Estructura de la materia 3

NOTAS DE CLASE 8. MOLECULAS HOMO-NUCLEARES

J. E. Miraglia

Departamento de Física. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina.

(Dated: February 28, 2016)

Abstract

TEORIA CASO GENERAL. Notación.

ESTADOS ELECTRONICOS DEL H_2 . Aproximación LCAO. Enlace covalente e iónico. Resultados y comparación con los experimentos.

MOLECULAS HOMONUCLEARES DIATOMICAS. Bond order. Casos: $\text{He}_2^{0/+/-}$, $\text{Li}_2^{0/+/-}$, $\text{He}_2^{0/+}$, $\text{Li}_2^{0/+/-}$, $\text{Be}_2^{0/+}$, $\text{Be}_2^{0/+}$, $\text{C}_2^{0/+/-}$, $\text{C}_2^{0/+/-}$, $\text{N}_2^{0/+/-}$, $\text{F}_2^{0/+/-}$, $\text{y Ne}_2^{0/+}$. Excitaciones Moleculares.

MODELOS ROTO-VIBRACIONALES. Distorsión centríuga. Ordenes de magnitud.

<u>Falta</u> Frank Condom. Heitler London. Importar dibujos de los orbitales moleculares. Espanol. figuras y acentos.

PACS numbers:

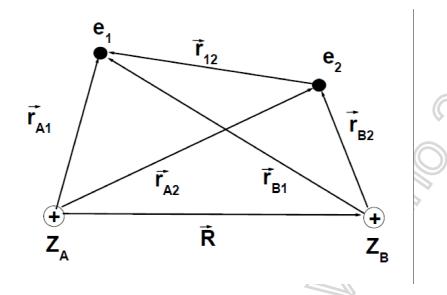


FIG. 1:

TEORIA. CASO GENERAL I.

Comenzaremos estudiando la molécula H₂, que tiene dos electrones y es el equivalente molecular del Helio. Luego veremos las homonucleares en gral y en la próxima clase veremos algo de hetero- y multi-nucleares si tenemos tiempo. Siguiendo los mismos pasos anteriores definimos el Hamiltoniano para n_e electrones, en general (nada nuevo, copio lo anterior)

$$\widehat{H} = -\frac{1}{2\mu} \nabla_{\overrightarrow{R}}^2 + \widehat{H}_e, \tag{1}$$

$$\widehat{H}_{e} = \sum_{i} \underbrace{\left(-\frac{1}{2}\nabla^{2}_{\overrightarrow{r}_{i}} - \frac{Z_{A}}{r_{Ai}} - \frac{Z_{B}}{r_{Bi}} + \frac{Z_{A}Z_{B}}{R}\right)}_{H_{i}} + \sum_{i \neq j} \frac{1}{r_{ij}} - (n_{e} - 1)\frac{Z_{A}Z_{B}}{R}, \tag{2}$$

$$\overrightarrow{r}_{Ai} = \overrightarrow{r}_i - \overrightarrow{R}_A, \qquad \overrightarrow{r}_{Bi} = \overrightarrow{r}_i - \overrightarrow{R}_B, \qquad \overrightarrow{r}_{ij} = \overrightarrow{r}_i - \overrightarrow{r}_j, \qquad (3)$$

$$\overrightarrow{r}_{Ai} = \overrightarrow{r}_{i} - \overrightarrow{R}_{A}, \qquad \overrightarrow{r}_{Bi} = \overrightarrow{r}_{i} - \overrightarrow{R}_{B}, \qquad \overrightarrow{r}_{ij} = \overrightarrow{r}_{i} - \overrightarrow{r}_{j}, \qquad (3)$$

$$\frac{1}{\mu} = \frac{1}{M_{A}} + \frac{1}{M_{B}} \Big|_{M_{a} = M_{B} = M} = \frac{2}{M} . \qquad (4)$$

Notese que, así escrito, H_i representa el equivalente al hamiltoniano de H_2^+ , será importante luego para entender la notación. Como siempre se debe resolver el Hamiltoniano electrónico

$$\widehat{H}_e\Phi_s(\overrightarrow{R},\overrightarrow{r}_1,\overrightarrow{r}_2...) = E_s(R)_e\Phi_s(\overrightarrow{R},\overrightarrow{r}_1,\overrightarrow{r}_2...)$$
(5)

Se propone la separación de Born-Oppenheimer

$$\Psi(\overrightarrow{R}, \overrightarrow{r}_1, \overrightarrow{r}_2....) = \sum_s F_s(\overrightarrow{R}) \Phi_s(\overrightarrow{R}, \overrightarrow{r}_1, \overrightarrow{r}_2....), \tag{6}$$

con lo que debemos conocer la base completa que debe ser ortonormal

$$\int d\overrightarrow{r}_1 d\overrightarrow{r}_2 \dots \Phi_{s'}^*(\overrightarrow{R}, \overrightarrow{r}_1, \overrightarrow{r}_2 \dots) \Phi_s(\overrightarrow{R}, \overrightarrow{r}_1, \overrightarrow{r}_2 \dots) = \delta_{s,s'} \qquad \forall R.$$
 (7)

Haciendo $H\Psi(\overrightarrow{R},\overrightarrow{r}_1,\overrightarrow{r}_2)=E(R)\Psi(\overrightarrow{R},\overrightarrow{r}_1,\overrightarrow{r}_2)$ se llega escencialmente a la misma ecuación

$$\sum_{u} \left\langle \Phi_{u} \left| -\frac{1}{2\mu} \nabla_{\overrightarrow{R}}^{2} \right| \Phi_{s} \right\rangle F_{s}(\overrightarrow{R}) + \left(E_{s}(R) - E \right) F_{s}(\overrightarrow{R}) = 0, \tag{8}$$

que se resuelve con la técnica apropiada. Si invocamos nuevamente la **aproximación adi- abática**, y hacemos

$$F_s(\overrightarrow{R}) = \frac{U_s(R)}{R} Y_{\mathcal{L}}^{\mathcal{M}}(\widehat{\Omega}), \tag{9}$$

llegamos a la conocida expresion

$$\left[-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + \frac{\mathcal{L}(\mathcal{L}+1)}{2\mu R^2} + E_s(R) \right] U_s(R) = EU_s(R). \tag{10}$$

1. Notación

Cuando en Física Atómica teníamos **un electrón** sin considerar el spin (átomo hidrogenoide) la notación era nlm. Teníamos una "multiplidad" de spín $2s+1=2\frac{1}{2}+1=2$. No se usaba ya que hubiera sido redundante. Cuando se incoporaba spin-orbita, el momento angular total era \overrightarrow{j} . Recordemos que todas las letras se escribían en **minúsculas**. Cuando pasamos a átomos con **muchos electrones** el término espectroscópico (ó símbolo ó identificación ó etiqueta) era

$$^{2S+1}L_J$$
 , (11)

que se conoce como de Russell Saunders. L, S y J eran las variable totales (sumas). Notemos que las letras son ahora todas en **mayúsculas**.

