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Suppression of projectile-electron excitations in collisions with a free-electron gas of metals
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Excitation and ionization of hydrogenic projectiles in collisions with metal free-electron gas are analyzed in
the high but nonrelativistic energy regime. Transition matrix elements are calculated in the first Born approxi-
mation, and the free-electron gas response is described by using the Mermin-Lindhard dielectric function.
Projectile excitation and loss probabilities per unit length are found to be smaller than those corresponding to
the collisions with a wave packet of single electrons of equivalent density. This behavior is explained in terms
of the collective effectshielding of the free-electron gas and depends on the energy transferred to the atomic
electron and on the impact velocity. By comparing results obtained using a binary collisional formalism and
those using the dielectric formalism, we estimate the plasmon excitation contribution to the total probabilities.

PACS numbegs): 34.50.Dy, 34.50.Bw

I. INTRODUCTION These in-solid probabilities are compared with those ob-
tained in out-solid experiments of electron-atom excitation
The interaction of fast ions and other charged particlesind ionization.
with matter has been widely analyzgd-7]. Stopping power The present theory makes use of the first Born approxi-
[8-10], charged-state fractiofig§1—14, x-ray emissioj15—  mation for the calculation of the atomic form fact§20,21],
17], and electron emissiofi8,19 constitute powerful tech- and a wake potential to express the collective response of the
niques for material analysis. Realistic models of this pheFEG to an external perturbation. The Mermin-Lindhard di-
nomenon must incorporate the description of the interactioiglectric function[22] is used. The shifting of the binding
between the projectile and the whole solid, that is, theenergies of the moving projectile embedded in the FEG is
screened nuclei, the core electrons, and the free-electron g@§counted for within the spherical approximation. _
(FEG), in the case of metallic solids. In the present work we ~ The work is organized as follows. In Sec. Il the theoreti-
restrict our analysis to the interaction of the projectile withcal model is presented. This includes the description of the
the FEG. dielectric formalism(Sec. Il A) and the binary formalism
Traditionally two different approaches have been used tdSec. Il B for excitation and electron loss of the projectile
describe this interaction in the intermediate and high velocityelectron due to the interaction with the FEG; the develop-
regimes: ment of a model for the binding energies of a moving pro-
i) The dielectric formalisn{DF), in which the target elec- jectile within the FEG(Sec. 11 Q; and the comparison be-
trons are considered to respond to the passage of the projeteen excitation and electron loss probabilities per unit
tile inducing a wake potentigl,8,17—19. The wake follows ~ length in atom-FEQin-solid) and atom-electroifout-solid
the motion of the projectile with the same velocity so that itcollisions (Sec. 11D. In Sec. lll we present the results of
remains as a stationary perturbation of the medium as sedifobabilities per unit length and energy spectrum for differ-
from the projectile. This approach gives an account of theént hydrogenic projectiles such as H, HeLi**, and B'*
two basic modes of energy and momentum absorption by theolliding with aluminum FEG. The impact velocities consid-
electrons of the FEG8], namely, single-particle excitations ered here are=Zp,vg (with v being the Fermi velocity of
(or electron-hole pair excitationsandcollectiveor plasmon  the FEG. Finally, the conclusions are summarized in Sec.

excitations. IV. Atomic units are used unless otherwise stated.
i) The binary collisional(BC) formalism, in which the
projectile is subject to a series of binary collisions with the Il. THEORY

individual electrons of the FEG10,13-16

Recent article§10,16 have pointed out the dichotomy
between the physical pictures represented by DF and BC Let us consider a projectile composed of a heavy nucleus
descriptions. In this contribution we present a link betweerpf chargeZp and an active electron, moving with velocity
both formalismq10] in dealing with hydrogenic projectiles inside a solid. Due to the interaction of the projectile with the
interacting with metal solids. We are interested in electrorivhole FEG, the bound electron can suffer transitions to ex-
excitation, de-excitation, and loss due to the interaction witcited states of the ion, or even be ionized. This colliding
the FEG. It is also a purpose of the present work to investiSystem can be schematically represented by the process
gate the contribution of the collective effe¢fdasmons and _ _
shielding to the total transition probabilities per unit length. (P%¥+e )i~Ki+FEG_’(PZP++e )f'lzf+ FEG", ()

