Estructura de la materia 3

TEMA 6. TEORIA DE LA FUNCION DENSIDAD

J. Miraglia.

Departamento de Física. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Argentina.

(Dated: May 5, 2016)

Abstract

LA IMPORTANCIA DE LA DFT EN NUMEROS. LA DENSIDAD Y HARTREE FOCK. TEORIA DE LA FUNCION DENSIDAD. primer y segundo Teorema de Hohenberg and Kohn. Orbitales de Kohn Sham. Implicancias. Energias de exchange, correlation y cinética, a partir de las densidades. Exchange de Becke. Correlación de Lee-Yang-Parr (LYP). Energia Total..

MATERIAL ADICIONAL

<u>APENDICE 1</u>: Funcional y sus derivadas. Expresiones lineales e integrales. <u>APENDICE 2</u>: Teorema e Hohenberg Kohn <u>APENDICE 3</u>: Funcionales de exchange y correlación. <u>APENDICE :</u> La pair correlation function . Estimación de la pair correlation function con Thomas Fermi.

Falta. acentos corregir espanol, poner referencias y graficos. incluir figuras de Clementi del motec. Explicar adelantos para el C_4 y C_6 en DFT

PACS numbers:

I. LA IMPORTANCIA DE DFT EN NUMEROS

Vamos a dar una idea de la importancia de la Teoría de la Función Densidad (DFT) que es un método derivado de Thomas Fermi y Hartree Fock .

- Busquedas en google "Hartree Fock" ~106
- Busquedas en google "Density Functional Theory" ~10⁶
- Busquedas en google "Time dependent Density Functional Theory" ~106
- La DFT es el tema mas activo en Física en los últimos 30 años (ver Vol 140 18A301 del J. of Chem Phys)
 - Se le otorgó el premio Nobel a Kohn y Pople, en 1998.
- Los 3 físicos mas citados, a la fecha, Perdew es el primero, Becke el tercero trabajan en los fundamentos de la DFT y, Smalley, el segundo. (ver lista)
- La aproximación B3LYP es la aproximación mas usada en Química y PBE la es en Cs de materiales (ver Fig. 2).
 - En HF no se puede manejar mas de 10² átomos con exactitud.
- \bullet DFT puede manejar 10^3 átomos, o mas con una precisión regular; hipoteticamente se habla de hasta 10^5
 - En palabras de Kohn: "DFT es una "exactificación" de Thomas Fermi"
 - HF no incluye correlation, lo debe hacer con multiconfiguration, es muy preciso, pero aplicable para átomos y moléculas simples.
- Hay grandes esfuerzos para incorporar los potenciales dispersivos a grandes distancias C_6/r^6 . La DFT no los puede reproducir, hasta ahora, en forma indiscutible.

II. ROLE DE LAS DENSIDADES EN HARTREE FOCK

Recordemos la ecuación de Hartree Fock, la energía total para el caso atómico estaba dada por

```
Subject
                                                                                                                                                 Subject
Biology lab technique
305148 Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J.
155530 Bradford, M. M.
 65335 Sanger. F., Nicklen, S. & Couslon, A. R.
60397 Chomczynski, P. & Sacchi, N.
                                                                                                                                                    Physical chemistry
                                                                                                                                                    Physical chemistry
Biology lab technique
 45131 Folch, J., Lees, M. & Stanley, G. H. S.
40289 Thompson, J. D., Higgins, D. G. & Gibson, T. J
                                                                                                                                                  Bioinformatics
Medical statistics
Bioinformatics
Crystallography
Bioinformatics
Biology lab technique
 звеоо Kaplan, E. L. & Meier, Р.
                                                                                                                                                   Physical chemistry
Psychology/psychiatry
                                                                                                                                                  Fsychology/psychia
Biology lab technique
Biology lab technique
Phylogenetics
Biology lab technique
Physical chemistry
Crystallography
 32131 Bligh, E. G. & Dyer, W. J.
31904 Southern, E. M.
 30176 Saitou, N. & Nei, M.
28870 Livak, K. J. & Schmittgen, T. D
                                                                                                                                                  Crystallography
Medical statistics
Physical chemistry
BIOLOGY FAB TECHNIQUE
BIOLOGY IAD TECHNIQUE
BIOLOGY IAD TECHNIQUE
BIOLOGY IAD TECHNIQUE
 28658 Shannon, R. D
 28647 Otwinowski, Z. & Minor, W
 25735 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Su
24449 Reynolds, E. S.
                                                                                                                                                  Bioinformatics
Medical statistics
Biology lab technique
Biology lab technique
Biology lab technique
Psychology/psychiatry
 24098 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & 23826 Bland, J. M. & Altman, D. G. 23642 Weber, K. & Osborn, M.
 23435 Chirgwin, J. M., Przybyła, A. E., MacDonald, R. J. & Rutter, 1
23421 Scatchard, G.
                                                                                                                                                    Physical chemistry
                                                                                                                                                  Biology lab technique
                                                                                                                                                 Biology lab technique
Physics
Biology lab technique
Biology lab technique
Physical chemistry
Biology lab technique
Phylogenetics
 23356 Baron, R. M. & Kenny, D. A
                                                                                                                                                 Biology lab technique
Physical chemistry
```

FIG. 1:

$$E_{HF} = \sum_{\lambda} \int d\overrightarrow{r} \ \psi_{\lambda}^{*}(\overrightarrow{r}) \left(-\frac{1}{2}\nabla_{\overrightarrow{r}}^{2}\right) \psi_{\lambda}(\overrightarrow{r})$$

$$+ \sum_{\lambda} \int d\overrightarrow{r} \ \psi_{\lambda}^{*}(\overrightarrow{r}) \left(-\frac{Z}{r}\right) \psi_{\lambda}(\overrightarrow{r})$$

$$+ \frac{1}{2} \sum_{\lambda} \sum_{\lambda'} \int d\overrightarrow{r}_{2} \ \psi_{\lambda}^{*}(\overrightarrow{r}_{2}) \left[\int d\overrightarrow{r}_{1} \psi_{\lambda'}^{*}(\overrightarrow{r}_{1}) \frac{1}{r_{12}} \psi_{\lambda'}(\overrightarrow{r}_{1})\right] \psi_{\lambda}(\overrightarrow{r}_{2})$$

$$- \frac{1}{2} \sum_{\lambda} \sum_{\lambda'} (\sigma_{\lambda} \cdot \sigma_{\lambda'})^{2} \int d\overrightarrow{r}_{2} \ \psi_{\lambda}^{*}(\overrightarrow{r}_{2}) \left[\int d\overrightarrow{r}_{1} \psi_{\lambda'}^{*}(\overrightarrow{r}_{1}) \frac{1}{r_{12}} \psi_{\lambda}(\overrightarrow{r}_{1})\right] \psi_{\lambda'}(\overrightarrow{r}_{2})$$

$$(E_{ee}) \ sea$$

$$- E_{HF} = T + E_{eN} + E_{ee} + E_{x}$$

$$(1)$$

donde $\psi_{\lambda}(\overrightarrow{q}) \equiv \psi_{\lambda}(\overrightarrow{r})\sigma_{\lambda} \equiv \psi_{\lambda}(\overrightarrow{q})$ son los spin orbits $\sigma_{\lambda} = \uparrow (\acute{o} \alpha \acute{o} \text{ up}) \acute{o} \downarrow (\acute{o} \beta \acute{o} \text{ down})$. En la jerga de la DFT a la energia cinética E_K se la denomina T y así lo llamaremos acá. La energía total exacta $E = E_{HF} + E_c$, donde E_c es la energía de correlación no tenida en cuenta en HF

$$E = \underbrace{T + E_{eN} + E_{ee} + E_x}_{E_{HF}} + E_c \tag{2}$$

Cada uno de estos términos tiene un significado físico muy claro. Para calcular la correlación usando el mismo formalismo de Hartree Fock se debe recurrir a la configuración de interacción, o sea con determinantes de Slater incluyendo estados excitados (como lo vimos en el

40 Most Cited Physicists 1981-2010

From the Web of Science, using the list of the 327 most-cited physicists 1981-2008 at ishighlycited.com. Cited and citing papers published from 1981 through September 9, 2010. For further explanation, see "Commentary on The Most Cited Physicists of the Past 30 Years" and The Most Cited Physics Papers of the Past 30 Years. Leadership Role of Density Functional Theory".

Perdew, John P.	65,757
Smalley, Richard E.	63,354
Becke, Axel Dieter	62.581
Witten, Edward	\$9,157
Heeger, Alan J.	56,364
Friend, Richard H.	50,729
Lieber, Charles M.	49,350
Inoue, Akihisa	47,112
Tokura, Yoshinori	46,768
Alivisatos, A. Paul	43,401
Nakamura, Kenzo	41.581
Parr. Robert G	41.125
Kresse, Georg	39,115
Gossard, Arthur C	38.809
Yang, Weitao	38,356
Olive, Keith A.	38,084
Stanley, H. Eugene	37,413
Dresselhaus, Mildred S.	36,673
Ploog, Klaus H.	34,450
Bauer, Günther E.	34,352
Zunger, Alex	33,756
Schmitt, Michael	33,564
lijima, Sumio	33,342
Vogel, Petr	33,128
Bradley, Donal D. C.	33,014
Forrest, Stephen R.	32,938
Holmes, Andrew Bruce	32,592
Eidelman, Simon I.	31,936
Cohen, Marvin L	31,757
Grab, Christoph	31,710
Honscheid, Klaus	30,917
Cava, Robert J.	30,861
Schneider, Olivier	30,534
Lee, Chengteh	30,512
Parrinello, Michele	29,866
Groom, Donald E.	29,828
Uchida, Shin-ichi	29,780
Renk, Burkhard	29,688
Morkoc, Hadis	29.530

Tulane University	United States		
Rice University	United States		
Dulhousie University	Canada		
Princeton University	United States		
University of California, Santa Barbara	United States		
University of Cambridge	United Kingdom		
Harvard University	United States		
Tohoku University	Japan		
University of Tokyo	Japan		
University of California Berkeley	United States		
KEK	Japan		
University of North Carolina at Chapel Hill	United States		
University of Vienna	Austria		
University of California, Santa Barbara	United States		
Duke University	United States		
University of Minnesota	United States		
Boston University	United States		
Massachusetts Institute of Technology	United States		
Paul-Drude-Institut für Festkörpere lektronik	Germany		
Johannes Kepler University Linz	Austria		
National Renewable Energy Laboratory	United States		
Northwestern University	United States		
Meijo University	Japan		
California Institute of Technology	United States		
Imperial College London	United Kingdom		
Princeton University	United States		
University of Melbourne	Australia		
Budker Institute of Nuclear Physics	Russia		
University of California, Berkeley	United States		
ETH Zurich	Switzerland		
Ohio State University	United States		
Princeton University	United States		
École Polytechnique Fédérale de Lausanne (EPFL)	Switzerland		
ETH Zurich	Switzerland		
Lawrence Berkeley National Laboratory	United States		
University of Tokyo	Japan:		
Universität Mainz	Germany		
Virginia Commonwealth University	United States		

FIG. 2

He).

