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Suppression of projectile-electron excitations in collisions with a free-electron gas of metals
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Excitation and ionization of hydrogenic projectiles in collisions with metal free-electron gas are analyzed in
the high but nonrelativistic energy regime. Transition matrix elements are calculated in the first Born approxi-
mation, and the free-electron gas response is described by using the Mermin-Lindhard dielectric function.
Projectile excitation and loss probabilities per unit length are found to be smaller than those corresponding to
the collisions with a wave packet of single electrons of equivalent density. This behavior is explained in terms
of the collective effect~shielding! of the free-electron gas and depends on the energy transferred to the atomic
electron and on the impact velocity. By comparing results obtained using a binary collisional formalism and
those using the dielectric formalism, we estimate the plasmon excitation contribution to the total probabilities.

PACS number~s!: 34.50.Dy, 34.50.Bw
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I. INTRODUCTION

The interaction of fast ions and other charged partic
with matter has been widely analyzed@1–7#. Stopping power
@8–10#, charged-state fractions@11–14#, x-ray emission@15–
17#, and electron emission@18,19# constitute powerful tech-
niques for material analysis. Realistic models of this p
nomenon must incorporate the description of the interac
between the projectile and the whole solid, that is,
screened nuclei, the core electrons, and the free-electron
~FEG!, in the case of metallic solids. In the present work
restrict our analysis to the interaction of the projectile w
the FEG.

Traditionally two different approaches have been used
describe this interaction in the intermediate and high velo
regimes:

i! The dielectric formalism~DF!, in which the target elec-
trons are considered to respond to the passage of the pr
tile inducing a wake potential@7,8,17–19#. The wake follows
the motion of the projectile with the same velocity so tha
remains as a stationary perturbation of the medium as s
from the projectile. This approach gives an account of
two basic modes of energy and momentum absorption by
electrons of the FEG@8#, namely, single-particle excitation
~or electron-hole pair excitations!, andcollectiveor plasmon
excitations.

ii ! The binary collisional~BC! formalism, in which the
projectile is subject to a series of binary collisions with t
individual electrons of the FEG@10,13–16#

Recent articles@10,16# have pointed out the dichotom
between the physical pictures represented by DF and
descriptions. In this contribution we present a link betwe
both formalisms@10# in dealing with hydrogenic projectile
interacting with metal solids. We are interested in elect
excitation, de-excitation, and loss due to the interaction w
the FEG. It is also a purpose of the present work to inve
gate the contribution of the collective effects~plasmons and
shielding! to the total transition probabilities per unit lengt
1050-2947/2000/62~5!/052902~9!/$15.00 62 0529
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These in-solid probabilities are compared with those
tained in out-solid experiments of electron-atom excitat
and ionization.

The present theory makes use of the first Born appro
mation for the calculation of the atomic form factors@20,21#,
and a wake potential to express the collective response o
FEG to an external perturbation. The Mermin-Lindhard
electric function@22# is used. The shifting of the binding
energies of the moving projectile embedded in the FEG
accounted for within the spherical approximation.

The work is organized as follows. In Sec. II the theore
cal model is presented. This includes the description of
dielectric formalism~Sec. II A! and the binary formalism
~Sec. II B! for excitation and electron loss of the projecti
electron due to the interaction with the FEG; the develo
ment of a model for the binding energies of a moving p
jectile within the FEG~Sec. II C!; and the comparison be
tween excitation and electron loss probabilities per u
length in atom-FEG~in-solid! and atom-electron~out-solid!
collisions ~Sec. II D!. In Sec. III we present the results o
probabilities per unit length and energy spectrum for diff
ent hydrogenic projectiles such as H, He1, Li21, and B41

colliding with aluminum FEG. The impact velocities consi
ered here arev>ZP ,vF ~with vF being the Fermi velocity of
the FEG!. Finally, the conclusions are summarized in Se
IV. Atomic units are used unless otherwise stated.

II. THEORY

A. Dielectric formalism

Let us consider a projectile composed of a heavy nucl
of chargeZP and an active electron, moving with velocityv
inside a solid. Due to the interaction of the projectile with t
whole FEG, the bound electron can suffer transitions to
cited states of the ion, or even be ionized. This collidi
system can be schematically represented by the process

~PZP11e2! i ,KW i
1FEG→~PZP11e2! f ,KW f

1FEG* , ~1!
©2000 The American Physical Society02-1
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where i ( f ) is the initial ~final, either bound or continuum!
atomic state,KW i(KW f) is the incident~final! momentum of the
projectile in the laboratory reference frame, and FEG* de-
notes an excited state of the FEG, either collective or
single electrons.

