstein et al. demonstrated in Ref. 67 that the transition amplitude Afi (�b) 
reported in Eq. (24) could be recast as

(24)Afi(�b) =

n
∏

c=1

b2iZPZc/vi

c afi(�b),

(25)Afi(�b) = exp

[

−

i

vi

∫

∞

−∞

dtVs(�r0)

] n
∏

c=1

b2iZPZc/vi

c ãfi(�b).

H2O target

e-

ki

r1
r0

b

Figure 10.1 Schematic representation of the water ionization process.
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In this expression, the static potential Vs(�r0) contains the information 
on the interaction between the projectile and the passive electrons and is 
given by

where ζi({�rk}) refers to the wave function describing the (N-1) passive elec-
trons whose positions are represented by the vectors �rk , the ejected (active) 
electron position being denoted �r1.

In these conditions, ãfi(�b) appears as a one-active electron transition ampli-
tude, where all the interactions between the considered (active) electron 
and the passive ones are accounted. Furthermore, it is important to note 
that the interactions of the projectile with the passive electrons and with 
the target nuclei are here (i.e., in Eq. (25)) considered at all orders and not 
only at the first one, what is valid for any model used to describe the stud-
ied reaction. Note that it remains valid for any electronic transition such as 
ionization, electron capture, or excitation.

Finally, the scattering matrix element is obtained using the well-known 
Fourier transform

It is evident from Eq. (25) that the electronic transition is provoked by the 
interaction of the projectile with the active electron while the interactions 
of the projectile with the target nuclei and with the passive electrons will 
only affect the projectile trajectory. Thus, in the case where integration 
over all projectile scattering angles is considered in order to calculate the 
corresponding DDCS, only the interaction of the projectile with the active 
electron must be taken into account. In the following we will focus the 
study on this case.

The electronic capture process being investigated in the next session 
let us first consider the single ionization reaction. The asymptotic behavior 
of the Coulomb projectile-active electron interaction must be included 
into the initial and final wave functions in order to avoid the presence of 
disconnected diagrams provoking divergences in the transition amplitudes 
(and then in the scattering matrix elements) coming from the contribu-
tion of intermediate elastic channels.59, 62 Thus, if multiplicative asymptotic 
eikonal phases depending on �r0 are included into the initial asymptotic and 

(26)Vs(�r0) = �ζi({�rk})| −

N
∑

k=2

ZP

|�rk − �r0|
|ζi({�rk})� ,

(27)Tfi( �K ) = ivi

∫

d�b exp(i �K . �b)Afi(�b).
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final exact wave functions, the one active-electron transition amplitude 
ãfi(�b) can be written under the form

The corresponding projectile-active electron perturbative potential  appearing 
in âfi(�b) will be reduced to its short range part. The long range part can be 
thus also neglected from the calculations if the cross sections of interest do not 
depend on the projectile scattering angle. Accordingly with this, we can calcu-
late the corresponding scattering matrix element using Eq. (27).

In a first-order approximation, we can consider in Eq. (23) �−

f
∼
= ψf  

where ψf  is a specific asymptotic final wave function, so that

Thus, following our analysis given above, this first-order matrix element 
can be reduced to the one-active electron expression

where u(�r1) describes the one-active electron orbital wave function of the 
molecular target and φ(�kd ,�r0) (with d = i,s) a projectile plane wave (for 
the incident and the scattered projectile, respectively) whereas ζf (�r1) refers 
to the ejected electron wave function. The perturbative potential ˜Vi here 
reported corresponds to the above-mentioned short range part of the 
projectile-active electron interaction and is given by

with �r01 = �r0 − �r1.

4.1.2  Final state description
In the context of water ionization, several models have been recently 
tested by Champion and co-workers8, 9 for describing the final state of 
the collision in order to go beyond the pure simple CB1-CWB approxi-
mation: a first one—referred as CB1-DWB in the following—where the 
ejected electron is described via a distorted wave function instead of a pure 
Coulomb wave function whereas the scattered projectile remains described 
by means of a plane wave, and a second model where the scattered projec-
tile as well as the ejected electron are both described by Coulomb waves 
(CB1-2CW). Let us add that in these two models, the effective charges seen 

(28)ãfi(�b) = b−2iZP/vi âfi(�b).

(29)Tfi( �K ) ∼
= T

(1)
fi ( �K ) = �ψf| Vi |ψi� .

(30)̂T
(1)
fi ( �K ) ∼

=

〈

φ(�ks,�r0)ζf (�r1)

∣

∣

∣

˜Vi

∣

∣

∣φ(�ki,�r0)u(�r1)
〉

,

(31)˜Vi =

ZP

r01

−

ZP

r0
,
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by the escaping electron and ion—defined as the effective ionic charges—
were chosen equal to 1 by Boudrioua et al.8 whereas some authors defined 
them as ZT =

√

−2n2εi (with εi = −Ii) where n denotes the princi-
pal quantum number of each atomic subshell that constitutes the initial 
bound state of the active electron in the molecule. However, it has been 
demonstrated that this discrepancy essentially affects the inner subshells of 
the target for which the cross sections have minor contribution into the 
ionization process. Finally, Champion and co-workers have tested a third 
approach which consists in exhibiting a correct asymptotical Coulomb 
three-body wave function by describing the final state by the product of 
three Coulomb waves taking into account the interaction between the 
scattered ion and the nucleus, the interaction between the ejected electron 
and the nucleus, and the scattered ion-ejected electron interaction. Note 
that for this model (hereafter denoted CB1–3CW for three-body first Born 
with correct boundary conditions) we have the well-known asymptotically 
correct Coulomb three-body wave function for the ejected electron and 
the scattered proton in the field of the residual ion.

Furthermore, it is important to note that the bound wave functions 
used in the present water molecular description correspond to a given 
orientation of the target molecule, commonly expressed via the Euler 
angles (α, β, γ). Thus, the above-cited multi-differential cross sections 
refer to the ionization of a single oriented water molecule and need then 
to be averaged over the Euler solid angle d�Euler = sin β dα dβ dγ to 
be comparable to those experimentally measured, what may be analyti-
cally easily carried out thanks to the property of the rotation matrix.44 
Note that this procedure is obviously performed for each of the N = 5 
orbitals of the water molecule and the multiple differential cross sections 
presented in the sequel correspond to “global” differential cross sections 
i.e., obtained by summing up all the sub-shell contributions labelled j and 
then weighted by the number Nelec of electrons per orbital, i.e., Nelec = 2. 
Thus, we write

In further steps, singly-differential and total cross sections (SDCS 
and TCS, respectively) are obtained by numerical integrations of the 
DDCS over the ejected direction d�e and the kinetic energy transfer Ee, 
respectively.

(32)
d

2σ

d�edEe

=

N=5
∑

j=1

Nelec

[

d
2σ

d�edEe

]

j

.
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4.1.3  Angular distributions of the secondary ejected electrons
Figure 10.2 shows a comparison between the experimental DDCS taken 
from Toburen and Wilson10 and the results provided by Boudrioua et al.8 
within the two above-cited 1st Born models, namely, the CB1-CWB and 
the CB1-DWB approaches for a proton incident energy of 0.5 MeV and for 
ejected energies Ee ranging from 12 eV to 750 eV. Except for small angles 
and at some fixed ejected electron energies, namely, 100 eV, 250 eV, and 
750 eV, the CB1-CWB model (solid line) reproduces with a good agree-
ment the experimental observations. This disagreement may be explained by 
the fact that in the present CB1-CWB calculations, the authors didn’t take 
into account the above-cited ECC process which causes an increase of the 
doubly differential cross sections at low ejected angles. This process is all the 
more conspicuous that the velocity of the ejected electron is close to that 
of the scattered proton and may be seen as a classical capture of a bound 
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Figure 10.2 Doubly differential cross sections for single ionization of water vapour by 
0.5 MeV protons for different ejected electron energies as a function of the ejection 
angle. Theory: CB1-CWB model (solid line), CB1-DWB model (dashed line). Experiments: 
circles from Toburen and Wilson.10
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electron from the target molecule into a continuum state of the proton. The 
“captured” electron is then emitted in the moving frame of the proton.

Furthermore and as already reported by Rudd et al.,46 Boudrioua et al.,8 
clearly underline the fact that the CB1-DWB and CB1-CWB methods yield 
nearly identical cross sections except at large angles where the difference 
between the two approaches is more pronounced. The authors also report 
that the two approaches begin to differ from each other by a small amount 
especially with increasing ejection angles and energies at fixed incident energy.

To improve the agreement between the experimental and the theoreti-
cal DDCS for protons, Boudrioua et al. have recently proposed to describe 
the water ionization process within the CB1-2CW approach i.e., in 
describing the scattered projectile by means of a Coulomb wave function.8 
However, as shown in Figure 10.3 for incident proton energy of 0.5 MeV 
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Figure 10.3 Doubly differential cross sections for single ionization of water vapour 
by 0.5 MeV protons impact with the ejection of a 250 eV electron as a function of the 
ejection angle θe. The lines correspond to the present different models used: CB1-3CW 
model (solid line), CB1-CWB model (dotted line), CB1-CWB model with the Salin fac-
tor (dashed line), CB1-2CW model (dash and dotted line) whereas the experiments of 
Toburen and Wilson10 are represented by circles.
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and an ejected electron of 250 eV, it appears that both the CB1-CWB and 
CB1-2CW models are unable to explain the large enhancement of the 
DDCS for small angles because none of these models treats the interaction 
between the scattered proton and the ejected electron.

In a second step, Boudrioua et al.8 have also introduced a first-order 
correction factor S, namely, the well-known Salin factor68 into the CB1-
CWB model, which consists in introducing the mechanism of electron 
transfer to the continuum as a multiplicative factor given by

with γ = Z/p where Z denotes the dynamical effective charge defined as  
Z = 1 - p/vi where �p =

�ke − �vi is the final electron velocity measured 
from a reference frame fixed at the projectile.

Thus, when the electron moves with a velocity close to that of the pro-
jectile (p @ 0), it travels in a continuum state of the projectile which lies just 
above the threshold of the corresponding continuum spectrum, whereas 
for an electron ejected in a soft collision (ke << ki), Z @ 0 what indicates 
that the ejected electron moves only in the field of the target. An excel-
lent agreement with the experimental data was then observed in particular 
at small ejection angles whereas a less satisfactory accord was reported for 
larger angles as already observed by Madison49 for helium targets impacted 
by 100 keV and 200 keV protons.

In addition, in their study, Boudrioua et al.8 have studied the water 
ionization process in the CB1-3CW framework and reported a better 
agreement in the large ejected angle region. However, it was noted that 
the obtained DDCS largely overestimated the experimental observations 
at small angles. As a matter of fact, the CB1-3CW model exhibits a correct 
asymptotic Coulomb three-body wave function for the scattered proton 
and the ejected electron in the residual ion field. Finally, let us note that the 
Salin factor depends on a dynamical effective charge whereas in the CB1-3CW 
model the projectile nuclear charge is considered.

Similar observations were reported in Figure 10.4 for α-particles 
impinging on water molecules.

Very good agreement was then observed between the experimental and 
the theoretical CB1-CWB results in all cases, except for the lower ejec-
tion energy reported i.e., for Ee = 19.2 eV for which they obtained DDCS 
overestimate the experimental data essentially at small angles (θe < 60° and 
θe > 120°). For θe > 60°, the observed agreement becomes better for each 

(33)S =

2πγ

1 − e−2πγ
,
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ejected energy here considered exhibiting in particular the existence of 
the well-known binary-encounter peak whose localisation is here well 
reproduced, namely, from about 85–90 at Ee = 19.2 eV to about 79–80° at 
Ee = 673 eV.

Finally, Figure 10.5 compares the CB1-CWB DDCS (solid line) 
reported by Dal Cappello et al.22 to recent experimental measurements for 
6 MeV/u C6+ ions ejecting electrons of different energies ranging from 
9.6 eV to 384 eV. A good agreement is generally reported over the whole 
range of ejected electron energies with nevertheless slight discrepancies 
for θe @ 70°–80°. However, as previously, we observe that the position 
of the binary-encounter peak is well reproduced. Furthermore, we have 
reported in Figure 10.5, a comparison between the CB1-CWB DDCS of 
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Figure 10.4 Doubly differential cross sections for water ionization by α-particles of 
6.0 MeV/u. The experimental data (solid circles) of Ohsawa et al.19 are compared to the 
theoretical results (CB1-CWB model) for 6 different ejected electron energies, namely, 
Ee = 19.2 eV, 38.5 eV, 96.2 eV, 192 eV, 385 eV, and 673 eV.
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Dal Cappello et al. and those obtained by the two HKS models discussed 
above, namely, the original version from Hansen and Kocbach31 (see Eq. 
(6)) and that slightly modified and proposed by Bernal and Liendo34 (see 
Eq. (10)). Minor discrepancies may be observed with in particular a better 
agreement exhibited by the original HKS model version (dashed line) with 
nevertheless an overestimation for the large ejection angles, which is all the 
more important that the energy increases (Ee > 200 eV). In comparison, the 
modified HKS model underestimates the experimental results at backward 
angles, what is mainly due to the use of hydrogenic wave functions to 
describe the bound electron initial state instead of an accurate molecular 
wave function as it is the case for the Dal Cappello calculations. Indeed, the 
agreement reported by the authors seems better even if we note a slight 
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Figure 10.5 Doubly differential cross sections for single ionization of water vapour 
by 6.0 MeV/u C6+ ions for different ejection angles (20° < θe < 160°) as a function of the 
ejected electron energy. The theoretical CB1-CWB results are reported by a solid line 
whereas the semi-empirical HKS results are represented by a dashed line for the origi-
nal HKS model31 and by a dotted line for the expression given by Bernal and Liendo.34 
The experimental measurements are represented by solid circles. Multiplicative factors 
are used for a better clarity in the plot.
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overestimation in particular for the high energies (Ee > 200 eV) when the 
ejection angle tends towards the binary-encounter peak (θe @ 70°–80°).

4.1.4 Energy spectra of the secondary ejected electrons
By integration of the DDCS with respect to emission angle θe, the singly 
differential cross sections may be obtained. Figure 10.6 shows a comparison 
between the available experimental data10, 13 and the theoretical results per-
formed by Boudrioua et al.8 in the CB1-CWB model for protons in water. 
A reasonably good agreement between the experiments and the present 
1st Born results may be observed especially for ejected electron energies 
greater than 10 eV, the Auger electron peak being obviously not reproduced 
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Figure 10.6 Singly differential cross sections for ejection of electrons by protons in 
water vapour as a function of ejected electron energy. Experimental data taken from 
Toburen and Wilson10 (open triangles for 0.5 MeV and open circles for 1.5 MeV) and 
from Bolorizadeh and Rudd13 (open squares for 100 keV).
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since not included in the present used model. For lower ejected energies 
(Ee < 10 eV), the agreement is obviously less satisfactory, the kinematics 
being far from the domain of applicability of the 1st Born approximation.

Similarly, Figure 10.7 shows a comparison between the experimental 
SDCS measurements for C6+ ions reported in Dal Cappello et al.22 and 
the CB1-CWB calculations as well as the existing semi-empirical (Rudd 
and HKS) predictions.

A good agreement is generally observed for both the results with in 
particular a regular underestimation in the low-energy regime and a con-
stant overestimation for high energies (Ee > 200 eV). However, we notice 
that the best agreement is still obtained with the original HKS model in 
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Figure 10.7 Singly differential cross sections for ejection of electrons by 6.0 MeV/u 
C6+ ions in water vapour as a function of the ejected electron energy. The theoretical 
CB1-CWB results are reported by a solid line whereas the semi-empirical HKS results 
are represented by a dashed line for the original HKS model31 and by a dotted line 
for the expression given by Bernal and Liendo.34 The experimental measurements 
are represented by solid circles. Additionally, the Rudd’s results are represented by a 
dash-and-dotted line.
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the whole ejected electron energy range. Furthermore, we clearly observe 
that the CB1-CWB theoretical results generally tend to overestimate the 
experimental measurements, especially at low-energies (Ee < 200 eV). In 
addition, we note that the results provided by the Rudd model (dash-dot-
dotted line) are in remarkably good agreement with the present experi-
mental measurements in the whole ejected electron energy range.

4.1.5  Total ionization cross sections
Figure 10.8 depicts an extensive comparison between the theoretical 
CB1-CWB TCS (solid line) for protons, α-particles, and carbon ions and 
the available experimental measurements. Additionally, we have reported 
the semi-empirical Rudd’s and HKS predictions (dashed line and dotted 
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Figure 10.8 Total cross section as a function of the incident energy (keV/u). The theo-
retical CB1-CWB results are reported by a solid line whereas the semi-empirical HKS 
and Rudd’s results are represented by a dotted and a dashed line, respectively. The 
experimental measurements taken from various sources are represented by symbols 
(for more details we refer the reader to Refs. 8, 9, 22).
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line, respectively). We clearly observe a very good agreement between the 
free-parameter calculations of Champion and co-workers8, 9, 22 and the 
semi-empirical predictions of the Rudd’s model (initially developed for 
protons) over the whole incident energy range investigated in the present 
work (50 keV/u–100 MeV/u). On the contrary, the HKS model exhibits 
large discrepancies with the theoretical results as well as the experimental 
measurements.

4.1.6  From vapour to liquid water
Water ionization by charged particle impact (electrons as well as heavy 
charged particles) has been a matter of active research since the 1970s par-
ticularly in the field of radiobiology for modelling the radio-induced dam-
ages, the biological matter being commonly simulated by water. Numerical 
track-structure Monte Carlo simulations were then successfully developed 
for describing the charged particle transport in biological medium and 
then providing a detailed (macroscopic or microscopic) description of the 
three-dimensional energetic deposit cartography. To that end, the model-
ling of the ion-induced ionizing processes in water and more particularly 
of ionization is of prime importance. However, due to the scarcity of 
experimental measurements in its liquid phase, water was essentially studied 
in its vapour phase by assuming that describing the particle track-structure 
in liquid matter could be done, in a first step, either by applying the well-
known “gas-phase approximation” i.e., via a simple linear extrapolation to 
unit density environment of the liquid or by converting the highly excited 
Rydberg states occurring in gaseous water into ionizations (see for example 
Turner et al.69). Besides, note that some authors36 have also used the above-
cited Rudd’s model by adjusting the fitting parameters to the liquid case in 
particular the binding energies whose values differ from gaseous to liquid 
water by about 2–4 eV essentially for the three outermost subshells.36

Comparatively, the treatment of liquid water ionization by heavy 
charged particles was less studied and presents still today a challenge for 
radiobiologists who are interested by knowing the degree to which non-
scaling effects are important in simulating ion transport in biological mat-
ter. In this context, various semi-empirical models were developed since 
the pioneer works of the Oak Ridge group.70 In this framework, DDCS 
and SDCS were calculated within the 1st Born approximation by taking 
advantage that in this framework the doubly differential ionization cross 
sections were related to the energy-loss function η(E, K ) = Im[

−1

ε(E,K )
] 

where ε (E,K) denotes the dielectric-response function with E for the 
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energy transfer and K for the magnitude of the momentum transfer on a 
single collision. Thus, similarly to their previous study on electron impact 
ionization in liquid water, Dingfelder et al.36 proposed an extension of 
their empirical model based on optical measurements, namely, reflectance 
measurements for describing the liquid water ionization by fast protons 
(Ei > 100 keV/u). In brief, the imaginary part of the dielectric-response 
function is modelled in the optical limit, i.e., at momentum transfer K by 
a superposition of Drude-like functions while the real part is analytically 
calculated by using the Kramers–Kronig relation. For more details we 
refer the reader to Dingfelder et al.36 Furthermore, the model uses exper-
imental data as well as theoretical constraints like sum rule and asymptotic 
behaviour and the momentum-transfer dependence for the continuum 
is introduced by an impulse approximation, in which a target electron 
is seen as nearly free at the moment of energy and momentum transfer 
whereas its binding through is taken equal to the instantaneous momen-
tum of a stuck electron. Total cross sections were then reported for proton 
energies in the range from 500 keV to 10 MeV. Finally, to complete their 
study and then to investigate the low-energy regime (Ei < 500 keV/u), 
the authors proposed to use the Rudd’s model by adjusting the fitting 
parameters in order to reproduce the recommended ICRU stopping 
cross sections71 for liquid water, which is the only relevant experimental 
information on the liquid phase. The authors also suggested taking into 
account a realistic partitioning into the molecular sub-shells, by adjusting 
in particular the sub-shell contributions of the dielectric model to those 
provided by the Rudd’s model. The obtained values are reported below 
(see Table 10.5).

They also obtained total ionization cross sections are reported in Figure 10.9.  
It clearly appears that the vapour and liquid ionization cross sections differ 
essentially in the region below 100–200 keV, namely, precisely where the 
semi-empirical model of Rudd is used. On the contrary, when the dielectric-
model is used, namely, for Ei > 500 keV/u, only minor discrepancies are 
observed.

Table 10.5 Parameters for the proton ionization cross sections in liquid water36

A1 B1 C1 D1 E1 A2 B2 C2 D2 α

1.02 82.0 0.45 −0.80 0.38 1.07 14.6 0.60 0.04 0.64
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4.1.7   Influence of the target description on the ionization  
cross sections

Describing the molecular ionization process at the multi-differential 
level undoubtedly needs an accurate description of the target in terms of  
electronic distribution. However, to overcome the difficult task of such 
multi-centre problems, like here for studying the water molecule ionization, 
we have seen that many authors used an atomic approach among which we 
find the above-cited Bragg additivity rule—which consists in writing the 
water cross sections as a mixture of H2 and O2 ones—and the complete 
neglected differential overlap (CNDO) approach. In this context, Olivera 
and co-workers41 have already pointed out huge differences in terms of  
singly differential ionization cross sections for 70 keV protons in water vapour 
by comparing these two descriptive approaches within the CDW-EIS frame-
work. A good agreement with experimental results taken from Bolorizadeh 
and Rudd13 was then reported by the authors when the molecular description 
was used—except at very low ejected electron energies—whereas the 
Bragg’s additivity addition of atomic singly differential cross sections clearly 
overestimated the experimental measurements at small electron energies. 
Note that similar observations were also reported by Senger and co-work-
ers42 who have calculated—within the 1st Born approximation—angular  
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Figure 10.9 Total ionization cross sections as a function of the incident particle ener-
gies. Shown are the proton ionization cross sections for liquid and gaseous water (solid 
and dashed line, respectively) taken from Ref. 36 whereas the experimental data are 
similar to those reported above for total ionization cross sections of protons in water 
vapour.
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and energy distributions of δ-rays ejected from low-z molecular targets 
(including water vapour) impacted by protons and α-particles.

Very recently, Champion et al.72 have also pointed out strong discrep-
ancies between a CNDO approach and a full-molecular (LCAO-SCF) 
description. To do that, the authors have successively compared doubly 
and singly differential ionization cross sections calculated by using both 
the molecular wave function taken from Moccia45 and a CNDO approach 
already used by many authors for describing the ionization process of 
simple molecules. The selected description was that proposed by Senger 
and co-workers42 in which the isolated water molecule was modelled by 
means of oxygen and hydrogen orbitals, namely, O(1s), O(2s), O(2p), and 
H(1s). Furthermore, it must be noted that to avoid any changes in the theo-
retical results due to the variations in the molecular orbital binding energies, 
the authors have taken the same values for both calculations, namely, those 
provided by Moccia.45

The CB1-CWB DDCS also calculated for 500 keV protons are 
reported in Figure 10.10 (left panel). Evident discrepancies—within a fac-
tor 2—may be observed between the two water target descriptions, espe-
cially in the low ejection energy regime (Ee < 100 eV) whereas the cross 
sections seem to be less sensitive to the molecular description for higher 
ejected energies. Similar conclusions may be drawn when singly differential 
cross sections are compared (see right panel of Figure 10.10). Surprisingly, 
the CB1-CWB SDCS seem to be in better agreement with measurements 
when the CNDO-initial state representation is used.

4.2   Theoretical description of the charge transfer process 
within the 1st Born approximation

4.2.1 Basic formalisms
In this section, we investigate the electron capture process induced by 
fast charged particles impinging on water target which still remains rarely 
approached in the literature. In fact, except the work of Olivera et al.41 and 
that of Fainstein et al.73 on the CDW-EIS method for single ionizing pro-
cesses (capture as well as ionization) induced by protons in gaseous water, 
the quantum mechanical approaches are, to the best of our knowledge, 
represented only by the recent 1st Born predictions given by Houamer 
and co-workers74 for proton projectiles. The theoretical framework used 
by the authors refers to the above-described CB1 model whose theoretical 
background is briefly reported in the sequel.
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Thus, similarly to the previously referred CB1-CWB approach for 
describing the ionization process, the multielectron collisional system can—for 
the single electron capture process—also be reduced to a one-active electron 
treatment. Indeed, if the long range part of the projectile-active electron inter-
action is preserved into the wave functions, the scattering matrix element may 
be rewritten as

with
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Figure 10.10 Left panel: doubly differential cross sections for single ionization of water 
vapour by 500 keV protons with different ejected electron energies as a function of the 
ejection angle θe. The calculations were performed within the 1st Born approximation 
(in the above-described CB1-CWB model) by including the Salin factor. The experi-
mental results are taken from Bolorizadeh and Rudd.13 Right panel: singly differential 
cross sections for water ionization by protons of different incident energies (500 keV 
and 1500 keV). The experimental results are taken from Toburen and Wilson.10 In both 
cases, the theoretical results are obtained within the CB1-CWB model by using—for 
describing the water target—the molecular wave function taken from Moccia45 and the 
CNDO approach (solid and dashed line, respectively).
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and

where ξf(�r01) here represents a projectile bound state and Zc the charge of 
the residual core. Thus, Eq. (34) can be written as

Note that if Zc = ZP, Eq. (37) can be reduced to

where ξf (�r01) refers to an hydrogenic wave function, what coincides with 
the expression provided by Jackson and Schiff 54 for the case of proton 
beam impact on atomic hydrogen.

Furthermore, it is interesting to quote that the scattering matrix element 
also obtained is in agreement with that reported for ionization in Eq. (30).

In order to calculate the singly differential cross sections as a function 
of the projectile angular dispersion, we obviously need to take into account 
all the particles of the collisional system and then consider the scattering 
matrix element Tfi ( �K ). However, it is possible to show that this latter is 
simply related to the matrix element ̂Tfi( �K ) through the expression

which is the Fourier transform of the Fourier antitransform of ̂Tfi( �K ) (see 
Eqs. (27) and (37) and where �η refers to the component of �K perpendicular 
to the impact velocity �vi .

Then, similarly to the ionization case, the singly differential cross sec-
tions per molecular subshell dσ

dθs
 (where θs represents the scattering projectile 

angle) are finally averaged over all the target orientations and then written as

where MP refers to the incident proton mass.
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Thus, for low scattering angles (θs << 1), the SDCS take the simple form

Finally, note that the scattering matrix element Tfi being dependent 
on the impacted molecular subshell, the procedure here described is obvi-
ously performed for each of the N = 5 orbitals of the water molecule. 
Thus, similarly to the ionization case, the “global” singly differential cross 
sections are here also obtained by summing up all the j sub-shell contri-
butions [dσ

dθs

]j and then weighted by the number Nelec (= 2) of electrons 
per orbital. Thus, we write

The total charge transfer cross section is finally obtained by writing that

where the Parseval identity has been employed.
In conclusion, it clearly appears from Eqs. (41) and (43) that when 

cross sections differential in the projectile scattering angle are calculated, 
we cannot ignore the interaction of the projectile with the target nuclei 
and the passive electrons, whose influence may be not neglected. However, 
when TCS are calculated, these latter play no rôle since the transition 
is simply produced by the interaction of the projectile with the active 
electron.

4.2.2  Total cross sections
We report in Figure 10.11 the total cross sections provided by the CB1 
treatment developed by Houamer and co-workers.74 A good agreement 
may be observed with the experimental available data in particular for 
impact energies greater than 100 keV/u. In comparison, the predictions 
given by the above-cited semi-empirical models are—for the major part 
and in the overall energy range—in good agreement with the 1st Born 
predictions, except those provided by the Rudd’s model which largely 
overestimate both the experimental data and the other semi-empirical 
predictions.
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5. CONCLUSIONS

Single electron ionization and single electron capture of water mol-
ecules impacted by charged heavy particles—processes which are of interest 
for medical applications—have been here theoretically studied within the 
1st Born approximation framework.

From multiple differential to total cross sections, the present work 
reports a detailed description of the ion-induced ionization process in 
pointing out in particular the rôle played by the target representation in 
the theoretical modeling. The cross sections also provided have been then 
compared to a large set of experimental measurements as well as existing 
semi-empirical predictions in order to clearly identify the pre-requested 
kinematical conditions of the present perturbative treatment of water ion-
ization. Besides, the influence of the thermodynamical phase of water has 
been also studied in order to assess its potential impact in numerical simula-
tions dealing with charged particle transport in biological matter.

Finally, proton-induced electron capture has been investigated and then 
emphasized an overall good agreement in terms of total cross sections between 
the present 1st Born predictions and the rare existing experimental data.
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Figure 10.11 Total cross sections for charge transfer induced by protons in water. 
Comparison between the CB1 predictions from Houamer et al.74 (solid line) and the 
results provided by the semi-empirical model of Endo et al [39] (dashed line), Dingfelder 
et al.36 (dotted line) and Rudd et al.12 (dash-and-dotted line).  The experimental  
measurements are taken from Dagnac et al.37 (solid down triangles), Gobet et al.16 
(solid squares), Date et al.75 (solid up triangles), Toburen 76 (solid circles).
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Abstract

Collisions of simple ions from water molecules in the energy range of 10–5000 keV/
amu are considered within an independent electron model. The basis generator 
method applied in the past successfully to ion–atom collisions is adapted to deal with 
molecular targets. Cross sections for single- and multiple-electron processes (capture 
and transfer to the continuum) are obtained directly from solving time-dependent 
Kohn–Sham-type orbital equations and using a Slater determinant based analysis. 
Fragmentation yields are predicted on the basis of a semi-phenomenological model 
which uses the calculated cross sections as input. Comparison with experiment is 
made for proton and He+ impact collisions.
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1. INTRODUCTION

Electron removal from water molecules is one of the most frequent 
processes taking place when biological tissue is irradiated by protons or 
heavy ions. In hadron therapy,1 it contributes to the desired destruction of 
a tumor and to the undesired damage of the surrounding tissue in at least 
two ways: (i) the produced free electrons attack DNA molecules in ionizing 
collisions or via formation of transient molecular resonance states;2 (ii) the 
H2O

q+ ions left behind are often instable and thus prone to fragmentation, 
especially if q � 1, i.e., if multiple-electron removal occured. In a liquid 
environment, fragment ions may recombine to highly reactive oxygen spe-
cies such as HO2, which can damage the DNA in chemical reactions (see, 
e.g., Ref. 3 and references therein).

It is thus important to understand ion-impact induced ionization 
and the subsequent fragmentation dynamics of water molecules in detail. 
Early experimental studies determined (total) cross sections for ioniza-
tion and electron transfer processes,4, 5 while more recent works were 
concerned with measuring the yields of charged fragments, sometimes in 
coincidence with an ionized electron or the projectile charge state.6–10 
Theoretical efforts have focused on calculating cross sections for electron 
removal processes at impact energies above 20 keV, for which relatively 
simple self-consistent field descriptions of the water molecule are deemed 
suitable. They include a molecular orbital based coupled-channel cal-
culation,11 Born- and continuum distorted-wave-type models12–14 and 
classical trajectory Monte Carlo (CTMC) calculations based on one-
center15, 16 and three-center17 model potentials. Fragmentation cross 
sections have been deduced from some of the results using (semi-)empiri-
cal models to relate electron removal to the production of the different 
fragment ions.14, 15, 17

Our own work in this area is built on an extension of a quantum-
mechanical approach developed and tested for ion–atom collisions (see, 
e.g., Refs. 18–20 and the review article: Ref. 21). The approach is based 
on density functional theory (DFT) and uses the basis generator method 
(BGM) to propagate effective single-particle (Kohn–Sham-type) orbitals. 
The extension to molecular targets was accomplished by a spectral rep-
resentation of the target Hamiltonian and a single-center expansion of its 
eigenstates.22 This enables to separate the ion-molecule multi-center prob-
lem into a set of two-center problems and to apply the BGM with only 
modest modifications.
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The approach has been rather successful in describing experimental cross 
sections for various electron transfer and ionization processes in proton– and 
He

+–H2O collisions over wide ranges of impact energies.22, 23 Recently, we 
have coupled it with a semi-phenomenological model for water fragmentation 
after single and multiple electron removal, and have obtained results which 
agree favorably with experimental cross sections for the production of charged 
fragments.24, 25

In this chapter, we provide a somewhat condensed description of this 
ion-molecule approach and the results obtained from it. We start with 
a brief outline of the general framework of the theory and the DFT-
perspective on atomic collisions in Section 2.1. This is followed by sum-
maries of the ion-molecule BGM in Section 2.2 and the method used to 
extract measurable information from the BGM solutions in Section 2.3. 
Some computational aspects are discussed in Section 2.4, but for a more 
detailed description the reader is referred to Ref. 24. We present results for 
electron removal in proton– and He

+–H2O collisions in Section 3.1 and 
for fragmentation of H2O after proton impact in Section 3.2. The chapter 
ends with a summary and an outline of directions of future work in Section 
4. Atomic units (� = me = e = 4πǫ0 = 1) are used throughout, unless 
specified otherwise.

