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Abstract
We propose a neonization method to deal with molecules composed by hydrides of the second
row of the periodic table of elements: CH4, NH3, OH2 and FH. This method describes these
ten-electron molecules as dressed atoms in a pseudo-spherical potential. We test it by covering
most of the inelastic collisional magnitudes of experimental interest: ionization cross sections
(total, single and double differential), stopping power, energy-loss straggling and mean
excitation energy. To this end, the neonization method has been treated with different
collisional formalisms, such as the continuum-distorted-wave–eikonal-initial-state, the first
order Born, and the shell-wise local plasma approximations. We show that the present model
reproduces the different empirical values with high reliability in the intermediate to
high-energy region. We also include the expansion of the spherical wave functions in terms of
Slater-type orbitals and the analytic expression for the spherical potentials. This makes it
possible in the future to tackle present neonization strategy with other collisional models.

(Some figures may appear in colour only in the online journal)

1. Introduction

The theoretical description of inelastic collisions involving
molecules at random and heavy projectiles is usually
performed by first considering the molecule in a specific
position and afterwards making an average of all the possible
positions. By doing so, all the interference phenomena
involving the different centres will be present. The angular
and energy distributions of the emitted electrons will show
the footprints of the geography of the partners conforming the
molecule. However, by varying the position of the molecule
at the end of the calculation, some of these patterns will be
erased.

For simple molecules this method does not present
major difficulties. But when the molecule is rather complex,
the calculation becomes complicated, not due to the initial
quantum mechanical states, which can be calculated with high
precision [1], but because of the final continuum states, which
are unknown. In many cases, it is necessary to resort to a
combination of continuum states of the different atoms or ions
in the molecule. In practice, Coulomb continuum states with
effective charges are used. For example, the molecule of water,
of clear biological interest, has been largely studied with this
scheme [2–11], in ionization cross sections and also stopping
power calculations.

The strategy we propose here is just the inverse: we first
make an average of all possible positions of the molecule to
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the point that we built a dressed atom in a pseudo-spherical
potential, and then we perform the collisional calculation as
an ion–atom collision. This procedure is much simpler and it
has the important advantage that the initial as well as the final
continuum states can be calculated exactly. But we have to
pay a price: all the interferences among the different nuclei are
buried.

This method can simplify and speed up numerous
calculations involving hydrides, to which it applies quite
well. Our goal is to substantiate this strategy as far as the
total cross section, stopping power, straggling, and singly and
even doubly differential cross sections are concerned. For any
model, the decisive proof is the comparison with experiments,
and this is what we are committed to in this work, testing the
present method as thoroughly as we can.

Particularly, we will study ten-electron molecules:
methane, CH4, ammonia, NH3, water, OH2, and hydrogen
fluoride, FH. We call this proposal the neonization method.
A priori one would expect that CH4, which has the maximum
symmetry, is the more suitable to be treated with our one-
centre spherical reduction. In contrast, the less favoured is the
FH, which has a cylindric symmetry.

Among these four molecules, water is largely the most
studied due to its application on biological studies. For water in
its vapour phase there are several experimental measurements
and tables of suggested values, ranging from total [12, 13],
to singly [14] and doubly differential [15–17] ionization cross
sections. Champion and collaborators have reported a series
of detailed calculations of the total and differential ionization
cross sections by the impact of heavy projectiles [5–11]. The
energy loss of ions in water is another subject that has deserved
special attention due to its application in tumour therapy. The
experimental stopping power data available in the literature
[18, 19] corresponds to solid, vapour and, recently, to liquid
water too [20, 21], as reported in [18] and [22]. We will focus
our comparison on the stopping power data of protons in
vapour [23–26], but we will also compare it with the liquid and
solid phase data at high energies. A sensitive quantity included
in medicine simulations for proton treatment is the mean
excitation energy [27–29]. This value is directly applied to get
dose distributions and Bragg peak positions when high-energy
projectiles penetrate matter. Differences around 15–20% have
been noted among values of mean excitation energy of water
suggested in the ICRU Reports [30, 31], the experimental
data [32–36] and theoretical results [37–40], showing that
a reliable value has not been established yet [27, 41, 42].
Another parameter of interest, also included in the depth–
dose simulations, is the spread in the energy loss or energy-
loss straggling, which introduces a limitation to determine the
position and shape of the Bragg peak [29].

Methane has also been experimentally studied. Total,
singly and doubly differential ionization cross sections were
measured by Rudd, Toburen and collaborators [14, 43–48].
Specifically for hydrocarbons, in [47] a universal semi-
empirical formula has been developed considering the number
of weakly bound electrons. This formula is quite successful
not only for hydrocarbon molecules, but also for the hydrides
considered here. Several stopping power experiments have

been compiled by Paul [18] and Ziegler [19] and are available
online. A theoretical description of inelastic processes in this
molecule has been performed using the continuum-distorted-
wave–eikonal-initial-state (CDW–EIS) approximation with
the molecular wave functions as linear combination of atomic
ones [49, 50]. Also a theoretical method using Moccia
initial states [1] and Coulomb continuum wave functions was
reported in [51].