A. Dielectric formalism
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wherei(f) is the initial (final, either bound or continuum (PZet+e7), R,+e‘f—>(PZP*+e*)f C e ®)
atomic stateK;(K) is the incident(final) momentum of the T Ko Ky

projectile in the laboratory reference frame, and FE@-  As in Eq. (1), the final atomic statécan be either bound or

notes an excited state of the FEG, either collective or ogontinuum. The energy gained by the single electron is de-
single electrons. fined as

According to the dielectric formalisiiv,18], the probabil-

ity of transition per unit length for the reactida) is 2,
w:kaz—kﬁz=%?—p~m, (7

1 (= dq .
WDF:_TJ dwf—2|Fif(Q)|2 s e e o
mTvJo q wherep=k; —K; is the momentum transferred akdks) is
the electronic initialfinal) momentum in the laboratory ref-

<Im 5(5-5—Aa—w), 7 erence frame. The energy conservation can be expressed as

€(q,w,y)

w=v-P—Ae, (8)
wherew andq are the energy and momentum gained by the
FEG either in plasmon or single-electron excitations, is  with P=K;—K;, the transferred momentum of the projec-
the change of energy of the projectile electre(q,w,y) is tile. Again, terms of the order d??/2v, are neglected. Note
the dielectric functior{4], and y is the damping rate of the ' that the linear momentum conservation impliés —p; i.e.,
plasmons so that the lifetime is=1/y [8]. The atomic form  the momentuniost by the projectile equals the momentum
factorF;; (q) is [23] absorbedby the electron of the FEG, as will be observed in

Eq. (10) below.

Fif(ﬁ):f @F (e g (rdr, () 1. Excitation

The Fermi Golden Rule states that the differential prob-

with ¢;(r) and ¢¢(r) the initial and final unperturbed wave ability per unit lengthWg for the process represented by
functions of the hydrogenic projectile, respectively. The engq, (g) is given by

ergy conservation

dWBC 2’7T p2 > >
7:_5((1}_—+p'ki |Tiel?
dk,dPdp v

is included in Eq.(2) through the delta function. Terms of X 20 (Ke—k)O(ki—Kg), 9
the order ofg?/2vp, Wherev, is the projectile atomic mass, '

are neglected in Eq4) since vp>1. Equation(2) can be  \here T = (¢ V|¥ ") is the transition matrix elemeny

expressed as =Vpt Ve is the perturbative potential between the projec-
tile nucleus and FEG electronVg,), and between the pro-
Wooe — if‘” ﬂf“”“d jectile electron and the FEG electroN ). The step func-
OF ™ v2)aeny a4 Jo @ tion 20(Kg—k;) describes the Fermi distribution &k
=0 °K, and O (k{—Kg) accounts for the Pauli exclusion
principle.
’ (5) The transition matrix element in first Born approximation
is
where a simple change of variables has been performed by
using the energy conservation expressed in(&q.The tran- B 1 . - - o -
sition probability per unit lengtiWpg involves both modes Tif:(zT)g/z5(p+P)[VPe(P)Fif(P/VP)+Vee(P)Fif(P)]v
of absorption of energy and momentum by the FEG, single- (10)
particle excitationgbinary collisiong and plasmon excita-

tions (collective modek[2,8]. For this reasoWVpg will also VI Vi ,
be referred to hereafter astal transition probability. In the whereVp(P) andV{(P) are the Fourier transforms of the

next subsection we develop a formalism to calculate transiPerturbative potential, and(p+P) guarantees the linear
tion probabilities by considering only the binary collisions of MOMentum conservation mentioned before. The first term in
the projectile with the single electrons of the FEG], and Eq. (10) corresponds to _the'lnteracuon between the electron
compare both results. of the; FEG anq th'e prOJectllg nucleus. Ag>1, th.|s. terr_n
remains essential in the elastic channel, but negligible in the
inelastic ones due to the orthogonality of the wave functions.
It means that the main contribution to the transition matrix
If we consider the scattering of thiedividual electrons of  element comes from the electron-electron interaction.
the FEG, the colliding system can be schematically repre- We propose a wake potential whose Fourier transform
sented by the tree-particle process, reads

w=0v-q—Ae, (4)

