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We present theoretical calculations of electronic stopping power, including excitation and loss of both
projectile and target electrons. The energy loss due to target valence and inner-shell electrons are separately
evaluated: the former in the usual dielectric formalism, and the latter by employing a shell-wise local plasma
approximation. Stopping power calculations of He ions in Al and Zn are presented, including the electron-
electron contribution mentioned above. The agreement with the experimental data is very good, and let us
conclude that, for helium ions, projectile excitation and loss contribute to the stopping power at the most in
1%, and it is reasonable for the theoretical descriptions to neglect it.
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The stopping power for ion-matter collisions is related to
the electronic structure and dynamics of the atoms, mol-
ecules, or crystals involved. From the early work of Bohr �1�,
the quantum-mechanical treatment of Bethe and Bloch �2,3�,
and the many-body development of Lindhard �4�, the theo-
retical approaches to calculating the energy loss of light and
heavy particles in matter can be separated into two main
lines: the binary collisional formalism �charged particle stop-
ping is treated as a sequence of binary collisions� and the
dielectric formalism �target electrons are supposed to re-
spond to the ion passage as a gas of free electrons�.

In the last two decades, great advances were made within
the binary collisional formalism �5–9�, towards the descrip-
tion of the low- and intermediate-energy regime where Bethe
theory does not apply �10�. The theoretical basis for the di-
electric formalism was developed during the 1950s and
1960s �4,11–14�. It is based on the original work by
Lindhard �4� who proposed a many-body consistent treat-
ment for the response of an electron gas to the ion perturba-
tion, within the linear response approximation �15�. This
model may be used to describe not only metal valence elec-
trons, but also inner-shell ones, by treating bound electrons
as an inhomogeneous free electron gas �11,14�. This ap-
proach is usually referred to as local plasma approximation
�LPA�. The LPA was extended to isolated Hartree-Fock at-
oms by Chu and co-workers �16� and to solids by Ziegler
�17�.

Different expressions for the stopping power have been
proposed within the approach of a local density of free elec-
trons �18–20�. In the present contribution we employ a shell-
wise local plasma approximation �SLPA�. We have already
used this SLPA in previous studies in which we obtained a
very good description of the experimental data for energy
loss, straggling, and ionization cross sections in different
gaseous and solid targets �21–25�.

This work deals with electronic stopping power for neu-
tral ions colliding with a metallic bulk. These ions arrive to
an equilibrium charge state within the solid that will be neu-

tral, partially stripped, or bare, depending on the ion velocity.
Usually, stopping power calculations in the intermediate- to
high-energy range, only consider the interaction of target
electrons with the projectile nucleus, partially screened by its
bound electrons. However, target electrons interact both with
the partially screened nucleus �screening mode�, and with the
projectile electrons �antiscreening mode� �26�. In fact, the
inelastic transitions of projectile electrons �excitation, loss,
capture� are responsible for the different charge states of the
ion inside the solid.

The aim of this work is to present stopping power calcu-
lations, including the antiscreening mode, and to analyze the
importance of this contribution. We make a detailed calcula-
tion that separately considers the contributions of inner-shell
and valence electrons. The stopping power of He ions on Al
and Zn is compared with the experimental data available in
the literature showing very good agreement.

When a fast heavy ion moves in a medium, it polarizes
the target electron cloud. This gives rise to an induced po-
tential �27�, which can be described as a trailing wake that
follows the motion of the projectile �dynamic screening�
�27–29�. Following Lindhard dielectric formalism �4,11�, the
retarding force or stopping power per unit length on a bare
ion is expressed as

S =
2ZP
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with ZP and v being, respectively, the charge and velocity of
the impact ion, and ��k ,�� the dielectric function of the me-
dium.

