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We briefly review the synchronization properties of cross-coupled spatially extended dynamical
systems, with particular emphasis on elementary cellular automata and Kauffman networks
subject to stochastic coupling. We also discuss the main results for the joint evolution of deter-
ministically cross-coupled Ginzburg–Landau equations and neural networks. Both numerical
and analytical approaches are addressed, and the main differences with the synchronization of
zero-dimensional systems are highlighted. New results are presented characterizing the critical
behavior at the synchronization transition of coupled Kauffman networks.

Keywords : Author to supply.

1. Introduction: Synchronization
of Dynamical Systems

Spontaneous synchronization — namely, the tem-
poral self-organization of the activity of interacting
dynamical elements — is observed in a wide class
of natural systems. Probably the first reported ob-
servation of a synchronization phenomenon is due
to Christiaan Huygens who, in 1665, noticed that
the pendulums of two clocks hanging close to each
other from the same wall synchronize their oscil-
lations [Strogatz & Stewart, 1993]. Though this
first observation of synchronization concerns a me-
chanical system, the most remarkable instances of
synchronous behavior in Nature are found in the
living world. The synchrony of heart cells, for
example, is a vital mechanism in the function of
animal organisms. Neural activity in the brain is
also well known to display different regimes of syn-
chrony. They can be associated with pathological
states — such as in epileptic seizures, where the
activity of vast zones of the brain becomes syn-
chronous — or with normal functions, related to the
codification of information and memory [Abarbanel

et al., 1996]. At the level of biological popula-
tions, insect swarms exhibit some noticeable forms
of synchronized collective behavior, the best known
examples being the synchronous flashing fireflies
[Buck & Buck, 1976] and chirping crickets [Walker,
1969]. Weaker manifestations of synchronization
have also been detected in more evolved social
species, including Homo sapiens [Winfree, 1980;
Néda et al., 2000].

From a more abstract viewpoint, synchroniza-
tion has been identified as a generic form of col-
lective behavior in ensembles of dynamical systems
with long range coupling. Several models that
capture the essence of synchronization phenomena
have been thoroughly studied during the last few
decades. Kuramoto [1984], for instance, has ana-
lyzed an ensemble of N coupled phase oscillators,
governed by the equations

φ̇i(t) = Ωi +
ε

N

N
∑

j=1

sin(φj − φi) , (1)

i = 1, . . . , N , where ε > 0 is the strength of
coupling. In the absence of coupling, ε = 0, each
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oscillator i performs uniform angular motion with
its natural frequency Ωi. For ε 6= 0 the oscillators
are globally coupled, in the sense that the strength
of the pair interaction does not depend on their rela-
tive position, but only on their relative state. Note,
in fact, that Eq. (1) can be rewritten as

φ̇i(t) = Ωi + ε(cos φi sin φ − sin φi cos φ) , (2)

where overlined quantities stand for instantaneous
averages over the whole system. In other words,
each oscillator interacts with the rest of the system
through global averages only.

Kuramoto has shown that, in the limit N → ∞,
there exists a critical value εc of the coupling in-
tensity such that, for ε > εc, a subensemble of
oscillators becomes entrained in periodic orbits with
the same frequency Ω, whereas the other oscilla-
tors remain unsynchronized. If the distribution of
natural frequencies g(Ωi) is symmetric around a
certain value Ω0, the entraining frequency is pre-
cisely Ω = Ω0, and the entrained oscillators are
those whose natural frequencies are sufficiently close
to Ω0,

|Ωi − Ω0| ≤ ε

√

8g(Ω0)(ε − εc)

ε3
cg

′′(Ω0)
, (3)

where g′′ stands for the second derivative of g. The
critical coupling at which synchronization sets on
is εc = 2/πg(Ω0). The nature of the bifurcation
at that point depends on the sign of g ′′(Ω0). It
is supercritical if the second derivative is negative,
and subcritical if the second derivative is positive
[Kuramoto, 1984].

A great deal of attention has been paid to
the synchronization of ensembles formed by iden-
tical elements, especially, in the case where the
individual dynamics is chaotic. Both continuous
and discrete-time dynamics have been considered.
Kaneko [1989; see also Kaneko, 1994 and references
therein] has introduced globally coupled chaotic
maps as a mean-field model of lattice maps, which
are extensively used to model complex extended
systems [Kaneko, 1993]. For an ensemble of N
maps whose individual dynamics is governed by
the equation w(t + 1) = f [w(t)], global coupling
is introduced as

wi(t + 1) = (1 − ε)f [wi(t)] +
ε

N

N
∑

j=1

f [wj(t)]

= (1 − ε)f [wi(t)] + εf(w) , (4)

i = 1, . . . , N , with ε ∈ [0, 1]. While for ε = 0 the
elements evolve independently, for ε = 1 they be-
come fully synchronized after the first time step.
Full synchronization is here understood as a situa-
tion where the individual states of all the elements
in the ensemble coincide, i.e. where the trajectory
of the system in phase space is restricted to the
subspace w1 = w2 = · · · = wN . In this situation,
the evolution of all the elements coincides with that
of an independent element. The state of full syn-
chronization can be asymptotically approached as
the system evolves even for ε < 1. It has been
shown that, if the individual dynamics is chaotic,
full synchronization is linearly stable for ε > εc,
where the critical value εc is related to the maximal
Lyapunov exponent λM of the individual dynamics,
as εc = 1 − exp(−λM ). For nonchaotic individual
dynamics, where λM < 0, full synchronization is
a stable state for any ε > 0. The connection be-
tween εc and λM makes it clear that the transition
to full synchronization in chaotic systems, which
has the character of a critical phenomenon, results
from the competition between the stabilizing effect
of global coupling and the inherent instability of
chaotic orbits. Note carefully that the critical value
εc does not depend on N , so that the synchroniza-
tion threshold is the same for any size of the coupled
ensemble.

For coupling strengths just below εc the system
evolves asymptotically to a state of partial synchro-
nization in the form of clustering, where the ele-
ments become divided into groups [Kaneko, 1989].
Within each cluster the elements are fully synchro-
nized but different clusters have different trajecto-
ries. For large systems, the dynamics in the cluster-
ing regime is highly multistable and exhibits glassy-
like features [Crisanti et al., 1996; Manrubia &
Mikhailov, 2001]. In contrast with the critical value
εc, the stability properties of the clustering regime
are strongly dependent on the system size [Abram-
son, 2000]. At even lower coupling strengths the
elements do not form clusters, but their interaction
gives rise to unusual statistical properties in the av-
erage of dynamical quantities, specifically, in the
dependence of the global average f(w) on the sys-
tem size N [Kaneko, 1990; Perez et al., 1992, 1993].
It has been shown that the mean square dispersion
over time, σ = 〈(f(w) − 〈f(w)〉)2〉1/2, does not sat-
isfy the law of large numbers, i.e. σ 6∼ N 1/2, but
grows much slowly with N .