X|Fit(q,@)|? Im

€(g,0,7)

B. Binary collisional formalism
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FIG. 2. Functionl(qg) given by Eq.(31) for excitation to the
n=2 state of different hydrogenic projectiles colliding with alumi-
num FEG, at impact velocity =7.9 a.u. The result of(q) ob-
tained with the Mermin-Lindhard dielectric functi¢@2] is plotted
together with the single-particle approximation given by E39).

E. (a.u.)

length of Eq.(9) integrated orp andk; reads

dq

. . Ime (q,w,0+)
———|Fir(d |2L72
Tvq le(q,w,v)|

O(w). (13

=P. Using these results, the differential probability per unit

The energy spectrum is defined as the differential prob-
ability per unit length and per unit of energy gained by the
FEG, P(w)=dW/dw. For electron projectile excitation by

1 10 binary collisions with the single electrons of the FEG we
V' (a.u.) obtain
FIG. 1. Scaling binding energieg,, of a moving projectile 2 (= dqg 5
inside the solid FEG, plotted as a function of the scaled velacity Pec(w)=— 7771;2 (Ao +a) E|Fif(quw)|
ET W)V

given by Eq.(25). Solid line, our results for different hydrogenic
projectiles inside aluminum FEG; dash-dot line, universal expres-
sion of Muler and Burgdofer [27]. The different projectiles and X1Im
bound states are displayed in the figure.

e(q,w,y)}uf(q’w’w’ (14

E% (11  factor Fi1(q) has been expressed in termspfnd » by

TP%€(P,w,y) using Eq.(8) and making a simple change of variablbg

_ —qdg dw/vde. The azimuthal symmetry of the problem
The integration of Eq(9) onk; has a closed solution that can has already been taken into account in Bdf).
be expressed in terms of the Lindhard dielectric function in  The total probability per unit length is then
the following way|[1,6]:

— whereU .(q,w,y)=Im €, (q,»,0")/Im e(q,w,y). The form
vee(ﬁ): \/

. 5 . WBCZJ Pec(w)dw
| dkoKe—k)O K —Ke) ot pr2+ 5Ky 0

= 7p?Im e, (p,,07) O (), (12) I dqfq““dw
’ITU2 Asiv 9 Jo
wheree, (p,w,0") is the Lindhard dielectric functiofil] in
s +
the |Imlt-7H.0 : N . o ><|Fif(q,w)lzlm{ Udq,0,7),
For historical reasons, it is convenient to use —p, the €(9,0,7)
momentum absorbed by the electron of the FEG, so dhat (15
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where we exchange the order of the integralsgand o to dWpc
compareWg with the dielectric formalism resul/p given ~ Pac(w)= do
by Eq.(5). The equality between E@5) and Eq.(15) would

require U (q,w)=1 in all the range ofg and w. This is 2 o
never satisfied, even in the limit of smal[10], where =- —ZJ dkO (|k+v|—Kg)
mv
0 if (0-0%2)°=¢°K; XJM %IFiR(q,w)F'm[—}
UE(qvwa’y)_>'y~>O+ (16) (A£+w)/U q G(Qawa')’)

1 if (0—0%2)%<q?KE, XU J[(q,0,7). (19

in agreement with the energy conservation in a binary colli-By comparing these expressions with Et). of Rasleret al.
sion. In the dielectric formalism this restriction disappears[18], the probability per unit length and energy spectrum in
taking into account not only the single-electron excitationsthe dielectric formalismWpr andPp(w), respectively, are
but the collective absorption of energy and momentum, to®btained from Eqs(18) and (19) by replacingU (g, w,y)
[2,8]. Thus, the difference between E§) and Eq.(15) lead =1 [10].