2. THEORY

Ion-molecule collisions are complex many-body problems. At pres-
ent, a full theoretical description of their dynamics in terms of a consistent 
quantum theory for all degrees of freedom is not feasible. Fortunately, it 
is not necessary either—at least not in the range of impact energies from 
about 10 keV/amu up to a few MeV/amu in which we are interested. In 
this range, the different time scales of the electron and nuclear dynamics 
allow for a separation of the many-body state and a simplified treatment 
of the different processes at play. The projectile ion is fast enough to 
assume that it travels on a classical straight-line trajectory. Its interaction 
time with the target molecule is short, so that the latter neither rotates 
nor vibrates appreciably while electrons are being transferred or ejected 
to the continuum. Thus, the Franck–Condon approximation, which 
assumes that the molecule is frozen to its equilibrium geometry when the  
electronic transitions occur, can be used. Such a calculation can make 
(possibly state-specific) predictions for the formation of H2O

q+ ions, 
which may break up subsequently. Fragmentation cross sections can be 
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derived semi-phenomenologically by associating single-and multiple-
electron removal processes with probabilities for specific break-up 
channels using experimental branching ratios as input.

This is the framework we have adopted in our studies of ion-H2O col-
lisions.22-25 The main theoretical task is the solution of a time-dependent 
Schrödinger equation (TDSE) for the electrons, which experience time-
dependent and stationary Coulomb forces due to the moving projectile 
and the non-moving target nuclei, respectively, in addition to their mutual 
repulsion. In the next subsection, we outline how this complicated many-
electron problem can be formulated within time-dependent density func-
tional theory (TDDFT). This is followed by a discussion of our specific 
approach to solving the ensuing set of single-particle Schrödinger-type 
equations and a brief description of the methods used to extract measurable 
information from the solutions.

2.1  The density-functional theory approach to heavy-particle 
collisions

The problem at hand can be stated as follows: the electronic state vector 
fulfills the TDSE

for the initial condition

and the Hamiltonian

which consists of the kinetic energy

the internal electron–electron interaction

with the electron position vectors ri being measured from a laboratory 
(i.e., a non-moving) reference frame, and the external Coulomb interaction 

(1)i∂t |�(t)� = ̂H(t)|�(t)�

(2)|�(t0)� = |�0�

(3)̂H(t) =
̂T + ̂Wint + ̂Vext(t),

(4)̂T =

N
∑

j=1

(

−

1

2
∇

2

j

)

,

(5)̂Wint =

N
∑

i<j

1

|ri − rj|
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with the heavy particles. For a target molecule described within the Born-
Oppenheimer and Franck–Condon approximations we have

where M denotes the number of target nuclei with charges Zα (M = 3 and 
Z1 = Z2 = 1, Z3 = 8 for H2O), and rαj is the distance of the αth nucleus to 
the jth electron. ZP is the charge of the (bare) projectile ion, which moves 
along the straight-line trajectory R(t) = (b, 0, v0t) characterized by the 
impact parameter b and the constant projectile speed v0.

The backbone of TDDFT is the Runge–Gross theorem.26 It states that 
the electronic state vector |�(t)� that solves the TDSE (1) is (up to a global 
time-dependent phase) a unique functional of the time-dependent one-
particle density n, if the initial state |�0� is the (nondegenerate) ground state 
of the system. The density at time t can be calculated without knowledge 
of |�(t)� from a set of single-particle Schrödinger-type, so-called time-
dependent Kohn–Sham (TDKS), equations

according to

The potential vTDKS in (7) is also a unique functional of n. This is another 
consequence of the Runge–Gross theorem and suggests the following 
route to solving the time-dependent many-electron problem: (i) determine 
vTDKS[n](r, t); (ii) propagate the TDKS orbitals from initial conditions, that 
combine to the ground-state density according to (8), up to a final time tf ; 
(iii) extract all observables of interest from the asymptotic solutions using 
the fact that |�(tf )� is uniquely determined by n.

In practice, these steps can only be taken after approximations have been 
introduced, since the exact functional dependences of vTDKS and |�� on n 
are not known. Nevertheless, the idea to circumvent the actual solution of 
the many-electron TDSE (1) is appealing. It provides a firm basis of the 
independent particle model (IPM) and some clues of how to interpret and 
improve it.

(6)̂Vext(t) = −

N
∑

j=1

(

M
∑

α=1

Zα

rαj
+

ZP

|rj − R(t)|

)

,

(7)i∂tψi(r, t) =

(

−

1

2
∇

2
+ vTDKS[n](r, t)

)

ψi(r, t), i = 1, . . . , N

(8)n(r, t) =

N
∑

i=1

|ψi(r, t)|2.
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2.2  The basis generator method adapted for ion-molecule 
collisions

In our previous works on proton–H2O collisions22, 24, 25 we have used a 
simplified TDKS Hamiltonian, in which the effective electron–electron 
interaction potential is frozen to its (approximate) form in the initial state:

V T

αβγ is a molecular ground-state potential on the Hartree–Fock (HF) level 
and α, β, γ are the standard Euler angles, which we use to specifiy the 
orientation of the water molecule with respect to the ion beam axis. The 
occupied eigenstates of

form the ground-state density and are the initial conditions for the TDKS-
type equations

The capital Greek letters label the occupied MOs whose time evolu-
tion we study, i.e., Ŵαβγ ∈ {1b1, 3a1, 1b2, 2a1}αβγ. The innermost orbital is 
excluded, since the 1a1 electrons are too tightly bound to undergo appre-
ciable transitions in the studied systems.

The no-response approximation (9) can be expected to work well if 
the projectile is fast (and of low charge), whereas dynamical response may 
play a role at lower impact energies, at which the electrons have more 
time to react to changes in the effective potential. This tendency has been 
confirmed in numerous studies of ion–atom collision systems by compar-
ing no-response and response cross sections,18, 20 and we also see some 
evidence for it in the results presented further below.

The main difficulty with solving (12) is the structure of V T

αβγ
. If one 

expands the orbitals |ψŴ
αβγ (t)� in a basis, one encounters multi-center inte-

grals, which have plagued molecular structure calculations for many years.27 

(9)vTDKS[n](r, t) ≈ V T

αβγ (r) + V P(r, t),

(10)V P(r, t) = −

ZP

|r − R(t)|
.

(11)̂HT

αβγ = −

1

2
∇

2
+ V T

αβγ

(12)i∂t |ψ
Ŵ
αβγ (t)� =

[

̂HT

αβγ + V P(t)
]

|ψŴ
αβγ (t)�,

(13)|ψŴ
αβγ (ti)� = |Ŵαβγ �.
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Our approach circumvents the explicit calculation of multi-center integrals 
by going into an energy representation of the target Hamiltonian

in which ǫ� denotes the energy eigenvalue of the MO labeled by quantum 
number(s) �. We use two different basis sets to proceed: an orthonormal 
single-center basis {|s�} for representing the MOs

and a nonorthogonal, dynamical two-center basis {|χ J
j (t)�} for propagating 

(12):

Both basis sets will be specified further below. The benefit of using these 
expansions is that the multi-center molecular matrix elements break up 
into combinations of energy eigenvalues, (real) expansion coefficients, and 
simpler overlap matrix elements:

Instead of propagating the initial-state MOs we exploit the linearity of the 
single-particle equations (12) and use the single-center basis states |s� as 
initial conditions to obtain

from solving a set of coupled-channel equations which are very similar to 
those of a two-center ion–atom collision problem. The molecular solutions 
(16) can be reconstructed

to calculate the density n(r, t) of the system. In principle, this is the starting 
point for the calculation of observable quantities in the TDDFT framework. 

(14)̂HT

αβγ =

∑

�

ǫ�|�αβγ ���αβγ |,

(15)|�αβγ � =

∑

s

d�
s,αβγ |s�

(16)|ψŴ
αβγ (t)� =

∑

jJ

aŴ
jJ ,αβγ (t)|χ

J
j (t)�.

(17)
M

KJ

kj (α, β, γ , t) = �χK
k (t)|̂HT

αβγ |χ
J
j (t)�

=

∑

�

∑

su

ǫ��χK
k (t)|s�d�

s,αβγ d�
u,αβγ �u|χ

J
j (t)�.

(18)|ψ s
αβγ (t)� =

∑

jJ

as
jJ ,αβγ (t)|χ

J
j (t)�

(19)
|ψŴ

αβγ (t)� =

∑

s

dŴ
s,αβγ |ψ s

αβγ (t)� =

∑

sjJ

dŴ
s,αβγ as

jJ ,αβγ (t)|χ
J
j (t)�
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In practice, however, the density is of limited use due to the unknown depen-
dence of the many-electron state on it. A more fruitful, though approximate 
basis for the final-state analysis is the one-particle density matrix constructed 
from single-determinantal wave functions.

Before we discuss this method, we have to comment on how we deal 
with collisions of water molecules with He

+ ions, which involve an addi-
tional electron on the projectile. If one were to solve the many-electron 
TDSE (1), this electron would have to be treated on the same footing as the 
initial target electrons; in particular, the state vector |�(t)� would depend 
on the coordinates of all electrons and be antisymmetric under interchange 
of any pair of them. A pragmatic way to account for the projectile electron 
in an effective single-particle framework is to add an appropriate screening 
potential to the Hamiltonian and solve the TDKS-type Eqs. (12) for all 
initially populated orbitals—the target MOs and a (moving) atomic orbital 
(AO) on the projectile center. The pros and cons of this approach as well as 
more sophisticated alternatives were discussed in Refs. 23, 28. Briefly, the 
main shortcoming of using a common Hamiltonian with effective target 
and projectile potentials V T

αβγ and V P is that either the initial target elec-
trons or the initial projectile electron(s) experience an incorrect asymptotic 
potential.

Our choice for He
+−water-molecule collisions consists in leaving V T

αβγ 
in Eq. (9) unchanged, but replacing the bare projectile potential (10) by

where ϕHe

1s
 is the (normalized) ground-state HF AO of (neutral) helium and 

rP = r − R(t). The potential (20) decays like −1/rP asymptotically, which 
is correct from the viewpoint of the initial target electrons, but incorrect 
for the projectile electron, which in reality experiences an unscreened 
Coulomb potential for the charge number ZP = 2.

One can argue that this choice of a common potential V T

αβγ + V P for 
all electrons is reasonable for situations in which electron transfer from the 
target to the continuum and to the projectile dominate, while projectile 
electron loss is relatively unimportant. If one were to choose a different 
Hamiltonian without the screening term in (20), one would improve the 
description of the electron loss process, but at the expense of the capture 
and target ionization channels.

(20)V P(rP) = −

2

rP
+

∫

|ϕHe

1s (r ′)|2

|r′
− rP |

d
3r ′,
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One may be inclined to circumvent these problems by using different 
potentials in the single-particle equations for the initial target and projectile 
electrons. This is certainly a possibility, but it comes with a price, too: the 
propagated orbitals lose their initial orthogonality during the time propaga-
tion, which renders the final-state analysis cumbersome.28, 29 In fact, our 
main motivation for choosing a simple, common potential for all active 
electrons was to preserve orthogonality at all times. This makes it straight-
forward to construct the one-particle density matrix of the system at the 
final time and to extract observable information from it. Not only is this 
elegant, it is also crucial for the correct description of channels, for which 
Pauli blocking effects are important. This will be further discussed in the 
next subsection and along with the results in Section 3.

2.3 Extraction of measurable cross sections
The first step in the density-matrix analysis of the solutions is the calcula-
tion of single-particle state-to-state transition amplitudes

at the final time tf . The propagated states |ψi(tf )� in (21) are those of Eq. 
(19) plus the propagated projectile-electron orbital in the case of He

+ 
impact. As final states |f � we consider bound projectile and bound target 
states. All amplitudes are fed into the one-particle density matrix

whose nondiagonal structure reflects the antisymmetry of the N-electron 
state, i.e., the Pauli principle. So-called inclusive probabilities are obtained 
as determinants of submatrices of (22),30 and all many-electron transition 
probabilities of interest can be written and calculated as appropriate com-
binations of those inclusive probabilities.

In this work, we are concerned with cross sections which correspond 
to probabilities Pk,l for finding k electrons at the projectile in coincidence 
with l electrons in the continuum and with sums thereof. Details about 
how these probabilities are calculated from the inclusive probabilities for 
occupying bound target and bound projectile states have been provided in 
Refs. 24, 29 and will not be repeated here.

(21)Aif (tf ) = �f |ψi(tf )�

(22)�f |γ̂ 1(tf )|f
′

� =

N
∑

i=1

Aif (tf )A
∗

if ′(tf ),
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Let us close this section with a few conceptual comments. The inclusive-
probability formalism is derived from the assumption that both the propa-
gated many-electron state and the final states of interest are single Slater 
determinants.30 This implies that the TDKS-type orbitals, which combine 
to the density according to Eq. (8), are assumed to carry the physical infor-
mation about the active electrons as in HF theory. In other words, such an 
analysis corresponds to the IPM level and is a (further) departure from a per-
fect TDDFT, in which only the density is associated with a physical inter-
pretation, while the TDKS orbitals are viewed as auxiliary functions without 
direct physical significance. The limitations of the IPM are well known, and 
some of them will be discussed further below in Section 3. Nevertheless, the 
IPM has been popular, since it can be interpreted relatively easily and, more 
importantly, since there is no first-principles alternative available that goes 
beyond it. This is, in fact, one of the main shortcomings of current TDDFT 
applications to ion-impact or laser-field induced many-electron dynamics.

2.4 Computational aspects
It was mentioned in Section 2.2 that two basis expansions are involved in 
our method: a single-center basis is used to represent the ground-state MOs 
[cf. Eq. (15)] and a two-center basis to propagate the TDKS-type orbitals 
[cf. Eq. (16)]. The latter is obtained from the two-center (TC) extension 
of the BGM method, which was developed as a general means to describe 
time-dependent quantum systems in a finite basis.31 The main idea of the 
BGM is to construct a subspace of Hilbert space H that is tailored to rep-
resenting only the propagated states rather than representing H completely, 
which is illusory in any case. It was shown in Ref. 31 how this can be 
accomplished in terms of a hierarchy of dynamical subspaces of H starting 
from one that includes the states which form the initial conditions of the 
time-dependent problem.

In practice, a TC-BGM basis consists of sets of AOs placed on the pro-
jectile center and the target center, which for water molecules we choose 
to coincide with the position of the oxygen nucleus. Both sets are endowed 
with electron translation factors to ensure Galilean invariance. In addition, 
time-dependent pseudo states constructed by the repeated application of a 
regularized projectile potential on the set of target AOs

(23)|χ
J
j (t)� =

[

1

rP

(

1 − e
−rP

)

]J

|ϕT

j �
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are included to represent the continuum and quasimolecular effects at low 
collision energy.

The same set of target AOs is also used to represent the ground-state 
MOs of the water molecule—taken from the minimal-basis-set HF cal-
culation of Ref. 32—according to Eq. (15), i.e., {|ϕ

T
j �} ≡ {|s�}. It is then 

consistent to limit the spectral representation of the Hamiltonian (14) to 
these initially occupied MOs as given in the single-center expansion (15). 
This might sound drastic, but test calculations that go beyond this model 
by using a closure approximation have lent credence to its reliability for 
medium to high impact-energy collisions. Details about the basis sets used 
are given in Ref. 24.

The measurements we wish to compare with did not record the orien-
tation of the water molecule with respect to the ion beam axis. Hence, we 
have to perform calculations for a set of orientations characterized by Euler 
angles α, β, γ and average them in an appropriate way. One may expect 
a considerable orientation dependence of the electronic transitions at low 
impact energies, and, in fact, there is ample evidence for that.11 However, 
we found that considering just two orientations† is sufficient for the pur-
pose of obtaining net and charge-state correlated cross sections for electron 
removal in the impact energy range from about 20 to 5000 keV/amu. All 
results discussed in the next section have been obtained in this way.

3. RESULTS

The present model has been used to calculate data for comparison 
with experiments at various levels. For bare-ion impact one first investi-
gates net processes, such as total electron yield in the continuum σ

−
, total 

positive charged ion yield σ+, and total net charge transfer σcap for which 
extensive experimental data were provided by Rudd and coworkers.4 For 
the case of He

+ projectiles σ
−
 includes contributions from the projectile 

electron, and one can look at the total electron loss from the projectile, as 
well. For neutral projectiles these electron loss processes become important, 
particularly if one is concerned with the problem of energy deposition.

In principle, the net (or gross) cross sections should be the most reliable 
quantities provided in a density-functional theory framework, as in essence 
they depend on how the electron density splits into three contributions: 

† Namely those shown in Figure 1 of Ref. 24.
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parts associated with the target after the collision, parts associated with the 
projectile, and the remainder representing continuum electrons. In practice, 
however, one should worry about the independent-electron approximation, 
since it may enhance multiple-electron transitions. Even in the case of bare 
projectiles one deals with the added difficulty that an N-electron density 
distribution that originated at the target is spread over the three regions, 
and that in low-energy collisions it is possible to transfer more electrons to 
the projectile than is physically allowed. In a perfect TDDFT this should be 
prevented by an appropriate response potential. In practice, however, this 
can become an issue. Our philosophy will be to treat the net transfer prob-
abilities seriously even when no response is included in the calculations.

While the process of electron removal from the target leads to the total 
positive ion yield σ+, more detailed information is obtained from q-fold 
electron removal cross sections σq with

For the projectile space the corresponding detail is given by k-fold capture 
cross sections which sum to net capture according to

From this expression it becomes clear that for a highly charge-asymmetric 
system (a low-charge projectile scattering from a multi-electron target) 
there is the problem that more electrons can be transferred independently 
from the target to the projectile than what is allowed physically.

The cross sections to find n electrons in the continuum σ ion

n  add up to 
the net continuum cross section according to

The next level of sophistication is given by charge-state correlated cross 
sections. These are obtained in experiment by a coincidence counting tech-
nique: by determining the charge states of projectile and target after the 
collision for each event one has also determined the number of electrons 
transferred to the continuum. In a purely statistical treatment of the density 

(24)σ
+

=

N
∑

q=1

qσq.

(25)σcap =

N
∑

k=1

kσ
cap

k .

(26)σ
−

=

N
∑

n=1

nσ ion

n .
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operator these charge-state correlated processes are related by trinomial 
statistics. In a treatment based on the one-particle density matrix Pauli cor-
relations are included, as well. Examples of charge-state correlated processes 
are pure (direct) ionization of the target, pure capture (no simultaneous 
transfer of electrons to the continuum), or transfer ionization—a process in 
which both capture and transfer of target electrons to the continuum occurs.

All these cross sections can be obtained from microscopic calculations, 
i.e., from the independent-electron approach to the N-electron TDSE.  
A substantial body of data has been explained at this level in ion–atom 
collisions. The practical goal of an IPM is not to describe all of the multi-
electron processes, but to concentrate on the dominant channels. How many 
of these channels can be described successfully depends on the strength of 
the projectile interaction: for a given projectile charge ZP it was found that 
independent-electron dynamics works for more of the N target electrons in 
proportion to ZP (see Ref. 19).

Compared to atomic targets, molecules present an additional challenge. 
The production of recoils such as H2O

q+ results in fragmentation even for 
charge states as low as q = 1.  The fragmentation occurs on time scales longer 
than the collision itself, and therefore needs to be modelled as a post-collision 
phenomenon. At high collision energies, i.e., when single-electron removal 
(q = 1) dominates completely, it is possible to deduce branching fractions 
for H2O

+ survival vs. production of OH
+

, H
+

, O
+ (and in principle also 

H
+

2 ). The main ionic channels can be linked to exclusive single-vacancy 
production in one of the MOs. At intermediate and low energies where 
multiple electron removal from the target plays an increasingly bigger role 
fragmentation patterns can be modelled by supplementing the q = 1 rule 
with branching rules for q = 2 and higher. There is some support for such 
(semi-)phenomenological assignments from coincidence measurements of 
water molecule fragments following proton impact at intermediate ener-
gies.6 It led to the first description of a large body of experimental data.24

We provide a series of comparisons of our data with experiments for 
proton–water molecule collisions at collision energies above 20 keV and 
also discuss some selected results for He

+-impact. Where applicable we 
compare our results with three-center classical trajectory calculations. For 
proton impact, we progress through the sequence laid out above: net (gross) 
cross sections, then q-fold electron processes (recoils, transfer to the projec-
tile, transfer to the continuum), and finally, fragmentation. The latter can be 
observed also specifically for electron removal by capture, or by transfer to 
the continuum.
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3.1 Net cross section results
In Figure 11.1 we show the net capture cross sections in p − H2O colli-
sions in comparison with experiment and with the three-center CTMC 
calculations of Illescas et al.17 The results from the BGM-IPM follow 
the experimental data very well in the low-to-intermediate energy 
regime. They overestimate the data at energies above 200 keV displaying 
a systematic deviation by about a factor of two. The CTMC calcula-
tions show a somewhat different energy dependence and lie above our 
calculations at both low and very high energies. We cannot offer any 
explanations for the discrepancy between the data and our results at 
high energies.

In Figure 11.2 a similar comparison is given for transfer of electrons 
to the continuum. Note that in contrast to Figure 11.1 the vertical axis is 
linear. The experimental data display visible statistical errors on this scale, 
and possibly a systematic discrepancy. Our calculations agree with the data 
at the 30% level. The CTMC calculation is in better agreement with the 
data over the entire energy range. The classical calculation employs a more 
complete three-center geometry for the collision calculation, which is 
likely to be the main reason for the more favorable comparison. In the limit 
of very high energies it should not yield the correct energy dependence, 

net
net [17]

Figure 11.1 Net capture σcap in p − H2O collisions vs. projectile energy. Experiments: 
solid circles—Rudd et al. (1985);4 open circles: Toburen et al. (1968).33 Solid line: present 
theory; dotted line: three-center CTMC calculation of Ref. 17.
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however, since a classical-trajectory calculation based upon a microcanoni-
cal distribution does not agree with the Bethe–Born limit.

The net recoil production cross section σ+ is equal to the sum of net 
capture and net transfer to the continuum. We present it in Figure 11.3 to 
demonstrate the fall-off of the net ionization cross section at high energies. 
The figure also shows how more recent measurements of the individual 
recoil yields (H2O

+

, OH
+

, H
+

, O
+

, O
2+) from three different experiments 

add up to σ+. They mostly agree with the original data of Rudd et al.,4 but 
also show that there is a small uncertainty about the absolute height at the 
highest energies. The three-center CTMC calculation does well at high 
energies, but appears to overestimate the experimental data below 50 keV.

The figure also displays how within the BGM-IPM the net recoil pro-
duction is dominated at high energies by single-electron removal (q = 1), 
but that multiple electron processes become important at intermediate and 
low energies.

Figure 11.4 shows neutral He production in He
+–H2O collisions. In 

the case where projectiles carry active electrons into the collision one 
cannot define a net capture cross section in a simple way. As shown in 

net
net [17]

Figure 11.2 Net ionization σ
−

 in p − H2O collisions vs. projectile energy. Experiments: 
solid circles—Rudd et al. (1985);4 open circles: Bolorizadeh and Rudd (1986).34 Solid 
line: present theory; dotted line: three-center CTMC calculation of Ref. 17.
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T electrons only
inclusive

Figure 11.4 Neutral He production in He+

− H2O collisions vs. projectile energy. 
Experiments: solid circles—Rudd et al. (1985);5 triangles—Garcia et al. (2008).10 Solid 
line: all electrons, including the projectile electron are used in the Slater determinant 
analysis; dashed line: net capture based on target electrons only.

net
S (q=1)
D (q=2)
net [17]

Figure 11.3 Total recoil ion production σ+ in p − H2O collisions vs. projectile energy. 
Experiments: solid circles—Rudd et al. (1985);4 other symbols: sum of fragment yields 
for Refs. 6, 8, 9 respectively. Solid line: present results; dotted line: three-center CTMC 
calculation of Ref. 18. Dashed and dash-dotted lines: present results for σq with q = 1, 2.
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Ref. 23 the net recoil production cross section σ+ can be reduced consid-
erably when projectile electron transfer to the target is allowed. In lieu of 
the net capture cross section (25) it is necessary to define a cross section 
for neutral helium production, which takes into account both projectile 
electron loss, as well as single and double electron transfer to the projec-
tile from the target. In addition, one has to consider Pauli blocking, since 
in collision events where the projectile electron is not lost He formation 
(in the ground state) requires a spin-singlet as the final state. This is taken 
care of in the inclusive analysis.

We demonstrate the effect in Figure 11.4 to show that the experi-
mental data are described very well by the inclusive analysis. A calculation 
that ignores projectile electrons overestimates neutral He production by 
approximately a factor of two, consistently over the entire energy range. 
The fact that it does not run perfectly parallel to the full analysis can be 
associated with the fact that electron loss from the projectile varies with 
impact energy. Note that the theoretical results shown are inclusive in elec-
tron transfer to the continuum, i.e., they do not represent pure capture, but 
include simultaneous target ionization events.

net
T electrons only

Figure 11.5 Net free-electron production in He+

− H2O collisions vs. projectile energy. 
Experiments: solid circles—Rudd et al. (1985);5 open circles—σ

−
 minus projectile elec-

tron loss cross section; triangles—Garcia et al. (2008).10 Solid line: σ
−

 calculation includ-
ing projectile electron; dashed line: based on propagation of target electrons only.
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Figure 11.5 displays σ
−
, as well as σ−

− σloss (where σloss is the projectile 
electron loss cross section) in order to highlight the role of the projectile 
electron. From the experimental data of Rudd et al. one concludes that 
projectile electron removal becomes an appreciable contributor to σ

−
 at 

energies above 40 keV/amu. Note that σ
−
 is large to begin with, since 

the water molecule is easily ionized. A theoretical calculation that ignores 
projectile electron contributions to σ− is seen to follow the experimen-
tal σ−

σloss quite well; it displays a broader maximum than in the related 
p − H2O case shown in Figure 11.2 (this calculation is very close to the 
p − H2O case for large impact parameters, but different for close colli-
sions). The full calculation for He

+–H2O collisions agrees well with σ− at 
high energies, but overestimates the data below EP = 70 keV/amu. The 
projectile electron is bound too loosely in the present model, it experi-
ences a long-range Coulomb potential from the water molecule even on 
the incoming part of the trajectory, and therefore is removed too easily at 
lower energies.

3.2 Fragmentation cross sections
In Figure 11.6 we compare our calculated recoil production cross sec-
tions σq; q = 1 . . . 3 for proton–water collisions with experimental data 
of Werner et al. For the q = 3 case it is safe to assume that the measured 
coincidences for H+

+ H
+

+ O
+ provide the dominant contribution. For 

q = 1, 2 a model-dependent reconstruction was performed on the basis of 
measured fragment yields. It can be seen that the BGM-IPM calculations 
agree very well for q = 1, 2 and overestimate for q = 3 by about a factor 
of two. It was then argued25 that fragment yields can be obtained from the 
cross sections for single (q = 1), double (q = 2), and triple (q = 3) electron 
removal σS,D,T according to:

This model as motivated by collision data at 100–350 keV energies takes 
into account known branching ratios for the q = 1 case (high-energy 

(27)σH2O
+ = 0. 68σS,

(28)σOH
+ = 0. 16σS + 0. 6σD,

(29)σH+ = 0. 13σS + 1. 2σD + 1. 0σT,

(30)σO
+ = 0. 03σS + 0. 2σD + 0. 5σT.
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proton collision, electron collisions, photoionization), and blends them 
with an assumption about which fragments are created when more elec-
trons are removed. At lower energies these multiple electron removal 
events are due to processes such as transfer ionization and pure multiple 
ionization.

In Figure 11.7 it is shown that the microscopic BGM-IPM calculations 
when supplemented with the post-collision fragmentation model are quite 
capable of describing the details of the fragmentation pattern over a wide 
range of energies. The effect of multiple-electron removal is to produce a 
reversal in strength of the H+ versus OH

+ yields, and a dramatic increase of 
O

+ yields at low energies. The H2O
+ channel (which is exclusive to q = 1) 

is seen to be predicted too low by the theory below 100 keV impact energy.
There are more detailed experimental data at low energies, namely 

fragmentation following electron capture vs. pure ionization. An analysis 
can be found in Ref. 25.

S (q=1)
D (q=2)
T (q=3)

Figure 11.6 Recoil ion production σq in p − H2O collisions vs. projectile energy. 
Experiments: q = 1: squares (model-dependent reconstruction from the data of 
Werner et al. (1995);6 q = 2: circles. Present theory: q = 1 – dashed; q = 2 dash-
dotted; q = 3 dotted. Also shown: coincidence measurements from Ref. 6: triangles: 
H+

+ H+

+ O+(q = 3); crosses: H+

+ H+

+ O0,−.
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4. SUMMARY AND OUTLOOK

In the past 15 years the density functional theory based calculations 
using the basis generator method as a means to propagate Kohn–Sham-type 
orbitals have explained a wealth of data in ion–atom collisions. While much 
emphasis was placed on neon and argon target atoms, successful applica-
tions to an open-shell system such as atomic oxygen were also developed. 
In recent years we extended this work to simple molecules and applied 
the formalism to the case of H2O targets. In the regime of fast collisions 
(above 10 keV/amu) we can safely ignore molecular rotational and vibra-
tional degrees of freedom due to their longer time scales. Fragmentation 
of the ionized molecule happens also on much longer time scales than the 
collision itself, and is therefore not treated as part of the time-dependent 
dynamics.

Nevertheless, the extension of the TDDFT approach to molecular 
targets faces the following challenges: (i) in principle, multi-center matrix 
elements of the electrostatic interactions are necessary; (ii) an orientation 
average has to be carried out when total cross sections are calculated. In 
the present work multi-center matrix elements are avoided by working in 

H2O
+

OH+

H+

O+

Figure 11.7 Fragmentation cross sections in p − H2O collisions vs. projectile energy. 
Experiments: Squares: H2O+; triangles: H+, circles OH+; diamonds: O+. Symbols with 
crosses: Werner et al.;6 solid symbols: Gobet et al.;8 open symbols: Luna et al.9 Present 
theory: H2O+—solid line; H+—dash-dotted; OH+—dashed; O+—dotted.
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an energy representation of the target Hamiltonian. The calculations are 
carried out very efficiently by representing the molecular orbitals (from 
a restricted HF calculation) in terms of an atomic oxygen basis. A short 
coming of this representation may be that the orbital densities are not 
accurate as far as electric multipole moments are concerned. On the other 
hand, it may actually help by requiring a reduced effort in the orientation 
averaging procedure. For most of the results shown this does not appear to 
be a significant weakness. Some work in the future should be dedicated, 
however, to test these assumptions in more detail.

The independent particle model (using a determinantal analysis) does 
respect the Pauli principle. This becomes important even for basic total cross 
sections when the projectile carries electrons into the collision. Some open 
questions remain in this subfield, and should be addressed by using a more 
sophisticated effective potential which is common to both target and projec-
tile electrons, but which does not suffer from incorrect asymptotic behavior.

The dynamical TDDFT calculations (which so far are carried out only at 
the no-response level) are then supplemented with a semi-phenomenological 
fragmentation model. This model takes into account multi-electron processes 
as predicted by the independent particle model. Fragmentation patterns 
change as one goes from the high-energy limit towards lower energies. Their 
main features have been explained by the present work for the first time.

Future work should concentrate on some improvements. In particular, 
we can imagine that dynamic response will play a role at energies below 
100 keV/amu—it ought to suppress some of the multi-electron processes. 
More realistic molecular orbital representation is also on our wish list. A 
short-term goal, however, should be the application of the methodology to 
other small molecules.
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Abstract

Total cross sections for high-energy transfer ionization in collisions between bare 
projectiles with helium are investigated using several three- and four-body methods 
in the semi-classical impact-parameter and quantum-mechanical formalisms. The 
results are compared with experimental data for transfer ionization in the H+ — He,  
He2+ — He, and Li3+—He collisions. It is found that the cross sections from the four-
body continuum distorted wave and the four-body Born distorted wave methods 
compare favorably with the available measured findings, especially at higher impact 
energies that are within the expected region of validity of these theories.

1. INTRODUCTION

Two-electron transitions in four-body fast ion-atom collisions have 
been extensively studied in the last two decades both theoretically and 
experimentally. This includes transfer ionization (TI) as a collision between 
a nucleus as a projectile and a two-electron target from which one electron 
is captured and the other ionized. Transfer ionization, which is the subject 
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of the present study, remains one of the most challenging collisional pro-
cesses with two active electrons, even in the simplest case which involves 
helium-like targets. This collisional phenomenon has opened interesting 
and fruitful discussions about different scattering mechanisms within the 
first- and second-order theories, including the role of static as well as 
dynamic electron correlations.

The majority of the theoretical investigations1–5 that have considered TI 
collisions employed the independent particle model (IPM) and the inde-
pendent event (IEV) model. The IPM and IEV models ignore the inter-
electron correlations from the outset and compute the probability for TI as a 
product of the individual probabilities for capture of one electron and inde-
pendent ionization of the other electron. The basic feature of these previous 
investigations within the IPM and its variants is the preservation of a pure 
three-body formalism, despite the fact that the studied four-body problems 
include two active electrons. The IPM has been applied to TI within the 
continuum distorted wave (CDW-IPM) and the continuum distorted wave 
eikonal initial state (CDW-EIS-IPM) approximations. Although the IPM 
or IEV versions of other competitive models were outperformed by the 
CDW-IPM and CDW-EIS-IPM approximations, these two latter methods 
still gave cross sections that were larger than the experimental values, espe-
cially for the case of the H+ impact. Such drawbacks can be partially over-
come by employing the four-body formalism of scattering theory within 
e.g., the continuum distorted wave (CDW-4B)6, 7 and Born distorted wave 
(BDW-4B)8 approximations that are capable of yielding satisfactory agree-
ment with the existing experimental data. This will be demonstrated in the 
present review.

2. THE INDEPENDENT PARTICLE/EVENT MODELS

The simplest way to carry out a theoretical examination of TI in fast 
ion-atom (two- or multi-electron) collisions is the IPM, in which the inter-
action between the electrons is considered primarily in the so-called mean 
field approximation. In this picture each electron evolves independently in 
an effective potential created by the other electrons. For evaluations of cross 
sections for multiple processes, this method requires the computation of 
single-particle probabilities as a function of the impact parameter.