According to the dielectric formalism@7,18#, the probabil-
ity of transition per unit length for the reaction~1! is

WDF52
1

p2v
E

0

`

dvE dqW

q2
uFi f ~qW !u2

3ImF 1

e~q,v,g!Gd~vW •qW 2D«2v!, ~2!

wherev andqW are the energy and momentum gained by
FEG either in plasmon or single-electron excitations,D« is
the change of energy of the projectile electron,e(q,v,g) is
the dielectric function@4#, andg is the damping rate of the
plasmons so that the lifetime ist51/g @8#. The atomic form
factor Fi f (qW ) is @23#

Fi f ~qW !5E w f* ~rW !eıqW •rWw i~rW !drW, ~3!

with w i(rW) andw f(rW) the initial and final unperturbed wav
functions of the hydrogenic projectile, respectively. The e
ergy conservation

v5vW •qW 2D«, ~4!

is included in Eq.~2! through the delta function. Terms o
the order ofq2/2nP , wherenP is the projectile atomic mass
are neglected in Eq.~4! since nP@1. Equation~2! can be
expressed as

WDF52
2

pv2ED«/v

` dq

q E
0

qv2D«

dv

3uFi f ~q,v!u2 ImF 1

e~q,v,g!G , ~5!

where a simple change of variables has been performe
using the energy conservation expressed in Eq.~4!. The tran-
sition probability per unit lengthWDF involves both modes
of absorption of energy and momentum by the FEG, sing
particle excitations~binary collisions! and plasmon excita
tions ~collective modes! @2,8#. For this reasonWDF will also
be referred to hereafter astotal transition probability. In the
next subsection we develop a formalism to calculate tra
tion probabilities by considering only the binary collisions
the projectile with the single electrons of the FEG@10#, and
compare both results.

B. Binary collisional formalism

If we consider the scattering of theindividual electrons of
the FEG, the colliding system can be schematically rep
sented by the tree-particle process,
05290
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~PZP11e2! i ,KW i
1ekW i

2→~PZP11e2! f ,KW f
1ekW f

2 . ~6!

As in Eq. ~1!, the final atomic statef can be either bound o
continuum. The energy gained by the single electron is
fined as

v5kf
2/22ki

2/25
p2

2
2pW •kW i , ~7!

wherepW 5kW i2kW f is the momentum transferred andkW i(kW f) is
the electronic initial~final! momentum in the laboratory ref
erence frame. The energy conservation can be expresse

v5vW •PW 2D«, ~8!

with PW 5KW i2KW f , the transferred momentum of the proje
tile. Again, terms of the order ofP2/2nP are neglected. Note
that the linear momentum conservation impliesPW 52pW ; i.e.,
the momentumlost by the projectile equals the momentu
absorbedby the electron of the FEG, as will be observed
Eq. ~10! below.

1. Excitation

The Fermi Golden Rule states that the differential pro
ability per unit lengthWBC for the process represented b
Eq. ~6! is given by

dWBC

dkW i dPW dpW
5

2p

v
dS v2

p2

2
1pW •kW i D uTi f u2

32Q~KF2ki !Q~kf2KF!, ~9!

where Ti f 5^w f uVuC i
1& is the transition matrix element,V

5VPe1Vee is the perturbative potential between the proje
tile nucleus and FEG electron (VPe), and between the pro
jectile electron and the FEG electron (Vee). The step func-
tion 2Q(KF2ki) describes the Fermi distribution atT
50 °K, and Q(kf2KF) accounts for the Pauli exclusio
principle.

The transition matrix element in first Born approximatio
is

Ti f
B 5

1

~2p!3/2
d~pW 1PW !@ṼPe~PW !Fi f ~PW /nP!1Ṽee~PW !Fi f ~PW !#,

~10!

whereṼPe(PW ) and Ṽee(PW ) are the Fourier transforms of th
perturbative potential, andd(pW 1PW ) guarantees the linea
momentum conservation mentioned before. The first term
Eq. ~10! corresponds to the interaction between the elect
of the FEG and the projectile nucleus. AsnP@1, this term
remains essential in the elastic channel, but negligible in
inelastic ones due to the orthogonality of the wave functio
It means that the main contribution to the transition mat
element comes from the electron-electron interaction.