Less frequently, the literature includes measurements of
ionization cross sections of ammonia [45, 46]. For stopping
power, to our knowledge, the only experiments reported are
those by Bourland et al [52, 53] considering He2+ impact.
Unfortunately, on hydrogen fluoride, no experiments were
found, and so we do not present any inelastic magnitude for
this target. We recall that HF has axial symmetry, so is the less
favoured by this spherical model.

In this contribution we present our theoretical results
for the mentioned collisional parameters (i.e. total ionization
cross sections, stopping power, energy-loss straggling, mean
excitation energy, and single and double differential cross
sections (DDCSs)) starting from two different sources. On
one hand, we use the CDW–EIS approximation [54] and the
first order Born approximation. These are binary collisional
formalisms within the independent electron model. On the
other hand, the dielectric formalism is employed by using the
shell-wise local plasma approximation (SLPA) [55]. The SLPA
describes the response of the electrons of the same binding
energy as a whole (collectively, including all the electron
interactions), screening the interaction with the impinging
ion. This model considers separately each sub-shell of target
electrons using the Levine–Louie dielectric response [56] to
include the energy gap.

The neonization method we propose here for CH4, NH3,
H2O and HF can be applied to other Ne-type molecules of
biological interest, such as OH− and OH+

3 [57], following
exactly the same scheme. Thus, the argonization of the
third row of the periodic table, the 18-electron molecules
SiH4, PH3, SH2, and ClH, would be a carbon copy of the
developments proposed in the next section. In fact, one
could also rise expectations, and attempt to kriptonize some
molecules involving hydrides of Ge, As and Se, though taking
into account that some of them are not stable.

This work is organized as follows. In section 2 the
neonization method is described in detail, including the wave
functions and binding energies obtained for the four molecules
in terms of Slater-type orbitals. The results and the comparison
with the experimental data is performed in section 3. Atomic
units are used except when indicated.

2. The neonization method

Let us consider the following molecules: CH4, NH3, OH2

and FH. The nuclear charge of the heavy elements are ZN =
6, 7, 8, and 9, and along with the number of hydrogens (4,
3, 2, and 1) all have ten electrons. Each molecule has NH

hydrogens localized at the positions RH , with R = |RH | being
a characteristic distance for each molecule.
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The Hamiltonian of these targets is

H = −
10∑

i=1

1

2
∇2

ri
−

10∑
i=1

ZN

ri
+

10∑
i=1

VH (ri) +
10∑
j<i

1

ri j
, (1)

where ri is the position of the ith-electron with respect to the
heavy nucleus, and VH is the Coulomb potential originated by
the NH = 10 − ZN protons at RH , namely

VH (r) = −
NH∑
RH

1

|r − RH | . (2)

Moccia [1] solved the equation H�M = E�M by considering
a one-centre expansion (OCE) method: �M = R(M)

nl (r)Y m
l (�)

using Hartree–Fock where the radial functions where
expressed in terms of Slater orbitals, Snlm(ς | r, θ, φ), as follows

R(M)

nl (r) =
∑
μ j j

a(M)
μ j

Sμ j (ς j | r, θ, φ), (3)

Sμ j (ςμ j |r) = (2ςμ j )
μ j+1/2√

(2μ j)!
rμ j−1e−ςμ j r

. (4)

Moccia [1] obtained five states containing two electrons (spin
up and down) on each orbit.

Our approximation is simpler. We consider that the NH

protons are part of a spherical surface of radius R where all
of them are uniformly spread. From elemental electrostatics,
we know that the potential is constant inside the sphere and
Coulombic outside. Mathematically, we can cast this idea with
the average

〈VH (r)〉 = −
∫

d�R

4π

NH∑
RH

1

|r − RH | ,

= − NH�(R − r)

R
− NH�(r − R)

r
. (5)

To some extent, this average anticipates the final random
position of the molecule. The reader from the atomic physics
community will recognize this approximation as an extension
of the Temkin–Poet model [58], originally designed to treat
helium. We approximate VH (r) by the central potential

VH (r) � −NH (1 − ε)�(R − r)

R

−NH (1 − ε e−r/R)�(r − R)

r
, (6)

where we have introduced one defect, ε , to correct the failure
of our spherical hypothesis (more precisely, to adjust the
energies). We display in table 1 the values of ε used. We will
return to this point later, in relation to the curves displayed in
figure 1.

The Hamiltonian in (1) is then approximated by a dressed
atom Hamiltonian HC

H � HC = −
10∑

i=1

1

2
∇2

ri
−

10∑
i=1

VC(ri) +
10∑
j<i

1

ri j
, (7)

with

VC = − ZC(r)

r
, (8)

(a) (b)

(c) (d)

Figure 1. Comparison between spherical electron densities given by
(12). Solid lines, present densities; symbols, Moccia OCE molecular
densities [1]. Figures (a), (c) and (d) for CH4, NH3 and OH2,
respectively. Figure (b), the same as (a) in logarithmic scale.

Table 1. Characterization of the molecules in the dressed atom
central approximation. The values R (distance of the hydrogen
atoms to the heavy centre element) and ε are parameters included in
(9); Enl and rnl are the obtained binding energies and mean radii of
the nl-states, respectively; Et , Ek, Ex and Ec are the total, kinetic,
exchange and correlation energies, respectively. The ratios α and β
are defined in (11). Atomic units are used.