In general, the IPM has been frequently used for describing collisions of 
multiply-charged nuclei with helium-like targets, but many computations 
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have shown that the IPM model fails to reproduce experimental data 
in a systematic manner, thus casting doubt about its practical usefulness. 
Therefore, it can be anticipated that multiple processes induced by impact 
of light bare ions should require a theoretical description that goes beyond 
the IPM when single-particle probabilities are obtained from the existing 
perturbation models. One method that achieves this purpose, without actu-
ally solving the fully correlated problem, is the IEV model of Dunseath and 
Crothers,1 who studied the TI process using the three-body CDW method 
for computations of single-particle probabilities. In the IEV model the TI 
process is a result of different steps (events) involving one active electron. 
The net probability is computed as the product of individual probabili-
ties for each event. The main feature is that the second electron makes a 
transition to the final state, not from its initial unperturbed state, but from 
an intermediate state where it was left after the first electron made the 
transition to its final state. The case where the electrons follow different 
reaction channels is taken into account in the IEV model through differ-
ent sequences of events. It is clear that a full description of the processes 
depends on the time sequence in which the events are produced. The IEV 
model gives a reasonable framework to deal with multiple-electron pro-
cesses. Computations of total cross sections for TI in He

2+

+ He collisions 
by Dunseath and Crothers,1 using the CDW model to obtain the single-
particle probabilities, show an improvement with respect to the IPM in 
comparison with the available experimental data.

The three-body CDW method for single ionization was formulated 
by Belkic.9 In this method, the distortions due to electronic continuum 
intermediate states are properly included in the entrance and exit chan-
nels. Nevertheless, the corresponding full Coulomb wave function within 
the initial scattering state was found in applications to lead to overestima-
tion of experimentally measured total cross sections near and below the 
Massey peak. Typically, all total cross sections computed by the CDW 
method keep on rising as the impact energy decreases, whereas the corre-
sponding experimental data generally decline in the same region exhibit-
ing the Massey peak. This bending of the curve for the total cross sections 
can be obtained within the CDW methodologies, if the full Coulomb 
wave function for the distortion of the initial state in the entrance channel 
is approximated by its long-range asymptotic eikonal form through the 
well-known logarithmic factor. The product of this latter factor and the 
unperturbed initial state in the entrance channel represents the eikonal 
initial state (EIS). The resulting simplification of the CDW method is 
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abbreviated as CDW-EIS.10 In this way, the Massey peak is systematically 
reproduced by the CDW-EIS method, leading to quantitative agreement 
with measurements. The CDW and CDW-EIS methods are computation-
ally attractive, since the fully analytical expressions are available for the 
transition amplitudes for ionizing collisions involving one active electron. 
Recently Belkic12 reviewed theories on ionization in fast ion-atom col-
lisions with prospects for applications to hadron therapy for patients with 
deep-seated cancer for which high-energy ions (∼400 MeV/amu) are 
employed.

We shall first present the CDW-EIS approximation for TI within the 
IPM (CDW-EIS-IPM) and IEV (CDW-EIS-EIV) models. The CDW-EIS 
approach has been introduced by Crothers and McCann10 for single ion-
ization of hydrogen-like targets and later extended by Fainstein et al.11 
to multi-electronic targets with a remarkable success in many applica-
tions. In the CDW-EIS-IPM and CDW-EIS-EIV both probabilities for 
electron capture and ionization are computed by means of the CDW-EIS 
approximation.

Using the straight-line version of the IPM, the initial and final undis-
torted wave functions are distorted by multiplicative factors. These dis-
torted waves satisfy the asymptotic conditions for the Coulomb potentials 
in both channels. In the entrance channel the target bound-state wave 
function is multiplied by an eikonal phase which, at large distances, 
describes the state of the active electron in the projectile field. In the 
outgoing channel the distortion scheme varies according to different 
reactions. For electron capture (or ionization) the projectile bound-state 
(or target continuum) wave function is multiplied by a Coulomb factor 
which accounts for the fact that the active electron is simultaneously in 
the residual target (or projectile) continuum. Importantly, such a model-
ing acknowledges the following two features. First, in the final state the 
emitted or captured electron evolves in a two-center potential. Second, 
the perturbation represents the residual potential obtained from the 
application of the full Hamiltonian to the ansatz for the initial or final 
distorted waves. The differences between the CDW and CDW-EIS meth-
ods are in the initial bound-state distortion and the residual potential. 
Several possibilities are available for the construction of the target wave 
functions. Thus, for example, Galassi et al.2 followed Fainstein et al.11 
and used analytical wave-functions that permit obtaining the transition 
amplitude in a closed form. This is very useful since the computations 
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of the single-particle impact-parameter-dependent probabilities could be 
very time consuming.

For computations of the total cross sections for a TI process, we will 
employ the IPM and IEV. To this end, it is necessary to obtain the transition 
amplitude as a function of the impact parameter ρ. The differential cross 
section for the TI process is given by:

The quantity PTI(ρ, �κ) in the case of IPM is expressed by:

Here, PI(ρ, �κ) is the ionization probability per electron as a function of 
impact parameter ρ and the emitted electron momentum �κ in the final 
state. Further, PC(ρ) is the impact-parameter-dependent single-particle 
probability for electron capture which is computed using the three-body 
CDW-EIS model, as in the work of Busnengo et al.13

In the IEV model the collisional process involving helium can occur 
by following two different pathways. One electron can become ionized 
first, and then the other electron may be captured (ionization-capture). Or, 
capture of one electron occurs first, and then the other electron is emitted 
(capture-ionization). If we label the two electrons of helium as 1 (the first 
active electron) and 2 (the second active electron) the probability for TI 
can be written as:

Quantity PI1(or PI2) is the probability that electron 1 (or 2) is emitted, 
whereas PC1(or PC2) is the probability that electron 1 (or 2) is captured. 
In the IPM model, we have PI1 = PI2 and PC1 = PC2. Therefore, taking 
these features into account within Eq. (3), one can retrieve Eq. (2). In 
contrast, in the IEV model these probabilities are different and they are 
computed as follows. If the electron 1 is ionized, then PI1 corresponds to 
single ionization of helium, as computed using e.g., the CDW-EIS model 
according to the study by Fainstein et al.11 Further, PC2 is the probability 
for one-electron capture from He

+(1s) which may also be computed using 
the CDW-EIS model, as done by Martínez et al.14 In the second pathway, 

(1)
dQ

d�κ
= 2π

∫

∞

0

dρρPTI(ρ, �κ).

(2)P
(IPM)
TI

(ρ, �κ) = 2PI(ρ, �κ)PC(ρ).

(3)P
(IEV)
TI

(ρ, �κ) = PI1(ρ, �κ)PC2(ρ) + PI2(ρ, �κ)PC1(ρ).
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the first electron is captured from helium and PC1 is computed using the 
CDW-EIS model with the Roothaan–Hartree–Fock wave functions of 
Clementi and Roetti15 to describe the initial active electron orbital. In the 
computation from Ref. 2, capture is included to the ground state as well 
as to the excited states with the principal quantum numbers n = 2 and 3. 
The non-captured electron is supposed to remain frozen during this first 
step. The second step corresponds to ionization of He

+(1s) with the prob-
ability PI2. In the case of the H+ impact, PI2 corresponds to ionization of 
He

+(1s) by a neutral hydrogen atom and is computed considering that the 
projectile electron remains frozen during this second step. Thus, we take 
into account a screening effect due to the projectile electron, but neglect 
the anti-screening effects (excitation of the projectile electron). In the 
experiment of Bernardi et al.16 the emitted electron is recorded in coinci-
dence with the neutral projectile and, therefore, a process of simultaneous 
emission from the projectile and target cannot occur. If the first step cor-
responds to capture to the projectile ground state, two-center effects will be 
of minor importance for the H(1s) impact and thus PI2 can be computed 
using e.g., the first Born approximation of Bates and Griffing.17, 18 In the 
case of capture to the excited states H(nlm) (with n � 2), we consider that 
capture has been produced at small impact parameters, so that TI is domi-
nated by this region.

Since the excited projectile electron remains, on the average, outside 
the interaction region, it is assumed that it does not contribute to the 
ionization reaction. In this way, the process is considered to be produced 
by the projectile nucleus and, therefore, the CDW-EIS model can be 
employed. The same assumptions are used to study the He

+ impact case. 
The only difference with the hydrogen atom impact is in the fact that a 
Coulomb asymptotic perturbation potential of the effective charge +1 
appears for He

+. Thus, for the He
+(1s) impact, the CDW-EIS compu-

tation is performed corresponding to an effective projectile Coulomb 
potential with the net charge +1, whereas for the He

+(nlm) (n � 2), the 
CDW-EIS is applied using the effective projectile Coulomb potential of 
charge +2. Hence, the IEV model requires not only the single capture and 
ionization probabilities for a neutral helium atom, but also for the He

+ ion.
Although multiple differential cross sections provide detailed infor-

mation about collision processes, the total cross sections also yield good 
insights into global trends. Therefore, in the present review, we shall 
focus on total cross sections. Total cross sections for TI are obtained 
from differential cross sections after integration over the emitted 
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electron momenta (�κ). The results of total cross sections for TI in the 
He

2+

+ He and H
+

+ He collisions are plotted in Figures 12.1 and 
12.2, respectively. It is seen that with the CDW-EIS-EIV model,2 there 
is an improvement with respect to the findings from the CDW-IEV 
approach of Dunseath and Crothers,1 most notably at the intermediate 
impact energies. This could be a confirmation of the conjecture of these 
authors that the normalization of the CDW wave function might be the 
reason for which the CDW method overestimates the experimental data 
for TI. The computations in the CDW-EIS-IPM2 are in good qualitative 
agreement with the experimental data. Nevertheless, with the CDW-
EIS, the IEV model yields better results than the IPM. This supports the 
picture of a process in two successive steps. Notice that the difference 
between these two models is larger at intermediate impact energies and 

Figure 12.1 Total cross sections Q(cm

2) as a function of the laboratory incident energy 
E(keV/amu) for transfer ionization: He

2+
+ He −→ He

+
+ He

2+
+ e. The full curve: 

CDW-EIS-IEV model;2 the dot-dashed curve: CDW-EIS-IPM model;2 the dashed curve: 
CDW-IEV model;1 the symbol ◦ represents the theoretical result of the CDW-Born-IPM.3 
Experimental data: n Shah and Gilbody.20
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that they converge to each other at high energies. At high energies the 
ionization-capture channel dominates, but capture-ionization still gives 
a significant contribution of the order of 20%. Therefore, confluence of 
the IEV and IPM at high energies can be attributed to a subtle addition 
from different channels and not necessarily to the dominance of one of 
the channels.

Gayet and Salin3 used the IPM and the Hartree–Fock wave function 
for the initial two-electron bound state of helium and assumed that the 
second electron is not affected when the first electron is ionized or cap-
tured. In their computations,3 the capture amplitude was evaluated within 
the CDW-3B approximation by including a contribution from capture into 
low-lying excited states of the projectile. The ionization amplitude was 
computed using the first Born approximation. The authors from Ref. 3  
carried out their computations only at a single energy (400 keV/amu) and 
the results of such a CDW-Born model are displayed by the open circle in 
Figures 12.1 and 12.2.

Figure 12.2 Total cross sections Q(cm

2) as a function of the laboratory incident 
energy E(keV/amu) for transfer ionization: H+

+ He −→ H+ He

2+
+ e. The full curve: 

CDW-EIS-IEV model;2 the dot-dashed curve: CDW-EIS-IPM model;2 the dashed curve: 
CDW-IEV model;1 the symbol ◦ represents the theoretical result of the CDW-Born-IPM.3 
Experimental data: n Shah and Gilbody.20
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We can conclude that the total cross sections in the CDW-EIS-IEV 
model are in better agreement with the experimental data than those due 
to the CDW-EIV model. However, the results of the CDW-EIS-IEV are 
still larger than the experimental values, especially for the case of proton 
impact. In contrast, the cross sections from the IPM overestimate the 
experimental data, even if we use the single-particle probabilities from the 
CDW-EIS approximation. This supports a description of the investigated 
process as a combination of successive events in different paths. It should 
be re-emphasized that the IEV and IPM completely ignore the dynamic 
correlations and compute the net probability for transfer ionization as a 
product of the individual probabilities for transfer of one electron and 
independent ionization of the other electron.

Focusing our interest on the case of a bare swift ion impacting on a 
two-electron atomic target, a four-body theoretical representation appears 
as necessary in order to include the static and dynamic correlations. 
Therefore, we propose the formalism of a four-body reaction under study 
as a pure four-body problem, thus avoiding the said limitations of a three-
body representation. The four-body formalism of scattering theory within 
e.g., the CDW-4B and BDW-4B approximations could be anticipated as 
being more capable of yielding satisfactory agreement with the existing 
experimental data.

3.  THE FOUR-BODY CONTINUUM DISTORTED  
WAVE METHOD

The CDW-4B method for TI has been formulated and implemented 
by Belkic et al.21 for the He

2+

+ He collisions and good agreement was 
found with measurements. Later, the CDW-4B method employed by 
Mančev22 has also been reported to be in satisfactory agreement with the 
experimental data for the Li

3+

+ He collisions.
Let �s1, 2 and �x1, 2 be the position vectors of the electrons e1,2 relative 

to the nuclear charges ZP and ZT, respectively. Let electron e1 be captured 
and electron e2 simultaneously ionized. We denote by �R the position vec-
tor of the target nucleus (T) with respect to the projectile nucleus (P). The 
distance between the two electrons will be denoted by �r12 . The transi-
tion amplitudes in the “prior” (T−

if ) and “post” (T+

if ) forms for TI in the 
CDW-4B theory can be written as:21
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where ν = ZPZT/v, whereas the factor (ρv)2iν originates from inter-
nuclear potential ZPZT/R and it disappears from differential Q±

if (�κ) as well 
as total cross section Q±

if  after integration over �η (see Eqs. (7) and (8)). The 
symbol 1F1(a, b, x) stands for the usual Kummer hypergeometric function. 
The momentum vector of the ejected electron e2 with respect to its parent 
nucleus T is denoted by �κ. The wave function of the initial bound state is 
labeled by ϕi(�x1, �x2), whereas ϕf ( �s1) is the single electron hydrogen-like 
wave function of the (ZP; e1) system in the exit channel. The remaining 
quantities in transition amplitudes T±

if  are defined as follows:

The momentum transfers �α and �β are given by:

(4)

T−

if = N

∫∫∫

d �R d�s1 d�s2(ρv)2iνei�α·�s1+i �β·�x1−i�κ·�x2ϕ∗

f (�s1)1F1(iνT, 1, ivx1 + i �v · �x1)

×1F1(iζ , 1, ipx2 + i�p · �x2) [VP(R, s2)1F1(iνP, 1, ivs1 + i �v · �s1)ϕi(�x1, �x2)

−
�
∇x1

ϕi(�x1, �x2) ·
�
∇s1 1F1(iνP, 1, ivs1 + i �v · �s1)

−1F1(iνP, 1, ivs1 + i �v · �s1)(Ei − HT)ϕi(�x1, �x2)] ,

(5)

T+

if = N

∫∫∫

d �R d�x1 d�x2(ρv)2iνei�α·�s1+i �β·�x1−i�κ·�x2ϕi(�x1, �x2)

×1F1(iνP, 1, ivs1 + i �v · �s1)1F1(iζ , 1, ipx2 + i�p · �x2)

×

{

[VP(R, s2) + V (r12, x1)] 1F1(iνT, 1, ivx1 + i �v · �x1)ϕ
∗

f (�s1)

−
�
∇s1ϕ

∗

f (�s1) ·
�
∇x11F1(iνT, 1, ivx1 + i �v · �x1)

}

,

(6)VP(R, s2) = ZP

(

1

R
−

1

s2

)

, V (r12, x1) =

(

1

r12

−

1

x1

)

,

N = (2π)−3/2N−
∗

(ζ )N ′

, N ′

= N+(νP)N−
∗

(νT),

N−(ζ ) = Ŵ(1 + iζ )eπζ/2
,

N−(νT) = Ŵ(1 + iνT)eπνT/2
, N+(νP) = Ŵ(1 − iνP)eπνP/2

,

νP =

ZP

v

, νT =

ZT − 1

v

, ζ =

ZT

p
, �p = �v + �κ .

�α = �η −

(

v

2
−

Q

v

)

̂

�v, �β = −�η −

(

v

2
+

Q

v

)

̂

�v,
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whereas the vector �η is the transverse momentum transfer: �α +
�β = −�v 

and �η · �v = 0, where the impact velocity vector �v is directed along 
the Z-axis. The Q factor or the inelasticity factor is defined as: 
Q = Ei − (Ef + Eκ), where Ei and Ef = −ZP

2/(2n2

f ) are the initial  
and final binding energies, and Eκ = κ2/2. The “prior” transition 
amplitude contains the term with the factor (Ei − HT)ϕi(�x1, �x2) where  
HT = −∇

2

x1
/(2b) − ∇

2

x2
/(2b) − ZT/x1 − ZT/x2 + 1/r12, with b = mT/

(mT + 1), and mT is the mass of the target nucleus. If the bound-
state wave function for helium were known exactly, the function 
ϕ′

i (�x1, �x2) ≡ (Ei − HT)ϕi(�x1, �x2) would vanish identically. Since the 
helium exact wave function is unavailable, the contribution from ϕ′

i (�x1, �x2) 
is not equal to zero. This implies that this term, in principle, should be kept 
throughout in the “prior” transition amplitude. Such an addendum to the 
T-matrix element has been suggested by Belkic23 within the four-body 
first Born approximation with the correct boundary conditions (CB1-4B) 
for double electron capture. The numerical computations for double elec-
tron capture23 and for TI21 in the α–He collisions show that this correction 
does not give a significant contribution at high impact energies. For this 
reason, we shall not consider this term as a perturbation in the transition 
amplitude.

The triple differential cross sections for the TI process is given by:

whereas the total cross section reads as:

As it has been shown in Ref. 21, after analytical calculations carried out by 
means of the standard Nordsieck technique,24 the expressions for the total 
cross sections for the TI process in the CDW-4B model can be reduced to 
a seven-dimensional numerical quadrature.

In the “prior” and “post” forms of the transition amplitudes, there 
is a common perturbation: VP(R, s2) = ZP(1/R − 1/s2). Of course, 
 considered outside the T-matrix element, the potential VP2

= −ZP/s2 
 represents the direct Coulomb interaction between e2 and ZP. Its 
 asymptotic value V ∞

P2
(R) at large distances s2 is given by −ZP/R, since 

(7)
Q±

if (�κ) ≡

dQ±

if

d�κ
=

∫

d�η

∣

∣

∣

∣

∣

T±

if

2πv

∣

∣

∣

∣

∣

2

,

(8)Q±

if =

∫

d�κ Q±

if (�κ).
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s2 −→ R as R −→ ∞. Hence, the term VP(R, s2) is precisely the differ-
ence between the finite and asymptotic value of the same overall short-range 
potential VP(R, s2) = VP2

(s2) − V ∞

P2
(R), in accordance with the correct  

boundary condition.7, 25–27 However, when placed in the T-matrices, the 
potential VP2

 plays the role of a perturbation which can cause capture of 
electron e1. This could only occur through some kind of underlying cor-
relations between e2 and e1. For example, a part of the energy received by 
the electron e2 in its collision with ZP could be sufficient to facilitate the 
transfer of e1 to the projectile.

The “post” form T+

if  contains an additional term: V (r12, x1)=1/r12−1/x1, 
which is completely absent from the T−

if
. Here the dielectronic interac-

tion 1/r12 appears explicitly and when combined with the initial and final 
distorted wave functions on both centers ZP and ZT, it describes the well-
known Thomas P-e-e scattering. Due to the perturbation V (r12, x1), even 
the total cross section in the “post” form should be more adequate than 
its “prior” counterpart. The potential 1/x1 in V (r12, x1) = 1/r12 − 1/x1 
is the asymptotic tail of the 1/r12, since r12 → x1 as x1 → ∞. Hence, 
the term V (r12, x1) is the difference between the finite and asymptotic 
values of the same potential. As such, V (r12, x1) is a short-range interac-
tion, as required by the correct boundary conditions. Using the relation 
r12 = |�x2 − �x1|, we can develop 1/x1 = 1/|�r12 − �x2| in a power series 
around �x2 according to 1/x1 = 1/|�r12 − �x2| = 1/r12 − �r12 · �x2/r3

12
+ · · ·,  

so that V (r12, x1) = 1/r12 − 1/x1 = �r12 · �x2/r3

12
+ · · ·. This is justified by 

the small value of the x2 coordinate (of the order of the Bohr radius a0),  
since electron e2 always remains bound to the projectile. From here we can 
see that the potential V (r12, x1) contains information on the dielectronic 
 correlation e1 − e2. When the potential V (r12, x1) is placed in the T- 
matrix element, it plays the role of a perturbation which causes capture of 
electron e1.

As an illustration of the validity of the CDW-4B method for the 
TI process, we shall consider the total cross sections for the following 
reactions:

The total cross sections for process (9) at energies 40–1000 keV/amu 
are shown in Figures 12.3 and 12.4. In Figure 12.3, a comparison is made 

(9)He
2+

+ He(1s2) −→ He
+(1s) + He

2+

+ e,

(10)Li
3+

+ He(1s2) −→ Li
2+(1s) + He

2+

+ e.
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between the CDW-4B method21 and the CDW-IEV model.1 From the 
numerical point of view, the CDW-IEV model also encounters seven-
dimensional scattering integrals when dealing with the total cross sections 
for a TI process. The main difference between the CDW-IEV and the 
CDW-4B method is in the electron correlation treatment. Namely, the 
CDW-IEV model includes the static electron correlation (SEC) in the tar-
get by using the bound-state wave function of Pluvinage:28

where k′

= 1/(2k) and c(k) is the normalization constant, with k being 
a non-linear variational parameter. The corresponding lowest binding 
energy Ei,Pluv = −2. 878 for the ground state 1S of helium is obtained 
for k = 0. 41, in which case c(k) = 0. 603366. The wave function (11) 

(11)ϕi(�x1, �x2) = c(k)
Z

3

T

π
e
−ZT(x1+x2)e−ikr12

1F1(1 − ik′

, 2, 2ikr12),

Figure 12.3 Total cross sections Q(cm

2) as a function of the laboratory incident energy 
E(keV/amu) for transfer ionization: He2+

+ He(1s2) −→ He+(1s) + He2+

+ e. The full 
curve represents the  “post”  total cross section of the CDW-4B method21. The dashed 
curve represents the corresponding “post” cross sections of the CDW-IEV model.1 
Experimental data: ◦, Shah et al.;19 and •, Shah and Gilbody.20
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contains two entirely uncorrelated hydrogen-like wave functions with the 
unscreened charge ZT multiplied with a corrective r12-dependent term of 
the form exp (−ikr12)1F1(1 − ik′

, 2, 2ikr12).
In the CDW-IEV model,1 the dynamic electron correlations (DEC) are 

completely neglected. In sharp contrast, the CDW-4B method explicitly 
includes the DEC through the dielectronic interaction 1/r12 in the transi-
tion T-operator. It should be noted that the SEC can also be fully included 
in the CDW-4B method by using the corresponding wave function, but it is 
ignored in the present illustrations that provide an unambiguous assessment 
of the DEC alone. The relative role of the SEC and the DEC is otherwise 
apparent from the two curves associated with the CDW-IEM and CDW-4B 
methods, as depicted in Figure 12.3. A comparison of these two theories 
with the experimental data in Figure 12.3, clearly shows that the CDW-4B 

Figure 12.4 Total cross sections Q(cm

2) as a function of the laboratory incident energy 
E(keV/amu) for transfer ionization: He2+

+ He(1s2) −→ He+(1s) + He2+

+ e. The full 
and the dashed curves correspond, respectively, to the “post” and “prior” cross sections 
of the CDW-4B method.21 Experimental data: ◦, Shah et al.;19 and •, Shah and Gilbody.20
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method represents a substantial improvement over the CDW-IEV model. It 
can be concluded that the DEC plays a more important role than the SEC.

Further, we evaluate the “post-prior” discrepancy which arises from 
the unequal perturbation potentials used in the T-matrices (4) and (5). In 
Figure 12.4, we give the “prior” (Q−

if ) and the “post” (Q+

if ) cross sections 
of the CDW-4B method.21 A comparison in Figure 12.4 reveals that the 
“post-prior” discrepancy is very significant throughout the energy range 
40–1000 keV/amu. The “post” cross sections are larger by nearly 50% 
than the “prior” results at lower energies, with precisely the opposite pat-
tern at higher energies. Such a considerable difference can be attributed 
to the role of the dielectronic repulsion 1/r12. We recall that the difference 
between Q−

if  and Q+

if  is due solely to the potential V (r12, x1) = 1/r12 − 1/x1,  
which is present in the “post” and absent from the ‘prior” cross sections. 
In the same Figure 12.4, the theoretical cross sections are compared with 
the experimental data for reaction (9). It can be seen from Figure 12.4 
that, in contrast to the “prior” variant Q−

if , the “post” version Q+

if
 of the 

CDW-4B method is in good agreement with the measurements at impact 
energies E � 80 keV/amu. At lower energies, the results for Q+

if  are larger 
than the experimental values, as expected, since the CDW-4B method 
is a high-energy approximation. The superiority of the “post” over the 
“prior” version can be attributed primarily to the electron–electron 
interaction 1/r12 in the perturbation of the former variant.

The “post” and the “prior” total cross sections for TI in reaction (10), 
derived with the full three-term perturbation are plotted in Figure 12.5, 
where the experimental findings20, 32, 33 are also shown. The CDW-4B 
method is seen to be in good agreement with the experimental data. 
The “post” cross sections lie below the “prior” ones at impact ener-
gies between 100 and 3000 keV/amu, with the reverse behavior above 
3000 keV/amu. These computations have been performed for electron 
transfer to the ground state alone. Agreement between the CDW-4B 
method and the measurements at lower impact energies could be 
improved by including a contribution from all the excited states. 
The theoretical results from Ref. 34 are also depicted in Figure 12.5.  
These cross sections have been obtained using a relativistically covariant field 
approach via the second-order Feynman diagrams. As can be observed from 
Figure 12.5, the results from34 largely overestimate the experimental data.

As shown by Mančev,22 the “prior” total cross sections for reaction (10) 
computed with and without the term VP(R, s2) differ from each other 
by a considerable amount, which can reach 67% at 50–5000 keV/amu. 
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The potential −ZP/s2 from VP(R, s2) can cause capture of the electron e1 
through the e1 − e2 correlation. This points to a possible role of the DEC 
in the process (10). As we have seen above, the CDW-4B method is in very 
good accord with the experimental data on TI for the He

2+

+ He and 
the Li

3+

+ He collisions. Regarding the total cross sections for TI in the 
H

+

+ He collisions at higher impact energies, the CDW-4B method over-
estimates some of the measured data,28–31 whereas at intermediate energies 
satisfactory agreement is found with the experimental findings from Ref. 20.

4. THE FOUR-BODY BORN DISTORTED WAVE METHOD

The BDW-4B method has been formulated by Belkic and 
Mančev.8 This is a fully quantum-mechanical four-body model which 
explicitly takes into account all the particles and their interactions in the 

Figure 12.5 Total cross sections Q(cm

2) as a function of the laboratory incident energy 
E(keV/amu) for reaction: Li

3+
+ He(1s2) −→ Li

2+(1s) + He

2+
+ e. The full and the 

dashed curves represent, respectively, the “prior” Q−

if
 and “post” Q+

if
 cross sections of 

the CDW-4B method22 with the complete three-term perturbation potentials. The dot-
dashed curve is due to a second-order method34 from the field theory. Experimental 
data: � Shah and Gilbody;20 •, Woitke et al.;32 ◦ Sant’Anna et al.33
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collision, allowing for a systematic study of the correlated dynamics of 
the process. Further, the BDW-4B method preserves the correct bound-
ary conditions in both scattering channels according to the principles of 
scattering theory.25 Moreover, the BDW-4B method takes full account 
of the Coulomb continuum intermediate states of the captured electron 
in the exit channel. This makes the BDW-4B method coincide with the 
CDW-4B21 method in the exit channel and with the CB1-4B method 
in the entrance channel.
The transition amplitude in the BDW-4B method can be written as:8

The initial wave function �+

i
 with asymptotically correct boundary condi-

tion is given by:

where �ri is the relative vector of ZP with respect to the center of mass of 
(ZT; e1, e2)i. Function ϕi(�x1, �x2) represents the two-electron bound-state 
wave function of the atomic system (ZT; e1, e2)i, whereas �ki is the initial 
wave-vector, v is the incident velocity, and νi = ZP(ZT − 2)/v. The ini-
tial state is distorted even at infinity, due to the presence of the asymptotic 
Coulomb repulsive potential, V ∞

i = ZP(ZT − 2)/R, between the projec-
tile and the screened target nucleus.

In the BDW-4B theory the distorted potential Uf  and distorted wave 
χ−

f  are chosen according to:21

where the function φf  is defined by φf = (2π)−3/2e−i�kf ·�rf +i�κ·�x2, whereas 
�rf  is the position vector of T with respect to the center of mass of the 
system (ZP, e1)f + e2 in the exit channel, �kf  is the final wave-vector, and 
ν = ZP(ZT − 1)/v. The quantities ϕf (�s1), N−(ζ ), and N−(νT) have the 
same meaning as in CDW-4B model. The wave function χ

−

f  obeys the 
correct boundary conditions.

(12)T+

if = �χ−

f |Uf |�
+

i �.

(13)�+

i = ϕi(�x1, �x2)e
i�ki ·�ri+iνi ln(vR−�v· �R)

,

(14)Uf = VP(R, s2) + V (r12, x1) −
�
∇s1 ln ϕf ·

�
∇x1 ,

(15)
χ−

f = N−(ζ )N−(νT)φf ϕf (�s1)1F1(−iζ , 1, −ipx2 − i�p · �x2)

×1F1(−iνT, 1, −ivx1 − i �v · �x1)e
−i�kf ·�rf −iν ln(vR+�v· �R)

,
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Using Eqs. (13)–(15), the expression for the transition amplitude T+

if  in 
the BDW-4B method becomes:

where

The product of logarithmic Coulomb factors is denoted by the auxiliary 
function L(R) which can be reduced to the single term:

where ξ = ZP/v. The multiplying term (ρv)2iνi does not contribute to 
the total cross section and can be dropped from the transition amplitudes.

Hence, such a formulated BDW-4B method is exactly equal to the 
CDW-4B method21 in the exit channel and to the CB1-4B method in 
the entrance channel. Therefore, the BDW-4B method satisfies the correct 
boundary conditions in both scattering channels.

As an illustration of the validity of the BDW-4B model for the TI pro-
cess, we shall show the total cross sections for the following reaction:

The results of computations of total cross sections at impact energies 
300–10000 keV are depicted in Figure 12.6. As can be seen from this figure, 
the BDW-4B method is found to be in good agreement with the available 
experimental data.20, 29, 31 The displayed theoretical results in Figure 12.6 
have been obtained by using only the leading term �∇ ·

�
∇ in Eq. (16). In 

such computations the total cross section is reduced to a five-dimensional 
numerical quadrature. The number of integration points is gradually and 
systematically increased until convergence to two decimal places has been 
reached. The computations of the total cross sections with all the terms in 
perturbation potential (14) require a nine-dimensional quadrature which 
is numerically extensive and shall be pursued in full details in the near 
future. In the present work, for an illustration, the Table 12.1 reports on 
the results obtained by means of the Gauss–Legendre quadrature with  

(16)

T+

if = M

∫∫∫

d �R d�x1 d�x2ei�α·�s1+i �β·�x1−i�κ·�x2L(R)ϕi(�x1, �x2)

×1F1(iζ , 1, ipx2 + i�p · �x2) {[VP(R, s2) + V (r12, x1)]

×1F1(iνT, 1, ivx1 + i �v · �x1)ϕ
∗

f (�s1)

−
�
∇s1ϕ

∗

f (�s1) ·
�
∇x11F1(iνT, 1, ivx1 + i �v · �x1)

}

,

M = (2π)−3/2N−
∗

(νT)N−
∗

(ζ ).

(17)L(R) = eiνi ln(vR−�v· �R)+iν ln(vR+�v· �R)
= (ρv)2iνi (vR + �v · �R)iξ

,

(18)H
+

+ He −→ H
+

+ He
2+

+ e.
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Figure 12.6 Total cross sections (in cm

2) as a function of the laboratory incident energy 
for reaction H+

+ He −→ H+ He

2+
+ e. The full line represents the results of the  

BDW-4B theory.8 Experimental data: •, Schmidt et al.,31 �, Shah and Gilbody20 and ◦ 
Mergel et al.29

Table 12.1 Total cross sections (in cm

2) as a function of incident energy E for electron 
capture in reaction H+

+ He −→ H

+
+ He

2+
+ e. The presented theoretical results 

are obtained by means of the BDW-4B model using the one-parameter Hylleraas-type 
wave function for the initial helium bound state. The symbols Q represent the cross 
sections obtained with the complete perturbation potentials according to  
Eq. (16), whereas Q

∇
 refer to the cross sections obtained without terms V(r12, x1)  

and VP(R, s2) in Eq. (16). The results are obtained by the Gauss–Legendre quadrature 
with NG L = 8, 16, and 24 points. The numbers in the square brackets denote the  
powers of 10

E(keV) NGL Q
∇

(cm2) Q(cm2)

300 8 7.82[−21] 6.64[−21]
300 16 7.86[−21] 5.94[−21]
300 24 7.87[−21] 5.93[−21]
1000 8 5.92[−23] 5.28[−23]
1000 16 5.88[−23] 6.73[−23]
1000 24 5.89[−23] 5.73[−23]
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NGL = 8, 16, and 24 points at 300 and 1000 keV/amu. A comparison is 
made between the cross section obtained by using only the leading term 
�
∇ ·

�
∇ (as labeled with Q

∇
 in Table 12.1) and results obtained with all the 

terms in perturbation potential (as denoted by Q). The latter results Q 
include the dynamic correlations. Only capture into the ground state is 
taken into account.

