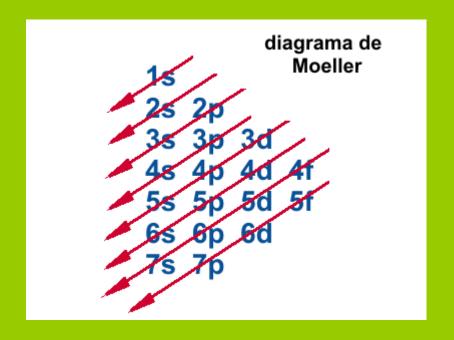

Estructura de la Materia 3

Clase Práctica, Guía 2, parte c

- Tabla Periódica: de Mendeleiev a la cuántica y viceversa
- Configuraciones de electrones
- Términos, Regla de Hund para el estado fundamental.


Claudia Montanari

Configuraciones de electrones. Capas y subcapas

Para el estado fundamental, el orden de llenado de capas (orden de las Enl) es casi el mismo para todos los átomos

1s 2s 2p 3s 3d 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 6d

1s² ---- He---- 2 2s² ---- Be----4 2p⁶ ----Ne----10 3s² ---- Mg---- 12 3p⁶ ---- Ar---- 18 4s² ---- Ca---- 20 3d¹⁰----Zn----30 4p⁶ ---- Kr----- 36 5s² ---- Sr---- 38 4d¹⁰----Cd----48 5p⁶ ---- Xe---- 54 6s²-----Ba-----56 4f¹⁴----Yb----70 5d¹⁰----Hq----80

Degeneración: Enl no depende de m₁ ni de m_s 2 (2l+1)

Potencial de ionización

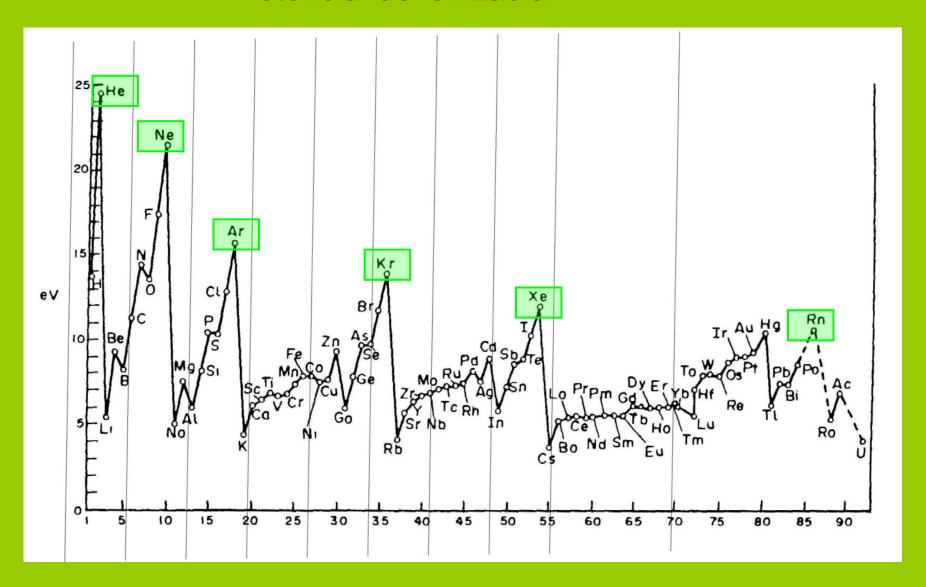


Table 7.3 The periodic table of the elements

	1 H 1.008															*		2 He
	3 Li	4 Be											5 B	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.18
	11 Na 22.990	12 Mg 24.312											13 A1 26.982	14 Si 28.086	15 P 30.974	16 S 32.064	17 Cl 35.453	18 Ar 19.941
	19 K 39.102	20 Ca 40.08	21 Sc 44.956	22 Ti 47.90	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.847	27 Co 58.933	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.922	34 Se 78.%	35 Br 79.909	36 Kr
	37 Rb 85.47	38 Sr 87.62	39 Y 88.905	40 Zr 91.22	41 Nb 92.906	42 Mo 95.94	43 Tc	44 Ru 101.07	45 Rh 102.91	46 Pd 106.4	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te	53 I 126.90	54 Xe
	55 Cs 132.91	56 Ba	57 [†] La	72 Hf 178.49	73 Ta	74 W 183.85	75 Re 186.2	76 Os	77 Ir 192.2	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 Tl 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn
A STATE OF THE PARTY OF THE PAR	87 Fr	88 Ra (226)	89 [‡] Ac	104	105										¥1			
	La	intha	t nides		58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm	62 Sm 150.35	63 Eu	64 Gd 157.25	65 Tb	66 Dy 162.50	67 Ho	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97
		Acti	† nides		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Potencial de ionización

