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Abstract
We have developed a many-electron model for multiple ionization of heavy
atoms bombarded by bare ions. It is based on the transport equation for an ion
in an inhomogeneous electronic density. Ionization probabilities are obtained
by employing the shell-to-shell local plasma approximation with the Levine
and Louie dielectric function to take into account the binding energy of each
shell. Post-collisional contributions due to Auger-like processes are taken
into account by employing recent photoemission data. Results for single-to-
quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a
very good agreement with experimental data.

1. Introduction

Multiple ionization is still a complex problem in atomic collisions. Theoretical models, based
on distorted wave methods [1, 2] or time-dependent solutions of the Schrödinger equation
[3, 4], describe reasonably well the experimental values for single-ionization cross sections.
Difficulties increase in the cases of multiple ionization because there are many processes to
be considered (direct multiple ionization of outer-shells, inner-shell ionization followed by
relaxation processes or accompanied by Auger-like emission). It has been only recently that
the combination of the independent particle model (IPM) and the ratios of multi-charged ion
production in photoionization experiments has led to satisfactory results for multiple ionization
in the MeV regime, where Auger-like processes play a relevant role [5, 6].

Almost all theoretical efforts in the calculation of multiple ionization cross sections are
based on variants of the IPM [5–8], followed by a multinomial statistics. The aim of this
work is to present an alternative approach based on a many-electron description to deal with
complex systems. The collective representation of the electron cloud led to a simple formalism
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Figure 1. Scheme of the collision between the ion and the target electrons.

which do not require high computing power, and let us describe Ne or Xe targets with the
same degree of complexity.

This approach lies upon three theoretical developments. (i) We solved the transport
equation [9–15] for an ion travelling through a single atom (inhomogeneous electronic
density), leading to the Poisson distribution, instead of the multinomial one. (ii) We improved
the shellwise local plasma approximation (SLPA) [16, 17] to obtain the single-ionization
probabilities as a function of the impact parameter. The present version employs the Levine
and Louie dielectric function [18], instead of the one by Lindhard [19], to take into account the
energy ionization threshold of each shell. (iii) We included the post-collisional contributions
(time delay vacancy production following direct ionization of inner shells) in the Poisson
distribution by employing ratios of charge state distribution of the target atoms measured with
time-of-flight (TOF) spectroscopy and photoelectron-ion coincidence techniques [20–31] .

The work is organized as follows. In section 2, we present the three theoretical
developments mentioned above. In section 3, the results for single, double, triple and quadruple
ionization of rare gases (Ne, Ar, Kr and Xe) by protons are displayed and compared with the
experimental data. Finally, the conclusions are presented in section 4. Atomic units are
employed throughout this work, except when it is especially mentioned.

2. Theoretical model

2.1. The transport equation for ion-electron scattering inside the atom

We consider an incident ion beam with energy E0 moving in the direction z into an atom with
many electrons. The electrons are represented by their density ρ(r), with r = z + b being
the position with respect to the target nucleus, and with b being the impact parameter (see
figure 1). Assuming that the change in the electronic distribution is negligible after each
collision (many-electron approximation) and using the linearized Boltzman equation for the
interaction of the ion with the electron cloud, the transport equation for the projectile energy
distribution g(E, z, b) is given by

∂g(E, z, b)

∂z
=

∫ E0

0
dωW(ω, z, b)[g(E + ω, z, b) − g(E, z, b)]. (1)

This is the Landau equation for multiple scattering, where the kernel W(ω, z, b) is the collision
probability per unit path length and per energy transfer ω to the target electrons. The limits of
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the ω integration in (1) are due to the energy conservation, where E0 is the maximum energy
the projectile can transfer. These limits can be extended to the whole energy range changing
W(ω, z, b) by W(ω, z, b)�(ω)�(E0 − ω).

