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Statistical Theory of Superlattices 
By H. A. B ethe, H. H. Wills Physical Laboratory, University of Bristol 

( Communicated by W. L. Bragg, F.R.S.— Received February 13, 1935)

1— In t r o d u c t io n . A n a lo g y  to  F erromagnetism

In a recent paper, Bragg and Williams* have pointed out that the 
arrangement of the atoms in an alloy depends in a striking way on the 
temperature. At high temperatures, the atoms are distributed practically 
at random among the lattice points of the crystal, but at low temperatures 
a superlattice may be formed such that the atoms of one kind are 
arranged in a regular lattice of their own and the atoms of the other 
kind occupy the remaining “ sites ” in the crystal. The transition from 
the ordered to the disordered state occurs in a fairly small temperature 
range, and is accompanied by a large specific heat, an increase in 
electric resistance, etc.

The mathematical method employed by Bragg and Williams is similar 
to that used in Weiss’s theory of ferromagnetism. Both involve the 
assumption that the “ force ” tending to produce order at a given point 
is uniquely determined by the average state of order throughout the 
crystal. Actually it will depend on the configuration of the atoms in the 
immediate neighbourhood of the point under consideration. The order 
of the crystal as a whole determines this configuration only on the average. 
In the present paper, the effect of fluctuations in configuration, which was 
neglected by Bragg and Williams, will be taken into account.

For our investigation, we shall assume that only nearest neighbours 
interact. This assumption is essentially the same as that which underlies 
the modern theory of ferromagnetism, f  There we have an interaction 
energy (electron exchange) between the spins of neighbouring atoms which 
tries to set them parallel. This interaction, although only acting between 
neighbouring spins, is nevertheless capable of setting all spins throughout 
the crystal parallel at low temperatures, thus establishing perfect order. 
In addition, experimentally a sharp Curie point is found at which the 
“ order,” i.e., the permanent moment, of the crystal as a whole dis

* 4 Proc. Roy. Soc.,’ A, vol. 145, p. 699 (1934).
t  Bloch, ‘ Z. Physik,’ vol. 61, p. 206 (1930); Bethe, 4 Handbuch der Physik,’ vol. 

24, 2, p. 607.
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appears. Super-lattices should be similar, and one may even hope that 
it is simpler to treat since it involves no quantum mechanics but only 
classical statistics.

2—Order at Large and Small D istances. Influence of the

N umber of D imensions

Phenomena analogous to ferromagnetism, such as the one treated in 
this paper, are essentially restricted to three (or more) dimensions.* In a 
linear chain, the interaction between neighbours could never establish 
order through large distances; there will only be small regions that are 
ordered. This can be seen very easily for a “ linear chain alloy ” as 
follows.

Consider a linear chain containing an equal number of atoms of two 
different kinds A and B. If there is perfect order, the atoms A and B 
should simply alternate, giving the arrangement A B A B A B .... At low 
temperatures, it will indeed be much more probable that two neighbouring 
atoms should be unlike than like. Still at any finite temperature there 
will be a finite number of pairs of neighbours of the same kind. Consider 
such a pair, e.g., two neighbouring A-atoms Ax A2. Then the atoms on 
the right of A a will probably be ordered with respect to A2, because there 
is no interaction between them and Ax. The atoms on the left will be 
ordered with respect to Ax, so that the arrangement

... A B A Bx Ax A2 B2 A B A B ...

arises. The chain falls into two parts which are disordered with respect 
to each other, e.g., the third atom on the right of Bx is the B-atom B2, 
whereas in an ordered crystal the third neighbour of a B-atom would 
be always an A-atom. Thus one single pair of equal neighbours destroys 
completely the order of the chain as a whole, and only small portions of 
the chain can be ordered, namely, the portions between any two pairs of 
like neighbours.

This is completely different for two or three dimensions. Consider in 
two dimensions again a pair of like neighbours Ax A2. Then it is by no 
means certain whether a given neighbour of atom A2, e.g., the atom a in 
fig. 1 a,is more likely to be a B or an A-atom. For in contrast to the 
linear chain, x interacts not only with the atom Aa which would require 
it to be a B-atom, but also with y, which, being a neighbour of Ax, should 
be a B-atom and therefore requires x to be an A-atom. Thus the (prob

* Bloch, loc. cit.
2 p 2
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able) nature of x depends on the arrangement of all the atoms surrounding 
it, not only on A2. Three alternatives are possible: either

(1) the atoms surrounding Ax A2 “ fit ” to Ax, so that A2 is simply a
single “ wrong” atom in perfectly ordered surroundings, fig. 1 
or

(2) the surrounding atoms fit to A2, so that Ax is a “ wrong ” atom; or
(3) there is a real break in the order, similar to the linear chain. The 

crystal falls into two halves, each being completely ordered in 
itself but completely disordered with respect to the other half. 
The halves are separated from each other by a “ boundary ” 
which passes between Ax and A2 and also between other pairs of 
neighbouring like atoms, fig. 1

0 o o o B A B A B B A B

o o o o A B A B A B B A

o A, A 2 o B Aj A 2 A B A a a 2 B

o y X o A B A B A B A A

o o o o B A B A B A B A
a b c

F ig. 1

It is clear at once that—given the existence of the pair Ax A2—the 
arrangements (1) and (2) have lower energy than (3). For in the first 
two cases we need only have four pairs of like neighbours, e.g., in case (1) 
A 2 is surrounded by 4 A-atoms whereas everywhere else we have only 
pairs of unlike neighbours. In case (3), on the other hand, we have one 
pair of equal neighbours per unit length o f the boundary, and this makes 
an enormous number of pairs if we want the boundary to extend through 
the whole crystal, thus really destroying the correlation between left- 
hand side and right-hand side of the crystal, in analogy to the linear 
chain.