us to isolate the plasmon excitation contribution to the total

probability per unit length. o C. Binding energies of a moving projectile inside the solid
Together with the excitation of the projectile electron, o
Ae>0, we analyze the de-excitation processes<0. The When the projectile penetrates the FEG, the electrons re-

energy spectrum can be generalized for these processes B§t collectively leading to a dynamical screening of the ion.
changing in Eq.(14) the lowest limit of the integral from As a consequence of this, the binding energies are relaxed

(Ae+w)/v 1o |As+w|lv. We find that the de-excitation depending on the ion velocity, no longer bein@g/2n?, as
energy spectrum verifies in the isolated hydrogenic atom spectrum. The aim of this
subsection is to estimate the binding enerdigsof a mov-
ing ion embedded in a FEG within the spherical approxima-
Pti(w)=—Pjt(— o). (17)  tion. The Hamiltonian of the system igs—1/2V2+V/(r)
—E]¢n=0, whereV(r) is the induced potential giving the
response of the medium to the perturbation created by a

Here P;;(w) represents eithedPgc or Ppe for the projectile heavy ion moving within a FEG,

electron transition— f. The difference in sign is due to the
parity of the imaginary part of the Lindhard dielectric func- 1

. . . Ve(q) -
t 1]. = .
ion [1] V(r) (277)3/4 dqe(q'u'y)exmq r, (20

2. Electron loss .
r\/\/ith u=v-q andv the ion velocity. The Fourier transform

In projectile electron loss processes, the final state i e s _
of the Coulomb potentiaV/-(q) in Eq. (20) is

Eq. (6) is f=k, with k being the electron momentum relative
to the ion. This process is equivalent to the Auger electron

loss process analyzed by &er et al. [18]. The Fermi - _ 27Zp

Golden Rule for the differential probability per unit length Ve(q)=— e (21)

and per unit ofk, is obtained by replacingNVgc with

dWBC/dIZ in Eqg. (9). The ionization transition matrix ele- The Legendre angular expansion of the induced potential
ments are calculated in the first Born approximation in thegiven by Eq.(20) reads
usual way[21,24. The atomic form factors=;;(q,w) are
expanded in terms of the angular momentum, considering in .-
our calculations a maximum angular momentily,,=6. V(r)= z V (r)P (cosh), (22
Analogously to excitation, the electron loss probability per L=0
unit lengthWg reads o
with coséd=v-r. The termsV (r) are obtained by expand-

ing the plane wave exigf-r) and the inverse of the dielectric

2 o [ — © d qu—Ae . . .
W= — _zf dkO ([k+ov|—Kg) _qj do function in Legendre polynomials,
U Aelv 9 Jo

Z % d qu
VL(r)=—W—Z(2L+1)i"fO qu,_(qr)fo du PL(i)

X|Fi|2(q7w)|2|m[ }Ue(qiwi'y)r (18) qu

€(q,w,y)

_1\L
{1+(1), (23

€(q,u,7) € (q,u,y)

and the energy spectrum is
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TABLE |. Classically scaled cross sectionZ* for electron
impact excitation of H(%), and electron impact ionization of
He" (1s). The final state is indicated explicitly in the table, wkh
being the symbol for the continuum final state. Notation: 1B,

present results in the first Born approximation; a, experimental mea-

surements of Kauppilet al. [30] modified by van Wyngaarden

et al. [35]; b, values calculated from the experimental results ofV1s—n=2

Long et al.[33], and Ott[34]; c, experimental ionization cross sec-
tions of Shatet al.[31] and Pearet al.[32]. Atomic units are used.

vlZ oZ* 1B Experiments Ref.
2.71 X 0.18 0.12£0.01 a
2p 2.4 1.95-0.09 b
k 2.9 2.2 C
3.83 X 0.093 0.0790.009 a
2p 15 1.410.06 b
k 1.6 1.5 C
5.07 X 0.054 0.0440.006 a
k 1.0 0.96 c

wherej (qr) are the spherical Bessel functiofsl]. For L
=0, the spherical potential reduces to
qu

f duRE{;
0 €(q,u,y)

In general, forL odd (even, the integrand involves the
imaginary(rea) part of the inverse of the dielectric function.
The binding energieg,,, of one electron in the central po-
tential Vy(r) are calculated using the code of Saledtal.
[25] for different projectile charges and velocities inside alu-
minum FEG.