Table 7.3 The periodic table of the elements

eriod	1A 1 H 1.008	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIE	VIIIE	3 IB	11B	IIIA	IVA	VA	VIA	VIIA	2 He
	3 Li	4 Be											5 B 10.811	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.18
	11 Na 22.990	12 Mg 24.312											13 Al 26.982	14 Si 28.086	15 P 30.974	16 S 32.064	17 Cl 35.453	18 Ar 19.94
	19 K 39.102	20 Ca 40.08	21 Sc 44.956	22 Ti 47,90	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.847	27 Co 58.933	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.922	34 Se 78.96	35 Br 79.909	36 Kr
	37 Rb 85.47	38 Sr 87.62	39 Y 88.905	40 Zr 91.22	41 Nb 92.906	42 Mo 95.94	43 Tc	44 Ru 101.07	45 Rh 102.91	46 Pd 106.4	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe
	55 Cs	56 Ba	57 [†] La	72 Hf 178.49	73 Ta	74 W 183.85	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn
	87 Fr	88 Ra	89 [‡] Ac	104	105													

alcalinos

1 e- fuera de capa cerrada

† Lanthanides

Actinides

58 Ce 140.12	59 Pr 140.91	60 Nd	61 Pm	Sm	Eu	15532753	200	66 Dy 162.50	5-3-55-	100	69 Tm 168.93		
90 Th	91 Pa	92 U 238.03	93 Np	94 Pu (242)	95 Am	96 Cm	97 Bk	98 Cf (251)	99 Es	Fm	101 Md	22/12/2005	Lr

Potencial de ionización

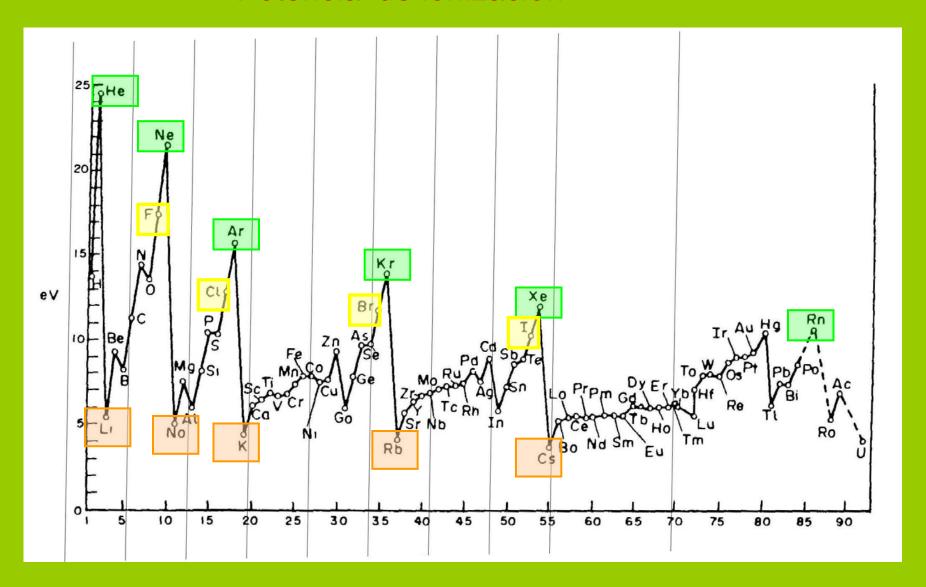


Table 7.3 The periodic table of the elements

1 H	8																2 He
3 Li	4 Be	64										5 B	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.18
11 Na 22.99		g 🛨			Se	e lle	ena	a d'	10			13 A1 26.982	14 Si 28.086	15 P 30.974	16 S 32.064	17 Cl 35.453	18 Ar 19.94
19 K 39.10	20 Ca 40.0	1000	22 Ti 47,90	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.847	27 Co 58.933	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.72	32 Ge	33 As 74.922	34 Se 78.96	35 Br 79.909	36 Kr
37 Rb 85.47	100	39 Y 88.905	40 Zr 91.22	41 Nb 92.906	42 Mo 95.94	43 Tc	44 Ru 101.07	45 Rh 102.91	46 Pd 106.4	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe
55 Cs	56 Ba	57 [†] La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At	86
87 Fr	88 Ra	89 [‡] Ac	104	105						Se	e lle	ena	f ¹	1			
I	.anth	anide	t s	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy 162.50	67 Ho	68 Er 167.26	69 Tm	70 Yb	71 Lu

92

90

Th Pa

Actinides

91

(231)

93

238.03 (237)

Np Pu

94

(242)

95

Am

(243)

96

97

(249)

Cm Bk

alcalinos

1 e- fuera de capa cerrada

Li+

halógenos

5 electrones p (un hueco en la capa externa)

F-

101 102 103

No

(253)

Lr

(257)

98

Cf

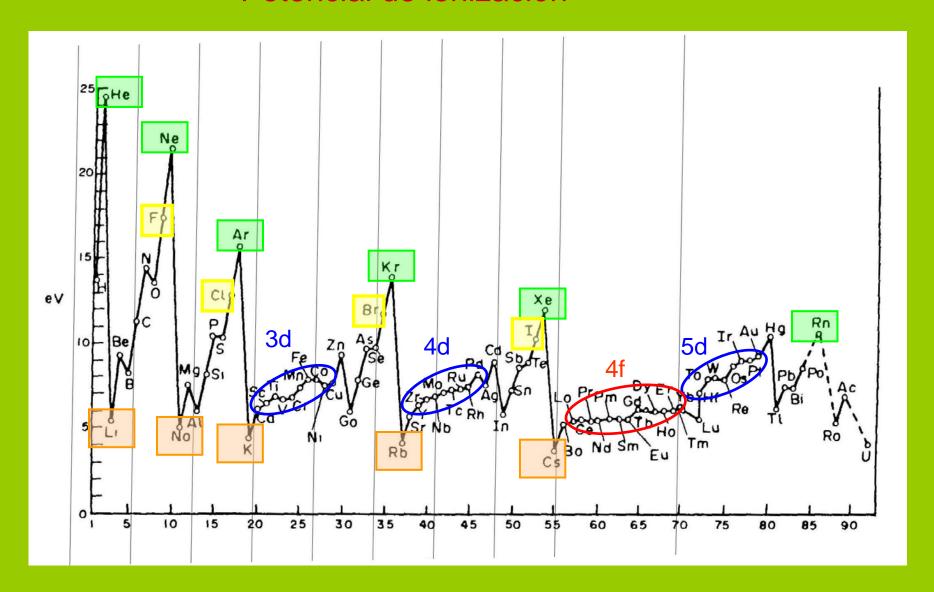
(251)