As mentioned, the BDW-4B method describes the four-body nature 
of the original problem and satisfies the correct boundary conditions 
in the exit and exit channel. Double charge exchange has already been 
investigated by means of the BDW-4B method.7, 35–37 This approximation 
has also been applied, after the appropriate adaptation, to single electron 
capture.38–40 Recently, Monti et al.41, 42 proposed a four-body distorted 
wave-eikonal initial state (CDW-EIS-4B) model for single ionization of 
dielectronic atomic targets by impact of protons. It would be interest-
ing in the future to adapt their model41, 42 to TI and compare it with the 
CDW-4B and BDW-4B theories.

5. CONCLUSIONS

We have investigated the problem of transfer ionization in colli-
sions between bare ions and two-electron atomic systems at high impact 
energies. Our objective is twofold. One is to compare the formalisms of 
the independent particles/events with the four-body correlated electronic 
dynamics. The other is to contrast the continuum distorted wave theory, 
or CDW, with its two hybrid approximations known as the continuum 
distorted wave eikonal initial state, or CDW-EIS, and the Born distorted 
wave, or BDW, models. These three methods coincide with each other only 
in one channel regarding both the total scattering wave function and the 
associated perturbation potential in the T-matrix element. In the other 
channel (entrance or exit depending whether the “prior” or “post” form 
of the transition amplitude is employed), both the total scattering wave 
functions and the corresponding perturbation interaction potentials are dif-
ferent. The CDW method always uses the full Coulomb wave functions in 
the entrance and exit channels for the independent as well as the correlated 
motions of the electrons. These electronic dynamics in the continuum are 
simplified in the CDW-EIS and BDW models through the replacements 
of the full Coulomb waves by their asymptotic forms (eikonal logarithmic 
Coulomb phases) valid at infinitely large inter-particle separations. The 
two phases differ only in the spatial variable, which is �s or �R = �x −�s in 
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the CDW-EIS or BDW method, where �x and �s are the position vectors of 
the electron to be captured relative to the projectile and the target nucleus, 
respectively. This difference yields two different perturbation potentials in 
the transition amplitudes in the CDW-EIS and BDW methods. Thus, any 
difference in the performance of these two latter formalisms can be traced 
back to the fact that the dynamic variables �s and �x are coupled through �R 
in the eikonal Coulomb state from the BDW method, whereas only the 
decoupled position vector �s appears in the eikonal logarithmic distorting 
phase in the CDW-EIS approximation.

First, we compared the IPM and IEV models with the CDW and 
CDW-EIS approximations. We made use of the IEV model to simulate the 
successive events of ionization-capture and capture-ionization. The single-
particle probabilities as a function of impact parameters were computed 
using the three-body CDW and CDW-EIS approximations. It was found 
that the total cross sections obtained by means of the CDW-EIS-IEV model 
are in slightly better agreement with the experimental data than the results 
from the CDW-IEV model. However, the results from the CDW-EIS-IEV 
model are still significantly larger than the corresponding experimental val-
ues, especially for the case of proton impact. This points to a failure of the 
CDW-EIS method within the independent particle formalism for transfer 
ionization. Such a finding adds to a much more pronounced breakdown of 
the corresponding correlated version in the CDW-EIS-4B model, by some 
formidable 2–3 orders of magnitudes for double charge exchange in fast 
collisions between alpha particles and helium.

Second, the four-body theories, such as the CDW-4B and BDW-4B  
methods are presently applied to transfer ionization in the H

+

+He,

He
2+

+ He and, Li
3+

+ He collisions at intermediate and high impact 
energies. Agreement of the measurements with the theoretical total cross 
sections obtained by means of these two methods is favorable, especially at 
sufficiently higher impact energies.

Overall, similarly to the situation of double charge exchange, it can be 
concluded that at high energies, the CDW-4B and BDW-4B methods for 
transfer ionization are capable of reproducing the available experimental 
data. This represents an extrapolation of the well-known success of the 
CDW method for three-body collisions. Such a stable performance builds 
confidence into this theory when passing from simpler to complicated 
collisional problems with more than one active electron. This is in sharp 
contrast with the CDW-EIS approximation, which is utterly inadequate 
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for double charge exchange and also fails for transfer ionization for which, 
however, the CDW and BDW methods are successful. The same situation 
is likely to be encountered with molecular targets, such as water, which is 
the main tissue-like medium. Two or more electrons are expected to play 
a larger role in making transitions between ions and water molecules in 
the close vicinity of the Bragg peak. This is because at the end of their 
path through the traversed medium, the initially energetic ions abruptly 
slow down, thus enhancing the probability for single and multiple elec-
tron capture, as well as for simultaneous capture and ionization/excitation. 
At the last couple of centimeters before they eventually stop, partially or 
fully neutralized ions readily lose one or all their electrons only to quickly 
capture them again. Such direct and inverse processes occur literally thou-
sands of times for each ion near the Bragg peak prior to the establishment 
of a kind of equilibrium. These higher order collisional phenomena are 
anticipated to make noticeable contributions to the overall stopping power, 
calling for the corresponding improvements of the existing data bases for 
energy losses of ions in the traversed matter. Thus far, these data bases have 
exclusively been restricted to single electron transitions consisting mainly 
of the ionization or excitation scattering channels, and ignoring simultane-
ous transitions of two or more electrons.
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 35. Belkić, Dž. Double charge exchange at high impact energies. Nucl. Instrum. Methods 
Phys. Res., Sect. B 1994, 86, 62.
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Abstract

On the basis of the Dodd–Greider integral equations with Coulomb interactions, we 
have reviewed the theory of one-electron capture in collisions of hydrogen-like atoms 
and positively charged ions with account taken for electron re-scattering effects. This 
theory can be applied to study the influence of Coulomb interactions in the final state 
on angular and energy distributions of the products of a charge-transfer reactions at 
intermediate collision energies.

Using the four-body Dodd–Greider integral equations, we have reviewed a four-
particle formalism of the continuum distorted wave (CDW) method, applicable 
for describing a two-electron capture reaction in energetic ion-atomic collisions. 
An attractive feature of the CDW method is consistent and accurate consideration 
of asymptotic wave functions, which take into account the long-range nature of 
Coulomb interactions in both the entrance and exit reaction channels. In the past, this 
method been applied to double electron transfer in energetic H++ He and He2+ + He 
collisions, yielding good agreement with measurements.
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 1. INTRODUCTION

The one-electron charge-transfer process:

for swift ion-atomic collisions has attracted steady attention both from 
theoretical and experimental groups for many decades.1 The necessary 
information about process (1) is not limited to the integral characteristics 
(total cross section, reaction constant), but also includes details about the 
energy and angular distributions of the reaction products. This places high 
demands both for completeness and precision of the theoretical calculation. 
In the context of this work, swift collisions signify that the relative velocity 
of the colliding particles is greater than the effective orbital velocity υ0 of 
the captured electron.

The theoretical analysis of experimental data on the processes of type 
(1) may be summarized as follows. At collision velocities υ ∼ υ0Z

1/2

α  the 
cross sections of charge exchange and ionization are of the same order of 
magnitude. In the range υ > υ0Z

1/2

α , the probability of charge transfer 
decreases, such that ionization and excitation of atoms by energetic pro-
jectiles become the dominant processes. However, the latter is not always 
the case. A high probability of target excitation (or ionization) initiates new 
mechanisms of electron transfer that are the main subject of the present 
study. It is commonly accepted that in the range of intermediate and high 
collision velocities, the dominant processes are a one-step mechanism of 
electron transfer (1) and a two-step Thomas mechanism of electron capture 
through the intermediate discrete or continuum state. The latter becomes 
especially important with increasing collision energy.

Charge exchange in low- and intermediate-energy ion-atomic colli-
sions is commonly described by close coupling methods (see for instance 
Ref. 2, and references therein), whereas energetic collisions are usually 
treated by analytical perturbative approaches. The latter include differ-
ent variations of the distorted wave method3 which are used for both 
symmetrical and asymmetrical collisions. The main drawback of the 
mentioned approaches is the assumptions about the short-range charac-
ter of the considered interaction potential. It was pointed out, however 
(see Refs. 4–6) that such assumptions are not justified for applications 
to atomic collisions. As an illustration, we refer to Ref. 4 where it was 
demonstrated that the Strong Potential Born (SPB) approximation7 can-
not serve as a basis for constructing adequate charge-exchange theories, 

(1)AZα+

+ B → A(Zα−1)+
+ B+
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since the scattering amplitude includes a contribution from the diver-
gent terms. The reason for this drawback is the inaccurate account 
taken for the Coulomb effects in the initial and final states.4–6, 8–10 This 
circumstance confirms the general result of Merkuriev11 as well as of 
Merkuriev and Faddeev,12 who demonstrated how theories elaborated 
for short-range potentials could be adapted to long-range potentials.

In approximations of a single collision, the mentioned theoretical 
approaches reproduce the standard formulae of the Oppenheimer Brinkman 
Kramer (OBK) approximation.3, 13 However, one should keep in mind that 
the OBK-approximation is not, strictly speaking, a first order perturbation 
theory. The numerical calculations3 show that, compared to the experiment, 
the OBK-approximation systematically overestimates the cross sections 
and gives the wrong position of the maximum. The first order perturba-
tion theory (the first Born approximation) uses perturbation as the “full” 
interaction (i.e., the interaction of the electron with the projectile and the 
internuclear repulsion), which gives rise to the well known result of Jackson 
and Schiff (JS).14 Generally speaking, the validity of the Born approxima-
tion (and perturbation theory in general) for describing charge-exchange 
reactions is not at all obvious.3 In the case of excitation or ionization, it 
is possible, physically and mathematically, to determine the conditions for 
applicability of the perturbation theory. However, such conditions are not as 
clear in the case of charge-exchange reactions. In Refs. 15, 16 it was shown 
that at high collision velocities the second Born cross section for electron 
capture from a hydrogen-like atom with charge Zβ by a bare ion of charge 
Zα increases rapidly as Zβ increases. These results indicate that second- and 
higher-order Born terms must be considered in calculating the cross section 
for electron capture. The question of the asymptotic behavior of charge-
exchange amplitudes has also been investigated in Ref. 17 on the basis of 
Faddeev equations.18

Apart from the general problem of the Born approximation conver-
gence, there is also the long-standing difficulty regarding the choice of 
the perturbing potential. Due to the non-orthogonality of the initial and 
final states, different forms of the perturbing potential yield different results 
for the cross sections. The formal derivation (based on general scattering 
theory) of the first Born scattering amplitude for charge exchange gives 
rise to interaction potentials that include the internuclear potential. The 
simplest of these in the one-electron model reads:

(2)
U

JS
α = −

Zα

s
+

ZαZβ

R
,
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where �s is the radius-vector of the electron relative to the center of ion 
AZα+ and R is the internuclear separation. The first term in (2) describes 
the interaction of the active electron with ion AZα+. The second term 
describes the internuclear interaction in the entrance channel. Due to 
the orthogonality of the initial and final wave functions, the second term 
of (2) makes no contribution to the amplitude of the direct ionization. 
However, this term gives a non-zero contribution to the amplitude of the 
charge-exchange reaction. Potential (2) has been used in Refs. 14, 19 for 
calculating the Born cross sections of charge exchange of hydrogen atom 
by proton. This reaction does not contain the Coulomb interaction in the 
entrance and exit channels at large interatomic separations, and hence good 
agreement with experiment has been obtained. However, application of 
potential (2) for calculating the cross sections of electron capture by nucleus 
H

+ and He
2+ from the inner shell of multi-electron atoms (carbon, neon, 

and argon) gives rise to non-physical results that differ from the experiment 
by several orders of magnitude.20, 21

By investigating the non-orthogonality problem, Bates22 has shown 
that orthogonalization of the wave functions of the initial and final states 
leads to a modification of the perturbing potential. More precisely, this 
orthogonalization makes the contribution from the internuclear potential 
in (2) vanish. Instead, a new term appears which is similar to the inter-
nuclear interaction.23 At large interatomic separations, this new term has 
the asymptotic form Zα/R. The resulting perturbing potential which now 
approximately accounts for orthogonalization of the wave functions reads:

The authors Omidvar et al.24 and Halpern25 explained the usage of poten-
tial (3) by full electron shielding of the nuclei of atom B. Despite the criti-
cism of this argumentation23, 26 (especially for electron capture from inner 
shells), the results of cross section calculations within the Born approxima-
tion with potential (3) are in good agreement with experiment, even for 
electron capture from K-shell of the multi-electron atom.24

In this connection, it is important to be accurate and systematic in 
choosing the perturbing potential. At the very least, one should realize 
that the results of the obtained cross sections will differ according to the 
selection of Uα. One such approach is considered in the present work and 
consists of using few-body problem integral equations that are properly 
modified for Coulomb interaction.

(3)Uα = −

Zα

s
+

Zα

R
.
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On the basis of these introductory considerations, it is clear that the cor-
rect account of the Coulomb interaction in the charge-exchange reaction 
channels has not had a compelling solution based upon Refs. 20, 21, 23–25. 
On the other hand, the existing methods from few-body physics allow us to 
take account of Coulomb effects and to test these effects in the framework 
of the widely used continuum distorted wave (CDW) approximation.3

In the present work on the basis of modified Coulomb interaction three-
body Dodd–Greider integral equations,27, 28 the method of one-electron 
capture cross section calculation is presented. The amplitude of reaction (1) 
is obtained as the first term of the iteration expansion of the solution of the 
corresponding Dodd–Greider equations for the three-body scattering opera-
tor. This is the boundary-corrected continuum intermediate state (BCIS)5 
method. It is shown that without accounting for the effects of the Coulomb 
re-scattering of the captured electron, it is not possible to reproduce the 
Thomas peak in the angular distribution of the reaction products. In the 
approximation of the “single-step” collision, the BCIS method reduces to 
the version of the boundary-corrected first Born (CB1) method,8–10 where 
the asymptotic behavior of the particles in the entrance and exit channels of 
the reactions is described by the two-body Coulomb wave functions. The 
short-range interaction due to incomplete screening of the nucleus by atomic 
electrons is taken into account in the perturbing potential.

2. BASIC KINEMATICS AND DYNAMICS

The complex problem of an ion-atomic collision reaction (1) con-
sidered here is an idealized problem of nonrelativistic interaction of three 
spinless particles α (projectile A+Zα), γ (active electron e−), and β (target 
ion B+) with masses mα, mγ , mβ, respectively. The center of mass motion 
is assumed to be separated. Corresponding to possible separation of the 
three-body problem on fragments (β, γ ) + α; (α, γ ) + β; (α + β) + γ, we 
introduce, together with the full Hamiltonian H = H0 + V , the arrange-
ment channel Hamiltonians Hj = H0 + Vj ( j = α, β, γ), where H0 is the 
three-body kinetic energy operator in the center of the mass system of 
coordinates and V =

∑

α,β,γ Vj is the full interaction.  The subscript index j 
in Vj defines the missing particle in this interaction (i.e., the Vα is the opera-
tor of β and γ interaction). Finally, υj = V − Vj is the arrangement channel 
interaction. Let us introduce the Jacobi-type coordinates:

(4)�s = (a/mγ )�x − �rα, �x = (b/mγ )�s − �rβ , �R = �x −�s,
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where a = mγ mβ/(mγ + mβ) and b = mγ mα/(mγ + mα) are the reduced 
masses. Here �x is the radius-vector of the electron relative to the center of 
the residual target ion B+ in reaction (1). In terms of these coordinates, the 
operator H0 can be represented in two equivalent forms:

where the standard definition for the Laplace operator is used, and:

We shall split the potentials υj, j = 1, 2 into two parts:

where Wj defines the so-called “disturbing” potential which represents the 
weak long-range Coulomb forces partly responsible for the asymptotic 
behavior of the wave functions and Uj is the pure short-range perturbation 
responsible for electronic transitions.

From the definition of the Hamiltonian Hα, (Hβ) immediately follows 
its eigenfunctions |�α

i � (|�
β

f �):

where ϕi (ϕf ) is the wave function of the bound state of the pair 
(β, γ ) ((α, γ )) and exp(i�kα · �rα) (exp(i�kβ · �rβ)) is the plane wave, describ-
ing the relative motion of the free particles α (β) and (β, γ ) ((α, γ )) in 
the initial (final) state with momentum �kα (�kβ). Rigorously speaking, in 
the case of charged particles, the wave functions in (8) should be distorted 
by a phase factor which logarithmically depends on the distance between 
the particles.9 This is because the asymptotic motion of the particles in the 
Coulomb potential is not free, due to its long-range character.

Hence, following Ref. 3 we introduce modified arrangement chan-
nel asymptotic states |�α+

i � (|�
β−

f �) which, compared to |�α
i � (|�

β

f �) 
correctly describe the effects of the long-range Coulomb fields on the 
course of the collision process. Let ξα = rα −

ˆ
�kα · �rα (ξβ = rβ −

ˆ
�kβ · �rβ) 

be the parabolic coordinates of the α (β) particles before (after) the col-
lision, then ˆ�kj (j = α, β) are the identity vectors: ˆ�kj =

�kj/kj. The functions 
�α+

i (�
β−

f ) are represented by the product of the bound state wave 

(5)H0 = −

1

2µα

�
�rα −

1

2a
�
∇

�x = −

1

2µβ

�
�rβ −

1

2β
�
∇

�s,

(6)µα =

mα(mβ + mγ )

mα + mβ + mγ

, µβ =

mβ(mα + mγ )

mα + mβ + mγ

.

(7)υj = V − Vj = Uj + Wj ,

(8)|�α
i � = |ϕi(�x)� exp(i�kα · �rα), |�

β

f � = |ϕf (�s)� exp(i�kβ · �rβ),
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function of the pair (β, γ ) ((α, γ )) and distorted plane wave f +

α (f −

β ) 
with the unity amplitude:

with Coulomb phases σα and σβ given by:

where nα = Zα(Zβ + Zγ ), nβ = Zβ(Zα + Zγ ), and Zj is the charge of the 
jth particle (j = α, β, γ ); Zγ = −1.

We shall split the perturbing potential Wα and Wβ into two parts:

where wα and wβ are the arbitrary short-range potentials that depend 
only on the relative coordinates �rα and �rβ, respectively. The distorting 
potentials Wαd and Wβd in the asymptotic limits have a pure Coulomb 
behavior:

We shall introduce the arrangement channel Hamiltonian Hαd (Hβd):

and construct potentials Wαd and Wβd in such a way that the Schrödinger 
equations:3

shall be satisfied. Here Ei (Ef ) is the energy of the bound state of the pair 
(β, γ ) ((α, γ )) and E is the total energy of the three-body system.

(9)�α+

i = ϕi(�x)f +

α (�rα) ≡ ϕi(�x) exp(i�kα · �rα + iσα),

(10)�
β−

f = ϕf (�s)f
−

β (�rβ) ≡ ϕf (�s) exp(i�kβ · �rβ − iσβ),

(11)
σα = να ln(kασα), να = nα/υ, �υ =

�kα/µα,

σβ = νβ ln(kβσβ), νβ = nβ/υ ′

, �υ ′

=
�kβ/µβ ,

(12)Wα = wα + Wαd , Wβ = wβ + Wβd ,

(13)Wαd −→

rα→∞

nα

rα
, Wβd −→

rβ→∞

nβ

rβ
.

(14)Hαd = Hα + Wαd , Hβd = Hβ + Wβd ,

(15)(Hαd − E)�α+

i = 0, E = Ei + k2

α/2µα,

(16)(Hβd − E)�
β−

f = 0, E = Ef + k2

β/2µβ ,



Volodymyr Yu. Lazur and Mykhaylo V. Khoma370

The use of the arrangement channel Hamiltonian Hαd (Hβd) in the 
form of Eq. (14) has a clear physical motivation. Since electrons are influ-
enced by the Coulomb field in any point of configurational space, the 
perturbations Wαd and Wβd (which approximate the potential of the distant 
Coulomb center) shall be included in the arrangement channel (i.e., zero-
order) Hamiltonian.

Let us obtain Wαd in an explicit form. From definition (14), 
Wαd = Hαd − Hα. Acting with operator (Hαd − Hα) on the state |�α+

i � 
and taking into account relations (5), (9), and (15), one obtains:

Using a similar technique, one obtains:

Let us note that representations (9) and (10) are not valid along the so-
called forward scattering direction (ˆ�rα =

ˆ
�kα, ξα = 0) ((ˆ�rβ =

ˆ
�kβ , ξα = 0)), 

where the phases σα (σβ) become infinite. On this special direction, the 
asymptotic of the functions �α+

i  and �β−

f
 can be described in terms of 

special functions.12

Consider the full Green’s function (resolvent) for the system of three 
particles:

where ε is an infinitely small positive number. Let us define G+

αd
 and G−

βd as 
the Green’s functions of the model arrangement channel Hamiltonian Hαd 
and Hβd, respectively:

Let us introduce the Møller wave operators ω+

α (ω−

β ):

(17)
Wαd|�

α+

i � = ϕi(�x)(k2
α/2µα + �

�rα/2µα)|f +

α (�rα)�

= (nα/rα)[1 − (να/(kαξα))]|�α+

i �.

(18)Wβd|�
β+

f � = (nβ/rβ)[1 − (νβ/(kβξβ))]|�
β−

f �.

(19)G±(E) = (E − H ± iε)−1
,

(20)G+

αd = (E − Hαd + iε)−1
, G−

βd = (E − Hβd − iε)−1
.

(21)ω+

α = 1 + g+

αdwα ≡ 1 + (E − Hαd − wα + iε)−1wα,

(22)ω−

β = 1 + g−

βdwβ ≡ 1 + (E − Hβd − wβ − iε)−1wβ ,
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that transform the eigenfunction �α+

i (�
β−

f ) into the distorted wave 
χα+

i (χ
β−

f ) in the entrance (exit) channel of reaction (1):

We shall define now operators U±

αβ
 as in Refs. 27, 28:

where the symbol † denotes Hermitian conjugation. The matrix elements 
of the operators U±

αβ
 between the Coulomb asymptotic states |�α+

i � and 
|�

β−

f � are the transition amplitudes T±

αβ from channel α to channel β cor-
respondingly in the post- and prior-formalisms:

The integral equations for transition operators U±

αβ
, obtained by Greider 

and Dodd,27 read (for illustration consider the operator U−

αβ
 only):

In the prior formalism of the considered theory, potential Wβ is arbitrary 
and potential Wα should not lead to rearrangement in the channel β, i.e.,

The first term on the right hand of Eq. (28) leads to the following transi-
tion amplitude in the Born approximation with distorted waves:

Although Eq. (28) is formally exact, its solution cannot be obtained within 
the standard integral equations methods. The reasoning is the follow-
ing. The kernel of integral equation (28) contains disconnected diagrams 

(23)|χα+

i � = ω+

α |�α+

i �,

(24)|χ
β−

f � = ω−

β |�
β−

f �.

(25)U+

αβ = ω−

β

†
(υβ − Wβ)[1 + G+(υα − Wα)]ω+

α ,

(26)U−

αβ = ω−

β

†
[1 + (υβ − Wβ)G+

](υα − Wα)ω+

α ,

(27)T±

αβ = ��
β−

f |U±

αβ |�α+

i �.

(28)U−

αβ = ω−

β

†
(υα − Wα)ω+

α + ω−

β (υβ − Wβ)G−

βdU−

αβ .

lim
ε→0

iε��
β−

f |ω+

α |�α+

i � = 0.

(29)T−

αβ(DWB) = ��
β−

f |ω−

β

†
(υα − Wα)ω+

α |�α+

i � ≡ �χ
β−

f |υα − Wα|χα+

i �.
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responsible for processes where one particle does not interact with the 
other two. As a consequence, integral equation (28) contains singulari-
ties due to the presence of delta-functions representing the momentum 
conservation for the particles that do not interact with the selected pair of 
other particles. These arguments (for detailed discussion see Ref. 27) raise 
questions about the convergence of the Born series within the distorted 
waves method, i.e., the iteration expansion of Eq. (28). One should note 
that the arguments used in Ref. 27, although applicable in the case of the 
iteration series for transition operator U

+

αβ in post-formalism, lead to a con-
clusion about its divergence. Essentially, these findings generalize the results 
of Ref. 29, concerning the divergence of the Born iteration series within 
the plane wave representation of the three-body rearrangement scattering 
problem.

All these circumstances dictate the need for some restructuring (or 
rearrangement) of Eq. (28) similar to that carried out for the multiple scat-
tering theory30 and Faddeev equations.18 Such restructuring must be done 
with the condition that the kernel of the integral equation (28) contains 
no disconnected diagrams. The details of such a cumbersome restructur-
ing can be found in Ref. 28 and are omitted here. We shall present only 
the final result. With this aim, we shall introduce the auxiliary potential υx, 
that corresponds to the virtual intermediate channel “x” and the Green’s 
operator g+

x = (E − H + υx + iε)−1 corresponding to this potential. In 
these designations the modified (with account for the long-range nature 
of Coulomb interaction) Dodd–Greider equation for quantum mechanical 
operator U−

αβ of the three-particle rearrangement scattering has the final 
form:

where

The main advantage of (30) compared to (28) is that different choices of υx 
and Wβ can be made, all satisfying the prescribed condition of eliminating 
disconnected diagrams. Thus, in the case when the mass of one particle is 
much less (or much greater) than the mass of the other two, the auxiliary 
potentials υx and Wβ can be chosen in such a way that kernel K of the 
rearranged integral equation (30) is continuous in a suitable Banach space, 

(30)U−

αβ = I + KU−

αβ ,

(31)
I = ω−

β

†
[1 + (υβ − Wβ)g+

x ](υα − Wα)ω+

α ,

K = ω−

β

†
(υβ − Wβ)g+

x vxG+

βd .
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i.e., it does not include disconnected diagrams and all the Green’s functions 
in this equation are the solutions of equations with separable variables, and 
hence, can be evaluated in the explicit form. Inhomogeneous term I in 
Eq. (30) differs from the inhomogeneous term of Eq. (28) and represents a 
1st order approximation for convergent iteration series of the solution of 
Eq. (30). Now, using (30), the amplitude T−

αβ from Eq. (27) reads:

where RS designate all the terms that take into account multiple re-scatter-
ing, where the rest ��β−

f |KU−

αβ |�α+

i �, according to (31), contains the terms 
with at least three sequential re-scatterings. If we assume that the processes 
with multiple re-scatterings do not significantly affect the shape of angular 
distribution, the second term of (32) can be omitted. Hence, the amplitude 
of reaction (1) in the prior-formalism reads:

Comparison of (29) and (33) demonstrates that the first term T−

αβ(DWB) 
of (33) allocates the amplitude of the direct one-step mechanism for charge 
transfer within the distorted wave Born approximation method. The sec-
ond term of (33) describes the two-step mechanism of electron capture 
through the intermediate discrete or continuous state. A similar result holds 
for the transition amplitude T+

αβ in the post-formalism:

To conclude this section we should discuss once more the fundamental 
property of Eq. (30). From a formal point of view, it is as complicated for 
a direct solution as the Faddeev-type equations.18 However, there is no 
need for an exact solution of Eq. (30). The essence of the method consid-
ered here consists of the following. It is enough to make only the iterative 
approximation for the operator that describes the rearrangement of the 
system.

Transformation of Eq. (28) into Eq. (30) in the framework of distorted 
wave method allows one to obtain the iteration series (the so-called 
Coulomb boundary-corrected Born series) for the transition operator 
which, as shown by many calculations (see Refs. 3, 31, 32) rapidly converges.

(32)T−

αβ = ��
β−

f |I |�α+

i � + ��
β−

f |KU−

αβ |�α+

i � = ��
β−

f |I |�α+

i � + RS,

(33)T−

αβ = T−

αβ(DWB) + ��
β−

f |ω−

β

†
[ g+

x (υβ − Wβ)](υα − Wα)ω+

α |�α+

i �.

(34)T+

αβ = ��
β−

f |ω−

β

†
(υβ − Wβ)[1 + g+

x (υα − Wα)]ω+

α |�α+

i �.
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3.  THE FIRST BORN METHOD WITH CORRECT 
BOUNDARY CONDITIONS

Let us calculate the contribution of the direct one-step mechanism 
to the cross section of reaction (1) in the framework of the first Born 
approximation with distorted waves, when the amplitude of the process is 
given by:

By acting with operators (E − Hα − Wα + iε) and (E − Hβ − Wβ + iε) 
on both parts of Eqs. (23) and (24), respectively, and taking the limit ε → 0 
with account of Eqs. (15) and (16), we come to the following equations:

The boundary conditions have the forms:

where the Coulomb asymptotic waves are defined by relations (9) and (10). 
Let us define the explicit form of the potentials of arrangement channel 
interactions υα and υβ:

Here for R → ∞, it follows: υα ≈ Zα(Zβ − 1)/R≡W c
αd

 and 
υβ ≈ Zβ(Zα − 1)/R≡W c

βd. The specific form of the short-range poten-
tials wα and wβ will be chosen in the symmetric form:

which ensures the identical interpretation of the distortion in the 
entrance and exit channels. Using the above formulae for wα and wβ, we 

(35)T−

αβ = ��
β−

f |ω−

β

†
(υα − Wα)ω+

α |�α+

i � = �χ
β−

f |Uα|χα+

i �,

(36)T+

αβ = ��
β−

f |ω−

β

†
(υβ − Wβ)ω+

α |�α+

i � = �χ
β−

f |Uβ |χα+

i �.

(37)(E − H0 − Vα − Wα)|χα+

i � = 0,

(38)(E − H0 − Vβ − Wβ)|χ
β+

f � = 0.

(39)χα+

i −→

rα→∞

�α+

i , χ
β−

f −→

rα→∞

�
β−

f ,

(40)υα = Vβ + Vγ = −

Zα

s
+

ZαZβ

R
, υβ = Vα + Vγ = −

Zβ

x
+

ZαZβ

R
.

(41)wα = W c
αd − Wαd , wβ = W c

βd − Wβd ,
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rewrite partitioning (7) for channel interactions υα, υβ in the following 
form:

With these partitioning Eqs. (37) and (38) read:

The main technical problems with solving Eqs. (44) and (45) occur when 
distortion potential Wα (Wβ) and Laplace operator �

�rα (�
�rβ ) depend on 

different relative variables. The connection between those variables follows 
from Eq. (4) as:

Since the electronic mass is much smaller than the mass of the particles 
α and β, one can simplify Eqs. (44) and (45). Neglecting the terms pro-
portional to a/mβ and b/mα, one obtains for the coordinates: �rα ≃ �rβ ≃ �R. 
Hence, the variables in Eqs. (44) and (45) can be separated and the wave 
functions χ

α+

i , χ
β−

f  can be represented in the factorized forms:

where F+

α (F−

β ) is the continuum Coulomb wave function which describes 
the motion of the particle α (β) relative to the center of mass of the pair 
(β, γ ) ((α, γ )) in the initial (final) state with the relative kinetic energy 
k2

α/2µα(k2

β/2µβ):

(42)Wα =

Zα(Zβ − 1)

R
, Uα = υα − Wα =

Zα

R
−

Zα

s
,

(43)Wβ =

Zβ(Zα − 1)

R
, Uβ = vβ − Wβ =

Zβ

R
−

Zβ

x
.

(44)
(

E +

�
�rα

2µα

+

�
�x

2a
+

Zβ

x
−

nα

R

)

χα+

i = 0,

(45)
(

E +

�
�rβ

2µβ

+

�
�s

2b
+

Zα

s
−

nβ

R

)

χ
β−

f = 0.

(46)�rα = �R − (a/mβ)�x, �rβ = �R + (b/mα)�s.

(47)χα+

i = ϕi(�x)F+

α (�rα), χ
β−

f = ϕf (�s)F
−

β (�rβ),

(48)F+

α (�rα) = N (+)(να) exp(i�kα · �rα)1F1(−iνα, 1, ikαξα),

(49)F−

β (�rβ) = N (−)(νβ) exp(i�kβ · �rβ)1F1(iνβ , 1, −ikβξβ),
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Here 1F1(a, b, x) is the confluent Kummer hypergeometric function. By 
substitution of the explicit expressions for χ

α+

i , χ
β−

f  and Uα,β into (35) 
and (36), one obtains:

where

Taking into account that mγ ≪ mα ∼ mβ, the following kinematic relations 
are straightforward:

where we use the following definitions:

and �η is the orthogonal (relative to vector �υ) component of the transmitted 
momentum (�η · �υ = 0) and θ is the scattering angle (the angle between 
the vectors �kα and �kβ). Now, taking into account assumption �rα≈�rβ≈�R, the 
reaction amplitude T±

αβ reads:

(50)N (±)(νj) = Ŵ(1 ± iνj) exp(−πνj/2), j = α, β.

(51)T−

αβ =

∫ ∫

d�rα d�x ϕ∗

f (�s)

(

Zα

R
−

Zα

s

)

ϕi(�x)ei�kα ·�rα−i�kβ ·�rβ L(�rα,�rβ),

(52)T+

αβ =

∫ ∫

d�rβ d�s ϕ∗

f (�s)

(

Zβ

R
−

Zβ

x

)

ϕi(�x)ei�kα ·�rα−i�kβ ·�rβ L(�rα,�rβ),

(53)L(�rα,�rβ) = N (+)N (−)F(−iνα, 1, ikαξα)1F1(iνβ , 1, −ikβξβ).