Equivalentemente, cuando trabajamos con la molécula con **un electrón** sin considerar spin (caso de H_2^+) usamos letras **minúsculas** para notar el estados del electrón. Efectivamente, usabamos la notacion

$$nl\lambda_{g/u}$$
 ó directamente $N\lambda_{g/u}$, donde,
$$\begin{cases} nl = 1s, 2s, 2p_{x/y}, (\acute{o}\ 2p_{-1/1}), 3s... \acute{o} \text{ directamente } N = \text{número de nodos,} \\ \lambda = \sigma, \ \pi, \ \delta... = |m|; \quad \text{tal que el autovalor de } \widehat{l}_z \text{ era } m, \\ g \ / \ u = \text{indicaba el autovalor de } \widehat{C}_{AB}(A \Longleftrightarrow B) \text{ que poda ser par \'{o} impar .} \end{cases}$$
 (12)

Equivalentemente si tenemos moléculas con **muchos electrones** usaremos letras **mayus- culas**.

La función de onda sigue siendo simétrica o antisimétrica respecto al cambio de $A \Leftrightarrow B$, (solo para el caso homonuclear) o sea

$$\widehat{C}_{AB}\Phi_s = \pm \Phi_s$$
, donde $+ = gerade$, y $-= ungerade$. (13)

Para un sistema de muchos electrones hay que definir entonces: $\hat{L}_Z = \Sigma_i \hat{l}_{zi}$, entonces

$$\hat{L}_Z \Phi_s = M \Phi_s = \pm \Lambda \Phi_s, \quad \text{donde } \Lambda = |M|, \quad M = \Sigma_i m_i.$$
 (14)

Entonces para cada estado con $\Lambda \neq 0$ ($L_Z=\pm M$), habra dos estados degenerados correspondiente a diferentes proyecciones del momento angular total sobre la dirección internuclear. Por supuesto los efectos de rotación romperán esta degeneración (Λ doubling).

Sólo para el caso de $\Lambda=0$ (estados Σ), recurrimos al operador \widehat{C}_Y (recordemos que \widehat{C}_Y cambiaba $Y \Longleftrightarrow -Y$, ver apendice en el tema de H_2^+). \widehat{C}_Y conmuta con el Hamiltoniano \widehat{H}_e y con \widehat{L}_Z para L=0. Como vimos: $\widehat{C}_Y^2\Phi_s=\Phi_s$ entonces podemos contruir las autofunciones que sean autofunciones simultaneas de \widehat{H}_e , \widehat{C}_Y y \widehat{L}_Z cuyos autovalores seran ± 1 . El término espectral será entonces en analogía con el caso atómico 11

$$^{2S+1}\Lambda_{u/g}^{+/-}$$
, donde, (15)

$$\begin{cases} \Lambda = \Sigma(|M| = 0), & \Pi \ (|M| = 1), \ \Delta \ (|M| = 2), \ \Phi \ (|M| = 3), \ \Gamma \ (|M| = 4), \\ \text{tal que el autovalor de } \widehat{L}_z = \sum_i l_{zi} \quad \text{es} \quad M, \\ +/- = \text{indica el autovalor de } \widehat{C}_Y \ (Y \Longleftrightarrow -Y) \ \text{que poda ser} \ + \ \delta \ - \ (\text{solo para } \Sigma), \\ g \ / \ u = \text{indica el autovalor de } \widehat{C}_{AB} \ (A \Longleftrightarrow B) \ \text{que podrá ser par} \ \delta \ \text{impar} \ . \end{cases}$$

$$(16)$$

Por ejemplo, en molecular tendremos

$$^{1}\Sigma_{g}^{+}, ^{2}\Sigma_{u}^{+}, ^{2}\Sigma_{g}^{+}, ^{3}\Sigma_{g}^{-}, ^{2}\Pi_{u}, ^{3}\Pi_{g}, ^{2}\Pi_{u}, ^{1}\Lambda_{g}, \dots$$
 (17)

Para el caso M=0 (o $\Lambda=\Sigma$) las autofunciones de \widehat{L}_z son también las autofunciones de \widehat{C}_Y por lo que tiene sentido el signo \pm . Resumamos

letras 1 electron muchos electrones

Atomos latinas minusculas mayusculas .

Moléculas griegas minusculas mayusculas

II. ESTADOS ELECTRÓNICOS DEL H2. APROXIMACION LCAO

Seguimos el caso atómico del Helio. Como primera aproximación teníamos:

$$\Phi_{1s^2}(\overrightarrow{r}_1, \overrightarrow{r}_2) = \psi_{1s}(\overrightarrow{r}_1)\psi_{1s}(\overrightarrow{r}_1), \tag{18}$$

o sea un producto de orbitales atómicos (AO) El equivalente aqui es usar el producto de MO, esto es

$$\Phi_a(\overrightarrow{r}_1, \overrightarrow{r}_2) = \Phi_g(\overrightarrow{r}_1)\Phi_g(\overrightarrow{r}_2) \simeq \psi_{1\sigma_g}(\overrightarrow{r}_1)\psi_{1\sigma_g}(\overrightarrow{r}_2). \tag{19}$$

que son una aproximación a las autofunciones de H_i en la ec(2). Al átomo de Helio lo notabamos como

$$(1s)^2 {}^1S$$
 o directamente $1s^2 {}^1S$. (20)

El caso molecular sigue la misma regla pero con letras griegas mayuculas, así

$$(1s\sigma_g)^2 {}^1\Sigma^+$$
 ó directamente $1\sigma_g^2 {}^1\Sigma_g^+$. (21)