CH4 NH3 OH2 FH

Parameters
R 2.080 1.928 1.814 1.728
ε −0.0975 −0.103 −0.325 −0.085

Hartree–Fock
E1s −11.11 −15.45 −20.56 −26.25
E2s −0.954 −1.124 −1.300 −1.576
E2p −0.502 −0.542 −0.584 −0.678
r1s 0.269 0.229 0.199 0.176
r2s 1.694 1.423 1.229 1.032
r2p 1.913 1.634 1.468 1.163
Et −54.28 −68.84 −84.63 −105.5
Ek 39.97 56.21 75.36 100.1
Ex −6.629 −7.827 −8.963 10.65
Ec −0.208 −0.238 −0.266 −0.308

Ratios
α

(LPA)

k 1.100 1.099 1.098 1.094
β(LPA)

x 1.107 1.106 1.119 1.117
α

(LLP)

k 1.093 1.095 1.098 1.095
β(B)

x 1.130 1.125 1.106 1.102
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ZC(r) = ZN + NH (1 − ε)
r

R
�(R − r)

+NH (1 − ε e−r/R)�(r − R). (9)

Note that

ZC(r) →
{

ZN, as r → 0,

10, as r → ∞,
(10)

which are the correct nuclear Coulomb limits.
We then proceed to do a full Hartree–Fock calculation,

HC�C = EC�C, using the NRHF code by Johnson [59].
We adapted this code in order to incorporate the central
charge ZC(r) instead of the punctual ZN one. As VC(r) is a
central potential, the solution can be expressed as: �Cnlm(r) =
R(C)

nl (r)Y m
l (�), with nl = 1s,2s, and 2p. Eigenenergies (Enl),

mean values (rnl), total energies (Et ), exchange (Ex), and
kinetics (Ek) energies are displayed in table 1 for CH4, NH3,
H2O and FH, within the dressed atom picture. Correlation
is not accounted for by Hartree–Fock method. Just to fulfil
a detailed description of these dressed atoms, we have also
calculated the correlation energies, (Ec), with the Wigner–
Clementi expression [60]3. All of these values hold on their
own in their context, and should not be literally confronted with
a full molecular calculation since our approximation avoids
the electron concentration around the hydrogen atoms. It is
important to note that in this case the Virial theorem does
not hold, and this is because VC is nonCoulombic (the Virial
theorem for the Coulomb potential states that Ek = −Et).

These E2p energies can be compared with the experimental
ionization potentials (IP) of each molecule. For CH4 our
theoretical value |E2p| = 13.6 eV is lower but close to the
experimental IP, 14.4 eV [61]. For NH3, H2O and FH we
obtained |E2p| = 14.7 15.9 and 18.5 eV, respectively; all of
them higher than the experimental IPs 10.1, 12.6 and 16.0 eV
[61]. We will return to this later in this work in relation to our
results for the ionization cross sections.

As for any atom, we can also calculate the exchange and
kinetic energy in the local density approximation (LDA) [62],
and the gradient correction given by Becke (B) [63] and Lee,
Lee and Parr (LLP) [64] approximations. In table 1 we also
displayed the corresponding ratios

αLDA = Ek/ELDA
k , βLDA = Ex/ELDA

x ,

αLLP = Ek/ELLP
k , βB = Ex/EB

x . (11)

These values are quite expectable and ratify the generalized
suspicion that α � β.

In figure 1 we plot the local densities obtained from the
present calculation with a central potential (�C), and from the
average value of Moccia wave functions (�M ), given by

�C|M(r) = r2
∫

d� �∗
C|M�C|M. (12)

These densities satisfy the normalization condition:∫
dr �C|M(r) = 1. As can be observed in figure 1, our averaged

densities �C for CH4, NH3, H2O compares quite well with the
ones of Moccia �M in the region of interest. We must note

3 (The density correlation energy is refitted as εc = εc1δ
4/3/(εc2 + δ1/3), δ is

the density and εc1 = −0.189 and εc2 = 5.80. This expression improves the
Wigner one).

that the Moccia states are five [1], so the outer three states
should be compared with our 2p-state. In fact, we have chosen
the values of ε displayed in table 1 so that the energy of our
2p-state approximates the average of the outer states obtained
by Moccia [1]. Other criteria can be essayed, but it is pertinent
to mention that even considering ε = 0, the final results do not
change considerably.

As we can see for CH4 in figure 1(b) in logarithmic
scale, our densities do not match the ones by Moccia at large
distances. We cannot describe the clear structure of the 1s-state
at the protons’ site. It could be reproduced by choosing a more
elaborated central potential, for example one of the types used
in [51]. As expected, similar features are found for NH3 and
H2O, but are much less pronounced.

We performed a fitting of our wave functions �C with six
Slater orbitals Sμ

R(C)

nl (r) = �μ j aμ j Sμ j (ςμ j |r). (13)

The coefficients of these Slater orbitals are displayed in table 2
for CH4, NH3 and H2O. We want to stress that we forced the
last charge value of the p-state to be ςμ6 = √

2|E2p|, in order
to properly describe the atomic density at large distances.