(54)�kα · �rα −
�kβ · �rβ = −a �v · �x − �α · �R =

�β · �x + �α · �s,

(55)�α = (b/mγ )�kβ −
�kα = αz

ˆ
�υ + �η, αz = −mγ υ/2 − �E/υ,

(56)�β = (a/mγ )�kα −
�kβ = βz

ˆ
�υ − �η, βz = −mγ υ/2 + �E/υ,

(57)�α +
�β + �υ = 0, �E = Ef − Ei, �υ ′

≃ �υ,

(58)�η = (η cos �
�η, η sin �

�η, 0), η2
= 4µαµβυ2

sin
2(θ/2),
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where

In further calculations we assume that the atoms in the entrance 
and exit channels have zero orbital momentum, hence the wave functions 
read:

and the energies are defined as Ei,f = −Z2

α,β/2. We shall demonstrate the 
calculation of the scattering amplitude on example of T−

αβ. Consider the 
integral:

where

Using the integral Fourier representation for exp(−Zβx)/x:

where �x = �s + �R, and equality:

(59)

T−

αβ = N1Zα

∫

d �R

∫

d�s

(

1

R
−

1

s

)

ϕ∗

f (�s)ϕi(�x)eib�υ·�s+i �β· �R
˜F( �R), (60)

T+

αβ = N1Zβ

∫

d �R

∫

d�x

(

1

R
−

1

x

)

ϕ∗

f (�s)ϕi(�x)e−ia�υ·�x−i�α· �R
˜F( �R),

˜F( �R) = 1F1(−iνα, 1, ikαR − i�kα · �R)1F1(−iνβ , 1, ikβR + i�kβ · �R),

N1 = N (+)N (−)
= Ŵ(1 + iνα)Ŵ(1 + iνβ) exp

(

−

π(να + νβ)

2

)

.

(61)ϕi(�x) = Z
3/2

β π−1/2e−Zβx
, ϕf (�s) = Z3/2

α π−1/2e−Zα s
,

(62)K (−)(Zα, Zβ) =

∫

d �R R−1
exp(i �β · �R)˜F( �R)I−

αβ( �R),

(63)I−

αβ( �R) =

∫

d�s(xs)−1
exp(−Zαs − Zβx − ib�υ · �s).

(64)
exp(−Zβx)

x
=

1

2π2

∫

exp(i�q · �x)

q2
+ Z2

β

d�q,

(65)
1

uv
=

∫

1

0

dt(ut + (1 − t)v)−2
,
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the integration in (63) over �s leads to expression:

Here, the following definitions have been used:

Computing the integral in (66) by employing the theorem residues, one 
obtains:

Calculation of the integral in (62) can be made in the framework of the 
method proposed by Nordsieck.33 We shall omit the algebra and give 
here only the final result for reaction amplitude T

−

αβ in the form of a one-
dimensional integral:

where, 2F1(a, b, c, x) is the Gauss hypergeometric function, and

Here, vector �p =
�β − �Q is decomposed into the parallel pz and perpen-

dicular p⊥ components relative to the vector �υ:

(66)I−

αβ( �R) =

2

πb2

∫

1

0

dt

∫

d�q exp(−i�q · �R)
[

|�q − �Q|
2
+ �2

−

]2
.

(67)�Q = (t − 1)�υ, �2
−

= υ2t(1 − t) + tZ2
β + (1 − t)(Zα/b)2.

(68)I−

αβ( �R) = 2πb−2

∫

1

0

dt[�
−
]
−1

exp(−i �Q · �R − R�
−
).

(69)T−

αβ = N1N
(−)
2

Zα

∫

1

0

dt
∂

∂Zβ

(

−

1

�
−

∂

�
−

+

∂

∂Zα

1

�
−

)

�(−)(�
−
),

(70)�(−)(�
−
) =

4π

ω2
−

[

1 −

2µαυσ
+

ω2
−

]iνα
[

1 −

2µβυσ
−

ω2
−

]iνβ

2F1(−iνβ , −iνα , 1, τ
−
),

(71)N
(−)
2

= (2/b2)(ZαZβ)3/2
, ω2

−
= p2

+ �2

−
,

(72)τ
−

=

4µαµβp2

⊥
v

2

(ω2

−
− 2µαυσ

+
)(ω2

−
− 2µβυσ

−
)
, σ

±
= i�

−
± pz.

(73)
�p = (pz, p

⊥
), pz = �p ·

ˆ
�υ = υ

(

1

2
− t

)

+

�E

υ
, �p

⊥
= �η.
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In order to compute the integral (69), one should first differentiate over 
the Zα, Zβ, and �

−
 variables and, at the final stage, make the following 

substitutions:

Using the same approach, one can compute the reaction amplitude T
+

αβ 
in the post-formalism. Omitting the algebra, we represent here only the 
final result:

and the following designations have been used:

Employing the same differentiation technique over the charges Zα and Zβ, 
one can take into account the polynomial structure of the wave functions 
of the excited states of hydrogen-like atom or ion.

Let us compare the described method for calculating charge-transfer 
amplitude with the traditional approximations of the first order perturba-
tion theory. First, we discuss the asymptotic properties of the perturbing 
potentials Uα and Uβ as a function of R. Using (4), we shall represent 
vector �s(�x) in terms of �R and �x(�s) and expand the Coulomb potential 
Vβ = −Zα/s (Vα = −Zβ/x) into the series over the small parameter 
x/R (s/R). As a result, we come to the following asymptotic (at R → ∞) 
representations:

να → Zα(Zβ − 1)/υ, νβ → Zβ(Zα − 1)/υ.

(74)T+

αβ = ZβN1N
(+)
2

∫

1

0

dt
∂

∂Zα

(

−

1

�
+

∂

�
+

+

∂

∂Zβ

1

�
+

)

�(+)(�
+
),

(75)�(+)(�+) =

4π

ω2
+

[

1 −

2µαυσ−

ω2
+

]iνα
[

1 −

2µβυσ+

ω2
+

]iνβ

2F1(−iνβ , −iνα , 1, τ+),

(76)N
(+)
2 = (2/a2)(ZαZβ)3/2, τ

+
=

4µαµβq2
⊥
υ2

(ω2
+

− 2µαυσ
−
)(ω2

+
− 2µβυσ

+
)
,

�q = (qz, �q
⊥
), �q

⊥
·�υ = 0, qz = (t − 1/2)υ + �Eυ−1, �q

⊥
= −�η.

(77)Vβ ≃ −

Zα

R
−

Zα(̂�R · �x)

R2 + · · · , Vα ≃ −

Zβ

R
−

Zβ(̂�R · �s)

R2 + · · ·
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which implies that when R tends to infinity, the potential Uα (Uβ) tends 
to zero as R−2:

This gives us grounds to assume that potentials Uα (Uβ) are short-range. 
Hence, one can observe a correlation between the behavior of the perturb-
ing potentials Uα (Uβ) at large distances R and the asymptotic properties of 
distorted waves χα+

i  and χ
β−

f . This correlation leads to the short-range 
character of the perturbation Uα (Uβ) at the correct behavior (39) of the 
χα+

i (χ
β−

f ) functions at infinity. Substitution in Eq. (51) of the plane waves 
exp(i�kα,β · �rα,β) instead of functions F±

α,β and the channel interaction υα 
instead of the transition operator Uα leads to the final result for transition 
amplitude:

This determines the direct one-step mechanism of reaction (1) in the 
framework of the standard first Born (B1) approximation (the so-called 
Jackson–Schiff approximation14). In the case of resonant charge transfer of 
atomic hydrogen on the proton (Zα = Zβ = 1), the Coulomb wave func-
tions F±

α,β reduce to the plane waves and formulae (51) and (79) coincide. 
The discrepancy of these formulae for Zα,β �= 1 is due to the fact that in 
the standard Born approximation, the Coulomb interaction in the entrance 
and exit channels are not taken into account. Hence, the channel wave 
function does not satisfy the Coulomb boundary conditions of the scatter-
ing problem. Thus, expression (51) may be considered as a correct general-
ization of the Born approximation which accounts for Coulomb distortion 
of the asymptotic behavior of the wave functions in both the entrance 
and exit channels of the charge-exchange reaction (1). This generalization, 
which is the boundary-corrected first Born approximation, or CB1, will be 
used in the next sections of this work. When the collision energies of the 
projectiles are sufficiently high, the Coulomb wave functions do not differ 
substantially from the plane waves, and hence the CB1 and the usual first 
Born approximations almost coincide.24, 25 However, already at intermedi-
ate collision energies, it is necessary to take into account the long-range 
Coulomb effects that substantially influence the behavior of the charge-
exchange cross sections.

(78)Uα = −

Zα

R
−

Zα

s
→ −ZαO(R−2), Uβ = −

Zβ

R
−

Zβ

x
→ −ZβO(R−2).

(79)T
(B1)
αβ (�η) =

∫ ∫

d�rα d�x ϕ∗

f (�s)

[

ZαZβ

R
−

Zα

s

]

ϕi(�x)ei�kα ·�rα−i�kβ ·�rβ .
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We now reemphasize that when using the CB1 approximation, we neglect 
the re-scattering effects, i.e., possible multiple-step reaction mechanisms. The 
role of two-step transitions through the intermediate (bound or continuum) 
state increases with increasing projectile energy.32 The quantitative descrip-
tion of such transitions becomes possible only with inclusion of the post-
collision interaction into the final state wave function. That is equivalent to 
accounting for the effects of multiple-step re-scattering of the electron on 
the rest of the target ion. In the next section, on the basis of the first iteration 
of the Dodd–Greider equations (30) we shall disuss the one- and two-step 
electron capture mechanisms and clarify their connection with the angular 
distribution of the reaction products. Alternatively, re-scattering effects can be 
described by the boundary-corrected second Born (CB2) approximation.32

4.  THE CONTINUUM-INTERMEDIATE STATE METHOD 
WITH THE CORRECT BOUNDARY CONDITIONS

Let us transform the expression for the reaction amplitude T−

αβ in 
the following way. We introduce the scattering vector |�β−

f � by definition:

Substitution of (23) and (80) into (33) leads to the following representation 
of the reaction amplitude T−

αβ, which takes into account both the direct and 
the two-step mechanisms:

In order to obtain the differential equation for the wave function �β−

f
, we 

shall multiply both parts of Eq. (80) with (E − H + υ
†

x − iε) from the left 
and compute the limit ε → 0

+ taking into account Eq. (38). As a result we 
obtain:

Since the solution of Eq. (82) with realistic local potential υx involves con-
siderable mathematical difficulties, one should attempt to replace potential 
υx with an operator, which should be chosen so the condition:

(80)|�
β−

f � = [1 + g+†

x (υβ − Wβ)]χ
β−

f �.

(81)T−

αβ = ��
β−

f |υα − Wα|χα+

i �.

(82)(E − H + υ†

x )|�
β−

f � = υ†

x |χ
β−

f �.

(83)υ†

x |χ
β−

f � = 0,
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is satisfied. Also, the solution of the corresponding homogeneous equation 
should be represented as:

with the following boundary conditions:

By substituting Eq. (85) into (82) and taking into account (83), we come 
to the following equation relative to the h−

β :

We now return to the question concerning the choice of operator υx. 
Closely related to this choice is the need to improve the convergence of 
the iteration series of integral equation (30) for operator U−

αβ. As described 
in the previous section, the proper choice of the operator υx eliminates 
the disconnected diagrams from its kernel (31). Indeed, by definition, (43) 
of the perturbation Uβ = υβ − Wβ as a part of (31), contains terms that 
depend solely on the relative vectorial variables �x and �R. Hence, in order to 
eliminate the disconnected diagrams from the K operator, υx should only 
act over the variable �s, which is related to pair (α, γ ). Such an operator can 
be constructed by the following definition:

on the set of elements � ∈ H, where H is the subspace of continuum states 
of the Hamiltonian H. The domain of differential operator υx includes 
only those elements � ∈ H whose image � ′ obtained by the action υx 
belongs to the same Hilbert space H (i.e., υx� = � ′ under the condi-
tion �, � ′

∈ H). The latter is equivalent to the requirement that elements 
� admit a representation similar to (84). As a consequence, although the 
operator contains singularities at the points of configurational space where 
function ϕf (�s) is equal to zero, the result of action υx� has no such singu-
larities. That the operator υx satisfies condition (83) is easily seen by using 
the obvious relation �∇

�s(χ
β−

f /ϕf (�s)) =
�
∇

�sF
−

β (�rβ) = 0.
Thus, when choosing the operator υx in a form (87), the kernel K 

of the integral equation (30) is defined only by those variables which 

(84)|�
β−

f � = |ϕf (�s)h
−

β �

(85)�
β−

f −→

rβ→∞

�
β−

f = ϕf (�s) exp[i�kβ · �rβ − iνβ ln(kβξβ)].

(86)ϕf (�s)(E − Ef − H0 − υβ)h−

β +

1
b

�
∇

�sϕf (�s)· �∇�sh
−

β + υ†
x (ϕf (�s)h

−

β ) = 0.

(87)υx� = −

1

b
�
∇

�sϕf (�s)· �∇�s

(

�/ϕf (�s)
)

,
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completely correspond to the connected diagrams. This means that the 
iteration series of Eq. (30) should, in principle, converge faster and in a 
wider energetic range than the original Born series of the three-body 
problem.

Taking into account the explicit form (87) of operator υx and using 
expression (5) for kinetic energy operator H0, Eq. (86) becomes:

According to Eqs. (84) and (85), the asymptotic limit of a function h−

β
 at 

rβ → ∞ has the form of a distorted plane wave with a unit amplitude:

With the approximation R ≈ rα, the variables in Eq. (88) are separable and 
the corresponding wave functions become explicitly representable in the 
following form:

The two-body scattering Coulomb wave functions F (−)(�x) and ℑ(−)(�rα) 
are defined through the confluent hypergeometric function as follows:3

The coefficient C(−) and vectors �q, �qα, that appear due to variable separa-
tion, can be defined by matching h−

β
 with the eikonal asymptotic limit 

(89) at rβ → ∞. Using the asymptotic form of the confluent hypergeo-
metric function F(a, b, t) at t → ∞, we find from the matching condi-
tions that:

(88)
(

E − Ef +

1

2µα

�
�rα +

1

2a
�

�x +

Zβ

x
−

ZαZβ

R

)

h−

β = 0.

(89)h−

β −→

rβ→∞

f −

β (�rβ) = exp

[

i�kβ · �rβ −

iZβ(Zα − 1)

υ ′

ln(kβ tβ +
�kβ · �rβ)

]

.

(90)h−

β = C(−)
F

(−)(�x)ℑ(−)(�rα).

(91)F
(−)(�x) = Ŵ

(

1 +

iaZβ

q

)

exp

(

πaZβ

2q
+ i�q · �x

)

1F1

(

−

iaZβ

q
, 1, iqx − i�q · �x

)

,

(92)
ℑ

(−)(�rα) = Ŵ

(

1 −

iµαZαZβ

qα

)

exp

(

−

πµαZαZβ

2q
+ i�qα · �rα

)

×1F1(−iµαZαZβ/q, 1, iqαrα − i�qα · �rα).

(93)�q = a�υ ′

≃ �υ ′

, �qα = (b/mγ )�kβ ≃
�kβ , C(−)

= µ
iZβ/υ ′

β .
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Summing up, let us represent the wave function of the final state �β−

f
, 

which describes the scattering of the charged particle β on the hydrogen-
like system (α, γ ) as:

where

From the form of the function �
β−

f  one can readily appreciate its con-
venience for studying the influence of the post-collision interaction on 
differential cross sections of charge transfer, because it equally takes into 
account the interaction of bound electron γ with the residual target ion β 
and the interaction of heavy particles α and β. Recall that the initial wave 
function χα+

i  is defined by expressions (47) and (48).
Using now the expressions for the wave functions (94), (47), and (48), 

the transition operator (42), and relation (81), we come to the following 
charge-transfer reaction amplitude with account for Coulomb interaction 
in the final state:

where

This is the boundary-corrected conntinuum intermediate state approxi-
mation,5 or BCIS. Without the eikonalization of the �rα- and �rβ-dependent 
Coulomb waves, the calculation of amplitude (98) in the general case when 
Zβ �= 1 is complicated by the presence of three confluent hypergeometric 
functions under the integral sign. However, there is one important case, 

(94)�
β−

f = µ
iν′

t

β ϕf (�s) exp(i�kβ · �rβ)F (−)(�x)ℑ(−)(�rα),

(95)F
(−)(�x) = N (+)F(−iν′

t
, 1, −iυ ′x − i �υ ′

· �x), ν′

t
= Zβ/υ ′

, �υ ′

=
�kβ/µβ ,

(96)ℑ
(−)(�rα) = N (−)

1F1(iν
′, 1, −ikβ rα −

�kβ · �rα), ν′

= ZαZβ/υ ′,

(97)N (+)
= Ŵ(1 + iν′

t
) exp(πν′

t
/2), N (−)

= Ŵ(1 − iν′) exp(−πν′/2).

(98)
T−

αβ
(BCIS) = N (υ, να)

∫ ∫

d�rα d�x ei�kα ·�rα−i�kβ ·�rβ ϕ∗

f (�s)

(

Zα

rα
−

Zα

s

)

ϕi(�x)

× 1F1(iν′

t , 1, iυ′x + i �υ′

· �x)1F1(−iνα , 1, ikα rα − i�kα · �rα)1F1(−iν′

, 1, ikβ rα + i�kβ · �rα),

(99)N (υ, να) = µ
−iν′

t

β Ŵ(1 + iνα)Ŵ(1 − iν′

t
)Ŵ(1 + iν′) exp

(π

2

[

να + ν′

− ν′

t

]

)

.
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when integration in (98) can be reduced to a one-dimensional numerical 
integration. This is the case of charge exchange of a proton (or other charged 
 particle) with atomic hydrogen (Zβ = 1). In this case the Coulomb  parameter 
να = 0 and the hypergeometric function 1F1(−iνα, 1, ikαrα − i�kα · �rα) in 
formula (98) is equal to 1.

For further calculations we shall use expression (61) for bound state 
wave functions and integral representation for confluent hypergeometric 
function:

where B(a, c − a) is the Euler beta-function. By changing the order of integra-
tion for integrals in expression (98), we come to the following representation 
for T−

αβ:

Here J is defined by the expression:

where

Using the Fourier transformation:

and the following relations:

(100)
1F1(a, c, z) =

1

B(a, c − a)

∫

1

0

ta−1(1 − t)c−a−1
exp(zt)dt,

(101)
T−

αβ = N (v, 0)N2[B(iν′

t
, 1 − iν′

t
)B(−iν′

, 1 + iν′)]−1

×

∫

1

0

t
iν′

t
−1

1
(1 − t1)

−iν′

t dt1

∫

1

0

t−iν′

−1

2
(1 − t2)

iν′

I (t1, t2)dt2,

(102)I (t1, t2) = lim
ε→0

Zα

(

∂2

∂λα∂λβ

−

∂2

∂λβ∂ε

)

J , N2 = (ZαZβ)3/2π−1
.

(103)J =

∫ ∫

d�rα d�x e−i�kβ ·�rβ
e−λα s

s
ei(�kα+

�kβ t2)·�rα
e−δ1rα

rα

e−δ2x

x
eit1 �υ ′

·�x
,

δ1 = ε − ikβ t2, δ2 = λβ − iυ ′t1, λα = Zα, λβ = Zβ .

(104)
exp(−λas)

s
=

1

2π2

∫

exp(i�k · �s)(k2
+ λ2

α)−1
d�k,

�rβ = (b/mγ )�rα + (a/µβ)�x, �s = (a/mγ )�x − �rα,
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one can perform integration in (103) over the �x and �rα variables. As a result 
one obtains the following expression for the matrix element J:

where

and ρ1 = δ2mγ /a, ρ2 = δ1. Using the results obtained in Ref. 34 for a rear-
rangement of the expression for J, and omitting the lengthy derivation, we 
give the final result for charge-transfer amplitude T−

αβ:

where

The expressions for coefficients A, B, C, and D are quite involved and we 
do not show them here. The integrals over t1 and t2 can be evaluated by the 
formula from Ref. 33. The final result for K(x) reads:

The one-dimensional integral over x in expression (106) should be com-
puted numerically.

Let us compare the proposed approach for investigating the charge-
exchange reactions with the traditional continuum distorted wave approxi-
mation,3 or CDW. The transition amplitude of the CDW approximation in 
the prior-formalism is given by formulae:

(105)J =

8m2

γ

a2

∫

d�k

(k2
+ λ2

α)
(

|
�k − �q1|

2
+ ρ2

1

) (

|
�k − �q2|

2
+ ρ2

2

) ,

�q1 =

mγ

µβ

�kβ +

mγ

a
�v

′t1, �q2 =

(

�kα −

b

mγ

�kβ

)

+
�kβ t2,

(106)T−

αβ =

16π2

a2
N (v, 0)N2Zα lim

ε→0

(

∂2

∂λα ∂λβ

−

∂2

∂λβ ∂ε

) ∫

∞

0

K(x)dx,

(107)
K(x) = [B(iν′

t
, 1 − iν′

t
)B(−iν′

, 1 + iν′)]−1

∫

1

0

t
iν′

t
−1

1
(1 − t1)

−iν′

t dt1

×

∫

1

0

t−iν′

−1

2
(1 − t2)

iν′

(A + Bt1 + Dt2 + Ct1t2)
−1

dt2.

(108)
K(x) = A−1(1 + D/A)iν′

(1 + B/A)−iν′

t

×2F1

(

iν′

t
, −iν, 1; (BD − AC)(A + D)−1(A + B)−1

)

.
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where

with ν = ZαZβ/υ, νp = Zα/υ, ν′

t
= Zβ/υ ′. The CDW approximation 

was first used by Cheshire35 for calculation of the cross section of resonant 
charge transfer of fast protons on atomic hydrogen. Subsequently, Gayet36 
showed that amplitude (109) in the prior-formalism can be obtained as a 
first term of the Dodd–Greider perturbation series28 for operators of three-
body rearrangement scattering. Note that due to small scattering angles of 
heavy projectiles, the eikonal approximation can be used with the replace-
ment of all the �rα - and �rβ -dependent Kummer functions 1F1(a1, b1, ξα) 
and 1F1(a1, b2, ξβ) in the CB1, BCIS and CDW methods from Eqs. (53), 
(98) and (110), respectively, by their logarithmic Coulomb phase factors.3 
This significantly simplifies the calculations.3, 8–10, 46

5.  ANGULAR AND ENERGY DEPENDENCIES OF  
CHARGE-TRANSFER CROSS SECTIONS

As seen from the previous section, the quantum scattering theory 
equations for a few-body system can serve as a universal mathematical 
background for constructing various approximations for charge-transfer. 
The iterations of such equations represent scattering amplitudes in the 
form of series (32). The number of terms taken into account defines the 
order of re-scattering. The obtained representations (33)–(36) for scattering 
amplitude are based only on accounting for the first terms of the iteration 
series of the Dodd–Greider equations. Therefore, such an approach is appli-
cable if the specific collision energy conditions are satisfied. These energies 
must significantly exceed the binding energies of the compound particles 
in the initial and final channels. However, they should not be extremely 
high, because with increasing collision energy the role of multiple scatter-
ing of electrons is also augmented. The influence of the higher terms of the 

(109)T−

αβ(CDW) = NCDW

∫ ∫

d�rα d�x exp(i�kα · �rα − i�kβ · �rβ)Z−

αβ J(�rα ,�rβ),

(110)
J(�rα,�rβ) = N (+)N (−)

1F1(−iν, 1, ikαξα)1F1(iν, 1, −ikβξβ),

Z
−

αβ = ϕ∗

f (�s)1F1(iν
′

t
, 1, iυ ′x + i �υ ′

· �x′) �
∇

�x·ϕi(�x)· �∇
�s1F1(iνp, 1, iυs + i �υ · �s),

(111)NCDW = Ŵ(1 − iν′

t
)Ŵ(1 − iνp) exp(π(ν′

t
+ νp)/2),
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iteration series for three-body rearrangement scattering operator has been 
studied in Refs. 15–17, 32. The qualitative estimates of the contribution of 
such mechanisms in the nonrelativistic collision energy range showed that 
this contribution is small compared to the cross sections of one- and two-
step mechanisms.

The first applications of the reviewed formalism were for studying the 
charge-transfer collisions: 3, 35

This reaction is of interest for many applications and also plays an impor-
tant role in testing a variety of theoretical approaches for rearrangement 
processes. Before proceeding to analysis of reaction (112), we notice the fol-
lowing. For process (1) the scattering amplitude T−

αβ has a sharp maximum 
in the region of small angles:3, 37

In the case of reaction (112), when particles α and β are the protons, the 
exchange part of scattering amplitude is negligible.38 Exhaustive com-
parisons of the CB1 and CDW approximations with all the experimental 
data for process (112) and for other similar charge-transfer collision, have 
systematically shown good agreement at intermediate and high energies 
(�80 keV/amu).3, 9

The need for improvements in the theoretical approaches as well as the 
development of ion-atomic collision physics led to a shift of emphasis from 
studies of the integral characteristics toward the differential nature of col-
lision processes. The latter includes more detailed information concerning 
the role of various reaction mechanisms and are a much more stringent test 
of theoretical approaches.

The question concerning charge-transfer mechanisms at intermediate 
and high velocities has remained open for a long time. The lack of reli-
able experimental data on differential cross sections hampered the choice 
among various theoretical calculations. For instance, the first Born approxi-
mation14 gives a forward scattering peak in the cross sections, correspond-
ing to a direct one-step mechanism of electron capture with a minimum at 
angle θLS ∼

√

3/2mp (mp is the ratio of proton mass to the electronic mass, 
θLS is the scattering angle of the formed hydrogen in the laboratory system 
of coordinates). However, the more precise asymptotic analysis of the scat-
tering amplitude17 indicated that the maximum at angle θLS ∼

√

3/2mp is 
related to a classical Thomas mechanism of electron capture.39 The quantum 

(112)H
+

+ H(1s) → H(1s) + H
+

.

θ � mγ /µ ≪ 1, µ = mαmβ/(mα + mβ).
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counterpart of the classical Thomas mechanism is the electronic transition 
through the continuum spectra from the target into the states bound to the 
fast projectile. In the BCIS method, the effects of multiple Coulomb re-
scattering of the captured electron are taken into account by approximate 
summation in the distortion factor F (−)(�x) from (95).

In the differential cross sections of charge transfer a two-step mecha-
nism of electron capture is reflected by a maximum (Thomas peak) at spe-
cial scattering angle θT. For the first time, the Thomas peak was observed 
in p + He and p+H collisions at energies of a few MeV at scattering angle 
0. 47 mrad. 40, 41

In Refs 1, 3 the results of the calculations of the differential cross section 
for electron capture in the p+H collisions using amplitudes (69) and (109) 
are compared with experimental data.41 Similar comparisons have also been 
carried out between the CB2 method32 and the measurement of angular 
distributions41, 42 for the same process (112). These comparisons have shown 
that the CB2 method is in good agreement with experiments. The most 
interesting from a methodological point of view is the comparison of calcu-
lations of angular distribution with amplitude (69) of a one-step mechanism 
and calculations by formula (109), which also takes into account the two-
step (Thomas) mechanism of electron capture. Here, one can observe that 
account of the two-step effects gives rise to a maximum (Thomas peak) at 
the site of the dip in the JS method, obtained in a simple one-step mecha-
nism. At large scattering angles the interaction of heavy particles is taken 
into account in the BCIS and CDW methods through the factors ℑ(−)(�rα) 
and J(�rα,�rβ) in Eqs. (96) and (100), respectively.

Regarding the discussed theoretical investigations on the Thomas peak 
in differential cross sections, the most significant influence on the shape 
of angular distributions is from Coulomb re-scattering of the electron on 
the remaining target ion in the final state. In contradistinction, by neglect-
ing the Coulomb interaction in the final state or by calculations using the 
single-step collision approximation, the Thomas peak is not reproduced. 
The obtained agreement between the theoretical and experimental data 
on differential and total cross sections in a wide range of collision energies 
demonstrates the reliability of the described approach based on the first 
iteration of the Dodd–Greider equations.

The main restriction of the method described herein is related to the 
nature of the three-body problem which assumes only one-electronic 
degree of freedom. This means that the theory is applicable, rigourously 
speaking, only to one-electronic systems. However, in some cases 
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multi-electronic systems can be considered as a quasi three-body system 
with a corresponding non-local or effective local interaction potential 
between the active electron and the electronic core.

The multi-electronic atom is described by a one-electronic approxima-
tion, i.e., it is assumed that the active electron is moving in the frozen atomic 
core. In that case, all the arguments presented in this section remain valid, 
except that instead of hydrogen-like wave functions ϕi(�x) and ϕf (�s) from 
Eq. (61) one should use the eigenfunctions of the Hamiltonians Hα, Hβ 
with effective one-center potentials V eff

α  and V eff

β . For calculation of the 
charge-transfer amplitude, the CB1-approximation (see Section 3) can be 
used. The electron capture amplitude T+

αβ from (74) with the perturbing 
post-collision potential Uβ from (43) is correct for Zα > Zβ (Ref. 3). In the 
case of electron capture by protons from multi-electron atoms for Zα < Zβ, 
one should use the transition amplitude T−

αβ from (69) with the pre-collision 
perturbation Uα from (42).

When describing the electronic bound states in multi-electronic target 
atom, the simple model for one-particle wave functions is usually employed 
in the Roothaan–Hartree–Fock (RHF)43 model with the effective charge 
ZRHF

β = (−2ERHF)
−1/2 for the initial wave function. For testing the sensi-

tivity of the results of the chosen model on the wave functions, also utilized 
is the hydrogen-like (HL) model with the effective charge ZRHF

β . The values 
of the cross sections computed within the CB1, CDW and BCIS approxi-
mations by means of the RHF and HL models are in good agreement with 
experimental data.3, 8, 10, 44

6.  THE DODD–GREIDER INTEGRAL EQUATION IN  
THE THEORY OF TWO-ELECTRON PROCESSES

This section is devoted to a theoretical description of two-electron 
capture:45–51

which will be reviewed following Refs. 6, 48 at intermediate and large 
velocities of colliding particles. The cross sections of a two-electron process 
(113) are quite large (∼10

−18
− 10

−16
cm

2) and for certain collisions their 
contribution to charge transfer could reach the same order of magnitude 
as one-electron processes.

(113)AZα+

+ B → A(Zα−2)+
+ B2+

,
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The success of the CDW theory regarding one-electron processes 
stimulated the development of the reviewed distorted wave approach 
for describing two-electron processes.48 This latter formalism is similar 
to the CDW method3 for one-electron capture, but more complicated. 
The amplitude of reaction (113) can be calculated by approximating the 
mechanism of simultaneous capture of two electrons. The application of the 
general theory has been demonstrated in the past by the example of two-
electron capture in collisions of helium atoms with nuclei.48–5

In the framework of nonrelativistic quantum mechanics, we shall con-
sider collisions in the system of four particles α, β, γ1, γ2 in which three 
particles are bound (i.e., they form a “compound” particle) both in the 
initial and in the final reaction channel:

where symbol (λ; γ1, γ2) designates the corresponding compound particle 
(λ = α, β are the atomic nuclei, and γ1, γ2 are the electrons). We did not 
take into account the spin of particles (the Coulomb effects studied here do 
not depend on spin). Consider the full Hamiltonian of the system H0 + V , 
where H0 is the kinetic energy operator of the four-particle system in the 
center of mass system. The full interaction potential V is given by expression:

where Vα,γ1
 is the operator of the pair interaction of α and γ1, etc. We 

shall denote by Vα (Vβ) the effective interaction potential which forms 
the compound particle in the initial (final) channel of reaction (114); 
Hα = H0 + Vα (Hβ = H0 + Vβ) the Hamiltonian of initial (final) chan-
nel of reaction (114); G(W ) = [W − H ]

−1 is the Greens’ function of the 
Hamiltonian H. Let us also define operator υλ = V − Vλ (λ = α, β).
In the prior-formalism the transition amplitude T−

αβ from channel “α” to 
channel “β” is given by the standard form:

Here, U−

αβ is an operator responsible for the α → β transition; |�α� and 
��β | are the initial and final asymptotic states of the system that are the 
eigenfunctions of the operators Hα, Hβ with eigenvalues ˜Eα,˜Eβ; E is the 
total energy of the four-particle system.

(114)α + (β; γ1, γ2) → (α; γ1, γ2) + β,

(115)V =

2
∑

k=1

(Vα,γk
+ Vβ,γk

) + Vγ1,γ2
+ Vα,β ,

(116)T−

αβ = lim
W →E+i0

��β |υα + υβG(W )vα|�α� ≡ ��β |U−

αβ |�α�.
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In order to write the Dodd–Greider integral equation for a system of 
four particles, we shall represent the channel interaction υλ(λ = α, β) as 
the following sum υλ = (υλ − ωλ) + ωλ. Here, ωα, ωβ are the disturbing 
potentials in the initial and final channels of reaction (114). Corresponding 
to these potentials, we shall introduce the Møller wave operators:

where ε is an infinitely small positive number. By analogy with the 
three-particle case, we introduce the auxiliary potential υx, which cor-
responds to an intermediate virtual channel “x” and the Greens operator 
g+

x = (E − H + υx + iε)−1. Using these definitions the operator U−

αβ reads:

Up to now, Eq. (119) has been exact. Consider the approximation for the 
transition operator U−

αβ, namely on the right-hand side of (119), we shall 
keep only the first iteration. As a result, we come to the following repre-
sentation of transition amplitude T−

αβ:

where T−

αβ(DWB) = ��β |ω
−†
β (υα − wα)ω+

α |�α� is the amplitude of reac-
tion (114) in the distorted wave Born approximation (DWB). The first 
term on the right-hand side of (120) corresponds to the direct electronic 
transition without any re-scattering, whereas the second term describes the 
two-step mechanism of electron capture.