At low temperatures, only the states of low energy are realized, there
fore we expect that at low temperatures the crystal is ordered as a whole, 
only containing the few atoms at wrong places inside it, e.g., a cubic 
body-centred crystal would have nearly all corners of the cubes occupied
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by A-atoms and almost all centres by B-atoms; only a small fraction of 
the A-atoms (increasing with temperature) goes into the centres and a 
corresponding number of B-atoms occupies corners.*

We have at low temperatures a “ correlation ” between distant atoms, 
however far away. If we know the nature of the atom situated at a given 
place, we can predict whether another atom 1000 atomic distances away 
is likely to be an A- or a B-atom.

This will not be true for high temperatures. For then the number of 
possible realizations o f a given arrangement o f atoms is more important 
than the energy of the arrangement. Given only the two atoms Ax 
and A 2, there is only one single arrangement of the atoms in the crystal 
corresponding to case (1) above, since the positions of all atoms are fixed 
by requiring that there should be perfect order with respect to Ax. But 
there is an immense number of ways in which a boundary may be laid 
through the crystal; therefore, at sufficiently high temperatures, case (3) 
is the more probable in spite o f its higher energy. Thus the “ correlation 
of distant atoms ” disappears at high temperatures (§ 6).

This does not mean that there is no order at all at high temperatures. 
At any finite temperature, it will be more likely to find a B-atom beside 
a given A-atom than to find another A-atom there, because the energy 
is smaller in the former case and the a priori probability is the same. Only 
the order does not extend through the whole (and not even through large 
portions of the) crystal. Thus we are led to distinguish between two 
different types of order: the order of neighbours and the order of the 
crystal as a whole (order at large distances).

3—D efinition of the Two D egrees of Order

The “ order of neighbours ” a is defined as the difference of the 
probabilities of finding an unequal and an equal neighbour beside a 
given atom. Thus the probability for finding a B-atom beside a given 
A-atom is ^(1 +  cr), that for finding another A-atom is ^(1 — <r). If N 
is the total number of atoms, z the number of neighbours of each atom, 
then there will be

£Nz (1 +  c) pairs of neighbours A B,
^Nz (1 — ct) pairs A A and equally many B B.

If the interaction energy between an A and a B atom is Va6, and Vaa and

* Of course, the B-corners and A-centres in the equilibrium state will not in general 
be beside each other.
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V66 that between A A and B B respectively, the total energy of our crystal 
becomes

E =  *N zVah(1 +  a) +  |N z  (Vao +  V J  (1 -  a) =  const +  £NzV (1 -  a),
( 1)

where
v  =  i(Vao +  v 6&) -  v a6. (2)

Thus the order of neighbours a is directly proportional to the energy 
of the crystal (apart from a constant). V is the difference of the inter
action energies between two equal and between two unequal neighbours. 
V must be positive in order to make a superlattice possible (otherwise 
the atoms A and B would segregate). Its magnitude determines the 
temperature at which the transition from the ordered to the disordered 
state takes place. a =  1 corresponds to perfect order, 0 to perfect 
disorder. For any finite temperature a lies between these limits.

To define the long-distance order, we divide the lattice points in the 
crystal into two groups, a and b, the points of each group forming a 
lattice of their own, e.g., in a cubic body-centred lattice, a and b are the 
corners and the centres of the cubes; in a simple cubic lattice the s 
and b's form a rocksalt structure, the positions of the Na atoms being 
denoted as “ a,” the Cl positions as “ b.” Then the long-distance order 
S is the probability for finding an A-atom in an “ a ” position minus the 
probability for finding a B-atom there. This definition of order is 
equivalent to that used by Bragg and Williams. S =  +  1 or — 1 
corresponds to perfect order, S =  0 to perfect disorder. Above a certain 
critical temperature 0  (Curie point) we expect S to be zero (§ 2), below 
0  the “ distant order ” S is finite.