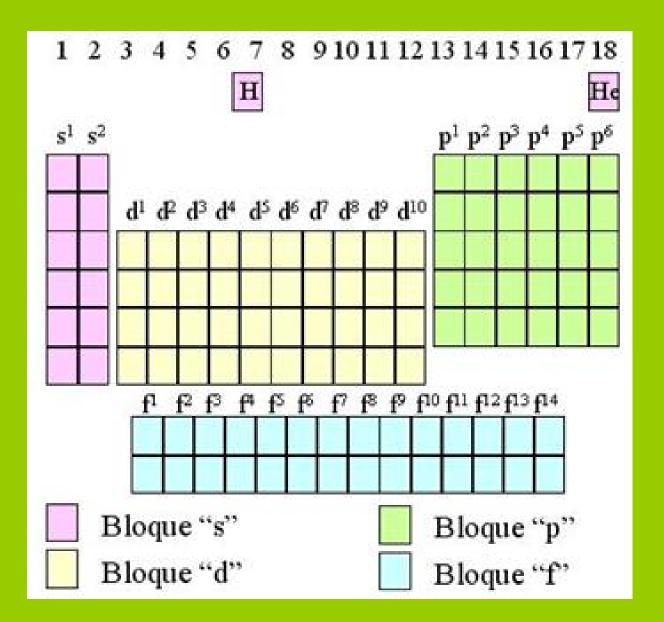
99

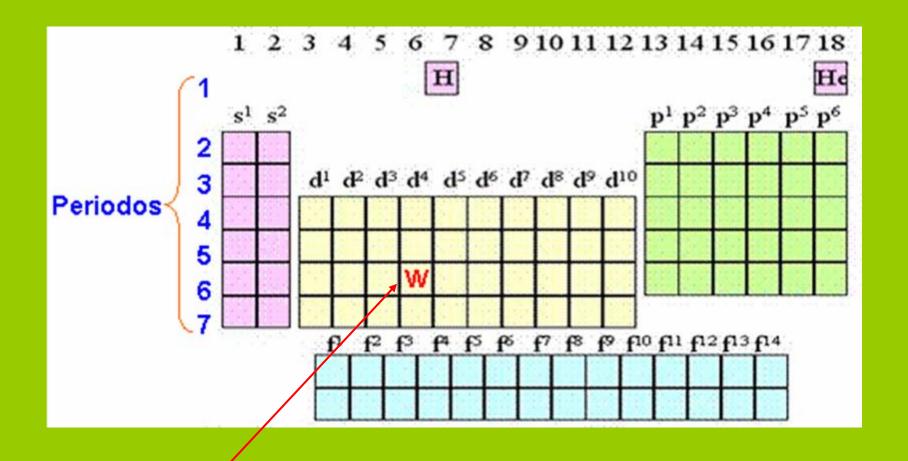
Es

(254)

100


Fm

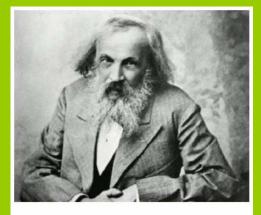

(253)


Md

(256)

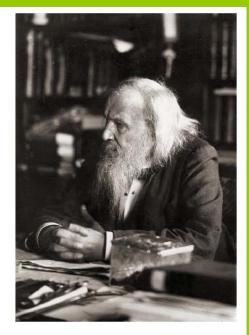
Potencial de ionización

Ejemplo: Qué posición que ocupa un átomo cuya configuración electrónica termine en 5d⁴ 6s²? Esto es **cuántica**Pero la Tabla de Periódica
de **Mendeleiev** es de **1869**

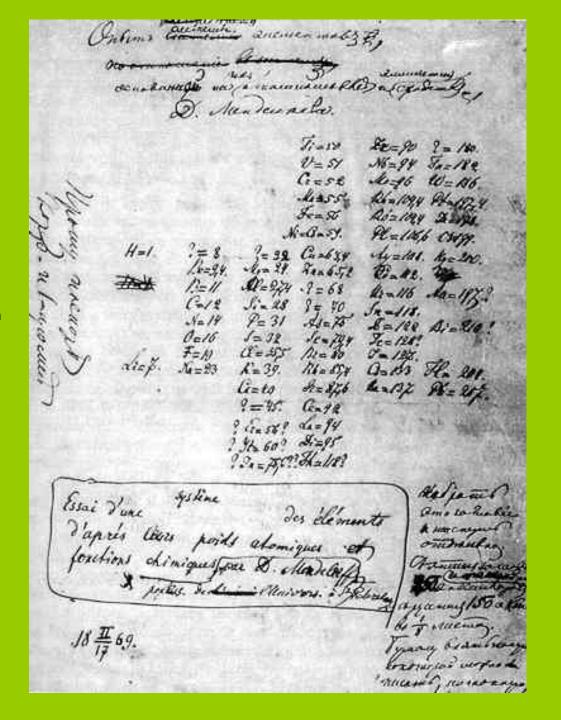

- ✓ A mediados del s. XIX se conocían 69 elementos
- ✓ Valencia: aparece este concepto a mediados del s. XIX, como capacidad de asociarse de un elemento