2Zp (=
Vo(r)=— o Jo dq

sinqr
q°r

(24)

In order to plot the results in a comprehensive way, we
use the Coulomb scaling for the energies and the dynami

screening approximatiofv] for the velocities,

r]2

3

n=Eni v'=v—— (25

na)p

with w, being the plasmon frequency. In Fig. 1 we pfj;
as a function ob’ for the atomic statessl 2s, and 2. Itis
remarkable that the sl state of hydrogen survives even at
low velocities p<1). The small binding energies of H at
low velocities are consistent with the results of Rogstral.

[26]. For then=2 bound states inside the solid, the threshold

velocities obtained are=6 for H, andv=3 for He'. For

PHYSICAL REVIEWGA 052902

TABLE Il. Minimum velocity for plasmon excitation given by
Eq. (37) for the collisions of different atomic projectiles with alu-
minum FEG @=0.566). Atomic units are used.

H He* Li2* B4+
1.2 2.9 6.1 16
U1s—continuum 1.2 3.6 7.8 21
5. 1 mn  aw’sn
T2 g g 29

with s being the electric quantum number. These authors
[27] derived Eq.(26) by diagonalizing an axially symmetric
induced potential in the plasmon pole approximation. We use
s=0 to obtain the values shown in Fig. 1 because we employ
a spherical potential. It can be observed that(26) follows
the universal tendency at high velocities, but differs from our
curves as the velocity decreases.

Along this article we use the orbital effective charge of a
moving atom inside a solid as given by

Zy=+\—2n%E,, (27)

The binding energiek,,; so obtained are just a first-order
calculation. A second order can be obtained by including in
Eqg. (21) the electron density of the bound state. Important
corrections are expected for the smallest projectile charges.

D. Link between atom-FEG and atom-electron collisions

In this subsection we make a simple link between atom-
FEG (in-solid) and atom-electror{out-solid collisions by
approximating the atom-FEG probabilities per unit length
sing the single-particle dielectric functioes=esp[2,7,28.

the limit y—0* (no plasmon dispersiorand q2>2wp,
the single-particle approximation satisfies

2

1 1)
=—7—2 Sw—0?2).
q

Im———
GSP(q!wi')/)

(28)

The excitation probability per unit length using this approxi-
mation reduces to

2
_pr *

=— (29

dq
— |Fit(q,0=0%2)|%
Aelv

higher projectile nuclear charges, the=2 bound states are The form factor is evaluated id=uv - q—Ae=g%/2, which
possible at velocities even lower than these. As can be ohg the expression for the energy conservation in the collision

served in Fig. 1, for large velocities, the results for different

hydrogenic projectiles follow a trend closing on a universal
form. Also displayed in Fig. 1 is the universal expression for

of an atom and an electron moving with relative velocﬁty
and momentum transferred to the electmpriThen Eq.(29)

the eigenenergies of the electronic bound states of fa&@n be expressed as

charged particles in solids posed by IMu and Burgdofer,
[27]

Wsp=neo 9™, (30

052902-5
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— - Note that when the atomic form factor depends onlygpn
ok 15-_>2p | and not onw (the angular part Oﬁ), i.e., for the atomic
' excitations 5—2s or 1s—2p, the probability per unit
length given by Eq(15) reads

d
-;FMmHM) (39

2 ©
Wee=——
i mU Ael

The energy integral(q) encloses the whole dependence of
the probability per unit length on the collective response
of the medium. In Fig. 2 we plat(q) andlsp(q), given by
— 15--->2s _ Egs. (31) and(32) respectively, for different projectiles in-
\\ B* teracting with the FEG ab=7.9 a.u. This velocity corre-

. sponds to the experimental measurements of Tinsetett
[29] for ionization of LF* by 850 eV electron impact. The
dielectric function used to evaluat€q) is the Mermin-
Lindhard ong[22]. We can see in this figure that they have
04 1 the same limit agy increases, but fog—As/v, Eq. (31)
Y B tends to zero while the single-particle approximation grows
| as 16°. The smallerAe/v is, the greater the difference be-
tweenl (q) andlsp(q) will be. This analysis implies that the
probabilities per unit length corresponding to atom-FEG col-
lisions are generallyower than those corresponding to the
collisions of the atom and an equivalent density of single
electrons,

