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Undecidability of the spectral gap
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The spectral gap is one of the most important physical properties 
of a quantum many-body system, determining much of its low- 
energy physics. Gapped systems exhibit non-critical behaviour (for 
example, massive excitations and short-range correlations), whereas 
phase transitions occur when the spectral gap vanishes and the sys-
tem exhibits critical behaviour (for example, massless excitations and 
long-range correlations). Many seminal results in condensed matter 
theory prove that specific systems are gapped or gapless, for exam-
ple, that the Heisenberg chain is gapless for half-integer spin1 (later 
extended to higher dimensions2), or that the 1D AKLT (Affleck–
Kennedy–Lieb–Tasaki) model is gapped3. Similarly, many famous 
and long-standing open problems in theoretical physics concern the 
presence or absence of a spectral gap. A paradigmatic example is 
the antiferromagnetic Heisenberg model in 1D with integer spins.  
The ‘Haldane conjecture’ that this model is gapped, first formulated 
in 19834, has yet to be rigorously proven despite strong supporting 
numerical evidence5. The same question in the case of 2D non-bipartite  
lattices such as the kagome lattice was posed in 19736. Numerical 
evidence7 strongly indicates that these systems may be topological 
spin liquids. This problem has attracted substantial attention8 because 
materials such as herbertsmithite9 have emerged whose interactions 
are well-approximated by the Heisenberg coupling. The presence of a 
spectral gap in these models remains one of the main unsolved ques-
tions concerning the long-sought topological spin liquid phase. In 
the related setting of quantum field theory, one of the most notorious 
open problems again concerns a spectral gap—the Yang–Mills mass 
gap problem10. Proving the existence of a gap in Yang–Mills theory 
could provide a full explanation of the phenomenon of quark con-
finement. Although there is strong supporting evidence of such a gap 
from numerical lattice quantum chromodynamics computations11, 
the problem remains open.

All of these problems are specific instances of the general spectral 
gap problem: given a quantum many-body Hamiltonian, is the system 
it describes gapped or gapless? Our main result is to prove that the 
spectral gap problem is undecidable in general. This involves more than 
merely showing that the problem is computationally or mathematically 

hard. Although one may be able to solve the spectral gap problem in 
specific cases, our result implies that it is, in general, logically impossi-
ble to determine whether a system is gapped or gapless. This statement 
has two meanings, and we prove both.

(1) The spectral gap problem is algorithmically undecidable: there 
cannot exist any algorithm that, given a description of the local inter-
actions, determines whether the resultant model is gapped or gapless. 
This is the same sense in which the halting problem is undecidable12.

(2) The spectral gap problem is axiomatically independent: given 
any consistent recursive axiomatization of mathematics, there exist 
particular quantum many-body Hamiltonians for which the presence 
or absence of the spectral gap is not determined by these axioms. This 
is the form of undecidability encountered in Gödel’s incompleteness 
theorem13.

Precise statement of results
It is important to be precise in what we mean by the spectral gap prob-
lem. To this end, we must first specify the systems we are considering. 
Because we are proving undecidability, the simpler the system, the 
stronger the result. We restrict ourselves to nearest-neighbour, trans-
lationally invariant spin lattice models on a 2D square lattice of size 
L × L (which we later take to ∞), with local Hilbert space dimension 
d. Any such Hamiltonian HL is completely specified by at most three 
finite-dimensional Hermitian matrices describing the local interactions 
of the system: two d2 × d2 matrices hrow and hcol that specify the inter-
actions along the rows and columns of the lattice, and a d × d matrix h1 
that specifies any on-site interaction. All matrix elements will be  
algebraic numbers, and we normalize the interaction strength such that 

=h h hmax{ , , } 1row col 1 .
We must also be precise in what we mean by ‘gapped’ and ‘gapless’ 

(see Fig. 1). Because quantum phase transitions occur in the ther-
modynamic limit of arbitrarily large system size, we are interested in 
the spectral gap Δ(HL) = λ1(HL) − λ0(HL) as the system size L → ∞ 
(where λ0 and λ1 are the eigenvalues of HL with the smallest and  
second-smallest magnitude). We take ‘gapped’ to mean that the system has  
a unique ground state and a constant lower bound on the spectral gap: 
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Δ(HL) ≥ γ > 0 for all sufficiently large L. We take ‘gapless’ to mean 
the system has continuous spectrum above the ground state in the  
thermodynamic limit.

