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Synchronization of stochastically coupled cellular automata
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We analyze the dynamics of two coupled elementary cellular automata with complex spatiotemporal dy-
namics. The coupling mechanism, characterized by a probapility stochastic. From numerical simulations,
we find that a sharp transition to full synchronization of the two cellular automata occurs at a critical value of
p. This transition admits an approximate semianalytical description in terms of the evolution of the difference
automaton, and is found both for symmetric and asymmetric coupling. It is argued that the behavior of cellular
automata under coupling may inspire a classification of their individual dynaft663-651X98)51407-9

PACS numbd(s): 05.45:+b, 05.40+j, 05.70.Fh, 64.60:i

The phenomenon of synchronization of coupled chaotiexhibit novel(and very complexforms of behavior whose
dynamical systems has recently inspired a considerableharacterization, in fact, has still to be completely achieved
amount of research. The mutual engagement of two or morgg]. They constitute a distinct class of dynamical systems,
elements with complex individual dynamics into a fully syn- that is worthy of separate detailed study.
chronized state whose evolution is still complex has been As stated above, we are here interested at analyzing syn-
pointed out as a relevant feature in the behavior of a widgnronization of two coupled cellular automat&A). We
class of natural systenid], ranging from catalytic chemical consider CA of the most elementary class, consisting of a
reactions on surfacgg] to biological systems such as neural |jear array ofN cells that adopt two possible states=0

networks|3] and insect population@]. In its simplest ver- or 5 — 1 withi=1,... N. The individual evolution is de-

IS|on,.synchron|zat|on has been ob;ervgd n systems Of.twf%rministic and discrete in time, and the state of each cell at
identical elements whose respective individual dynamic

_ . Seach step is a prescribed function of the previous state of the
which are assumed to be gover.ned by the equation s5me cell and of its two nearest neighbors,(t+ 1)
=F(w), are coupled to each other in the form =f[a;_1(t),0:(t), 014 1(t)]. Periodic boundary conditions
_ € . are assumed. Even for these simplest CA a wide variety of

Wy o=F(wy )+ E(Wz'l_ Wy o) =F(Wy ) + e(W—wy ). behaviors has been observed, depending on the form of the

(1) evolution rulef [9]. Some of them can even exhibit nonpe-
riodic evolution in the limitN— oo, displaying spatiotempo-
The coupling term, weighted by the coupling intensity  ral structures that mimic those observed in chaotic extended
describes a kind of relaxation of the state of each element tsystems(cf., for instance, Refs/6] and [9]). Here we are
the state of the other or, equivalently, to the average statmainly interested in rules that give place to such kinds of

W= (W, +W,)/2. For this form of coupling it has been shown Nontrivial evolution.. _
that(if e is above a certain critical value, related to the maxi- AS @ starting point, we choose two CA with the same
mum Lyapunov exponent of the individual dynami¢eth ~ €volution rulef but with .dlfferent rgndom initial conditions.
elements approach a state of full synchronization in whichThe state of the respective cells will be denotedrjgt) and
w(t) =w,(t) and such that the synchronized pair reproduce{ (1), i=1, ... N. Due to the very character of these fully
the dynamics of a single, uncoupled elemigsit discrete systems, it is not possible to introduce a form of
Very recently, the possibility of synchronizing twgpa-  deterministic coupling able to be controlled with a continu-
tially extendecchaotic elements, whose individual dynamics ous parameter such as the coupling intensity Eq. (1). We
is governed by the complex Ginzburg-Landau equation, ha#itroduce instead a form of stochastic coupling, character-
been proverj6]. In this Rapid Communication, we charac- ized by a probabilityp(0O<p=1), as follows. At each time
terize the phenomenon of synchronization between a differstep, the dynamics of the coupled CA is given by the suc-
ent kind of extended systems, namely, cellular automatscessive application of two evolution operators to the state
Cellular automata were initially introduced to mimic self- vector of each automatoml'z(t—}-1):ASO|AQ(0'1'2(t))_ The

reproducing machines and as universal computers. After th@peraton?{ stands for the independent evolution of each CA,
work by Wolfram, who conjectured that the laws of nature : . a0
according to the corresponding rule, Ri(o'?)

