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Stark mixing among excited degenerate states following capture or excitation by ion impact on hydrogenlike
atoms is calculated at high velocities by using the perturbative formalism. For electron capture, the second-
order Brinkman-Kramers approximation is found to describe the correct infinitesimal Stark rotation valid in the
high-velocity regime. However, the second-order continuum distorted-wave approximation does not provide
such a rotational form in that regime. It is concluded that the continuum distorted-wave amplitudes should not
be Stark rotated even though a numerical coincidence is found between our formalism and the usual Stark
rotation in the experimental range of interest. Finally for electron excitation, it is found that the perturbative
formalism does not lead to a rotational structure.@S1050-2947~96!09305-5#

PACS number~s!: 34.50.Fa, 32.60.1i

I. INTRODUCTION

Let us begin by considering a simple charge-transfer pro-
cess in an atomic collision,

PKW i
1~T1e!1s→T1~P1e!KW

f8 ,nlm
, ~1!

whereP, T, ande denote the heavy projectile, the nucleus
target, and the electron, respectively. Studying this process,
Burgdörfer @1# remarked that the first-order approximation
for the relativel population of the final states fails since it
neglects, among other effects, Stark mixing between the de-
generate excited states of the projectile escaping the field of
the residual target ion. Burgdo¨rfer developed a model called
post-collision interaction~PCI! @1# considering the mixing
between states of the same principal shell. Besides a full PCI
calculation, he developed an analytical eikonal approxima-
tion that can be expressed as follows for capture into the
n52 level,

S a1s,2s
PCI

a1s,2p0
PCI D 5S cosf

BK1
i sinf

BK1

i sinf
BK1

cosf
BK1 D S a1s,2s

BK1

a1s,2p0
BK1 D , ~2!

where ai , f
BK1

5ai , f
BK1

(rW ) is the first-order Brinkman-Kramers

~BK1! amplitude@2# for the transitioni→ f , ai , f
PCI

5ai , f
PCI
(rW ) is

the corresponding amplitude including the PCI mixing, and
rW is the impact parameter. The matrix equation~2! represents
a unitary rotation where the anglef

BK1
was calculated in an

eikonal approximation@1# to give

f
BK1

.f
B
52

1

vER0
`

H2s,2p0
~Z,rW 50!dZ, ~3!

with

H2s,2p0
~Z,rW !5^2su2

ZT

uRW 1rW8u
u2p0&. ~4!

Here,ZT (ZP) is the target~projectile! charge,RW 5rW 1ZW is
the projectile position with respect to the target,ZW 5vW t, vW is
the projectile velocity,t represents the time, andrW8 is the
electron coordinate with respect to the projectile. Atomic
units are used and heavy projectiles are assumed.

The integral~3! is simple and it gives the evolution phase
as a function of the lower boundR0 ,

f
B
5
ZT
v F 3x0 2exp~2x0!S x028 1

3x0
4

1
9

4
1

3

x0
D G , ~5!

wherex05ZPR0 . The parameterR0 , which divides the in-
ternal collisional and the post-collisional regions, is not
uniquely defined. It was set equal to the smallestn52 radius
(x055) by comparison between the analytical approxima-
tion and the full PCI calculation at moderate velocities. This
choice of the starting point of the PCI gives
fB50.534ZT /v @1#. Later works have taken this value for
granted, even when transition amplitudes were calculated us-
ing other distorted-wave methods such as the continuum-
distorted-wave~CDW! method@3–7# or the eikonal approxi-
mation @8# instead of the first-order Brinkman-Kramers
~BK1! method.

The first question we pose here is the following: is it
possible to find the value off

BK1
, at least in the high veloc-

ity limit, without invoking R0? The answer isyes; in
Sec. II A we obtain this value off

BK1
corresponding to an

infinitesimal Stark rotation in the high-energy limit from the
perturbative formalism.