Notese que hasta aquí <u>2 de los 4 sumandos</u> ya dependen de la densidad local. La eq.(1) se puede escribir en forma mas compacta en términos de n(r), así

$$E_{eN} = E_{eN}[n] = \int d\overrightarrow{r} \ n(r) \left(-\frac{Z}{r}\right). \tag{3}$$

$$E_{ee} = E_{ee}[n] = \frac{1}{2} \int \int d\overrightarrow{r}_1 d\overrightarrow{r}_2 \ n(\overrightarrow{r}_1) \frac{1}{r_{12}} \ n(\overrightarrow{r}_2). \tag{4}$$

Notese que escribimos [n] para identificar a un funcional de la densidad. (Vease el Apendice 1 para trabajar con funcionales).

1) Generalización E_{eN} a \mathbf{V}_{ext} . Como el caso que consideramos fue de átomos, escribíamos

$$v_{eN}(r) = -\frac{Z}{r},\tag{5}$$

donde v_{eN} es el potencial externo a los N electrones. Obviamente, se puede generalizar a

FIG. 3. The alphabet soup of approximate functionals available in a code near you. Figure used with permission from Peter Elliott.

FIG. 3:

cualquier molécula compuesta por diferentes nucleos $l=1,...N_R$,

$$v_{eN}(r) \rightarrow v_{ext}(r) = -\sum_{l=1}^{N_R} \frac{Z_l}{\left|\overrightarrow{r} - \overrightarrow{R}_l\right|},$$
 (6)

ó el potencial que corresponda (se usa muchísimo pseudopotenciales). Luego podemos generalizar a E_{eN} y lo llamamos V_{ext} (como es usual, y no E_{ext}) como un funcional de la densidad n(r) y lo escribimos

$$V_{ext}[n] = \int d\overrightarrow{r} \ n(r)v_{ext}(r). \tag{7}$$

2) <u>La norma</u> N = N[n] es también un funcional **universal**

$$N[n] = \int d\overrightarrow{r} n(\overrightarrow{r}) \tag{8}$$

Nos quedaría tres magnitudes para escribirlas en términos de la densidad, a saber: las energías cinética, de *exchange* y de correlación. Tenemos hasta ahora

$$E = T + V_{ext}[n] + E_{ee}[n] + \underbrace{E_x + E_c}_{E_{xc}}$$

$$\tag{9}$$

3) <u>La energía cinética T</u> El elemento es dado por HF (y por lo tanto es un término single orbital!)

$$T = \sum_{\lambda} \int d\overrightarrow{r} \ \psi_{\lambda}^{*}(\overrightarrow{r}) \left(-\frac{1}{2} \nabla_{\overrightarrow{r}}^{2} \right) \psi_{\lambda}(\overrightarrow{r})$$
 (10)

o mejor usando la ley de Gauss

$$= \sum_{\lambda} \int d\overrightarrow{r} \frac{1}{2} \left| \overrightarrow{\nabla} \psi_{\lambda}(r) \right|^{2} = T[\{\psi_{\lambda}\}]$$
 (11)

lo cual **NO** es una función explícita de la densidad n(r). Aunque sabemos que Thomas Fermi encuentra un valor de la energía cinética local (por eso se lo denomina $LDA = Local \ Density \ Approx$) considerando electrones que **no interactúan** entre si (FEG) y es

$$T^{LDA}[n] = T^{TF}[n] = \int d\overrightarrow{r} t^{LDA}(r) = \int d\overrightarrow{r} C_k n^{5/3}(r),$$
 (12)

con
$$C_k = \frac{3^{5/3}\pi^{4/3}}{10} = 2.87123.$$
 (13)

No es la única, hay otras formas mas precisas que resulta interesante comentarlas aca. En la práctica vamos a trabajar una expresion debida a Weissacker dada por

$$T^{W} = \int d\overrightarrow{r} \ t^{W}(r), \qquad \text{con} \qquad t^{W}(r) = \frac{1}{8n} \left| \overrightarrow{\nabla} n \right|^{2} - \frac{1}{4} \nabla^{2} n \tag{14}$$

y vamos a demostrar que el término laplaciano no contribuye en la integración. A $t^W(r)$ la usaremos luego en conección con la aproximación B3LYP. Hay muchas variaciónes de esta expresión. Una resulta simplemente multiplicarla la expresion por λ y se fitea λ ; se conoce com TF λ W (Thomas Fermi λ Weissacker). El valor mas usado es $\lambda = 1/9$. Hay otra variación debida a Parr que propone

$$T^{P} = \int d\overrightarrow{r} \ t^{P}(r) = \frac{1}{8n} \left| \overrightarrow{\nabla} n \right|^{2} - \frac{1}{8} \nabla^{2} n \tag{15}$$

También la vamos a trabajar en la práctica. Lo interesante de esta expresión es que para átomos hidrogénicos satisface el teorema de Virial **localmente** y además se puede definir una temperatura T(r) tal que

$$\frac{3}{2}k_BT(r) = \frac{t(r)}{n(r)}\tag{16}$$

e inclusive una presión p(r) como si fuese un gas ideal (lo divertido de esto que se puede construir un gas real y los coeficientes de Virial son consecuencias del exchange y correlation). En definitiva hay muchas aproximaciones que dependen localmente de la densidad.

Ultimamente hay una serie de trabajos que pretende reformular la DFT en el espacio de los momentos. Una expresión muy facil de utilizar es la función distribución de Parr en el espacio de las fases

$$f(\overrightarrow{r}, \overrightarrow{p}) = \frac{1}{(2\pi k_B T(r))^{3/2}} n(r) \exp(-p^2/2k_B T(r))$$
 (17)

y de esta manera podemos aplicar todo el bagaje termodinámico. Notese que $f(\overrightarrow{r}, \overrightarrow{p})$ es siempre positiva y no como la función distribución de Wigner que puede ser negativa. Se puede usar para calcular la densidad de \dots estimar Compton. También la vamos a trabajar en la práctica estimar \dots estimar puede usar para calcular la densidad de momentos $n(\overrightarrow{p}) = \int d\overrightarrow{r} \ f(\overrightarrow{r}, \overrightarrow{p})$, que sirve para

$$E_x = -\frac{1}{2} \sum_{\lambda} \sum_{\lambda'} \int d\overrightarrow{q}_2 \, \psi_{\lambda}^*(\overrightarrow{q}_2) \left[\int d\overrightarrow{q}_1 \psi_{\lambda'}^*(\overrightarrow{q}_1) \frac{1}{r_{12}} \psi_{\lambda}(\overrightarrow{q}_1) \right] \psi_{\lambda'}(\overrightarrow{q}_2)$$
(18)

$$= -\frac{1}{2} \int \int d\overrightarrow{q}_1 d\overrightarrow{r}_q \frac{n(\overrightarrow{q}_1, \overrightarrow{q}_2)n(\overrightarrow{q}_2, \overrightarrow{q}_1)}{r_{12}}$$

$$\tag{19}$$

Una versión sin spin nos da

$$E_x = -\frac{1}{2} \int \int d\overrightarrow{r}_1 d\overrightarrow{r}_2 \frac{n(\overrightarrow{r}_1, \overrightarrow{r}_2) n(\overrightarrow{r}_2, \overrightarrow{r}_1)}{r_{12}}$$
 (20)

que tampoco es una función de la densidad electrónica. Sin embargo la contribución a Thomas Fermi hecha por Dirac nos dió una aproximación local (o nuevamente LDA) muy utilizada

$$E_x^{LDA}[n] = E_x^{TF}[n] = -\int d\overrightarrow{r} C_x n^{4/3}(r),$$
 (21)

$$con C_x = \frac{3^{4/3}}{4\pi^{1/3}} = 0.738559 (22)$$

5) La correlación E_c . El término que **NO** se incluye en HF, es la correlación E_c . Nuevamente, para un gas de electrones homogenio, Wigner nos da una expresión local muy aproximada dependiendo también de la densidad

$$E_c^{LDA}[n] = E_c^{WC}[n] = -\int d\overrightarrow{r} \quad \underbrace{\frac{a \ n^{4/3}(r)}{d + n^{1/3}(r)}}_{} \rightarrow \begin{cases} n^{4/3}, & r \to \infty \\ n, & r \to 0 \end{cases}$$
(23)

El original de Wigner era a=0.0564 y d=0.0795. Clementi las redefinó con a=0.189 y d=5.80. Me parece mejor la original de Wigner. Hay muchísimas más, Perdiew Zunger y se abrevia PZ. ver Fig. 2, y otra que vermos mas adelante la LYP.

Resumiendo. En HF podemos escribir sin correlación

$$E_{HF} = T[\{\psi_{\lambda}\}] + V_{ext}[n] + V_{ee}[n] + E_x[\{\psi_{\lambda}\}]$$
(24)

Thomas Fermi nos da un valor $T^{LDA}[n]$, Dirac nos da $E_x^{LDA}[n]$, y llegado el caso si fuese necesario Wigner nos da $E_c^{LDA}[n]$. Mas aún teniendo en cuenta el ppio variacional de Lens Jensen no es decabellado a esta altura pensar en una teoría basada sólo en la densidad. O sea la DFT que introduciremos tiene ya un fundamento aproximado: la DFT es la "exactificación de Thomas Fermi" (Kohn).

III. TEORIA DE LA FUNCIÓN DENSIDAD (DFT)

Primer Teorema de Hohenberg and Kohn (1964). La densidad electronica determina el potencial externo (excepto una constante). O sea n(r) determina $v_{ext}(r)$. Su prueba es por el absurdo y toma dos lineas. (PY en su libro dice que la demostración es disarmingly). Lo demostraremos mas abajo

Segundo Teorema de Hohenberg and Kohn (1964) Establece el ppio variacional. Para cualquier densidad de prueba $n_t(r)$, tal que $\int n_t(r)d\overrightarrow{r} = N$, entonces $E[n_t] > E[n_0]$, siendo $(E[n_0])$ la densidad (energía del estado fundamental).

Estos teoremas valen solo para el estado fundamental y se extiende sin problemas cuando tenemos estados degenerados. Hay desarrollos para estados excitados y para perturbaciones dependiente del tiempo (Teorema de Kohn Gross).