By following the usual procedure to solve the transport equation [13], we change to the
Fourier space, and express g(E, z, b) as

g(E, z, b) =
∫ +∞

−∞

dt

2π
exp[i(E0 − E)t ]̃g(t, z, b), (2)

where the tilde represents the Fourier transform. We find the solution

g̃(t, z, b) = exp[Q(t, z, b) − Q(0, z, b)],

with

Q(t, z, b) =
∫ z

−∞
dz′W̃ (t, z′, b), (3)

and

W̃ (t, z, b) =
∫ +∞

−∞
dω exp[−iωt]W(ω, z, b). (4)

For a constant electronic density (i.e. free conduction electrons of a metal foil), W̃ (t, z, b)

becomes independent of z and b. In this case, integrating (3) from 0 to z gives Q(0, z, b) =
zW̃ (0, 0, 0) = z

∫ +∞
−∞ dωW(ω, 0, 0), which is the result of Lencinas and Burgdörfer [13].

If we expand the exponential function exp[Q(t, z, b)] into a power series, we can express
g(E, z, b) as

g(E, z, b) =
∞∑

N=0

gN(E, z, b), (5)

with

gN(E, z, b) = exp[−Q(0, z, b)]
∫ +∞

−∞

dt

2π
exp[i(E0 − E)t]

[Q(t, z, b)]N

N !
. (6)

Integrating gN(E, z, b) over all the possible energies we obtain

GN(z, b) =
∫ +∞

−∞
dEgN(E, z, b), (7)

= exp[−Q(0, z, b)]
[Q(0, z, b)]N

N !
, (8)

which is the well-known Poisson distribution. The function GN(z, b) is expressed in terms
of a multiple scattering expansion, where N can be understood as the number of inelastic
collisions of the projectile with the electrons in the atom [13]. As expected, GN(z, b) given
by (8) verifies the unitarity condition

∑∞
N=0 GN(z, b) = 1.

As we are dealing with atomic collisions, we are interested in the probabilities of inelastic
transitions considering the integration in z from −∞ to ∞, that is p(b) = Q(0,∞, b). This
probability relates to the kernel of (1) as

p(b) =
∫ ∞

−∞
dz

∫ ∞

−∞
dωW(ω, z, b). (9)

Note that p(b) is the probability per atom. It takes into account all the target electrons, and may
be larger than unity, meaning that more than one electron is ionized. Instead, the probabilities
per electron (single-collisional event, IPM) must be rigorously smaller than unity.
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The Nth term of the Poisson distribution GN(∞, b) = PN (b) gives the probability of
excitation of N electrons

PN (b) = [p(b)]N

N !
exp[−p (b)], (10)

with the term N = 0, being the elastic case P0(b) = exp[−p (b)] and
∑∞

N=0 PN (b) = 1. The
N excitation cross section is given by

σN = 2π

∫ ∞

0
PN(b)b db, (11)

and the total inelastic cross section, σ = 2π
∫ ∞

0 p(b)b db, satisfies σ = ∑∞
N=1 NσN .

2.2. The SLPA applied to ionization

The kernel W(ω, z, b) of the transport equation (1) represents the collision probability per unit
path length. To obtain this, we resort to the SLPA [16, 17], which is a many-body formulation
based on the dielectric formalism to deal with the interaction of the ion with the electron cloud.
It is a known model supported by three basic assumptions:

(1) W(ω, z, b) is derived from the dielectric formalism [32, 33];
(2) the bound electrons can be described as an inhomogeneous free electron gas of local

density ρnl(r) and Fermi velocity kF
nl(r) = [3π2ρnl(r)]1/3;

(3) the response of these electrons to the ion perturbation can be considered shell-to-shell
(independent-shell approximation) with their corresponding binding energies.

Besides these hypothesis, the SLPA is a first-order approximation for a projectile moving
in a free electron gas, so it is valid in the perturbative region, i.e. ZP /v < ZT and v > kF

nl(r).
In the SLPA, each electron is a part of a whole (the electrons of the same shell), screening

the impinging ion along its path. The seminal developments on the local plasma approximation
(LPA) were made during the 1960s and 1970s [34–37]. However, the present SLPA introduces
modifications on the original formalism based on the shell-to-shell treatment [16, 17, 38], and
it has already been employed in the calculation of total ionization cross sections of gas and
solid targets [16, 39–42] with good results.