On the other hand, several distorted-wave methods have
been extensively used in the electron transfer theory to im-
prove the BK1 approximation in the high- and intermediate-
energy regions, such as the mentioned CDW one@9#. It has
been observed that the CDW approximation fails to describe
the experimental density matrix elements@3#. Some authors
considered that this failure could be due to the missing of the
Stark mixing, and they rotated the CDW results with
fB50.534ZT /v straightforwardly@3–7#. It has already been
addressed that though the CDW amplitudes rotated with the
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eikonal PCI model gives a perihelion velocity (LW 3AW )z that
agrees with the close-coupling data at intermediate energies,
the particular form chosen in the analytical PCI treatment
may overestimate the effect@6#. The point is that we do not
know to what extent the CDW amplitudes do already contain
the 2s22p0 Stark mixing. Here we pose thesecondques-
tion: is it possible to find the corresponding Stark rotation
anglef

CDW
using amplitudesai , f

CDW
(rW ) instead ofai , f

BK1
(rW )?

The answer isyes; in Sec. II B we obtain the value of
f

CDW
in the high-energy limit and find that

f
CDW

/f
BK1→O(1/v) as v→`. We will conclude that the

CDW wave functions do already contain such a mixing at
least in the high-energy regime. In other words, if CDW
amplitudes are Stark rotated we account for the Stark mixing
twice.

So far, we have circumscribed our discussions to rear-
rangement processes. Athird question is posed: should we
Stark rotate the first-order amplitudes when target excitation
is considered? The answer isno; as we shall see in Sec. III,
second-order amplitudes for direct processes do not present a
rotational structure for large velocities.

II. METHOD FOR CAPTURE PROCESS

A. The Brinkman-Kramers approximation

Let us start considering the second-order Brinkman-
Kramers approximation with the Green function including
the projectile potential to all orders~BK2P!. The second-
order transition amplitude in the nonrelativistic quantum for-
malism is

Ti f
BK2P

5Ti f
BK1

1^c f uVT

1

E2H02VP1 i«
VPuc i&, ~6!

where Ti f
BK1

5^c f uVPuc i&5^c f uVTuc i& is the first-order
Brinkman-Kramers transition matrix element,VT (VP) is the
T-e (P-e) potential, H0 is the kinetic-energy operator,
«→01 and c ( i , f ) satisfy (H01V(T,P)2E)c ( i , f )50. Note
that the internuclear interaction was removed invoking the
Wicks argument@10#. To calculate the second-order contri-
bution, we proceed as usual in these cases@10#. Let us con-
sider ucn&5uKW n8 ,a& a complete set of unperturbed wave
functions centered on the projectile, satisfying the Schro¨-
dinger equation (H01VP2En8)uKW n8 ,a&. Then we can express
the spectral representation of the projectile-based Green op-
erator as follows:

1

E2H02VP1 i«
5E dKW n8(

a

uKW n8 ,a&^KW n8 ,au
E2En81 i«

, ~7!

where

E5
Ki
2

2nT
2
ZT
2

2
5
Kf8

2

2nP
2
ZP
2

8
, En85

Kn8
2

2nP
2

ZP
2

2n2
,

~8!
nT

215~MT11!211MP
21 , nP

215MT
211~MP11!21,

andMT (MP) is the target~projectile! mass. Using the or-
thogonality condition

^KW n8 ,auKW 8n8,b&5d~KW n82KW n8
8 !da,b ~9!

and considering only the intermediate Stark states that play a
relevant role in the Stark mixing, forn52 the 2s and 2p0
states we find the following matrix expression,

S T1s,2s
BK2P

T1s,2p0
BK2P D 5S 11C2s,2s

BK1 C2p0,2s
BK1

C2s,2p0

BK1
11C2p0,2p0

BK1 D S T1s,2s
BK1

T1s,2p0
BK1 D , ~10!

where

Ca,b
BK1

5E T1s,a
BK1

~KW i ,KW n8!Ta,b
B1

~KW n8 ,KW f8!

T1s,a
BK1

~KW i ,KW f8!~E2En81 i«!
dKW n8 . ~11!

HereTa,b
B1
(KW n8 ,KW f8)5^c f uVTucn& denotes the first-order Born

approximation to the transition matrix element for the direct
process~excitation!,

T1~P1e!KW
n8 ,a
→T1~P1e!KW

f8 ,b
. ~12!

In ~10! we restrain the set of intermediate states to the rel-
evant Stark states 2s and 2p0 (2p1 is missing!. This is a
limitation of our calculation, but it will permit us a direct
comparison with the eikonal PCI formulation.