The values displayed in tables 1 and 2 are the only
inputs for SLPA calculations [55] of ionization cross sections,
stopping power or any other moment of the energy loss. Once
the binding energies and the electronic densities are known,
we can use the SLPA in the usual way [65–68].

Instead, if we are interested in the calculation based
on the independent electron model, such as the first Born
approximation or a distorted wave, such as the CDW–EIS,
we need to specify the central potential for each electronic
state. Namely, we have to determine Vnl(r), so that(

−1

2

d2

dr2
+ Vnl(r) + l(l + 1)

2r2
− Enl

)
uC

nl(r) = 0, (14)

where RC
nl(r) = uC

nl(r)/r. It is convenient to castVnl(r) in terms
of the popular form

Vnl(r) = −1

r
−

2∑
j=1

Zj

r
(1 + α jr) e−μ j r. (15)

To obtain these parameters, we first determined a static form
of Vnl(r) knowing the density. Afterward, we polished it by
imposing that the potential satisfies the correct binding energy
Enl, the mean values r−1

nl and rnl , as given in table 1. A set
of values Zj, μ j and α j for the four different molecules are
displayed in table 3. Note that, in all cases, Vnl(r) presents the
correct limits, i.e. Vnl(r) → ZN (1) as r → 0 (∞).

The independent electron model (CDW–EIS or Born
approximations) only requires the potential Vnl(r). It considers
only the interaction of the projectile with a single electron
while all the other electrons remain frozen. The wave functions
for the bound and the continuous states are calculated by
solving the Schrödinger equation of a single electron in this
potential. The use of Vnl(r) automatically determines all of
the single-electron energy spectrum. In this regard, the first
excited state for the four cases studied corresponds to the 3s
state. Using the Salvat et al computing code [69] with V2p, we
obtained E3s = −0.234, −0.194 and −0.181 au, for CH4, NH3

4
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Table 2. Parameters defining the Slater orbitals, as given by (13).

CH4(2p) CH4(2s) CH4(1s)

μ ςμ aμ μ ςμ aμ μ ςμ aμ

2 2.539 15 1.554 44 1 1.934 01 −13.5010 1 5.786 19 0.602 3296
2 10.1794 0.000 855 1 11.5329 0.005 39 1 9.702 84 0.055 044
2 2.210 01 −3.038 85 1 3.205 87 6.740 05 1 4.907 50 0.347 142
2 1.088 64 0.526 79 2 2.504 68 6.950 11 2 3.490 19 0.004 208
2 1.833 94 1.977 83 2 1.711 39 0.778 07 2 2.176 12 0.002 859
2 1.004 50 0.017 67 2 1.417 74 −0.698 08 2 1.390 23 0.000 539

NH3(2p) NH3(2s) NH3(1s)
μ ςμ aμ μ ςμ aμ μ ςμ aμ

2 2.872 33 2.806 04 1 2.094 73 −3.807 28 1 6.958 63 0.546 789
2 10.6384 0.001 64 1 12.0911 0.008 484 1 11.5764 0.041 831
2 2.594 96 −5.579 76 1 4.097 35 1.771 51 1 5.846 72 0.415 018
2 1.253 79 0.472 56 2 2.859 18 2.082 41 2 4.148 03 0.004 600
2 2.306 23 3.292 09 2 1.717 66 −0.318 03 2 2.508 93 0.002 358
2 1.041 65 0.073 10 2 1.432 58 −0.199 67 2 1.545 46 0.000 413

OH2(2p) OH2(2s) OH2(1s)
μ ςμ aμ μ ςμ aμ μ ςμ aμ

2 5.198 61 0.999 80 1 5.8539 0.530 52 1 7.857 50 0.739 34
2 7.862 57 0.029 77 1 7.5205 −0.264 25 1 13.5304 0.033 21
2 1.282 59 0.349 73 1 9.7902 0.082 27 1 6.226 86 0.233 82
2 1.948 50 0.519 06 2 4.5317 −0.233 45 2 3.236 05 0.002 49
2 5.442 18 −0.858 72 2 2.1371 −0.759 58 2 2.229 58 0.000 46
2 1.076 40 0.051 77 2 1.5464 −0.184 36 2 1.631 95 0.000 25

Table 3. Parameters defining the central potentials as given by (15).

State j Zj μ j α j

CH4(2p) 1 −1.0684 0.1183 −0.003 17
2 −3.9316 3.0610 −0.073 78

CH4(2s) 1 −1.3163 0.1189 0.055 66
2 −3.6837 3.3510 −0.370 47

CH4(1s) 1 −2.8922 0.5878 −0.042 53
2 −2.1078 3.7098 0.047 48

NH3(2p) 1 −1.5688 0.4003 0.000 00
2 −4.4312 3.1936 −0.083 80

NH3(2s) 1 −1.2827 0.1289 0.030 35
2 −4.7173 2.8893 −0.214 71

NH3(1s) 1 −1.1368 5.8363 −0.048 25
2 −4.8632 1.1651 −0.019 03

OH2(2p) 1 −1.9107 0.6499 −0.006 60
2 −5.0893 3.2101 0.003 29

OH2(2s) 1 −1.1543 0.1370 0.003 69
2 −5.8457 2.8042 −0.029 80

OH2(1s) 1 −0.9924 6.9585 −0.029 41
2 −6.0076 1.4148 0.000 00

and H2O, respectively. This gives theoretical first electronic
excitation energies ωg = E3s − E2p = 7.4, 9.5 and 11.0 eV for
these molecules, while the experimental (molecular) values
are 10.9, 5.7 and 7.1 eV, respectively [61]. This first excitation
energy gap is important when we consider stopping power, as
we shall see later on in this contribution.