Similar features have been analyzed in ensem-
bles of continuous-time dynamical elements. If the
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individual dynamics is given by ẇ = F(w), global
coupling can be introduced as [Fujisaka & Yamada,
1983]

ẇi = F(wi) +
ε

N

N
∑

j=1

(wj −wi)

= F(wi) + ε(w −wi) , (5)

i = 1, . . . , N , with ε > 0. Coupling acts as a
relaxation mechanism of the individual dynamics
towards the average state w. With this interac-
tion, usually referred to as “vector” coupling [Heagy
et al., 1994], full synchronization becomes linearly
stable at a critical coupling strength εc = λM

where, as before, λM is the maximal Lyapunov ex-
ponent of the individual dynamics [Fujisaka & Ya-
mada, 1983; Heagy et al., 1994]. For nonchaotic
dynamics full synchronization is linearly stable for
any ε > 0. Other forms of global coupling for
continuous-time dynamical systems have been pro-
posed, for which global stability of full synchro-
nization above a certain threshold can be proven
[Zanette & Mikhailov, 1998a]. Such as for globally
coupled maps, full synchronization in continuous-
time systems is preceded by a regime of cluster-
ing, which has been statistically characterized for
ensembles of chaotic Rössler oscillators [Zanette &
Mikhailov, 1998a; 2000]. The effect of noise in
this kind of dynamical systems has also attracted
attention [Zanette & Mikhailov, 2000], in view of
its relevance in experimental realizations of coupled
chaotic oscillators [Wang et al., 2000].

In this paper, we review the synchronization
properties of a special kind of dynamical systems,
namely, extended systems. As explained in the next
section, extended systems are spatially distributed
ensembles of interacting dynamical elements. We
shall however be not interested in the synchronized
behavior of the elements inside a single extended
system, but in the mutual synchronization of two

interacting (cross-coupled) extended systems. Par-
ticular attention will be paid to a special class of dis-
crete extended systems, namely, cellular automata
and, in particular, to Kauffman networks (Sec. 3),
for which the synchronization transition can be
studied analytically. Other kinds of extended sys-
tems are considered in Sec. 4.

2. Cross-Coupled Extended Systems

Extended systems are dynamical systems where
the state variable w depends not only on time,

but on a set of additional independent variables
x, w ≡ w(x, t). These new variables are typi-
cally interpreted as spatial coordinates, in partic-
ular, when there is a metric structure associated
with them. An extended system can generally be
thought of as a set of zero-dimensional dynamical
elements distributed over space, whose individual
dynamics influence each other through an interac-
tion which usually depends on the distance between
elements. The generic evolution equation for an ex-
tended system can be written as

∂tw = F [w(x, t)] , (6)

where, in general, the operator F acts on the spatial
variable x, for example, through gradients or in-
tegrals. Probably the simplest instance of an ex-
tended system of this class is given by the wave
equation

∂tw + (v · ∇)w = 0 , (7)

whose general solution — in the absence of bound-
ary constraints — is w(x, t) = w(x − vt). This so-
lution represents the shape-preserving propagation
of a perturbation w(x, 0) at velocity v. Another
well-known instance is that of reaction–diffusion
systems,

∂tw = D∇2w + F(w) . (8)

This equation describes a distributed continuous
set of active elements whose individual dynamics
is given by ẇ = F(w), interacting through diffu-
sive coupling between (infinitely) near neighbors.
Reaction–diffusion models have been extensively
used to describe pattern formation in physicochem-
ical systems [Mikhailov, 1994], but also play a key
role in the understanding of morphogenesis in liv-
ing organisms and of the dynamics of interacting
biological species [Murray, 1993].

In connection with different applications, ex-
tended systems where the variable x varies over a
discrete set constitute another important class. The
paradigm of this class is given by neural networks
[Mikhailov, 1994], which are discrete, but typi-
cally large, ensembles of dynamical elements —
the neurons — with specific kinds of interactions.
Discretization of variables is a convenient way to
simplify the study of complex systems, especially,
from the viewpoint of numerical analysis. As a
matter of fact, fully discretized extended systems
— namely, cellular automata, where time, space,
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and the internal state vary over discrete sets —
were already well known two decades ago [Wolfram,
1983]. Cellular automata were initially introduced
to mimic self-reproducing machines and as universal
computers. After the work by Wolfram [1986], who
conjectured that the laws of nature could be given
in terms of such fully discretized entities, they have
been extensively applied to model physical, biolog-
ical and artificial systems.

A cellular automaton consists of a spatial ar-
ray of discrete elements — the cells. The state
σi(t) of each element adopts, at each time step t,
a value taken from a fixed discrete set. The state
of the whole automaton at a given time is specified
by the vector σ = (σ1, σ2, . . . , σN ), where N is the
system size. The evolution of each cell i is deter-
mined by the state of the cells in its neighborhood
Ni. Namely, σi(t + 1) is a function of σj(t) with
j ∈ Ni. As an explicit example, we consider the
so-called elementary cellular automata. These are
one-dimensional arrays of cells with binary states,
σi ∈ {0, 1}, where the neighborhood of each cell is
formed by itself and its two nearest neighbors. Pe-
riodic boundary conditions, i + N ≡ i, are usually
assumed. The evolution rule is homogeneous along
the array, and thus can be written as

σi(t + 1) = f [σi−1(t), σi(t), σi+1(t)] , (9)

where f is a Boolean function. The state of all
sites is updated simultaneously. Note that, since
the state of each cell has two possible values and
each neighborhood contains three cells, the total
number of possible evolution rules for elementary
cellular automata is 2(23) = 256. Systematic study
of cellular automata has shown that they are able to
exhibit very complex forms of evolution [Herrmann,
1989], whose characterization, in fact, has still to
be completely achieved. Even for elementary cellu-
lar automata a wide variety of behaviors has been
observed [Wolfram, 1983; Herrmann, 1989], de-
pending on the form of the evolution rule f . Some of
them can exhibit nonperiodic evolution in the limit
N → ∞, displaying spatiotemporal structures that
mimic those observed in chaotic extended systems.