We will concentrate on the nondiagonal elements. From a
physical point of view, these elements represent very simple
mechanisms. The first-order amplitude considers a single
transition 1s→2s (1s→2p0), while the second-order ampli-
tude considers a typical two-step process 1s→2p0→2s
(1s→2s→2p0). In a similar form, the third order gives
three-step contributions, and so on.

We can find in the literature@17# the closed forms for the
elementsT1s,a

BK1
(KW i ,KW n8) and Ta,b

B1
(KW n8 ,KW f8), for any statesa

and b, in terms of Feynman integrals@11,12#. Figure 1
shows the numerical results ofC2p0,2s

BK1
andC2s,2p0

BK1
normal-

ized to their value in the high-velocity limit, for different
values ofZT /ZP . Two main features can be drawn: first,
C2p0,2s

BK1
andC2s,2p0

BK1
are purely imaginary; second, for large

velocities both elements tend to thesame limit,
if

BK1
5 i3ZT /(4v), independent of the ratioZT /ZP . The

ejection angle of the rearranged atom,u8, is considered
equal to zero~forward direction, corresponding to the large
impact parameter!. Similar limits are observed foru8.0 as
v→`, except in a narrow region around the critical angle
u85A3(MT1MP)/(2MTMP) @13#.

In the high-energy limit, C2s,2p0

BK1
and C2p0,2s

BK1
have

analytical expressions that can be obtained using the peak
approximation @13#. It consists of evaluating
T1s,a
BK1

(KW i ,KW n8).T1s,a
BK1

(KW i ,KW f8), that is whereTa,b
B1
(KW n8 ,KW f8)

peaks. We then obtain

Ca,b
BK1

.E Ta,b
B1

~KW n8 ,KW f8!

E2En81 i«
dKW n8 . ~13!

SinceT2s,2p0
B1

5T2p0,2s
B1

, the nondiagonal elements of the ma-

trix ~10! evaluated in the forward direction tend to the same
value for large velocities, given by
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C2s,2p0

BK1
.E T2s,2p0

B1
~KW n8 ,KW f8!

E2En81 i«
dKW n8→ i

3ZT
4v

5 if
BK1

. ~14!

The termsC2s,2s
BK1

andC2p0,2p0

BK1
represent the elastic contri-

bution, so we can neglect them in comparison with unity
@20#. Then, in the high-energy regime, the matrix equation
~10! can be written as follows:

S T1s,2s
BK2P

T1s,2p0
BK2P D 5S 1 if

BK1

if
BK1

1 D S T1s,2s
BK1

T1s,2p0
BK1 D . ~15!

In comparison with~2!, it is concluded that the second order
provides an infinitesimal rotation corresponding to the lead-
ing 1/v term of the Stark mixing. By infinitesimal rotation
we mean f

BK1
!1, then sinf

BK1
.f

BK1
.3ZT/4v, and

cosf
BK1

.1.
At this stage, we can make a link with the result of Burg-

dörfer @1#. Let us start with the peak approximation of
C2s,2p0

BK1
given in ~14! and perform the following Fourier

transforms:

T2s,2p0
B1

~KW n8 ,KW f8!5E dRW
exp~ iqW •RW !

~2p!3
H2s,2p0

~RW ! ~16!

and

1

E2En81 i«
.

1

2~KW n82KW f8!•vW 1 i«

52 i E
0

`

dt exp~2«t !exp~2 iqW •vW t !, ~17!

whereqW 5KW n82KW f8 . After simple algebra, we find

C2s,2p0
BK1 .2 i E

0

`

dtE dRW dqW
exp@ iqW •~RW 2vŴ Z!#

~2p!3
H2s,2p0

~RW !

52 i E
0

`

dtE dRW d~RW 2ZvŴ !H2s,2p0
~RW !

52
i

vE0
`

dZ H2s,2p0
~Z,rW 50W !. ~18!

This expression is equal to that of Burgdo¨rfer as given in~3!,
except in the lower bound. Eq.~18! starts the integration
from zero, while Eq.~3! starts fromR05^r )n52 . In the PCI
model R0 is evaluated for moderately high velocities
„i.e., v52, for the electron capture H11H(1s)→ H
(n52)1H1, see Fig. 1 of@1#…. From ~18! we can say that
this bound tends to zero in the asymptotic limit. The Stark
rotation anglefBK1 is obtained in the high velocity limit
from the perturbative formalism and it is exact in the nonrel-
ativistic limit. The performance of the density matrix ele-
ments usingf

BK1
is, of course, similar to that usingf

B
@1#

since the difference in the angles is not very significant.