2.1. Numerical details

The starting element for the CDW–EIS model is the
T -matrix element given by T CDW−EIS = 〈�CDW−|H −
E|�EI+〉, where �CDW− (�EI+) is the final (initial) distorted
state [54]. The CDW final state �CDW− is written as the final
continuum state times the projectile distortion, while the initial
�EI+ as the initial electronic state times the projectile eikonal

distortion. The point we stress here is that the initial as well
as the final continuum states are numerical (exact) solutions
of the dressed atom considered. To that end, we used the code
RADIALF [69] in a grid of about 2000 points of each of the
28 angular momenta of the continuum state. Further, we used
28 azimuth and polar angles of the ejected electrons, about
50 momentum transfers and 50 electron energies. Numerical
integrations were carried out in these grids with the cubic spline
technique. With the stopping power in mind, we have extended
the CDW–EIS for excitation as well, which involves the
numerical solution of the Schrödinger equation for the initial
and final excited state in the same potential Vnl (see appendix
of [70] for details of the algebra involved). Transitions to 3s,
3p, 3d, 4s, 4p and 4d, including all the magnetic sub-states,
were calculated.

We also calculated the Born approximation in the same
way. This is of particular importance, since the first order Born
provides the correct high-energy limit.

On the other hand, we also employed the dielectric
formalism through the SLPA. It is a first order method
(Z2

P dependence), which works within the independent shell
approximation [55]. The SLPA considers separately each nl-
subshell and the interaction with an electron embedded in a
fully correlated electron cloud. The high-energy limit should
be given by both the first Born approximation and the SLPA
(first order both), which lets us check them against each other.

The energy gap, ωg, is introduced in the SLPA by using
the Levine–Louie dielectric function [56], which includes it
explicitly [55]. If we calculate ionization cross sections, the
gap is the energy threshold of the state to be ionized, namely
ωg = |Enl|. But when we calculate the electronic energy loss
or stopping power, all the inelastic processes are involved,
including excitation too. In this case we used Levine–Louie
dielectric function with an energy gap ωg = E3s − Enl , where

5
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Enl corresponds to the initial state, and E3s is the energy of
the first excited state given before. In all cases, this dielectric
function satisfies the f-sum rule, which ensures the correct
behaviour of the SLPA at high energies and the tendency
towards the Bethe limit [71]. We will return to this point again
in relation to the mean excitation energy.

3. Results

Our starting points are condensed in tables 1–3, no other data is
required. For the CDW–EIS we only need the potentials given
by (15) and the coefficients of table 3, energy, initial bound and
final continuum states were obtained solving the Schrödinger
equation numerically. For the SLPA calculations we require
the densities of each sub-shell of electrons (obtained from the
wave functions given in table 2) and the corresponding binding
energies (given in table 1).

3.1. Total cross section

Figure 2 shows the total ionization cross sections of CH4, NH3,
and OH2 by proton impact. Our three theories are displayed:
Born approximation in dotted lines, the CDW–EIS in solid
lines and the SLPA in dash-dotted lines. We will keep this
representation all throughout this work.

As expected, the CDW–EIS values tend to the Born
approximation for high proton energies (impact energy E >

300 keV). We performed CDW–EIS calculations for proton
impact energies up to 1 MeV and tested this convergence.
There is no need to employ the CDW–EIS approximation for
higher energies because the Born approximation provides the
results with much less computing time (about one order of
magnitude less). At lower energies the behaviour is the usual
one: the Born approximation becomes larger and CDW–EIS
diminishes. In all the cases the high-energy limit falls on the
experiments which is a guaranty that our model works quite
well. It should be noted that the SLPA provides the high-energy
limit quite precisely and this is good news, since this simple
model is computationally very fast, much faster than the Born
approximation. In fact, we first calculate with the SLPA and
inspect the ranges of all the variables of interest where the
process is relevant.

Total experimental cross sections are also displayed in
figure 2, together with the recommended values by Rudd et al
in [44]. In the case of NH3, few measurements are available,
only those by Lynch et al [45] for E � 250 keV and by McNeal
[46] for E � 30 keV. The recommended values by Rudd et al
[44] extrapolate them proposing certain fitting function. On the
other hand, for H2O, in the last 20 years it has become possible
to measure proton impact ionization cross sections leading to
different dissociative and non-dissociative channels [72–74]
(H2O+, OH+, O+, O2+, H+). The addition of these values is
in good agreement with the total ionization cross sections by
Rudd et al [12]. As an example, in figure 2 we include the total
values for pure ionization obtained by adding the different
contributions by Luna et al [74], for energies above 500 keV.
We also include in figure 2 the high-energy data of electron
impact ionization by Rao et al [75] (for NH3) and by Itigawa
et al [76] (for H2O).