Consider a bare ion of charge ZP moving with a velocity v in a free electron gas of
inhomogeneus density ρ (r). The target nl shell is characterized by its electron density
ρnl(r) = |ϕnl(r)|2, with ϕnl(r) being the Hartree–Fock wavefunction for neutral atoms [43].
The SLPA probability of inelastic (ionization) transition of the nl shell as a function of the
impact parameter b can be expressed as

pnl(b) =
∫ ∞

−∞
dz

∫ ∞

0
dω

{
2Z2

P

πv2

∫ ∞

ω/v

dk

k
Im

[ −1

ε(k, ω, ρnl(r))

]}
, (12)

where ε(k, ω, ρnl(r)) is the dielectric function of the nl shell at r = √
z2 + b2. Expression

(12) largely differs from the original LPA approximation introduced by Lindhard [34]. Here
we follow Levine and Louie [18] to consider the shell energy threshold (binding energy εnl of
the state ϕnl(r)) through the shifted energy transferred. The Levine and Louie εLL dielectric
response function is defined as

Im
[
εLL

(
q, ω, kF

nl(r)
)] =

{
Im

[
εL

(
q, ωg, k

F
nl(r)

)]
ω > |εnl|

0 ω < |εnl|, (13)

with ωg = 2

√
ω2 + ε2

nl and εL
(
q, ω, kF

nl(r)
)

being the usual Lindhard dielectric function [19].
This model for the dielectric function, proposed originally for semiconductors and insulators,
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satisfies the so-called f-sum rules (particle number conservation), that is a desirable feature for
a dielectric function. Note that if we consider no binding energy, εnl = 0, the usual expression
for the probability in the dielectric formalism (Lindhard) is recovered. This modified version of
the SLPA has also been applied successfully to the calculation of stopping power in insulators
[44].

The total ionization probability is obtained as the addition of the shell-to-shell
contributions,

p(b) =
∑

nl

pnl(b). (14)

The kernel W(ω, z, b) in (1) is then obtained as

W(ω, z, b) =
∑

nl

2Z2
P

πv2

∫ ∞

ω/v

dk

k
Im

[ −1

εLL(k, ω, ρnl(r))

]
. (15)

Probabilities and cross sections of N-electron ionization are obtained by introducing the results
of (14) in (10) and (11). The total task is a four-dimensional integral on k, ω, z and b.

2.3. The post-collisional contribution

When an inner-shell vacancy is created in an atom, a highly excited state is produced that
decays by either radiative transition or electron emission [45]. The post-collisional electron
emission, like Auger or Coster–Kroning processes, may be single or give rise to cascades that
enhance the number of electrons emitted, i.e. deep vacancies created in direct ionization turn
into highly charged ions [20]. Direct ionization takes place in about 10−18 s, while the vacancy
cascades in the order of 10−15 s, and the time of collecting and analysing the ions is about
10−5 s, so multiple ionization data correspond to the final ionization states due to the atomic
readjustments to inner-shell vacancies [45].

There are several experimental works on multiple emission cross sections of rare gases
[5, 8, 46–57] that cannot be explained without including post-collisional contributions in the
high energy region, where the inner-shell ionization takes place. The experimental data for
double, triple or quadruple ionization cross sections show almost the same slope as the single
one [5]. This fact reveals the importance of single ionization followed by Auger emission in
multiple ionization at high energies.

The post-collisional processes are approximately independent of the nature of the primary
ionization event [46] and can be considered separately. In recent works [5, 6, 57], Auger-
like contributions were successfully included in the multiple ionization probabilities of Ne
and Ar, as a rearrangement of the multinomial expansion by employing decay rates from
photoionization experiments [45].