If S is to have a physical meaning, it is necessary that the temperature 
at which the distant order disappears should be independent of the size 
of the crystal; in other words that the question of stability or non
stability of breaks in the order should not depend on the number of 
atoms in the crystal but only on the temperature. This can be proved 
for two- and three-dimensional lattices.*

A—Qualitative D iscussion of the Transition Point

For a given value of S, there is a great number of possible distributions 
of the atoms over the various sites. We know only that there are

* The probability for a boundary is o f the order exp (e k ^  Tî ) , N  being the 
number of atoms in one crystal plane, T0 a critical temperature and k  Boltzmann s 
constant.
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(1 +  S) A-atoms and (1 — S) B-atoms in a-positions. But they
• • / — Nmay be distributed over the available a-positions in I 2

4N (1 — S)
different ways, and there is an equal number of possible distributions of 
A- and B-atoms over the 6-positions. Each distribution corresponds to 
a certain energy. The lowest energy is obtained if all “ wrong ” atoms, 
i.e., the B-atoms in a-positions and the A-atoms in 6-positions, are put 
together. They then form a cluster inside which there is perfect order, 
and only on the surface are there then pairs of like neighbours. The 
energy is only of the order N2/3 (1 — S)2/3 V if the constant in 1 is put equal 
to zero. It is, however, clear that this distribution is most unlikely, and 
that it is much more probable that the “ wrong ” atoms are more or less 
isolated from each other. For complete isolation, we obtain the maxi
mum possible energy, viz., JrNzV (1 — S). There is a great number of 
states having energies between these two limits.

We may suppose the number of states having a given S and a given 
energy (or <r) to be given; let us denote this number by n (Sct). Then we 
can calculate the partition function for any value of S at a given tempera
ture T

P(S) =  2n(S<7)e-E<->/*T.

By symmetry we have P ( — S) =  P (S). At very low temperatures the 
partition function will have two maxima at S =  ±  1 and a minimum at 
S =  0. As the temperature increases, the maxima move to lower 
(absolute) values of S, i.e., the long-distance order decreases gradually. 
This goes on until the two maxima merge into each other at S =  0, at 
a certain critical temperature 0.*

The energy of the crystal increases with temperature for two reasons: 
Firstly, for a given S the average energy increases (<r decreases) with 
temperature. In other words, if S is kept fixed, the “ wrong atoms ” 
cluster together at low temperatures and become isolated at high 
temperatures. The specific heat due to this process the rate of 
change of the energy with temperature) almost certainly decreases with 
increasing temperature for any given value of S.

* These statements cannot be proved rigorously, but seem highly probable. An 
alternative assumption would be that a secondary maximum develops at S =  0, 
increases gradually with increasing temperature and becomes higher than the two 
maxima at large S, before the latter have merged together. In this case, there would 
be a real point o f transformation, with latent heat, jump in the physical properties, 
etc. But there seems to be neither a theoretical nor an experimental reason for such 
an assumption.
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Secondly, the most probable large-distance order decreases with 
increasing temperature until it reaches zero at T =  0. Since for small 
S there are many states with rather high average energy, for large S few 
states with low energy, the change of S means also an increase of energy. 
The corresponding specific heat should increase with increasing tempera
ture, since the long-distance order changes (decreases) the more rapidly 
the smaller it is already, i.e., the nearer the temperature comes to 0  (see 
Bragg and Williams, loc. cit., and § 6 of this paper). When the critical 
temperature 0  is reached, this second kind of specific heat suddenly 
disappears altogether. Therefore we should expect (1) a jump in the 
specific heat at T =  0, i.e.,a higher cv for T <  0  than for T >  0, (2) 
the specific heat should increase with increasing temperature on the low- 
temperature side of the critical temperature, since it contains the specific 
heat due to change of long-distance order on that side, (3) it should 
decrease on the high-temperature side, because there it is entirely due to 
the change of average energy for the fixed value S =  0.

All these features are shown by the curves d and e in fig. 6, which give 
the results of the quantitative calculation. The contribution from the 
disordering to the specific heat above the “ Curie point ” is seen to be 
exceedingly small, only about 5% of that below 0. The theory of Bragg 
and Williams gives zero specific heat above 0, because it considers only 
the specific heat due to change of S.

All physical properties which depend on the order at long distances, 
such as electric conductivity, and more so the intensity of the super
lattice lines in X-ray spectra, should show a rapid change below T =  0, 
and have practically the value for a perfectly disordered crystal above 0. 
There should be no jump in these quantities at T =  0, but only a kink 
in the curves representing them as functions of T.

5—Approximation for Vanishing Long-Distance Order

At high temperature there is no order at long distances. There is, 
however, a considerable correlation between neighbours which we shall 
calculate.

Let w = \(1 — cr) be the probability that a neighbour of a given 
“ central ” A-atom is itself an A-atom. For a first approximation, we 
could assume this probability to be independent of the nature of the 
other neighbours of the central atom. Then obviously the ratio of the 
probabilities that the neighbour is A or B respectively is given by the 
Boltzmann factor

e-v/icr =  x> (3)
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viz.,

*7(1 — w) =  x,
from which we find

° =  (1 -  *)/(! +  *)• (4)
This means a very slow increase of the order with decreasing temperature 
(decreasing x) which is shown in fig. 4, curve a. There is no sign what
ever of a “ transition temperature.”

The assumed mutual independence of the neighbours of one central 
atom is, however, only true for a linear chain of atoms. For two- or 
three-dimensional lattices, the nearest neighbours of a central atom 
(“ atoms in the first shell ”) are connected with each other not only by 
their interaction with the central atom but also by interaction with the 

second shell ” which is defined as containing all the nearest neighbours

+

+ X +

+ o □ o +

X □ <8> □ X

+ o □ o -I-

4- X +

+
F ig. 2—Quadratic lattice. ®  Central atom; □  first shell; X corner atoms in 

second shell; O  medium atoms, second shell; - f  third shell

of the atoms in the first shell, fig. 2. This interaction tends to make all 
atoms in the first shell equal, and thus supports the ordering force exerted 
by the central atom. Therefore the order is greater than in our first 
approximation for any temperature and the order-temperature curve is 
steeper.