Figure 2. Total ionization cross section for protons on CH4, NH3

and H2O, as a function of the impact energy. Curves: our theoretical
results using the following approximations: solid lines (red)
CDW–EIS, dotted lines (blue) first Born, and dashed–dotted lines
(green) SLPA. Symbols: for CH4, experimental data by Rudd et al
[43] and recommended values (fitted) by Rudd et al [44]; for NH3,
experimental data by Lunch et al [45] and by McNeal [46],
recommended values by Rudd et al [44], and data by Rao et al [75]
for high-energy electron impact; for H2O, experimental data by
Rudd et al [12] and by Luna et al [74] for proton impact; also data
by Itigawa et al [76] for high-energy electron impact.

As expected, the best agreement of the neonization model
is found for methane, due to the high symmetry of this almost
spherical molecule. The worst description seems to be for
ammonia. However, the lack of measurements around the
maximum of the cross section renders this inconclusive. For
water vapour the agreement of the CDW–EIS is rather good for
energies above 200 keV. These total ionization cross sections
are in good agreement with CTMC calculations by Errea et al
[77] and with CDW–EIS calculations by Champion et al [5].

The SLPA results are very sensitive to the energy
gap introduced in the Levine–Louie dielectric function. Our
theoretical outermost binding energy |E2p| is similar but
lower than the known experimental value for CH4 [61]. This
may explain the small overestimation of the ionization cross
section for this target. In contrast, for water our theoretical
|E2p| = 15.9 eV is somewhat larger than the experimental
value and our SLPA underestimates the data. In fact, if we
run the SLPA code changing only our theoretical |E2p| by the
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experimental IP of water, 12.6 eV [61], or by the energy of
Moccia outer molecular orbital 13.5 eV [1], the agreement of
the SLPA with the experimental data is quite good in almost
the whole energy range.

We have also calculated the total ionization cross section
of water by impact of 6 MeV/amu C6+, by using both, the
first Born and the CDW–EIS approximations. We obtained
values around 1 × 10−15 cm2 in agreement with the results by
Champion et al [8], but larger than the experiment situated at
5 × 10−16 cm2 (see figure 3 in [8]).

3.2. Single differential cross sections

A deeper test of our model is to calculate the single differential
cross section, dσ/dEe, in terms of the emitted electron energy
Ee. This magnitude samples different regions: from glancing
(small-energy region) to head on (high-energy) collisions. It
is known that dσ/dEe falls down several orders of magnitudes
in terms of Ee. Instead the Platzman yield Y defined as

Y = dσ

dEe

v2

2π(Ee + |E2p|)2
(16)

provides a much more detailed magnitude to inspect. For
large values of v, the Platzman yield Y comes near to the
number of active electrons, and for electron energies larger
than the maximum energy transfer to a stationary electron,
i.e. Ee > (2v)2, Y decreases dramatically. Figure 3 shows
the experimental Y values by Rudd and collaborators [14], for
ionization of CH4 and OH2 by proton impact, along with our
theoretical values obtained with CDW–EIS and the first Born
approximation. Again, the CDW–EIS results for CH4 are in
very good agreement with the data in the whole spectrum of
emitted electron energies, even for rather low impact energy.
Of course, the agreement with Born decreases with decreasing
impact energies. For water, the Platzman yields agree rather
well with the experiments, except for the lower energies of the
emitted electrons (i.e. Ee < 10 eV)

3.3. Double differential cross sections

A more thorough test of our model is the calculation of
the DDCS in terms of the emitted energy and angle, i.e.
d2σ/dEed�. To describe the details, such as the capture to
the continuum peak, we should resort to the CDW–EIS. Such
a peak is absent in the first Born approximation.

The left and central panels of figure 4 show the CDW–
EIS DDCS of protons on CH4 and H2O. The agreement is
good, except at small angles and electron energies; this is a
pathological failure of the CDW–EIS and not a fault of our
neonization method.

In the right panel of figure 4 we change the view and
display the DDCS for protons on NH3 at an emitted electron
angle of 125◦. It is well known that emissions at backward
angles are very sensitive to the quality of the continuum state, a
simple Coulomb continuum with an effective charge generally
fails. Our approximation provides a good description of the
experiments along four orders of magnitude of the falls, which
guarantees the quality of our continuum final state. The peak
observed for NH3 in figure 4, for emitted electrons around
300 eV, corresponds to the Auger decay. If we inspect the

Figure 3. Platzman yields as a function of electron energy, given by
(16) for different values of the proton impact energy as indicated.
Upper and lower panels, results for CH4 and OH2, respectively.
Experiments from [14]. Theoretical calculations are denoted by
curves: solid lines, CDW–EIS; dotted lines, first Born
approximation.

right panel in detail, it is evident that the theory overestimates
slightly the experiments in the range between 1 and 10 eV. This
tendency may explain the overestimation of the experimental
data of the total ionization cross section for the ammonia target
in figure 2.