In the case of metals, electrons are treated differently de-
pending on whether they belong to the free electron gas
�FEG�, or to the inner shells. For the FEG, we use the Mer-
min dielectric function �30� to account for the plasmon time
decay. This dielectric function depends on the constant den-
sity of electrons �FEG and satisfies the f-sum rule. For target
inner shells we employ the LPA, and the approximation of
independent shell response. We employ the SLPA notation to
underline this difference with the usual LPA. Considering the
electron density of the nl shell �nl�r�, its local dielectric re-*Electronic address: mclaudia@iafe.uba.ar
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sponse is given by ��k ,� ,�nl�r��. The energy loss function in
the SLPA is obtained as a mean spatial value of the local one
�20,22�

Im� − 1

�nl�k,��� =
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3 �
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��k,�,�nl�r���r2dr , �2�

with RWS the atomic Wigner-Seitz radius and ��k ,� ,�nl�r��
the Lindhard dielectric function. The stopping power due to
the interaction of the ion with the nl shell of target electrons
is given by

Snl =
2ZP
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and total stopping is the addition of FEG and inner-shell
contributions SSLPA=SFEG+�Snl.

We want to emphasize two main differences between the
SLPA as given in Eqs. �2� and �3� and the usual LPA, as
employed by Chu and co-workers �16�, or Wang and Ma
�19�, among others. First, the independent-shell approach is
expressed in Eq. �2� as a dielectric response that depends on
the electron density of the particular shell considered, and
not on the total density of electrons. Second, the original
LPA formulation �11,12,14� and the subsequent extensions to
intermediate energies �18,31–37�, weight the spatial average
of Eq. �2� with the density of electrons �nl�r�. On the con-
trary, the present SLPA given by Eq. �2� is a simple un-
weighted space average.

The SLPA description of the induced potential has already
been applied to the calculation of the different energy mo-
ments in a simple and consistent way, giving very good re-
sults for total stopping power or straggling of bare ions in
solids �22,25� and gases �21�. Moreover, the shell-wise ap-
proach allows us to obtain ionization cross sections for each
shell of target electrons, with very good agreement with the
available experimental data �21–24�.

For dressed projectiles, the screening stopping power Sscr

is calculated from Eq. �1� by replacing the projectile nucleus
charge ZP by a screened one ZP

scr�k�=ZP−Ze�k�, which de-
pends on the transferred momentum k. The term

Ze�k� = �
n=1

N

	�n
eik�·r�
�n� �4�

is the form factor of the N bound electrons remaining frozen
in the shells. The screening stopping power is therefore ex-
pressed as
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The antiscreening stopping power Santis is calculated fol-
lowing Ref. �21�. It considers the energy loss when both the
target and projectile electrons are excited or lost. The transi-
tion of the projectile electron from the ground state �i to a
final state � f �bound or not� is described through the corre-
sponding form factor Fif�k�= 	� f
eik�·r�
�i�. The antiscreening
stopping power of dressed projectiles is given by
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where kmin=�	 /v, with �	 the energy gained by the projec-
tile electron. The addition � f includes the excited bound
states �projectile excitation� and the continuum �projectile
electron loss� �21�. In the latter, an integration in the energy
of the ionized electron is required. Analogous to the bare ion
case, for dressed projectiles we obtain total screening and
antiscreening stopping power as the addition of inner-shell
and FEG electron contributions.

In order to evaluate the importance of the antiscreening
contribution we consider two collisional systems He in Al
and He in Zn. The stopping power of He2+, He+, and He0

ions are calculated separately and the stopping power of He
is obtained taking into account the ion equilibrium charge
fraction qi inside the solid �38� as

SHe = q0 SHe0
+ q1 SHe1+

+ q2 SHe2+
. �7�

We employ the values of qi given by the empirical fitting of
Schiwietz and Grande �39,40�. This approach implies the as-
sumption that the equilibrium charge state of the ion inside
the solid is close to the measured emerging charge state.

For the bare ions He2+, the stopping power is obtained
from Eq. �1�. For He+ and He0 ions we add the screening and
antiscreening stopping powers of Eqs. �5� and �6�.

In both targets, Al and Zn, we use the rs value inferred
from plasma frequency measurements, that is, rs=2.02 �41�,
corresponding to three electrons per atom in the FEG. For
Al, these are the three valence band electrons, while for Zn,
the experimental plasmon energy of 17 eV indicates a con-
tribution of one electron from the 3d shell to the valence
band �25�. The space-dependent densities �nl�r� for each
shell of Al �1s2 ,2s2 ,2p6� and Zn �1s2 , . . . ,3d9� are obtained
from the atomic Hartree-Fock wave functions �42�.