Here gapped is not the negation of gapless; there are systems that 
fall into neither category. We adopt such strong definitions to delib-
erately exclude ambiguous cases, such as systems with degenerate 
ground states. A Hamiltonian that is gapped or gapless according to 
the above definitions is recognized as such throughout the literature. 
We show that the spectral gap problem is undecidable even given that 
the Hamiltonian either has a unique ground state and a spectral gap of 
magnitude one, or has continuous spectrum above the ground state.

We prove this by showing that the halting problem for Turing 
machines can be encoded in the spectral gap problem, implying that 
the latter is at least as hard as the former. A Turing machine is a simple, 
abstract model of computation in which a head reads and writes sym-
bols from some finite alphabet on an infinite tape and moves left or 
right, following a finite set of rules. The halting problem asks: given an 
initial input written on the tape, does the Turing machine halt? Turing 
proved that this problem is undecidable12; we relate it to the spectral 
gap problem in the following way.

Theorem 1
We can explicitly construct a dimension d, d2 × d2 matrices A, B, C and 
D, and a rational number β > 0, which can be chosen to be as small as 
desired, such that

(i) A is Hermitian, with matrix elements in Z Z Zβ+ + β
2

;
(ii) B and C have integer matrix elements; and
(iii) D is Hermitian, with matrix elements in {0, 1, β}.
For each positive integer n, define the local interactions of a transla-

tionally invariant, nearest-neighbour Hamiltonian H(n) on a 2D square 
lattice as

† †
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where ϕ( )= / | |−n n 2 n 1 is the rational number whose binary fraction 
expansion contains the binary digits of n after the decimal point, |ϕ(n)| 
denotes the number of digits in this expansion, α(n) ≤ β is an algebraic 
number that is computable from n, Π  is a projector and the daggers 
denote Hermitian conjugation. Then

(i) the local interaction strength is ≤1 (that is, ( ) ( ) ≤h n h h n, , 11 row col 
( ) ( ) ≤h n h h n, , 11 row col );

(ii) if the universal Turing machine halts on input n, the Hamiltonian 
H(n) is gapped with γ ≥ 1; and

(iii) if the universal Turing machine does not halt on input n, the 
Hamiltonian H(n) is gapless (that is, has continuous spectrum).

Theorem 1 implies that the spectral gap problem is algorithmically 
undecidable because the halting problem is. By a standard argument14 
algorithmic undecidability also implies axiomatic independence. Both 
forms of undecidability extend to other low-temperature properties 
of quantum systems, such as critical correlations in the ground state. 
In fact, our method allows us to prove undecidability of any physical 
property that distinguishes a Hamiltonian from a gapped system with 
unique, product ground state.

Hamiltonian construction
We first relate undecidability of the spectral gap to undecidability of 
another important physical quantity, the ground state energy density, 
which, for a 2D lattice, is given by λ= ( )/ρ

→∞
E H Llim [ ]

L
L0

2 . We then  

transform the halting problem into a question about ground state 
energy densities.

Reducing the ground state energy density problem to the spectral 
gap problem requires two ingredients.

(1) It requires a translationally invariant Hamiltonian Hu(ϕ) on a 2D 
square lattice with local interactions hu(ϕ), whose ground state energy 
density is either strictly positive or tends to zero from below in the 
thermodynamic limit, depending on the value of an external parame-
ter ϕ; however, determining which case holds should be undecidable. 
Constructing such a Hamiltonian constitutes the main technical work 
of our result. (These properties of Hu(ϕ) are unaffected if we multiply 
hu(ϕ) by an arbitrary fixed rational number β, no matter how small.)

(2) It requires a gapless Hamiltonian Hd with translationally invariant 
local interactions hd and a ground state energy of zero. (Recall that by 
‘gapless’ we mean continuous spectrum above the ground state, not 
merely a vanishing spectral gap.) There are many well-known examples 
of such Hamiltonians, for example, that associated with the critical  
XY model1.