Consider the system which consists of four particles with coordinates �ri 
and masses mi (i = 1, 2, 3, 4). The numbers 1, 2, 3, 4 denote the particles γ1, 
γ2, α, β, correspondingly. We shall introduce two sets of coordinates �rα, �x′

k
 

and �rβ ,�s′k (k = 1, 2) defined by equations:

(117)ω+

α = 1 + (E − Hα − wα + iε)−1wα = 1 + g+

α wα,

(118)ω−

α = 1 + (E − Hβ − wβ − iε)−1wβ = 1 + g−

β wβ ,

(119)U−

αβ = ω
−†
β

{

[1 + (υβ − wβ)g+

x ](υα − wα)ω+

α + (υβ − wβ)g+

x υxG+

β U−

αβ

}

.

(120)
T−

αβ = ��β |ω
−†
β [1 + g+

x (υβ − wβ)](υα − wα)ω+

α |�α�

= T−

αβ(DWB) + ��β |ω
−†
β [g+

x (υβ − wβ)](υα − wα)ω+

α |�α�,

(121)�rα = �r3 −

�r1 + �r2 + mβ�r4

mβ + 2
, �x′

k = �rk −

mβ�r4 +

∑k−1

i=1
�ri

mβ + k − 1
,

(122)�rβ = �r4 −

�r1 + �r2 + mα�r3

mα + 2
, �s′k = �rk −

mα�r3 +

∑k−1

i=1
�ri

mα + k − 1
,
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where mα,β = m3,4/m and m1 = m2 = m. Introducing the radius-vectors 
�xk and �sk which determine the position of the kth electron (γk) relative to 
the nuclei β and α, respectively, the difference �xk −�sk = �R is the distance 
between the nuclei α and β. In these designations the channel interactions 
vα and vβ read:

where Zα and Zβ are the charges of nuclei α and β, respectively.
The eigenstates |�α� (|�β�) of the Hamiltonian Hα (Hβ) are the 

 product of a wave function ϕα(�x′

1
, �x′

2
) (ϕβ(�s′

1
,�s′

2
)) of the bound state of 

system (β; γ1, γ2) ((α; γ1, γ2)) and a plane wave of the relative motion of 
particles in the initial (final) state:

where �kα (�kβ) are the momentum of the incident (scattered) particle in the 
system of a center of masses before (after) the collision.

From the formal point of view, the operator ω+

α (ω−

α ) may be con-
sidered as a transition operator from the initial (final) asymptotic state 
|�α� (|�β�) into the distorted wave |χ+

α � (|χ−

β �) in entrance (exit) reaction 
channel:

Note that one can consider Uα = υα − wα as the operator responsible for 
the transition from state (α) into state (β).

We introduce the state vector |�−

β � by the definition:

In designations (125)-(127), transition amplitude (120) can be represented 
as follows:

In order to obtain the explicit differential equations for calculation of 
the distortion in the initial and final channels, we shall apply operator 

(123)υα = −

Zα

s1
+

ZαZβ

R
−

Zα

s2
, υβ = −

Zβ

x1

+

ZαZβ

R
−

Zβ

x2

,

(124)�α = ϕα(�x′

1
, �x′

2
) exp(i�kα · �rα), �β = ϕβ(�s′

1
,�s′

2
) exp(−i�kβ · �rβ),

(125)|χ+

α � = ω+

α |�α�,

(126)|χ−

β � = ω−

β |�β�.

(127)|�−

β � =

[

1 + g+†
x (υβ − wβ)

]

|χ−

β .

(128)T−

αβ = ��−

β |Uα|χ+

α �.
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(E − Hα − wα) to both parts of Eq. (125). Taking the limit ε → 0
+, we 

come to the following expression for the distorted wave in the exit channel:

On the basis of Eq. (126), one obtains a similar expression for the distorted 
wave in the exit channel:

Here, Eα and Eβ are the bound energies of compound particles (β; γ1, γ2) 
and (α; γ1, γ2), where µα = mα(2 + mβ)/M  and µβ = mβ(2 + mα)/M  are 
the reduced masses of the corresponding compound and M = mα + mβ + 2 
is the total mass of the system.

Further calculations are based on the special requirements concerning 
the choice of function χ

−

β  which, essentially, make the problem considered 
here explicitly solvable. Assume that solution χ

−

β  is represented in the fol-
lowing factorized form:

where f (�rβ) is the function which describes the asymptotic motion of 
a compound (α; γ1, γ2) in a Coulomb field of particle β. We note that 
assumption (131) is only applicable if the relative motion of heavy particles 
is larger than the effective orbital velocity of a bound electron.

The differential equation (130) must be supplemented with the  boundary 
condition, which in this case has the following form:

where �υ ′

=
�kβ/kβ. The fulfilment of the condition on the function χ

−

β  
can be achieved by the corresponding choice of distortion potential wβ in  
Eq. (130). For instance, wβ may be defined as wβ = Zβ(Zα − 2)/rβ, and 
then the function f (�rβ) can be represented through the confluent hyper-
geometric function. However, we omit explicit representation of f (�rβ) 
since it is not necessary for our purpose.

Let us now construct the differential form of Eq. (127). Applying the 
operator (E − H + υ

†

x ) to both sides of (127) and taking into account 
(130) we obtain (in the limit ε → 0

+):

(129)(E − Hα − wα)|χ+

α � = (E − Hα)|�α� = 0, E = Eα + k2
α/2µα.

(130)(E − Hβ − wβ)|χ−

β � = (E − Hβ)|�β� = 0, E = Eβ + k2
β/2µβ .

(131)|χ−

β � = |ϕβ(�s′
1
,�s′

2
)f (�rβ)�,

(132)χ−

β −→

rβ→∞

ϕβ(�s′
1
,�s′

2
) exp

{

−i�kβ · �rβ −

iZβ(Zα − 2)

υ ′

ln(kβ rβ −
�kβ · �rβ)

}

,
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The solution of Eq. (133) for realistic potential υx is an extremely compli-
cated task. Hence, it is reasonable to substitute this potential by an operator 
chosen in such a way that the following condition is satisfied:

Similarly to expression (131)) the solution to (133) is represented as:

where the unknown function Y− describes the distortion of the wave 
function ϕβ(�s′

1
,�s′

2
) of the bound state of system (α; γ1, γ2) induced by the 

interaction with nucleus β in the exit channel.
By virtue of condition (134), Eq. (133) reduces to a homogeneous one:

Using the above-defined two sets of relative variables, one can represent the 
Hamiltonian H0 in two equivalent forms:

where

The interaction potentials in H0 depend on different combinations of 
relative variables. This circumstance leads to severe complications when 
solving Eq. (136). In order to avoid this difficulty, consider the approximate 
variable separation in Eq. (136) based on the natural approximation that 
the masses of particles γ1, γ2 (electrons) are much smaller than the masses 
of the two other particles α and β (atomic nuclei), i.e., m1 = m2 ≪ m3,4. 
Therefore, one can neglect the terms that contain the ratio mk/m3,4 

(133)(E − H + υ†

x )|�−

β � = υ†

x |χ−

β �.

(134)υ†

x |χ−

β � = 0.

(135)|�−

β � = |ϕβ(�s′
1
,�s′

2
)Y−

�,

(136)

[

E − H0 +

2
∑

k=1

(

Zβ

xk
+

Zα

sk

)

−

ZαZβ

R
−

1
|�s1 −�s2|

+ υ†
x

]

|�−

β � = 0.

(137)H0 = −

△
�rα

2µα

−

2
∑

k=1

△
�x′

k

2µβk
= −

△
�rβ

2µβ

−

2
∑

k=1

△
�s′k

2µαk
,

µβk = (mβ + k − 1)/(mβ + k), µαk = (mα + k − 1)/(mα + k).
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(k = 1, 2) in expressions (121) and (122). As a result we come to the fol-
lowing approximate relations:

By substituting expression (135) for the wave function |�
−

β � into Eq. 
(136) and taking into account (130) and (138), one obtains the equation 
for Y−:

As an operator υx we chose a potential whose action on the arbitrary func-
tion �(�rβ ,�s′

1
,�s′

2
) is defined as follows:

By substituting (140) into Eq. (139) and taking into account (138), we 
obtain the equation for Y−:

The solution to Eq. (141) should behave at infinity as a distorted plane 
wave:

Solving Eq. (141) by the method of variable separations, we obtain the fol-
lowing solution, as in Ref. 48:

where the two-particle Coulomb distorting functions and 
F

(−)
k (�x′

k) (F (−)(�rα)) are given by:

(138)�x′

k ≃ �xk, �s′k ≃ �sk, �rα ≃ �R, �rβ ≃ −�R.

(139)ϕβ(E − Eβ − H0 − υβ)Y−

+

∑

k=1,2

µ−1
αk

�
∇

�s′k
ϕβ ·

�
∇

�s′k
Y

−

+ υ†
x (ϕβY

−) = 0.

(140)υx� = −

∑

k=1,2

µ−1

αk
�
∇

�s′k
ϕβ ·

�
∇

�s′k
(�/ϕβ).

(141)



E − Eβ +

△
�rα

2µα

+

�

k=1,2

�

△
�x′

k

2µβk
+

Zβ

x′

k

�

−

ZαZβ

rα



 Y
−

= 0.

(142)Y
−

−→

rβ→∞

f (�rβ) −→

rβ→∞

exp

{

−i�kβ · �rβ −

iZβ(Zα − 2)

υ ′

ln(kβ rβ −
�kβ · �rβ)

}

.

(143)Y
−

= C(−)
F

(−)(�rα)

2
∏

k=1

F
(−)
k (�x′

k), C(−)
= const,

(144)F
(−)
k (�x′

k) = N (+)(ν′

βk) exp(i�qk · �x′

k)1F1(−iν′

βk, 1, −iqkξk),
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where N (±)(ν) = Ŵ(1 ± iν) exp(±πν/2) are the normalization coef-

ficients, ξk = x′

k +
ˆ
�qk · �x′

k, ξα = rα +
ˆ
�qα · �rα are the two-particle parabolic 

variables, ˆ�qk and ˆ�qα are the unit vectors directed along the vectors �qk and �qα, 

ν′

βk = Zβµβk/qk and ν′

α = ZαZβµα/qα are the Sommerfeld parameters. 

Energy conservation implies the following relation between �qα and �qk:

Matching the asymptotic forms of function (143) and their eikonal expres-
sions (142) leads to:

The coordinates �rα,�rβ, �x′

1
, and �x′

2
 are related by:

Substituting now (148) into the right-hand side of (147) and taking into 
account the asymptotic limits:

one obtains that C(−)
= µ

−2iZβ/υ ′

β . From Eqs. (143)–(145) and (149), the 
distorted wave distortion function Y(−) in the exit channel can be repre-
sented as:48

(145)F
(−)(�rα) = N (−)(ν′

α) exp(i�qα · �rα)1F1(iν
′

α, 1, −iqαξα),

(146)E − Eβ =

k2

β

2µβ

=

q2

α

2µα

+

∑

k=1,2

q2

k

2µβk
.

(147)
∑

k=1,2

�qk · �x′

k + �qα · �rα = −
�kβ · �rβ .

(148)�rβ = −a2�rα −

∑

k=1,2

µ−1

β bk�x
′

k, ak =

mα

(mα + k)
, bk =

mβ

(mβ + k)
.

(149)�qα = a2
�kβ −→

mα→∞

�kβ , �qk = bkµ
−1

β
�kβ −→

mβ→∞

�υ ′ (k = 1, 2),

(150)−

iZβ

υ ′

ln

(

kβ rβ −
�kβ · �rβ

υ ′x′

k + �υ ′
· �x′

k

)

−→

rβ→∞

ln

(

µ
−iZβ/υ ′

β

)

(k = 1, 2),

(151)

Y
−

= µ
2iν′

β

β N (−)(ν′)[N (+)(ν′

β)]2 exp(−i�kβ · �rβ)

×1F1(iν
′

, 1, −ikβ rα − i�kβ · �rα)

2
∏

k=1

1F1(−iν′

β , 1, −iυ ′x′

k − i �υ ′

· �x′

k),
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where ν′

β = Zβ/υ ′, ν′

= ZαZβ/υ ′. Hence, we constructed the wave func-
tion �−

β  (defined by Eqs. (135) and (151)) that describes the scattering of 
charged particle β on a bound compound of three particles α, γ1, γ2.

The wave function of the initial state χ+

α  can be constructed in a similar 
manner:

where Y+ satisfies the following differential equation:

The solution of Eq. (153) can be constructed by comparison of its asymp-
totic with the corresponding eikonal approximation. We omit the cum-
bersome derivation (which was explained for the Y− construction) and 
represent only the final result (in the limit m3,4 ≫ m1 = m2):

where να,β = Zα,β/υ, ν = ZαZβ/υ.
Substituting now expressions (135), (151), (152), and (154) into (128), 

one can obtain the reaction amplitude T−

αβ which describes the  simultaneous 
capture of two electrons by fast ions in collisions with atoms:48

where

(152)χ+

α = ϕα(�x′

1
, �x′

2
)Y+

,

(153)



E − Eα +

△
�rβ

2µβ

+

�

k=1,2

�

△
�s′k

2µαk
+

Zα

s′k

�

−

ZαZβ

rβ



 Y
+

= 0.

(154)

Y
+

= µ−2iνα
α N (−)∗(ν)[N (+)∗(να)]2 exp(i�kα · �rα)

×1F1(−iν, 1, ikαrβ + i�kα · �rβ)

2
∏

k=1

1F1(iνα, 1, iυs′k + i �υ · �s′k),

(155)

T−

αβ = −

[

N (+)∗(να)N (+)∗(ν′

β)
]2

∫∫∫

d�x′

1
d�x′

2
d�rα exp(i�kα · �rα + i�kβ · �rβ)

×Z(�rα ,�rβ)ϕ∗

β(�s′
1
,�s′

2
)

2
∏

j=1

1F1(iν
′

β , 1, iυ ′x′

j + i �υ ′

· �x′

j)
∑

k=1,2

�
∇

�x′

k
ϕα(�x′

1
, �x′

2
)

·
�
∇

�s′k
[1F1(iνα , 1, iυs′

1
+ i �υ · �s′

1
)1F1(iνα , 1, iυs′

2
+ i �υ · �s′

2
)],

(156)
Z(�rα,�rβ) = µ−2iνα

α µ
−2iνβ

β N (−)∗(ν)N (−)∗(ν′)

×1F1(−iν, 1, ikαrβ + i�kα · �rβ)1F1(−iν′, 1, ikβ rα + i�kβ · �rα).
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In the case of fast collisions (k2

α/2µα > |Eβ − Eα|) when forward scat-
tering is dominant, the expression (156) can be simplified. At small scatter-
ing angles (i.e., ˆ�kα ≃

ˆ
�kβ) we can assume that nuclear motion occurs with 

a constant velocity and the trajectories are close to linear. Hence, the vec-
tor �R is represented as the orthogonal sum �R = �ρ + �z, �ρ · �z = 0. Taking 
into account that �υ ′

≃ �υ and m1 = m2 = m ≪ m3 ∼ m4, one obtains 
immediately:

where

where �η is orthogonal to the �υ component of the transmitted momen-
tum (�η·�υ = �η·�z = �ρ·�z = 0). Using the asymptotic form3 for the function 
Z(�rα,�rβ), the amplitude T−

αβ for scattering at small angles reads:

where T
−

αβ is given by the following expression48:

As an example, consider charge transfer in collision of helium atom 
with nuclei. The initial and final states are the s2-states:

where ϕα(�xk) and ϕβ(�sk) are the hydrogen-like wave functions with effec-
tive charges Zα and Zβ:

(157)�kα · �rα +
�kβ · �rβ ≃ �p · (�x1 + �x2) + �q · (�s1 +�s2),

(158)−2�p = �υ +

(

υ −

Eβ − Eα

υ

)

ˆ
�υ, 2�q = �υ −

(

υ −

Eβ − Eα

υ

)

ˆ
�υ, ˆ

�υ =

�υ

υ
,

(159)T−

αβ = −[N (+)∗(να)N (+)∗(νβ)]2
∑

k=1,2

I
(k)
αβ ,

(160)

T−

αβ =

∫∫∫

d�x1 d�x2 d�s1 exp [i�p · (�x1 + �x2) + i�q · (�s1 +�s2)] ϕ
(∗)
β (�s1,�s2)

×

2
∏

j=1

1F1(iνβ , 1, iυxj + i �υ · �xj) �
∇

�xk
ϕα(�x1, �x2)

·
�
∇

�sk [1F1(iνα, 1, iυs1 + i �υ · �s1)1F1(iνα, 1, iυs2 + i �υ · �s2)].

(161)ϕα(�x1, �x2) = ϕα(�x1)ϕα(�x2), ϕβ(�s1,�s2) = ϕβ(�s1)ϕβ(�s2),

ϕα(�xk) = (α3/π)1/2
exp(−αxk), ϕβ(�sk) = (β3/π)1/2

exp(−βsk).
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We shall proceed to calculation of a matrix element (160). Consider the 
first term I (1)

αβ  which we shall write in the momentum representation:

where the following designations are introduced:

The exact numerical integration over �τ in I (k)
αβ (k = 1, 2) needed in (159) 

has been carried out in Refs. 5, 6, 48–51. For a rough estimate at high 
energies, a peaking approximation of the quadrature from (162) might be 
made as follows. The expression under the integral (162) is localized in the 
following four regions of momentum �τ subspace:

where a is the effective radius of a pairwise interaction. Since �R(1)
α (�τ) and 

�R
(1)
β (�τ) decrease faster than �R

(2)
α (�τ) and �R

(2)
β (�τ), the contribution to the 

integral (162) from the third and fourth region from (167) is negligible. In

addition, the slowly varying function �R
(1)
β (�q − �τ) �R

(1)
α (�p + �τ) ≡ Rαβ(�τ) 

can be taken outside the integral sign in (162). Applying the convolution 
theorem and using the Nordsieck integral technique33, we obtain:

where the following designations have been used:

(162)I
(1)
αβ = (2π)−3

∫

d�τ �R
(1)
β (�q − �τ) �R(1)

α (�p + �τ)R
(2)
β (�q + �τ)R(2)

α (�p − �τ),

(163)�R
(j)

β (�k) =

∫

d�sj exp(i�k · �sj)ϕ
∗

β(�sj) �
∇

�sj 1F1(iνα, 1, iυsj + i �υ · �sj),

(164)�R
(j)
α (�k) =

∫

d�xj exp(i�k · �xj)1F1(iνβ , 1, iυxj + i �v · �xj)
[

�
∇

�xj
ϕα(�xj)

]

,

(165)R
(j)

β (�k) =

∫

d�sj exp(i�k · �sj)ϕ
∗

β(�sj)1F1(iνα, 1, iυsj + i �υ · �sj),

(166)R
(j)
α (�k) =

∫

d�xj exp(i�k · �xj)1F1(iνβ , 1, iυxj + i �υ · �xj).

(167)|�q − �τ | � 1/a, |�p + �τ | � 1/a, |�q + �τ | � 1/a, |�p − �τ | � 1/a,

(168)

I
(1)
αβ = −NαNβ(1/2)

[

�R
(1)
β (�q − �p) �R(1)

α (2�p) + �R
(1)
β (2�q) �R(1)

α (�p − �q)
]

×

∂

∂α
J(α + β, �p + �q, να, νβ , �υ, �υ),
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with Nγ = (γ 3/π)1/2
and γ = α, β. The interpretation of Eqs. (168) and 

(169) is as follows. The matrix element R(1)
α andR

(1)
β  describe the two-step 

(Thomas) mechanism of capture of electron r1 through the continuum 
from target atom (β; γ1, γ2) in the states bounded with the projectile (α).  
The factor ∂J/∂α, which corresponds to the integration in I (1)

αβ
 over the 

coordinates of second electron (γ2), is reduced to the overlap integral. In a 
similar way one can construct the expression for I

(2)
αβ  which is omitted here 

for the sake of brevity.
In detailed applications to double electron capture5, 6, 48-51 in colli-

sions of fast ions (protons, alpha particles, lithium nuclei) with helium, the 
CDW method was found to be in good agreement with measurements. 
Reasonably successful description of double charge exchange has also been 
accomplished by the CB1,45 BCIS46 and BDW (Born distorted wave)47 
approximations, albeit in certain restricted intervals of impact energies.

In the present exposition only one mechanism of reaction (113) for 
the simultaneous capture of two electrons is taken into account. The other 
mechanisms, such as sequential one-electron capture may also contribute 
to the cross section of (113). The electronic correlation has been neglected 
in the present formalism. Obviously, simultaneous account of different 
mechanisms and effects should improve the theoretical picture of this rather 
complicated process of two-electron capture in atomic collisions.

7. CONCLUSION

In the present work, the three-body Dodd–Greider integral equations 
have been reviewed by focusing on the correct Coulomb asymptotic forms of 
the wave functions for the problem of rearrangement scattering. Specifically, 
distorted wave theories for one-electron capture reactions in energetic 
collisions of hydrogen-like atoms with positive ions are recapitulated.  

(169)

J(λ, �k, ν1, ν2, �υ1, �υ2) =

∫

d�x x−1e−λx+i�k·�x
1F1(iν1, 1, iυ1x + i �υ1 · �x)

×1F1(iν2, 1, iυ2x + i �υ2 · �x) =

4π

(k2
+ λ2)

[

1 +

2(�k · �υ1 − iλυ1)

(k2
+ λ2)

]

−iν1

×[1 + 2(�k · �υ2 − iλυ2)/(k
2
+ λ2)]−iν2

2F1(iν1, iν2; 1, ω),

ω =

4(�k · �υ1 − iλυ1)(�k · �υ2 − iλυ2) − 2(k2
+ λ2)(�υ1 · �υ2 − υ1υ2)

[k2
+ λ2

+ 2(�k · �υ1 − iλυ1)][k2
+ λ2

+ 2(�k · �υ2 − iλυ2)]
,
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In particular, a reaction amplitude is highlighted as a first iteration term of 
the solution of the Dodd–Greider equations for the three-body scatter-
ing operator. It is emphasized that to reproduce the Thomas peak in the 
angular distribution of the reaction products, it is necessary to account for 
the effects of Coulomb re-scattering of the captured electron. In approxi-
mation of the “single-step” collision, this method reduces to the version of 
the well-known boundary-corrected first Born approximation, where the 
asymptotic behavior of the particles in the entrance and exit reaction chan-
nels is described by two-body Coulomb wave functions. The short-range 
interaction due to incomplete screening of the nucleus by atomic electrons 
is taken into account in the perturbing potential.

On the basis of the Dodd–Greider integral equations for a quantum 
mechanical operator of a four-particle rearrangement scattering, we have 
reviewed a version of the continuum distorted wave method to describe 
two-electron capture in energetic ion-atomic collisions. An important 
feature of this method is a consistent preservation of the proper asymp-
totic limits of the wave functions of a colliding system in the entrance 
and exit reaction channels that takes into account the long-range nature 
of the Coulomb interactions. The reaction amplitude can be calculated in 
approximation of simultaneous two-electron transitions. The correspond-
ing results from the literature have been discussed for two-electron capture 
in energetic H+

+ He and He
2+

+ He collisions. The related theoretical 
cross sections are in good agreement with the experimental data in the 
region of high impact energies. Further development of this method is 
foreseen by accounting for sequential mechanisms of two-electron transi-
tions and including electronic correlations in the wave functions of the 
initial and final states. Such corrections are expected to improve the agree-
ment between theory and experiment at lower collision energies.
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 32. Belkić, Dž. Second Born approximation for charge exchange with correct boundary 

conditions. Europhys. Lett. 1988, 7, 323.Toshima, N.; Igarashi, A. Second Born approxi 
mation differential cross sections for p+H and p+He charge-exchange collisions. Phys. 
Rev. A 1992, 45, 6313.Toshima, N. Convergence of the perturbation series for high-
energy electron capture. J. Phys. B 1993, 26, L281.Shakeshaft, R.; Spruch, L. Mechanisms 
for charge transfer (or capture any of any light particle) at asymptotically high impact 
velocities. Rev. Mod. Phys. 1979, 51, 369.

 33. Nordsieck, A. Reduction of an integral in the theory of bremsstrahlung. Phys. Rev. 1954, 
93, 785.

 34. Lewis, R. R. Potential scattering of high-energy electrons in second Born approxima-
tion. Phys. Rev. 1956, 102, 537.

 35. Cheshire, I. M. Continuum distorted wave approximation; resonant charge transfer by 
fast protons in atomic hydrogen. Proc. Phys. Soc. 1964, 84, 89.

 36. Gayet, R. Charge exchange scattering amplitude to first order of a three body expan-
sion. J. Phys. B 1972, 5, 483.
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Mechanistic Repair-Based Padé 
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Abstract

This work is on a novel radiobiologal theory of cell survival after radiation of unspecified 
modality or quality. The analyzed biophysical model, the Padé linear-quadratic model, 
for cell surviving fractions and the related observable of clinical usefulness is equally 
applicable to photon beams, as well as to light (electrons) and heavy (atomic nuclei) 
charged particles of low, intermediate, or high energies. The presented formalism is 
valid for both the single cell and entire cell populations. The analyzed description can 
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be incorporated into any type of radiation delivery, including all fractionated treat-
ments ranging from the conventional (2 Gy per fraction, one fraction per day), through 
hyperfractionation (more than one smaller fraction per day) to hypofractionation 
(larger doses with shorter overall exposure time, as in stereotactic radiosurgery). The 
major clinical application of the proposed theory is envisaged to be in providing a 
better input to dose planning systems for radiotherapy, as expected from the clear 
biological meaning of the derived parameters. The main strength of the Padé linear-
quadratic model is in its foundation on the mechanistic description of radiation dam-
age through enzymatic repair systems governed by the Michaelis–Menten catalysis. 
It is from this latter origin, which passed the test of time in mainstream biochemistry, 
that the present theory derives its biomedical adequacy. This, in turn, yields a power-
ful outperformance of the standard linear-quadratic model, the current workhorse of 
radiobiological modeling for the purpose of radiotherapy, as amply illustrated in the 
present study.

1. INTRODUCTION

Radiotherapy is multifaceted, since it relies upon interdisciplinary 
research in order to meet with success, which is the patient’s cure. Different 
radiation qualities or modalities (photons, charged particles, etc.), deposit 
their energies in the traversed tissue according to different depth-dose 
profiles. A typical Bragg peak is a remarkable example of such profiles for 
heavy ions with most energy delivered to the encountered targets, mainly 
near the very end the beam’s traversal. Electrons and photons deposit most 
of their energy close to the entrance to the tissue. This makes these radia-
tions unsuitable for treating deep-seated tumors. In sharp contrast, high-
energy heavy ions can be optimally conformed to the target location deep 
inside the patient’s body. Such a key feature is associated with negligibly 
small multiple scattering effects of heavy ions due to large masses of atomic 
nuclei relative to light electrons.

Nevertheless, irrespective of the existence of diametrically opposite 
dose-depth profiles, all these different radiation modalities produce cell sur-
vival curves of a similar kind, characterized by typical sigmoid shapes, as a 
function of the absorbed dose. Ionization density and linear energy transfer 
are larger for heavy ions than for X-rays. This is expected to be biologically 
expressed by the targeted cell in two distinct ways. Indeed, the so-called 
relative biological effectiveness is typically 2–3 times larger for heavy ions 
than that of X-rays. Yet, there are some other aspects of a less appreciable 
variation for different radiation qualities. For example, the numbers of 
double strand breaks of deoxyribo-nucleic acid (DNA) molecules could 
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be close to each other for heavy ions and X-rays under the comparable 
irradiation conditions.

It is of great importance for radiotherapy to have reliable predictions 
on tumor control and healthy tissue complications. This is where radio-
biological modeling comes into its full function to assist tailoring dose 
planning systems for individual treatments of patients in a manner which 
is as comprehensive as possible.1, 2 Biophysical models can, in principle, 
design dose distributions for each treated patient by taking into account 
different biological factors ranging from anatomical to physiological. As to 
the patient, the ultimate goal is to enhance survival and diminish toxicity 
to the normal tissues. This aim could be attained through several strategies. 
One of them is an improved understanding of the radiation-tissue inter-
actions on molecular, cellular, and tissue levels. Among other things, this 
would yield the ever needed amendments of the current dose planning sys-
tems. Another strategy is a better comprehension of the individual patient 
feedback from the administered dose, given that the same amount of the 
identical irradiation could have markedly different outcomes for different 
patients with the same type of cancer. These two strategies among others 
should be considered in concert to achieve the best outcome.

There are two major variabilities in radiation-tissue interactions. One 
is variability of dose in the irradiated volume. The other is variability of 
cell response. Both variabilities are multifaceted, ranging from some self-
evident to more intricate, hidden aspects. Dose varies through the irradi-
ated tissue due to the stochastic nature of collisions between the beam 
species and the targeted particles. This does not imply that dose variation 
is completely random. Certain non-stochastic factors can also influence 
dose variability, e.g., organ motion, some external settings, etc. Radiation 
imparts damage to both normal and tumorous cells. Tumor topology 
is highly complex due to intertwining of healthy with diseased tissue. 
Critical to the variability of cell responses is the key difference in the way 
normal and tumor cells cope with the same radiation insult. This variabil-
ity implies the existence of different interaction mechanisms of radiation 
with these two kinds of cells. Radically different proliferation rates repre-
sent the main cause of unequal mechanisms for healthy and tumor cells. 
The former have a controllable cell cycle, whereas the latter proliferate 
uncontrollably with time changing rates.

A key to the overall success of radiotherapy is cell repair of the 
imparted damage. Therefore, it is of critical importance to investigate vari-
ous repair mechanisms within the context of the mentioned variabilities 
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of interactions between the applied radiation and the targeted tissue. This 
problem is addressed in the present chapter by reference to some of the 
existing radiobiological models, such as the linear-quadratic (LQ) model3 
as well as from the viewpoint of a recently introduced Padé linear-qua-
dratic model (PLQ).4–6

The most salient feature of the three constant parameters {α, β, γ } 
from the PLQ model is their clear biological interpretation based 
upon  chemical kinetics of the Michaelis–Menten7 mechanism for cell 
repair through enzyme-lesion catalysis. This automatically provides a cell 
 surviving  fraction SF(D) of universal validity at all absorbed doses D. 
Moreover, this biophysical model possesses the built-in correct asymp-
totic  exponential inactivation modes at low and high doses, separated by 
a shoulder. Further, the passage from the intermediate shoulder region to 
both small and large doses occurs in a smooth manner through a typical 
rectangular hyperbola for the dose-modifying factor—the relative effective-
ness RE(D) = {1 + (β/α)D}/(1 + γ D). The main significance of this is 
to indicate that Barendsen’s concept8 of biologically effective dose (BED) 
of radiation is not connected to the total absorbed dose D by a simple 
 relation BED = λD, with λ being a proportionality dimensionless constant 
(dose-independent). Rather, the cell response, mediated by the enzymatic 
repair of radiation damage, profoundly alters the physical dose D deposited 
to the tissue through a modifying factor M (D), in the name of the relative 
effectiveness M (D) = RE(D). This changes the said simple proportional-
ity relation to a more structured function BED(D) = D · M(D), which 
becomes linear in D at both low and high doses, as indeed is typical for 
most mammalian cells. Comparison with several representative sets of 
experimental data for cell surviving fractions is presented to assess the rela-
tive performance of the PLQ model and to challenge the LQ model, which 
is currently the workhorse of radiobiological modeling in radiotherapy.

2.  DOSE–EFFECT CURVE (RESPONSE CURVE OR CELL 
SURVIVING CURVE)

2.1 Poisson distribution of radiation events, mean lethal dose
Belonging to statistical phenomena, the distribution of events involving 
cell-radiation interactions fluctuates following the Poisson probability. This 
can be understood from the arguments which run as follows. On the one 
hand, particle tracks traversing a tissue are certain to cross at least some of the 
cell structures. On the other hand, randomness of radiation-cell interactions 
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implies that they are intrinsically uncertain, i.e., probabilistic. For example, 
single and double strand breaks (SSB, DSB) or any other type of lesions 
from interactions between the cell and radiation, can take place only with 
some probability. It is precisely this lack of certainty, which classifies such 
events as non-deterministic. Upon irradiation, the cell finds itself in a kind 
of “all-or-nothing” state, as being either alive or dead with respect to its 
 clonogenic ability for proliferation. This naturally leads to the Bernoulli 
statistics of binary (dichotomous) events. When the number of these events 
is large, the Bernoulli distribution takes the form of the Poisson distribu-
tion. A  particular case of this passage from the Bernoulli to the Poisson 
distribution is interesting to illustrate. In order to highlight this aspect, let 
us consider some m independent hits that are delivered to the same target. 
We could inquire about the probability π(m) that this target receives no hit. 
Being independent, each hit has the same probability 1/m to arrive at the 
same target. Conversely, the probability of missing this target is 1 − 1/m.  
Furthermore, the probability that all the m hits will miss the target is 
(1 − 1/m)m. This is precisely the sought probability π(m):

In the limit of large values of m, it follows:

This is a special case P(0) = e−1 of the more general Poisson law for the 
distribution of a large number m of specific events†:

Here, x is the average number of specific events. For m = 0 and x = 1, this 
expression is reduced to:

(1)π(m) =

(

1 −

1

m

)m

.

(2)lim
m→∞

π(m) = lim
m→∞

(

1 −

1

m

)m

=

1

e
≡ P(0).

†  The word specific is used to refer to a particular kind of the cell-radiation interaction, e.g., single or 
double ionization, excitation, etc.

(3)
P(m) =

xm

m!

e−x.