The screening stopping power for He in Zn is plotted in
Fig. 1 as a function of the ion impact energy. We can observe
shell to shell contributions for He2+, He+, and He0. It can be
noted that in the stopping of He2+, the FEG gives the main
contribution. Moreover, the maximum of the total stopping is
very close to that of the FEG. For He+ and He0, the relative
importance of the FEG and the inner-shell contributions
changes. This explains the shift in the stopping maximum for
the different ion charge states.

The antiscreening stopping power for He0 and He+ in Al
is displayed in Fig. 2, showing projectile excitation and loss
in each case. The main contribution to the antiscreening stop-
ping power comes from the electron loss of He0, as expected
since He0 has two electrons and more weakly bound than the
one in He+.

Figures 3 and 4 show the comparison of the antiscreening
stopping power �projectile excitation plus loss� with the total
one, and with the experimental data for He+Al and He+Zn,
respectively. These figures summarize the main contribution
of this work. In Figs. 3�a� and 4�a�, we display the anti-
screening stopping cross section of He0 and He+. These val-
ues are not so low, about 10% of the total stopping maxi-
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mum, especially for energies above 200 keV. Nevertheless,
when we take into account the energy-dependent fraction of
He0 and He+ inside the solid, the antiscreening contribution
falls down drastically. The equilibrium charge states qi em-
ployed �39� are plotted in Figs. 3�b� and 4�b� to emphasize
this point. Finally, Figs. 3�c� and 4�c� display the comparison
between antiscreening and total stopping. The curves corre-
sponding to projectile excitation and electron loss are ob-
tained as the product of the antiscreening stopping power of
He0 and He+, and their charge fractions. These curves show
that the antiscreening stopping power is very small as com-
pared with the total one.

Present total stopping power calculations show very good
agreement with the experimental data. For He in Zn, we
follow a recently published work of Lantschner et al. �25�,
adding the antiscreening contribution to its results. For ener-
gies below 40 keV, the FEG nonlinear results of the ex-

tended Friedel sum rule-transport cross section by Lifschitz
and Arista �8,9� are employed. At low energies, the energy
loss due to the FEG employing the dielectric formalism un-
derestimate the data, while for high energies both perturba-
tive and nonperturbative calculations, converge �25�. An al-
ternative to include the nonlinear effects �all orders in ZP�
within the dielectric formalism is given by the Coulomb
Lindhard approximation �49�, which replaces the undistorted

FIG. 1. Stopping power for He in Zn considering frozen ion, as
a function of the impact energy. The contributions due to the FEG
and the different inner shells are displayed separately.

FIG. 2. Antiscreening stopping power of He0 and He+ in Al as a
function of the energy. The contributions due to projectile electron
excitation and loss are displayed separately.

FIG. 3. �a� Antiscreening stopping power of He+ and He0 in Al,
obtained as addition of the contributions of projectile electron ex-
citation and loss. �b� Charge fractions of He in Al as a function of
the energy �39,40�. �c� Total and antiscreening stopping power. The
symbols represent the experimental data and the curves are present
theoretical calculations �43–48�.

FIG. 4. The same as Fig. 3 for He in Zn.
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plane waves leading to the Lindhard dielectric response, by
Coulomb waves with an effective charge.

In this work we presented a theoretical description of the
electronic stopping power, including the excitation and loss
of projectile electrons. We used the dielectric formalism and
a shell-wise local plasma approximation �SLPA� to obtain
the inner-shell electron contribution. The stopping power ob-
tained was compared with the experimental data available in
the literature for He in Al and Zn. The employment of the
nonperturbative results for energies below 40 keV, and the
dielectric formalism for higher energies, gives a good

description of the experimental data in the range
1–6000 keV/u. Though these results include the contribu-
tion from the excitation and loss of projectile electrons, we
find that, in the case of helium ions, this contribution is only
about 1% of the total stopping data, and may be neglected.
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