Kauffman networks, also known as random
Boolean networks, are closely related to cellular
automata. They were introduced as a model for
the problem of cell differentiation [Kauffman, 1969,
1984, 1993]. Since then, they have been the ob-
ject of many studies concerning their properties
[Derrida & Pomeau, 1986; Derrida & Weisbuch,

1986; Flyvbjerg, 1988; Kauffman, 1993; Bastolla
& Parisi, 1996, 1998a, 1998b] and have been exten-
sively applied as models of biological evolution. A
Kauffman network is an N -site network where each
site is connected to K randomly chosen sites, which
constitute its neighborhood. As in elementary cel-
lular automata, the state of each site is given by a
Boolean variable σi ∈ {0, 1}, and evolves accord-
ing to the inputs coming from its neighborhood.
The evolution rule is chosen independently and ran-
domly for each site. To each of the 2K possible
configurations of the neighborhood of each site an
output is assigned, namely, 1 with probability p,
or 0 with probability 1 − p. The probability p is
referred to as the bias of the network. The state
of all sites is updated simultaneously according to
the corresponding functions. The K connections
and the evolution rule of each site are chosen at
the beginning and kept fixed during the evolution.
Thus, the disorder is quenched and, as in cellular
automata, the dynamics is deterministic. In the
(K, p) parameter space, Kauffman networks present
phases of frozen and active evolution. Whereas for
small K all sites converge to static states or to
cycles of short period, for large K very long cycles
are typically observed. As N → ∞, the period of
these cycles may diverge and the evolution becomes
chaotic. The transition between the two phases,
which occurs at K = [2p(1− p)]−1, has been exten-
sively studied [Derrida & Pomeau, 1986; Derrida &
Weisbuch, 1986; Flyvbjerg, 1988].

In summary, extended dynamical systems pro-
vide a versatile collection of models for a wide class
of complex natural phenomena, ranging from pat-
tern formation in physicochemical reactions, to bi-
ological morphogenesis, to evolutionary processes.
It is therefore interesting to consider how these sys-
tems behave under the effect of mutual interactions
and, in particular, study the synchronization prop-
erties of their coevolution when they are mutually
coupled by algorithms similar to those discussed in
the Introduction for zero-dimensional systems.

The scheme of coupling introduced in Eq. (5)
can be straightforwardly extended to the case of an
ensemble of identical extended systems of type (6),
as

∂tw = F [w] + ε(w −wi) , (10)

where w = N−1 ∑

j wj. This scheme is formally
equivalent to the vector coupling of Eq. (5). We
point out, however, that in (10) mutual interaction
of the extended systems couples the variables wi
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Fig. 1. Global cross-coupling of three identical extended sys-
tems.

at the same values of x only. In other words, only
homologous elements of the extended systems in-
teract with each other, as schematically shown in
Fig. 1. This interaction is referred to as global cross-
coupling.

Let us illustrate the effect of this interaction by
considering two cross-coupled one-dimensional wave
equations,

∂tw1 + v∂xw1 = ε(w2 − w1)/2 ,

∂tw2 + v∂xw2 = ε(w1 − w2)/2.
(11)

The quantities w1(x, t) and w2(x, t) can be inter-
preted as the densities of two chemicals A1 and A2

being advected at velocity v, and undergoing the re-
versible isomeric reaction A1 ↔ A2 at rate ε/2. The
density difference u = w2−w1 satisfies the equation

∂tu + v∂xu = −εu , (12)

whose solution for the initial condition u(x, 0) is

u(x, t) = u(x − vt, 0) exp(−εt) . (13)

This represents a propagating field affected by ex-
ponential damping at rate ε. At asymptotically
long times, u(x, t) → 0 for all x. This implies that
the evolution of the two fields w1 and w2 becomes
synchronized, in the sense that w1(x, t) = w2(x, t)
for t → ∞. Figure 2 shows four stages in the
evolution towards synchronization of two propa-
gating pulses coupled as in (11). We see that, in
agreement with the behavior of coupled nonchaotic
zero-dimensional dynamical elements, these two
extended systems synchronize for any positive value
of the coupling intensity ε. In order to study the
case of chaotic extended systems, it is convenient
to analyze coupled cellular automata and Kauff-
man networks, which are particularly suitable for

εt = 2

εt = 1

εt = 0.5

εt = 0

Fig. 2. Four snapshots of the evolution of two propagating
pulses coupled as in Eq. (11).

numerical treatment. Due to the fully discretized
dynamics of this systems, however, it is necessary to
modify the coupling algorithm. In the next section,
a form of stochastic coupling for cellular automata
and Kauffman networks is described, and their syn-
chronization properties — resulting from numerical
and analytical study — are discussed.

3. Synchronization of Cellular
Automata and Kauffman Networks

Cellular automata and Kauffman networks con-
stitute a useful tool to explore, both numerically
and analytically, the properties of coupled extended
dynamical systems. We recall that they consist of
ensembles of cells whose individual states vary by
discrete steps on a discrete set, and are determined
by prescribed Boolean functions of the state of the
neighboring cells. As advanced above, due to the
discrete nature of cellular automata and Kauffman
networks — which, from now on, we generically
refer to as automata — it is not possible to intro-
duce a form of deterministic coupling able to be
controlled with a continuous parameter such as the
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coupling intensity ε of Eq. (10). One can use in-
stead a form of stochastic coupling, characterized
by a probability q (0 ≤ q ≤ 1), as follows [Morelli &
Zanette, 1998; Bagnoli & Rechtman, 1999; Grass-
berger, 1999]. At each time step, the dynamics of
the two coupled automata, whose individual states
are respectively denoted σ

1 and σ
2, is given by the

successive action of the individual evolution f(σ)
[cf. Eq. (9)], and a stochastic coupling operator S,
whose definition is introduced below:

σ
1,2(t + 1) = S ◦ f [σ1,2(t)] . (14)

The operator S compares the states σ1
i and σ2

i of
the homologous cells in each automaton for all i.
If σ1

i = σ2
i , both states are kept invariant. Oth-

erwise, with probability 1 − q they are also left
unchanged, but with the complementary probabil-
ity q, the states are made equal either to σ1

i or to
σ2

i . This latter choice is made with probability 1/2.
Therefore:

Si(σ
1,2)=



















σ1,2

i if σ1

i = σ2

i ,

σ1,2

i with probability 1 − q, if σ1

i 6= σ2

i ,

σ1

i with probability q/2, if σ1

i 6= σ2

i ,

σ2

i with probability q/2, if σ1

i 6= σ2

i .

(15)

This form of coupling, in which the states of homol-
ogous cells are occasionally made equal, adapts to
the discrete evolution of these systems the process
of mutual relaxation implied by the coupling terms
of Eqs. (5) and (10).