Formation of multiple-charged rare gas ions in photoionization experiments has been
studied by a number of research groups in the latest 15 years by using synchrotron radiation
as well as TOF spectroscopy [20–31]. These studies provide fruitful information about yield
ratios of multi-charged ions in photoionization experiments. This ratios Fnl,i express how the
direct single ionization of a certain nl shell contributes to ion formation of charge +i, so that∑

i Fnl,i = 1. Including these ratios in (14) we obtain

p(b) =
∑

nl

pnl(b) × 1 =
∑

nl

pnl(b) ×
∑

i

Fnl,i =
ZT∑
i=1

Pi (b), (16)

with

Pi (b) =
∑

nl

pnl(b)Fnl,i (17)
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Figure 2. Single (n = 1), double (n = 2) and triple (n = 3) ionization cross sections of Neon
by proton impact. Curves: SLPA results with (——) and without (- - - -) post-collisional effects;
Kirchner [6] basis generator method with (-.-.-.-) and without (· · · · · ·) post-collisional effects.
Experimental data: full symbols, proton impinging data by Cavalcanti et al [5], Andersen et al
[48], Toburen et al [49], and DuBois et al [50]; open symbols, electron impinging data by Schram
et al [51].

being the probability of a direct single ionization (of any shell nl) followed by post-collisional
emission of i − 1 electrons. Replacing (16) in (10) and rearranging terms so as to put together
those that contribute to the same number of final emitted electrons, we can express ionization
probabilities including post-collisional emission as P

post
N (b)

P
post
1 = e−p(b)P1, (18a)

P
post
2 = e−p(b)

[
P2 +

P2
1

2!

]
, (18b)

P
post
3 = e−p(b)

[
P3 +

2P1P2

2!
+
P3

1

3!

]
, (18c)

P
post
4 = e−p(b)

[
P4 +

2P1P3

2!
+
P2

2

2!
+

3P2
1P2

3!
+
P4

1

4!

]
, (18d)

where we have shortened PN(b) and P
post
N (b) by PN and P

post
N . Each expression P

post
N includes

the term e−p(b)PN
1 /N! that considers all the combination of direct ionization probabilities of

N electrons of different shells, and the term e−p(b)PN that corresponds to a single ionization
followed by the emission of N − 1 electrons via Auger decay. Other terms combine direct
ionization and post-collisional emission so that the ith term is the contribution of the direct
ionization of i electrons to final ionization of N (N − i Auger electrons).

3. Results and discussion

We calculate multiple ionization cross sections (single to quadruple) of Ne, Ar, Kr and Xe
by protons in the high energy range (0.1–10 MeV). In figures 2 to 5 we display our results
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Figure 3. Single (n = 1), double (n = 2), triple (n = 3) and quadruple (n = 4) ionization cross
sections of Argon by proton impact. Curves as in figure 2. Experimental data: full symbols, proton
impinging data by Cavalcanti et al [47], Andersen et al [48], Toburen et al [49], and DuBois et al
[50]; open symbols, electron impinging data by Schram et al [52, 53], and McCallion et al [54].
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Figure 4. Single (n = 1), double (n = 2), triple (n = 3) and quadruple (n = 4) ionization cross
sections of Krypton by proton impact. Curves: SLPA results with (——) and without (- - - -)
post-collisional effects. Experimental data: full symbols, proton impinging data by Cavalcanti et al
[47] and DuBois et al [50]; open symbols, electron impinging data by Schram et al [52, 53].

for direct multiple ionization with the Poisson distribution (10). We also present total results
including post-collisional contributions given by (18a) to (18d). To this end we employ recent
yield spectra measurements of multicharged ions [20–31]. A summary of the yields employed
for Ne, Ar, Kr and Xe is displayed in table 1.
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Figure 5. Single (n = 1), double (n = 2), triple (n = 3) and quadruple (n = 4) ionization cross
sections of Xe by proton impact. Curves as in figure 4. Experimental data: full symbols, proton
impinging data by Cavalcanti et al [47] and Toburen [55]; open symbols, electron impinging data
by Schram et al [52, 53] .