could be given in terms of such fully discretized entities, 5 12 12 ) ) b
they have been extensively applied to model physical, bio=floi1,07"%, 075 ]. The stochastic coupling operat&
logical, and artificial systemg7]. Systematic study of their compares the states; and o of the homologous cells in
dynamics has shown that some cellular automata are able &fch CA for alli. If of =07, both states are kept invariant.
Otherwise, with probability +p they are also left un-
changed, but with the complementary probabiljty the
*Also at Consejo Nacional de Investigaciones Ciigis y Te-  States are made equal eithertbor to 0. This latter choice
nicas, Argentina. is made with probability 1/2. Therefore,
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FIG. 2. Asymptotic density of the difference automajpras a
function of the coupling probabilitp. Full (empty dots correspond
to two symmetrically(asymmetrically coupled cellular automata.
Squares correspond to three coupled cellular automata. The arrow
in the horizontal axis indicates the value mf=0.193. Inset: Log-
log plot of p vs |p—p.|, with p.=0.193. The straight line is a
least-square linear fitting, with slopgg=0.34.

nization and full synchronization takes place for nontrivial
evolution rules at a critical value of the coupling probability.
To study the behavior of the two coupled CA at interme-
diate values ofp we have performed extensive numerical
FIG. 1. Evolution of two coupled rule-18 cellular automata, with Simulations. We have focused our attention on the so-called
a coupling probabilityp=0.2, just above the synchronization tran- fule 18 [9], for which f[0,0,1]=f[1,0,0=1 and
sition. The temporal axis points rightwards. The upper and thef[oi-1,07,0i+1]=0 otherwise. Rule 18 gives rise to non-
lower plots show 300 successive states of the two automatdyeriodic evolution in the limitN—o, and generates homo-
whereas the central plot displays the corresponding difference ageneous but disordered triangular spatiotemporal patterns
tomaton. Each automaton has 500 cells but, for the sake of clarity(Fig. 1). In our simulations, we have také¥=600 andN

only a selected region of 150 cells is shown. =1000. Each realization consists of a first stage where the
two CA with random initial configurations are left to evolve
12 if Ui1:02 without coupling during 200 time steps. During this stage

12

g,
. . e 1. 2 (whose length, as we have tested, is generically independent
o with probability 1—p, if o # of,
g
g

of N for rule 18 transients elapse and the CA enter their
il with probability p/2, if Uilgﬁgi{ asymptotic regime, characterized by typical spatiotemporal
5 . . e 1, 2 trianglelike structuregsee Fig. 1L Once the CA are within
i with probability p/2, it o # o this regime, coupling is switched on.

2 In order to study the properties of synchronization of the
_ o _ CA we have analyzed the evolution of thiifference au-
This form of coupling, in which the state of homologous tomaton(DA), in which the state of theth cell is defined as

cells in each CA are occasionally made equal, adapts to thge Boolean difference betweear!(t) and o?(t), & (t)
discrete evolution of these systems the process of mutual ail(t)@oiz(t)zIail(t)—oiz(t)|. As a “macroscopic’

relaxation '”?p."ed by the coupling terms qf Bd). On the ._quantity characterizing the state of the DA we have chosen
other hand, it introduces a novel stochastic element that ims . .
. ) . . ts densityp(t), defined as

mediately raises the question on whether this random cou-
pling is as efficient in producing synchronization as deter- 1 N
ministic mechanisms. _ - _ p(t)= N—E si(b), 3)