When the coupling probability q vanishes, the
two automata evolve independently of each other.
From different random initial conditions — and ex-
cept for a few trivial evolution rules — their states
will always differ to some extent. On the other
hand, for q = 1, the two automata are fully synchro-
nized after the first evolution step. From then on,
they will reproduce the evolution of an uncoupled
automaton but their states will be mutually identi-
cal. From comparison with the behavior of deter-
ministically coupled dynamical systems, described
in the previous sections, this circumstance suggests
that a synchronization transition occurs in the in-
terval 0 < q < 1. We however point out that, due to
the different nature of deterministic and stochastic
coupling, the implication is not straightforward.

A key element in the characterization of the
relative state of two coupled automata is given by
the difference automaton. By definition, if the
states of cell i in the two automata are σ1

i (t) and

σ2
i (t), the state δi(t) of the same cell in the dif-

ference automaton is calculated as the Boolean
difference between σ1

i (t) and σ2
i (t), namely,

δi(t) = σ1
i (t) ⊕ σ2

i (t) = |σ1
i (t) − σ2

i (t)| . (16)

The average occupation, or density, of the difference
automaton,

D(t) =
1

N

N
∑

i=1

δi(t) , (17)

provides a suitable “macroscopic” measure of the
distance between the two coupled automata. In
fact, it coincides with the Hamming distance
[Wolfram, 1983] between the Boolean vectors σ

1(t)
and σ

2(t).

3.1. Coupled cellular automata

Since elementary cellular automata admit a
straightforward graphical representation, they con-
stitute a convenient starting point for a qualitative
exploration of the joint evolution of coupled au-
tomata. We choose to analyze in detail the case
of two coupled cellular automata whose individ-
ual evolution is given by rule 150 (Table 1). Rule
150 gives rise to complex evolution patterns, with
nonperiodic behavior for N → ∞, and may there-
fore be classified as chaotic. It must be pointed
out that rule 150 is, in a sense, pathological. In
fact, it happens to belong to the class of additive

rules [Wolfram, 1983], since its action can be given
in terms of the Boolean sum of the neighborhood

Table 1. Action of rule 150 on
the eight possible neighborhoods
of site i. This rule assigns a 0 if
the number of ones in the neigh-
borhood is even, and a 1 other-
wise.

σi−1(t), σi(t), σi+1(t) σi(t + 1)

0, 0, 0 0

0, 0, 1 1

0, 1, 0 1

0, 1, 1 0

1, 0, 0 1

1, 0, 1 0

1, 1, 0 0

1, 1, 1 1
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Fig. 3. Evolution of two cross-coupled automata, with rule 150 and coupling probability q = 0.36. Lateral columns show 300
steps for a 150-cell zone of the two automata, and the central column shows the corresponding difference automaton.

states: f150(σi−1, σi, σi+1) = σi−1 ⊕ σi ⊕ σi+1. This
property implies, in particular, that — in the ab-
sence of coupling — the difference automaton of two
automata evolving with rule 150 is also an elemen-
tary automaton, governed by the same rule. For
other elementary automata, on the contrary, the
difference automaton is typically not governed by
an elementary rule.

This peculiarity of rule 150 has an impor-
tant operational advantage. Indeed, in numerical
realizations, instead of tracking the two coupled
automata, it is possible to directly calculate the
evolution of the difference automaton. Coupling is
introduced as an additional process by which, with
probability q, each site of the difference automa-
ton in state 1 — which would correspond to dif-
ferent states in the homologous sites of the original
coupled automata– is changed to 0. The partic-
ular nature of rule 150, on the other hand, does
not introduce anomalies in the kind of features
we are interested in, i.e. synchronization proper-
ties. Therefore, this rule is an ideal instance for
the numerical investigation of our system.

3.1.1. Numerical study of the
synchronization transition

Figure 3 shows, in the lateral columns, the evolution
of two coupled cellular automata with q = 0.36, to-

gether with the corresponding difference automaton
in the central column. Each line corresponds to the
state at a given time step, and time proceeds down-
wards. White and black dots stand for the states
0 and 1, respectively. The plot begins at a stage
where the difference automaton already reveals a
high degree of synchronization (white areas). Com-
plex branching structures are seen to propagate in
a diffusive-like way, gradually disappearing as time
elapses. Eventually, at the very last steps shown
in the figure, the difference automaton reaches a
homogeneous state, δi = 0 for all i, and the two
coupled automata attain full synchronization.

In Fig. 4, we present a more detailed illustra-
tion of the difference automaton for lower values of
the coupling probability q, ranging from q = 0 to
q = 0.35. Synchronization occurs first in small lo-
calized domains, which disappear after a few time
steps. As q grows, however, synchronization do-
mains increase in size and, at the same time, be-
come more persistent. Finally, at the threshold of
full synchronization, they reach sizes similar to that
of the whole system.

As advanced above, a quantitative “macro-
scopic” characterization of the mutual state of the
two coupled automata is given by the Hamming dis-
tance D(t), introduced in Eq. (17). Figure 5 shows
D(t) as a function of time for two 211-cell automata
with periodic boundary conditions, evolving with
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Evolution of the difference automaton for rule 150
and different values of the coupling probability: (a) q = 0,
(b) q = 0.05, (c) q = 0.1, (d) q = 0.15, (e) q = 0.2,
(f) q = 0.25, (g) q = 0.3, and (h) q = 0.35.

rule 150 for different coupling probabilities. Each
curve has been obtained from an average over 103

realizations. For small values of q the average den-
sity approaches asymptotically a finite level. Mean-
while, for large coupling probabilities it decreases
exponentially at first, and then drops to zero at
a finite time. At intermediate values, one finds a
power-law decay of the density [Grassberger, 1999],
D(t) ∼ t−γ with γ ≈ 0.16 (see inset in Fig. 5). Up
to our numerical precision, the time range of power-
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Fig. 5. Time evolution of the Hamming distance D(t) be-
tween two 211-cell automata with rule 150, averaged over 103

realizations, for three coupling probabilities. The inset shows
D(t) at the critical coupling qc = 0.32115 over a longer time
range.

law decay has maximal length for a coupling prob-
ability qc = 0.32115±0.00002. This critical value is
identified with the transition to full synchronization
for rule 150.