Table 1. Experimental ratios Fnl,i , corresponding to post-collisional charge state distribution.

Ne Kr

1s 1s 2s 2p 3s 3p 3d
Fnl,1 1.5 Fnl,1 1 0.3 0 0 0 2
Fnl,2 93.5 Fnl,2 1.5 0.1 0.8 13 3.5 56
Fnl,3 4.8 Fnl,3 6 0.3 2.3 42 58.6 38
Fnl,4 0.3 Fnl,4 17 1 31 30 32.6 3

(a) (b) (b) (d) (b) (d) (e)

Ar Xe
1s 2s 2p 3s 3p 3d 4p 4d N shell

Fnl,1 0.7 0 0.5 Fnl,1 0 0 0 0 1 5
Fnl,2 10.5 1 86.2 Fnl,2 0 0 0.3 0 80 40
Fnl,3 7.8 89 13 Fnl,3 0 0 4 66 19 28
Fnl,4 42.7 10 0.3 Fnl,4 0 0 39 34 0 21

(b) (c) (c) (f) (f) (g) (h) (i) (b)

(a) Morgan et al [21].
(b) Carlson et al [45].
(c) Brünken et al [23].
(d) Armen et al [22].
(e) Tamenori et al [24].
(f) Saito et al [26].
(g) Tamenori et al [27].
(h) Hayaishi et al [28].
(i) Kämmerling et al [29].

In general, the comparison of the SLPA cross sections with the experimental data is good
at high impact energies, especially for the heaviest ions for which our many-electron model is
expected to work better. The more electrons, the better our model works.
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In figures 2 and 3, we compare the SLPA results for Ne and Ar, with those by Kirchner
et al [6] obtained using the basis generator method (IPM). In both formalisms, the curves with
and without including Auger-like contributions are displayed. The comparison of the curves
without post-collisional corrections is interesting because it represents the comparison between
quite different models (IPM and the SLPA). The inclusion of the Auger-like contributions is
a second step and it is not supposed to introduce changes, except by the fact that the yields of
post-collisional emission employed in [6] are different.

In both targets, Ne and Ar, the SLPA describes nicely the experimental values for single
ionization, at least for proton energies above 500 keV. The inclusion of Auger emission in
single ionization reduces the cross section (ionization of inner shells that ends in a higher
ionization order). This difference is almost negligible for single ionization. Instead, for
double, triple and quadruple ionization, the direct ionization curves fall down drastically with
increasing impact energy, while the experimental result tends to show the same slope of
the single ionization ones. As can be observed in these figures, the inclusion of Auger-like
emission is mandatory in the high energy region. The comparison of figures 2 and 3 shows
that the SLPA results are better for Ar than for Ne. In the latter, the direct multiple ionization
curves (without Auger contribution) overestimate the data. The inclusion of post-collisional
contributions corrects the slope at high energies.

Theoretical calculations on Kr and Xe may be heavy tasks for the IPM, depending on the
number of subshells considered and on the treatment of the electronic dynamics. In contrast,
the SLPA works better for multiple-electron targets, being more suitable to describe the d, or
even the f shells, if any, than the s shells.

Results for multiple ionization of Kr and Xe, with and without post-collisional
contributions, are displayed in figures 4 and 5. The total ionization curves including Auger
contributions show a very good agreement even for triple ionization in both targets. For the
quadruple ionization, the SLPA curves agree quite well with the data by DuBois [50] for Kr.
In the case of Xe, the quadruple ionization curve has the same slope as the experimental data
of Cavalcanti [47], with a factor of around 2 above.

The photoionization yields Fnl,i (i = 1, 4) employed in these calculations are those
displayed in table 1. As can be observed in this table, the outer s shell of the rare gases is not
included, i.e. there should not be Auger decay p–s in this case (see figure 4 in Brünken et al
[23] for Ar+ with a hole in the 3s shell).