B. The continuum distorted-wave approximation

We follow the same pattern as before. The second order
in the CDW series to the transition matrix element reads

Ti f
CDW2

5Ti f
CDW1

1^x f
2uWf

1

E2H1Wf1 i«
Wi ux i

1&, ~19!

whereTi f
CDW1

5^x f
2uWi ux i

1&5^x f
2uWf ux i

1& is the first-order
CDW element, andx i

1 and x f
2 are CDW wave functions

satisfying (E2H1Wi , f)x i , f
1,250. As found in~6! for BK2P,

we expect that Eq.~19! contains the infinitesimal Stark rota-
tion corresponding to the CDW, if any@14#.

To calculate the second order we consider a complete set
of eigenfunctionsxn

2 of (H2Wf) and proceed as in the pre-
vious section. After simple algebra, we find a matrix expres-
sion forT1s,2s

CDW2
andT1s,2p0

CDW2
similar to ~10! with

Ca,b
CDW

5E T1s,a
CDW1

~KW i ,KW n8!^xb
2uWf uxa

2&

T1s,a
CDW1

~KW i ,KW f8!~E2En81 i«!
dKW n8 ~20!

instead ofCa,b
BK1

. With the help of the Nordsieck integrals
@16# we can write

^xb
2uWf uxa

2&5Ta,b
B1

~KW n8 ,KW f8!Ya,b~KW n8 ,KW f8!, ~21!

FIG. 1. Numerical values for~a! C2s,2p0

BK1
/ if

BK1
and ~b!

C2p0,2s
BK1

/ if
BK1

with f
BK1

53ZT /(4v), as a function of the scaled
velocity in atomic units, for different values ofr5ZT /ZP . The
system under consideration is PZP11T(ZT21)1(1s)
→P(ZP21)1(n52)1TZT1, at u850.
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whereTa,b
B1
(KW n8 ,KW f8) is the first-order Born transition matrix

element for the direct excitation as in~11!, and the factor
Ya,b(KW n8 ,KW f8) reads as follows:

Y2s,2p0
~KW n8 ,KW f8!5

g2~a1 ,A1!g
1~a2 ,A2!q

4

D2A1A2
L~qW ! ~22!

with

g6~a,A!5exp~pa/2!G~16 ia !A2 ia, ~23a!

L~qW !5F12~11 ia2!
~A22A3!

A1A2
F2 , ~23b!

ai5
MT

MT11

ZT
pi
, ~23c!

h512
MTMP

~MT11!~MP11!
, ~23d!

pW 15hKW f8 , pW 25hKW n8 , ~23e!

qW 5KW n82KW f8 , QW 5qW 2pW 2 , ~23f!

z5e1 ip2 , e→01, ~23g!

D5z21Q2, Aj5112Sj /D, ~23h!

Sj5pW j .QW 2 izpj , j51,2, ~23i!

S35p1p22pW 1•pW 2 , ~23j!

F j52F1~ j211 ia1 ; j1 ia2 ; j ;X0!, ~23k!

X0512
A11A22A3

A1A2
, ~23l!

andY2p0,2s
(KW n8 ,KW f8)5Y2s,2p0

(KW n8 ,KW f8).
As in the preceding section, we will concentrate on the

nondiagonal elementsC2s,2p0

CDW
and C2p0,2s

CDW
. Following

Crothers@15#, we can express the elementsT1s,a
CDW1

(KW i ,KW n8) in
terms of the Nordsieck integrals@16#. Afterward, we com-
pute a three-dimensional integral over the variableKW n8 . Fig-
ure 2 shows the values ofC2s,2p0

CDW
andC2p0,2s

CDW
normalized to

their value in the high-velocity limit. Again we evaluate it
for u850, while ZT /ZP51,2. In the high-energy limit,
C2s,2p0

CDW
andC2p0,2s

CDW
have analytical expressions that can be

derived from the peak approximation to obtain

Ca,b
CDW

.E dKW n8Ya,b~KW n8 ,KW f8!
Ta,b
B1

~KW n8 ,KW f8!