The critical-phenomenon nature of the synchro-
nization transition becomes apparent by introduc-
ing the asymptotic density D = limt→∞ D(t) as an
order parameter. Dots in Fig. 6 show the average
value of D over 104 time steps in 103 realizations
for rule 150. After a smooth decay for low coupling
probabilities, the average asymptotic density 〈D〉
drops abruptly to zero at qc. This behavior sug-
gests a functional form, just below the transition,
given by

〈D〉 = A|q − qc|β . (18)

Linear fitting of ln〈D〉 versus ln |q − qc| yields
β = 0.274 ± 0.001. The other two data sets in
Fig. 6 illustrate the case of different evolution rules.
Specifically, they correspond to rules 18 and 22,
which are not additive. Despite the differences
in the dependence for small q and the consider-
able dispersion in the critical coupling probabil-
ity qc at which synchronization starts — which is
most plausibly related to differences in the Lya-
punov exponents [Bagnoli & Rechtman, 1999] —
the overall qualitative behavior is quite similar. The
same is observed for other chaotic elementary evo-
lution rules. Moreover, one finds that, within the
numerical precision, the critical exponent β is the
same for all these rules. This seems to indicate that,
in all these cases, the synchronization transition
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Fig. 6. Average asymptotic Hamming distance 〈D〉 as a
function of the coupling probability q, for rules 18, 22, and
150. Averages were calculated over 104 steps in series of 102

realizations, for 210 to 213-cell automata.

belongs to the same universality class. It has been
argued [Grassberger, 1999] that it coincides with
the universality class of random directed percola-
tion, where β ≈ 0.276.

3.1.2. Analytical approaches

It is quite natural to ask whether the synchro-
nization transition occurring in cross-coupled el-
ementary cellular automata admits an analytical
description similar to that given for coupled differ-
ential equations. At a phenomenological level, in
fact, such a description is possible if one accepts
that the evolution of the Hamming distance D(t) of
two uncoupled automata is governed, at least in the
large-size limit N → ∞, by a deterministic equation
D(t+1) = φ[D(t)]. In such a case, it is easy to show
that coupling introduces an additional factor in the
evolution equation:

D(t + 1) = (1 − q)φ[D(t)] . (19)

The asymptotic Hamming distance, therefore, sat-
isfies D = (1 − q)φ(D). From this relation, and
taking into account Eq. (18), we obtain

φ(D) =
D

1 − qc + (D/A)β−1

≈ D

1 − qc
+ O[D1+β−1

] . (20)

This gives the approximate form of φ(D) near
the synchronization transition, where D ≈ 0.

An analytical description at a more “micro-
scopic” level should be able to yield, without any
a priori assumption on the critical behavior of the
system, an explicit form for the function φ(D). For
the case of additive rules, where the rule governing
the evolution of the difference automaton is known,
the approach is quite intuitive from a probabilistic
viewpoint. In fact, the Hamming distance D(t) can
be interpreted as the probability that the state of
any cell in the difference automaton is 1 at time
t. Therefore, D(t + 1) can be calculated as a func-
tion of D(t) in the form of an evolution equation for
such probability. This, however, requires to assume
some degree of decorrelation between the states of
individual cells. For instance, in the crudest ap-
proximation, it can be supposed that cells are com-
pletely uncorrelated. In this case, the probability
D(t+1) that a cell is in state 1 at step t+1 is sim-
ply given by the probability D(t) of being in state
1 at step t times the probability of remaining in
that state, plus the probability 1−D(t) of being in
state 0 at step t times the probability of changing
from 0 to 1. The transition probabilities involved
in this calculation are directly provided by the evo-
lution rule of the difference automaton. For rule
150, for instance, the probabilities of remaining in
state 1 and of changing from 0 to 1 are both equal
to 1/2 (see Table 1). Though this lowest-order ap-
proximation is not expected to give a satisfactory
description, the same arguments can in principle
be extended from single cells to uncorrelated three-
cell neighborhoods, five-cell neighborhoods, and so
on. Now, it can be easily verified that, as far as
the correlation length is supposed to be finite, any
such approximation produces a polynomial form for
φ(D). Comparing with Eq. (20), we realize that
a polynomial evolution law for D(t) is unable to
explain the critical behavior observed in numerical
realization of the system. The situation worsens,
of course, if nonadditive rules are considered, for
which the difference automaton is not elementary.

The failure of the hypothesis of finite-length
correlation evidences the strong effect of the
propagation of information along the highly or-
dered geometry of cellular automata. It establishes
long-range connections between cells, in the form
of dynamical correlations that ultimately pervade
the whole system. These correlations are revealed,
in the dynamics of independent automata, by the
complex spatiotemporal structures originated by
certain evolution rules. We see here that they also
have a relevant role in the coevolution of coupled
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automata, in particular, determining the nontrivial
critical-phenomenon nature of the synchronization
transition. In the next section, we show that the
situation is quite different for Kauffman networks.
The inherent randomness of these disordered au-
tomata eliminates the effect of correlations, and a
successful analytical description of their synchro-
nization properties, along the lines sketched above,
becomes feasible.

3.2. Coupled Kauffman networks

3.2.1. The annealed model

In the case of Kauffman networks — where, in
contrast with elementary cellular automata, the
neighborhood of each cell and the corresponding
evolution rule is chosen at random — the evolution
of the Hamming distance between two automata has
been explicitly considered in the frame of damage-
spreading problems. The so-called annealed model
[Derrida & Pomeau, 1986; Derrida & Weisbuch,
1986] gives an unexpectedly good analytical de-
scription of D(t) in the limit of large size, N → ∞.
This model assumes that the K neighbors of each
cell, as well as the Boolean function that defines
its evolution, are randomly changed at each time
step. In other words, an entirely different realiza-
tion of the network is used at each step. Possible
spatiotemporal correlations generated during the
evolution are therefore being continuously erased.
The success of the annealed model reveals, in fact,
that in large Kauffman networks such correlations
are negligible or directly absent.