1.0

R, and R,

0.0 + + —t +———1

Wgc=Wsp=neaff**. (34)

This suppression of the probabilities per unit length in the

02f T collision of hydrogenic projectiles with the solid FEG grows
up as the minimum momentum absorbed by the FE&p,
0.0 > 3 4 5 6 7 85 010 diminishes(either by increasing the impact velocity or de-
creasing the energy transferred to the atomic elegtibinis
v/ Zp (a-u-) v behavior does not depend on the approximation used to de-

scribe the collisional system, but only on the response of the
FIG. 3. Ratio of in-solid to out-solid probabilities per unit length medium. This link between the atom-FEG and atom-electron

for different hydrogenic projectiles in collisions with aluminum q|jisions is valid either for atomic excitation or electron loss
FEG. The different projectiles and transitions considered here arﬁrocesses

pointed out in the figure. Notation: solid lines, dielectric formalism
curvesRpe, given by Eq.(36); dashed lines, the binary collisional
resultsRgc, given by Eq.(35).

In order to analyze this decline in the probabilities we
define the ratio

olid
wheren.= w?/47 is the electronic density ana??s is the :WsBC
known high velocity limit for the atom-electron cross sec- BC Wgp '’
tions in the first Born approximatiof20,23. This relation
for large transferred momentum is consistent with that founthereWSO”d—WBc(Zm) is the binary collisional probability

o BC —
by th(_:hle[Z] 40. years ago. , _ per unit length given by Eq15) or (18), taking into account
To inspect this approximation we define the function

the orbital effective charge inside the solid as given by
qu—Ae
I(q)=f dwIm
0

Eq. (27). Instead Wsp is calculated from Eq(30) by using

the actual nuclear charge of the projectile to obtain atom-
as introduced by Glick and Ferr¢R8]. In the single-particle
approximation expressed by E@8), Eq. (31) reduces to

(35

' 3D electron cross sectiofg0,21,24. A similar ratio is defined

for the probabilities per unit length in the dielectric formal-
ism

€(g,0,7)

Isp(Q) = Twd/g?. (32) (36)

052902-6
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< ok PBC 1 .l FIG. 4. Energy spectrum as a
o F1 K function of the energy gained by
— st A ! s the FEG, for projectile electron
e’ s . .

excitation k—2s, 1s—2p,
g 0 { oy, ; 0 de-excitation p—1s, and elec-
E L, 05 10 15 20 25 : tron loss. The colliding system
o - j ' ' ) % ' T T T considered is He+FEG(Al) at
8 ol impact velocityv=6 a.u. Nota-
) 15f 1s->2s . 1s->k i tion: solid lines, dielectric formal-
s P 15} P i ism result§EDF; dashed lines, bi-
(L DF/ 2\ i DF/ nary collisional results Pg¢;
8 /'P ol W i dotted line, plasmon excitation
W sl ~ ~ BC ] [ PBC ) contributionP,=Ppr—Pgc.
5F E
¥ .!?p E)P
0.0 ey . . 0 A a4 .
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 25
o (a.u.) o (a.u.)
ll. RESULTS larger. The largeZp is, the smaller the influence of the FEG
will be.
Probabilities per unit length and energy spectrum are cal-

culated within the first Born approximatid20,21] and em- A. Probabilities per unit length

ploying the Mermin-Lindhard dielectric function of the me- o ) )
dium [22]. Projectile electron excitation and loss are We calculate the probabilities per unit length for projec-

analyzed employing the usual dielectric formaligi@ec. tile electron excitation §—2s and 1s—2p, and for electron
I1A), and the binary collisional formalisiiSec. 11 B. loss in the collisions of A He", Li**, and B"* projectiles