We propose a wake potential whose Fourier transfo
reads
2-2
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Ṽee~PW !5A2

p

1

P2e~P,v,g!
. ~11!

The integration of Eq.~9! on kW i has a closed solution that ca
be expressed in terms of the Lindhard dielectric function
the following way@1,6#:

E dkW iQ~KF2ki !Q~kf2KF!d~v2p2/21pW •kW i !

5pp2 Im eL~p,v,01!Q~v!, ~12!

whereeL(p,v,01) is the Lindhard dielectric function@1# in
the limit g→01.

For historical reasons, it is convenient to useqW 52pW , the
momentum absorbed by the electron of the FEG, so thaqW

FIG. 1. Scaling binding energiesEnl8 of a moving projectile
inside the solid FEG, plotted as a function of the scaled velocityv8
given by Eq.~25!. Solid line, our results for different hydrogeni
projectiles inside aluminum FEG; dash-dot line, universal expr
sion of Müller and Burgdo¨rfer @27#. The different projectiles and
bound states are displayed in the figure.
05290
n

5PW . Using these results, the differential probability per u
length of Eq.~9! integrated onpW andkW i reads

dWBC

dqW
5

1

p2vq2
uFi f ~qW !u2

Im eL~q,v,01!

ue~q,v,g!u2
Q~v!. ~13!

The energy spectrum is defined as the differential pr
ability per unit length and per unit of energy gained by t
FEG, P(v)5dW/dv. For electron projectile excitation by
binary collisions with the single electrons of the FEG w
obtain

PBC~v!52
2

pv2E(D«1v)/v

` dq

q
uFi f ~q,v!u2

3ImF 1

e~q,v,g!GUe~q,v,g!, ~14!

whereUe(q,v,g)5Im eL(q,v,01)/Im e(q,v,g). The form
factor Fi f (qW ) has been expressed in terms ofq and v by
using Eq.~8! and making a simple change of variablesdqW
→qdq dv/vdw. The azimuthal symmetry of the problem
has already been taken into account in Eq.~14!.

The total probability per unit length is then

WBC5E
0

`

PBC~v!dv

52
2

pv2ED«/v

` dq

q E
0

qv2D«

dv

3uFi f ~q,v!u2ImF 1

e~q,v,g!GUe~q,v,g!,

~15!

-

FIG. 2. FunctionI (q) given by Eq.~31! for excitation to the
n52 state of different hydrogenic projectiles colliding with alum
num FEG, at impact velocityv57.9 a.u. The result ofI (q) ob-
tained with the Mermin-Lindhard dielectric function@22# is plotted
together with the single-particle approximation given by Eq.~32!.
2-3
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where we exchange the order of the integrals onq andv to
compareWBC with the dielectric formalism resultWDF given
by Eq.~5!. The equality between Eq.~5! and Eq.~15! would
require Ue(q,v)51 in all the range ofq and v. This is
never satisfied, even in the limit of smallg @10#, where

Ue~q,v,g!→g→01H 0 if ~v2q2/2!2>q2KF
2

1 if ~v2q2/2!2,q2KF
2 ,

~16!

in agreement with the energy conservation in a binary co
sion. In the dielectric formalism this restriction disappea
taking into account not only the single-electron excitatio
but the collective absorption of energy and momentum,
@2,8#. Thus, the difference between Eq.~5! and Eq.~15! lead
us to isolate the plasmon excitation contribution to the to
probability per unit length.

Together with the excitation of the projectile electro
D«.0, we analyze the de-excitation processes,D«,0. The
energy spectrum can be generalized for these processe
changing in Eq.~14! the lowest limit of the integral from
(D«1v)/v to uD«1vu/v. We find that the de-excitation
energy spectrum verifies

Pf i~v!52Pi f ~2v!. ~17!

HerePi f (v) represents eitherPBC or PDF for the projectile
electron transitioni→ f . The difference in sign is due to th
parity of the imaginary part of the Lindhard dielectric fun
tion @1#.