(4)
P(0) =

1

e
≈ 0. 367879, or,

P(0) reduced by 36. 7879% (e ≈ 2. 71828).
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The classical hit-target model for cell-radiation interaction assumes the 
Poisson distribution of m events, such as creation of lesions whose aver-
age number x is supposed to be directly proportional to the absorbed 
dose D:

and therefore,

In this model, the number of hits is equal to the number of events, m, and 
moreover each hit is assumed to lead to a cell inactivation by producing a 
lethal lesion (cell death). Thus, the probability of survival of a cell as a target 
is the chance P(0) of not being hit, i.e., when no hit takes place at all, m = 0.  
In the latter case, by setting x = 1:

it is possible to give the definition of the proportionality constant D0 in 
(5) by reference to (3). Namely, since x = 1 corresponds to D = D0, as 
per (7),

we can say that D0 is a particular dose D, which yields, on the average, 
one lethal event per target (x = 1). Due to this circumstance, D0 is usually 
termed the mean lethal dose. Moreover, according to (4) and (8), quantity D0 
is the dose at which the surviving fraction is reduced by 1/e ≈ 0. 367879, 
or equivalently, by 36.7879% ≈ 37%. Due to this circumstance, D0 is often 
called the “37% dose” and accordingly denoted by D37(= D0). Reciprocal 
1/D0 ≡ k0 is the measure of cell sensitivity to radiation and it is called either 
the inactivation constant or the radiosensitivity constant (or radiosensitivity, 
for short). By reference to the special name for dose D0, it is convenient to 
refer to k0 as the mean lethal radiosensitivity, because it is also associated with 
the 1/e reduction of the cell surviving fraction. Mathematically, 1/D0 is the 
final slope of the terminal (exponential) part of the cell survival curve at 
high doses, e−D/D0. Note that formally the same decay law or cell surviving 

(5)x =

D

D0

,

(6)P(m) =

1

m!

(

D

D0

)m

e−D/D0 .

(7)x = 1 =

D

D0

,

(8)P(0) =

{

e−D/D0

}

x=1,D=D0

= e−1
,
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fraction applies to a single cell and to a cell population consisting initially 
of some N0 cells. Here, the surviving fraction SF(D) would be defined by 
N/N0, with the specification N/N0 = e−D/D0, where N is the number of 
the surviving cells after irradiation by dose D. In this case, D0 would represent 
the dose needed to deliver an average of one lethal event per cell in a total 
population of N0 cells.

The curve for the cell surviving fraction SF(D) plotted as a function of 
dose D is called the dose–effect curve or response curve. The latter name is 
used to indicate that SF(D) describes the response of the cell to irradiation. 
This response is the information about the number of cells that survived 
by absorbing a dose D. Such curves have different characteristics at low, 
intermediate, and high doses. They seem to decay exponentially at both 
low and high doses. However, their initial and final slopes are different for 
these two asymptotes when D → 0 and D → ∞, respectively. At relatively 
lower doses there is a so-called shoulder. There are three other quantifying 
characteristics of the dose–effect curves. These are the mean lethal dose D0,  
quasi-threshold dose Dq and the extrapolation number n.

2.2 Extrapolation number and quasi-threshold dose
A shoulder in the response curve SF(D) is situated in the low-dose 
region, where cell inactivation per unit dose is noticeably smaller than 
that at high doses. The passage from these two regions of low and high 
doses is anything but abrupt. Therefore, a transition dose for delinea-
tion of the precise extent of the shoulder cannot be sharply determined. 
Nevertheless, an approximate procedure could still be designed to obtain 
a reasonable estimate of a dose located near the transition point (thresh-
old) between the terminal part of the dose–effect curve and the shoulder 
region. For this reason, such a dose is called a threshold dose, or more 
appropriately, a quasi-threshold dose because of the said uncertainty. 
An alternative name for the same dose is the shoulder width or the 
quasi-width. Both names are associated with the symbol Dq. In order to 
determine Dq, we introduce the high-dose exponential tail or asymptote 
S∞

F
(D) of SF(D) as:

or equivalently,

(9)S∞

F
(D) ≡ eλ−D/D0 ,

(10)S∞

F
(D) ≡ ne−D/D0 ,
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where λ is a positive constant connected to the extrapolation number n by 
the relation:

When this definition is linked to a cell survival curve versus dose, the value 
Dq is seen as the dose located at a point at which the tangent to S∞

F
(D) 

crosses the horizontal line parallel to the abscissa D at the height of the 
ordinate reaching the maximal cell survival, SF(0) = 1:

In other words, Dq is the dose to which the terminating exponential region 
of SF(D) is back-extrapolated to the 100% survival level. Relation (12) 
represents the condition for isosurvival at which the same value of the cell 
surviving fraction is obtained for two different doses D = 0 and D = Dq:

or

In this case, isosurvival, as the identical surviving fraction at both D = 0 
and D = Dq is obtained if λ − Dq/D0 = 0, so that eλ−Dq/D0

= 1. Here, 1 
(unity) is the maximal survival at D = 0, signifying the 100% survival, as 
it ought to be for any form of SF(D). Therefore, the isosurvival condition 
λ − Dq/D0 = 0 from (13), or equivalently:

gives the shoulder quasi-width, or the quasi-threshold dose, Dq as:

If a shoulder is viewed as an indication of the existence of accumulation of 
sublethal damage, then, e.g., a wide shoulder width Dq would mean that the 
amount of repaired sublethal damage is large. The name extrapolation num-
ber stems from “extrapolating” the terminal, high-dose asymptote ne−D/D0 
of the survival curve SF(D) back to the zero dose (D = 0). The intercept 
of the asymptote ne−D/D0 and the ordinate gives the extrapolation number, 
{ne−D/D0

}D=0 = n.

(11)λ = ln n > 0, n > 1.

(12)

{

Maximal surviving fraction
}

D=0

=

{

High dose asymptote of surviving fraction
}

D=Dq

.

(13)1 = eλ−Dq/D0

1 = ne−Dq/D0

}

(Isosurviving fractions).

(14)

ln 1 = 0 = λ −

Dq

D0

ln 1 = 0 = ln n −

Dq

D0

}

,

(15)Dq = D0 ln n.
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3. THE LINEAR-QUADRATIC MODEL
3.1  Biological effect, relative effectiveness, and 

biologically effective dose
The cell surviving fraction in the linear-quadratic model (LQ) is intro-
duced by:

or equivalently,

where E(LQ)
B

 is the biological effect (BE):

This expression can be written in the following two alternative forms:

where ξ is the approximate expected number of lethal lesions:

The quantity BED
(LQ) is the LQ-based biologically effective dose:

whereas the quantity RE
(LQ) is the relative effectiveness (RE) from the LQ 

model:

The BED
(LQ) and RE

(LQ) are interconnected through the relationship:

(16)S
(LQ)
F

(D) = e−αD−βD2

,

(17)S
(LQ)
F

(D) = e−E
(LQ)
B

(D)
,

(18)E
(LQ)
B

≡ − ln S
(LQ)
F

(D) = αD + βD2
.

(19)E
(LQ)
B

= αBED
(LQ)

,

(20)E
(LQ)
B

= ξRE
(LQ)

,

(21)ξ ≡ αD (Expected number of lethal lesions).

(22)BED
(LQ)

= D +

β

α
D2

,

(23)RE
(LQ)

≡ 1 +

β

α
D.

(24)BED(LQ)
= D · RE(LQ).
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Thus, the effect E(LQ)
B

 can also be understood as being given by the product 
of the expected number of lesions αD and the relative effectiveness RE

(LQ).

3.2 The Barendsen formula
The simple form (22) of BED

(LQ) is attractive especially in fractionated 
radiotherapy, because only the ratio β/α is employed, but the separate 
values of α and β are not required. Based upon the LQ model, the ratios 
α/β are estimated to be about 3  Gy and 10 Gy for healthy and tumorous 
tissues, respectively. The specific numerical values for α/β can be fully 
meaningful only if they are provided by a mechanistically-based radio-
biological model which is universally valid at all doses of interest. However, 
the LQ model is a low-dose approximation. As a consequence, in order 
to cover all the needed doses, one might be required to perform several 
(say J ) separate fits to the given experimental data resulting in different 
sets of values {αj/βj}( j � J) for the selected J dose intervals. This has the 
drawback of yielding a dose-range dependence of the BED

(LQ), which 
severely limits inter-comparisons of different patterns of radiation deliv-
ery in fractionated radiotherapy. Therefore, it would be desirable to have 
a model which would give the biologically effective dose applicable to all 
doses for the same quantifying parameters estimated by using all the avail-
able experimental data points. Such a feature would enable the extraction 
of the biologically effective dose from the reconstructed parameters that do 
not change when passing from one to another dose range. The occurrence 
that the mentioned ratios α/β are so different for tumorous and normal 
tissue is an indication of the existence of substantially different mechanisms 
by which these two types of tissues respond to irradiation. As stated in the 
Introduction, the main reason for this difference is in the cell proliferation 
which is uncontrolled (chaotic) in tumor, and well regulated by the cell 
cycle growth in normal tissue.

What made the LQ model clinically useful was precisely Barendsen’s8 
idea about linking the radiation dose with the ensuing biological effect. 
In general, irrespective of any particular model, this concept states that the 
biologically effective dose is equal to the product of the total dose D and a 
dose-modifying factor, which is the relative effectiveness:

(25)Biologically effective dose = {Total dose} ·

{

Modifying factor
}

,

(26)BED = D · RE.
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It is through the modifying factor, the RE, that a particular pattern 
of radiation delivery can be taken into account. This is especially impor-
tant for fractionated radiotherapy, where the RE can help improve the 
effectiveness of the specific dose-time schedule by means of which the 
total dose is administered. In searching for some plausible ways that could 
make the LQ model clinically applicable, Barendsen8 entered only the 
ratio β/α into the dose-dependent relative effectiveness RE

(LQ), but not 
the individual parameters α and β. Because the quotients of the form β/α 
are tissue-specific parameters, quantity RE

(LQ)
= 1 + (β/α)D from (23) 

can express the differences in radiation effects for various tissues. In other 
words, RE

(LQ) can be employed to investigate the differences in biologi-
cal effectiveness among various tissues as a consequence of alterations in 
the dose delivery patterns. Thus, since different tissue effects are associated 
with different values of the quotient β/α, it is possible to use Eq. (26) to 
evaluate alterations in the therapeutic ratio due to changes in fractionation. 
The therapeutic ratio can be improved by e.g., reducing dose per fraction, 
in which case there should be proportionally more sparing of the healthy 
(late reacting) than tumorous (early reacting) tissues. These considerations 
indicate that the LQ model can be used as a predictive model, when 
considering certain alternative radiation treatments aimed at maximiz-
ing tumorous cell kill effects, while simultaneously minimizing some of 
the adverse healthy-tissue effects (e.g., normal tissue complication rates). 
The Barendsen relation (26) is general, as it is not limited to fractionated 
radiotherapy. Rather, it can be used for an arbitrary kind of radiation 
treatment. Note that Barendsen8 originally coined a term “extrapolated 
response dose” (ERD) in (26). This was subsequently renamed by Fowler9 
to the “biologically effective dose,” or the BED, as a better terminology 
for Barendsen’s idea.

3.3  Low- and high-dose asymptotes of biological  
effect and surviving fraction

The effect (18) in the LQ model has the following asymptotic behavior at 
infinitesimally small and infinitely large values of D:

(27)E
(LQ)
B

−→

D→0

αD,

(28)E
(LQ)
B

−→

D→∞

βD2
,
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respectively. This gives the corresponding asymptotes for BED
(LQ) as:

Using the asymptotes (29) and (30) for E(LQ)
B

, it follows that the survival 
curve given by S(LQ)

F
(D) from (16) is mainly exponential and Gaussian at 

small and large values of D:

respectively. A stronger repair, with a significant ratio β/α, is seen in the 
plot of cell surviving fraction as a more pronounced shoulder due to the 
Gaussian with its quadratic term βD2, which yields a more curved func-
tion S(LQ)

F
(D). For small β/α, cell kill prevails and S(LQ)

F
(D) is less curvy 

because of the dominance of the purely exponential function. As such, the 
ratio β/α appears as a measure of the curvature of S(LQ)

F
(D) and this influ-

ences the cell response to radiation. Moreover, the smaller β/α implies that 
the dose-response relationship will be less sensitive to fractionation when 
fractionated radiotherapy is applied. Conversely, the larger β/α means that 
radiation damage was accumulated to a sufficient level to produce various 
lesions in DNA molecules. In such a case of an elevated β/α, the repairing 
molecules are triggered more proactively, so that repair of repairable lesions 
can become a key factor in determining the overall biological response of 
the cell to radiation.

The number of lesions could be assumed to be proportional to D as 
indicated in (21). Therefore, the LQ-based effect E(LQ)

B
= (αD)(1 + βD/α) 

from Eq. (18), interpreted as the yield of elementary lesions, is proportional 
to the product of the average number of primary lesions (∼D) and the 
average energy deposited around the lesions (∼ {1 + βD/α}). This can also 
be written as:

(29)BED
(LQ)

−→

D→0

D,

(30)BED
(LQ)

−→

D→∞

β

α
D2

.

(31)S
(LQ)
F (D) −→

D→0
e−αD,

(32)S
(LQ)
F

(D) −→

D→∞

e−βD2

,

(33)E
(LQ)
B

= βD(ζ + D) = βD (zD + D) ,
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where,

Parameter ζ (or zD ≡ z̄D) is a microdosimetric quantity called the “dose-
averaged” specific energy, which is given in terms of a sequence of incre-
ments of the specific energy z associated with single events:

where z̄F ≡ zF is the “frequency-averaged” specific energy.‡ The term “fre-
quency” refers to the frequency of occurrence of single events in a given 
volume. Quantity f1(z)dz is the probability distribution in z, where the 
subscript “1” refers to single events alone. Event distributions appear in the 
analysis because ionizing collisions are random and, therefore, the energy 
deposited in the tissue by such collisions represents a stochastic quantity or 
variable. In the microdosimetric formalism, the average number of events 
N̄  at a fixed dose D is given by N̄ = ⌈D/zF⌉, where ⌈r⌉ is the ceiling symbol 
which denotes the largest integer obtained by rounding up the number r, 
which can be a rational or any other real number or a real value of any 
function.

4. THE PADÉ LINEAR-QUADRATIC MODEL
4.1 Differentiation between physical and biological doses

As mentioned, the two most salient aspects of the cell surviving fraction, 
SF(D), are the direct cell kill and cell repair. They can be simultaneously 
taken into account by introducing a biological dose DB to be determined 
for the given physical, single radiation dose D. The sought dose DB can be 
found from the Poisson statistics. In the context of radiation damage, the 
targeted cell is certain to survive if it receives no dose when the dose DB 
is expected to be absorbed. The chance for such an event to occur is given 
by the Poisson probability:

(34)ζ ≡ zD =

α

β
.

(35)zD ≡ ζ =

1

zF

∫

∞

0

dz z2f1(z), zF =

∫

∞

0

dz zf1(z),

‡  In microdosimetry, a single absorbed dose D is defined as the expected value of the so-called specific 
energy z. On the other hand, specific energy z is the energy per unit mass per unit volume deposited 
per event per cell nucleus.

(36)P(0) = e−µDB,
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where µ is the repair constant in units of Gy
−1. The constant µ � 0 is 

connected to the repair time τ during which the cell becomes effectively 
insensitive to any two consecutive hits (events, particle or ray traversals 
through the treated tissue) whenever they follow each other within the 
time interval �t, which is smaller than the recovery time (�t < τ). When 
the repair mechanism is activated, the delivered physical dose D is reduced 
and becomes only an apparent dose Dappar. On the other hand, the true 
dose Dtrue, which is actually received by the cell, represents the biological 
dose DB. In other words, repair effectively diminishes the values of D and 
transforms it to DB. The difference between D and DB is that the latter 
accounts for a correction due to the missed/wasted hits during the time 
lag �t < τ whenever τ > 0. Such a discrepancy between D and DB can be 
modeled by the said Poisson probability P(0). This settles the issue of the 
definition of DB = DB(D) for a fixed D as:

or explicitly,

where,

Employing the alternative notation:

we can rewrite (38) as:

It will also prove useful to introduce a repair degree by the following quo-
tient of doses:

The mechanism driving the pattern (38), or equivalently (41), which 
describes the cell recovery during the repair time τ consists of the  following 
twofold pattern:

(37)DBP(0) = D,

(38)DBe−µDB
= D,

(39)D � DB.

(40)Dappar ≡ D, Dtrue ≡ DB,

(41)Dtruee
−µDtrue

= Dappar,

(42)Dappar � Dtrue.

(43)ν ≡

Dappar

Dtrue

=

D

DB

, 0 � ν � 1 (Cell repair measure or degree).
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(a) What is usually considered to be a single absorbed dose D is modified 
by repair to become merely an apparent dose Dappar, which is smaller 
than the true dose Dtrue, which is expected to be deposited to the sensi-
tive part of the cell.

(b) A measure or degree of the cell repair is the quotient ν of Dappar and 
Dtrue from (43) as given by the Poisson probability (38) that the cell 
receives no dose when the dose Dtrue = DB is anticipated. This degree 
varies from 0 to 1 due to its coincidence with the Poisson probability 
(36) via ν = P(0) = e−µDtrue

= e−µDB.
The inequality in (39) is evident from e.g., (41) where Dtrue has to 

be exponentially damped via Dtruee
−µDtrue to become equal to Dappar as 

Dtruee
−µDtrue

= Dappar. Stated equivalently, the apparent dose Dappar = D 
is smaller than its true counterpart Dtrue = DB because D ought to be 
enhanced by a positive factor 1/P(0) = eµDB in order to match the value 
DB through:

Parameter µ could be related to the microdosimetric dose-averaged specific 
energy zD = ζ from (34). In microdosimetric formalism, the probability of 
receiving no dose when the dose DB is expected is given by P(0) = e−DB/zD.  
This is the same Poisson formula which is in the formalism of this Section 
denoted by P(0) = e−µDB in (36). Therefore, the parameter µ from (36) or 
(38) could have a microdosimetric meaning, in which case it would repre-
sent the reciprocal of the dose average specific energy:

With this relation, a link to the parameters α and β from the LQ model can 
readily be made. Parameter zD, which appears in the second moment of the 
dose-averaged specific energy has already been identified in dosimetry as 
zD = α/β and, therefore:

It is important to formulate the following inverse dose problem for radio-
biological modeling:

(44)DeµDB
= DB.

(45)µ =

1

zD

≡

1

ζ
.

(46)µ =

β

α
.

(47)
Given the physical dose D applied to the treated tissue,

what would be the biological dose DB received by

the irradiated cells when the cell repair system is active?







.
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Within the Poisson statistics (36), one of the possible answers to this ques-
tion is given by the exact real-valued solution DB of the transcendental 
equation (38).

If DB were known, the dose which was applied to the tissue could 
be retrieved by a direct computation of the so-called Ricker function, 
DBe−µDB. Then the inverse Ricker function would give D. In reality, 
however, the biological dose DB is unknown, but could nevertheless be 
determined by finding the inverse Ricker function. Although the exact 
inverse Ricker function is known and can be used through the Lambert 
function,4, 10 in the present work we shall deal with a simpler and more  
instructive exposition. To this end, we shall derive an approximate solu-
tion for DB from the non-linear, transcendental equation (38) through 
the process of linearization, by using only the known simplest elementary 
functions. With this goal, we start from (44) where we use the series for the 
exponential eµDB as:

where the rhs converges for every value of µDB. A further simplification of 
the rhs of Eq. (45) can be deduced by assuming that the recovery time is 
short (τ ≪ 1 or µ ≪ 1) and that the dose D permits the relation µDB ≪ 1.  
In such a case, it is justified to retain e.g., only the first 2 terms of the series 
from (48), so that (44) becomes:

This implicit, linearized version of the non-linear Eq. (38) can be written 
more explicitly by collecting the unknown DB on the same side of the 
equation to yield:

The expression D/(1 − µD) from (50) is the diagonal Padé approximant 
(PA)11 to DB(D), as a quotient of two polynomials of the same first degree 
in variable D. This PA possesses an equivalent representation obtained by 
employing the binomial series:

(48)eµDB
= 1 +

µDB

1!

+

(µDB)2

2!

+ · · · ,

(49)DB = DeµDB
≈ D(1 + µDB) (µDB small).

(50)DB ≈

D

1 − µD
(µDB small).

(51)DB ≈

D

1 − µD
= D{(1 + µD) + (µD)2

+ · · · },
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which converges for µD < 1. If we keep only the first two terms within the 
square brackets from the rhs of Eq. (51), we will finally arrive at:

or equivalently, by reference to (39):

As discussed for the exact relation (38), we see that the corresponding 
approximation (52) also obeys the inequality D � DB from (39), since 
a non-negative term (µD2 � 0) must be added to D � 0 to obtain an 
approximate DB. Division of (52) by D or (53) by Dappar yields:

so that,

Using (46), the rhs of Eq. (54) can be identified as the relative effectiveness 
RE

(LQ) from Eq. (23). Thus, the quantity RE
(LQ) can equivalently be con-

ceived as the quotient DB/D of an approximate expression for the biologi-
cal dose Dtrue (or DB) and the apparent dose Dappar (or D):

The approximate formula for the effect EB related to (52) is now given by:

Therefore, the definition (46) permits a connection of Eqs. (52) and (57) 
with the LQ model via:

where E(LQ)
B

 is defined in (18), and:

(52)DB ≈ D(1 + µD) (µD small),

(53)Dtrue = Dappar(1 + µDappar) (µDappar small).

(54)
DB

D
≈ 1 + µD,

(55)ν =

1

1 + µD
.

(56)RE
(LQ)

=

DB

D
.

(57)EB ≈ αDB ≈ αD + βD2
.

(58)DB ≈ D
(LQ)
B

, EB ≈ E
(LQ)
B

,

(59)D
(LQ)
B

= D

(

1 +

β

α
D

)

.
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The binomial series (51) for DB can alternatively be obtained by solving 
the implicit, linearized equation (49) through iterations. The first iter-
ate is generated via the replacement of DB from the rhs of Eq. (49) by 
D(1 + µDB) so that DB ≈ D {1 + µ [D(1 + µDB)]}. If in the rhs of the 
latter equation, DB is written as D(1 + µDB), the second iterate follows, 
DB ≈ D(1 + µD + µ2D2

+ µ3DB). The higher iterates within this pro-
cedure of self-substitutions shall yield the binomial series, which sums up 
to closed expression DB ≈ D/(1 − µD) for µD < 1 in agreement with 
Eq. (51).

The approximate solution (52) for DB is the sum of the linear (∼D) and 
quadratic (∼D2) terms. Without repair, all the impinging radiation quanta 
are absorbed by the targeted cell, so that:

and this goes for both (38) and (59). However, with repair (τ > 0, µ > 0), 
there would be some wasted radiation quanta, as if they were removed from 
the beam or annihilated in the traversed tissue and this gives the quadratic 
term ∼D2. Our derivation shows that the quadratic term ∼D2 is directly 
rooted in the cell repair mechanism and brought about by reconstruc-
tion of the unknown biological dose DB ≈ D

(LQ)
B

 from the given physical 
dose D. This gives the approximate answer (52) to the stated inverse dose 
problem (47). By reference to (59), it follows that the quantity BED

(LQ) 
coincides with D(LQ)

B
:

In the present formulation of the LQ model, parameters α and β are  
associated in a distinct manner with the cell kill and cell repair per Gy

−1 
and Gy

−2, respectively. However, in the present derivation of the approxi-
mate effect E(LQ)

B
 from (18), these two parameters are correlated through 

the relationship (46). Thus, if µ were known, only α would be a free param-
eter when reconstructing E(LQ)

B
 from e.g., its least-square adjustment to the 

corresponding experimental data. Parameter µ = β/α is the measure of 
the deviation of the parabola αD + βD2 from the straight line αD plotted 
versus D as the abscissa. The higher the µ, the more parabolic the effect 
E

(LQ)

B
 and the more significant the repair βD2. Conversely, the lower the 

µ, the more straight line behavior of E(LQ)
B

 and the more pronounced the 
cell kill αD.

This derivation clearly demonstrates that the LQ model represents 
a low-dose approximation of a more general model,4 which solves the 

(60)DB = D, µ = 0 (τ = 0 : no repair),

(61)BED
(LQ)

= D
(LQ)
B

.
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transcendental equation (38) exactly, rather than using the approximate 
solution (54), which is valid for small µD. More specifically, we employed 
the convergence radius µD < 1 in the result DB/D ≈ 1 + µD from (54). 
This latter low-dose restriction is due to the use of the binomial series 
for 1/(1 − µD), which is meaningful only for µD < 1. Retaining the first 
two terms in this series via 1/(1 − µD) ≈ 1 + µD leads straight to the 
LQ model. The binomial 1/(1 − µD) itself is the Padé approximant as a 
ratio of the simplest two polynomials of degree 0 and 1 in the numerator 
and denominator, respectively, according to 1/(1 − µD) = P0(D)/Q1(D), 
where P0(D) = 1 and Q1(D) = 1 − µD.

4.2  Repair-mediated non-linear damping of linear direct  
cell kill mechanism

At larger values of D, experimental data for SF(D) usually exhibit an expo-
nential fall-off, SF(D) ∼ e−D/D0

= P(0), where D0 is the dose at which 
the surviving fraction is reduced by 1/e ≈ 0. 367879 or by 36. 7879%,  
as per (4). In other words, the final slope of most measured curves 
for cell surviving fractions is given by 1/D0. This is opposed to the 
LQ-type high-dose dominance of the Gaussian S

(LQ)

F
(D) ∼ e−βD2 

from (32), which continues to bend and thus has no final slope. In 
the LQ model, the initial slope, determined by the low-dose asymp-
tote S(LQ)

F
(D) ∼ e−αD from (31), is given by α which is associated with 

single radiation events (single hits) to a sensitive part of the cell. Even in 
the  low-dose limit, the LQ model was seen to deviate from experimen-
tal data12 thus pointing to unreliable numerical values of the parameters 
α and β in the LQ-based cell surviving fraction S(LQ)

F
(D). According 

to the above derivation, α is also present in β. The said drawbacks of 
the LQ model at both low- and high-dose asymptotic regions could 
partially be attributed to the assumption that the linear part ξ = αD 
is associated exclusively with lethal events as in the classical hit-target 
model. We shall relax this limitation and modify the term αD so as to 
allow for cell repair. In other words, as opposed to the hit-target model, 
where the direct hits (∼αD) describe irreparable lesions that cause cell 
death, we shall permit that even direct hits could be repaired. As dis-
cussed, this can be done by damping αD when the dose is progressively 
augmented. To this end, we shall modify the LQ model by introducing 
the repairable lesion ξB in lieu of ξ as:

(62)ξBeωξB
≡ ξ ∴ ξB � ξ ,



Dževad Belkić and Karen Belkić426

where ω � 0 is a dimensionless repair-related constant. Here,

The inequality ξB � ξ from (62) is evident from the defining relation 
ξBeωξB

= ξ, since ξB needs to be multiplied by a non-negative number 
eωξB�0 to be equalized to ξ. Moreover, biologically, the plus sign of ξB 
in the argument of the exponential in ξBeωξB from the lhs of Eq. (62) 
coheres with the fact that repair diminishes the number of expected lethal 
lesions from direct hits (single interaction of radiation with the cell). At 
this point of the analysis, it suffices to find an approximate solution of the 
transcendental equation (62). This can be done if in Eq. (62), rewritten as 
ξB = ξ e−ωξB, we replace the exponential e−ωξB by its first-order diagonal 
Padé approximant11 in variable ωξB/2 as:

This transforms the transcendental equation (62) into a quadratic equation 
for the unknown ξB:

where,

The roots of the quadratic equation (66) are:

where ξ+

B
> 0 (physical) and ξ−

B
< 0 (unphysical). We retain only the 

positive-definite root ξ+

B , which is re-labeled as ξ
(P)
B :

(63)
ξB = Expected number of repairable lesions from direct hits

ξ = Expected number of irreparable lesions from direct hits

}

,

(64)e−ωξB
≈

1 − ωξB/2

1 + ωξB/2
(Padé approximant for exponential).

(65)
1

2
ωξ2

B
+ QξB − ξ = 0,

(66)Q = 1 +

1

2
ωξ = 1 + γ D,

(67)γ =

1

2
ωα.

(68)ξ±

B
=

Q

ω

(

−1 ±

√

1 +

2ωξ

Q2

)

,

(69)ξ+

B
≡ ξ

(P)
B

.
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Next, the term (1 + 2ωξ/Q2)1/2 is expanded in a series with powers of 
2ωξ/Q2:

By keeping solely the first two terms, i.e., the terms from the curly brackets, 
and using (66), it follows:

In this way, Eqs. (68) and (69) yield the final result ξB ≈ ξ
(P)

B
≈ ξ/Q or:

The replacement of the term ξ by its Padé-equivalent ξ
(P)

B
 yields the Padé 

Linear-Quadratic model, as denoted by PLQ, for the biological effect of 
radiation:

or equivalently,

The corresponding cell surviving fraction in the PLQ model reads as:

If parameter µ is chosen according to (46), we can cast Eqs. (74) and (75) 
into the forms:

(70)
(

1 +

2ωξ

Q2

)1/2

=

{

1 +

ωξ

Q2

}

+

3

8

(ωξ)2

Q4
+ · · · .

(71)
(

1 +

2ωξ

Q2

)1/2

≈ 1 +

ωξ

Q2
.

(72)ξB ≈ ξ
(P)

B
≈

ξ

1 + γ D
=

αD

1 + γ D
.

(73)E
(PLQ)

B
≡ ξ

(P)

B
(1 + µD),

(74)E
(PLQ)

B
=

αD

1 + γ D
(1 + µD).

(75)S
(PLQ)

F
(D) ≡ e−E

(PLQ)

B .

(76)E
(PLQ)

B
=

αD + βD2

1 + γ D
,

(77)S
(PLQ)

F
(D) = e

−

αD+βD2

1+γ D .
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The numerator of the quotient from the rhs of Eq. (76) represents the effect 
in the LQ model, so that we can also write:

As per derivation of the PLQ model, there are two “repair ratios” Ŵβα and 
Ŵγα that can be introduced by:

in terms of which, the biological effect (76) can be rewritten as:

Quotient Ŵβα is a repair degree β/α, which gives the relative impor-
tance of the linear (D) and quadratic (D2), as also encountered in the LQ 
model, according to (59) and (61). The additional repair ratio Ŵγα in the 
PLQ model is a repair measure γ /α of the strength of some higher-order 
mechanisms appearing through all the powers of dose D that are implicitly 
present in (80) and could be made explicit by expanding the binomial 
1/(δ + ŴγαD) into its Macularin series. The quotient of Ŵβα and Ŵγα is 
useful, since it gives the degree of the departure of the PLQ from the LQ 
model:

This quantity is also the final slope of the dose–effect curve S(PLQ)

F
(D),  

as will be discussed later on. The expression (73) for the effect E
(PLQ)

B
 

in the PLQ model was obtained in the two main steps: (i) derivation of 
the approximate biological dose DB = D(1 + µD) from (52), which by 
way of the definition µ = β/α from (46) coincides with the biologically 
effective dose BED

(LQ) in the LQ model, DB = BED
(LQ), as per (61), and 

(ii) replacement of the lethal (irreparable) lesions ξ = αD in the effect 
EB ≡ αDB = ξ(1 + µD) from (61) by the sublethal (repairable) lesion ξ

(P)

B
 

via ξ =⇒ ξ
(P)

B
= ξ/(1 + γ D) = (αD)/(1 + γ D). The net result of the steps 

(i) and (ii), through the product of ξ
(P)

B
 and the relative effectiveness 1 + µD 

as ξ
(P)

B
(1 + µD) represents the effect E

(PLQ)

B
= (αD + βD2)/(1 + γ D) 

(78)E
(PLQ)

B
=

E
(LQ)

B

1 + γ D
.

(79)Ŵβα =

β

α
, Ŵγα =

γ

α
,

(80)E
(PLQ)

B
=

D + ŴβαD2

δ + ŴγαD
, δ =

1

α
.

(81)Ŵβγ =

Ŵβα

Ŵγα

=

β

γ
.
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from (73) in the PLQ model. This recapitulation through the said two steps 
(i) and (ii) illustrates the origin of the name “Padé + Linear-Quadratic” and 
the associated acronym PLQ for this new radio-biological model which has 
originally been introduced in our recent works.4–6

4.3 Initial slope, final slope, and extrapolation number
For the choice µ = β/α from (46), the low- and high-dose asymptotes of 
E

(PLQ)

B
 read as:

respectively. For brevity, the high-dose asymptote (83) is written to exhibit 
only the leading term (∼D), whereas the constant (∼D0) is ignored. As it 
stands, Eq. (76) is the para-diagonal Padé approximant with the numerator 
and denominator polynomial of the second- and first-degree, respectively 
in variable D.

The expression for E(PLQ)

B
 from (76) leads to the corresponding biologi-

cally effective dose BED
(PLQ) in the PLQ model:

This can also be written in analogy with (24) as:

where RE
(PLQ) is the relative effectiveness in the PLQ model:

Insertion of the asymptotes (82) and (83) for E(PLQ)

B
 into Eq. (84) yields:

(82)E(PLQ)
B −→

D→0
αD,

(83)E(PLQ)
B −→

D →∞

β

γ
D,

(84)BED
(PLQ)

≡

E
(PLQ)

B

α
=

D + βD2/α

1 + γ D
.

(85)BED
(PLQ)

= D · RE
(PLQ)

,

(86)RE
(PLQ)

=

1 + (β/α)D

1 + γ D
=

RE
(LQ)

1 + γ D
.