The effect of the second shell can be taken into account by the following 
method (second approximation). Take a given distribution of A- and 
B-atoms over the first shell and calculate the partition function for this 
distribution, including the interaction with the second shell. We shall 
explain this for the quadratic (two-dimensional) lattice, fig. 2. Each 
lattice point has, in this system, four nearest neighbours, this is therefore 
the number of atoms in the first shell. The second shell contains 8 
atoms, 4 of which lie at the corners of a square and 4 at the middle of its 
sides (“ medium atoms ”). The following distributions are possible.
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(1) No A-atoms in the First Shell—Then the interaction energy of the 
first shell with the central atom is zero.* If any corner-atom in the 
second shell is A, its interaction energy with its neighbour in the first 
shell (which is certainly a B-atom) is zero as well. If the corner-atom is 
B, the interaction energy is V. Therefore, each corner-atom has the 
partition function (p.f.).

1 +  e-v/* t

If a medium position of the second shell is occupied by an A-atom, the 
latter’s interaction energy with the first shell is again zero, while a B-atom 
would have the interaction energy 2V, because it interacts with two B-atoms 
in the first shell. Therefore its p.f. becomes

1 +  e -2V/*T =  1 -|- x2.

Each atom in the second shell can, in our approximation, be treated 
separately; therefore the total p.f. is simply the product of the p.f.’s for 
the single atoms in the second shell, viz.,

P„ =  (1 +  *2)4 (1 +  x ) \

The index 0 signifies that there is no A-atom in the first shell.
(2) One A-atom in the First Shell—The interaction energy with the 

central atom is now 1 (we leave the factor V out), giving a factor x in 
the p.f. Furthermore, there are four possible positions for the A-atom 
in the first shell, so we have a statistical weight 4. For the corner-atoms 
in the second shell, the p.f. is not changed, e.g., for the corner near the 
A-atom of the first shell, the energy is now 0 if the corner is occupied by 
a B-atom and 1 if the atom is A, but the p.f. remains 1 +  x. For the 
medium atoms, however, two positions are to be distinguished: two 
medium atoms, marked O in fig- 3a, have still got two B-atoms as neigh
bours and have thus the p.f. 1 +  x2. The two others, marked X, each 
have one A and one B neighbour; it is therefore irrelevant whether they 
are A or B, in any case their interaction energy with their neighbours in 
the first shell will be 1, which makes the p.f. for them 2x. Therefore the 
total partition function is

Px =  4 x (2x)2 (1 +  x2)2 (1 +  x)4.

(3) Two Atoms in the First Shell—They can lie (a) side by side, para- 
position, fig. 3b, or ( b) opposite each other, ortho-position, fig. 3c. The

* We fix the interaction energy o f two unequal neighbours to be zero, that of two 
equal neighbours has then to be taken equal to V (cf. equation (2)). The constant 
in (1) is then zero.
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interaction with the central atom is 2 in both cases, giving factor x2. 
The statistical weight for para 4, for ortho 2. Partition function for each 
corner atom 1 +  x. Medium atoms of second shell:

(a) for para two medium atoms have two like neighbours (one A A 
the other B B) and therefore p.f. — 1 +  x2, the other two have neighbours 
A B, p.f. =  2x. Consequently,

P2P =  4x2 (2x)2 (1 +  x2)2 (1 +  x)4;

(b) for ortho each medium atom has one A- and one B-neighbour, 
giving 2x for its p.f., therefore

P20 =  2x2 (2x)4 (1 +  x)4.

o B X X A o X B X

B A A B A A A A A

o B X o B X X B X
a b c

Fig . 3

(4) For three A-atoms the interaction with the second shell is the same 
as for one A in the first shell, the interaction with the central atom is 
3 instead of 1, giving

P 3 =  4x3 (2x)2 (1 +  x2)2(l +  x ) \

(5) Four A-atoms are identical with no one as regards interaction with 
the outside, the interaction with the centre is 4 instead of 0, therefore

P4 =  x4 (1 +  x2)4 (1 +  x)4.

The probability that a “ central ” A-atom has no A-atom among its 
neighbours is now

Po =  Po/(Po +  Pi +  P2P +  P20 +  P3 +  P4)-

The average number of A-atoms near a central A-atom is

vt; =  Pi +  2 (P2p +  P2o) +  3P3 +  4P4 _  , I n ) I v  I 4P
P0 +  Pi +  P2P +  P20 +  P3 +  P4 P l+  (P2P +  Pso) + 3P3 +  Pi’

and the degree of order

° =  1 -  iw =  Po -  +  i(Pi -  Pa)- (5)
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The order calculated by this method is considerably larger than in the 
first approximation (formula (4)), and increases with temperature more 
steeply. For the quadratic lattice we have

x =  0-1 0-2 0-3 0-4 0-5 0-6 0-8 1-0
(first approx.) .. 81-8 66-7 53-8 42-9 33-3 25-0 11-1 0
(second approx.) 99-03 91-71 75-6 56-6 40-4 28-2 11-9 0

For the simple cubic lattice the order is given in fig. 4 (curve b) as a func
tion of temperature.