A continuación vamos a demostrar el <u>Primer Teorema de Hohenberg and Kohn</u> que dice: la densidad n(r) determina univocamente $v_{ext}(r)$. Consideremos que no (absurdo), que para un valor de n(r), haya 2 potenciales v_{ext} y v'_{ext} entonces la ecuación de Schroedinger nos dice

$$H\Psi = H\Psi = (H_0 + v_{ext})\Psi = E_g\Psi, \quad / \quad E_g = \langle \Psi | H | \Psi \rangle$$
 (25)

$$H'\Psi' = H'\Psi' = (H_0 + v'_{ext})\Psi' = E'_g\Psi' / E'_g = \langle \Psi' | H' | \Psi' \rangle$$
 (26)

Usando el hecho que Ψ es autofunción de H, Ψ' no lo es (podríamos pensarlo como una función de prueba) por lo que

$$E_g = \langle \Psi | H | \Psi \rangle \langle \Psi' | H | \Psi' \rangle = \tag{27}$$

$$= \langle \Psi' | H' + v_{ext} - v'_{ext} | \Psi' \rangle = E'_g + \langle \Psi' | v_{ext} - v'_{ext} | \Psi' \rangle$$
 (28)

donde hemos usado $H - H' = v_{ext} - v'_{ext}$. Por ser V_{ext} single particle operator, entonces

$$E_g < E_g' + \int d\overrightarrow{r} \ n'(r) \sum_{i=1}^{N} \left[v_{ext}(\overrightarrow{r}) - v'_{ext}(\overrightarrow{r}) \right]$$
 (29)

Lo mismo considerando

$$E_q' = \langle \Psi' | H' | \Psi' \rangle < \langle \Psi | H' | \Psi \rangle = \tag{30}$$

$$= \langle \Psi | H - v_{ext} + v'_{ext} | \Psi \rangle = E_g + \langle \Psi' | -v_{ext} + v'_{ext} | \Psi' \rangle$$
(31)

$$E'_{g} < E_{g} - \int d\overrightarrow{r} \ n(r) \sum_{i=1}^{N} \left[v_{ext}(\overrightarrow{r}) - v'_{ext}(r) \right]$$
(32)

Usando la condición que n(r) = n'(r) (la misma densidad!!!, aquí esta el punto), y sumado, resulta (29) y (32), resulta

$$E_q + E_q' < E_q' + E_q. (33)$$

Lo cual es un absurdo. Por lo tanto no vale la hipotesis de partida $v_{ext} \neq v'_{ext}$, solo pueden diferir en una constante.

Para visualizar el role de esta constante, consideremos las siguientes ecuaciones de Schrödinger equivalentes del átomo de hidrógeno

$$\left(-\frac{1}{2}\nabla^{2}_{\overrightarrow{r}} - \frac{Z}{r}\right)\psi = E_{nl}\psi \qquad \Longrightarrow \quad n(r) = |\psi|^{2}$$

$$\left(-\frac{1}{2}\nabla^{2}_{\overrightarrow{r}} - \frac{Z}{r} + cte\right)\psi = \underbrace{\left(E_{nl} + cte\right)}_{E'_{nl}}\psi \quad \Longrightarrow \quad n(r) = |\psi|^{2}$$

Las energías son distintas, las densidades son iguales, pero los potenciales difieren en una constante cte. Para un formalismo dependiente del tiempo hay un teorema equivalente debido a Runge y Gross que dice que hay una relacion biunívoca entre densidades n(r,t) y potenciales externos $v_{ext}(r,t)$, a menos de una constante que depende ahora sólo del tiempo: cte(t).

A. Orbitales de Kohn Sham

Partiendo de la ecuación general, la ec.(24) e invocando el **primer teorema de KS** que nos dice que la densidad es la que determina todo, resulta en la nueva notación

$$E[n] = T[n] + V_{ext}[n] + E_{ee}[n] + E_x[n] + E_c[n]$$
(34)

y desconocemos T[n], $E_x[n]$ y $E_c[n]$ -pero sabemos que existen. Siendo sofisticados, podríamos poner

$$T[n] = T_s[n] + T_c[n] \tag{35}$$

donde $T_s[n]$ es la contribución single orbital (el HF simple involucra solo single orbital!) y $T_c[n]$ incluye la corrección a la energía cinetica debida a la correlación **NO** tenida en cuenta en el single orbital (multiconfiguration HF remite a correlación o multiple orbital). Si queremos hilar mas fino (Capelle) el término $E_{ee}[n]$ lo deberíamos haberlo llamado $E_{ees}[n]$ para dejar abierto la posibilidad de la correlación, entonces $E_{ee}[n] \rightarrow E_{ees}[n] + E_{eec}[n]$. Escribimos entonces

$$E[n] = T_s[n] + V_{ext}[n] + E_{ee}[n] + \underbrace{E_x[n] + E_c[n] + T_c[n] + E_{eec}[n]}_{E_{xc}[n]}$$
(36)

donde desde ahora sabemos que $E_{ee}[n]$ denota solamente la contribución single orbital. Todo recae en (o mejor dicho se tira a) $E_{xc}[n]$, que absorve los errores cometidos por usar non-interacting kinetics y e-e interaction single orbitals. Y por supuesto es desconocida.

El segundo teorema de KS nos establece el ppio variacional. De (36)

$$\frac{\delta E[n]}{\delta n[r]} = 0 = \frac{\delta T_s[n]}{\delta n[r]} + \frac{\delta V_{ext}[n]}{\delta n[r]} + \frac{\delta E_{ee}[n]}{\delta n[r]} + \frac{\delta E_{xc}[n]}{\delta n[r]}, \quad \text{\'o mejor}$$
(37)

$$\frac{\delta T_s[n]}{\delta n[r]} = -\frac{\delta V_{ext}[n]}{\delta n[r]} - \frac{\delta E_{ee}[n]}{\delta n[r]} - \frac{\delta E_{xc}[n]}{\delta n[r]}$$
(38)

condicionada obviamente a , $\int n(r)d\overrightarrow{r} = N$.

La estrategia de Hohenberg Kohn puede expresarse en foma de **single-particle** orbitals ϕ_j (llamados de Kohn Sham (KS), **que no es la función de onda!**) similar a la de HF, proponiendo la siguiente ecuación (siempre *single orbital*) que en ppio. nada tiene que ver con nuestra ecuación de partida

$$\left(-\frac{1}{2}\nabla^2 + v_s(r)\right)\phi_j(r) = \varepsilon_j^{KS}\phi_j(r), \quad \text{ecuación de KS}$$
 (39)

$$n(r) = \sum_{j}^{N} \left| \phi_j(r) \right|^2 \tag{40}$$

y N se entiende como todos los estados ocupados. No tenemos hasta acá ninguna idea como es la expresión de $v_s(r)$, (el subindice s de single orbital) pero lo determinaremos luego. Notese que formalmente la Eq.(39) representa pseudo electrones en el potencial central $v_s(r)$, y digo pseudo porque no hay e-e ni exchange.

Para el caso de la ecuación de KS ec(39) las ecuaciones se reducen a

$$E_{KS}[n] = T_s[n] + V_s[n], \text{ con}$$

$$(41)$$

$$T_s[n] = \int d\overrightarrow{r} \ t_s(\overrightarrow{r}), \tag{42}$$

$$t_s(\overrightarrow{r}) = \sum_{j}^{N} \phi_j(r) \left(-\frac{1}{2} \nabla^2 \right) \phi_j(r) \equiv \sum_{j}^{N} \frac{1}{2} \left| \overrightarrow{\nabla} \phi_j(r) \right|^2, \tag{43}$$

$$V_s[n] = \int d\overrightarrow{r}' n(\overrightarrow{r}) v_s(\overrightarrow{r}), \tag{44}$$

De (38) tenemos obiamente un ppio variacional

$$\frac{\delta E_{KS}[n]}{\delta n[r]} = 0 = \frac{\delta T_s[n]}{\delta n[r]} + \frac{\delta V_s[n]}{\delta n[r]}, \quad \text{\'o mejor}$$

$$\frac{\delta T_s[n]}{\delta T_s[n]} = \frac{\delta V_s[n]}{\delta V_s[n]}, \quad \text{\'o mejor}$$
(45)

$$\frac{\delta T_s[n]}{\delta n[r]} = -\frac{\delta V_s[n]}{\delta n[r]} \tag{46}$$

Y ahora si identifico a $T_s[n]$ de (46) con $T_s[n]$ de (38). Comparandolas resulta

$$v_s(r) = \frac{\delta V_s[n]}{\delta n[r]} = \frac{\delta V_{ext}[n]}{\delta n[r]} + \frac{\delta E_{ee}[n]}{\delta n[r]} + \frac{\delta E_{xc}[n]}{\delta n[r]},\tag{47}$$

y de acuerdo a las definiciones, tenemos

$$V_{ext}[n] = \int d\overrightarrow{r} \ n(\overrightarrow{r}) v_{ext}(\overrightarrow{r}), \text{ luego}$$

$$\frac{\delta V_{ext}[n]}{\delta n[r]} = v_{ext}(\overrightarrow{r}), \tag{48}$$

$$E_{ee}[n] = \frac{1}{2} \int \int d\overrightarrow{r}_1 d\overrightarrow{r}_2 \ n(\overrightarrow{r}_1) \frac{1}{r_{12}} \ n(\overrightarrow{r}_2), \text{ luego}$$

$$\frac{\delta E_{ee}[n,r]}{\delta n[r]} = \int \int d\overrightarrow{r}_1 \frac{n(\overrightarrow{r}_1)}{|\overrightarrow{r}-\overrightarrow{r}_1|} = v_{ee}(n|\overrightarrow{r}), \tag{49}$$

y de la misma manera

$$E_{xc}[n] = \text{lo que sea pero vale}$$

$$\frac{\delta E_{xc}[n]}{\delta n[r]} = v_{xc}(n|\overrightarrow{r})$$
(50)

Reemplazando en (47) tenemos

$$v_s(r) = v_{ext}(r) + v_{ee}(n, r) + v_{xc}(n|\overrightarrow{r})$$

$$(51)$$

Ver con mas detalle el Apéndice 1 para aprender como se obtiene derivadas de los funcionales. Los potenciales $v_{ext}(r)$ y $v_{ee}(n|\overrightarrow{r})$ son conocidos; el gran problema es determinar $E_{xc}[n]$ y es el **gran desafio de la DFT**, del cual sale $v_{xc}(r) = \delta E_{xc}[n]/\delta n$ que nos determina la herramienta mas importante que es el orbital de KS $\phi_j(r)$. Notesé que seguimos un camino muy parecido al usado para demostrar Thomas Fermi partiendo del ppio variacional de Lens Jensen. Ver Apendice 2 para detalles)

Resumamos, el procedimiento:

 \bullet Proponemos una estrategia, elijiendo $E_{xc}[n]$, y en consecuencia encontramos

$$v_{xc}(n|\overrightarrow{r}) = \frac{\delta E_{xc}[n]}{\delta n[r]} \tag{52}$$

• Encontramos los single orbitals ocupados de estas pseudo partícula (repito, no son electrones formalmente!) resolviendo las ecuación

$$\left(-\frac{1}{2}\nabla^{2} + \underbrace{v_{ext}(r) + v_{ee}(n|\overrightarrow{r}) + v_{xc}(n|\overrightarrow{r})}_{v_{s}(n|\overrightarrow{r})}\right)\phi_{j}(\overrightarrow{r}) = \varepsilon_{j}^{KS}\phi_{j}(\overrightarrow{r}) \tag{53}$$

• Luego calculamos

$$n(r) = \sum_{j}^{N} \left| \phi_{j}(r) \right|^{2}, \tag{54}$$

recalculamos $v_s(n|\overrightarrow{r})$ y repetimos el esquema hasta converger a un cierto valor variacional $n_0(r)$.