We compare the first Born approximation employed in allWith the aluminum FEG ¢,=0.566;y=0.037[38]). In Fig.
these theoretical calculations, with the experimental result§ We display the ratioRpr andRg for the different collid-
[29-36 for excitation and ionization of hydrogenic atoms by ing systems. In each case we include the results in the veloc-
single-electron impactout-solid collisiony. We reproduce ity range where the excited bound state within the FEG is
the known behavior of the first Born approximation in Possible considering the spherical approximatisee Fig.
electron-atom collision§20], i.e., it overestimates the cross 1)- Two main conclusions are derived from this figure. First,
sections at intermediate velocity and tends to the experimerihe difference between the dielectric and the collisional re-
tal data in the high velocity limit. In general, for the different Sults reveals the contribution of plasmon excitation included
projectiles considered, we get an overestimation of the cros@nly in the former. Figure 3 shows that plasmon excitation is
sections at/Z=3 of less than 25% as compared with the negligible at the lower velocities considered here, giving the
experimental values for excitatiors2>2s [30] and ioniza-  Pinary collisional formalism a good estimation of the total
tion [29,31,32. For excitation 5— 2p at the same velocity, Probability per unit lengtf{18,19. As the impact velocity
we obtain cross sections in the first Born approximation onlyncreases, the plasmon excitation becomes more important.
7 % over the experimental dafa3,34. Some experimental 1his feature is consistent with Fig. 2_of Bleretal. [18].
results are shown in Table | together with our first Born cross "€ minimum velocity for a collective excitation to occur
sections, conveniently scaled aZ*. The experimental ex- ¢an be obtained assuming that the cugue- Ae intersects

citation cross sections in this table corresponad colli-  the region of energy and momentum excitations imaq
sions[30,33—38, while the ionization values correspond to POt just at the cutoff momentum for the plasmon mode,
e-He" collisions[32]. =(.. Mathematically, it occurs when

We also compare our results for electron loss and excita- 2
tion of the pr_ojectile ele_ctron due to the_interaction vvjth t.he Ul min— A& = %JquvF_ (37)
FEG only, with theoretical results obtained by considering 2
the interaction with the whole target atd%,37]. For a He
projectile colliding with an aluminum solid at an impact ve- For metallic electron densities, a satisfactory estimatiog.of
locity of 3.16 a.u, our electron loss and excitatios—in is given by qc.=w,/ve [5] (9.=0.622[38] for aluminum
=2 cross sections are about 15% and 40%, respectivelf5EG). In the elastic channelst-1s(Ae=0), the minimum
those of Kanekd37], taking into account the whole frozen velocity obtained from Eq(37) is 1.2 a.u. For projectile
target. For Himpact the contribution is expected to be electron transitions $-n=2 and I— continuum, the
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threshold velocities for plasmon excitation are given in Tableof 2 with respect to p—1s). The peak obtained for the
IIl. In obtaining these velocities, we take into account thede-excitation $—1s is due to the collective modes of ex-
velocity-dependent binding energies inside the solid dis<itation of the FEG accompanying this transition, while the
played in Fig. 1. The results shown in Table Il are in goodbiggest total probability for electron loss is due to the binary
agreement with the minimum velocity for the separation ofcollisions with the single electrons of the FEG.
the binary collisional and the dielectric curves in Fig. 3. In comparing the excitation sk-2p with the de-
The difference between the dielectric and binary colli-excitation 20— 1s, we can see that although the plasmon
sional curves in this figure lets us appreciate the importanceontribution P, is bigger in the latter, the binary collisional
of the plasmon excitation contribution to the total probabili- probability Pg is the same for both transitions, as is ex-
ties per unit length. For projectile electron excitatios 1 pected from detailed balancing.
—2p this contribution is important at very high velocities
(v/Zp=4), being about 65% for ¥ projectiles, 26% for IV. CONCLUSIONS
He™ projectiles, and 15% for Bi". Instead, for projectile o o _ S
electron excitation 4—2s, the plasmon contribution is _Exmt_atlon and ionization of hydrogenic projectiles in c_oI-
much less importar{28% for H projectiles, 4% for He, and |ISIOn.WIth the free-ele_ct_rop gad§FEQ ha\{e been analy;gd in
negligible for higher projectile charges in the same velocityth"j high but non-relativistic energy regime. Probabﬂme; per
range. Similar results are obtained for electron loss. unit length and energy spectrum have been calculated in the
The second observation is that Fig. 3 shows the abovéirst Born approximation for different hydrogenic projectiles
mentioned suppression of the excitation inside the solid, i.eSuch as M, He', Li*", and B colliding with aluminum
the ratio of in-solid to out-solid probabilities B<1. This FEG. The response of the medium to the external perturba-
effect is very important for H projectiles, with the probabili- tion has been described by employing the Mermin-Lindhard
ties per unit length for projectile electron excitatiors 1 dielectric function. _
—2p(1s—2s) being only 10%(32%) of those correspond- Projectile excitation probabilities per unit length are