It is clear that when theoupling probability pvanishes, i=1
the two CA evolve independently of each other. From differ-
ent random initial conditions, and except for a few trivial (0<p(t)<1). For sufficiently large values gb we have
evolution rules, their states will always differ to some extent.found that lim_,..p(t)=0, corresponding to full synchroni-
On the other hand, fop=1, the two CA are fully synchro- zation of the CA, as illustrated in Fig. 1, whereas for small
nized after the first evolution step. From then on, they willcoupling probabilities, lim,..p(t)=p#0. The asymptotic
reproduce the evolution of a noncoupled CA but their statesaluep of the DA density seems therefore to provide a suit-
will be mutually identical. This suggests that some kind ofableorder parameteifor the synchronization transition. Fig-
transition should occur in the intervakQp<1. As we show ure 2 show$ as a function ofp, averaged over 50 realiza-
below, in fact, a rather abrupt transition between desynchrotions that differ in the initial conditions of the CA and over

S(0t?) =
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2000 +0.001, and the corresponding critical exponenBis0.34
. 2000 +0.01. The log-log plot for this value gd. is shown in the
inset of Fig. 2, where the straight line stands for the linear
15004 15007 fitting. Remarkably enough, this fitting holds practically in
. ol the whole domain of coupling probabilities. Note moreover
T that B is suggestively close to 1/3.
T 1997 . w0 These numerical results make it possible to build up a
description of the coupled CA dynami¢and, in particular,
s00. ° 0 . of the synchronization transitipim terms of the evolution of
. 0 1o 200 a single “macroscopic” quantity, namely, the DA density.
'-.. Let us assume that, for two uncoupled CA, the DA density
o ©®%%cecc0000000000nsan evolves according tp(t+1)= ¢(p(t)). It is therefore clear
020 025 030 035 040 045 050 that, in the presence of the stochastic coupling mechanism

described above, the evolution pft) will be governed by

P the equation

FIG. 3. Synchronization tim@ as a function of the coupling

probability p. Inset: T as a function of the relaxation time The p(t+1)=(1—-p)d(p(t)). (5)
straight line stands for the linear fit far>30. Its slope is about
12.8. Now, for p<p., the nonvanishing asymptotic value of the

DA density should satisfp=(1—p) ¢(p), which allows us

10* time steps. For smal, p varies rather smoothly from its to obtaing(p)=p/[1—p(p)], where the coupling probabil-
value with no coupling. As the coupling probability ap- ity p has to be seen as a functionmfthrough its connection
proaches the valup~0.2, however, a sudden decaymis  with the stationary value of the DA density. According to our
observed. For larger values @f a tiny exponential tail is results, this connection can be well approximated by(Ey.
observed and, finally, the asymptotic DA density vanishesvith suitable values oA, p., and 8. We can thus estimate
identically. The critical-like behavior of the appearance of¢(p) for 0sp=<p,, i.e., for Osp=p., as ¢(p)=p/[1
synchronization is therefore apparent. This suggests the ex- p.+ (p/A)Y#]. For small values op, i.e. near the syn-
istence of a critical coupling probabilityp.~0.2, above chronization transitiong is linear inp, ¢(p)=~p/(1—p.)
which the evolution of the two CA is fully synchronized. ~1.24, and has a higher-order correction of orgés /2
Note that the fact that we do not observe a completely sharghich, in general, is nonanalytical.
transition inp as a function op can reasonably be ascribed  According to Eq.(5), a leading linear term irp(p) im-
to the finiteness of the computation time in our numericalplies that, within the synchronization regime and for
simulations. Occasionally, in fact, some structures in the DA~p_, p(t)=[(1—p)/(1—p.)]'p(0) if p(0) is small. This
are extremely persistent just abopg. predicts relaxation top=0 within a typical time 7=

The synchronization regim@>p., could also be char- — 1/In[(1—p)/(1—pJ)]. It can be reasonably assumed that the
acterized by means of a single nonvanishing parametesynchronization tim@ measured in our simulations near the
namely, the synchronization time. In fact, the ti¢hat full  transition is proportional tor. This implies that, forp
synchronization takes to settle down from the moment when<p., T=B|p—p.| !, with B a constant. This formulation,
coupling is switched on depends strongly on the couplingherefore, predicts an integer exponent for the divergence of
probability. For a single realizatiofT, is defined by the con-  the synchronization time gs— p. from above. To test this
dition p(t)#0 for t<T but p(t)=0 for t=T. Figure 3  prediction, we have plotted, in the inset in Fig. 3, the syn-
shows a plot ofT as a function ofp, averaged over 500 chronization timeT as a function of the predicted relaxation
realizations. We see that it diverges as the coupling probabitime r~|p—p.| ~*. As expected, they are linearly correlated
ity approacheg.. The identification ofT™%, or a similar  for large values ofr.
function of T, as an order parameter would however be mis- In order to test the robustness of stochastic coupling be-
leading, as the synchronization time stands for a dynamicalveen CA, we have analyzed some variants, namely, two-CA
feature of the transient evolution and does not characterizgsymmetric coupling and three-CA symmetric coupling. In
the synchronized state. the first case, coupling acts in one direction only, so that one