~E2En81 i«!
. ~24!

By comparison with~13!, Ya,b(KW n8 ,KW f8) can be considered
as a correcting factor. After some algebra, which for short we
skip, the correcting factor in the high-energy limit is

Y2s,2p0
~KW n8 ,KW f8!.

q2

~qW 1pW 1!
21~e2 ip1!

2
. ~25!

Y2s,2p0
is unity whenp1 is zero, and this is equivalent to

using Brinkman-Kramers undistorted wave functions as in-

termediate states. SinceT2s,2p0
B1

5T2p0,2s
B1

, then C2s,2p0

CDW
and

C2p0,2s
CDW

tend to the same asymptotic limit,

C2s,2p0

CDW
.E dKW n8

q2

@~qW 1pW 1!
22~e2 ip1!

2#

T2s,2p0
B1

~E2En81 i«!

→2
ZTZP
8v2

5 if
CDW

. ~26!

Neglecting the diagonal termsC2s,2s
CDW

andC2p0,2p0

CDW
in com-

parison with unity@20#, we obtain the second-order CDW
T-matrix elements in the high-energy limit,

S T1s,2sCDW2

T1s,2p0
CDW2 D 5S 1 if

CDW

if
CDW

1 D S T1s,2sCDW1

T1s,2p0
CDW1 D , ~27!

with f
CDW

5 iZTZP /(8v
2) . Two important consequences

should be pointed out. First, Fig. 2 shows thatC2s,2p0

CDW
and

C2p0,2s
CDW

are generally complex, but in the high-energy limit

they tend to the same real value. This means thatf
CDW

is

FIG. 2. Numerical values for~a! C2s,2p0

CDW
/ if

CDW
and ~b!

C2p0,2s
CDW

/ if
CDW

with if
CDW

52ZTZP /(8v
2), as a function of the

scaled velocity in atomic units.R1 andI1 are the real and imagi-
nary parts for the system H11H(1s)→H(n52)1H1 at u850.
R2 and I2 are the real and imaginary parts for the system
H11He1(1s)→H(n52)1He21, at u850.
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purely imaginary~notef
BK1

is real!, so the matrix equation
~27! does not have a rotational structure. Second, and more
importantly, f

CDW
falls off faster than f

BK1
, i.e.,

f
CDW

/f
BK1→ iZP /(6v)5O(1/v), showing that in the high

velocity limit the Stark mixing is embodied in the CDW
wave functions@14#.

It is noticeable that for proton on helium atv52.75 a.u.
~that is in the experimental range of interest! we find the
following values:

f2s,2p0

CDW
52 iC2s,2p0

CDW
50.2401 i0.066, ~28!

f2p0,2s
CDW

52 iC2p0,2s
CDW

50.2601 i0.072, ~29!

that are very close tofB50.2621 i0.0. Perhaps this coinci-
dence may elucidate the performance of the CDW with PCI
in that range. It should be also noted that at lower and higher
velocities thanv52.75 a.u.,f

CDW
disagrees withfB ; for

example, atv54.00 a.u.,

f2s,2p0

CDW
52 iC2s,2p0

CDW
50.0511 i0.015, ~30!

f2p0,2s
CDW

52 iC2p0,2s
CDW

50.0551 i0.015, ~31!

while fB50.1801 i0.0.

III. METHOD FOR EXCITATION PROCESS

In a similar fashion to capture, we can obtain the second-
order Born approximation~B2! for excitation by using a
complete set of intermediate unperturbed wave functions
now centered on thetarget. The process under consideration
is

PKW i
1~T1e!1s→PKW f

1~T1e!nlm , ~32!

and the matrix expression is

S T1s,2s
B2

T1s,2p0
B2 D 5S 11E2s,2s

B1 E2p0,2s
B1

E2s,2p0

B1
11E2p0,2p0

B1 D S T1s,2s
B1

T1s,2p0
B1 D , ~33!

where

Ea,b
B1

5E T1s,a
B1

~KW i ,KW m!Ta,b
B1

~KW m ,KW f !