Frankland, 1852, químico y farmacéutico inglés, asoció al C valencia 4, al O valencia 2 y al H valencia 1. Explicó así CO2, H2O, etc

✓ Se habían medido masas relativas a las del H (Dalton 1803), si bien había bastantes discrepancias. En 1860 Canizzaro refina estas medidas utilizando la ley de Avogadro y lo presenta en el 1er Congreso de Química, en Alemania.

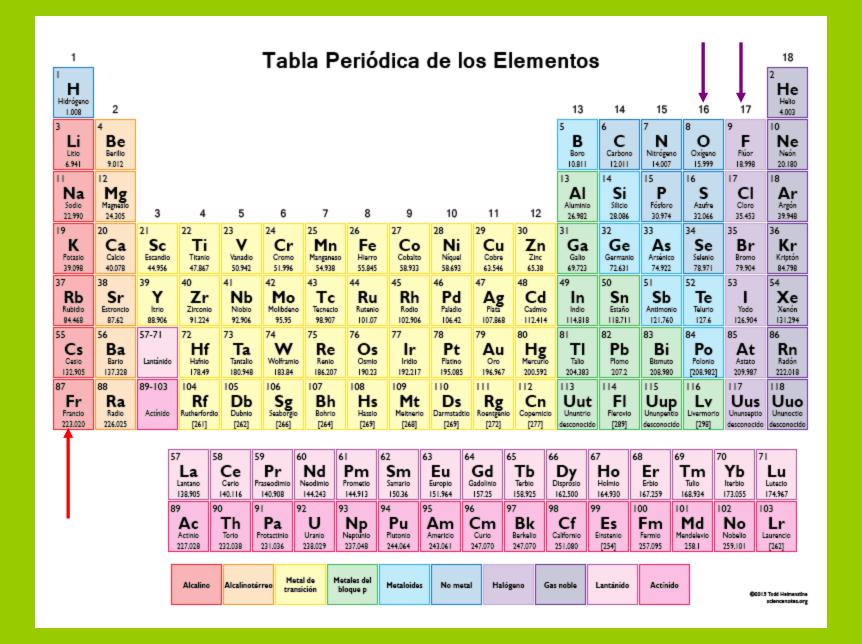

✓ Agrupar según propiedades quimicas permitió a Mendeleiev en
 1869 clasificar elementos en forma de tabla periódica

Dimitri Mendeleiev

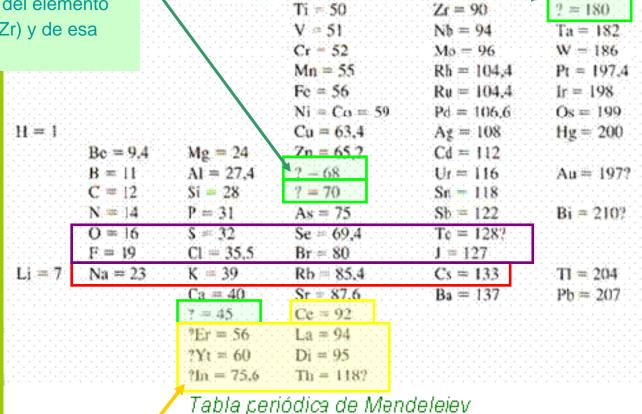


Dmitri Mendeléyev

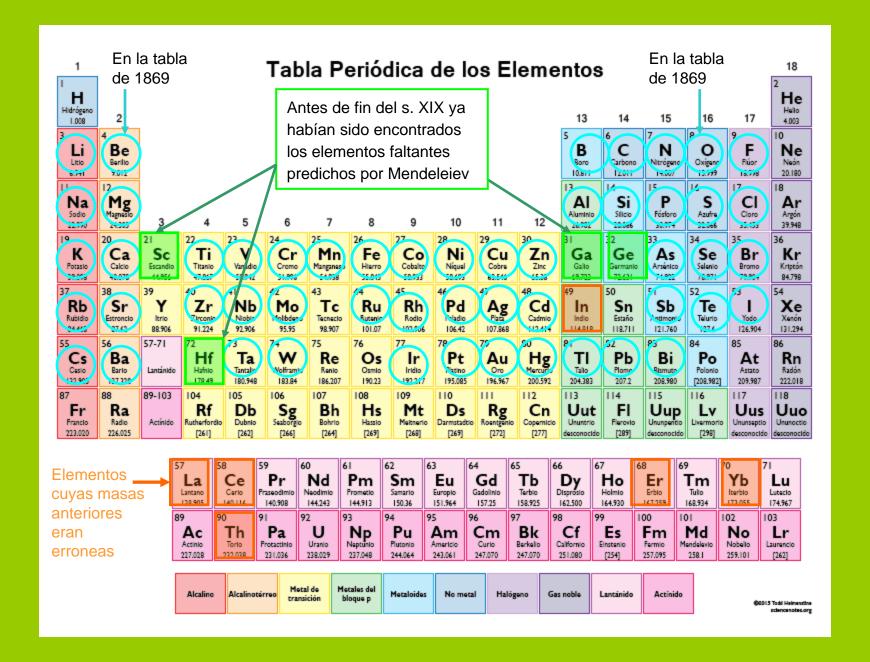
Nació en Tobolsk, Siberia, en 1834, y muere en 1907 en San Petersburgo.