 $\bullet~$ Si premultiplicamos la ec. (53) por $\phi_j^*(r)~$ integramos y sumamos \sum_j^N llegamos a

$$\sum_{j}^{N} \varepsilon_{j}^{KS} = \sum_{j}^{N} \int d\overrightarrow{r} \, \phi_{j}^{*}(r) \left(-\frac{1}{2} \nabla^{2} \right) \phi_{j}(r) + \int d\overrightarrow{r} \, n_{0}(r) \, v_{ext}(r)$$

$$+ \underbrace{\int \int d\overrightarrow{r}_{1} d\overrightarrow{r}_{2} \, n_{0}(\overrightarrow{r}_{1}) \frac{1}{r_{12}} \, n_{0}(\overrightarrow{r}_{2})}_{2E_{ee}} + \int d\overrightarrow{r} \, n_{0}(r) \, v_{xc}(n|r) \qquad (55)$$

$$\sum_{j}^{N} \varepsilon_{j}^{KS} = T_{s} + V_{ext} + 2E_{ee} + \int d\overrightarrow{r} \ n_{0}(r) \ v_{xc}(r)$$
 (56)

Comparandolo con (34), tenemos la energía total

$$E[n_0] = \sum_{j}^{N} \varepsilon_j^{KS} - E_{ee} - \int d\overrightarrow{r} \ n_0(r) \ v_{xc}(r) + E_{xc}[n_0]$$
 (57)

donde hemos restado el double counting de E_{ee} y corregido E_{xc} . Es importantísimo restar la contribucion de $v_{xc}(r)$ y sumar $E_{xc}[n_0]$.

Para ilustrar esto hagamos un ejemplo siguiendo el esquema anterior.

 \bigstar Proponemos una estrategia, elijiendo, por ejemplo, $E_{xc}[n] = E_{xc}^{LDA}$ (exchange sólo en la LDA)

$$E_{xc}^{LDA} = -\int d\overrightarrow{r} C_x n^{4/3}(r) < 0$$
 (58)

luego determino lo mas importante!

$$v_x^{LDA}(r) = \frac{\delta E_{xc}^{LDA}[n]}{\delta n[r]} = -\frac{4}{3}C_x n^{1/3}(r)$$
 (59)

★ resuelvo las ecuaciones de KS en forma consistente con

$$v_s(n|\overrightarrow{r}) = v_{ext}(r) + v_{ee}(n|\overrightarrow{r}) - \underbrace{\frac{4}{3}C_x n^{1/3}(r)}_{v_{xc}(n|\overrightarrow{r})}$$

$$(60)$$

determino así los orbitales de Kohn Sham y la densidad, o sea; $\phi_j,~\varepsilon_j^{KS}~$ y $n_0(r)$ = $\Sigma_j |\phi_j(r)|^2$ en forma consistente

★ Cálculo la energia cinética

$$T_s = \sum_{\lambda} \int d\overrightarrow{r} \frac{1}{2} \left| \overrightarrow{\nabla} \phi_j(r) \right|^2, \tag{61}$$

 \bigstar la energía E_{ee}

$$E_{ee} = E_{ee}[n] = \frac{1}{2} \int \int d\overrightarrow{r}_1 d\overrightarrow{r}_2 \ n_0(\overrightarrow{r}_1) \frac{1}{r_{12}} \ n_0(\overrightarrow{r}_2).$$

 \star y los terminos de exchange

$$E_{xc}^{LDA} = -\int d\overrightarrow{r} C_x n_0^{4/3}(r), \quad y$$
 (62)

$$E_{xc}^{LDA} = -\int d\overrightarrow{r} C_x n_0^{4/3}(r), \quad y$$

$$\int d\overrightarrow{r} n_0(r) v_x^{LDA}(r) = -\int d\overrightarrow{r} n_0(r) \frac{4}{3} C_x n_0^{1/3}(r) = \frac{4}{3} E_x^{LDA}$$
(62)

Notar que son diferentes!! Es por esta razón que se debe corregir el $E_{xc}[n]$ en (57), o sea

$$E[n_0] = \sum_{j=1}^{N} \varepsilon_j^{KS} - E_{ee} - \frac{4}{3} E_x^{LDA} + E_x^{LDA} = \sum_{j=1}^{N} \varepsilon_j - E_{ee} - \frac{1}{3} E_x^{LDA}$$
 (64)

Aclaremos que la ecuación de KS nos da ϕ_j que ${\bf NO}$ es la función de onda; solo sirve para dos cosas:

Á. NAGY. ROBERT G. PARR. AND SHUBIN LIU

TABLE I. The Hartree-Fock (HF) and the exchange-only density-functional (DF) one-electron energies of the Be, Ne, Ar, and Kr atoms in Ry.

,		1s	2s	2 <i>p</i>	3s	3 <i>p</i>	3 <i>d</i>	4s	4 <i>p</i>
Ве	HF DF	-9.465 -8.251	-0.619						
Ne	HF	- 65.545	-0.619 -3.864	-1.701					
	DF	-61.639	-3.436	-1.701	0.555				
Ar	HF DF	-237.221 -228.911	-24.644 -22.313	19.143 17.474	-2.555 -2.199	-1.182 -1.182			
Kr	HF	-1040.331	-139.806	-126.020	-21.699	-16.663	-7.650	-2.306	-1.048
	DF	-1022.120	-133.210	-120.468	-19.329	-14.777	-6.633	-1.987	-1.048

FIG. 4:

- a) determinar la energía cinética local $t(\overrightarrow{r})$ (42) y por ende T_s que **NO** es la energía cinética total, sino la de single orbital, el resto queda en $E_{xc}[n_0]$. Notemos aquí que T_s no depende explicitamente de la densidad sinó del orbital de Kohn Sham ϕ que a su vez dependen de $v_{xc}(r)$ y este de la densidad n(r)
 - b) determinar la densidad $n_0(r)$, con la que se calcula V_{ext} , E_{ee} y E_{xc} .

Los valores de ε_j^{KS} no tienen nada que ver con los valores atómicos, aunque son (muy) parecidos. A tal punto que ultimamente hay una tendencia en TDDFT en usar el determinante de Slater $[\Phi\rangle = [\phi_1, \phi_2, \phi_3...\rangle$, donde ϕ_j son los orbitales de Kohn Sham como si fuese $[\Psi_{HF}\rangle = [\psi_1, \psi_2, \psi_3...\rangle$, con ψ_j los single orbital de Hartree Fock. Hay una excepción muy importante. Se prueba que el valor de ε_j^{KS} de mas alta energía llamado HOMO coincide con la energía de ionización ε_j^{HF} si se calculase en forma exacta!. HOMO significa Highest Occupied Molecular Orbital. Se llama LUMO a Lowest Occupied Molecular Orbital. (ver Tabla la comparación entre ε_j^{KS} y ε_j^{HF})

B. Implicancias

La DFT pretende un cambio de paradigma. En HF se parte de v_{ext} se resuelve la ec. de Schrodinger se determina la soluciones $\Psi(\overrightarrow{q}_1, \overrightarrow{q}_2..)$, y a partir de ella se determina los

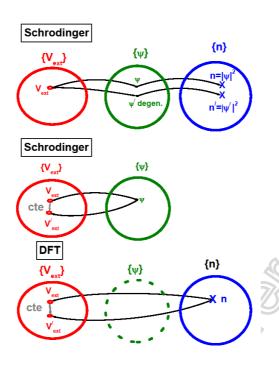


FIG. 5:

observables mediante elementos de matriz del tipo $\langle \Psi | \hat{O} | \Psi \rangle$

$$v_{ext} \stackrel{Ec.Sch}{\Longrightarrow} \Psi \stackrel{\langle \Psi | \hat{O} | \Psi \rangle}{\Longrightarrow} observables$$
 (65)

entre los observables esta precisamente la densidad

$$n(r) = \sum_{i} \langle \Psi(\overrightarrow{q}_{1}, \overrightarrow{q}_{2}..) | \delta(\overrightarrow{r} - \overrightarrow{r}_{j}) | \Psi(\overrightarrow{q}_{1}, \overrightarrow{q}_{2}..) \rangle$$
 (66)

En el dibujo se muestran las relaciones (para detalles ver el apendice)

La DFT cambia el punto de vista. Se lee distinta. Parte del conocimiento de n(r). Se resuelve la ec.(39) y con los KS single orbitals ϕ_j . De allí se determina $v_s(r)$. De alguna manera se debería encontrar $\Psi(\overrightarrow{q}_1, \overrightarrow{q}_2...) \equiv \Psi[n]$, y de allí os observables $O[n] = \langle \Psi[n] | \widehat{O} | \Psi[n] \rangle$. Si los observables son single particle el resultado es obvio. En particular, la energía $E[n] = \langle \Psi[n] | \widehat{H} | \Psi[n] \rangle$ también es facil. Notar que obtener $\Psi(\overrightarrow{q}_1, \overrightarrow{q}_2...)$ a partir de n(r), o sea $\Psi[n]$, implicaría determinar la inversa de (66) (resulta increible!!!, ver Apéndice 2). Formalmente

$$n(r) \Longrightarrow \Psi[n](\overrightarrow{q}_1, \overrightarrow{q}_2..) \Longrightarrow v_{ext}$$
 (67)

Aunque esta forma de leerlo describe una linea de pensamiento conceptual, no representa el procedimiento real que se sigue. En la práctica se trabaja con la filosofía y programas equivalentes a HF. Se pone énfasis en el hecho que v_{ext} esta determinado por n(r), porque $E_{ee}[n]$ y $E_{xc}[n]$, son formas **universales** de la densidad, $T_s[n]$ en forma indirecta. Sin embargo no es tan alocado pensar que la densidad tiene información de la posición de los núcleos. En el caso culombianao usando Kato tenemos la presencia de una carga Z en la posición R, cuando

$$Z = -\frac{1}{2n(r)} \frac{dn(r)}{dr} \bigg|_{r \to R},\tag{68}$$

La DFT lo lee así: la densidad tiene información de la posición de los núcleos Culombianos y de sus cargas y por lo tanto de v_{ext} (Capelle). Personalmente no me gusta este pensamiento, pero matematicamente es correcto ya que hay una relación biunivoca entre n(r) y v_{ext} . Pero si conozco n(r), puedo determinar v_{ext} ? (Antoine Salin dice. En un hotel, hay una relación biunívoca entre piezas y llaves. Pero teniendo una llave en la mano (densidad) apriori no se a que pieza pertenece (v_{ext})). Algo mas, que exista no implica que puede ser **representada** en téminos de funciones conocidas (trigenométricas, exponenciales...., o en una grilla numérica). Esto forma parte de un problema mas complejo que es la V-representability.