Usando una combinación de OA para describir el MO resulta

$$\Phi_{a}(\overrightarrow{r}_{1}, \overrightarrow{r}_{2}) \simeq |_{LCAO} = \underbrace{\frac{\psi_{1\sigma g}(\overrightarrow{r}_{1})}{\sqrt{2}} \underbrace{\frac{\psi_{1\sigma g}(\overrightarrow{r}_{1})}{\sqrt{2}} \underbrace{\frac{\psi_{1\sigma g}(\overrightarrow{r}_{1})}{\sqrt{2}} (\psi_{1s}(\overrightarrow{r}_{A2}) + \psi_{1s}(\overrightarrow{r}_{B2}))}_{\text{que podemos re-escribir como}}, (22)$$

$$= \Phi_a^{cov}(\overrightarrow{r}_1, \overrightarrow{r}_2) + \Phi_a^{ion}(\overrightarrow{r}_1, \overrightarrow{r}_2), \tag{23}$$

$$\Phi_a^{cov}(\overrightarrow{r}_1, \overrightarrow{r}_2) = \frac{1}{2} \left[\psi_{1s}(\overrightarrow{r}_{A1}) \psi_{1s}(\overrightarrow{r}_{B2}) + \psi_{1s}(\overrightarrow{r}_{A2}) \psi_{1s}(\overrightarrow{r}_{B1}) \right], \tag{24}$$

$$\Phi_a^{ion}(\overrightarrow{r}_1, \overrightarrow{r}_2) = \frac{1}{2} \left[\psi_{1s}(\overrightarrow{r}_{A1}) \psi_{1s}(\overrightarrow{r}_{A2}) + \psi_{1s}(\overrightarrow{r}_{B1}) \psi_{1s}(\overrightarrow{r}_{B2}) \right], \tag{25}$$

 Φ_a^{cov} representa un **enlace covalente** (covalent bonding), en el que un electrón esta en un centro A, y el otro en el B; a grandes distancias tiende a dos átomos de hidrógeno, o sea: H(1s)+H(1s). Por el contrario Φ_a^{ion} representa un **enlace iónico** (ionic bonding), en el que los dos electrones terminan en un solo centro A, o B, o sea: $H^+ + H^-$ o $H^- + H^+$.

2. Resultados y comparación con los experimentos

Es interesante puntualizar aquí que valores se obtienen usando LCAO en su forma mas elemental, esto es usando $\psi_{1s}(z|\overrightarrow{r}) = \psi_{1s}(Z|\overrightarrow{r}) = \psi_{1s}(1|\overrightarrow{r})$. Luego de un cálculo, se obtiene

una distancia de equilibrio $R_0=1.5$ a.u y un valor de la energía de disociación $D_e=0.098$ a.u=2.68 eV. Los valores experimentales son $R_0=1.40$ a.u y $D_e=0.175$ a.u=4.75 eV. El resultado no es bueno.

Hay muchas propuestas para mejorar estos resultados de LCAO, por ejemplo introduciendo cargas efectivas determinadas por el ppio variacional. Otras estrategia es mezclarlo con $\zeta \Phi_u(\overrightarrow{r}_1) \Phi_u(\overrightarrow{r}_2)$ (ver apéndice), y determinar variacionalmente ζ . Se puede ya que el producto de de estados ungerade es simétrico ante el intercambio de A \Leftrightarrow B, y por lo tanto tiene la simetría de un estado gerade.

Otro método muy popular era el de Heitler London que usa escencialmente el valor covalente con parametros optimizados; no es bueno. Actualmente se trabaja directamente en Hartree-Fock o DFT con bases gaussianas que son mas convenientes para lidear con centros múltiples.

El mejor cálculo de la energía total del H_2 es a la fecha -1.164 025 030 84, reportado en el RMP 85, 723 (2013) usando 10000 bases gausianas. Para el caso del isótopo HD, se encontró -1.165 471 922 0.

III. MOLECULAS HOMONUCLEARES DIATÓMICAS

Ahora vamos a trabajar con cargas nucleares mayores por ejemplo moléculas del tipo He₂, Li₂,...F₂, Ne₂, y sus estados catiónicos: por ejemplo He₂⁺, Li₂⁺, o aniónico, Li₂⁻, O₂⁻.. La función de onda total se construye como productos de MO unielectrónicas (método de Hund-Mulliken). Aparte cada una de estos MO pueden ser approximados por una LCAO. Sistematizaremos las moléculas en forma equivalente a la tabla periódica atómica. Partiendo del orden energético en átomos (aproximado!)

$$1s < 2s < 2p < 3s < 3p < 3d..... (26)$$

construimos los átomos mediante configuraciones *in crescendo*. Para elementos on nro de electrones, pares por ejemplo, llegamos en física atómica a

Atomo	nro. de elect.	Configuración	Estado	
He	2	$1s^2$	$^{2}S_{1/2}$	
Li	3	$1s^22s^1$	${}^{1}S_{0}$	(27)
Be	4	$1s^22s^2$	${}^{1}S_{0}$	(21)
C	6	$1s^22s^22p^2$	$^{3}P_{0}$	
Ne	10	$1s^22s^22p^6$	${}^{1}S_{0}$	07

Haremos lo equivalente para moléculas homonucleares multielectrónicas. Recordando que en el caso molecular el espectro de autofunciones de H_i tenía el siguiente orden energético (aproximado! cercano a la zona de equilibrio)

$$1\sigma_g < 1\sigma_u^* < 2\sigma_g < 2\sigma_u^* < 1\pi_{x/y} _u < 3\sigma_g < 1\pi_{x/y}^* _u < 3\sigma_u^*.$$
 (28)

construimos las moléculas mediante estas configuraciones in crescendo.