Dmitri Mendeléiev en 1897.



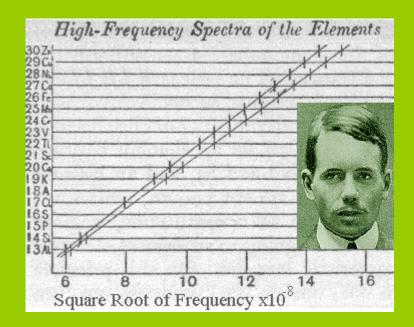
			Ti = 50	$Z_f = 90$	2 = 180
			V = 51	Nb = 94	Ta = 182
			Cr = 52	$M_0 = 96$	W = 186
			Mn = 55	Rh = 104,4	Pt = 197.4
			Fe = 56	Ru = 104.4	Ir = 198
			Ni = Co = 59	Pd = 106.6	Os = 199
11 = 1			Cu = 63.4	Ag = 108	Hg = 200
	Be = 9.4	Mg = 24	Zn = 65.2	Cd = 112	
	B = 11	A1 = 27.4	? - 68	Ur = 116	Au = 197?
	C = 12	Si = 28	? = 70	Se = 118	
	N = 14	P = 31	As = 75	Sb = 122	$Bi = 210^{\circ}$
	O = 16	S = 32	Se = 69,4	$T_0 = 128?$	
	F = 19	Cl = 35,5	Br = 80	J = 127	
Li = 7	Na = 23	K = 39	Rb = 85.4	Cs = 133	T1 = 204
		Ca = 40	Sr = 87,6	Ba = 137	Pb = 207
		7 = 45	Ce = 92		
		%Er = 56	La = 94		
		?Yt = 60	Di = 95		
		?1n = 75.6	Tb = 1187		


Tabla periódica de Mendeleiev

Elementos desconocidos, Mendeleiev dice que falta allí un elemento con las características del elemento previo (Al, Si, Zr) y de esa masa atómica

Estos elementos con no cuadran según el valor de masa atómica conocida en ese momento, Mendeleiev sospecha que pueden estar mal medidas

Henry Moseley, inglés, 1887-1915



Trabaja con Rutherford

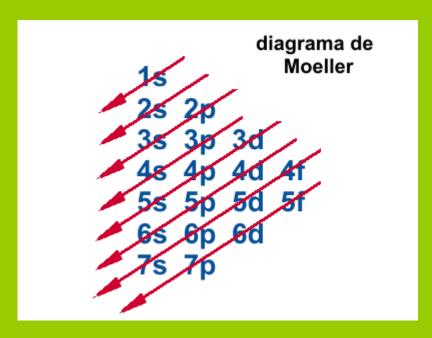
Experiencias de espectrometría, rayos X

Concepto de número atómico

Reordena la Tabla Periódica basada en el número atómico

Henry Moseley era un joven físico y químico muy prometedor. Tras finalizar sus estudios marchó a la Universidad de Manchest a trabajar con Rutherford

Allí Moseley ayudó a afianzar el modelo atómico de Bohr y contribuyó not ablemente al establecer el concepto de número atómico Z.


El nominado a Premio Nobel que murió combatiendo en la batalla de Galípoli

Este 10 de agosto se han cumplido 100 años de la muerte de Henry Moseley, el joven físico británico que cayó en la batalla turca un mes antes de saber si había alcanzado el reconocimiento por sus trabajos sobre el número atómico

Configuraciones de electrones. Capas y subcapas

Para el estado fundamental, el orden del llenado de capas (orden de las Enl) es casi el mismo para todos los átomos

1s 2s 2p 3s 3d 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 6d

Ejemplo:

C (
$$Z=6$$
) $1s^2 2s^2 2p^2$

2p: degeneración d=6

6 lugares, 2 electrones

Configuraciones posibles 15= $\begin{bmatrix} 6 \\ 2 \end{bmatrix}$

Cuál es la de menor energía?

Degeneración: Enl no depende de m_I ni de m_s 2 (2l+1)