C. Energias de exchange, correlation y cinética, a partir de las densidades

Supongamos que consideremos las densidades obtenidas por Hartree Fock (sin correlación pero con exchange y de hecho es una **muy buena** aproximación a n(r)), o DFT. Podemos expandir la energía cinetica y de exchange en términos de una serie (no local, o sea que incluye el gradiente) basadas solamente en el **analisis dimensional**,

$$T[n] = C_k \int d\vec{r} \, n^{5/3}(\vec{r}) + \frac{\lambda}{8} \int d\vec{r} \, \frac{|\vec{\nabla} n(\vec{r})|^2}{n(\vec{r})} - \frac{1}{12} \nabla^2 n(r) + T^{(2)} + T^{(3)} \dots (69)$$

$$E_x[n] = C_x \int d\vec{r} \, n^{4/3}(\vec{r}) - \beta \int d\vec{r} \, \frac{|\vec{\nabla} n(\vec{r})|^2}{n^{4/3}(\vec{r})} + E_x^{(2)} + E_x^{(3)} + \dots (70)$$

si uso λ en $T^{(1)}$ se lo conoce com TF λ W (Thomas Fermi λ Weissacker). El valor mas usado es $\lambda=1/9,$ y $\beta=1$. En la Tabla se muestra la contribución de los términos de la series y

TABLE I: Energias cineticas y de exchange comparadas con Hartree Fock

Atom	$T^{(0)}$	$+T^{(1)}$	$T^{(HF)}$	$E_x^{(0)}$	$+E_{x}^{(1)}$	$E_x^{(HF)}$
Li+	6.5440	7.3224	7.2362	-1.4205	-1.6485	-1.6514
F-	90.683	99.492	99.459	-9.3660	-10.354	-10.273
He	2.5605	2.8653	2.8616	-0.8840	-1.0254	-1.0257
N	48.624	53.679	54.400	-5.7473	-6.4467	-6.6004
Ne	117.76	128.63	128.54	-11.033	-12.137	-12.109
S	36 8. 6 1	398.63	397.50	-22.958	-24.937	-25.001
Cl	426.68	460.85	459.48	-25.342	-27.476	-27.511
Kr	2591.1	2757.6	2752.0	-88.623	-93.870	-93.8467

FIG. 6:

su comparación con HF para algunos átomos e iones que calculé usando la funciones HF de Clementi y Roetti, y BungeEsto nos indica que la LDA puede estimar el *exchange* bastante bien y el otro término da una corrección bastante buena . A primer orden uno podría poner

$$v_{xc}(r) \simeq v_x^{LDA}(r) = -\frac{4}{3}C_x n^{1/3}(r)$$
 (71)

que se ha usado muchísimo con gran exito. Kohn dijo que la "suerte" de la DFT se debió al exito de la aproximación local $v_x^{LDA}(r)$.

D. Exchange de Becke (B)

En 1987 March, entre otros, puntualizó el siguiente límite para E_x

$$E_x = -\frac{1}{2} \int \int d\overrightarrow{r}_1 d\overrightarrow{r}_2 \frac{n(\overrightarrow{r}_1, \overrightarrow{r}_2)n(\overrightarrow{r}_2, \overrightarrow{r}_1)}{r_{12}}$$
(72)

$$= \int d\overrightarrow{r}_2 \ n(\overrightarrow{r}_2) \ u_x(r_2) \tag{73}$$

$$u_x(r_2) = -\frac{1}{2} \int d\overrightarrow{r}_1 \frac{n(\overrightarrow{r}_1, \overrightarrow{r}_2)n(\overrightarrow{r}_2, \overrightarrow{r}_1)}{n(\overrightarrow{r}_2) r_{12}}$$

$$(74)$$

$$u_x(r_2) \underset{r_2 \to \infty}{\longrightarrow} -\frac{1}{2} \frac{1}{r_2} \frac{1}{n(\overrightarrow{r}_2)} \int d\overrightarrow{r}_1 n(\overrightarrow{r}_1, \overrightarrow{r}_2) n(\overrightarrow{r}_2, \overrightarrow{r}_1), \tag{76}$$

$$u_x(r_2) \underset{r_2 \to \infty}{\to} -\frac{1}{2} \frac{1}{r_2}. \tag{77}$$

Esto simula una interacción Culombiana atractiva via un potencial u_x , y se lo conoce como Fermi Hole ó exchange hole. Es como si un electrón deja un agujero en la densidad de spin y este lo atrae. En la aproximación LDA: $u_x^{LDA}(r) = -C_x n^{1/3}(r)$, y tiende exponencialmente a 0, **no** teniendo en cuenta el Fermi Hole!.

El término de Becke (paramagnético ó spin independent) se define asi

$$E_x^B = \int d\overrightarrow{r} \ n(\overrightarrow{r}) \ u_x^B(\overrightarrow{r}), \tag{78}$$

$$u_x^B(r) = u_x^{LDA}(r) - \beta n^{1/3}(r) \frac{x^2}{1 + 6\beta x \operatorname{Arc} \sinh(2^{1/3}x)},$$
 (79)

$$x = x(r) = \frac{\overrightarrow{\nabla}n(r)}{n^{4/3}(r)}.$$
(80)

Obviamente cuando estamos en presencia de un gas de electrones libres uniforme u homogenio (FEG), entonces

$$n = cte \implies x = 0 \implies u_r^B(r) \Rightarrow u_r^{FEG}(r) = -C_x n^{1/3},$$

que es lo correcto dentro de la LPA. Veamos dos limites

• Cuando $x \to 0$, tenemos la siguiente serie

$$u_x^B(r) = u_x^{LDA}(r) - \beta n^{4/3}(r)x^2 + O(x^4) = u_x^{LDA}(r) + \beta n^{4/3} \frac{\left|\overrightarrow{\nabla}n(r)\right|^2}{n^{8/3}(r)} + O(x^4), \quad (81)$$

$$= u_x^{LDA}(r) - \beta \frac{\left|\overrightarrow{\nabla}n(r)\right|^2}{n^{4/3}(r)} + O(x^4), \tag{82}$$

que coincide con la expansión (70)! basados solamente en un analisis dimensional.

• A grandes distancias podemos descartar el primer termino de (82) ya que tiene una caida exponencial

$$n(r) \to Ce^{-2\zeta r}, \quad C = \text{constante}$$
 (83)

Por otro lado sabemos que (PY 1.3.33) $\zeta = \sqrt{2|E_{ext}|}$, donde E_{ext} es la energía de ligadura del nivel mas externo. Entonces cuando

$$\lim_{r \to \infty} v_x^{LDA}(r) \to \left(Ce^{-2\zeta r} \right)^{1/3} = C^{1/3} e^{-2/3 \zeta r} \to 0,$$

ya que

$$x = \left| \frac{\overrightarrow{\nabla} n(r)}{n^{4/3}(r)} \right| \to \frac{\left| -2\zeta C e^{-2\zeta r} \widehat{r} \right|}{C^{4/3} e^{-8/3 \zeta r}} = \frac{2\zeta}{C^{1/3}} e^{+2/3 \zeta r} \to \infty, \tag{84}$$

Luego a grandes distancias $(r \to \infty, \delta)$ equivalentemente $x \to \infty$, tenemos

$$Arc \sinh(2^{1/3}x) \underset{x \to \infty}{\longrightarrow} \ln(2 \times 2^{1/3}x) \tag{85}$$

y reemplazando

$$u_x^B(r) \to -\beta n^{1/3}(r) \frac{x^2}{1 + 6\beta x} \underbrace{\frac{x^2}{1 + 6\beta x} \underbrace{\frac{x^2$$

$$\rightarrow -\beta n^{1/3}(r) \frac{x}{6\beta \ln(2 \times 2^{1/3}x)} = -n^{1/3}(r) \frac{x}{6\ln(x)}, \tag{87}$$

$$\rightarrow -\underbrace{\left(Ce^{-2} \zeta r\right)^{1/3}}_{n(r)} \underbrace{\left(\frac{2\zeta}{C^{1/3}}e^{+2/3} \zeta r\right)}_{6 \ln \underbrace{\left(\frac{2\zeta}{C^{1/3}}e^{+2/3} \zeta r\right)}_{r}} = -\frac{C^{1/3} 2\zeta}{C^{1/3} 6\frac{2}{3} \zeta r \ln e} = -\frac{1}{2r}, \quad (88)$$

que es exactamente el exchange hole. Una maravilla!.

Casi todas la B de la sopa de alfabetos se refieren a Becke, y en particular a esta aproximación. En la Tabla se muestra las predicciones usando Becke comparado con el resultado mas exacto (extraido del artículo original). Es un resultado impactante. Se usó $\beta=2^{1/3}0.0042$. La razón del coeficiente $2^{1/3}$ se verá en la práctica en conexión con ferromagnetismo. Aca hay un horror y es el hecho que el hidrógeno no puede tener exchange!!!!. Y la DFT lo tiene, la LDA da $E_x = -0.268$ y la de Becke peor, da -0.313 (ver tabla). Se necesita reformularlo mediante el llamado, self interaction correction (SIC), así

TABLE II. Atomic exchange energies (a.u.). PW^b Exact LDA -0.313Н -0.268-0.310He -1.026-0.884-1.025-1.781-1.538Li - 1.775 Be -2.667-2.312-2.658 \mathbf{B} -3.744-3.272-3.728C -5.032-5.045-4.459 N -6.596- 5.893 -6.589o -8.174-7.342-8.169F -9.052-10.02-10.00Ne -12.14-12.11-11.03Na -14.02-12.79-14.03Mg -15.99-14.61-16.00Αl -18.07-16.53-18.06Si -20.28-18.59-20.27P -22.62-22.64-20.79-24.98S -25.00-23.00Cl -27.51-25.35-27.49

aLDA: Eq. (1).

Ar

-30.19

FIG. 7

-27.86

$$E_{xc}^{app,SIC}[n] = E_{xc}^{app}[n] - \sum_{i} (E_{ee}[n_i] - E_{xc}^{app}[n_i])$$
 (89)

-30.15

Si tenemos hidrógeno, un solo electrón, entonces $n = n_i = n_{1s}$, y $E_{xc}^{app,SIC}[n_{1s}] = -E_{ee}[n_{1s}]$, que cancela excatamente la interacción con si mismo proveniente de la interacción e-e.