For the Ne K shell, we use the F1s,i (i = 1, 4) measured with time-of-flight (TOF)
spectroscopy by Morgan et al [21]. For Ar L shell, we employed Brünken et al [23] data
of F2s,i and F2p,i (i = 1, 4) obtained by the photoelectron-ion coincidence technique. For the
K shell no recent measurements were found in the literature, so we used the data by Carlson
[45] using photoemission of the characteristic x-ray. The K shell contribution is important in
quadruple-ionization of Ar.

In the case of Kr, the post-collisional contribution of each shell vacancy to i ionization
(i = 1, 4) is calculated by employing the experimental yields of TOF spectroscopy by Armen
et al [22] (F2p,i and F3p,i) and Tamemori et al [24] (F3d,i), with the latter being the most
important contribution to double and triple ionization of Kr at high energies. The 3s yield, F3s,i ,
is that of Carlson [45]. The higher energy vacancies (1s, or 2s shells) produce cascade Auger
processes that contribute mainly to Kr+q production (q > 4) [20]. Very recent measurement
by Morishita et al [20] for distribution following ionization of 2p electrons of Kr introduce
negligible differences in the final results.

For Xe, the post-collisional yields for the M shell are those measured by Tamenori et al
[27] (F3d,i only, because 3p and 3s contribute to Xe+q with q > 4 [26]). The main contribution
to Xe double to quadruple ionization comes from ionization of the N shell. We found in the
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Figure 6. Ratios of SLPA ionization cross sections σ(N+1)/σN without post-collisional
contributions, for protons in Ne, Ar, Kr and Xe. Curves: ——σ2/σ1; - - - -σ3/σ2; · · · · · ·σ4/σ3.

literature recent data by Hayaishi et al [28, 30] for the 4p shell, and by Karmmerling et al [29]
for the 4d shell, but as far as we know, there are no measurements for Auger decay of the 4s
shell. In this case, we employ the data by Carlson [45] which consider the N shell altogether.
Future photoionization results for the decay of the 4s shell of Xe may introduce changes in
the curves with post-collisional contribution in figure 5.

The difference between these new techniques and that of Carlson in 1966 [45] using
characteristic x-rays is that even when the energy absorption is dominated by the shell whose
energy is closest to that of the x-ray, photoabsorption can take place in any shell whose binding
energy is less than the x-ray energy [45]. Carlson’s data [45] (employed in recent multiple
ionization calculations [6, 5, 8, 57]) cannot separate contributions due to ionization of outer
shells.

Finally, we would like to call attention to the fact that the ratio σ(N+1)/σN without post-
collisional contribution (only direct ionization of the electrons) follows the same tendency
for N = 1, 4, as shown in figure 6. This sort of scaling can be very useful to estimate cross
sections in high ionization processes.

4. Conclusions

We present a many-electron formalism to deal with a complex problem of atomic collisions,
that is multiple ionization. This model is based on the transport equation method for an ion
through an atom. This is our daring starting point, i.e. the Boltzman transport equation, usually
employed along the extension of a foil, is concentrated inside the extension of a single atom.

Our model differs completely from the independent-particle approximation, leading us
to the Poisson distribution for multiple scattering, instead of the multinomial distribution.
Although it is well known that multinomial distribution tends to the Poisson one for a large
number of electrons, conceptually they are quite different. Our probabilities take into account
all the electrons of the shell, screening the penetrating ion. Moreover, our shell-to-shell
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probabilities per atom may be larger than unity (meaning that more than one electron can be
ionized), while the probabilities in the IPM must be rigorously smaller than unity. In addition,
the mathematical requirements are simple, and the statistical representation of the electron
cloud is better for multielectron systems, being equally simple to calculate He, Ne or Xe, for
instance.

The inclusion of post-collisional contributions (time delay vacancy production following
direct ionization of inner shells) is performed as a rearrangement of the Poisson distribution
employing experimental ratios of charge state distribution of the target atoms measured
with time-of-flight spectroscopy and photoelectron-ion coincidence techniques. Results are
compared with experimental data for single-to-quadruple ionization of Ne, Ar, Kr and Xe by
protons, showing very good accord.
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