Given Hamiltonians with these properties, we construct a new trans-
lationally invariant Hamiltonian, with local interactions h(ϕ), that is 
gapped or gapless depending on the value of ϕ. The local Hilbert space 
of h(ϕ) is the tensor product of those of hu and hd together with one 
additional energy level: = | 〉⊕ ⊗H H H0 u d . We take the interaction 
h(i, j) between nearest-neighbour sites i and j to be

ϕ ϕ( ) = | 〉〈 | ⊗ ( − | 〉〈 |) + ( )⊗

+ ⊗
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The spectrum of the new Hamiltonian H is

ϕ= ( )+ ( )∪ ∪H H H Sspec {0} {spec spec } 2u d

with S ≥ 1 (see Supplementary Information for details). Recalling that 
we chose Hd to be gapless, we see immediately from equation (2) that if 
the ground state energy density of Hu tends to zero from below (so that 
λ0(Hu) < 0), then H(ϕ) is gapless; if Hu has a strictly positive ground 
state energy density (so that λ0(Hu) diverges to +∞), then it has a  
spectral gap ≥1, as required (see Fig. 2).

This construction is rather general: by choosing different hd, we 
obtain undecidability of any physical property that distinguishes a 
Hamiltonian from a gapped system with a unique product ground state.

Encoding computation in ground states
To construct the Hamiltonian Hu(ϕ), we encode the halting problem 
into the local interactions hu(ϕ) of the Hamiltonian. The halting prob-
lem concerns the dynamics of a classical system—a Turing machine. 
To relate it to the ground state energy density—a static property of a 
quantum system—we construct a Hamiltonian whose ground state 
encodes the entire history of the computation carried out by the Turing 

Figure 1 | Gapped and gapless systems. a, A gapped system has a unique 
ground state λ0(H) and a constant lower-bound γ on the spectral gap 
Δ(H) = λ1 − λ0 in the thermodynamic limit. b, A gapless system has 
continuous spectrum λi(H) above the ground state in the thermodynamic 
limit.
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machine in superposition15: if the state of the computation at time t is 
represented by the state vector ψ| 〉t , and the computation runs until time 
T, then the ground state is the so-called ‘computational history state’ 

ψ∑ | 〉| 〉=
− t

T t
T

t
1

0
1  . In the following, when we refer to the Turing machines 

encoded in the Hamiltonian ‘running’ on some input, we mean that the 
evolution produced by running the Turing machine on that input 
appears in the ground state as the corresponding computational history 
state.

If there are no other constraints, writing down a Hamiltonian whose 
ground state is the computational history state is straightforward. 
However, constructing such a Hamiltonian out of the local interactions 
of a many-body system is more involved. The construction method of 
ref. 15 was later substantially developed16 and, after a long sequence 
of results17–19, culminated in the construction for 1D spin chains with 
translationally invariant, nearest-neighbour interactions presented 
in ref. 20.

For any quantum Turing machine21 (QTM), an interaction h between 
neighbouring particles may be constructed20 such that the ground state 
of the 1D translationally invariant Hamiltonian =∑ = +H hi

N
i iGI 1 , 1 is of 

the form ψ∑ | 〉| 〉= t
T t

T
t

1
1 , where the ‘clock’ part of the computational  

history state | 〉≈ | 〉 | 〉⊗ ⊗ −t 1 0t N t counts time in unary, and ψ| 〉t  represents 
the state of the QTM after t time-steps. Moreover, the ground state 
energy may be taken equal to zero.

The translationally invariant Hamiltonians we are considering are 
completely specified by the finite number of matrix elements in the 
local interactions hrow, hcol and h1. To encode the halting problem in 

the Hamiltonian, we use quantum phase estimation22 to encode any of 
the countably infinite possible inputs to the universal Turing machine 
(UTM) into these matrix elements.

Quantum phase estimation
Given a unitary matrix U, the quantum phase estimation algorithm 
estimates an eigenvalue e2πiϕ of U to a given number of bits of preci-
sion (which must be chosen in advance). It is well-known22 that if the 
number of bits of precision in the quantum phase estimation algorithm 
is greater than or equal to the number of digits in the binary fraction 
expansion of ϕ, then the quantum phase estimation algorithm, rather 
than estimating the phase approximately, will output all the digits of ϕ 
(written as a binary fraction) exactly.

