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Collisional mixing among excited degenerate states in inelastic ion-atom collisions
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Stark mixing among excited degenerate states following capture or excitation by ion impact on hydrogenlike
atoms is calculated at high velocities by using the perturbative formalism. For electron capture, the second-
order Brinkman-Kramers approximation is found to describe the correct infinitesimal Stark rotation valid in the
high-velocity regime. However, the second-order continuum distorted-wave approximation does not provide
such a rotational form in that regime. It is concluded that the continuum distorted-wave amplitudes should not
be Stark rotated even though a numerical coincidence is found between our formalism and the usual Stark
rotation in the experimental range of interest. Finally for electron excitation, it is found that the perturbative
formalism does not lead to a rotational structy®1050-29476)09305-3

PACS numbd(s): 34.50.Fa, 32.66:i

|l INTRODUCTION Here, Z; (Zp) is the target(projectil® charge,R=p+Z is

. o _ the projectile position with respect to the targétvt, v is
Let us begin by considering a simple charge-transfer pro,Eh il locity t ts the i M is th
cess in an atomic collision, e projectile velocityt represents the time, armd is the

electron coordinate with respect to the projectile. Atomic
units are used and heavy projectiles are assumed.

The integral(3) is simple and it gives the evolution phase
as a function of the lower bound,,
whereP, T, ande denote the heavy projectile, the nucleus
target, and the electron, respectively. Studying this process, 7
Burgdafer [1] remarked that the first-order approximation b = il
for the relativel population of the final states fails since it Bov
neglects, among other effects, Stark mixing between the de-
generate excited states of the projectile escaping the field afherex,=ZpR,. The parameteR,, which divides the in-
the residual target ion. Burgder developed a model called ternal collisional and the post-collisional regions, is not
post-collision interactionPCl) [1] considering the mixing uniquely defined. It was set equal to the smaltest2 radius
between states of the same principal shell. Besides a full PQlk,=5) by comparison between the analytical approxima-
calculation, he developed an analytical eikonal approximation and the full PCI calculation at moderate velocities. This
tion that can be expressed as follows for capture into thehoice of the starting point of the PCl gives
n=2 level, ¢g=0.534+;/v [1]. Later works have taken this value for

granted, even when transition amplitudes were calculated us-

( a;’SC'ZS) ( cosp™ isin¢>BKl)< Bl ) , ing other distorted-wave methods such as the continuum-

PKi+(T+e)1s—>T+(P+e)I{f’ nims (1)

ENC)

3 x§+3x0+9+3
xo SRTXNGT L T ar

As2s distorted-wave CDW) method[3—7] or the eikonal approxi-
mation [8] instead of the first-order Brinkman-Kramers
(BK1) method.

The first question we pose here is the following: is it
possible to find the value oﬁBKl, at least in the high veloc-
ity limit, without invoking Ry? The answer isyes in

PCI
A15,2p,

. . ,BKl BK1 BK1
i sing cosp A1s,2p,

where aﬁfl=aﬁ'f(1(5) is the first-order Brinkman-Kramers
(BK1) amplitude[2] for the transitiori —f, a; ; =a; { (p) is

the corresponding amplitude including the PCI mixing, and , : BK1 .
Sec. Il A we obtain this value ofp = corresponding to an

pIS t_he |mpacF parameter. The m%tﬂx equaniﬁhrepres_ents infinitesimal Stark rotation in the high-energy limit from the
a unitary rotation where the angée ~ was calculated in an  perturbative formalism.

eikonal approximation1] to give On the other hand, several distorted-wave methods have
been extensively used in the electron transfer theory to im-
BK1 1= - prove the BK1 approximation in the high- and intermediate-
b =d=- _LOH%]ZPo(Z’p_O)dZ' 3 energy regions, such as the mentioned CDW [®elt has

been observed that the CDW approximation fails to describe
the experimental density matrix elemef8. Some authors
considered that this failure could be due to the missing of the
7 Stark mixing, and they rotated the CDW results with
> T = i -
H2s,2p0(Z:P):<23| ———T_|2py). (4) ¢g=0.534+ /v straightforwardly{3—7]. It has already been