molec	nro. d	le elec	Conf			
H_2^+	1		$1\sigma_g$			
H_2^0	2	(6, ,	$1\sigma_g^2$			
He_2^+	3	707	$1\sigma_g^2$	$1\sigma_u^1$ *		
He_2^0	4	\	$1\sigma_g^2$	$1\sigma_u^2$ *		
Li_2^+	5		$1\sigma_g^2$	$1\sigma_u^2$ *	$2\sigma_g^1$	
Li_2^0	6		$1\sigma_g^2$	$1\sigma_u^2$ *	$2\sigma_g^2$	
Be_2^+	7		$1\sigma_g^2$	$1\sigma_u^2$ *	$2\sigma_g^2$	$1\pi_u$
Be_2^0	8		$1\sigma_g^2$	$1\sigma_u^2$ *	$2\sigma_g^2$	$1\pi_u^2$
B_2^+	9		$1\sigma_g^2$	$1\sigma_u^2$ *	$2\sigma_g^2$	$1\pi_u^3$
B_2^0	10		$1\sigma_g^2$	$1\sigma_u^2$ *	$2\sigma_g^2$	$1\pi_u^4$

3. Bond order

Hay un parámetro (empírico, propuesto por Lewis a ppio del siglo pasado) que indica si la molécula es estable o no, que es el llamado **bond order.** Se define bond order b_0 como el

nro. de estados ligantes menos el nro. de estados antiligantes dividido 2

$$b_0 = \frac{1}{2}(n_{ligantes} - n_{antiligantes}) = \frac{1}{2}(n - n^*)$$
(29)

El criterio es que si $b_0 > 0$, la molécula existe, si $b_0 \le 0$ no existe. ($b_0 = 0$, caso limite, hay que hacer el cálculo). Por ejemplo,

- para H_2^+ , $b_0 = (1-0)/2 = 1/2$; \Rightarrow existe
- para H_2^0 , $b_0 = (2-0)/2 = 1$; \Rightarrow existe
- para H_2^- , $b_0 = (2-1)/2 = 1/2$; \Rightarrow existe

La definicion de Lewis es que estados ligantes son aquellos que presentan densidad no nula entre los núcleos de la molécula (que es el concepto químico de bonding), mientras que los antiligantes tienen densidad nula.(antibonding).

4. Caso
$$He_2^{0/+}$$

Tenemos

Molécula nro. de electrones Configuracion Estado bond order
$$He_{2}^{+} \qquad 2 \times 2 - 1 = 3 \qquad 1\sigma_{g}^{2} \underbrace{\mathbf{1}\sigma_{u}^{*}}_{\text{nuevo}} \qquad ^{2}\Sigma_{u}^{+} \qquad b_{0} = \frac{2-1}{2} = \frac{1}{2}$$

$$He_{2} \qquad 2 \times 2 = 4 \qquad 1\sigma_{g}^{2} \underbrace{\mathbf{1}\sigma_{u}^{*2} = KK} \qquad ^{1}\Sigma_{g}^{+} \qquad b_{0} = \frac{2-2}{2} = 0$$

$$(30)$$

Tomemos primero el caso del He₂⁺. Tenemos 3 electrones, 2 estarán en el $1\sigma_g$ uno con spin ↑ y otro ↓, estado ligante . El tercer electrón estará en en el $1\sigma_u^*$, (antiligante) y la que define la paridad ungerade del estado ${}^2\Sigma_u^+$ que es duplete, por tener S=2× $\frac{1}{2}$ + 1 = 2. El Bound order es b_0 =1/2 por lo que existe y la posición de equilibrio es R_0 = 2.04a.u.

El He₂, tiene 4 electrones, 2 estarán en el $1\sigma_g$ (ligante), y los otro dos en los (antiligante) $1\sigma_u^*$, la paridad del estado es gerade y es un estado fundamental $^1\Sigma_g^+$ que es singlete (que es la versión molecular del 1S_0 atómico o sea capa cerrada). El bound order es 0 por lo que su existencia estaría en duda. Pero la molécula de He₂ existe! y se detectó experimentalmente (ver PRL 85, 2248 (2000)). Tiene un radio de R_0 =9.8 a.u. (en su época se dijo: "la molécula simple más grande jamás vista") tiene un valor, $D_e = 0.0009 \ eV$, pero se destruye a 1.1 miliKelvin o sea una energía de ligadura del orden de 10^{-7} eV!

De la misma manera que a la configuración atómica $1s^2$ se la abrevia K (por la capa K), $2s^22p^6$ se la abrevia L etc, todas estas son capas cerradas o sea 1S , la configuración molecular $1\sigma_q^21\sigma_u^2$ se la abrevia KK., o sea de ahora en mas resumimos

$$KK = 1\sigma_g^2 1 \sigma_u^2 \tag{31}$$

Ell He_2^- no existe.

5. Caso
$$Li_2^{0/+/-}$$

En este caso no hay sorpresas

Molecula	nro. de electrones	Configu	racion Estado	bond order
Li_2^+	$2 \times 3 - 1 = 5$	$KK 2\sigma_g$	$^2\Sigma_g^+$	$b_0 = \frac{1-0}{2} = \frac{1}{2}$
Li_2	$2 \times 3 = 6$	$KK \; {f 2} {m \sigma}_g^2$	$^{1}\Sigma_{g}^{+}$	$b_0 = \frac{2-0}{2} = 1$

El Li₂ existe y tiene $R_0 = 5.05$ y $D_e = 1.056 \text{eV}$. Su valor de R_0 es muy grande inusual para moléculas covalentes.

Notesé que el caso de Li₂ existe ya el electrón de mas entraría en el estado $2\sigma_u^*$ que es antiligante pero no hay problemas ya que $b_0 = (2-1)/2 = \frac{1}{2} > 0$. (buscar valores)

6. Caso
$$Be_2^{0/+}$$

Acá vuelve a aparecer un problema ya que

Molecula	nro. de electrones	Configuracion	Estado	bond order	
Be_2^+	$2\times 4-1=7$	$KK \ 2\sigma_g^2 \ \mathbf{2\sigma}_u^*$	$^2\Sigma_u^+$	$b_0 = \frac{2-1}{2} = \frac{1}{2}$	
Be_2	$2 \times 4 = 8$	$KK \ 2\sigma_g^2 \ {f 2\sigma}_u^{*2}$	$^1\Sigma_g^+$	$b_0 = \frac{2-2}{2} = 0$	

El Be_2^+ existe y su mínimo esta en $R_0=4.18$ a.u. con $D_e=2.0eV$ (chequear, si hay algo mas moderno)

El bond order de Be_2 es nulo por lo que su existencia nuevamente es dudosa. Los cálculos dan que el potencial tiene un mínimo en $R_0 = 4.63$ a.u. y una profundidad de $D_e = 0.1eV$. Pero su existencia depende de si el primer estado vibracional es da energía negativa. Hay

algunos trabajos experimentales que aseguran haberlo medido Antonov et al J. Chem. Phys. 133 (2010).