2. Electron loss

In projectile electron loss processes, the final state
Eq. ~6! is f [kW , with kW being the electron momentum relativ
to the ion. This process is equivalent to the Auger elect
loss process analyzed by Ro¨sler et al. @18#. The Fermi
Golden Rule for the differential probability per unit leng
and per unit of kW , is obtained by replacingWBC with
dWBC /dkW in Eq. ~9!. The ionization transition matrix ele
ments are calculated in the first Born approximation in
usual way@21,24#. The atomic form factorsFikW(q,v) are
expanded in terms of the angular momentum, considerin
our calculations a maximum angular momentumLmax56.
Analogously to excitation, the electron loss probability p
unit lengthWBC reads

WBC52
2

pv2E dkWQ~ uk̄1 v̄u2KF!E
D«/v

` dq

q E
0

qv2D«

dv

3uFikW~q,v!u2 ImF 1

e~q,v,g!GUe~q,v,g!, ~18!

and the energy spectrum is
05290
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PBC~v!5
dWBC

dv

52
2

pv2E dkWQ~ uk̄1 v̄u2KF!

3E
(D«1v)/v

` dq

q
uFikW~q,v!u2 ImF 1

e~q,v,g!G
3Ue~q,v,g!. ~19!

By comparing these expressions with Eq.~1! of Rösleret al.
@18#, the probability per unit length and energy spectrum
the dielectric formalism,WDF andPDF(v), respectively, are
obtained from Eqs.~18! and ~19! by replacingUe(q,v,g)
51 @10#.

C. Binding energies of a moving projectile inside the solid

When the projectile penetrates the FEG, the electrons
act collectively leading to a dynamical screening of the io
As a consequence of this, the binding energies are rela
depending on the ion velocity, no longer being2ZP

2 /2n2, as
in the isolated hydrogenic atom spectrum. The aim of t
subsection is to estimate the binding energiesEnl of a mov-
ing ion embedded in a FEG within the spherical approxim
tion. The Hamiltonian of the system is@21/2¹ r

21V(r )
2Enl#cnl50, whereV(r ) is the induced potential giving the
response of the medium to the perturbation created b
heavy ion moving within a FEG,

V~rW !5
1

~2p!3/2E dqW
ṼC~q!

e~q,u,g!
exp~ iqW •rW !, ~20!

with u5vW •qW and v the ion velocity. The Fourier transform
of the Coulomb potentialṼC(q) in Eq. ~20! is

ṼC~q!52A2

p

ZP

q2
. ~21!

The Legendre angular expansion of the induced poten
given by Eq.~20! reads

V~rW !5 (
L50

`

VL~r !PL~cosu!, ~22!

with cosu5 v̂• r̂ . The termsVL(r ) are obtained by expand
ing the plane wave exp(iqW•rW) and the inverse of the dielectri
function in Legendre polynomials,

VL~r !52
ZP

pv
~2L11!i LE

0

` dq

q
j L~qr !E

0

qv
du PLS u

qv D
3F 1

e~q,u,g!
1

~21!L

e* ~q,u,g!
G , ~23!
2-4
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where j L(qr) are the spherical Bessel functions@21#. For L
50, the spherical potential reduces to

V0~r !52
2ZP

pv E0

`

dq
sinqr

q2r
E

0

qv
du ReF 1

e~q,u,g!G .
~24!

In general, forL odd ~even!, the integrand involves the
imaginary~real! part of the inverse of the dielectric function
The binding energiesEnl of one electron in the central po
tential V0(r ) are calculated using the code of Salvatet al.
@25# for different projectile charges and velocities inside a
minum FEG.

In order to plot the results in a comprehensive way,
use the Coulomb scaling for the energies and the dyna
screening approximation@7# for the velocities,

Enl8 5Enl

n2

ZP
2

, v85v
ZP

nvp
, ~25!

with vp being the plasmon frequency. In Fig. 1 we plotEnl8
as a function ofv8 for the atomic states 1s, 2s, and 2p. It is
remarkable that the 1s state of hydrogen survives even
low velocities (v,1). The small binding energies of H a
low velocities are consistent with the results of Rogerset al.
@26#. For then52 bound states inside the solid, the thresh
velocities obtained arev56 for H, andv53 for He1. For
higher projectile nuclear charges, then52 bound states are
possible at velocities even lower than these. As can be
served in Fig. 1, for large velocities, the results for differe
hydrogenic projectiles follow a trend closing on a univer
form. Also displayed in Fig. 1 is the universal expression
the eigenenergies of the electronic bound states of
charged particles in solids posed by Mu¨ller and Burgdo¨rfer,
@27#