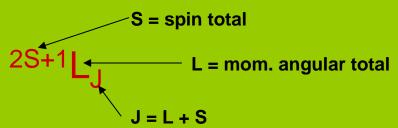

Las 15 configuraciones de una subcapa np²

Table 7.6 Possible quantum numbers for the configuration np^2

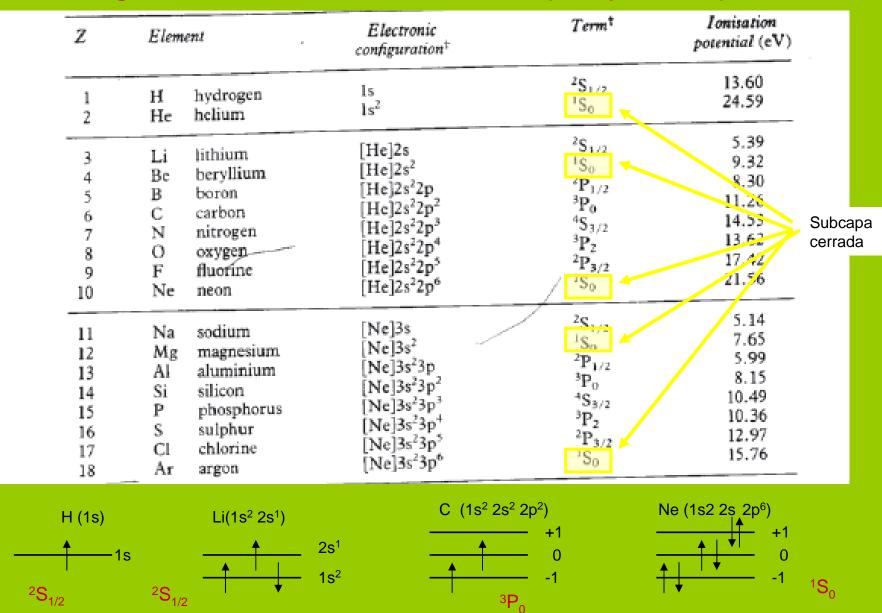
Number	m_{I_1}	m_{s_1}	m_{l_2}	m_{s_2}	$M_L = m_{l_1} + m_{l_2}$	$M_S = m_{s_1} + m_{s_2}$
1	1	1/2	1		2	0)
2	1	$-\frac{1}{2}$	0	1 2	1	0 L=2
3	0	1/2	0	$-\frac{1}{2}$	0	0 S=0
4	0	$-\frac{1}{2}$	-1	1/2	-1	0 0-0
5	-1	- 5	-1	$-\frac{1}{2}$	-2	0
6	1	1	0	$\frac{1}{2}$	1	1
7	1	$-\frac{1}{2}$	0	$-\frac{1}{2}$	1	-1
8	0		-1	1 2	-1	1
9	0	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	-1	$-\frac{1}{0}$ L=1
10	1	1/2	0	$-\frac{1}{2}$	1	1)
11	1	$-\frac{1}{2}$	-1	$\frac{1}{2}$	0	0 S=1
12	0	1	-1	$-\frac{1}{2}$	-1	0
13	1	1	-1	1/2	0	1
14	1	- -	-1	$-\frac{1}{2}$	0	-1) L=
15	1	Ĩ	-1	$-\frac{1}{2}$	0	0 → S=

Configuraciones de electrones. Capas y subcapas

Notación de Russell Saunders

Ejemplo: C (Z=6)

Configuraciones posibles

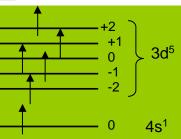

Cuál es la de menor energía?

Regla de Hund:

- i) máximo S posible
- ii) Dado S, máximo L posible
- iii) Dados S y L, J mínimo

Para el C, el estado fundamental es ³P₀

Configuraciones de electrones. Capas y subcapas


Regla de Hund, para el estado fundamental

Z	Elemen	MI	Electronic configuration†	$Term^{\dagger}$	Ionisation potential (eV)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	potassium calcium scandium titanium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton	[Ar]4s ² [Ar]4s ² 3d [Ar]4s ² 3d ² [Ar]4s ² 3d ³ [Ar]4s ² 3d ³ [Ar]4s ² 3d ⁵ [Ar]4s ² 3d ⁶ [Ar]4s ² 3d ⁶ [Ar]4s ² 3d ⁸ [Ar]4s ² 3d ¹⁰ [Ar]4s ² 3d ¹⁰ [Ar]4s ² 3d ¹⁰ [Ar]4s ² 3d ¹⁰ 4p [Ar]4s ² 3d ¹⁰ 4p ² [Ar]4s ² 3d ¹⁰ 4p ³ [Ar]4s ² 3d ¹⁰ 4p ³ [Ar]4s ² 3d ¹⁰ 4p ⁴ [Ar]4s ² 3d ¹⁰ 4p ⁶	² S _{1/2} ¹ S ₀ ² D _{3/2} ³ F ₂ ⁴ F _{3/2} ⁷ S ₃ ⁶ S _{5/2} ⁵ D ₄ ⁴ F _{9/2} ³ F ₄ ² S _{1/2} ¹ S ₀ ² P _{1/2} ³ P ₀ ⁴ S _{3/2} ³ P ₂ ² P _{3/2} ¹ S ₀	4.34 6.11 6.54 6.82 6.74 6.77 7.44 7.87 7.86 7.64 7.73 9.39 6.00 7.90 9.81 9.75 11.81 14.00
			A	A director Books to the	_

4s con 1 electrón, excepciones a la regla de Moeller

Cr [Ar] 4s¹ 3d⁵

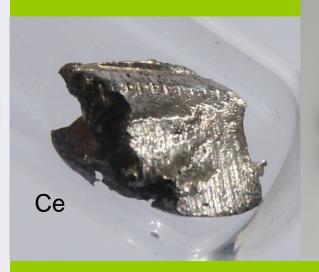
Ejemplo de esquema simplificado para pensar el máximo valor de S, y con ese S luego L y utilizar regla de Hund para obtener el estado de menor energía