It would in principle be possible to reach the exact value for the order 
at any temperature by calculating the higher approximations of our 
method. Actually, already the third approximation is extremely tedious, 
so that a more direct method is required which considers long-distance 
order.

The effect of our second approximation as compared with the first 
is to make it improbable that two neighbouring atoms in the first shell 
are unequal.* If we divide all the partition functions P0 Px P2 ... by P0, 
we get simply

p  —  nr x n
A mn Smn  •/v

/ 2x
\1 + (6)

where n is the number of A-atoms in the first shell, gmn the statistical 
weight and m the number of pairs of unequal neighbours in the first 
shell, i.e.,for each such pair the partition function has to be multiplied 
by the factor

2x
^ ~  1 +  x2 (7)

which takes account of the interaction with the second shell.

6— F irst  A ppro xim a tio n  in c l u d in g  L o n g -distance  O rder

With the notation of § 3, we may divide the atoms into “ right ” ones, 
(R-atoms) and wrong ones (W-atoms). An A-atom in an “ a ” position 
or a B-atom in a “ ” position are “ right,” and A-atom in “ b ” or a
B-atom in “ a ” are to be termed W. Two neighbouring R-atoms or two 
neighbouring W-atoms have the interaction energy zero; a pair of neigh
bours R W  has the interaction energy V.

* Two neighbours in a given shell are, o f course, never nearest neighbours but only 
second nearest. The nearest neighbours o f an atom in the nth shell lie all in the 
n — 1st and n +  1st shells. Nearest neighbours have to be unlike, second nearest 
like if the crystal is perfectly ordered. The number o f pairs o f unequal neighbours in 
a given shell is therefore the smaller the greater the order.
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We consider again a central atom and the various shells round it 
(§ 5). In the first approximation, we assume that the only effect of the 
“ outer shells ” is to make R-atoms in the first shell more likely than 
W-atoms. This is due to the fact that the outer shells themselves contain 
more R-atoms than W’s, according to our assumption, and that the 
energy is smaller if an R-atom lies beside another R than if a W-atom 
lies there. To take account of this fact we introduce a factor e into the 
partition function for each wrong atom in the first shell. We can then 
calculate the probabilities (a) that the central atom is wrong, ( ) that 
any atom in the first shell is wrong, as functions of x (temperature) and e. 
The parameter s is then fixed by the condition that the two probabilities 
(a) and ( b) must be equal, because the “ central ” atom is in no way 
distinguished from the others.

Let us suppose that each atom in the crystal has z nearest neighbours. 
Then the partition function (relative probability), that the central atom 
is R and n of the atoms in the first shell are wrong, is

Here (z \ is the statistical weight (number of distributions of the n wrong

atoms over the z sites), one factor x is introduced for the interaction of 
the central R-atom with any one W-atom in the first shell, and sn takes 
account of the interaction with the outside. If the central atom is 
wrong, its interaction energy with the first shell is (z — n) V, because it 
has the interaction energy V with each R-atom. Therefore the prob
ability that the centre is W and n wrong atoms are in the first shell, 
becomes

=  (Zn)  x*-n e- (8a )

Accordingly, the total relative probabilities that the central atom is 
right or wrong are respectively

r =  S rn =  (1 +  ex)2 j
»=o !-. (9)

w =  S wn =  (e +  x)2 ,

On the other hand, the relative probability that an atom of the first shell 
is wrong is given by

=  J =  \  > +  ») =  T T 7 x r + 7 T -x" '-  <10)
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The condition 

therefore reduces to
w' =  w

whereas from (9) we find

x
£ "f" X

W
ex

1 +  ex r \

W _£ (s -f- x)
r 1 +  ex

9

— =  / g +  x v
r \1 +  ex'

Comparing (12) and (13), we obtain

(s +  x)/(l +  ex) — s1/(z-1),
therefore

and, putting 

we have

X =  (ei/**-!* _  e)/(l _  g«/c-1>);

e e-28(«-i>5

x =  sinh (z — 2) 8/sinh zS.

( H )

(12)

(13) 

(13a)

(13b)

(14)

From this equation, e may be determined as a function of the temperature, 
i.e., of x, or more easily x as function of e. One sees immediately:

(1) Two values of e, namely, e =  e' and e =  1/e', correspond to the 
same value of x. That means that “ right ” and “ wrong ” atoms may 
be interchanged, as is natural.

(2) The value e =  1 always gives a solution, namely, x =  0/0. This 
is to be understood from the fact that the case S — 0, no long-distance 
order, always corresponds to an extreme of the free energy, namely, a 
minimum at high, a maximum at low temperature.

(3) If e is different from unity, x can never be larger than

x0 = 1  — 2/z. (15)

For (14) evidently increases with increasing e (decreasing 8) as long as 
8 >  0. The maximum value of (14) is therefore obtained by putting 
8 1; this leads to the value (15) for x.

Order at large distances can therefore only exist below a critical 
temperature, which is given by (15). Above that temperature, (14) has 
only the one solution e =  1, corresponding to S =  0. Below 0, there 
are three solutions, s', 1, 1/e', the first and third of which correspond to 
a non-vanishing order + S  and — S at long distances and to a lower free 
energy than e =  1.