We use this property to construct a family of QTMs Pn, indexed by 
N∈n , with the following properties: (i) the number of internal states 

and tape symbols of Pn are independent of n; and (ii) given a number 
N = 2x − 1 ≥ n, with N∈x , as input (written in binary), Pn writes the 
binary expansion of n on its tape and then halts deterministically. (The 
reason for having the input N of this form will become clear later.) To 
construct Pn, we construct a QTM that uses the input N to determine 
how many digits of precision to use, then runs the quantum phase  

estimation algorithm on the single-qubit gate  =





ϕπU 1 0

0 e i2  . The phase  

ϕ in U is determined by the transition rules of the QTM21. Choosing 
ϕ to be the rational number whose binary fraction expansion contains 
the digits of n (expressed in binary) achieves the desired behaviour  
for Pn. By ‘dovetailing’ Pn with a UTM (that is, running Pn first, then 
running the UTM), the UTM runs on the input specified by ϕ.

The quantum computation carried out by Pn followed by the UTM 
is encoded in the Hamiltonian using the history state construction 
described above. The phase e2πiϕ being estimated then becomes one of 
the matrix elements of the Hamiltonian. The same happens with the 
π ϕ−| |e i 2  term that appears in the inverse quantum Fourier transform—

the key ingredient of the quantum phase estimation algorithm.
Finally, we must ensure that the ψ| 〉0  component of the history state 

is correctly initialized to input of the form N = 2x − 1 (written in binary) 
required by Pn. But N = 2x − 1 in binary is simply a string of N ‘1’s, and 
it is easy to ensure that ψ| 〉0  is the state | 〉⊗1 N using translationally invar-
iant local interactions.

If we add an on-site interaction = | 〉〈 |� �h1  to the history-state 
Hamiltonian constructed above, which gives additional energy to the 
halting state  | 〉� , then its ground state will pick up additional energy if 
and only if the UTM halts. However, the ground state energy still con-
verges to zero as L → ∞ in both cases (see Supplementary Information). 
The energy density therefore tends to zero in the thermodynamic limit, 
whether or not the UTM halts.

To remedy this, and amplify the difference between the halting and 
non-halting cases, we use the second spatial dimension and exploit 
Wang tilings.

Quasi-periodic tilings
A Wang tile23 is a square with markings along each edge. A tiling is then 
an arrangement of such tiles covering the whole plane, so that the mark-
ings on adjacent edges match. A tiling can easily be encoded in  
a ground state of a classical Hamiltonian on a 2D square lattice: by 
representing tile types by an orthogonal basis | 〉T{ } for the local Hilbert 
space Hc, and choosing local interaction terms | 〉〈 |⊗ | 〉〈 |T T T Ti i j j  to  
give an energy penalty to all adjacent non-matching pairs of tiles Ti, Tj, 
a tiling of the plane is equivalent to a ground state with zero energy.

We prove, and subsequently exploit, very particular properties of the 
aperiodic Robinson tiling24, and combine them with the history-state 
Hamiltonian. Although the pattern of tiles in the Robinson tiling 
extends infinitely in all directions, it never repeats. More precisely, it 
contains periodically repeating subpatterns that form squares with sizes 
given by 4k for all N∈k  (see Fig. 3). This periodicity allows us to encode 

Figure 2 | Relating ground state energy density to spectral gap. a–c, To 
relate ground state energy density and spectral gap, we need a Hamiltonian 
Hu(ϕ) whose ground state energy density is either strictly positive or tends 
to zero from below in the thermodynamic limit, but determining which is 
undecidable (a), and a gapless Hamiltonian Hd with a ground state energy 
of zero (b). We combine Hu(ϕ) and Hd to form a new local interaction, 
h(ϕ), in such a way that H(ϕ) has an additional non-degenerate zero-
energy eigenstate | 0〉  (c), and that the continuous spectrum of Hd is shifted 
immediately above the ground state energy of Hu. d, If the ground state 
energy density of Hu(ϕ) tends to zero from below, then its ground state 
energy in the thermodynamic limit must be ≤0, and H(ϕ) is gapless.  
e, Alternatively, if the ground state energy density of Hu(ϕ) is strictly 
positive, then its ground state energy in the thermodynamic limit must 
diverge to + ∞, and H(ϕ) is gapped with gap Δ(H) ≥ 1.
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in the ground state many copies of the UTM running on the same input 
ϕ, with tapes of all possible finite lengths and for every possible finite 
run time (see Fig. 3).