Aplico la Regla de Hund en este caso

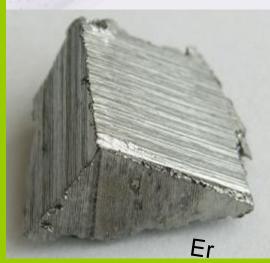
- i) máximo S → S=3
- ii) dado S=3, L solo puede ser L=0 ($\sum_{i=1}^{6} m_{li} = 0$) iii) J=3 ==> 7 S₃

iii) J=3 ==>
7
S₃

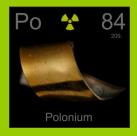
Z	Element		Electronic configuration†	Term [†]	Ionisation potential (eV)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe	rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon	[Kr]5s ² [Kr]5s ² 4d [Kr]5s ² 4d ² [Kr]5s ² 4d ³ [Kr]5s ² 4d ¹⁰ [Kr]5s ² 4d ¹⁰ [Kr]5s ² 4d ¹⁰ [Kr]5s ² 4d ¹⁰ 5p [Kr]5s ² 4d ¹⁰ 5p ³ [Kr]5s ² 4d ¹⁰ 5p ³ [Kr]5s ² 4d ¹⁰ 5p ⁴ [Kr]5s ² 4d ¹⁰ 5p ⁵ [Kr]5s ² 4d ¹⁰ 5p ⁶	² S _{1/2} ¹ S ₀ ² D _{3/2} ³ F ₂ ⁶ D _{1/2} ⁷ S ₃ ⁶ S _{5/2} ⁵ F ₅ ⁴ F _{9/2} ¹ S ₀ ² S _{1/2} ² S _{1/2} ³ P ₀ ⁴ S _{3/2} ³ P ₂ ² P _{3/2} ¹ S ₀ ⁴ S ₀	4.18 5.70 6.38 6.84 6.88 7.10 7.28 7.37 7.46 8.34 7.58 8.99 5.79 7.34 8.64 9.01 10.45 12.13


Diferente a Moeller

Lantánidos


Z		Element		Electronic configuration†	Term [†]	Ionisation potential (0	
	55	Cs	cesium	[Xe]6s	² 8 _{1/2}	3.89	
_	56	Ba	barium	[Xe]6s ²	/:50	5.21	
Г	57	La	lanthanum	[Xe]6s*5d	*D _{3/2}	3.38	
	58	Ce	cerium	[Xe](6s ² 4f5d)	(¹G₄)	5.47	
	59	Pr	praseodymium	$[Xe](6s^24f^3)$	$(^{4}I_{9/2})$	5.42	as
	60	Nd	neodymium	[Xe]6s ² 4f ⁴) 3 _{I4}	5.49	ifer <mark>encias</mark>
	61	Pm	promethium	[Xe](6s ² 4f ⁵)	(6H _{5/2})	5.55	n e <mark>nergia</mark>
	62	Sm	samarium	[Xe]6s ² 4f ⁶	F ₀ S _{7/2}	5.65 d	
	63	Eu	europium	[Xe]6s ² 4f ⁷	*S _{7/2}	5.67	olar <mark>izació</mark>
	64	Gd	gadolinium	[Xe]6s ² 4f ⁷ 5d	°D,	6.14	on
	65	Ть	terbium	[Xe](6s ² 4f ⁹)	$^{6}\mathrm{H}_{15/2}$	5.85 p	equ <mark>eñas</mark>
	66	Dy	dysprosium	[Xe](6s ² 4f ¹⁰)	(°I ₈)	5.93	er figura
	67	Ho	holmium	[Xe](6s ² 4f ¹¹)	$(^{4}I_{15/2})$	6.02 a	nterior)
	68	Er	erbium	[Xe](6s ² 4f ¹²)	$(^{3}H_{6})$	6.10	
	69	Tm	thulium	[Xe]6s ² 4f ¹³	$^{2}F_{7/2}$	6.18	
	70	Yb	ytterbium	[Xe]6s ² 4f ¹⁴	$^{1}S_{0}$	6.25	
	71	Lu	intetium	[Xe]6s24f145d	¹ S ₀ ² D _{5/2} ³ F ₂	5.43	
	72	Hf	hafnium	[Xe]6s ² 4f ¹⁴ 5d ²	A. 7	7.0	
	73	Ta	tantalum	[Xe]6s ² 4f ¹⁴ 5d ³	⁴ F _{3/2}	7.89	
	74	W	tungsten	[Xe]6s ² 4f ¹⁴ 5d ⁴	$^{5}D_{0}$	7.98	
	75	Re	rhenium	[Xe]6s24f145d5	6S _{5/2}	7.88	
	76	Os	osmium	[Xe]6s ² 4f ¹⁴ 5d ⁶	$^{\prime}\mathrm{D}_{4}$	8.7	
	77	Ir	iridium	[Xe]6s ² 4f ¹⁴ 5d ⁷	$({}^{4}F_{9/2})$	9.1	
	78	Pt	platinum	[Xe]6s4f ¹⁴ 5d ⁹	3D.	9.0	
	79	Au	gold	[Xe]6s4f ¹⁴ 5d ¹⁰	2S _{1/2}	9.23	
	80	Hg	mercury	[Xe]6s ² 4f ¹⁴ 5d ¹⁰	1S ₀	10.44	