=3

|IR+r"| addressed that though the CDW amplitudes rotated with the

with
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eikonal PCI model gives a perihelion velociti X A), that (K}, alK' by = 8K\ =K/ ,) 8ap (9)
agrees with the close-coupling data at intermediate energies,

the particular form chosen in the analytical PCI treatmentand considering only the intermediate Stark states that play a
may overestimate the effep]. The point is that we do not relevant role in the Stark mixing, far=2 the % and 2,
know to what extent the CDW amplitudes do already contairstates we find the following matrix expression,

the 2s—2p, Stark mixing. Here we pose theecondques-
BK2P BK1 BK1 BK1

tion: is CitDvgaossibIe to find thecgvovrrPSponding StaBgi rf)tation Tisas 1+Chsns  Copyas Tisas
angle¢  using amplitudesa; ; (p) instead ofa; ; (p)? BK2P | = cBKL 14 skt |, (10
The answer isyes in Sec. IIB we obtain the value of 1s.2po 2s,2p +Capgap, 1s.2po

CDW . . _ .

in the high-energy limit and find that

cDW, ,BK1 . where
¢ 1o —O(lh) asv—xo. We will conclude that the
CDW wave functions do already contain such a mixing at Bt Ti’;la(lzi JZr,\)Tz,lb(erIwa,) .
least in the high-energy regime. In other words, if CDW Cab= BRT 53, — K- (12
amplitudes are Stark rotated we account for the Stark mixing 15,a(Ki Ke)(E—Ep+ie)
twice.

So far, we have circumscribed our discussions to reartHereTo (K, Ki)=(y| V1| #,) denotes the first-order Born
rangement processes. tAird question is posed: should we approximation to the transition matrix element for the direct
Stark rotate the first-order amplitudes when target excitatiofrocess(excitation,
is considered? The answerns; as we shall see in Sec. Ill,
second-order amplitudes for direct processes do not present a T+(P+ e)@ a— TH(P+ e)'zf’ o (12)

rotational structure for large velocities. . ) .
In (10) we restrain the set of intermediate states to the rel-

evant Stark statess?2and 2p, (2p; is missing. This is a

limitation of our calculation, but it will permit us a direct
A. The Brinkman-Kramers approximation comparison with the eikonal PCI formulation.

Let us start considering the second-order Brinkman- We will concentrate on the nondiagonal elements. From a

Kramers approximation with the Green function including physical point of view, these elements represent very simple

the projectile potential to all orderBK2P). The second- mechanisms. The first-order amplitude considers a single

order transition amplitude in the nonrelativistic quantum for-transition Is— 2s (1S_>.2p°)’ while the second-order ampli-
malism is tude considers a typical two-step process—2py—2s

(1s—2s—2pg). In a similar form, the third order gives
BK2P  _BKL 1 three-step contributions, and so on.
Tir  =Ti +<¢f|VTmVP| i), (6) We can find in the literaturgl7] the closed forms for the

elementsTy. o(K; ,K?) and Tao(K} K}), for any statesa
where Ty =(y|Vplts)=(si|Vs|g) is the firstorder @and b, in terms of Feynman integrall1,12. Figure 1
Brinkman-Kramers transition matrix elemelt; (Vp) is the ~ shows the numerical results @f;, »s and Cy 5, normal-

T-e (P-e) potential, Hy is the kinetic-energy operator, ized to their value in the high-velocity limit, for different

e—0" and y 1 satisfy Ho+Vr.py—E)¢in=0. Note values ofZ;/Zp. Two main features can be drawn: first,
that the internuclear interaction was removed invoking thecB*! 54 CgKlz are purely imaginary: second, for large
S, po ) )