This encoding is achieved by sandwiching the 1D quantum history- 
state Hamiltonian hq ‘on top of ’ the Robinson-tiling Hamiltonian hc to 
form two ‘layers’, so that the local Hilbert space at each site is 
= ⊗( ⊕ )H H H Hc e q  (where = | 〉H 0e  is an additional energy level). 

One can then construct a Hamiltonian (see Supplementary 
Information) whose ground state is of the form ψ| 〉 ⊗ | 〉T c eq, where | 〉T c 
is a product state representing a classical configuration of the tiling layer 
and ψ| 〉eq contains—in a tensor product structure—computational his-
tory states along one edge (a ‘segment’) of all of the squares appearing 
in the configuration given by T. These computational history states are 
essentially the only constituents of  ψ| 〉eq that contribute to the energy. 
The Hamiltonian also has an on-site interaction = | 〉〈 |� �h1   that gives 
an additional energy to the halting state of the Turing machine | 〉� . 
Hence the ground state will pick up additional energy from all encoded 
Turing machines that halt. This energy still decreases as the relevant 

system size increases, which, however, is now the size of the corre-
sponding segment in the Robinson tiling (see Fig. 3), not the overall 
system size.

We now consider the ground state energy. If the UTM does not halt 
on input n, then | 〉T c is a valid tiling and for all segments that are larger 
than | n| , the ground state energy contribution is zero. The contribution 
for each segment smaller than | n|  is some algebraic computable number. 
If α(n) is the sum of the contributions of all segments smaller than | n| , 
then the addition of the constant energy shift α=− ( )�h n1  to the 
Hamiltonian makes the ground state energy density negative (but tend-
ing to zero from below as L → ∞) in the non-halting case (see 
Supplementary Information).

In the halting case, one of two things may happen. If  | 〉T c is a valid 
tiling, then the number of squares large enough for the encoded Turing 
machine to halt grows quadratically with system size, and each square 
contributes a small but non-zero energy. Because such a state also picks 
up the energy contribution from segments of size smaller than | n| , the 
energy diverges with lattice size even after adding α=− ( )�h n1 . Hence 
the ground state energy density is strictly positive in the halting case, 
as desired.

Alternatively, one could try to reduce the energy by introducing 
defects in the tiling, which effectively ‘break’ some of the Turing 
machines so that they do not halt. However, we prove that the Robinson 
tiling is robust to such defects: a tile mismatch only affects the pattern 
of squares in a finite region around the defect, and each defect contrib-
utes ( )O 1  energy. We can choose the parameters (see Supplementary 
Information) to guarantee that introducing defects is energetically 
unfavourable. This completes the argument establishing our main 
result, Theorem 1.

Additional technical details can be found in the Supplementary 
Information.

Discussion
We now discuss both the implications and the limitations of these 
results. This result is relevant to mathematical models of quantum 
many-body systems, as well as the behaviour of, and methods for 
treating, the thermodynamic limit. Moreover, it can also be seen as an 
indication of new physical phenomena.

An immediate consequence of the undecidability of the spectral 
gap is that there cannot exist an algorithm or a computable criterion 
that solves the spectral gap problem in general. Although algorithmic 
undecidability always concerns infinite families of systems, the axio-
matic interpretation of the result also allows us to apply it to individual  
systems: there are particular Hamiltonians within these families for 
which one can neither prove nor disprove the presence of a gap, or of 
any other undecidable property. Unfortunately, our methods cannot 
pinpoint these particular cases, let alone prove that one of the afore-
mentioned long-standing open problems is axiomatically undecidable.