E. Correlación de Lee-Yang-Parr (LYP)

Para capas cerradas resulta ser (sigo a Kohanoff), la energía de correlación se puede aproximar como

$$E_c^{LYP} = \int d\overrightarrow{r} \ n(\overrightarrow{r}) \ u_c^{LYP}(\overrightarrow{r})$$

$$u_e^{LYP}(r) = \underbrace{-\frac{a n^{1/3}}{d + n^{1/3}}}_{W_e} \left\{ 1 + bn^{-5/3} \left[C_F n^{5/3} - 2t^W + \frac{1}{9} \left(t^W + \frac{1}{2} \nabla^2 n \right) \right] e^{-cn^{-1/3}} \right\} (90)$$

$$t^W = \frac{1}{8} \left(\frac{|\nabla n|^2}{n} - \nabla^2 n \right)$$

$$(91)$$

^bPresent work: Eq. (8) with $\beta = 0.0042$ a.u.

TABLE I. Correlation energies of atoms and molecules. It calculational details.

Species	Expt.*	Colle-Salvetti formula ^b
Closed shell		
He	0.0420	0.0416(0.0416)
Li+	0.0435	0.0438(0.0438)
Be ²⁺	0.0443	0.0442(0.0441)
Be	0.094 ^f	0.0926(0.0926)
B^{+}	0.111 ^r	0.106(0.106)
Ne	0.387^{ℓ}	0.375(0.374)
Ar	0.798	0.743
Kr		1.735
Xe		2.733
H ₂ O	0.372 ^h	0.336(0.336)
CH ₄	0.2931	0.290(0.289)
Open shell		
Li(2S)	0.045 ^h	0.050
$\mathbf{B}(^{2}P)$	0.125 ^h	0.128
$C(^3P)$	0.156 ^h	0.161
N(4S)	0.189 ^h	0.188
$Cl(^2P)$	0.735 ^h	0.688

^{*}Exact energy corrected to be relatively free for infinite nuclear

FIG. 8:

con $C_F = 3/10(3\pi^2)^{2/3}$, a = 0.04918, b = 0.132, c = 0.2533 and d = 0.349, y t^W es nuestra conocida expresión cinética local de Weissacker introducida anteriormente en (14). Reescribí la formula original para dejar en evidencia que el término de adelante tiene la misma estructura de la expresión de Wigner (23), recordar

$$E_c^W[n] = -\int d\overrightarrow{r} n(r) \frac{a \ n^{1/3}(r)}{d + n^{1/3}(r)}. \tag{92}$$

Y así queda definido el **funcional B3LYP=Becke+LYP con 3 coeficientes a, b y c** que es el alfabeto mas grande de la sopa de la Fig 3. El funcional **LYP** esta basado en una expresión de Colle-Salvetti. Hay Otros mas modernos debido a Perdiew. Sigue Tabla del artículo de LYP

Como me refería antes, uno puede decir groseramente que para el caso atómico neutro la correlación contribuye con 0.04 a.u. por electrón.

Antes de terminar no esta de más recordar los signos de las energias

- \blacktriangleright E < 0
- ightharpoonup T > 0
- $V_{out} < 0$

^bEquation (10) or (15) of text. Valves in parentheses from Ref.

^{&#}x27;Equation (21) or (22) of text, without terms in parentheses.

- ightharpoonup $E_{ee} > 0$
- ightharpoonup $E_x < 0$
- $ightharpoonup E_c \leq 0$

IV. FINAL DE ESTRUCTURA 3. SIGUE MATERIAL ADICIONAL

V. APENDICE 1: FUNCIONAL Y SUS DERIVADAS

(Appendix A.de Parr-Yang) Daremos lo básico de un funcional. Una función f(r) es una regla que nos relaciona un valor de r a un número f(r) (en la jerga: mapping). Un funcional F[f(r)] = F[f] nos relaciona una función f con un número. Un funcional es una función cuya variable es una una función.

A. Expresiones lineales

Sigue las reglas de diferenciabilidad standards

$$\frac{\delta}{\delta n[r]} \left(c_a F_a[n(r)] + c_b F_b[n(r)] \right) = c_a \frac{\delta F_a[n(r)]}{\delta n[r]} + c_b \frac{\delta F_b[n(r)]}{\delta n[r]}, \tag{93}$$

$$\frac{\delta}{\delta n[r]} \left(F_a[n(r)] \times F_b[n(r)] \right) = F_b[n(r)] \times \frac{\delta F_a[n(r)]}{\delta n[r]} + F_a[n(r)] \times \frac{\delta F_b[n(r)]}{\delta n[r]}. \tag{94}$$

B. Expresiones integrales

Queremos calcular $\delta F[n]/\delta n$. El primero hagamoslo artesanalmente

$$F_1[n] = \int d\overrightarrow{r}' \, n^{\alpha}(r'), \tag{95}$$

$$F_1[n+\delta n] = \int d\overrightarrow{r}' (n + \delta n)^{\alpha} = \int d\overrightarrow{r}' (n^{\alpha} + \alpha n^{\alpha-1}\delta n + ..), \qquad (96)$$

$$= F[n] + \alpha \int d\overrightarrow{r}' n^{\alpha - 1} \delta n, \tag{97}$$

$$\delta F_1[n] = F_1[n + \delta n] - F_1[n] = \alpha \int d\overrightarrow{r}' n(r')^{\alpha - 1} \delta n.$$
(98)

Elejimos ahora $\delta n = \delta n[\overrightarrow{r}] = \epsilon \delta(\overrightarrow{r}' - \overrightarrow{r})$, con $\epsilon \to 0$, y $\delta(\overrightarrow{r} - \overrightarrow{r}')$ es la delta de Dirac

$$\frac{\delta F_1[n(r)]}{\delta n[r]} = \frac{F_1[n + \epsilon \delta(\overrightarrow{r} - \overrightarrow{r}')] - F_1[n]}{\varepsilon} = \alpha \ n(r)^{\alpha - 1}$$
 (99)

La generalización es obvia,

$$F_1[n] = \int d\overrightarrow{r}' G[n(\overrightarrow{r}')], \quad \rightarrow \quad \frac{\delta F_1[n]}{\delta n} = \frac{\partial G[n(\overrightarrow{r}')]}{\partial n(\overrightarrow{r}')} \Big|_{\overrightarrow{r}' = \overrightarrow{r}}$$
(100)

$$F_1[n] = \int d\overrightarrow{r}' \ n(\overrightarrow{r}') \ v(\overrightarrow{r}') \rightarrow \frac{\delta F_1[n(\overrightarrow{r})]}{\delta n(\overrightarrow{r})} = v(\overrightarrow{r})$$
 (102)

Otra expresión de interés es la relacionada a la energía de Hartree

$$F_2[n] = \frac{1}{2} \int d\overrightarrow{r}_1 \int d\overrightarrow{r}_2 \ n(\overrightarrow{r}_1) \ \frac{1}{|r_1 - r_2|} n(\overrightarrow{r}_2)$$
 (103)

$$F_2[n+\delta n] - F_2[n] = \frac{1}{2} \int d\overrightarrow{r}_1 \int d\overrightarrow{r}_2 \, \delta n(\overrightarrow{r}_1) \, \frac{1}{|\overrightarrow{r}_1 - \overrightarrow{r}_2|} n(\overrightarrow{r}_2)$$
 (104)

$$+\frac{1}{2}\int d\overrightarrow{r}_{1}\int d\overrightarrow{r}_{2} n(r_{\overrightarrow{r}_{1}}) \frac{1}{|\overrightarrow{r}_{1}-\overrightarrow{r}_{2}|} \delta n(\overrightarrow{r}_{2})$$
 (105)

Haciendo nuevamente $\delta n(r_{1/2}) = \epsilon \delta(\overrightarrow{r}_{1/2} - \overrightarrow{r})$

$$\frac{\delta F_2[n[r]]}{\delta n[r]} = \frac{F_2[n+\delta n] - F_2[n]}{\epsilon} = \int d\overrightarrow{r}' \ n(\overrightarrow{r}') \ \frac{1}{|\overrightarrow{r}' - \overrightarrow{r}|}$$
(106)

Otra que tiene que ver con la energía cinética

$$F_3[n] = \frac{1}{8} \int d\overrightarrow{r}' \, \frac{\overrightarrow{\nabla}' n(r') \cdot \overrightarrow{\nabla}' n(r')}{n(r')}$$
(107)

$$F_3[n+\delta n] = \frac{1}{8} \int d\overrightarrow{r}' \frac{\overrightarrow{\nabla}'(n+\delta n) \cdot \overrightarrow{\nabla}'(n+\delta n)}{n+\delta n}$$
 (108)

$$F_3[n+\delta n] - F_3[n] = \frac{1}{8} \int d\overrightarrow{r}' \left(\frac{2\overrightarrow{\nabla}' n \cdot \overrightarrow{\nabla}' \delta n}{n} - \frac{\overrightarrow{\nabla}' n \cdot \overrightarrow{\nabla}' n}{n^2} \delta n \right)$$
(109)

Haciendo $\delta n(r') = \epsilon \delta(\overrightarrow{r'} - \overrightarrow{r})$

$$\frac{\delta F_3[n[r]]}{\delta n[r]} = -\frac{1}{8} \frac{\overrightarrow{\nabla} n \cdot \overrightarrow{\nabla} n}{n^2} + \frac{1}{4} \int d\overrightarrow{r}' \frac{\overrightarrow{\nabla}' n \cdot \overrightarrow{\nabla}' \delta(\overrightarrow{r}' - \overrightarrow{r})}{n}$$
(110)

Recordando que

$$\int_{-\infty}^{+\infty} dx \ f(x) \frac{\partial}{\partial x} \delta(x - x_0) = -\frac{\partial}{\partial x} f(x) \bigg|_{x = x_0}, \text{ queda}$$
 (111)

$$\frac{\delta F_3[n[r]]}{\delta n[r]} = \frac{1}{8} \frac{\overrightarrow{\nabla} n \cdot \overrightarrow{\nabla} n}{n^2} - \frac{1}{4} \frac{\nabla^2 n}{n},\tag{112}$$

(chequear diferencia con PY, porque?). Hay otros funcionales que son importantes en la expansión de gradientes y laplacianos

$$F_4[n] = \int d\overrightarrow{r}' G[n(r'), |\nabla n(r')|, \nabla^2 n(r')....], \qquad (113)$$

Hay muchas oportunidades donde usamos la derivadas de funcionales y no la registramos. Por ejemplo: cuando escribimos el Lagrangiano en términos de las variables generalizadas que son funciones del tiempo. Recordemos la densidad Lagrangiana: $\mathcal{D}[q(t)] = \int dt' \mathcal{L}[q(t'), \dot{q}(t'), t']$, y el ppio variacional nos decía

$$0 = \frac{\delta \mathcal{D}[q(t)]}{\delta q(t)} = \frac{\partial \mathcal{L}[..]}{\partial q(t')} \bigg|_{t=t'} - \frac{d}{dt} \left. \frac{\partial \mathcal{L}[..]}{\partial \dot{q}(t')} \right|_{t=t'}, \tag{114}$$

que es un caso particular de lo anterior.