Wicks argumen{10]. To calculate the second-order contri- zlpo’zf[. both el s tend to th limit
bution, we proceed as usual in these cd4€% Let us con- VeB?g' '?S 0 e_emen s ten 0 _esame imi,
=i3Z1/(4v), independent of the rati@/Zp. The

sider |¢,)=|K/,a) a complete set of unperturbed wave 1o

functions centered on the projectile, satisfying the chro &1ECHON angle of the _rearrgnged atown, IS considered

. . N equal to zerdforward direction, corresponding to the large
dinger equationkfio+Ve—E()[Ky,a). Then we can express mnact parameter Similar limits are observed fof’ >0 as
the spectral representation of the projectile-based Green OR" %, except in a narrow region around the critical angle

erator as follows: 0' = \3(M7+Mp)/(2M7Mp) [13].
1 IR a)K! al In the high-energy limit, nglzpo and ngézs have
Ty f dK/ > En—E—’+n (7)  analytical expressions that can be obtained using the peak
o~ VpTle a nT!e approximation [13]. It consists of evaluating
Traa(Ki K =Trea(Ki ,K}), that is whereT, (K. K})
peaks. We then obtain

IIl. METHOD FOR CAPTURE PROCESS

where

E= 20 2" 2w, 8 BT, 2 cszlzf
(8)

pri=(Mr+1) T+ Mpt, ppt =Myt + (Mp+1) 7Y

Bl - -
T. (K., KE) .
BN (13)
E-E,tie

. Bl B1 .
SinceTs 25,=Top, 25, the nondiagonal elements of the ma-

andM+t (Mp) is the target(projectile mass. Using the or- trix (10) evaluated in the forward direction tend to the same
thogonality condition value for large velocities, given by
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1 1 ) T and
Q 1 1
L B O s E-Ejtie —(R.—R)-otie
N I
s A e o - -
'\T/ | =—ifo dt exp(—et)exp(—iq-vt), (17)
% 1 > - 7 . .
T % (a) whereq=K,—K; . After simple algebra, we find
@ N
3 ]
1 L 1 1 1 1 1 o0 N _}exn:ld’(ﬁ_’lj’z)] N
BK1 __ -
1.1 T T T T T T T T C25,2p0_ ! fO dtf deq (277)3 HZS'ZDO(R)
2
o } [ =SSN -
] - :_Ifo dtf dR5(R_Zv)H23,2pO(R)
N
>
3
{ i [ . -
e T = —;fo dZ Hyq 20,(Z.6=0). (18
hl_ 4
ol : L . . :
N i This expression is equal to that of Burgtéy as given in(3),
except in the lower bound. Eq18) starts the integration
R —— from zero, while Eq(3) starts fromRy=(r),_,. In the PCI
vtz 3 4 5 6 7 B 910 model R, is evaluated for moderately high velocities
v/2, (a.u) (i.e., v=2, for the electron capture H+H(1s)— H

(n=2)+H", see Fig. 1 of1]). From (18) we can say that
_ BK1 . BKL this bound tends to zero in the asymptotic limit. The Stark

BK’?IG.. ﬁ'm ijme”gfﬁ' values for(d C2s2po/_'¢’ and () rotation angle¢®k! is obtained in the high velocity limit
Copyadli® with ¢ =3Z7/(4v), as a function of the scaled from the perturbative formalism and it is exact in the nonrel-
velocity in atomic units, for different values of=Z;/Z,. The  ativistic limit. The performance of the density matrix ele-

system under  consideration is P%*+T*Y(1s)  ments usings® s, of course, similar to that using_ [1]

(Zp—D+(n— Z1+ r—
PR (n=2)+ T atr=0. since the difference in the angles is not very significant.
B1 Z1 oz
CBKl f TZS,ZpO(K” Kp) 4R i 3Zy ,¢BK1 (14) B. The continuum distorted-wave approximation
=| ——— —i == .
2820 E-E +ie N 4v We follow the same pattern as before. The second order
in the CDW series to the transition matrix element reads