3.4. Stopping power

The electronic stopping power is the energy loss by
the projectile in all the possible inelastic processes, i.e.
ionization, excitation, capture. In our CDW–EIS and first
Born calculations for the stopping cross section, we include
ionization and excitation to n = 3 and 4. For the SLPA
values, we include ionization and excitation by considering
transitions above the first possible excited state. This was
done by using the Levine–Louie dielectric function with an
energy gap ωg = Enl − E3s, as mentioned before. The capture
contribution to the energy loss is not included in present
calculations.

In figure 5 we display the results with our three theories,
together with the experiments available in the literature
[18, 19]. As a general behaviour, above 200 keV the three
theories agree and nicely describe the experimental values.

In the upper figure, for CH4, the data compiled by Paul
[18] is included. We obtained a very good description of the
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Figure 4. DDCS for the impact of protons on CH4 at 1 MeV, on OH2 at 300 keV, and on NH3 at 1 MeV. Left and central panels, differential
distribution as function of the ejection angles for different electron energies, as indicated. Right panel, differential distribution as a function
of the emitted electron energy for a 125◦ ejection angle. Curves: solid lines, CDW–EIS results. Symbols: experimental data by Toburen et al
[15] for CH4 and NH3, and by Lynch et al [45] for OH2.

stopping maximum by using the SLPA. Also the CDW–EIS
values describe the experiments above 100 keV. Below this
energy capture cross section is not negligible [43] and should
be considered to describe the experimental data.

For NH3 the only measurements we found in the literature
correspond to the impact of He2+ by Bourland et al [52, 53].
We found a reasonable agreement with the CDW–EIS in
this target at the maximum of the stopping and a very good
description at high impact energies. The use of the CDW–EIS
here is mandatory since this projectile requires higher orders
in the projectile charge, not included in the other two theories
(Born and SLPA), which clearly overestimate the data.

In the lower plot of figure 5 we display the theoretical and
experimental values for water vapour. Due to the importance
of this target, a vast compilation of data is available [18],
for the vapour, liquid or solid phases. We include in figure
5 experimental data for vapour, but also for ice and liquid
water in the high-energy range (above 200 keV), where all
the phase effects seem to disappear. This lets us extend the
comparison due to recent measurements of the stopping of
protons in liquid water above 4 MeV [21]. In the high-energy
region, we also include the stopping data of He2+ in vapour,
normalized to the square of the ion charge [18]. The agreement
of this value with those of protons in vapour is very good and
extends the energy range up to 2 MeV. On the other hand, the
data for stopping in liquid water by Shimizu et al [20] is 10%
below the experimental and theoretical values for vapour. This
difference has already been noted [22, 79]. Below 200 keV, our
results underestimate the experimental stopping of protons in
water vapour. We attribute this to the lack of capture in our
results. Around 50 keV the capture cross section of proton in
vapour is similar to the ionization one [80, 81]. The importance

of this contribution to the stopping power for proton impact
energy below 100 keV has already been shown [82, 83].

3.5. Mean excitation energy

The mean excitation energy of compounds has been
theoretically studied (compounds versus mixtures using
Bragg’s rule) a long time ago [84]. At high but not relativistic
energies this value is related to the stopping power by the Bethe
formula [71]

L(v) = ln

(
2v2

I

)
, (17)

where L(v) is the stopping number, a dimensionless parameter
defined as

L(v) = v2

4πZ2
PZT

S(v), (18)

with S(v) being the stopping cross section.
In this work we extend the test of the neonization model

to the mean excitation energy I for each molecular target. In
figure 6 we display our SLPA, CDW–EIS and first Born values
for the stopping number of gaseous methane, ammonia and
water. In the three cases, the SLPA tends to a straight line at
high energies (a logarithmic dependence with v2), as already
noted for other targets (Au, Pb, Bi and W in [67]), showing that
this model is tied to Bethe limit at high energies. The tendency
to follow a straight line for energies above 500 keV amu−1 is
also clear in the experimental data of CH4 and H2O. For NH3

there are no measurements at high energies, and would be an
interesting experimental–theoretical test to carry out.

It can also be noted in figure 6 that our first Born results
deviate from the Bethe limit (and from the experimental data)
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Figure 5. Stopping power cross section for the impact of protons on
CH4 and OH2, and He2+ on NH3. The theoretical calculations are
denoted by lines. Solid lines (red) CDW–EIS, dotted lines (blue)
Born approximations, and dotted-dashed lines (green) the SLPA
approximation. Experimental data: for CH4, Paul compilation [18];
for NH3, measurements by Boulard et al [53] for He2+ impact; for
H2O, hollow squares correspond to water vapour [23–26], solid
triangles to ice [78], hollow [20]and solid [21] stars to liquid water.
We also include hollow circles (orange) for the stopping cross
section of vapour for He2+. [18]

for high energies (i.e. above 2 MeV). This is related to the
number of angular momentum considered. We used just 24
angular momenta of the continuum state, and it is not enough
to represent very high-energy electrons that contribute most to
the stopping number at high impact energies.

