Física 2 (Biólogos y Geólogos)

SERIE 6

Leyes de los gases

1. Se miden los volúmenes que ocupa un mol de un gas manteniendo a la temperatura constante T_0 , en función de la presión, y se obtiene la siguiente tabla:

P (atm.) 1 2 3 4 5 6 V (lts.) 30,0 15,0 9,9 7,2 5,1 4,5

- ${\bf a}$) Haga un diagrama de Amagat de la isoterma del gas a T_o , e indique aproximadamente la zona en la que el gas se comporta como ideal.
- **b**) ¿Cuánto vale T_o?

Resp: 365.6 K

- 2. Considerando el aire atmosférico seco como un gas ideal constituido por una mezcla cuya composición es:78.1% de nitrógeno, 20.9% de oxígeno, 0.9% de argón y 0.03% de dióxido de carbono
- a) ¿cuántos moles de N_2 y cuántos O_2 hay contenidos en un volumen de $1m^3$ de aire en condiciones normales de presión y temperatura (CNPT: 1atm, $0^{\circ}C$)? ¿Y en 1l? ¿Qué presión ejerce en la mezcla cada uno de los dos gases mayoritarios?
- **b)** ¿Cuál es la masa de aire seco (considerar sólo los dos componentes mayoritarios $(80\% N_2 20\% O_2)$ contenida en una habitación de $4m \times 3m \times 4m$ a 1atm y 27°C?
- El aire de los pulmones (aire alveolar) tiene una composición diferente del aire atmosférico. Por ejemplo, si la presión de los pulmones es de 1atm, la presión parcial del dióxido de carbono en el aire alveolar es de 40mm de Hg y el oxígeno sólo un 13.6% de su contenido. Hallar el porcentaje de CO_2 en el aire alveolar y la presión parcial que ejerce el O_2 en los pulmones.

<u>Resp</u>: a) 34.87 moles de N_2 y 9.33 moles de O_2 ; p_{O2} =0.209 atm, p_{N2} =0.781 atm; b) 56.2 kg; c) 5.26 % de CO_2 y P_{O2} =0.136 atm

3. Un cilindro contiene un gas a 27°C y está dividido en dos partes iguales de 100cm³ de volumen por un pistón de 15cm² de sección. El gas en ambas divisiones está a la misma presión. Se eleva hasta 100°C la temperatura del gas de una de las divisiones y se mantiene la temperatura del gas en la otra división en el valor original. Se supone que el pistón del cilindro es aislador perfecto.

¿Hasta dónde se desplaza el pistón como consecuencia de la variación de la temperatura? Resp: se desplaza 7.2 mm

- **4.** Dos bulbos de igual volumen que están unidos por medio de un tubo delgado de volumen despreciable, contienen hidrógeno a 0°C y 1 atm. de presión. El volumen de cada bulbo es de 10^{-3} cm³, y la densidad del hidrógeno a 0°C y 1 atm es de $0.09^{\text{kg}}/\text{m}^3$.
- a) ¿Cuál es la presión del gas cuando un bulbo está sumergido en un baño de vapor a 100°C y el otro en oxígeno líquido a -190°C?
- b) ¿Qué cantidad de hidrógeno se transferirá por el tubo de conexión?

Resp: a) 0.5 atm; b) pasan 2.84 10⁻⁸ moles del bulbo 1 (a 100 °C) al bulbo 2 (a -190 °C).

- **5.** Un tubo capilar de 50cm de longitud, cerrado en ambos extremos, contiene en su interior dos espacios con aire (suponerlo gas ideal) separados por una columna de mercurio de 10cm de largo. Cuando el tubo está horizontal, ambas columnas de aire tienen 20cm de largo. Cuando el tubo se coloca en forma vertical, las mismas tienen 15cm y 25cm, respectivamente.
- a) Proponer una hipótesis razonable para la temperatura durante el intervalo que duran las mediciones.
- **b**) Proponer una hipótesis razonable acerca de la influencia de la gravedad en ambas posiciones del capilar.
- c) Hallar la presión en el tubo cuando está en posición horizontal.

Resp: c) P=0.25 atm

6. En un lago de 30 m. de profundidad, se forma una burbuja de 1,5 cm. de radio. A esta profundidad la temperatura es de 4°C. La burbuja sube lentamente hasta la superficie, donde la temperatura es de 25°C. Calcule el radio de la burbuja cuando ésta llega a la superficie. Considere la presión atmosférica de 760 mmHg.