TABLE I. Classically scaled cross sectionssZ4 for electron
impact excitation of H(1s), and electron impact ionization o
He1(1s). The final state is indicated explicitly in the table, withk
being the symbol for the continuum final state. Notation: 1
present results in the first Born approximation; a, experimental m
surements of Kauppilaet al. @30# modified by van Wyngaarden
et al. @35#; b, values calculated from the experimental results
Long et al. @33#, and Ott@34#; c, experimental ionization cross se
tions of Shahet al. @31# and Peartet al. @32#. Atomic units are used

v/Z sZ4 1B Experiments Ref.

2.71 2s 0.18 0.1260.01 a
2p 2.4 1.9560.09 b
k 2.9 2.2 c

3.83 2s 0.093 0.07960.009 a
2p 1.5 1.4160.06 b
k 1.6 1.5 c

5.07 2s 0.054 0.04460.006 a
k 1.0 0.96 c
05290
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Enl8B52
1

2
1

pn

2v8
1

p2sn

2v82
, ~26!

with s being the electric quantum number. These auth
@27# derived Eq.~26! by diagonalizing an axially symmetric
induced potential in the plasmon pole approximation. We
s50 to obtain the values shown in Fig. 1 because we emp
a spherical potential. It can be observed that Eq.~26! follows
the universal tendency at high velocities, but differs from o
curves as the velocity decreases.

Along this article we use the orbital effective charge o
moving atom inside a solid as given by

Znl5A22n2Enl. ~27!

The binding energiesEnl so obtained are just a first-orde
calculation. A second order can be obtained by including
Eq. ~21! the electron density of the bound state. Importa
corrections are expected for the smallest projectile charg

D. Link between atom-FEG and atom-electron collisions

In this subsection we make a simple link between ato
FEG ~in-solid! and atom-electron~out-solid! collisions by
approximating the atom-FEG probabilities per unit leng
using the single-particle dielectric function,e.eSP @2,7,28#.
In the limit g→01 ~no plasmon dispersion! and q2@2vp ,
the single-particle approximation satisfies

ImF 1

eSP~q,v,g!G52p
vp

2

q2
d~v2q2/2!. ~28!

The excitation probability per unit length using this appro
mation reduces to

WSP5
2vp

2

v2 E
D«/v

` dq

q3
uFi f ~q,v5q2/2!u2. ~29!

The form factor is evaluated inv5vW •qW 2D«5q2/2, which
is the expression for the energy conservation in the collis
of an atom and an electron moving with relative velocityvW ,
and momentum transferred to the electronqW . Then Eq.~29!
can be expressed as

WSP5nes
gas, ~30!

,
a-

f

TABLE II. Minimum velocity for plasmon excitation given by
Eq. ~37! for the collisions of different atomic projectiles with alu
minum FEG (v50.566). Atomic units are used.

H He1 Li21 B41

v1s→n52 1.2 2.9 6.1 16
v1s→continuum 1.2 3.6 7.8 21
2-5
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wherene5vp
2/4p is the electronic density andsgas is the

known high velocity limit for the atom-electron cross se
tions in the first Born approximation@20,23#. This relation
for large transferred momentum is consistent with that fou
by Ritchie @2# 40 years ago.

To inspect this approximation we define the function

I ~q!5E
0

qv2D«

dv ImF 21

e~q,v,g!G , ~31!

as introduced by Glick and Ferrell@28#. In the single-particle
approximation expressed by Eq.~28!, Eq. ~31! reduces to

I SP~q!5pvp
2/q2. ~32!

FIG. 3. Ratio of in-solid to out-solid probabilities per unit leng
for different hydrogenic projectiles in collisions with aluminu
FEG. The different projectiles and transitions considered here
pointed out in the figure. Notation: solid lines, dielectric formalis
curvesRDF , given by Eq.~36!; dashed lines, the binary collisiona
resultsRBC , given by Eq.~35!.
05290
d

Note that when the atomic form factor depends only onq,
and not onv ~the angular part ofqW ), i.e., for the atomic
excitations 1s→2s or 1s→2p, the probability per unit
length given by Eq.~15! reads

WBC52
2

pv2ED«/v

` dq

q
uFi f ~q!u2I ~q!. ~33!