The energy of the crystal is V times the number of pairs of neighbours 
RW. This number is equal to the total number of atoms N, times the
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probability for right atoms, r/(w +  r), times the average number of wrong 
neighbours of a right atom, S (nrn)/r. Therefore

E =  NVE (nrn)/(w +  r).

Using (1), we can calculate the order of neighbours

1 - ,  =  ^ ' ,
z w +  r

which according to (9), (10) becomes

1 „ ex r1 — cr =  4 ----------------- .
1 +  ex w -f- r

(16)

(17)

Now from (13) and (13a) we deduce 13b)

W? /P — g«/(z—1) __ £—2z8
so that

j _  ^  ̂ ex______ 1 _  2 sinh — 2)
1 +  ex 1 +  ez'l(3~v sinh (2 — 2)S cosh z 8

(18)

(19)

where e may be expressed in terms of x, by making use of (14).
The order at long distances is simply

S =  - -  tanh z8. (20)
r +  w

This reaches zero at the critical temperature (s =  1), whereas for the 
order of neighbours at that temperature we find (cf. (17), (15))

1 — (j0 =  2 *o .
1 +  x0

1 -  x 0 
1 +  x0 (21)

We now proceed to calculate the specific heat near the critical tempera
ture. We find from (14), (20)

* =  z 2 (1 1)§2 +  ...), 
Z

(14a)

S =  z8 — ... , (20 a)

and, after some calculation,

1 -  <7 =  — ^(1 - S * 2 ( z - i )  + .. .) ,  
z  — I

(19a)

^ - ( r b J < * - *
(22)
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For the specific heat per atom we obtain, using (1) and (3)

c  —  _____  z _ k. j  (1 — ct)
* N dT“ 4 ( g }

z — 2
4 \z  — 1(f-z -  1) log 2\2 (23)

Above the critical temperature, we have according to (4),

o =  (1 — *)/(l +  x),
therefore

/ d (1 — a)\1 -  2 — JL,( 2 \2
\ dx ) x > X o  (1 +  x 0)2 U  —  1 /

and the ratio of the specific heat below and above 0  becomes

(24)

£v (T Q) _  _2
cv(T > 0 ) (25)

Numerically, we obtain the following values for the specific heat just 
above and below the Curie point:—

Number Specific heat per atom
of Structure

neighbours Below Above
2 linear chain 0 0
4 quadratic 2-14 k 0-214 k
6 simple cubic 1-90 0-119
8 cubic body-centred 1-78 0-081

12 cubic face-centred 1-68 0-049
00 — 1-50 0

The long-distance order changes near the Curie point as the root of
0  — T, viz., according to (14a) and (20a),

s  -  *  -  * V 0 -  T

0
(26)

e.g., for a simple cubic lattice S =  2-09 V (0  — T)/0, for z =  00, we 
have S — 1 *73 V (0  — T)/0. The long-distance order increases the 
more rapidly with decreasing temperature the smaller the number of 
neighbours of each atom. Accordingly, the specific heat near the Curie 
point also increases with decreasing z



Statistical Theory of Superlattices 567

7—Comparison with the Theory of Bragg and W illiams

For an infinite number of neighbours z, our theory goes over exactly 
into that of Bragg and Williams, putting their V0 equal to 2z times 
our V.

If we introduce 8 as in (13b), z8 must be of order unity because of 
(20a), therefore 8 <  1, and according to (14a), (20)

_  sinh (z — 2) 8 _ . _  28 _ .
sinhz8 tanhzS S '

On the other hand, VjkT  is small in the interesting temperature range, 
since zV/lcT is of the order unity. Therefore the definition (3) for x 
becomes

x =  1 -  V/kT  =  1 -  25/S,
which means

5 =  VS/2AT.

Introducing this into (20a), we find

S =  tanh z 8 =  tanh (VzS/2£T) =  tanh (V0S /4/cT),

i.e., the principal equation of the theory of Bragg and Williams.
For the “ order of neighbours ” follows from (19)

1 - "  =  4 (3 3 iib s ? ; a =  (tanh zS)2 =  S \

also identical with the assumption of Bragg and Williams. Therefore 
all consequences of their theory also follow from our first approximation 
for z — oo .

8—Second A pproximation

The “ outer shells ” have not only the effect of making the atoms in 
the first shell “ right ”—which we treated in § 6—but also of making 
them equal to each other, as we know from § 5. We now make essentially 
the same approximation as in § 5, only we assume in addition that the 
outer shells make it more probable to find an R-atom in the second shell 
than a W-atom. We therefore introduce, as in § 6, a factor e in the 
partition function for each wrong atom in the second shell, and we deter
mine e from the condition that the probability to find a wrong atom is 
the same for the centre atom as for an atom in the first shell.

The reasoning is now exactly similar to § 5. Consider, e.g., a corner 
atom in the second shell beside a right atom in the first. The con
tribution to the partition function is simply unity, if the corner atom is 
right, and it is sx if the atom is “ wrong,” where the factor x arises from

VOL. CL.—A. 2 Q
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the interaction with the neighbour in the first shell (as in § 5), while e is 
introduced by the interaction with the outer shells. Thus the p.f. of 
the corner atom is 1 +  ex if it lies beside an R-atom in the first shell, 
and similarly it may be shown to be x +  e if the neighbouring first shell 
atom is W.