7.
$$Caso \ B_2^{0/+}$$

Acá ocurre otro problema interesante, veamos

Molecula	nro. de electrones	Configuracion	estado	bond order
B_2^+	$2 \times 5 - 1 = 9$	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 1\boldsymbol{\pi}_u \ ??$	$^2\Sigma_u^+$	$b_0 = \frac{3-2}{2} = \frac{1}{2}$
B_2	$2 \times 5 = 10$	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 1\boldsymbol{\pi}_u^2$	$3\Sigma_g^-$	$b_0 = \frac{4-2}{2} = 1$
				(34

Recordemos que el estado $1\pi_u(\acute{o} \pi_u 2p_{x/y})$ es ligante a pesar de ser ungerade por lo que el bond order es positivo, entonces la molécula existe. Pero el término espectroscópico del B_2 es impar y triplete $^3\Sigma_g^-$ (algunos químicos ponian? para indicar que estaba en duda). En realidad un cálculo sencillo basado en MO+LCAO no es suficiente se requiere MCHF.

Veamos un análisis cualitativo. Que sea triplete se entiende. Por lo que el Be_2 es la primera molécula neutra homonuclear diatómica que en el estado fundamental es paramagnética. Las anteriores eran diamagnéticas. La razón que explique la paridad negativa no es obvia. Recordemos los términos de las moléculas He_2 , Li_2 , Be_2 y otros por venir son ${}^1\Sigma_g^+$. Son los análogos de las capas cerradas atómicas 1S (recordar He, Be, Ne...) Se encuentra que el ${}^3\Sigma_g^-$ está 0.23 eV debajo del ${}^1\Sigma_g^-$.

8. Caso
$$C_2^{0/+/-}$$

En este caso continua llenando el orbital 1π con tres y cuatro electrones, con lo cual lo satura (spin up y down , x e y). Cuando ponemos un electrón mas inagura otro estado $3\sigma_g$

Molecula nr	o. de electrones	Configuracion	estado	bond order
C_2^+ 2 ×	6 - 1 = 11	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 1\boldsymbol{\pi}_u^3$	$^2\Pi_u$	$b_0 = \frac{5-2}{2} = \frac{3}{2}$
C_2 2 ×	6 = 12	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 1\boldsymbol{\pi}_u^4$	$^{1}\Sigma_{g}^{+}$	$b_0 = \frac{6-2}{2} = 2$
C_2^- 2 ×	6 + 1 = 13	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 1\pi_u^4 \ 3\sigma_g^{*2}$	g^1 $2\Sigma_g^+$	$b_0 = \frac{7-2}{2} = \frac{5}{2}$
(V(O))		nue		

El C₂ tiene un valor de equilibrio en $R_0 = 2.35$ a.u. y siempre Energía $(1\pi_u)$ < Energía $(3\sigma_g^1)$ pero estan muy cerca (en el O₂ van a cambiar el orden). Esto hace muy interesante la zoología de los estados excitados del C₂⁰ que están muy proximos unos a otros, veamos

Configuración estado
$$\mathbf{R}_{0}(\text{a.u.})$$
 \mathbf{D}_{e} relativo (eV)
..1 $\boldsymbol{\pi}_{u}^{4}$ $X^{-1}\boldsymbol{\Sigma}_{g}^{+}$ 2.35 0.00
..1 $\boldsymbol{\pi}_{u}^{3}$ 3 $\boldsymbol{\sigma}_{g}^{1}$ 3 $\boldsymbol{\Pi}_{u}^{+}$ 2.48 0.09 (36)
..1 $\boldsymbol{\pi}_{u}^{2}$ 3 $\boldsymbol{\sigma}_{g}^{2}$ 3 $\boldsymbol{\Sigma}_{g}^{-}$ 2.59 0.80
..1 $\boldsymbol{\pi}_{u}^{3}$ 3 $\boldsymbol{\sigma}_{g}^{1}$ 1 $\boldsymbol{\Pi}_{u}$ 2.49 1.04

Hagamos notar que hay **otra notación** y es anteponer la X delante del término para indicar que es el estado fundamental.

9.
$$Caso N_2^{0/+/-}$$

Acá no hay ninguna novedad. El N_2^+ tiene la misma configuración que el C_2^- , y el N_2 simplemente llena el $3\sigma_g$, pero el N_2^- inagura otro nuevo estado el $1\pi_g^*$ que es antiligante

Molécula	nro. de electro	nes Configuracio	on	estado	bond order
N_2^+	$2 \times 7 - 1 = 13$	$KK \ 2\sigma_g^2 2\sigma_u^{*2}$	$1\pi_u^4 \ {f 3}{m \sigma}_g^1$	$^2\Sigma_g^+$	$b_0 = \frac{7-2}{2} = \frac{5}{2}$
N_2	$2 \times 7 = 14$	$KK~2\sigma_g^2 2\sigma_u^{*2}$	$1\pi_u^4 \ {f 3}{m \sigma}_g^2$	$^{1}\Sigma_{u}^{+}$	$b_0 = \frac{8-2}{2} = 3$
N_2^-	$2 \times 7 + 1 = 15$	$KK \ 2\sigma_g^2 2\sigma_u^{*2}$	$1\pi_u^4 \; 3 \boldsymbol{\sigma}_g^2 \; 1 \boldsymbol{\pi}_g^*$	1 $^{2}\Pi_{g}$	$b_0 = \frac{8-3}{2} = \frac{5}{2}$
			nuevo		
	Č				(3

Escribimos $1\pi_u^4$ $3\sigma_g^2$ pero en algunos libros ya los ponen cruzados $3\sigma_g^21\pi_u^4$. El N₂ tiene un valor de b₀ = 3 el mas alto de la familia, que lo hace una molécula muy compacta R₀ = 2.07 a.u. y muy profunda (ó como se dice: rígida) D₀ = 9.75 eV. El primer estado excitado ... $1\pi_u^3$ $1\pi_g^*$ está muy alto por lo que explica la razón por la cual N₂ es comparativamente inerte