The energy integralI (q) encloses the whole dependence
the probability per unit length on the collective respon
of the medium. In Fig. 2 we plotI (q) and I SP(q), given by
Eqs. ~31! and ~32! respectively, for different projectiles in
teracting with the FEG atv57.9 a.u. This velocity corre-
sponds to the experimental measurements of Tinschertet al.
@29# for ionization of Li21 by 850 eV electron impact. The
dielectric function used to evaluateI (q) is the Mermin-
Lindhard one@22#. We can see in this figure that they hav
the same limit asq increases, but forq→D«/v, Eq. ~31!
tends to zero while the single-particle approximation gro
as 1/q2. The smallerD«/v is, the greater the difference be
tweenI (q) andI SP(q) will be. This analysis implies that the
probabilities per unit length corresponding to atom-FEG c
lisions are generallylower than those corresponding to th
collisions of the atom and an equivalent density of sin
electrons,

WBC&WSP5nes i f
gas. ~34!

This suppression of the probabilities per unit length in t
collision of hydrogenic projectiles with the solid FEG grow
up as the minimum momentum absorbed by the FEG,D«/v,
diminishes~either by increasing the impact velocity or d
creasing the energy transferred to the atomic electron!. This
behavior does not depend on the approximation used to
scribe the collisional system, but only on the response of
medium. This link between the atom-FEG and atom-elect
collisions is valid either for atomic excitation or electron lo
processes.

In order to analyze this decline in the probabilities w
define the ratio

RBC5
WBC

solid

WSP
, ~35!

whereWBC
solid5WBC(Znl) is the binary collisional probability

per unit length given by Eq.~15! or ~18!, taking into account
the orbital effective charge inside the solid as given
Eq. ~27!. Instead,WSP is calculated from Eq.~30! by using
the actual nuclear charge of the projectile to obtain ato
electron cross sections@20,21,24#. A similar ratio is defined
for the probabilities per unit length in the dielectric forma
ism

RDF5
WDF

solid

WSP
. ~36!

re
2-6
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FIG. 4. Energy spectrum as
function of the energy gained by
the FEG, for projectile electron
excitation 1s→2s, 1s→2p,
de-excitation 2p→1s, and elec-
tron loss. The colliding system
considered is He11FEG(Al) at
impact velocity v56 a.u. Nota-
tion: solid lines, dielectric formal-
ism resultsPDF ; dashed lines, bi-
nary collisional results PBC ;
dotted line, plasmon excitation
contributionPp5PDF2PBC .
ca

-
re

al
ul
y

in
s
e

nt
ro
he

,
nl
l
s

to

it
he
in

e-

e
n
e

G

c-

loc-
is

st,
re-
ed
is

the
al

tant.

r

,

f

III. RESULTS

Probabilities per unit length and energy spectrum are
culated within the first Born approximation@20,21# and em-
ploying the Mermin-Lindhard dielectric function of the me
dium @22#. Projectile electron excitation and loss a
analyzed employing the usual dielectric formalism~Sec.
II A !, and the binary collisional formalism~Sec. II B!.

We compare the first Born approximation employed in
these theoretical calculations, with the experimental res
@29–36# for excitation and ionization of hydrogenic atoms b
single-electron impact~out-solid collisions!. We reproduce
the known behavior of the first Born approximation
electron-atom collisions@20#, i.e., it overestimates the cros
sections at intermediate velocity and tends to the experim
tal data in the high velocity limit. In general, for the differe
projectiles considered, we get an overestimation of the c
sections atv/Z53 of less than 25% as compared with t
experimental values for excitation 1s→2s @30# and ioniza-
tion @29,31,32#. For excitation 1s→2p at the same velocity
we obtain cross sections in the first Born approximation o
7 % over the experimental data@33,34#. Some experimenta
results are shown in Table I together with our first Born cro
sections, conveniently scaled assZ4. The experimental ex-
citation cross sections in this table correspond toe-H colli-
sions@30,33–36#, while the ionization values correspond
e-He1 collisions @32#.