The form of the asymptotic DA density as a function of of the CA is slaved to the other, which evolves freely.
the coupling probability fop<p. (Fig. 2) calls for a fitting  Three-CA symmetric coupling is a straightforward extension

of these data with a critical-like power-law function of the situation considered in this Rapid Communication. In
both cases, we have found that, for rule 18, a synchronization
p=Alp—p|~. (4)  transition of the same type as described above oogtics

2). Remarkably, the critical value @f is, within our numeri-
To perform this fitting, we have constructed a log-log plot of cal precision, the same as for two symmetrically coupled
p versus|p—p,| for different values of the critical probabil- CA, which seems to indicate that, is fully determined by
ity and looked for the value op. that gave the best linear some feature of the individual dynamics. For three coupled
correlation for the numerical data, wigh>0.03, in order to CA, we have observed that the evolution of the DA differs
avoid the exponential tail observed for small DA densities.qualitatively from the case of two CA but, beyond the critical
The slope of the least-square linear fitting gives the criticapoint, its density vanishes asymptotically. This suggests that
exponentB. This optimal fitting is achieved fop,=0.193  stochastic coupling could also be able to synchronize large
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populations of CA. A detailed account of these results willinterest, including contact processes, chemical reactions,

be given in a forthcoming workl0]. damage spreading, self-organized criticality and directed per-
We have moreover studied the effects of stochastic coueolation (DP). Some of those critical phenomena are be-

pling on elementary CA governed by other evolution rules. Itlieved to belong to the same universality cla$$], namely,

is found that CA whose asymptotiC evolution is periOdiC in the DP class, with a critical exponeﬂtg 0.28. Such as many

time can be synchronized at any value of the coupling probgther models with vanishing-density transitions, the present

ability, and a synchronization transition is observed for com-ystem does not seem to belong to the same universality

plex evolution rules only. In fact, it can be easily proven thatq|ass. |n fact, our results show a critical exponent definitely

coupled CA in periodic states, where the corresponding D'Ohigher than that of the DP transition.

is thus also periodic, will necessarily synchronize within a ~“~.1ar automata have been successfully applied to

ETrgg;esr_[{stlc rflinglso?'rgrenzlelxnsizeggglcs %Achlgiteg?(’);h?model wide classes of natural and artificial systems, such as,
Ity grow : P y lzation 13, instance, biological populations, physico-chemical pro-

el e o o o o 25565 and compuaionl deva. Thse systems e

in t P f their ch ¢ gt' behavi der the effect ‘also been shown to respond in a nontrivial way to coupling
N terms of their characteristic behavior under the etiects o echanismq2-4]. Thus, besides the interest of studying
stochastic coupling. Such a criterion could be especially rel-

evant for non-elementary and manv-dimensional GA hercoupled cellular automata as an instance of complex, spa-
v htary and many-ai : W ?ially extended dynamical objects able to display mutual syn-
the problem of classification is still open.

o oy . _chronization, th Id provide insight on the rich dynami
The synchronization transition that we have here stud|e<g onization, they could provide insight on the rich dynamics

: . L o .. of those real systems.

in coupled cellular automata is qualitatively similar to criti- )

cal phenomena shown to occur in a wide class of nonequi- Financial support from the Fundacid\ntorchas, Argen-
librium systems which have recently attracted a great deal dina, is gratefully acknowledged.
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