Suppose now that one has two identical Kauff-
man networks, with the same connections and rules.
They are fed with different initial conditions, and let
to evolve in time. The overlap a(t) between the net-
works is defined as the fraction of homologous cells
that are in the same state at time t. Clearly, we
have a(t) = 1 − D(t). Within the annealed model,
it is possible to calculate the time evolution of the
overlap and, thus, of D(t). At each time, connec-
tions and rules are reassigned to each cell, but the
same changes are applied to both networks, keeping
their structure and local dynamical rules identical.
The probability for a cell having all its K inputs
coming from homologous sites in the same state in
both networks is a(t)K . At the next time step, con-
sequently, such cell will be in the same state in both
networks, no matter the evolution rule chosen for
it. Hence, there is a fraction a(t)K of homologous

sites whose state will coincide at t + 1. The re-
maining [1 − a(t)K ]N homologous cells still have
a probability of reaching identical states. In fact,
even if the state of the neighborhoods of a given
cell are different in the two networks, it may hap-
pen that the evolution rule assigns the same output
to them. In terms of the bias p of the Kauffman
network, defined in Sec. 2, the probability of get-
ting two homologous cells in the same state σi is
(1 − p)2 for σi = 0 and p2 for σi = 1. Conse-
quently, the overlap at time t + 1 can be written as
a(t+1) = a(t)K +[1−a(t)K ][p2 +(1−p)2]. For the
Hamming distance, this implies

D(t + 1) = 2p(1 − p)(1 − [1 − D(t)]K)

≡ φ[D(t)] . (21)

The annealed model, thus, provides an explicit form
for the function φ(D). As in the case of elementary
cellular automata, the effect of coupling is repre-
sented by an extra factor 1−q in the evolution law,
as in Eq. (19) [Morelli & Zanette, 2001].

The equation for the equilibrium Hamming dis-
tance between two coupled automata,

D = 2p(1 − p)(1 − q)[1 − (1 − D)K ] , (22)

has a trivial solution at D = 0, which corresponds
to the fully synchronized state. A second solution
D∗ in the interval (0, 1) is found for sufficiently low
values of the coupling probability q, if the condition
2p(1−p)K ≥ 1 is fulfilled. This is precisely the con-
dition for the individual dynamics of each Kauffman
network to be chaotic (cf. Sec. 2). For small q, D∗ is
a stable equilibrium whereas the trivial equilibrium
D = 0 is unstable. As q grows, D∗ decreases and,
at a critical coupling probability

qc = 1 − [2p(1 − p)K]−1 (23)

it equals zero. For q > qc, D∗ is negative and be-
comes an unstable equilibrium. At the same time,
D = 0 becomes stable. We thus have a transcritical
bifurcation at qc which, clearly, corresponds to the
synchronization transition.

The explicit form of D∗ as a function of q
cannot be given for arbitrary K, as it would imply
finding the roots of a polynomial of the (K − 1)th
degree. For K = 3 — a case considered below in
the numerical realizations — one finds

D∗ =
3

2
− 1

2

[

−3 +
2

p(1 − p)(1 − q)

]1/2

. (24)
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For any value of K, however, it is possible to give
the following approximate form of D∗ near qc:

D∗ ≈ 4K

K − 1
p(1 − p)|q − qc| . (25)

Within the annealed approximation, consequently,
the synchronization transition has a critical expo-
nent β = 1 [cf. Eq. (18)].

3.2.2. Numerical results

Numerical realizations of two Kauffman networks
coupled according to the scheme described in Sec. 3
show that the lowest coupling probability at which
the networks synchronize is systematically lower
than that predicted by the annealed model. For
K = 3 and p = 1/2, for instance, two 210-cell
networks are found to synchronize from q ≈ 0.29,
whereas the annealed model yields qc = 1/3 ≈ 0.33.
Discarding the effects of correlations, discussed for
cellular automata, a possible origin for this discrep-
ancy is to be found in finite-size effects. Indeed, the
annealed model is expected to be valid in the limit
N → ∞. Close inspection of the joint evolution of
finite-size coupled networks shows that the system
may in fact undergo spurious synchronization for
coupling probabilities below qc [Morelli & Zanette,
2001]. Due to the stochastic nature of the cou-
pling mechanism — and especially near qc, where
only a few pairs of homologous cells are in differ-
ent states — it is likely that a fluctuation brings
the two networks to exactly the same state. They
thus synchronize and, from then on, their states are
identical.

Spurious synchronization can be avoided by
adding a small amount of noise to the dynamics.
With this new ingredient, exact synchronization is
not possible anymore but — as long as the noise is
kept at low levels — the overall dynamics is only
slightly affected. Noise is introduced in numerical
realizations as an additional step in the evolution.
Once the individual dynamics and the coupling al-
gorithm have acted, the state of each cell in one of
the networks is flipped with probability η. It can be
readily shown that noise enters the annealed model
modifying the evolution of the Hamming distance
as

D(t + 1) = (1 − η)(1 − q)φ[D(t)]

+ η{1 − (1 − q)φ[D(t)]} (26)

where φ(D) is defined in Eq. (21).
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Fig. 7. Time evolution of the Hamming distance D(t) be-
tween two 213-cell Kauffman networks (K = 3, p = 1/2) for
three different coupling probabilities near the critical value
predicted by the annealed model, qc = 1/3, averaged over
102 realizations. The noise level is η = 10−4. The curves
correspond to the solution of the annealed model, Eq. (26),
for the same couplings and noise level.

Figure 7 shows the evolution of D(t) for two
coupled 213-site networks (K = 3, p = 1/2) close
to the critical coupling, with a noise level η = 10−4

— such that, on the average, the state of approxi-
mately one site is flipped at each step. The curves
stand for the iterative solution to Eq. (26). The
agreement between numerical realizations and the
annealed model is, generally, very good both in
the transients and in the long-time evolution. The
only noticeable systematic difference regards the
asymptotic Hamming distance precisely at the crit-
ical coupling probability, where the value predicted
by the annealed model is somewhat above the ob-
served values. This remnant difference results in a
genuine finite-size effect — not related with spuri-
ous synchronization. This is shown in Fig. 8, where
the curve stands for the equilibrium Hamming dis-
tance predicted by the annealed model, Eq. (26),
with η = 10−4, and the dots are the measured nu-
merically for different network sizes and the same
noise level. For N = 210 and 214 the agreement is
excellent, except near the critical coupling.

A careful study of remnant size effects shows
that the difference between the asymptotic Ham-
ming distance predicted by the annealed model and
observed in numerical realizations decreases as N−1

over a wide range of coupling probabilities. A statis-
tical description of the dynamics of the coupled net-
works, based on an ergodic-like assumption about
their asymptotic evolution, has been advanced to
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Fig. 8. Asymptotic Hamming distance between two Kauff-
man networks (K = 3, p = 1/2) as a function of the cou-
pling probability, for three different sizes and a noise level
η = 10−4. The curve stands for the prediction of the an-
nealed model for the same noise level.

explain such dependence on the system size [Morelli
& Zanette, 2001].