The factor in the p.f. corresponding to a “ medium atom ” in the 
second shell is

1 +  sx2, if its two nearest neighbours in the first shell are both R ; 
s +  x2, if both nearest neighbours are W ; 
x (1 +  s), if one of them is a W, the other an R-atom.

For £ =  1 these formulae go over into those of § 5.
A given configuration of the first shell may be characterized by the 

number n of wrong atoms in the shell and the number m of pairs of 
unequal neighbours in it. * Then the number of R-atoms is z the 
number of neighbouring pairs WW is (}z 1) and the number
of pairs RR is Qz — 1 ) ( z  — n) — %m. For each atom in the first shell 
of a quadratic or simple cubic lattice has z — 2 neighbours in the first 
shell, viz., all atoms of that shell except the diametrically opposite and 
itself. Therefore we have

(z — 2) x number of W-atoms =  number of RW-pairs +  2 x number 
of WW-pairs,

(z — 2) x number of R-atoms =  number of RW-pairs +  2 x number 
of RR-pairs,

which gives the above expressions for the number of RR and WW pairs.
If we now put equal to unity, the partition function that all atoms of the 

first shell are R, we have to introduce a factor (s +  x)/(l +  ex) for each 
W-atom in the first shell (because of the interaction with corner atoms), a 
factor (e +  x2)/(l +  sx2) for each pair of neighbours WW, and a factor 
x ( l  +  e)/(1 +  ex2) for each pair RW.

Therefore the partition function for any configuration of the first
shell becomes

with

S n

S n

( £ +  X\” / £ +  x2\ (i"-1)n- im/x ( l  +  S)\m 
\1 +  ex) \1 +  ex2' \ 1 +  £X2
X" [jdm

£ +  X / £ +  X2 ' f - 1
1 +  ex \ 1 +  sx2/ 

x2 (1 +  e)2
^ (1 +  ex2) (e +  x2)

(27)
(28)

* Cf. footnote, p. 556.
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gnm =  statistical weight. It is more convenient to divide (27) by A*2, so 
that

P 'n m  =  g n m  ̂  (27a)
It remains to consider the interaction with the central atom. The 
partition function that the central atom is right and that rt wrong atoms 
occur in the first shell, becomes

r =  P' v”' nm nm •/v 5 (29)
and the partition function of the same configuration with a wrong central 
atom is

--  P' V Z — n/w -m •'V (29a)

The parameter s has to be fixed by the condition of equal “ long-distance 
order ” at the centre and in the first shell:

2  wnm = l2 n(rnm +  wnm), (30)
nm Z nm

the order of neighbours is then given by (16).
In discussing these equations, we first consider the “ Curie point.” 

Near that point, e may be put equal to 1 — 8 with 8 <C 1. Then

X =  1

whereas
1 -f- x 1 +  A2 +

2x \2
1 +  Xs 1 + i § 2

1 r2 2

>. 1 +  X 2/
+

Therefore, neglecting 82, we have

y- =  [j.0 =  +  x2)2, |
X = 1  — K, J

Then
rnm =  gnmXny.^m (1 — (n — \z) k) =  p nm (1 +  — n) k),

(31)

(32)

where pnm is the probability for the configuration nm as calculated in 
§ 5, i.e.,assuming no long-distance order. It is simply a function of v 
(temperature), and e enters the probability rnm only in the factor

1 +  (i* — K-
Adding the probabilities of the various configurations having the same 
number n of W-atoms in the first shell, we may rewrite (32):

rn = />„(! +  (\z  ~  n) (32a)
pn is the probability that—with no long-distance order—n atoms of the 
first shell are equal to the central atom.

2 Q 2
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Similarly, we obtain
w„ =  Pz- n (1 +  Qz ~  n) k) (32b)

because, if the central atom is wrong, all the right atoms of the first 
shell are equal to it, i.e., z  — natoms. Summing (32a) over n, we obtain

r =  Zpn +  2 (}z — ri) 1 +  i Z/c(70. (33)

For 'Lpn is the sum of the probabilities of all configurations of the first 
shell and therefore unity, whereas

=  (34)

is the probability of finding (with vanishing long-distance order) an 
unequal atom beside the central atom minus that of finding an equal one 
there (z — nof the z first shell atoms are unequal, n equal to the central 
atom).

Similarly to (33), we obtain

where

w -  (1 -  (iz  -  n) k) =  1 -  \zKa0, (33a)

\  s  nrn = r — S (l -  rn =  r -<r0 -  £zp (35)

\  ZnWn =  \2 (z ~  n)wz_„ =  w +  S^l - ^  wz_„

=  w +  <t0 — & PK> (35a)

/ 9m\2
P =  s ( l  ~ ) P n . (36)

Adding (35) and (35a) and using (30), we obtain

2 12w =  -  Sn +  wn) =  +  — zp/c
z I- >

r — w =  zp/c, ,

whereas from (33), (33a) we find

z c 0k .