BK1 BK1 . .
The termsC, ,s andC,,, ,, represent the elastic contri-
. ’ 00 . . . . cow2  _cowi
bution, so we can neglect them in comparison with unity T, =T

[20]. Then, in the high-energy regime, the matrix equation
(10) can be written as follows:

1
- —V Y A BV
+<Xf |WfE_H+Wf+|8WI|XI >’ (19)

where T\ =(xr Wi xi )= (xi W] x;*) is the first-order
Sl 1 . BK1\ [ BKI CDW element, andy;” and y; are CDW wave functions
( 1825 ) _ ( I ) ( 1525 ) (15  satisfying €—H+W, {)x'~=0. As found in(6) for BK2P,
i we expect that Eq.19) contains the infinitesimal Stark rota-
tion corresponding to the CDW, if arfyL4].
In comparison with(2), it is concluded that the second order _ 10 calculate the second order we consider a complete set
provides an infinitesimal rotation corresponding to the lead©f €igenfunctionsy,, of (H—Wp) and proceed as in the pre-

ing 1k term of the Stark mixing. By infinitesimal rotation Vious section. After simple algebra, we find a matrix expres-
we mean ¢ <1, then sim  =¢  =3Z4v, and SioNforTio,e andTygy, similar to(10) with
BK1

cosp =1.

BK2P

BK1
Tls,2p0

BK1
Tls,Zpo

i 1

. . . cowl, > =, _ _
At this stage, we can make a link with the result of Burg- cow [ Tisa (Ki KD Wilxa) o,
dorfer [1]. Let us start with the peak approximation of ab = CDWl(}Z_ Kf’)(E—E’Jris)dKn (20
nglzpo given in (14) and perform the following Fourier tea A "
transforms:

instead osz’Kbl. With the help of the Nordsieck integrals
[16] we can write

B1 s, 3, expig-R) -
T2s,2p0(Kanf)=f dRWHZS’ZPO(R) (16)

->

- - BL >/ 21 v
(xb IWilxa ) =Tap(Kn Ki) Yap(Ky,Ki), (22)
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whereTz’lb(IZr’1 ,K}) is the first-order Born transition matrix

element for the direct excitation as {i1), and the factor ','A 10r : '
Y.(Kp,K{) reads as follows: ‘_N‘L F R2 (a)
| - 5 |- A
>, =, vy (a1,A)y (az, At - N 1
Yas.20,(Kn K) = D7AA, L(@) (22 "3 ;
L o
with o i
y(a,A)=exp(ma/l2)T'(1*xia)A~ '3, (239 z s -5f
X [
L(G)=F, (1+ian 2R (23b) :
1 2 A1A2 2 -10
~ 10 . . .
MT ZT "I' 3 ' 4
QM1 239 & () ]
| 5 | .
. MTMP 23 NN.- : 1
T M D(Mp T 1) (239 5 |
~ or
p1=7Ki, p2=7Ky, (230 . _
o~
a=K,~Ki, Q=q-p,, (23f) BE of
z=€+ip,, €—0", (239 [
-10
D=2°+Q? A;=1+2S,/D, (23h 1
S=p;.0—izp;.j=12, (23)) v (a.u.)
.. . FIG. 2. Numerlcal values for(a) C252p /|¢ and (b)
S3=P1P2~ P1 P2, (23) CEE:VZS/W with |¢> =—ZTZp/(8u 2), as a function of the
Fj=,F.(j—1+iay;j+iay;j: Xo), (23K) scaled velocity in atomic unit®1 andl1 are the real and imagi-
nary parts for the system H+H(1s)—H(n=2)+H" at §'=0.
Ai+A— Ay R2 and 12 are the real and imaginary parts for the system
Xo=1— TAA, (23 H*+He"(1s)—~H(n=2)+He", atg'=0.