10. Caso
$$O_2^{0/+/-}$$

No tiene otra que seguir llenando $1\pi_g^*$

Molécula	nro. de electrones	Configuracion	estado	bond order
O_2^+	$2 \times 8 - 1 = 15$	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\boldsymbol{\pi}_g^{*-1}$	$^2\Pi_g$	$b_0 = \frac{7-2}{2} = \frac{5}{2}$
O_2	$2 \times 8 = 16$	$KK\ 2\sigma_g^2 2\sigma_u^{*2}\ 3\sigma_g^2 1\pi_u^4\ 1\boldsymbol{\pi}_g^{*\ 2}$	$^3\Sigma_u^-$	$b_0 = \frac{8-4}{2} = 2$
O_2^-	$2 \times 8 + 1 = 17$	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\boldsymbol{\pi}_g^{* \ 3}$	$^2\Pi_g$	$b_0 = \frac{8-5}{2} = \frac{3}{2}$

(38)

El término espectral del O_2 un triplete por lo que la molécula es paramagnética. Aca ocurre algo interesante; hay una transición importante del N_2 al O_2 . En el N_2 el orden energético es ... $1\pi_u^4$ $3\sigma_g^2$, mientras que en el O_2 las configuraciones de los electrones internos se invierten y quedan .. $3\sigma_g^2$ $1\pi_u^4$: energeticamente $3\sigma_g^2$ paso a estar debajo del $1\pi_u^4$ (en algunos libros marcan esta transición ya en el N_2). Es también interesante el caso emblemático del peroxido $O_2^=$.

11. Caso
$$F_2^{0/+/-}$$

Nada nuevo, no tiene otra que seguir llenando $1\pi_g^*$

Molécula	nro. de electi	cones Configuracion	estad	do bond order
F_2^+	$2 \times 9 - 1 = 17$	$KK \; 2\sigma_g^2 2\sigma_u^{*2} \; 3\sigma_g^2 1\pi_u^4 \; {f 1}{m \pi}_g^* \; ^3$	$^2\Pi_g$	$b_0 = \frac{7-2}{2} = \frac{3}{2}$
F_2	$2 \times 9 = 18$	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1oldsymbol{\pi}_g^{*4}$	$^1\Sigma_g^+$	$b_0 = \frac{8-6}{2} = 1$
F_2^-	$2 \times 9 + 1 = 19$	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\pi_g^{*4} \ 3\sigma_u^{*}$	$^2\Pi_g$	$b_0 = \frac{8-5}{2} = \frac{3}{2}$
		nuevo		
				()

(39)

12.
$$Caso Ne_2^{0/4}$$

Molécula nro. de electrones	Configuracion	estado	bond order
Ne_2^+	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\pi_g^{*4} \ 3\boldsymbol{\sigma}_u^*$	$^2\Pi_g$	$b_0 = \frac{8-6}{2} = 1$
Ne_2 $2 \times 10 = 20$	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\pi_g^{*4} \ 3\boldsymbol{\sigma}_u^{*2}$	$^1\Sigma_g^+$	$b_0 = \frac{8-8}{2} = 0$

(40)

ya que $b_0 = 0$, la existencia de Ne₂ esta en dudad.. Sin embargo hay un mínimo debido a la interacción de Van der Waals en $R_0=5.95$ con una profundidad de $D_e=0.0035 \mathrm{eV}.$ No existe pero si hay cluster de Ne y de gases raros en gral (chequear si hay algo nuevo).

Α. Estados moleculares excitados

Los MO tienen estados excitados y en muchos casos son directamente los estados por llenar. En algunos casos debido a la temperatura se excitan los modos rotovibracionales y se meclan los estados. Ya vimos el C₂. Para el caso del O₂, la separación de los digramas energeticos (o lo que se llama la **potential energy curve**) es mas clara, veamos

Molécula	Configuracion	estado	Energia (eV)	\mathbf{R}_0 (a.u.)
O_2	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\pi_g^{*\ 2}$		0	$R_0 = 2.282$
O_2^*	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\pi_g^{*\ 2}$	1 Δ_g	0.98	$R_0 = 2.297$
O_2^*	$KK \ 2\sigma_g^2 2\sigma_u^{*2} \ 3\sigma_g^2 1\pi_u^4 \ 1\pi_g^{*\ 2}$	$^1\Sigma_g^+$	1.63	$R_0 = 2.318$

POTENCIALES. MODELOS ROTO-VIBRACIONALES

Primero consideremos que la molécula no este rotando, o sea $\mathcal{L}=0$.

Aunque ultimamente se utiliza cada vez menos, es muy útil el llamado potencial de Morse. En realidad es un fiteo del potencial internuclear molecular que permite trabajar muy facilmente las excitaciones y los estados vibracionales alrededor de las posiciones de equilibrio R_0 . Este potencial se usa no solo en moléculas homonucleares sino tambien para heteronucleares. La idea es aproximar la ecuación (10) con un hamiltoniano H_{ap}

$$H_{ap} = H_M + E_s(R = \infty) = \underbrace{-\frac{1}{2\mu} \nabla_{\vec{R}}^2 + V_M(R)}_{H_M} + E_s(R = \infty), \quad \text{con}$$

$$V_M(R) = D_e \left[e^{-2\alpha(R - R_0)} - 2e^{-\alpha(R - R_0)} \right], \quad \text{potencial de Morse.}$$
(43)

$$V_M(R) = D_e \left[e^{-2\alpha(R-R_0)} - 2e^{-\alpha(R-R_0)} \right], \qquad \text{potencial de Morse.}$$
 (43)

Para la molécula de H_2 se usa $R_0=1.40,~D_e=0.175~(4.75 eV)$ y $\alpha=1.03.$ Este potencial tiene un mínimo en $R=R_0$ y allí se comporta como un oscilador

$$V_M(R) = -D_e + \underbrace{D_e \alpha^2}_{k_2/2} (R - R_0)^2 - D_e \alpha^3 (R - R_0)^3 + \frac{7}{12} D_e \alpha^4 (R - R_0)^4 + \dots$$
 (44)