A further consequence concerns the behaviour of the thermody-
namic limit. In practice, we usually probe the idealized infinite ther-
modynamic limit by studying how the system behaves as we consider 
finite systems of increasing size. One often assumes that the systems, 
although finite, are so large that the asymptotic behaviour is already 
observed. In numerical simulations of condensed matter systems, one 
typically simulates finite systems of increasing size and extrapolates the 
asymptotic behaviour from the finite-size scaling25. Similarly, lattice 
quantum chromodynamics calculations simulate finite lattice spacings, 
and extrapolate the results to the continuum11. Renormalization group 
techniques accomplish something similar mathematically26; however, 
the undecidable quantum many-body models constructed in this work 
exhibit behaviour that defeats such approaches, in the following way. 
As the system size increases, the Hamiltonian will initially look like a 
gapless system, with the low-energy spectrum appearing to converge 
to a continuum. But at some threshold lattice size, a spectral gap of 
magnitude one will suddenly appear (or, vice versa, a gap will suddenly 
close27). Not only can the lattice size at which the system switches from 

Figure 3 | Complete Hamiltonian construction. a–c, The Robinson tiles 
enforce a recursive pattern of interlocking squares, the sizes of which are 
given by 4k for all N∈k  (b). As with any Wang tiling, we can readily 
represent this tiling as a classical Hamiltonian whose ground state has the 
same quasi-periodic structure. Because the set of tiles is fixed, the local 
dimension of this Hamiltonian is constant. By adding a ‘quantum layer’  
on top of the Robinson-tiling Hamiltonian and choosing a suitable 
translationally invariant coupling between the layers, we effectively place 
copies of the QTM encoded in a 1D history-state Hamiltonian (a) along 
one edge of all of the squares. The ground state of this Hamiltonian 
consists of the Robinson tiling configuration in the tiling layer, with 
computational history states in the quantum layer along one edge of each 
square in the tiling (c). Each of these encodes the evolution of the same 
quantum phase estimation algorithm and UTM. The effective tape length 
available for each QTM is determined by the size of the square it ‘runs’ on.
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gapless to gapped be arbitrarily large, the threshold at which this transi-
tion occurs is uncomputable. The analogous implication also holds for 
all other undecidable low-temperature properties. Thus, any method of 
extrapolating the asymptotic behaviour from finite system sizes must 
fail in general.

This conclusion leads us directly to new physical phenomena. First, 
it hints at a new type of ‘phase transition’, which is not driven by tem-
perature or extrinsic local parameters, but by the size of the system. 
Some of the models constructed in the proof of Theorem 1 exhibit a 
drastic and abrupt change of properties when their size is increased 
beyond a certain scale. The scale at which this happens can be very 
large, and is not generally computable from the local description of 
the system. Second, our results show that certain quantum many-body 
models exhibit a radical form of instability. An arbitrarily small change 
in the parameters can cause the system to cross an arbitrary number of 
gapped/gapless transitions. In a sense, this phenomenon is the source 
of the undecidability in our models.

We finish with a closer look at some of the limitations of our results. 
First, all our results concern 2D (or higher-dimensional) systems. 
Although the majority of our construction is already 1D, we do not 
currently know whether the entire result holds in 1D as well. Second, 
although a theoretical model of a quantum many-body system is 
always an idealisation of the real physics, the models we construct in 
the proof of Theorem 1 are highly artificial. Whether the results can 
be extended to more natural models is yet to be determined. A related 
point is that we prove undecidabiltiy of the spectral gap (and other 
low-temperature properties) for Hamiltonians with a very particular 
form. We do not know how stable the results are to small deviations 
from this. This is a general issue with most many-body models; stabil-
ity in this sense is not understood even for much simpler models such 
as the Ising model. Recent stability proofs only apply to certain types 
of frustration-free Hamiltonians28,29. Our results restrict the extent to 
which such stability results can be generalized. Similarly, we do not 
know whether the results hold for systems with low-dimensional local 
Hilbert spaces. Although the dimension d in Theorem 1 is fixed and 
finite, providing an estimate for it would be cumbersome and certainly 
involve large exponentials. However, the steps in the proof described 
above are not tailored to minimizing this dimension. Whether there is 
a non-trivial bound on the dimension of the local Hilbert space below 
which the spectral gap problem becomes decidable is an intriguing 
open question.
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