1o Zr oz
andYap,, as(Kn K1) = Yas,25,(Kp , Ky). termediate states. Slnc'PQSzp sz 2, then CESD;Z) and

As in the preceding section, we will concentrate on the _cow
i cow cow . Caopy2s tend to the same asymptotic limit,
nondiagonal elementsC,s,, and C,, ». Following

Crothers[15], we can express the elemeltg o (K;,K}) in

B1
terms of the Nordsieck integra[46]. Afterward, we com- cow ., q° T2s.20,
pute a three-dimensional irc1tD(\eNgraI ove(r:Dtue variaﬁe Fig- Cas, 2py f n[(a+51)2—(6—ip1)2] (E—E/+ig)
ure 2 shows the values szyzpo and Capg2s normalized to
their value in the high-velocity limit. Again we evaluate it L ZTZZP =ig " (26)
for 6'=0, while Z;/Zp=1,2. In the high-energy limit, 8v
CDW CDW . .
Cas2p, @nd Cy;, o have analytical expressions that can be
derived from the peak approximation to obtain Neglecting the diagonal tem@gzzws and nggzpo in com-
A parison with unity[20], we obtain the second-order CDW
CDW_ Tan(Kn Ky T-matrix elements in the high-energy limit,
o TCDWZ . TCDWl
By comparison with(13), Y, ,(K,K{) can be considered 1s,2s L ' ¢ 1s,2s 5
as a correcting factor. After some algebra, which for short we Tif;’z io”™ 1 TESDZV:L @7
skip, the correcting factor in the high-energy limit is %o %0
q2 . cow . 2 .
Yas20 (Rr/w}zf,)z _ _ (25) with ¢  =iZ:Zp/(8v*) . Two important consequences
o (q+pp)*+(e—ipy)? should be pointed out. First, Fig. 2 shows t@);\; and

Yas,2p, IS UNity whenp, is zero, and this is equivalent to Czp02s are generally complex, but in the high- energy limit
using Brinkman-Kramers undistorted wave functions as inthey tend to the same real value. This means ﬂnat is
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. . BK1 . . .
purely imaginary(note ¢  is rea), so the matrix equation 1.1
(27) does not have a rotational structure. Second, and more

~~

)
importantly, d)CDW falls off faster than quKl, ie., - I (a)
CDwW BK1

¢ I¢p —iZpl(6v)=0(1l), showing that in the high
velocity limit the Stark mixing is embodied in the CDW
wave functiond 14].

It is noticeable that for proton on helium at=2.75 a.u.
(that is in the experimental range of intepeste find the
following values:

1.0 E

(14vz,

B1
2s,2p0

CDW CDbw

Bo590,= —ICosap, = 0.240+10.066, (29) o e e

CDW CDW =TT T v T=T=TTTTIT T T™TTTTTIT

bapy25= ~Cop 25=0.260+10.072, (29)

that are very close teg=0.262+10.0. Perhaps this coinci-
dence may elucidate the performance of the CDW with PCI
in that range. It should be also noted that at lower and higher

velocities thanv =2.75 a.u.,qbCDW disagrees with¢g; for
example, ab =4.00 a.u.,

Boo2p,= —1Cs.9p,= 0.051+i0.015, (30) ,
0.0 1 A2 2t gl s deemchadudod 2 2] i f a1l
cow cow 0.01 0.1 1 10
Bopn2s= —ICopr 55=0.055+i0.015, (31)

v/Z; (a.u.)
while ¢g=0.180+i0.0. BL B
FIG. 3. Numerical values for(a) E25,2p0/i¢ and (b)

EZ,O,ZS/igbB1 with ¢>81=—32P/(4v), as a function of the scaled

velocity in atomic units. The system under consideration is
In a similar fashion to capture, we can obtain the secondP?** + T D (1) P~ D* (n=2)+T#7*, at #=0.