Algunos lantánidos

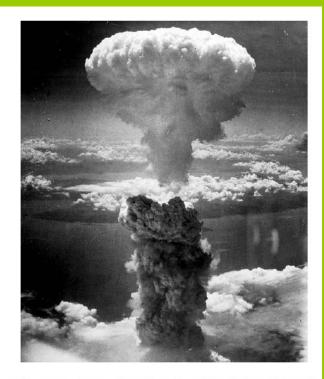


Se completa la subcapa 6p

- 2	Z	Elem	mi	Electronic configuration†	$Term^{\dagger}$	Ionisation potential (eV)
8	31	Tl	thallium	[Xe]6s^4f^45d106p	$^{2}P_{1/2}$	6.11
8	32	Pb	lead	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ²	$^{3}P_{o}$	7.42
8	33	Bi	bismuth	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	⁴ S _{3/2}	7.29
8	34	Po	polonium	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁴	$^{3}P_{2}$	8.42
8	35	At	astatine 🚣 🗸	[Xe](6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵)	$^{2}P_{3/2}$	9.5
8	36	Rn	radon **	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶	$^{1}S_{0}$	10.75

Radiactivos en sus distintos isótopos

El ²¹⁰Po es altamente radiactivo, Presente en el humo de tabaco (causa cancer de pulmón) y en algunos fertilizantes


Actinidos

Z	Element	Electronic configuration†	$Term^{\dagger}$	Ionisation potential (eV)
87	Fr francium	[Rn]7s	${}^{2}S_{1/2}$	4.0
88	Ra radium	[Rn]7s ²	1 S ₀	5.28
89	Ac actinium	[Rn]7s ² 6d	$^{2}\mathrm{D}_{3/2}$	6.9
90	Th thorium	[Rn]7s ² 6d ²	³ F ₂	
91	Pa protactinium	[Rn](7s ² 5f ² 6d)	(4K _{11/2})	
92	U uranium	[Rn]7s ² 5f ³ 6d	~L ₅₅	4.0
93	Np neptunium	[Rn]7s ² 5f ⁴ 6d	$^{6}L_{11/2}$	
94	Pu plutonium	[Rn]7s25t0	$^{7}F_{0}$	5.8
95	Am americium	[Rn]7s ² 5f ⁷	*S _{7/2}	6.0
96 -	Cm curium	[Rn]7s ² 5f ⁷ 6d	2D2	
97	Bk berkelium	[Rn]7s ² 5f ⁸ 6d	⁸ H _{17/2}	
98	Cf californium	[Rn]7s ² 5f ¹⁰	⁵ I _×	
99	Es einsteinium	[Rn]7s ² 5f ¹¹	$^{4}I_{15/2}$	
100	Fm fermium	$[Rn](7s^25f^{12})$	("H ₀)	
101	Md mendelevium	[Rn](7s ² 5f ¹³)	$({}^{2}\mathbf{F}_{7/2})$	
102	No nobelium	$[Rn](7s^25f^{14})$	$({}^{1}S_{0})$	
103	Lw lawrencium	[Rn]7s ² 5f ¹⁻⁴ 6d)	$(^{2}\mathbf{D}_{3/2})$	

Mezcla 5f 6d

Las diferencias en energia de polarización entre estados f son pequeñas (ver figura anterior)

Actinidos

The atomic bomb dropped on Nagasaki had a plutonium charge. [1]

Son todos radiactivos

Unprocessed uranium ore

Interior of a smoke detector containing americium-241.

Guia 2

C. Muchos electrones: Configuraciones, Tabla Periódica

Para los próximos problemas tome en cuenta el diagrama de Moeller y la regla de Hund para los términos 2s+1L₁.

- 1.Haga una lista de los términos ^{2s+1}L posibles de las configuraciones de j electrones np^j, con j=2,3,4,5,6. Revise y justifique los resultados del Anexo 1.
- 2.Haga una lista de los términos ^{2s+1}L posibles configuraciones de 2 electrones: ns-n's; ns-n'p, nd². Revise y justifique los resultados del Anexo 1
- 3. Analice los elementos de los grupos IA, VIIA de la Tabla Periódica y los gases nobles (vea Anexo 2). Escriba la configuración electrónica, haga un esquema de los valores de spin y exprese ^{2s+1}L_J. Compare los resultados con las tablas del Anexo 4. ¿Qué conclusiones puede señalar?
- 4.Los grupos IIIA a VIIA representan el llenado de la capa p que se completa para los gases nobles. Exprese el término ^{2s+1}L_J y compare los resultados con las tablas del Anexo 4.
- 5.Compare las configuraciones electrónicas del La y Hf dadas en la tabla del Anexo 4. Considere si se sigue el llenado de capas de Moeller o la regla de Hund. En base a esto cuál sería la configuración de los elementos 104 y 105
- 6. Explique las configuraciones electrónicas de Lantànidos. ¿Por qué están aparte en la tabla periódica? Ubique estos elementos en la figura del Anexo 5 e interprete la mezcla de estados f-d en relación a la figura de potenciales de ionización.
- 7. El resultado HF para Cromo de Clementi-Roetti da 12 posibles configuraciones con energías muy similares (en http://users.df.uba.ar/mclaudia/e3/Cromo_HF_CR.pdf), con diferencias en el quinto dígito significativo. Haga un esquema de las configuraciones que propone este autor.