We also compare our results for electron loss and exc
tion of the projectile electron due to the interaction with t
FEG only, with theoretical results obtained by consider
the interaction with the whole target atom@14,37#. For a He1

projectile colliding with an aluminum solid at an impact v
locity of 3.16 a.u, our electron loss and excitation 1s→n
52 cross sections are about 15% and 40%, respectiv
those of Kaneko@37#, taking into account the whole froze
target. For H0impact the contribution is expected to b
05290
l-

l
ts

n-

ss

y

s

a-

g

ly,

larger. The largerZP is, the smaller the influence of the FE
will be.

A. Probabilities per unit length

We calculate the probabilities per unit length for proje
tile electron excitation 1s→2s and 1s→2p, and for electron
loss in the collisions of H0, He1, Li21, and B41 projectiles
with the aluminum FEG (vp50.566,g50.037@38#!. In Fig.
3 we display the ratiosRDF andRBC for the different collid-
ing systems. In each case we include the results in the ve
ity range where the excited bound state within the FEG
possible considering the spherical approximation~see Fig.
1!. Two main conclusions are derived from this figure. Fir
the difference between the dielectric and the collisional
sults reveals the contribution of plasmon excitation includ
only in the former. Figure 3 shows that plasmon excitation
negligible at the lower velocities considered here, giving
binary collisional formalism a good estimation of the tot
probability per unit length@18,19#. As the impact velocity
increases, the plasmon excitation becomes more impor
This feature is consistent with Fig. 2 of Ro¨sler et al. @18#.

The minimum velocity for a collective excitation to occu
can be obtained assuming that the curveqv2D« intersects
the region of energy and momentum excitations in av2q
plot, just at the cutoff momentum for the plasmon modeq
5qc . Mathematically, it occurs when

qcvmin2D«5
qc

2

2
1qcvF . ~37!

For metallic electron densities, a satisfactory estimation oqc
is given by qc.vp /vF @5# (qc.0.622 @38# for aluminum
FEG!. In the elastic channel 1s→1s(D«50), the minimum
velocity obtained from Eq.~37! is 1.2 a.u. For projectile
electron transitions 1s→n52 and 1s→continuum, the
2-7
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threshold velocities for plasmon excitation are given in Ta
II. In obtaining these velocities, we take into account t
velocity-dependent binding energies inside the solid d
played in Fig. 1. The results shown in Table II are in go
agreement with the minimum velocity for the separation
the binary collisional and the dielectric curves in Fig. 3.

The difference between the dielectric and binary co
sional curves in this figure lets us appreciate the importa
of the plasmon excitation contribution to the total probab
ties per unit length. For projectile electron excitations
→2p this contribution is important at very high velocitie
(v/ZP>4), being about 65% for H0 projectiles, 26% for
He1 projectiles, and 15% for Li21. Instead, for projectile
electron excitation 1s→2s, the plasmon contribution is
much less important~28% for H projectiles, 4% for He1, and
negligible for higher projectile charges in the same veloc
range!. Similar results are obtained for electron loss.

The second observation is that Fig. 3 shows the abo
mentioned suppression of the excitation inside the solid,
the ratio of in-solid to out-solid probabilities isR,1. This
effect is very important for H projectiles, with the probabi
ties per unit length for projectile electron excitation 1s
→2p(1s→2s) being only 10%~32%! of those correspond
ing to excitation of H by single-electron impact. For proje
tile electron loss processes in H-FEG collisions atv
>5 a.u., the probabilities are less than 50% of those of He
collisions. The suppression is not so drastic for grea
nuclear charges, as observed in Fig. 3. This behavior is
to theD«/v dependence indicated in Sec. II D, and also
plains the tendency to decrease with increasing velocity
the curves in Fig. 3.

B. Energy spectrum

The energy spectrum given by Eq.~14! is calculated for
excitation and electron loss of He1 projectiles due to the
collisions with the aluminum FEG atv56 a.u. This veloc-
ity is chosen to be high enough for the first Born approxim
tion to give a good estimation of the probabilities and for t
plasmon contribution to be appreciable~see Fig. 3!. On the
other hand, it is low enough to be within the experimen
range of possibilities.