Como siempre, definiendo $\omega_0 = \sqrt{k_2/\mu}$, donde μ es la masa reducida de los núcleos, tenemos

$$D_e \alpha^2 = \frac{k_2}{2} = \frac{\mu}{2} \omega_0^2, \quad \Rightarrow \quad \omega_0 = \sqrt{\frac{2D_e \alpha^2}{\mu}}.$$
 (45)

Los autovalores H_M son las energías vibracionales, están cuantificadas y se pueden aproximar asi $(\hbar = 1)$

$$E_{\nu} = \omega_0 \left(\nu + \frac{1}{2} \right) - \omega_0 \beta \left(\nu + \frac{1}{2} \right)^2, \tag{46}$$

donde β es una corrección llamada **anarmónica** en contraste con el movimiento **armónico** que tiene en cuenta el primer término. Aquí resulta necesario recordar que el valor en el mínimo es:

$$D_e = E_s(\infty) - E_s(R_0), \tag{47}$$

mientras que el valor real de disociación es D_0

$$D_0 = D_e - \frac{\omega_0}{2}.\tag{48}$$

Dos problemas tiene el potencial de Morse: primero, en el origen el valor $V_M(0)$ es finito mientras que el exacto debe comportarse como 1/R representando la repulsión internuclear. El segundo problema es que no describe el potencial de largo alcance si lo hubiera, del tipo Van der Waals, $1/R^6$.

A. Distorsion centrífuga

Considermos ahora que la molécula este rotando, o sea $\mathcal{L} \geq 0$.

Partiendo de la (10) y usando el potencial de Morse tenemos en forma aproximada

$$EU_s(R) = \left[-\frac{1}{2\mu} \frac{\partial^2}{\partial R^2} + V_{eff}(R) + E_s(\infty) \right] U_s(R) = EU_s(R), \tag{49}$$

$$V_{eff}(R) = V_M(R) + \frac{\mathcal{L}(\mathcal{L}+1)}{2\mu R^2},\tag{50}$$

para valores de $\mathcal{L}>0$, este potencial cambia la posición del mínimo de R_0 a $R_{\mathcal{L}}$,

$$R_{\mathcal{L}} = R_0 + B \frac{\mathcal{L}(\mathcal{L}+1)}{R_0 D_e \alpha^2} + \mathcal{O}\left(\frac{1}{\mu^2}\right), \tag{51}$$

$$B = \frac{1}{2\mu R_0^2}. (52)$$

Claramente se ve que $R_{\mathcal{L}} \geq R_0$ o sea la molécula se estira, **streching**, en \mathcal{L} . Físicamente es el efecto de la fuerza centrífuga. Tiene una analogía clásica y es el movimiento de una masa atada a un resorte en el que se lo hace girar con un movimiento circular uniforme (a la fuerza de restitución del resorte se le suma la fuerza centrifuga). Uno puede probar que los autovalores de la energía son finalmente (Bransden Joachain)

$$E_{\nu,\mathcal{L}} = -D_{e}$$

$$+\omega_{0} \left(\nu + \frac{1}{2}\right) - \omega_{0}\beta \left(\nu + \frac{1}{2}\right)^{2}$$

$$+B\mathcal{L}(\mathcal{L}+1) + D_{e} \left[\frac{B}{D_{e}\alpha R_{0}}\mathcal{L}(\mathcal{L}+1)\right]^{2}$$

$$-\frac{3}{2}\omega_{0}\frac{B}{D_{e}\alpha R_{0}} \left(1 - \frac{1}{\alpha R_{0}}\right) \left(\nu + \frac{1}{2}\right)\mathcal{L}(\mathcal{L}+1)$$
(interferencia) (53)

B. Ordenes de magnitud

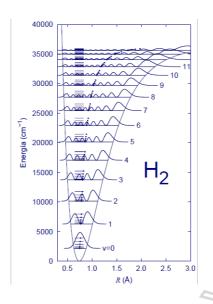
Es obvio que R_0 , α , y D_e son del orden de las unidades atómicas (D_e , en gral, es del orden del eV), pero la cantidad $\omega_0 \propto 1/\sqrt{\mu}$ y el valor $B \propto 1/\mu$. Como μ es múltiplo de $m_p = 1836$, varía entre 10^3 a 10^5 . Como D_e no dependen en ppio de las masa podróamos generaliza a $D_e \propto \mu^0$. Entonces D_e es del orden dee eV, ω_0 es una fracción de eV y el B es del orden del milésimo de eV.

En espectroscopía se usa mucho la cantidad σ en cm⁻¹, la relación es E(eV) = 1.2398 $10^{-4}\sigma({\rm cm}^{-1})$, con lo que $\omega_0 \sim 10^3 {\rm cm}^{-1} \sim 10^{-1} {\rm eV}$. Las energías rotacionales son muchos mas pequeñas que las vibracionales. Las transiciones vibracionales se ven en el rango infrarojo mientras que las rotacionales en el el rango de microondas. Resumamos

$$D_e \propto \mu^0 \sim 1 \ eV$$
 visible-infrarojo $\omega_0 \propto \frac{1}{\sqrt{\mu}} \sim \frac{1}{\sqrt{1836 \ N}} \sim 10^{-2} \sim 10^{-1} eV$ infrarojo (54) $B \propto \frac{1}{\mu} \sim \frac{1}{1836 \ N} \sim 10^{-4} \sim 10^{-3} eV$ microondas

De la misma manera los períodos que involucran estos movimientos son proporcionales a $\tau \sim 1/\omega_0 \sim \sqrt{\mu}$ para el movimiento oscilatorio y $\tau \sim 1/B \sim \mu$ para el rotacional. Es importante para entender la dinámica de las interacciones. Por ejemplo, un proceso muy rápido, sólo involucra la interacciones electrónicas y las rotovibracionales (fragmentación molecular incluida) son a posteriori Algo interesante es que $\omega_0 \propto 1/\sqrt{\mu}$ con lo que los

niveles vibracionales del H_2 serán diferentes a los del D_2 y a las de HD, por ejemplo. Esto permite discernir una mezcla isotópica.