T1s,a
B1

~KW i ,KW f !~E2Emf1 i«!
dKW m , ~34!

and Ta,b
B1

, Ta,b
B2

are the first-~B1! and second-~B2! order
Born approximations to the transition element, respectively.
These integrals have closed forms in terms of the Feynman
integrals@11#. The numerical results are shown in Fig. 3 as a
function ofv/ZT , in the forward direction,u50, normalized
to 23ZPi /(4v). NoteE2p0,2s

B1
andE2s,2p0

B1
are purely imagi-

nary. After using the peak approximation, similar to the pre-
ceding sections, we find the following limits:

E2s,2p0

B1 →H 2
3ZP
4v

i , as v→0

2
0.685ZP

v
i , as v→`

~35!

and

E2p0,2s
B1 →H 2

3ZP
4v

i , as v→0

OS 1v2D i , as v→`.

~36!

The matrix equation~33! can be then written as

S T1s,2s
B2

T1s,2p0
B2 D 5S 1 OS 1v2D i

2
0.685ZP

v
i 1

D S T1s,2s
B1

T1s,2p0
B1 D ,

~37!

for large velocities andu→0. In contrast to capture,~37!
shows that for direct processes the mixing cannot be repre-
sented by an infinitesimal rotation at high velocities.

It is interesting that the results exhibitapproximately
a Stark-rotational structure forv,1, where E2p0,2s

B1

FIG. 3. Numerical values for~a! E2s,2p0

B1
/ if

B1
and ~b!

E2p0,2s
B1

/ if
B1

with f
B1

523ZP /(4v), as a function of the scaled
velocity in atomic units. The system under consideration is
PZP11T(ZT21)1(1s)→P(ZP21)1(n52)1TZT1, at u50.
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.E2s,2p0

B1
.23ZPi /(4v). Anyway, these values should

not be taken seriously because the second Born approx-
imation is not valid in the low velocity range.

We shall prove next that thoughE2p0,2s
B1

.O(1/v2) falls

off faster thanE2s,2p0

B1
.O(1/v), the two-step contribution

1s22p022s is more important, in relative terms, than
1s22s22p0 . Following Moiseiwitsch@17#, we introduce
the parameteraa5T1s,b

B1
Eb,a
B1
/T1s,a

B1
in the matrix expression

~37!, so that the differential cross section in the forward di-
rection (u50) is represented by

uT1s,a
B2

u25uT1s,a
B1

u2u11aau2. ~38!

Fitting E2p0,2s
B1

.2ZTZPi /v
2 and E2s,2p0

B1
.23ZPi /(4v) for

v.3, we find that the parametersaa have the following
representation:

a2s5
4v
ZT
iE2p0,2s

B1
.
4ZP
v

, ~39a!

a2p0
52

ZT
4v

iE2s,2p0

B1
.2

3ZTZP
16v2

, ~39b!

thus

uT1s,2s
B2

u2.uT1s,2s
B1

u2S 11
4ZP
v D , ~40a!

uT1s,2p0
B2

u2.uT1s,2p0
B1

u2S 12
3ZTZP
16v2 D . ~40b!

An important conclusion is drawn: in the high-energy re-
gime, the forbidden 1s-2s transition is also populated~note

a2s.0) via two permitted transitions 1s-2p0 ~permitted!
and a subsequent 2p0-2s ~permitted!. In relative terms, this
contribution is more relevant than the two-step 1s22s tran-
sition ~forbidden! and a subsequent 2s22p0 ~permitted! to
depopulate~notea2p0

,0) the total 1s22p0 transition. This
is why, for example, in the intermediate-energy regime for-
bidden transitions observe inherent scaling rules of the per-
mitted transitions~such as the Janev and Presniakov scaling
@18,19#!.

IV. CONCLUSIONS

In summary, based on the perturbative formalism, we
have answered the three questions posed in the Introduction:

~1! First, we have found the Stark rotation anglef
BK1

in
the high velocity limit, and we have made a link with the one
obtained by Burgdo¨rfer for moderately high velocities@1#.

~2! Second, we have found the proper value off
CDW

and
we conclude that, in the asymptotic limit, the Stark rotation
is redundant when CDW amplitudes are used. For proton on
helium atv52.75 a.u.~that is in the experimental range of
interest! we have found a numerical coincidence between
f

CDW
and the usual angle obtained from the post-collision

interaction model@1# that may elucidate the performance of
the CDW with PCI in that range.

~3! Third, for direct excitation the perturbative formalism
does not lead to a rotational structure.
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