(37)

(37a)

In order that these two equations should be consistent, we must have

a0 =  p. (38)

This is the condition for the Curie point. At high temperatures, p >  c0, 
because p must be positive and a0 vanishes for T =  oo . (At T =  oo p has
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the value 1 /z.) At low temperatures, p <  cr0, because pn is only large 
for very small n. For the simple cubic lattice, the condition (38) is 
fulfilled for

* x0 =  0-6563,

corresponding to 0  =  2-372Y/k, whereas in the first approximation 
(6) we find x0 =  0 • 6667. The Curie point is therefore slightly lowered by 
the improvement in the approximation.

By taking higher powers in k into account, k can be determined as a 
function of temperature. A quadratic equation is obtained in this way, 
viz.,

*2 s  S U _  2«\4 _  (i_  M 3 I 1________ 0  +  *o)2________
n t \  z )\ Z ?  ( f z  —  1 )  (1  +  X 0) 2 +  1 +  X 02

therefore
P, (39)

K2 C q — p «/> 0  — T.

9— R esults

For the simple cubic lattice, we find (in second approximation) 

k2 =  35-7 (x0 -  x)

S -£ = ^ = 3 m 0= V T 9 ^ ^ = T )= 2 -3 2 ^ /! tz l ,

= © — 24 • 60%,

and for the specific heat

cv =  2-lAk  just below -i
}> the critical temperature. 

cv =  0 • 203 :̂ just above J

The transition point is therefore a little more marked than in the first 
approximation, the “ distant order ” S increases more rapidly below 0  
and so does the “ order of neighbours ” a, which causes a slightly (12%) 
larger specific heat.

The order has been calculated numerically for various temperatures. 
The result is given in figs. 4 to 6, which all refer to a simple cubic lattice. 
Fig. 4 gives the “ order of neighbours ” as a function of temperature for 
various approximations, viz.,

(a) for the linear chain approximation (equation (4));
(b)  for the second approximation with no long-distance order (§ 5);
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(c) for the approximation of Bragg and Williams;
(i d) and (e) for the first and second approximation with order at long 

distances (§§ 6 and 8).

Fig. 5 gives the long-distance order according to the approximations 
c, d, e, fig. 6 the specific heat. The latter is seen to increase near the 
Curie point with improving approximation.

The results may be checked to some extent by the following method.
It is known that the total energy of any statistical system is connected 

with its total partition function P by

dlog P 
d ( l / kT ) '

(40)

Now, for T =  0 the p.f. (partition function) is 2, corresponding to the 
two perfectly ordered states of the crystal which have energy zero (S =  1 
and S =  — 1). For T =  °o , the energy is irrelevant, therefore the 
contribution of each state of the crystal to the p.f. is 1. The £N A-atoms
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and the B-atoms may be distributed in any arbitrary way 
N lattice points, that gives

different distributions. Therefore

log St=00 =  N log 2; log ST=0 =  0

Fig. 5
and (40) becomes

f E  (J)d( l /kT)  ST=00 -  ST=0 =  N log 2 
Jo

which gives with (1) and (3)

f1 ^  (1 -  c) =  log 2.
Jo x z

over the

(41)

(42)

In our case, z — 6, so that the right-hand side of equation (42) is 0-462. 
The left-hand side is 0-465 if the final results of § 8 are inserted, whereas
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the approximation of § 5 gives a result 50% too high. The small difference 
between the “ first approximation,” considering long-distance order, and 
the second also seems to show that the final approximation is rather good.

I wish to thank Professor W. L. Bragg very much for suggesting this 
problem and for many discussions. My special thanks are due to my 
friend Dr. Peierls, who gave innumerable valuable suggestions. In 
fact, the method of approximation outlined in § 5 is entirely due to him, 
and all improvements of the calculation were done on similar lines.

Sum m ary

The order in an alloy containing two sorts of atoms in equal proportion 
is calculated statistically, assuming interaction only between nearest 
neighbours. At high temperatures, there is only a correlation between 
near atoms, the state of the crystal as regards order is similar to a liquid.



At low temperatures, the crystal as a whole is ordered, the structure is 
“ solid-like.” This order at long distances is restricted to two or more 
dimensions. *

The long-distance order and the energy as functions of temperature 
are both discussed qualitatively (§4) and calculated (§§ 6 to 9). It is 
shown that the theory of Bragg and Williams gives a fair first approxi
mation. The long-distance order vanishes (with vertical tangent) at 
a certain critical temperature 0. All the physical quantities plotted as 
functions of T have a kink at T =  0  but no jump. This is due to the 
fact that two “ symmetrical ” states exist, having the same energy (§ 4)- 
The derivatives of physical quantities, such as the specific heat, have 
jumps at the critical temperature. The extra specific heat due to the 
destruction of order is rather large on the low-temperature side of the 
critical temperature; it is 70% of the ordinary specific heat due to thermal 
motion of the atoms (provided all atoms of the crystal take part in the 
transition). On the high-temperature side of 0, it falls to about 10% 
of this value. Higher above the critical temperature, the specific heat 
decreases, but not very rapidly.

* This should be noted in connection with ferromagnetism which is restricted to 
three dimensions, due to a quantum mechanical effect.
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