Resp: radio=2.44 cm

- 7. Un tanque de 0.5 cm^3 de volumen contiene O_2 a una presión de 150 atm. y a una temperatura de 20°C .
- a) Calcule cuántos moles de O₂ hay en el tanque.
- b) Si se calienta el tanque hasta 500°C, ¿cuál será el valor de la presión?
- c) ¿Cuántos moles habría que sacar del recinto para que (manteniéndose en 500° C la temperatura) la presión volviese al valor de 150 atm. (PM $O_2 = 32$)

Humedad relativa

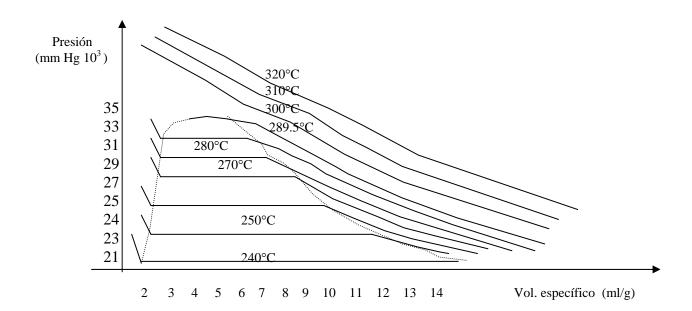
8. Si la presión ambiente es de 76 cm. de mercurio, la temperatura de 15°C y la humedad relativa del 71,9%, ¿cuál es la masa de 1 litro de aire húmedo? El peso molecular del aire puede tomarse como 28,9 g. y la presión de vapor saturado del agua a 15°C es de 12,8 mm. de mercurio.

Resp: 1.255 g

9. El peso de 5kg. de ropa lavada es de 6,8kg. Si se pone a secar en un ambiente aislado de 60 m³ a 30°C y con una humedad relativa del 40%. ¿Se podrá secar completamente la ropa en estas condiciones? ($P_{vap.sat.} = 42,8 \text{ mm}$ de Hg a 30°C).

Resp: No se seca. Quedan 330 g de agua en la ropa

10. Una masa de aire que se extiende a una altura de 500 m. sobre un área de 10 ⁻⁴ m² se encuentra a 15°C. Suponiendo que inicialmente la humedad relativa es del 100%, ¿cuántos cm³ de lluvia caerán si la temperatura del aire desciende a 10°C? La presión de vapor saturado del agua a 15°C y a 10°C, es de 12,8mmHg. y 9,2 mmHg., respectivamente.

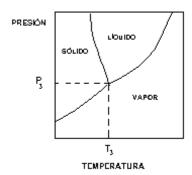

Resp: caen 0.173 cm³

11. Una habitación cerrada de 40 m3 de volumen se encuentra a una temperatura de 30°C y a presión atmosférica. En su interior, un recipiente metálico se enfría gradualmente agregándole

- a) Calcule la humedad relativa en la habitación.
- b) Estime el número de moles de aire seco presente en la habitación y la presión parcial del O₂, considerando que representa un 20% de su contenido.
- c) Luego de un tiempo, el recipiente y el agua que contiene alcanzan la misma temperatura que la habitación. Estime la masa de agua que se evaporará.
- d) Se retira el recipiente con lo que quede de agua de la habitación y se prende un equipo de aire acondicionado, que extrae 6 g de vapor de agua por minuto. Halle la humedad relativa en la habitación luego de 2 horas de prendido el equipo.

<u>Resp</u>: a) Hr = 29,9%; b) n(aire seco) = 1583 moles; $p(0_2) = 0,1966$ atm; c) m = 1144 g; d) Hr = 55,9%

- **12.** En un volumen de 1,4 lts. se encuentran confinados 100 g. de gas de benceno a 300°C. Se comprime el mismo isobáricamente hasta un volumen de 0,175 lts.
- a) ¿En qué estado y a qué temperatura se halla el benceno al final de la compresión?
- b) ¿Cuál sería el estado final si la compresión hubiese sido isotérmica?


Resp: a) según el gráfico el benceno es líquido en su estado final; b) a T cte sería vapor pero con P>40 mmHg

- **13.** Si la presión atmosférica en la superficie del planeta Marte es en promedio de 5,5 milibares y la temperatura media es de 218°K,
- a) ¿en qué estado se encuentra el agua que existe? Explique gráficamente por qué un trozo de hielo seco (dióxido de carbono) no funde a temperatura ambiente.

Datos:

El punto triple del agua corresponde a P_3 = 0,006 atm; T_3 = 273,16 °K; y a 1 atm: T_v = 373,15 °K, T_f = 273,15 °K.

El punto triple del dióxido de carbono (CO₂) corresponde a T_3 = -56,6°C y P_3 = 5,2 atm.