VI. APPENDICE 2. TEOREMAS DE HOHENBERG-KOHN

Vuelco aca algunas consideraciones matemáticas al respecto. Seguimos a Antoine Salin Consideremos un sistema de N partículas idénticas (bosones o fermiones) cuya interacciones están descriptas por un potencial (2-body) definido y universal y fijo, digamos $v_{12} = 1/r_{12}$, o sea electrones en nuestro caso. Estos electrones esta sujetos a un cierto potencial (1-body) externo $v_{ext}(r_j)$ (digamos el potencial de los núcleos en nuestro caso). La ecuación de Schroedinger nos dice

$$(\widehat{H}_0 + v_{ext})\Psi = E_g\Psi \tag{115}$$

donde Ψ es la autofunción, E_g es la energía del estado fundamental y \widehat{H}_0 es lo que resta del Hamultoniano, que no depende de v_{ext} , o sea la parte universal. Supongamos que variamos $v_{ext}(r_j)$ (por ejemplo, variamos la carga nuclear). LLamemos

- \triangleright \mathcal{V} al conjunto de potenciales $v_{ext}(r_j)$ posibles, o sea $\mathcal{V} = \{v_{ext}\},$
- $ightharpoonup \mathcal{F}$ al conjunto de todas las soluciones Ψ , o sea $\mathcal{F} = {\Psi}$.
- \triangleright \mathcal{N} a todo el conjunto de densidadeso sea $\mathcal{N}=\{n\}$.

 $\mathcal{V} \to \mathcal{N}$

La ecuación de Schrödinger nos hace un mapping $\underline{\mathcal{V}} \to \underline{\mathcal{F}}$. Una vez que tenemos Ψ construimos la densidad n(r)

$$n(r) = \left\langle \Psi \left| \sum_{j}^{occ} \delta(\overrightarrow{r}_{j} - \overrightarrow{r}) \right| \Psi \right\rangle. \tag{116}$$

Por lo que podemos decir que (116) hace un mapping $\mathcal{F} \to \mathcal{N}$. Por lo que hicimos

$$\mathcal{V} \to \mathcal{F} \to \mathcal{N} \tag{117}$$

o directamente $\mathcal{V} \to \mathcal{N}$. El teorema de Hohenberg Kohn nos dirá que las relaciones $\mathcal{V} \to \mathcal{F}$ y $\mathcal{F} \to \mathcal{N}$ son biyectivas $\mathcal{V} \longleftrightarrow \mathcal{F}$ y $\mathcal{N} \longleftrightarrow \mathcal{V}$, o sea se tiene que probar $\mathcal{F} \to \mathcal{V}$ y $\mathcal{N} \to \mathcal{V}$.

$$\underline{\mathcal{F} \to \mathcal{V}}$$

La función de onda $\Psi(r)$ determina univocamente $v_{ext}(r)$.

Consideremos que no (absurdo), que haya 2 potenciales $v_{ext}(r_j)$, y $v'_{ext}(r_j)$ que es producida por la **misma** función Ψ , con autovalores E_g y E_g' , o sea

$$H\Psi = (H_0 + v_{ext})\Psi = E_q\Psi \tag{118}$$

$$H'\Psi = (H_0 + v'_{ext})\Psi = E'_q\Psi,$$
 restando (119)

$$[H - H'] \Psi = [v_{ext} - v'_{ext}] \Psi = [E_g - E'_g] \Psi, \text{ \'o explicit amnte}$$
 (120)

$$[H - H'] \Psi = [v_{ext} - v'_{ext}] \Psi = [E_g - E'_g] \Psi, \text{ \'o explicit amnte}$$

$$\sum_{i=1}^{N} [v_{ext}(\overrightarrow{r}_i) - v'_{ext}(\overrightarrow{r}_i)] \Psi(\overrightarrow{r}_1, ... \overrightarrow{r}_N) = [E_g - E'_g] \Psi(\overrightarrow{r}_1, ... \overrightarrow{r}_N)$$
(121)

Como esto es válido para todo \overrightarrow{r}_i con i=1,N. Luego podemos escribir

$$v_{ext}(\overrightarrow{r}_i) - v'_{ext}(\overrightarrow{r}_i) = E_g - E'_g = \text{Constante !!!!!!}, \text{ entonces}$$
 (122)

$$v'_{ext}(\overrightarrow{r}_i) = v_{ext}(\overrightarrow{r}_i) - \text{Constante}$$
 (123)

y aquí aparece una sutileza que debe tenerse en cuenta: la constante. Si además sabemos que $E_g = E_g'$ entonces $v_{ext}'(\overrightarrow{r}_i) = v_{ext}(\overrightarrow{r}_i)$.

$$\mathcal{N} \to \mathcal{V}$$

La densidad n(r) determina univocamente $v_{ext}(r)$

Este es el teorema de Kohn Sham, lo repito. Consideremos que no (absurdo), que para un valor de n(r), haya 2 potenciales v_{ext} y v'_{ext} entonces la ecuación de Schroedinger nos dice

$$H\Psi = (H_0 + v_{ext})\Psi = E_g\Psi, \quad / \quad E_g = \langle \Psi | H | \Psi \rangle$$
 (124)

$$H'\Psi' = (H_0 + v'_{ext})\Psi' = E'_g\Psi \quad / \quad E'_g = \langle \Psi' | H' | \Psi' \rangle$$

$$(125)$$

Usando el hecho que Ψ es autofunción de H, Ψ' no lo es (podríamos pensarlo como una función de prueba) por lo que

$$E_g < \langle \Psi' | H | \Psi' \rangle = \langle \Psi' | H' + v_{ext} - v'_{ext} | \Psi' \rangle = E'_g + \langle \Psi' | v_{ext} - v'_{ext} | \Psi' \rangle$$
 (126)

Por ser V_{ext} single particle operator, entonces

$$E_g < E'_g + \int d\overrightarrow{r} \ n'(r) \sum_{i=1}^{N} \left[v_{ext}(\overrightarrow{r}_i) - v'_{ext}(\overrightarrow{r}_i) \right]$$
 (127)

Lo mismo considerando

$$E'_{g} < \langle \Psi | H' | \Psi \rangle < E_{g} + \int d\overrightarrow{r} \ n(r) \sum_{i=1}^{N} \left[v'_{ext}(\overrightarrow{r}_{i}) - v_{ext}(\overrightarrow{r}_{i}) \right]$$
 (128)

Usando la condición que n(r) = n'(r) (la misma densidad!!!), y sumado, resulta

$$E_g + E_g' < E_g' + E_g. \tag{129}$$

Lo cual es un absurdo. Por lo tanto no hay $v_{ext} \neq v'_{ext}$, solo pueden diferir en una constante como vimos.

Algunas discusiones filosóficas

1) Es notable como pasamos de $\Psi(\overrightarrow{r}_1,..\overrightarrow{r}_N)$ a n(r). De la información total $n(\overrightarrow{r}_1,..\overrightarrow{r}_N) = |\Psi(\overrightarrow{r}_1,..\overrightarrow{r}_N)|^2.$

$$n(\overrightarrow{r}_1, .. \overrightarrow{r}_N) = |\Psi(\overrightarrow{r}_1, .. \overrightarrow{r}_N)|^2. \tag{130}$$

Integremosla en la variable \overrightarrow{r}_N

$$n(\overrightarrow{r}_{1}, ..\overrightarrow{r}_{N-1}) = \overbrace{\binom{N}{1}}^{N} \int dr_{N} |\Psi(\overrightarrow{r}_{1}, ..\overrightarrow{r}_{N})|^{2}, \quad \text{y luego en } \overrightarrow{r}_{N-1}$$
 (131)

$$n(\overrightarrow{r}_1, ... \overrightarrow{r}_{N-2}) = \binom{N}{2} \int d\overrightarrow{r}_{N-1} d\overrightarrow{r}_N |\Psi(\overrightarrow{r}_1, ... \overrightarrow{r}_N)|^2, ... \text{ y finalmente}$$
 (132)

$$n(\overrightarrow{r}_{1}, ... \overrightarrow{r}_{N-2}) = \binom{N}{2} \int d\overrightarrow{r}_{N-1} d\overrightarrow{r}_{N} |\Psi(\overrightarrow{r}_{1}, ... \overrightarrow{r}_{N})|^{2}, ... \text{ y finalmente}$$

$$n(\overrightarrow{r}) = \binom{N}{N-1} \int d\overrightarrow{r}_{2} ... d\overrightarrow{r}_{N} |\Psi(\overrightarrow{r}_{1}, ... \overrightarrow{r}_{N})|^{2},$$

$$(133)$$

es notable que a pesar de perderse información integral a integral esta última ecuación tenga toda la información del sistema!. Según Salin todo se debe a que v_{ext} es un single particle operator (ver (128))

- 2) Si el observable es un *single particle operador*, el uso de la densidad (133) es obvia. Pero este paradigma nos dice que es posible determinar cualquier observable. No nos dice como!
- 3) Si conozco Ψ , y E_g , la ec. de Schroedinger nos dice como podría determinar V_{ext} . Por ejemplo (aquí hay que tener cuidado con los nodos de Ψ !!)

$$v_{ext} = \frac{(E_g - H_0 \Psi)}{\Psi}. \tag{134}$$

Pero si conozco n(r), puedo determinar v_{ext} ? (Antoine Salin dice. En un hotel, hay una relación biunivoca entre piezas y llaves. Pero teniendo una llave en la mano (densidad) apriori no se a que pieza pertenece (v_{ext}) . La DFT no pone el número de habitación en cada llave).

4) Para algunos valores de n(r) del espacio \mathcal{N} tal vez no sea posible determinar V_{ext} . y aqui aparece el problema conocido como v_{ext} – representability.