We have already mentioned that the annealed
model predicts a critical exponent equal to unity for
the equilibrium Hamming distance as a function of
the coupling probability [see Eq. (25)]. A more com-
plete characterization of the critical behavior at qc

is given by the properties of damage spreading [Der-
rida & Pomeau, 1986; Derrida & Weisbuch, 1986;
Bagnoli & Rechtman, 1999]. Consider two fully syn-
chronized Kauffman networks in the chaotic phase,
during their asymptotic evolution. All the cells in
the difference automaton are in the same state 0.
Now, a defect is introduced by flipping the state of
a single cell in one of the networks — which amounts
to flipping the state of the corresponding cell in the
difference automaton from 0 to 1. While for q < qc

the defect is expected to propagate due to the un-
derlying chaotic-like evolution, for q > qc the effect
of coupling dominates over the inherently unstable
dynamics and the defect is rapidly suppressed. At
the critical point, the defect originates an avalanche
of irregular duration and extent. In a finite sys-
tem, ultimately, the avalanche terminates at a finite
time.

The avalanche size can be quantified by its total
duration τ , by the number ζ of cells affected at least
once during the avalanche, and by the avalanche in-
tensity λ, which is given by the number of affected
cells weighted by the number of steps in which each
of them was affected. Figure 9 shows histograms
for τ , ζ, and λ, constructed from measurement of
107 avalanches in 210-cell networks with K = 3,
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Fig. 9. Distribution of avalanche sizes in the difference au-
tomaton of two 210-cell Kauffman networks (K = 3, p = 1/2)
at q = 0.3333. The normalized frequency f is shown for
the avalanche duration τ , the number of affected cells ζ, and
the avalanche intensity λ. Straight lines correspond to least-
square fittings in the power law regimes. Their slopes are
indicated in each plot.

p = 1/2, and q = 0.3333. In all the cases, there is
a well-defined regime of power-law decay with non-
trivial exponents. These power laws are an addi-
tional clue to the criticality of the synchronization
transition in coupled Kauffman networks.

4. Synchronization of Other
Extended Systems

Although cellular automata and, especially, Kauff-
man networks seem to be the only class of spatially
extended systems whose synchronization properties
under the effect of cross-coupling have been system-
atically studied — perhaps due to the feasibility of
their computational implementation — a few other
kinds of extended systems have also been analyzed,
though in less detail, in the literature. In this sec-
tion we present a short summary of the main results
on two of those systems.
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4.1. Complex Ginzburg Landau
equation

The one-dimensional complex Ginzburg–Landau
equation,

∂tA = µA + (1 + iα)∂2
xA − (1 + iβ)A|A|2 , (27)

describes the evolution of the (complex) amplitude
A(x, t) of a continuous array of nonlinear oscillators
near a Hopf bifurcation. Depending on the param-
eters µ, α and β, the solutions display a wealth of
behaviors, ranging from frozen and regularly oscil-
latory evolution to chaotic dynamics. Two complex
Ginzburg–Landau equations have been considered
under the following coupling scheme [Amengual
et al., 1997]:

∂tA1,2 = µA1,2 + (1 + iα)∂2
xA1,2

− (1 + iβ)A1,2(|A1,2|2 + ε|A2,1|2) . (28)

Coupling is weighted by the parameter ε; for ε = 0
the two equations are uncoupled. Note however
that this form of coupling is not of the same type
considered in Secs. 1 and 2. In fact, Eq. (28) do not
reduce to the form (27) for A1 = A2.

Synchronization properties of Eq. (28) have
been studied in a regime where the system dis-
plays spatiotemporal intermittency. In this form of
chaotic evolution, the amplitude exhibits localized
structures that are created, move and then disap-
pear in a disordered fashion, as time elapses. For
small values of the coupling intensity ε it is observed
that, as expected, A1 and A2 follows nearly inde-
pendent evolution. As ε grows, however, the two
coupled amplitudes become increasingly correlated.
Specifically, it is observed that the zones where |A1|
attains local maxima correspond to minima in |A2|,
and vice versa. At the same time, the intermit-
tent spatiotemporal structures become, on the av-
erage, wider and more persistent. Eventually, going
beyond a certain critical coupling intensity, the in-
termittent behavior is suppressed and the system
falls in a frozen state with spatial domains where
either A1 or A2 vanishes, while the other is con-
stant. A quantitative analysis of this process reveals
a form of generalized synchronization. As coupling
becomes stronger, in fact, the system approaches
a state with highly correlated amplitudes, where
|A1|2 + |A2|2 ≈ µ. Beyond the critical coupling,
either |A1| = 0 and |A2| =

√
µ, or |A1| =

√
µ and

|A2| = 0.

Let us also mention that the relevant issue of
the synchronization properties of coupled noniden-

tical extended systems has been addressed in the
frame of the complex Ginzburg–Landau equation
[Boccaletti et al., 1999]. In this case, the coupling
scheme has been proposed to have the form

∂tA1,2 = µA1,2 + (1 + iα1,2)∂
2
xA1,2

− (1 + iβ1,2)A1,2|A1,2|2

+ ε(A2,1 − A1,2) . (29)

This scheme coincides with that considered in
Secs. 1 and 2, except for the fact that, for ε = 0,
the uncoupled equations are different (if α1 6= α2

and/or β1 6= β2), thus representing nonidentical
systems. The main result for this variant is that
small mismatches in the parameters α and β lead
the system to approach — though not to com-
pletely reach — a state of full synchronization,
so that A1 ≈ A2. For larger mismatches, on
the other hand, phase synchronization is observed
[Rosemblum et al., 1996; 1997], where an approx-
imate locking of the phases of A1 and A2 occurs,
while their moduli remain uncorrelated.

4.2. Neural networks

We have already mentioned in the Introduction that
synchronization in neural systems is an essential
aspect of their functions, ranging from information-
coding processes to pathological behavior. Whereas
the joint evolution of coupled model neurons has
been analyzed in detail in a series of publications
(see, for instance, [Golomb et al., 1992; Wang
et al., 1993] and the review by [Abarbanel et al.,
1996]), the dynamics of cross-coupled neural net-
works have attracted less attention. It has however
to be stressed that highly correlated neural activ-
ity over vast portions of the brain, as observed for
instance during epileptic seizures, should be asso-
ciated with mutual synchronization of full neural
networks rather than of individual neurons.

Mutual synchronization of a globally cross-
coupled ensemble of identical neural networks has
been studied using the following model [Zanette &
Mikhailov, 1998b]:

xi
k(t + 1) = (1 − ε)Θ(hi

k) + εΘ





∑

j

hj
k



 (30)

[cf. Eq. (4)]. Here, xi
k ∈ [0, 1] is the state of

the kth neuron in the ith network at time t, and
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hi
k =

∑

m wkmxi
m(t) is the signal arriving at this

neuron from all the other neurons of the same net-
work, with wkm the connection weights (the same
for all networks). The neuron response is charac-
terized by the sigmoidal function Θ(h). The first
term in the right-hand side of Eq. (30) represents
the individual response of a neuron to the signal re-
ceived from other elements in its own network. The
second term depends on the global signal arriving
from the homologous neurons in all the networks
of the ensemble, and is weighted by the coupling
intensity ε.