In Fig. 4 we plot the dielectric and collisional probabil
ties as a function of the energy gained by the FEG,PDF(v)
andPBC(v). Also plotted is the subtraction of both of the
in order to isolate the plasmon excitation contributio
Pp(v)5PDF(v)2PBC(v). Four cases are displayed in th
figure: projectile electron excitations 1s→2s and 1s→2p,
de-excitation 2p→1s, and electron loss from the groun
state 1s→k. The de-excitation 2s→1s has also been per
formed giving an energy spectrum similar to the excitat
case 1s→2s.

In the four processes presented in Fig. 4, the plasm
peak appears in the range of energies where the collec
mode is possible, i.e.,vp<v<vp(qc), with vp(qc)
.0.75 a.u. for aluminum@5,38#. The highest peak corre
sponds to the de-excitation 2p→1s, but the total probability
integrated over the energy absorbed by the FEG is bigge
electron loss than for the transitions to bound states~a factor
05290
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of 2 with respect to 2p→1s). The peak obtained for the
de-excitation 2p→1s is due to the collective modes of ex
citation of the FEG accompanying this transition, while t
biggest total probability for electron loss is due to the bina
collisions with the single electrons of the FEG.

In comparing the excitation 1s→2p with the de-
excitation 2p→1s, we can see that although the plasm
contributionPp is bigger in the latter, the binary collisiona
probability PBC is the same for both transitions, as is e
pected from detailed balancing.

IV. CONCLUSIONS

Excitation and ionization of hydrogenic projectiles in co
lision with the free-electron gas~FEG! have been analyzed in
the high but non-relativistic energy regime. Probabilities p
unit length and energy spectrum have been calculated in
first Born approximation for different hydrogenic projectile
such as H0, He1, Li21, and B41 colliding with aluminum
FEG. The response of the medium to the external pertu
tion has been described by employing the Mermin-Lindh
dielectric function.

Projectile excitation probabilities per unit length a
found to be smaller than those corresponding to the co
sions with an equivalent density of single electrons. T
suppression of the excitation in in-solid collisions is ma
mum for H projectiles, and diminishes for higher nucle
charges. We explain this behavior in terms of the collect
effect ~shielding! of the FEG. The difference between in
solid and out-solid probabilities of projectile excitation b
comes greater when the minimum momentum transferre
the FEG diminishes~either by increasing the impact velocit
v or decreasing the energy transferred to the atomic elec
D«). Although less important, this shielding should also
found in the excitation of target inner shells if the loc
plasma approximation is used@39#.

By comparing probabilities per unit length obtained usi
a binary collisional formalism and those using the dielect
formalism, we evaluate the importance of the plasmon ex
tation for different impact velocities. We find this contribu
tion to be more important for projectile-electron-allowe
transitions 1s↔2p than for forbidden ones 1s↔2s, or pro-
jectile electron loss, where it is appreciable only at very h
velocities. An estimation of the threshold velocity for pla
mon excitation is found to be in good agreement with t
present theoretical results.

The relative importance of the FEG in the projectile e
citation processes is estimated by comparing our results
the theoretical cross sections corresponding to the interac
with the whole target atom. For He1 projectiles the excita-
tion and loss probabilities due to the interaction with t
FEG represents about 30% of the total probabilities con
ering the whole target atoms. These values are expected
more important in the case of H0 projectiles.

ACKNOWLEDGMENT

We acknowledge P. Echenique for suggesting the inv
tigation of this subject.
2-8



s

at

J.

-

er

E.

i,
. B

A

nd

Jr.,

v. A

.

r.

M.

SUPPRESSION OF PROJECTILE-ELECTRON . . . PHYSICAL REVIEW A62 052902
@1# J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.28, 8
~1954!.

@2# R. H. Ritchie, Phys. Rev.114, 644 ~1959!.
@3# J. Lindhard and A. Winther, K. Dan. Vidensk. Selsk. Mat. Fy

Medd.34, 4 ~1964!.
@4# P. Nozière, Theory of Interaction Fermi Systems~Benjamin,

New York, 1964!.
@5# D. Pines,Elementary Excitations in Solids~Benjamin, New

York, 1964!.
@6# A. L. Fetter and J. D. Walecka,Quantum Theory of Many

Particle Systems~McGraw-Hill, New York, 1971!.
@7# P. M. Echenique, F. Flores, and R. H. Ritchie, Solid St

Phys.43, 229 ~1990!, and references therein.
@8# I. Abril, R. Garcia-Molina, C. D. Denton, F. J. Pe´rez-Pérez,
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