VII. APENDICE 3: FUNCIONALES DE EXCHANGE Y CORRELACION

Una forma de escribir la energía de exchange es (sin spin). Reescribo E_x así

$$E_x = \int d\overrightarrow{r}_2 n(\overrightarrow{r}_2) \ v_x(\overrightarrow{r}_2), \tag{135}$$

$$v_x(\overrightarrow{r}_2) = \int d\overrightarrow{r}_1 \left(\frac{1}{2r_{12}}\right) \rho_x(\overrightarrow{r}_1, \overrightarrow{r}_2), \quad \text{con}$$
 (136)

$$\rho_x(\overrightarrow{r}_1, \overrightarrow{r}_2) = -\frac{n(\overrightarrow{r}_1, \overrightarrow{r}_2)n(\overrightarrow{r}_2, \overrightarrow{r}_1)}{n(\overrightarrow{r}_2)}, \quad \text{con la condición}$$
 (137)

$$\int d\overrightarrow{r}_1 \rho_x(\overrightarrow{r}_1, \overrightarrow{r}_2) = -1 \tag{138}$$

donde usamos (??). Se generaliza el exchange a correlación y exchange, de la siguiente manera

$$\rho_{xc}(\overrightarrow{r}_1, \overrightarrow{r}_2) = \rho_x(\overrightarrow{r}_1, \overrightarrow{r}_2) + \rho_c(\overrightarrow{r}_1, \overrightarrow{r}_2)$$
(139)

de modo tal que $\int d\overrightarrow{r}_1 \rho_c(\overrightarrow{r}_1, \overrightarrow{r}_2) = 0$, y se puede escribir

$$E_{xc} = \int d\overrightarrow{r}_2 n(\overrightarrow{r}_2) \ v_{xc}(\overrightarrow{r}_2), \tag{140}$$

$$v_{xc}(n|\overrightarrow{r}_2) = \int d\overrightarrow{r}_1 \left(\frac{1}{2r_{12}}\right) \rho_{xc}(n|\overrightarrow{r}_1, \overrightarrow{r}_2)$$
(141)

Hay una enorme cantidad de funcionales de correlación y exchange conteniendo el ∇n , $\nabla^2 n$, $\tau(r) = \Sigma_j |\nabla \phi_j|^2$ llamados gradiente generalizados, metagradientes, etc que escriben

$$E_{xc} \simeq \int d\overrightarrow{r} \ n(\overrightarrow{r}) \ v_{xc} \left[n(r), \nabla n(r), \ \nabla^2 n(r), \ \tau(r) \right]$$
 (142)

la lista es interminable. Para un resumen ver https://sites.google.com/site/markcasida/dft, donde hay 34 páginas llena de acronismos

VIII. APENDICE 4: PAIR CORRELATION FUNCTION

Es importante, reescribir, a ρ_{xc} como

$$\rho_{xc}(\overrightarrow{r}_1, \overrightarrow{r}_2) = n(r_1) \ (\overline{g}(\overrightarrow{r}_1, \overrightarrow{r}_2) - 1) \tag{143}$$

y $\overline{g}(\overrightarrow{r}_1, \overrightarrow{r}_2)$ es la llamada pair correlation function promediada. Con la palabra promediada se refiere a $\overline{g}(\overrightarrow{r}_1, \overrightarrow{r}_2) = \overline{g}(|\overrightarrow{r}_1 - \overrightarrow{r}_2|)$ promediada angularmente, y representa la probabilidad de que un electrón este en \overrightarrow{r}_1 y el otro en \overrightarrow{r}_2 . La aproximación basada en el FEG homogeneo, debido solo al exchange, resulta (ver demostración mas abajo)

$$g_x(\overrightarrow{r}_1, \overrightarrow{r}_2) = g_x(r_{12}) = \frac{9}{2} \left(\frac{j_1(k_F r_{12})}{k_F r_{12}} \right)^2$$
 (144)

La función $g(r_{12}) \to 1/2$ cuando $r_{12} \to 0$, y esto revela el hecho que los electrones con el mismo spin no les gusta ocupar el mismo lugar en el espacio $(r_{12} = 0)$, lo que reduce la probabilidad a electrones de distinto spin. Recordemos que HF incorpora el exchange (exactamente), mientras que Hartree no lo incluye para nada por lo que para este caso $g(r_{12}) = 1$

A. Estimación de la pair correlation function

Estimemos la $g(\overrightarrow{r}, \overrightarrow{r}')$ en un gas de electrones libres homogenio. Calcularemos de la misma manera que hicimos en Thomas Fermi, y con las mismas aproximaciones. Veamos

los dos términos

$$V_{d} = +\frac{1}{2} \sum_{\lambda} \int d\overrightarrow{r}_{2} \, \psi_{\lambda}^{\dagger}(\overrightarrow{r}_{2}) \left[\sum_{\lambda} \int d\overrightarrow{r}_{1} \psi_{\lambda'}^{\dagger}(\overrightarrow{r}_{1}) \frac{1}{r_{12}} \psi_{\lambda'}(\overrightarrow{r}_{1}) \right] \psi_{\lambda}(\overrightarrow{r}_{2}), \tag{145}$$

$$= \int \int d\overrightarrow{r}_{1} d\overrightarrow{r}_{2} \, V_{d}(\overrightarrow{r}_{1}, \overrightarrow{r}_{2}), \tag{146}$$

$$V_{x} = -\frac{1}{2} \sum_{\lambda} \int d\overrightarrow{r}_{2} \, \psi_{\lambda}^{\dagger}(\overrightarrow{r}_{2}) \left[\sum_{\lambda'} (\sigma_{\lambda} \cdot \sigma_{\lambda}')^{2} \int d\overrightarrow{r}_{1} \psi_{\lambda'}^{\dagger}(\overrightarrow{r}_{1}) \frac{1}{r_{12}} \psi_{\lambda}(\overrightarrow{r}_{1}) \right] \psi_{\lambda'}(\overrightarrow{r}_{2}), \tag{147}$$

$$= \int \int d\overrightarrow{r}_{1} d\overrightarrow{r}_{2} \, V_{x}(\overrightarrow{r}_{1}, \overrightarrow{r}_{2}), \tag{148}$$

En la DFT pdemos hacer hacer

$$\sum_{\lambda,\sigma} \psi_{\lambda,\sigma}(\overrightarrow{r}_{2}) = \underbrace{\sum_{\sigma_{\overrightarrow{k}}} \int d\overrightarrow{k} \Theta(k_{F} - k)}_{\sum_{\lambda\sigma_{\overrightarrow{k}}} \underbrace{(2\pi)^{3/2}} \sigma_{\overrightarrow{k}}} \sigma_{\overrightarrow{k}}, \qquad \sigma_{\overrightarrow{k}} = \uparrow, \downarrow \qquad (149)$$

Sabiendo que $\Sigma_{\overrightarrow{k}}\Sigma_{\overrightarrow{k}}$, $(\sigma_{\overrightarrow{k}}\cdot\sigma_{\overrightarrow{k}},)=2$, sobreviven en la que todos coincidan (up con up y down con down). Como antes situemos
no en una cierta caja en la posición \overrightarrow{r}_1 y \overrightarrow{r}_2

$$V_{d}(\overrightarrow{r}_{1}, \overrightarrow{r}_{2}) = +2\frac{1}{2}\int d\overrightarrow{k}\Theta(k_{F}-k)\int d\overrightarrow{k}'\Theta(k_{F}-k')$$

$$\times \underbrace{\frac{\exp(-i\overrightarrow{k}\cdot\overrightarrow{r}_{2})}{(2\pi)^{3/2}}\underbrace{\exp(-i\overrightarrow{k}'\cdot\overrightarrow{r}_{1})}_{\psi_{\lambda'}^{*}(\overrightarrow{r}_{1})}\underbrace{\frac{1}{r_{12}}\underbrace{\exp(i\overrightarrow{k}'\cdot\overrightarrow{r}_{1})}_{\psi_{\lambda'}(\overrightarrow{r}_{1})}}_{\psi_{\lambda'}(\overrightarrow{r}_{1})}\underbrace{\frac{\exp(i\overrightarrow{k}\cdot\overrightarrow{r}_{2})}{(2\pi)^{3/2}}}_{\psi_{\lambda}(\overrightarrow{r}_{2})}(150)$$

$$V_d(\overrightarrow{r}_1, \overrightarrow{r}_2) = \frac{1}{r_{12}} \frac{1}{2} n_0 n_0, \quad \text{donde}$$

$$(151)$$

$$n_0 = 2 \int d\overrightarrow{k} \frac{\Theta(k_F - k)}{(2\pi)^{3/2}} = \frac{k_F^3}{3\pi^2},$$
 (152)

y k_F es la velocidad de Fermi.

El término de intercambio es equivalentenmente.

$$V_{x}(\overrightarrow{r}_{1}, \overrightarrow{r}_{2}) = -2\frac{1}{2} \int d\overrightarrow{k} \Theta(k_{F} - k) \int d\overrightarrow{k}' \Theta(k_{F} - k')$$

$$\times \underbrace{\frac{\exp(-i\overrightarrow{k} \cdot \overrightarrow{r}_{2})}{(2\pi)^{3/2}}}_{\psi_{\lambda'}^{*}(\overrightarrow{r}_{2})} \underbrace{\frac{\exp(-i\overrightarrow{k}' \cdot \overrightarrow{r}_{1})}{(2\pi)^{3/2}}}_{\psi_{\lambda'}^{*}(\overrightarrow{r}_{1})} \underbrace{\frac{1}{r_{12}}}_{\psi_{\lambda}(\overrightarrow{r}_{1})} \underbrace{\frac{\exp(i\overrightarrow{k} \cdot \overrightarrow{r}_{1})}{(2\pi)^{3/2}}}_{\psi_{\lambda}(\overrightarrow{r}_{2})} \underbrace{\frac{\exp(i\overrightarrow{k}' \cdot \overrightarrow{r}_{2})}{(2\pi)^{3/2}}}_{\psi_{\lambda'}(\overrightarrow{r}_{2})} (153)$$

$$V_{x}(\overrightarrow{r}_{1}, \overrightarrow{r}_{2}) = -\frac{1}{r_{12}} \frac{1}{(2\pi)^{6}} \left| \int d\overrightarrow{k} \Theta(k_{F} - k) \exp(-i\overrightarrow{k} \cdot \overrightarrow{r}_{12}) \right|^{2}$$

$$= -\frac{1}{r_{12}} \frac{1}{(2\pi)^{6}} (4\pi k_{F}^{3})^{2} \left(\frac{j_{1}(k_{F}r_{12})}{k_{F}r_{12}} \right)^{2} = \frac{9}{4} n_{0} n_{0} \left(\frac{j_{1}(k_{F}r_{12})}{k_{F}r_{12}} \right)^{2}$$

$$(155)$$

y obviamente tanto V_d tanto como V_x depende de r_{12} . Notar que la distancia interparticula queda escaleada con el radio de Seitz r_S , ya que

$$k_F r_{12} = 1.9192 \frac{r_{12}}{r_s} \tag{156}$$

Sumando ambos términos

$$V_d(r_{12}) + V_x(r_{12}) = \frac{1}{2}n_0n_0\frac{1}{r_{12}}\left[1 - \frac{9}{2}\left(\frac{j_1(k_F r_{12})}{k_F r_{12}}\right)^2\right]$$
(157)

y $j_1(x) = sin(x) - x \cos(x)$, es la función esferica de Bessel. Haciendo un desarrollo de potencias resulta que

$$\frac{V_d(r_{12}) + V_x(r_{12})}{\frac{1}{2}n_0 n_0 \frac{1}{r_{12}}} = g(r_{12}) \to \begin{cases} 1, & r_{12} \to \infty \\ \frac{1}{2}, & r_{12} \to 0 \end{cases}$$
(158)

La función $g(r_{12}) \to 1/2$ cuando $r_{12} \to 0$, y esto revela el hecho que los electrones con el mismo spin no les gusta ocupar el mismo lugar en el espacio $(r_{12} = 0)$, lo que reduce la probabilidad a electrones de distinto spin. Recordemos que HF incorpora el exchange, mientras que Hartree no lo incluye..