(87)BED(PLQ)
−→

D →0
D,

(88)
BED(PLQ)

−→

D→∞

β

αγ
D.
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As expected, the PLQ and LQ models exhibit the same low-dose behav-
iors in (29) and (87), but differ substantially at high doses according to (30)  
and (88).

The behaviors (82) and (83) of E(PLQ)

B
 yield the following two asymp-

totes of S(PLQ)
F

(D) at small and large values of D:

respectively. This gives the initial and final slopes si and sf , respectively, in 
the dose–effect curve from the PLQ model as:

In the high-dose asymptotes (90), only the leading term βD2 is retained in 
the numerator of the biological effect E

(PLQ)

B
= (αD + βD2)/(1 + γ D). 

However, it is also useful to extrapolate the high-dose limit of the cell surviv-
ing curve back to the ordinate axis (D = 0). This would give the so-called 
extrapolation number n. Thus, alongside the same high-dose approximation 
for the denominator 1 + γ D ≈ γ D, which has already been made in (90), we 
shall now retain the full numerator αD + βD2 in (αD + βD2)/(1 + γ D) 
to arrive at:

so that,

(89)S
(PLQ)
F (D) −→

D →0
e−αD,

(90)S
(PLQ)

F
(D) −→

D→∞

e−βD/γ
,

(91)PLQ : Initial slope : si = α, Final slope : sf =

β

γ
.

− ln S
(PLQ)

F
(D) −→

D→∞

{

αD + βD2

1 + γ D
−

β

γ

}

+

β

γ
D

=

{

(αγ − β)D

γ (1 + γ D)

}

+

β

γ
D

−→

D→∞

{

(αγ − β)D

γ 2D

}

+

β

γ
D

=

{

αγ − β

γ 2

}

+

β

γ
D

(92)S
(PLQ)

F
(D) −→

D→∞

e
β−αγ

γ 2
−

β
γ

D
.
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This can conveniently be rewritten as:

where the extrapolation number n is given by:

Thus, the extrapolation number is proportional to the difference �sfi 
between the final and initial slopes, ln n ∼ sf − si = �sfi. The extrapolation 
number n must be positive and this imposes the following condition:

At high doses, it might be useful to constrain the free parameter γ to the 
relationship:

in which case (90) can alternatively be written as:

With the selection (96), the extrapolation number n from (94) becomes:

where the restriction condition (95) is now specified as:

This positivity requirement (99) for the extrapolation number n > 0 
reflects the proper relationship between the initial (α) and final (1/D0) 
slopes when the third parameter γ in the PLQ model is not adjustable, but 
rather fixed via γ = βD0:

(93)
S

(PLQ)

F
(D) −→

D→∞

ne
−

β
γ

D

ln S
(PLQ)

F
(D) −→

D→∞

ln n −

β
γ

D







,

(94)
ln n =

β − αγ

γ 2

=

�sfi

γ
, �sfi = sf − si.

(95)ln n > 0 if β > αγ .

(96)γ = βD0,

(97)S
(PLQ)

B
(D) −→

D→∞

e−D/D0 at γ = βD0.

(98)ln n =

1 − αD0

βD2

0

at γ = βD0,

(99)ln n > 0 if α <
1

D0

at γ = βD0.

(100)Initial slope (α) < Final slope (1/D0) at γ = βD0.
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We re-emphasize that when γ is constrained to the relation γ = βD0,  
the high-dose limit of the PLQ model becomes S

(PLQ)

F
(D) ∼ e−D/D0, 

as required by the experimental data. Of course, any constraint imposed 
on one parameter inevitably introduces a bias into the estimates of the 
remaining parameters. However, irrespective of whether γ is pre-assigned 
to be of the form γ = βD0 or kept free, the other two parameters α and 
β are always mutually dependent, since by definition β = µα. Moreover, 
in view of (67) instead of γ, we could use ωα/2, where ω takes the role 
of an adjustable parameter. This shows that in the general case without 
resorting to (96), the third parameter ωα/2 in the PLQ model is connected 
to the direct cell kill component α. Overall, the unconstrained version of 
the PLQ model is negligibly more involved than the LQ model from the 
computational viewpoint due to the presence of merely one additional 
parameter γ or equivalently, ωα/2. The constrained variant of the PLQ 
model, with γ fixed by the prescription γ = βD0, has only two parameters 
α and β, since D0 can be considered as the input data to be read off from 
the final slope of the experimentally measured cell surviving fraction at 
larger values of D. In either case, the advantage of the PLQ over the LQ 
model is at least twofold:

•	 (A)	 a	 richer	 mathematical	 function	 with	 the	 underlying	 mechanisms	
and,

•	 (B)	a	smooth	switch	from	the	incorrect	quadratic	(Gaussian)	to	the	cor-
rect (exponential) asymptote at high doses, as required by the measure-
ments.

4.4  The Padé linear-quadratic model and the Michaelis–
Menten kinetics

Inserting (18) for E(LQ)

B
 into the numerator of E(PLQ)

B
 from the Padé quo-

tient (78), we can alternatively write the biological effect in the PLQ model 
as:

where,

(101)E(PLQ)
B = v0(ζ + D) = v0(zD + D),

(102)v0 =

βD

1 + γ D
.
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In (101), use is made of the quantity ζ, or equivalently, zD from (34), where 
zD is the dose-averaged specific energy from microdosimetry.  The quantity 
v0 is velocity or rate, which is equivalent to the initial reaction velocity 
from the enzyme kinetics of Michaelis–Menten (MM)7 for the follow-
ing irreversible chemical reaction (enzyme catalysis) with formation and 
destruction of the enzyme-lesion complex:

Here [E], [L], [EL], and [R] are the concentrations of the free enzyme 
molecules, lesions (primarily DNA), enzyme-lesion complex and repaired 
lesions, respectively. Quantities k1 and k2 are the rate coefficients for forma-
tion and destruction/dissociation of the intermediate complex molecule 
[EL]. In this chemical reaction, the free enzyme molecule [E] binds the 
radiation damaged DNA molecule (a lesion [L]) into an intermediate 
and temporarily living unstable complex molecule [EL]. This compound 
facilitates the enzymatic synthesis of DNA. After completion of this inter-
mediate stage of the reaction, the complex [EL] decays, thus producing the 
repaired lesions [R] and enzymes [E] that are again free for further bindings 
with other lesions. As mentioned earlier in (21), the number of lesions is 
usually assumed to be proportional to dose D:

where κ could be taken as κ = k0 ≡ 1/D0 or as a constant of unit abso-
lute value (κ ≡ 1). When writing [L] = D in (104) and afterwards, it is 
understood that [L] = D ≡ 1 · D, where “1” takes care of the proper units 
in the passage from a dose to a molar concentration. This convention is 
done to avoid introducing a superfluous parameter only for the purpose of  
conversion of the units. In this way, Eq. (102) can equivalently be written as:

Using Eq. (104) and the definition:

we can cast expression (105) into its form used in the MM kinetics:

(103)
[E] + [L]−→

k1
[EL]−→

k2
[E] + [R].

(104)[L] ∼ D = κD ≡ D,

(105)v0 =

β[L]

1 + γ [L]

.

(106)KM ≡

1

γ
,

(107)
v0 =

vmax[L]

KM + [L]

,
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where vmax is the maximal velocity given by:

Velocities v0, and consequently, vmax are given in units Gy
−1. On the other 

hand, in the original Michaelis–Menten velocity for irreversible reaction 
(103), we have:

where [E]0 is the initial concentration of enzymes (the number of enzymes 
at the onset of the reaction), which is assumed to be constant throughout 
and, therefore, equal to the total enzyme concentration [E] ≡ [E]tot at any 
subsequent time. Quantity KM is the Michaelis–Menten7 constant with the 
dimension of concentration. More specifically, this constant for irreversible 
variant (103) of the general MM enzyme catalysis, represents the concen-
tration of lesions ([L] ≈ KM) at which velocity v0 attains one half of vmax, 
as follows {v0}[L]≈KM

≈ vmax[L]/([L] + [L]) = vmax/2:

In the same approximation, the biological effect E(PLQ)

B
 becomes:

At small concentration of lesions, the reaction velocity v0 is reduced to:

where,

The use of Eqs. 106 and (108)–(110) permits connecting e.g., the final 
slope (β/γ ) in the PLQ model with the enzyme kinetic parameters as:

(108)vmax ≡

β

γ
.

(109)KM =

k2

k1

,

(110)vmax = k2[E]0,

(111)v0 ≈

vmax

2
at [L] ≈ KM.

(112)E
(PLQ)

B
≈

vmax + α

2
KM at [L] ≈ KM.

(113)v0 =

vmax[L]

KM (1 + [L]/KM)
≈

[L]/KM≪1

vmin,

(114)vmin =

vmax[L]

KM

.

(115)Final slope : Ŵβγ =

β

γ
= vmax = k2[E]0.
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A similar connection can also be deduced for the extrapolation number using 
Eq. (94) as follows:   ln n = (β − αγ )/γ 2

= (β/γ − α)/γ = (vmax − α)KM, 
so that:

Hence, the larger (the smaller) the product of the enzyme concentration 
[E]0 and the dissociation rate constant k2

, the steeper (the shallower) the 
final slope of the dose–effect curve. This is correct, since more significant 
values of k2[E]0 would enhance the chance for a greater enzymatic activ-
ity with the ensuing larger concentration [R] of repaired lesions. Such 
an outcome should mitigate the influence of the direct cell kill mecha-
nism (αD) and, therefore, would increase cell survival, as manifested by 
a departure from the pure exponential bending e−αD in the dose–effect 
curve. Consequently, a shouldered cell surviving curve appears, as a sig-
nature of the enzymatic repair of radiation-induced lesions. This is also 
reflected in the repair ratio Ŵβα = β/α from (79), which can be rewritten 
in the form:

where the second repair ratio Ŵγα is equal to γ /α, according to (79). The 
larger values of β/α imply a more noticeable influence of repair. Expression 
(117) confirms this expectation through a direct proportionality between 
the quotient β/α and the enzyme concentration [E]0 available for repair. 
Moreover, the same ratio β/α is also directly proportional to the catalysis 
rate k2 and, thus, to the efficiency of the enzymatic repair system in con-
verting the radiation damage [L] to the repaired lesions [R] in the final 
reaction path [EL]−→

k2

[E] + [R], so that:

In the equivalence relation (118), the proportionality constant is Ŵγα, where 
Ŵγα = γ /α from (117). This constant is associated with linear and non-
linear contributions from all the powers that are inherent in the binomial 
(δ + ŴγαD)−1, as mentioned earlier.

Rewriting  (104)  as  E(PLQ)
B =(αD + βD2)/(1 + γ D)=(β/γ )(α/β + D)

× (1/γ + D) and using (106) and (108) for 1/γ = KM and β/γ = vmax, 

(116)Logarithm of the extrapolation number : ln n = (vmax − α)KM.

(117)Ŵβα =

β

α
= Ŵγα{k2[E]0},

(118)Ŵβα ∼ k2[E]0.
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respectively, we can equivalently express the biological effect (76) and the 
cell surviving fraction (77) in the Michaelis–Menten representation as:

and,

The connection among the three parameters {α, β, γ } with the equivalent 
triple {zD, vmax, KM} from the PLQ model is summarized as:

Overall, the MM rate constant KM and the maximal enzyme velocity vmax 
can be measured in standard enzyme experiments. Moreover, the initial (α) 
and final (vmax) slopes can be extracted from the experimental data for the 
given cell surviving curve and so could the extrapolation number n. Also, 
as soon as the triple {α, vmax, KM} becomes available, the extrapolation 
number can be obtained from Eq. (116). Thus, the basic elements of the 
dose–effect curve in the PLQ model are recapitulated via:

When parameter γ is pre-assigned as γ = βD0, by reference to (96), then 
according to (100) the final slope β/γ becomes 1/D0, so that:

This result (D0 ∼ 1/k2) shows that the mean lethal dose D0 is proportional 
to the reciprocal of rate constant k2 for enzyme-mediated creation of a 

(119)
E

(PLQ)

B
= v0 (zD + [L])

=

(

vmax[L]

KM + [L]

)

(zD + [L]) ,

(120)
S

(PLQ)

F
(D) = e−v0(zD+[L])

= e
−

(

vmax[L]

KM+[L]

)

(zD+[L])
.

zD =
α
β
; Direct/Indirect mechanisms , (Cell kill)/(Cell repair)

vmax =

β
γ
; Experimentally measurable maximal enzyme velocity

KM =
1

γ
; Experimentally measurable Michaelis–Menten constant











.

(121)

(122)

si = α; Initial slope

sf = vmax; Final slope

ln n = (vmax − α)KM; logarithm of the extrapolation number







.

(123)D0 =

1

vmax

=

1

k2[E]0

at γ = βD0.
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repaired lesion [R], which is the product substance in reaction (103) for 
enzyme catalysis. 

At high doses, the enzyme-lesion reaction velocity v0 tends to the 
constant value vmax, which is the fastest rate possible for the given 
enzyme concentration [E]0. This means that the rectangular hyperbola 
v0 = αD/(1 + γ D) from (102) as a function of D has reached a plateau at 
larger doses. Stated equivalently, the curve v0 = vmax[L]/(KM + [L]) from 
(107), as a function of [L] is leveled off for higher lesion concentrations, 
[L]. Such a high-dose or a high concentration of lesions described by the 
reaction velocity v0 in terms of the independent variable D or [L] is due 
to the limited amount of enzymes (∼ 100 enzyme molecules per lesion) 
that are available for repair of radiation-damaged cells. At high doses, the 
average number of lesions is sufficiently large to overwhelm and thus inac-
tivate the enzyme repair system, after which point every radiation damage 
is essentially lethal. This saturation of enzymes by lesions is the signature for 
a switch from the cell repair to the cell kill mechanism corresponding to 
the passage from the second- to the first-order Michaelis–Menten kinetics.

Expressions (119) and (120) are written in a way which separates 
the two parts of the PLQ model, by exhibiting the contributions from: 
the enzyme velocity v0 = vmax[L]/(KM + [L]) and the precipitation of 
the dose-averaged specific energy around the lesion zD + [L]. This is merely 
a formal separation, since the dose-averaged specific energy zD is not a 
quantity which is independent of the enzymatic repair. Quite the contrary, 
 combining the definition zD = β/α with β = vmax/KM, we have:

Thus, the enzyme repair system effectively modifies the cell radiosensitivity α 
by the multiplying factor vmax/KM due to the Michaelis–Menten chemical 
kinetics. Because of this inter-connection between zD and {vmax, KM}, the 
product v0(zD) + [L], or equivalently, v0(zD + D) appearing in the effect 
E

(PLQ)

B
 from the PLQ model should not be taken too literally to mean a true 

separation of the two independent mechanisms, the one being enzymatic 
repair (v0) and the other being of microdosimetric origin (zD + D). It is 
merely for the reason of drawing an analogy rather than making a one-to-
one correspondence that we used the notation zD from microdosimetry for 
the defining quotient α/β of the two parameters in the PLQ model for the 
cell kill (α) and cell repair (β) mechanisms of the cell response to radiation. 
The microdosimetric parameter zD was also employed earlier in Eq. (33) 

(124)zD = α

{

vmax

KM

}

.
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for the effect E(LQ)

B
 in the LQ model. There, following Kellerer and Rossi,13 

we expressed the defining relation E(LQ)
B =αD + βD2

=βD(α/β + D) as 
E

(LQ)

B
= βD(zD + D), where zD = α/β. Using the assumed direct propor-

tionality between the lesion number (concentration) [L] and dose D, via 
[L] = κD ≡ D, as per (106) and (108), we can further write:

where,

In this way, the effect (33) and the surviving fraction (16) from the 
LQ model can be cast in the following form of the Michaelis–Menten 
terminology:

and,

Notice that both surviving fractions (120) and (127) in the PLQ and LQ 
models, respectively, are expressed through three parameters {zD, vmax, KM}.  
However, there is a special circumstance within v

(LQ)
0  in the LQ model 

permitting a reduction from this apparent three to only two degrees of 
freedom. This is possible because the two parameters vmax and KM do not 
appear individually in S(LQ)

F
(D) at different places, but rather they enter Eq. 

(127) through v
(LQ)
0  exclusively as the ratio vmax/KM. This leads to a reduc-

tion from {zD, vmax, KM} to {zD, β}, where β = vmax/KM and zD = α/β.  

E(LQ)
B = βD (zD + D)

= {β[L]} (zD + [L])

≡ v
(LQ)
0 (zD + [L]) ,

(125)
v

(LQ)

0
= β[L]

=

vmax[L]

KM

.

(126)
E

(LQ)

B
= v

(LQ)

0
(zD + [L])

=

(

vmax[L]

KM

)

(zD + [L]) ,

(127)S
(LQ)

F
(D) = e−v

(LQ)

0
(zD+[L])

= e
−

(

vmax[L]

KM

)

(zD+[L])
.
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As such, the apparent three parameter set {zD, vmax, KM} is, in fact, a col-
lection of the usual two parameters α and β from the LQ model. In the 
general version of the PLQ model§, none of the three parameters could 
be eliminated so as to have only two remaining degrees of freedom. The 
reason is that, instead of the velocity v(LQ)

0
= vmax/KM from the effect 

E(LQ)
B = v

(LQ)
0 (zD + [L]) in the LQ model, the initial enzyme velocity 

v0 = vmax[L]/(KM + [L]) appears in the corresponding effect in the LQ 
model via:

so that,

as in (78). Thus, the general PLQ model possesses three parameters because 
any attempt to express E(PLQ)

B
 through the two parameters {α, β} in E(LQ)

B
 

invariably leads to the emergence of the third parameter via the isolated 
term 1/KM = γ. The above juxtaposition of enzyme velocities v

(LQ)
0  and 

v0 from the LQ and PLQ models, respectively, is instructive, since it facili-
tates one of the mechanistic levels of comparison between these two for-
malisms. This is best seen by observing that:

where vmin is the asymptote of the reaction velocity v0 at small concen-
tration of lesions, as per (113). Hence, the PLQ model with its Michaelis–
Menten chemical kinetics of enzyme catalysis for lesion repair can help 

§  The general PLQ model is the one which excludes the special case in which the final slope vmax is 
constrained to satisfy the relation vmax = 1/D0 from (123), provided that the mean lethal dose D0 is 
viewed as known by e.g., reading off the ending, exponential part of the curve for the cell surviving 
fraction.

E
(PLQ)

B
= v0 (zD + [L]) =

{

vmax[L]

KM + [L]

}

(zD + [L])

=

{

vmax[L]

KM

(zD + [L])

} (

1 +

[L]

KM

)

−1

= E
(LQ)

B

(

1 +

[L]

KM

)

−1

,

(128)E
(PLQ)

B
=

E
(LQ)

B

1 + [L]/KM

,

(129)v
(LQ)

0
= vmin,
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understand one of the limitations of the LQ model, such as the restric-
tion to (129). A small concentration of lesions is associated with low-dose 
exposure of cells to radiation. Therefore, restriction of v(LQ)

0  to only small 
repair velocity vmin of enzyme molecules means that the validity of the LQ 
model is limited to low doses. This conclusion from the Michaelis–Menten 
formalism is in accordance with the well-known fact that the LQ model is 
a low-dose approximation to cell surviving fraction.

5.  RESULTS: COMPARISON OF RADIOBIOLOGICAL 
MODELS WITH MEASUREMENTS

The relative performance of the PLQ and LQ models is illustrated by their 
comparisons with experimental data. This is done on the level of cell sur-
viving fractions SF(D) and also by plotting the so-named full effect graph.4 
Such twofold comparisons are deemed necessary for the reasons that run 
as follows.

At low-to-intermediates doses, quite different radiobiological models 
can still be in reasonably close agreement with experimental data when 
plotted as cell surviving fractions SF(D) versus D. This is also evident 
from each panel (i) on Figures 14.1–14.3 when comparing the PLQ 
and LQ models with measurements. Of course, it is also clear from the 
same panel (i) on these figures that this type of relatively good agreement 
between these two formalisms ceases to exist at larger doses because of 
the prevailing Gaussian and exponential shapes of cell surviving fractions 
in the LQ and PLQ model, respectively. The displayed experimental data 
for the  corresponding cell surviving fractions favor the predictions by the 
PLQ model at all doses. This confirms the theoretical expectation that the 
PLQ model is universally valid at any dose D. By contrast, at high doses 
the LQ model is seen to break down, as it largely underestimates the sur-
viving fractions from the measurements.

Overall, at small and intermediate doses, survival curves do not appear to 
be the most suitable for differentiating among various models while evaluat-
ing their clinical usefulness in radiotherapy. Moreover, dose–effect functions 
SF(D) are rarely of direct use in dose planning systems that, instead, most 
frequently employ the biological effect EB(D) and the biologically effec-
tive dose BED(D). There is yet another useful relationship, which offers the 
possibility for a more stringent assessment of clinical adequacy of different 
biophysical models. This is the so-called full-effect plot, or Fe-plot,4 which 
is associated with the ratio of the biological effect and the absorbed dose, 
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Fe(D) = (1/D)EB(D), or equivalently, Fe(D) = −(1/D) ln SF(D). This 
quantity is also known by the alternative name “reactivity”13 and denoted 
by R(D), which is also used in panel (ii) on Figures 14.1–14.3:

Such a biological effect per unit dose represents the full effectiveness of 
radiation on cell survival for each given level of dose exposure. It is this 
Fe-plot, depicting Fe(D) versus D, or equivalently, R(D) as a function of 
dose, which can distinguish one model from another in the most dramatic 
way, as is clear from panel (ii) on Figures 14.1–14.3. In the Fe-plot, the LQ 
model yields a linear radiation response, as displayed by a straight line of a 
slope β and the intercept α on the ordinate:

This means that the effectiveness of radiation at every dose level would 
have no bound, as it would be indefinitely increased with augmentation 
of D. Such a pattern is at variance with most experimental data Fe

(exp)(D) 
that are seen on plot (ii) of Figures 14.1–14.3 to saturate to some constant 
values at high doses. This behavior is also predicted by the PLQ model 
whose Fe-plot levels off to the constant final slope β/γ, as D becomes very 
large:

Here, the rectangular hyperbola (α + βD)/(1 + γ D) from the PLQ model 
implies the existence of repair of radiation damage to the cell through a 
mechanism of the Michaelis–Menten type for enzyme-lesion catalysis. As 
such, panel (ii) on Figures 14.1–14.3 for the Fe-plot shows excellent agree-
ment of the PLQ model with the corresponding experimental data.

Overall, we can conclude that the universal applicability of the PLQ 
model to all doses is demonstrated in both panels (i) and (ii) of Figures 
14.1–14.3 for cell surviving fractions and the Fe-plot. Simultaneously, 
these comparisons prove the marked superiority of the PLQ over the LQ 
model. This outperformance of the latter by the former radiobiological 
model testifies to the adequacy of the mechanistic underpinning of the 

(130)

Fe(D) ≡ R(D)

=

1

D
EB(D)

= −

1

D
ln SF(D).

(131)Fe
(LQ)(D) = R(LQ)(D) = α + βD.

(132)Fe
(PLQ)(D) = R(PLQ)(D) =

α + βD

1 + γ D
−→

D→∞

β

γ
.
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Figure 14.1 Cell surviving fractions S
F
(D) as a function of radiation dose D in Gy (top 

panel (i)). Bottom panel (ii), as the Fe-plot, shows the so-called reactivity R(D) given 
by the product of the reciprocal dose D−1 and the negative natural logarithm of  
S
F
(D), as the ordinate versus D as the abscissa. Any departure of experimental data 

from a straight line indicates inadequacy of the LQ model for the Fe-plot. Experimental 
data (full circles):30 the mean clonogenic surviving fractions S

F
(D) (panel(i)) and 

R(D) ≡ −(1/D) ln(S
F
) (panel (ii)) for the human small cell lung cancer line (U1690) 

irradiated by 190 kVp X-rays. Theories: solid curve for the PLQ (Padé linear-quadratic) 
model and dashed curve for the LQ (linear-quadratic) model (the straight line α + βD 
on panel (ii)).
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Figure 14.2 Cell surviving fractions SF(D) as a function of radiation dose D in Gy (top 
panel (i)). Bottom panel (ii), as the Fe-plot, shows the so-called reactivity R(D) given 
by the product of the reciprocal dose D−1 and the negative natural logarithm of  
SF(D), as the ordinate versus D as the abscissa. Any departure of experimental data 
from a straight line indicates inadequacy of the LQ model for the Fe-plot. Experimental 
data (full circles):17 the mean clonogenic surviving fractions SF(D) (panel(i)) and 
R(D) ≡ −(1/D) ln(S

F
) (panel (ii)) for the Chinese hamster cells grown in culture and 

irradiated by 50 kVp X-rays. Theories: solid curve for the PLQ (Padé linear-quadratic) 
model and dashed curve for the LQ (linear-quadratic) model (the straight line α + βD 
on panel (ii)).
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Figure 14.3 Cell surviving fractions S
F
(D) as a function of radiation dose D in Gy (top 

panel (i)). Bottom panel (ii), as the Fe-plot, shows the so-called reactivity R(D) given 
by the product of the reciprocal dose D−1 and the negative natural logarithm of  
S
F
(D), as the ordinate versus D as the abscissa. Any departure of experimental data 

from a straight line indicates inadequacy of the LQ model for the Fe-plot. Experimental 
data (full circles):31 the mean clonogenic surviving fractions S

F
(D) (panel(i)) and 

R(D) ≡ −(1/D) ln(S
F
) (panel (ii)) for the asynchronous V79 Chinese hamster cells irradi-

ated hypoxically by 250 kVp X-rays with a concurrent 30 min exposure to the sulfhydryl-
binding agent, N-ethylmaleimide, of low concentration 0.75 µM. Theories: solid curve 
for the PLQ (Padé linear-quadratic) model and dashed curve for the LQ model (the 
straight line α + βD on panel (ii)).
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Padé linear-quadratic formalism, which is rooted in a firm theoretical and 
practical basis of chemical kinetics for repair of radiation damage by means 
of enzyme-lesion catalytic reaction.

It should be noted that the concept of the Fe-plot is critically important 
for both the conventional fractionation and hypofractionation. It impacts one 
of the most delicate decisions by radiotherapists regarding the question: given 
that radiation indiscriminately damages both tumorous and healthy cells, 
how should the total dose vary as a function of the overall irradiation time, 
as well as the number of fractions, in order to maintain a constant  biological 
end effect and also minimize complications to the normal tissues at risk?

6. DISCUSSION AND CONCLUSION
6.1  Biologically expressed response of the cell  

to irradiation
It has been argued that the ultimate success of radiotherapy rests upon 
the possibility to properly understand cell repair after irradiation.14, 15 The 
main focus of this chapter is on enzymatic repair mechanisms encoun-
tered in radiobiological descriptions of dose–effect relationships. With this 
goal, we further elaborate the Padé linear-quadratic model, or the PLQ 
model4–6 for cell surviving fraction, S(PLQ)

F
(D), as a function of a single 

absorbed dose D. In this novel biophysical model, the biological effect 
of radiation, E(PLQ)

B
(D) = − ln S

(PLQ)
F

(D), is given by the Padé approxi-
mant, E(PLQ)

B
(D) = (αD + βD2)/(1 + γ D). By a smooth transition, this 

 rational function becomes automatically linear at both low and high doses, 
E

(PLQ)
B

(D) −→

D→0

αD and E(PLQ)
B

(D) −→

D→∞

(β/γ )D. Precisely such types of 

exponentials have been observed by numerous measurements in the said 
two dose limits. The PLQ model has three parameters {α, β, γ }. Here, as 
usual, radiosensitivity α is a single event inactivation constant in units of 
Gy

−1. However, parameter β, which is in units of Gy
−2, is derived from the 

introduction of a delay time in the cell response to radiation insult. This 
delay is associated with the existence of a repair or recovery time τ. Any 
two consecutive radiation events or hits would be wasted, i.e., not regis-
tered at all by the cell, if they were separated by a time interval �t such that 
�t < τ. The cell becomes effectively insensitive to such consecutive hits. 
Parameter γ is the reciprocal of the Michaelis–Menten constant, KM, from 
the theory of chemical kinetics for enzyme catalysis. This latter quantity 
is the concentration of lesions at which the enzyme velocity of repair, v0, 
attains one half of its maximum,7 i.e. vmax.
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6.2  Dose–effect relationships at low, intermediate  
(shoulder), and high doses

One of the most important advantages of the PLQ model relative to the 
linear-quadratic model is of particular relevance to radiotherapy by high 
doses per fraction used especially in stereotactic radiosurgery. For this treat-
ment modality, called hypofractionation, the LQ model is inadequate, since 
its biological effect, E

(LQ)

B
(D) = αD + βD2, has a high-dose asymptote 

E
(LQ)
B

(D) −→

D→∞

βD2, which is at variance with the corresponding experi-

mental data exhibiting the exponential shape, E
(exp)

B
(D)∼D, as D → ∞. 

This severely hampers the proper use of one of the key quantities in dose 
planning systems, the so-named biologically effective dose, which is a scaled 
biological effect, BED(D) = (1/α)EB(D). Since the LQ model is not 
universally valid at all doses, the entire set of the given experimental data 
for BED

(exp)(D) cannot be used for extracting the biological parameters. 
Therefore, the usual practice is to carry out a segmentation of the given set 
of experimental data BED

(exp)(D) into different dose ranges to estimate the 
ratio β/α from the postulated relation BED

(exp)(D) ≈ BED
(LQ)(D), where 

BED
(LQ)(D) = (1/α)E

(LQ)
B

(D) = 1 + (β/α)D. A serious disadvantage 
of such a procedure is that the quotient β/α and, therefore, BED

(exp)(D) 
become dose-range dependent. This introduces complications in employ-
ing the BED concept to compare the conventional fractionation (2 Gy per 
fraction)16–20 with hypofractionation.21, 22 Such comparisons are critical 
for extrapolating the abundant experience with conventional fractionation 
to hypofractionated treatments. This is vital given that larger doses per frac-
tion have a tendency of causing more severe late side effects relative to the 
conventional small size fractions. Additionally, the LQ model has difficulties 
in coping with cell survival curves with broad shoulders.23, 24 Moreover, on 
top of continuously bending down as dose D is enlarged, pointing to the 
non-existence of the final slope and the extrapolation number n, the LQ 
model can break down at very low doses, as well.12

6.3 Beyond the linear-quadratic model of cell inactivation
In order to partially overcome the mentioned drawbacks of the LQ model, 
Paganetti and Goitein25 introduced in 2001, within the amorphous track 
 partition (ATP) model, a modification containing a Heaviside step func-
tion with a transition dose DT. Their surviving fraction coincides with 
the  linear-quadratic response e

−αD−βD2

 from the LQ model at D � DT 
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and, conversely, becomes a linear function of dose D at D > DT via 
e
−αDT−βD2

T
−γ (D−DT). Here, γ is either a third independent fitting parameter 

or the final slope fixed by the continuity constraint of the derivative of the sur-
viving fraction at D = DT, which leads to γ = α + 2βDT. More recently in 
2008, the modified LQ model from Ref. 25 has been renamed as the universal 
survival curve (USC) model by Park et al.,26 and the linear-quadratic-linear 
(LDL) model by Astrahan.27 However, the common feature of Refs. 25–27 is 
an ad hoc switch from the incorrect D2 high-dose component in the LQ model 
to the corresponding term with a linear dose dependence (∼ D) in the cell 
surviving fraction. The transition dose D = DT at this switch has no justifi-
able biological significance, as it represents just another free parameter. Typical 
measurements of surviving fractions for most mammalian cell lines can be 
trustworthy only down to the 10

−3 survival level. For this reason, extraction of 
parameter DT from such experimental data could hardly be reliable. Astrahan27 
tried to attribute a clinical meaning to DT by claiming that it delineates the 
region of the passage from the shoulder region to the linear component of the 
LQ model. Evidently, this is merely rewording the mathematical meaning of 
the mentioned Heaviside step function from Refs. 25–27 and, as such, cannot 
constitute a clinical nor biological interpretation of the transition dose DT. 
Moreover, it has been found in applications27, 28 that DT can be anywhere in 
a quite wide dose range 15Gy–30 Gy. Such locations of DT are incompatible 
with Astrahan’s27 interpretation of the transition dose, since shoulders do not 
typically extend to even the lowest limit (15 Gy) of the mentioned interval.

6.4  Mixed-order chemical kinetics for enzymatic  
cell repair systems

The mentioned problems with the LQ model have also been addressed 
within the PLQ model.4–6 In this mechanistic description, as opposed to an 
empirical transition dose DT, different passages from intermediate to high 
doses are governed by natural switches from various orders (zero, first, sec-
ond) of chemical kinetics that underlies interactions of radiation with the 
cell. A key role in these different switches from one to another dose depen-
dence of cell surviving fraction is the overall activity of enzyme molecules 
in the process of repair of radiation damage of the cell. This mixed-order 
enzyme catalysis, which is at the center of the cell repair system, guarantees 
the emergence of the correct asymptotes of the biological effect at both 
small and large doses. It also secures the existence of a shoulder of the 
proper width at intermediate doses in typical cell surviving fractions. Such 
a clear mechanism is backed by the accompanying mathematical formalism 
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in the PLQ model through the Padé approximant, which is known to pro-
vide optimal interpolations and extrapolations between different regions 
of a given function.11 This is achieved smoothly without ever resorting to 
unnecessary artifices, such as sewing two different regions by a transition 
dose DT placed at an empirically found point through the Heaviside step 
function as in Refs. 25–27. Our initial testings,4–6 as reviewed here, and our 
more recent thorough comparisons of nine different models with six cell 
lines28 resulted in the common conclusion that the PLQ model systemati-
cally provides the most satisfactory description of cell survival after irradia-
tion. This is most prominently evidenced at high doses in the reconstructed 
dose–effect curves as well as in the associated Fe-plots.29
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