The stopping number of H+ on water enhances the
behaviour already noted of the recent measurements of
stopping in liquid water [20]. While the values by Siiskonen
et al [21] above 4 MeV clearly follow the straight line, the
values by Shimizu et al [20] are comparatively low.

The use of the mean excitation energy of water, IH2O, in
dose distributions in hadron therapy, has triggered different
theoretical and experimental efforts to reach a reliable value.
Reviews of the state of the art, including suggested, measured
and calculated values can be found in [79] and [27].

We use the SLPA results for the stopping number at
high energies to obtain the mean excitation energy ISLPA =
limv→∞2v2 e−L(v). This value is very sensitive to the precision

Figure 6. Stopping number as function of the impact energy, for the
impact of protons on CH4 and H2O, and He2+ on NH3. Notation for
curves (theoretical results) and symbols (experimental data) as in
figure 5.

in the numerical integration due to the exponential function
involved. For example, our numerical integrations with an
accuracy of 1%, will give I with an uncertainty of around
5%. This is a rather good precision to test a model, but it is
worth pointing out that, in general, the I-values obtained from
stopping power calculations do not allow the determination
of the mean excitation energy with the precision that clinical
treatment of cancer patients would require [27, 28].

Our model predicts ISLPA
H2O = (73.5 ± 3) eV. This value

is close to the recommended value I = 75 eV in ICRU 49
(1993) [30] and to the theoretical values I = 72 eV [39]
and I = 73.2 eV [40] obtained from the oscillator-strength
spectrum. However, the average of I-values published in the
last 20 years is higher, i.e. I = (79.2 ± 1.6) eV [79], with the
experimental data generally above the theoretical values [42].
For example, recent measurements of the Bragg peak position
[85] and range of ions in water (using the Bichsel rule [33])
agree with a mean excitation energy I = (78.5 ± 5) eV, close
to the Bichsel et al [33] value I = (79.7±5) eV. The accuracy
is still far from what the medical applications require, but is
lower than the 15% mentioned by Besemer et al [27].
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Figure 7. Straggling cross sections for CH4 , NH3 and H2O. Curves:
dot–dashed lines, present SLPA results. Symbols, MELF-GOS
results by Garcia-Molina et al [29].

For the other molecular targets we obtained ISLPA
CH4

=
(43 ± 1) eV and ISLPA

NH3
= (57 ± 2) eV, for methane and

ammonia, respectively. Again the values are rather close to
the recommended values ICH4 = 41.7 eV and INH3 = 53.7 eV
[86, 87], and to the theoretical values by Sauer et al [40]
obtained from dipole oscillator strength distribution ICH4 =
43.5 eV and INH3 = 55.3 eV.

3.6. Straggling

The second moment in the energy loss is known as energy-loss
straggling. It represents the energy-loss variance per unit path
length of a Gaussian energy-loss distribution [88]. Similar
to the stopping power calculation, it must include all the
electronic excited states. In the present contribution we deal
with these calculations analogously to the stopping power
ones, by using the SLPA including excitation and ionization.

At high energies, the straggling cross section per atom,
�2, tends to the known Bohr high-energy limit

�2
B = 4πZ2

PNe. (19)

In figure 7 we display the SLPA results for the straggling
cross section over 4π . We display together the SLPA curves
for CH4 and NH3 in the upper plot, while the values for water

are shown in the bottom plot. In all the targets the tendency
to the Bohr limit, i.e. Ne = 10, is clear, with a small shoulder
above this value (4%) around (5–7) MeV. This shoulder is
shifted with respect to the maximum of the stopping power, as
binary collisional formalisms would expect [89, 90].

To our knowledge there are no experimental
measurements in the literature for either of the molecules
studied here. For water, we compare with the straggling results
by the group of Abril and Garcia-Molina [29, 91, 92] using
the semi-empirical MELF-GOS method. This method fits the
experimental energy-loss spectrum in the optical range, and
extends it to finite momentum transfers using Mermin-type
dielectric function. The very deep shells are described using
generalized oscillator strengths. The agreement is surprisingly
good, which can be considered a good test for these two
independent calculations.

4. Conclusions

The basic task of this article is to test the performance of
our neonization method to deal with molecules composed by
hydrides of the second row of the periodic table of elements.
Our scheme is simple and computationally fast. We cover
most of the inelastic magnitudes of experimental interest,
proving that the method can describe the experiments with
high reliability in the intermediate to high-energy region.
We attribute the failure at lower energies to the theoretical
approximations used. We expect our neonization scheme
to hold even at lower impact energies with the use of an
appropriate theoretical model.

The only two parameters in our calculations are the
distance of the protons to the nucleus R, and the defect ε,
which are displayed in the first two lines of table 1. Actually,
it is possible to employ the neonization method eluding any
Hartree–Fock calculation, just considering tables 2 (for SLPA)
or 3 (for CDW–EIS) as starting points.

As already mentioned, the method is perfectly capable of
being used to neonizate other molecules of biological interest
such as OH− and OH+

3 . Moreover, the extension of the present
model to the argonization of the third row of the periodic table
(molecules like SiH4, PH3, SH2, and ClH ) is in process.
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