order Born approximatior(B2) for excitation by using a

[ll. METHOD FOR EXCITATION PROCESS

complete set of intermediate unperturbed wave functions 3Zp.
now centered on thiarget The process under consideration T 8 v—0
H B1
S
| Bz 0685, 89
- i, asv—»
Pg,+(T+e)1s— P +(T+€)nim, (32 v
and the matrix expression is and
3Zp
B2 B1 Bl B1 —
Tisos 1+Eps o Eopg.2s Tis2s @3 a1 p ' v—0 .
B2 = B1 B1 B1 ) Eop, 25— 36
T1s2p, Easzp, 11 Ezpy2p, 1s,2p, 0 o _12) i as yoo.
v
where i . )
The matrix equatior{33) can be then written as
Bl = = B1 - -
B1 Tls,a(Ki :Km)Ta,b(Km:Kf) - 1
Eap= BT > > —dKp, (34) B2 1 o =i B1
Tisa(Ki , K)(E=Epitie) ( Tisos ) v ( Tis s )
B2 = B1 ’
T 0.68%p T

and Tz,lb, T:,Zb are the first-(B1) and second{B2) order 15200 Yy 1 15290
Born approximations to the transition element, respectively. (37)

These integrals have closed forms in terms of the Feynman
integrals[11]. The numerical results are shown in Fig. 3 as agor |arge velocities andd—0. In contrast to capture37)
function ofv/Zr, in the forward directiong=0, normalized  shows that for direct processes the mixing cannot be repre-
to —3Zpi/(4v). Note E2pg.2s and Es2p, are purely imagi- sented by an infinitesimal rotation at high velocities.

nary. After using the peak approximation, similar to the pre- It is interesting that the results exhibapproximately
ceding sections, we find the following limits: a Stark-rotational structure forv<<1, where E2p0,2s
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=Egi,2po=—3zpi/(4v)- Anyway, these values should @2s>0) via two permitted transitions st2p, (permitted

not be taken seriously because the second Bomn appro@Nd & subsequentp3-2s (permitted. In relative terms, this
imation is not valid in the low velocity range. contribution is more relevant than the two-step-12s tran-
sition (forbidden and a subsequents2 2p, (permitted to

B1 o depopulatenote a,, <0) the total 5—2p, transition. This
off faster thanEzS’po:O(llv), the iwo-step contribution is why, for example, in the intermediate-energy regime for-
1s—2py—2s is more important, in relative terms, than pidden transitions observe inherent scaling rules of the per-
1s—2s—2p,. Following Moiseiwitsch[17], we introduce mitted transitiongsuch as the Janev and Presniakov scaling
the parametenazTibEE’la/T?;a in the matrix expression [18,19).
(37), so that the differential cross section in the forward di-
rection (#=0) is represented by

We shall prove next that thougEE;O,ZS:O(llvz) falls

B2 B1 IV. CONCLUSIONS
I Tisal®=1T1sal |1+ @l (38)
1s,a 1s,a . .
In summary, based on the perturbative formalism, we
Fitting Egéojzs: —Z1Zpilv? and Eigzpo: —3Zpi/(4v) for  have answered the three questions posed in the Introduction:

. . BK1 .
v>3, we find that the parameters, have the following (1) First, we have found the Stark rotation angle in
representation: the high velocity limit, and we have made a link with the one

obtained by Burgdder for moderately high velocitiefl].
_4_viEBl _4Zp (399 (2) Second, we have found the proper valuegof - and
@2s= Zr Po= oy we conclude that, in the asymptotic limit, the Stark rotation
is redundant when CDW amplitudes are used. For proton on
Zy g 3Z1Zp helium atv=2.75 a.u.(that is in the experimental range of
2p0~ T 2 ' T2820T T 162 (39D interest we have found a numerical coincidence between
¢CDW and the usual angle obtained from the post-collision
thus interaction mode[1] that may elucidate the performance of
47 the CDW with PCI in that range.
|-|-BZ 2= |TBl 2[ 1+ ~cpP (409 (3) Third, for direct excitation the perturbative formalism
1s,2s 1s,2s ’ .
v does not lead to a rotational structure.
3Z:Z
B2 B1 T+P
T 2=|T 21— ) 40b
I Taszpgl = Tas., 16v° (40hy ACKNOWLEDGMENT
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