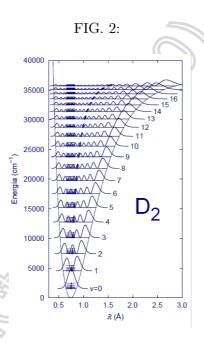


FIG. 3:

Finalmente adjunto una tabla que encontré en internet que resume los valores de R_0 en Amstrom (1A=0.5291a.u.) y la profundidad D_e en KJ/molec (KJ/mole=0.00038au=0.010 eV=84cm⁻¹= 120 grados Kelvin)

Molecule	Bond length (Å)	Bond energy (kJ mole ⁻¹)
Ag ₂	_	161.9
As ₂	2.288	382.0
Au_2	2.472	225.5
B ₂	1.589	274.0
Bi ₂	_	195.0
Br ₂	2.2809	190.1
С,	1.2425	602.5
Cl ₂	1.988	239.2
CI\$	1.8917	415.0
Cs ₂	_	43.5
Cu ₂	2.2195	197.9
F ₂	1.417	138.9
Ge,	_	272
Н,	0.74116	432.0
H }	1.06	255.5
He‡	1.080	322.2
I ₂	2.6666	148.7
ĸ,	3.923	49.4
Li ₂	2.672	110.0
N ₂	1.0976	941.7
N }	1.116	842.2
Na,	3.078	72.4
O ₂	1.20741	493.5
O . †	1.1227	_
0 2	1.26	392.9
Ož-	1.49	_
Ρ,	1.8937	477.0
Pb ₂	_	96.2
Rb,	_	47.3
s,	1.889	421.3
Sb ₂	2.21	298.3
Se ₂	2.1663	324.7
Si ₂	2.246	314
Sn ₂	_	192
Te,	2.5574	260.7

FIC 4

V. FIN DE ESTRUCTURA 3. SIGUE MATERIAL ADICIONAL.

VI. OTRAS BASES PARA DETERMINAR LOS ESTADOS ELECTRÓNICOS DEL H₂

No existe una solución exacta (tal como no hay una solución exacta del He). Vamos a hacer una aproximación equivalente. En el Helio hicimos una aproximación basada en el producto de orbitales atómicos, o sea $\Phi_{1s^2}(\overrightarrow{r}_1, \overrightarrow{r}_2) = \psi_{1s}(\overrightarrow{r}_1)\psi_{1s}(\overrightarrow{r}_1)\chi_{0,0}(1,2)$. Aca se generaliza con orbitales moleculares. Siguiendo la misma filosofia para estado fundamental del H_2 podemos combinar los orbitales moleculares (OM) de cuatro formas distintas, a

saber

$$\Phi_a(1,2) = \Phi_g(\overrightarrow{r}_1)\Phi_g(\overrightarrow{r}_2) \chi_{0,0}(1,2), \tag{55}$$

$$\Phi_b(1,2) = \Phi_u(\overrightarrow{r}_1)\Phi_u(\overrightarrow{r}_2) \chi_{0,0}(1,2), \tag{56}$$

$$\Phi_c(1,2) = \frac{1}{\sqrt{2}} \left[\Phi_g(\overrightarrow{r}_1) \Phi_u(\overrightarrow{r}_2) + \Phi_u(\overrightarrow{r}_1) \Phi_g(\overrightarrow{r}_2) \right] \chi_{1,m_s}(1,2), \tag{57}$$

$$\Phi_{b}(1,2) = \Psi_{u}(\vec{r}_{1})\Psi_{u}(\vec{r}_{2})\chi_{0,0}(1,2), \tag{56}$$

$$\Phi_{c}(1,2) = \frac{1}{\sqrt{2}} \left[\Phi_{g}(\vec{r}_{1})\Phi_{u}(\vec{r}_{2}) + \Phi_{u}(\vec{r}_{1})\Phi_{g}(\vec{r}_{2}) \right] \chi_{1,m_{s}}(1,2), \tag{57}$$

$$\Phi_{d}(1,2) = \frac{1}{\sqrt{2}} \left[\Phi_{g}(\vec{r}_{1})\Phi_{u}(\vec{r}_{2}) - \Phi_{u}(\vec{r}_{1})\Phi_{g}(\vec{r}_{2}) \right] \chi_{1,m_{s}}(1,2), \quad m_{s} = -1,0,1. \tag{58}$$

Recordando que

$$\begin{cases}
\chi_{0,0}(1,2) = \frac{1}{\sqrt{2}} (\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2) \\
\chi_{1,-1}(1,2) = \uparrow_1 \uparrow_2 \\
\chi_{1,0}(1,2) = \frac{1}{\sqrt{2}} (\uparrow_1 \downarrow_2 + \downarrow_1 \uparrow_2) \\
\chi_{1,1}(1,2) = \downarrow_1 \downarrow_2
\end{cases}
\Rightarrow
\begin{cases}
\chi_{0,0}(1,2) \cdot \chi_{0,0}(1,2) = 1 \\
\chi_{1,m_s}(1,2) \cdot \chi_{1,m_s}(1,2) = 1 \\
\chi_{1,m_s}(1,2) = \chi_{1,m_s}(2,1) \\
\chi_{0,0}(1,2) = -\chi_{0,0}(2,1)
\end{cases}$$
(59)

De esta manera se satisface el ppio de Pauli

$$\Phi_{a/b/c/d}(1,2) = -\Phi_{a/b/c/d}(2,1) \tag{60}$$

como corresponde a todos los fermiones.

Uno espera que la función $\Phi_a(1,2)$ es la de mas baja energía: está constituida por Φ_q que son ligantes, donde los electrones tienen spins opuesto y forman un singlete. Veamos la ecuación de Schrodinger para el caso de H_2 (Z=1), $H\Phi_a=E_a\Phi_a$, premultiplicando Φ_a e integrando

$$E_{a}(R) = \int d\overrightarrow{1} d\overrightarrow{2} \Phi_{a}^{*}(1,2) H \Phi_{a}(1,2),$$

$$= \Sigma_{s} \int d\overrightarrow{r}_{1} d\overrightarrow{r}_{2} \Phi_{g}(\overrightarrow{r}_{1}) \Phi_{g}(\overrightarrow{r}_{2}) \left[H_{1} + H_{2} + \frac{1}{r_{12}} - \frac{ZZ}{R} \right] \Phi_{g}(\overrightarrow{r}_{1}) \Phi_{g}(\overrightarrow{r}_{2}),$$

$$(61)$$

De aquí en mas, uno puede usar el principio variacional y encontrar la "mejor" forma posible. Y trabajar en consecuencia.