Generally, for asymmetric connection weights,
wkm 6= wkm, the individual dynamics of these neu-
ral networks is chaotic. Synchronization properties
have been analyzed in such regime. It has been
shown that the synchronization transition is pre-
ceded, as the coupling intensity grows, by a stage
of clustering, exactly as observed for chaotic maps
[Kaneko, 1989, 1994]. The ensemble becomes di-
vided into several clusters with different — typically
chaotic — trajectories. Within each cluster, how-
ever, the networks are fully synchronized. The syn-
chronization transition itself is qualitatively similar
to that of globally coupled maps.

An interesting variant regards the case where
the coupling between networks does not affect all
the neurons. This is represented by the equations

xi
k(t + 1)=(1 − εξk)Θ(hi

k) + εξkΘ





∑

j

hj
k



, (31)

where ξk represent random variables taking the val-
ues 0 or 1 with probabilities 1 − p and p, respec-
tively. Thus, only a fraction p of neurons in each
network is sensitive to the global signal. In the pa-
rameter space (ε, p) three different phases are found.
For small ε, as expected, no synchronization is ob-
served. On the other hand, for large ε and large p
there is full synchronization. Near ε = 1, in fact,
full synchronization occurs for values of p as low
as 0.3, which means that only 30% of global cross-
coupling connections remain in the ensemble. These
two zones are separated by an intermediate regime
of clustering, where at least two networks are fully
synchronized.

An important problem that remains to be stud-
ied in connection with coupled neural networks is
that of synchronization of nonidentical elements.
Considering nonidentical cross-coupled networks
could prove to be necessary to explain the varia-
tions in the dynamical properties — specifically, the

change from chaotic to almost-periodic evolution —
that accompany the appearance of synchronization
in real neural activity.

5. Conclusion

As a conclusion to this brief review, let us first
comment on the main similarities and differences
found in the synchronization properties of spatially
extended and zero-dimensional chaotic dynamical
systems. We begin pointing out that two cross-
coupled identical extended systems undergo a sharp
transition to full synchronization as the intensity of
coupling is increased, exactly as observed to happen
for a pair of coupled zero-dimensional systems, as
long as coupling implies a relaxation towards a com-
mon dynamical state. This similarity holds even
when coupling is inherently stochastic for extended
systems such as cellular automata and Kauffman
networks, and deterministic for zero-dimensional
systems. In both cases, the transition can be as-
cribed to the competing effect of two mechanisms,
namely, the intrinsic instability of the chaotic indi-
vidual dynamics on one hand, and the mutual relax-
ation towards a common trajectory in phase space
on the other. The critical-phenomenon nature of
the synchronization transition is well described by
the dependence of a suitable order parameter —
measuring the average distance in phase space of
the two individual trajectories — on the coupling
intensity. In zero-dimensional systems, the synchro-
nization transition is mediated by an intermittency
regime. Just below the transition, the system alter-
nates between long periods of quasi-synchronized
evolution, where the states of the two coupled ele-
ments almost coincide, and sudden bursts of desyn-
chronization [Kaneko, 1989]. In extended system,
in contrast, the critical dynamics is characterized
by spatiotemporal intermittency. This is well illus-
trated, in the case of cellular automata, by the dy-
namical structure of the difference automaton near
the transition (see Figs. 3 and 4). While most of
its cells are in state 0, there are localized regions
in state 1, where the automata are unsynchronized.
These localized structures are created by branch-
ing from other similar regions, evolve with time in
a diffusive-like fashion, and eventually disappear.
Note carefully that the presence of spatiotemporal
intermittency does not imply intermittent temporal
evolution in global quantities. In fact, the distance
between the two automata — i.e. the density of
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the difference automaton — evolves uniformly and
does not exhibit the characteristic bursts of strong
variation.

Comparison of the critical behavior at the syn-
chronization transition for cross-coupled elementary
cellular automata and Kauffman networks also re-
veals similarities and differences. In the two cases
the order parameter D, given by the asymptotic
Hamming distance between the coupled automata,
behaves as D ∼ |q − qc|β near the transition. Both
for cellular automata and for Kauffman networks
the critical coupling probability qc depends on the
evolution rules, whereas the critical exponent β is
universal. The value of β, however, is different
for the two kinds of automata. While for elemen-
tary cellular automata one finds β ≈ 0.274 — very
close to the critical exponent of directed percolation
[Grassberger, 1999] — for Kauffman networks the
exponent is trivial, β = 1. This difference seems
to be a direct consequence of the presence of dis-
order in the structure of Kauffman networks. In
fact, it has been shown that cross-coupled partially

disordered automata — whose structure is simi-
lar to the so-called small-world networks [Watts
& Strogatz, 1998] — behave exactly as Kauffman
networks even for very low levels of disorder [Morelli
& Zanette, 2001]. The intrinsic randomness of
Kauffman networks makes it possible to formu-
late an analytical approach based on the assump-
tion of time decorrelation of their successive states
— the annealed model [Derrida & Pomeau, 1986].
This approach has been successfully extended to
the case of cross-coupled networks, showing that
the synchronization transition is associated with a
transcritical bifurcation, which explains the trivial
exponent β = 1. In contrast, the ordered structure
of cellular automata introduce long-range correla-
tions that cannot be satisfactorily neglected at any
order. These correlations are plausibly related to
the nontrivial nature of the synchronization transi-
tion of cellular automata.

Two important aspects of synchronization phe-
nomena have been studied in extended systems
other than cellular automata and Kauffman net-
works. The first one regards the synchronization
properties of cross-coupled nonidentical systems,
in the case of the Ginzburg–Landau equation
[Boccaletti et al., 1999]. For this system, gener-
alized forms of synchronized evolution have been
detected. The second aspect involves the consider-
ation of identical extended systems when coupling
does not affect the whole system, but is localized

in certain spatial domains. Under these condi-
tions, full and partial synchronization has been
observed in cross-coupled neural networks [Zanette
& Mikhailov, 1998b]. In view of the potentiality
of automata as powerful abstract representations of
complex systems and as models of specific natu-
ral objects, the study of such aspects in connection
with these discrete extended systems would consti-
tute a fruitful line of future work.
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