ing to excitation of H by single-electron impact. For projec- found to be smaller than those corresponding to the colli-
tile electron loss processes in H-FEG collisions mt SIONS with an equivalent density of single electrons. This

=5 a.u., the probabilities are less than 50% of those @ H- suppression of the excitation in in-solid collisions is maxi-
collisions. The suppression is not so drastic for greatefUm for H projectiles, and diminishes for higher nuclear
nuclear charges, as observed in Fig. 3. This behavior is dugarges. We explain this behavior in terms of the collective
to the Ae/v dependence indicated in Sec. 11D, and also exeffect (shielding of the FEG. The difference between in-

plains the tendency to decrease with increasing velocity ofolid and out-solid probabi!iti.es of projectile excitation be-
the curves in Fig. 3. comes greater when the minimum momentum transferred to

the FEG diminishegeither by increasing the impact velocity
v or decreasing the energy transferred to the atomic electron
B. Energy spectrum Aeg). Although less important, this shielding should also be

The energy spectrum given by E@.4) is calculated for found in the excitation of target inner shells if the local
excitation and electron loss of Fleprojectiles due to the PlaSma approximation is us¢@9]. _ _
collisions with the aluminum FEG at=6 a.u. This veloc- By comparing probabilities per unit length obtained using

ity is chosen to be high enough for the first Born approxima-2 binary collisional formalism and those using the dielectric
tion to give a good estimation of the probabilities and for theformalism, we evaluate the importance of the plasmon exci-
plasmon contribution to be appreciatiee Fig. 3 On the tation for different impact velocities. We find this contribu-

other hand, it is low enough to be within the experimentallion t0 be more important for projectile-electron-allowed
range of possibilities. transitions B« 2p than for forbidden onessk-2s, or pro-

In Fig. 4 we plot the dielectric and collisional probabili- jectile electron loss, where it is appreciable only at very high
ties as a function of the energy gained by the FPGg(w) velocities. An estimation of the threshold velocity for plas-
andPgc(w). Also plotted is the subtraction of both of them mon excitation is found to be in good agreement with the

in order to isolate the plasmon excitation contribution,Present theoretical results. _ o
Po(@)=Ppr(w) —~ Pac(w). Four cases are displayed in this The relative importance of the FEG in the projectile ex-

figure: projectile electron excitationsst-2s and 15— 2p citation processes is estimated by comparing our results with
de—ex.citation P—1s, and electron loss from the grofmd the theoretical cross sections corresponding to the interaction
state 5—k. The de—’excitation & 1s has also been per- with the whole target atom. For Heprojectiles the excita-

Wi P <+ tion and loss probabilities due to the interaction with the
formed giving an energy spectrum similar to the excitation o .
case ]5_9)28 J 9y sp FEG represents about 30% of the total probabilities consid-

In the four processes presented in Fig. 4, the plasmoﬁring the whole target atoms. These values are expected to be

peak appears in the range of energies where the collecti/g°re important in the case ofHprojectiles.
mode is possible, i.e.,op<soswy(d), Wwith wy(qc)
=0.75 a.u. for aluminuni5,38]. The highest peak corre-
sponds to the de-excitatiomp2-1s, but the total probability
integrated over the energy absorbed by the FEG is bigger for We acknowledge P. Echenique for suggesting the inves-
electron loss than for the transitions to bound stéaefctor  tigation of this subject.
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