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Synchronization of stochastically coupled cellular automata
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~Received 10 October 1997; revised manuscript received 20 January 1998!

We analyze the dynamics of two coupled elementary cellular automata with complex spatiotemporal dy-
namics. The coupling mechanism, characterized by a probabilityp, is stochastic. From numerical simulations,
we find that a sharp transition to full synchronization of the two cellular automata occurs at a critical value of
p. This transition admits an approximate semianalytical description in terms of the evolution of the difference
automaton, and is found both for symmetric and asymmetric coupling. It is argued that the behavior of cellular
automata under coupling may inspire a classification of their individual dynamics.@S1063-651X~98!51407-9#

PACS number~s!: 05.45.1b, 05.40.1j, 05.70.Fh, 64.60.2i
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The phenomenon of synchronization of coupled chao
dynamical systems has recently inspired a consider
amount of research. The mutual engagement of two or m
elements with complex individual dynamics into a fully sy
chronized state whose evolution is still complex has b
pointed out as a relevant feature in the behavior of a w
class of natural systems@1#, ranging from catalytic chemica
reactions on surfaces@2# to biological systems such as neur
networks@3# and insect populations@4#. In its simplest ver-
sion, synchronization has been observed in systems of
identical elements whose respective individual dynam
which are assumed to be governed by the equationẇ
5F(w), are coupled to each other in the form

ẇ1,25F~w1,2!1
e

2
~w2,12w1,2!5F~w1,2!1e~w̄2w1,2!.

~1!

The coupling term, weighted by the coupling intensitye,
describes a kind of relaxation of the state of each elemen
the state of the other or, equivalently, to the average s
w̄5(w11w2)/2. For this form of coupling it has been show
that~if e is above a certain critical value, related to the ma
mum Lyapunov exponent of the individual dynamics! both
elements approach a state of full synchronization in wh
w1(t)5w2(t) and such that the synchronized pair reprodu
the dynamics of a single, uncoupled element@5#.

Very recently, the possibility of synchronizing twospa-
tially extendedchaotic elements, whose individual dynami
is governed by the complex Ginzburg-Landau equation,
been proven@6#. In this Rapid Communication, we chara
terize the phenomenon of synchronization between a dif
ent kind of extended systems, namely, cellular autom
Cellular automata were initially introduced to mimic se
reproducing machines and as universal computers. After
work by Wolfram, who conjectured that the laws of natu
could be given in terms of such fully discretized entitie
they have been extensively applied to model physical, b
logical, and artificial systems@7#. Systematic study of thei
dynamics has shown that some cellular automata are ab
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exhibit novel ~and very complex! forms of behavior whose
characterization, in fact, has still to be completely achiev
@8#. They constitute a distinct class of dynamical system
that is worthy of separate detailed study.

As stated above, we are here interested at analyzing
chronization of two coupled cellular automata~CA!. We
consider CA of the most elementary class, consisting o
linear array ofN cells that adopt two possible states,s i50
or s i51, with i 51, . . . ,N. The individual evolution is de-
terministic and discrete in time, and the state of each ce
each step is a prescribed function of the previous state of
same cell and of its two nearest neighbors,s i(t11)
5 f @s i 21(t),s i(t),s i 11(t)#. Periodic boundary conditions
are assumed. Even for these simplest CA a wide variety
behaviors has been observed, depending on the form o
evolution rulef @9#. Some of them can even exhibit nonp
riodic evolution in the limitN→`, displaying spatiotempo-
ral structures that mimic those observed in chaotic exten
systems~cf., for instance, Refs.@6# and @9#!. Here we are
mainly interested in rules that give place to such kinds
nontrivial evolution.

As a starting point, we choose two CA with the sam
evolution rulef but with different random initial conditions
The state of the respective cells will be denoted bys i

1(t) and
s i

2(t), i 51, . . . ,N. Due to the very character of these ful
discrete systems, it is not possible to introduce a form
deterministic coupling able to be controlled with a contin
ous parameter such as the coupling intensitye in Eq. ~1!. We
introduce instead a form of stochastic coupling, charac
ized by a probabilityp(0<p<1), as follows. At each time
step, the dynamics of the coupled CA is given by the s
cessive application of two evolution operators to the st
vector of each automaton,s1,2(t11)5Ŝ+R̂„s1,2(t)…. The
operatorR̂ stands for the independent evolution of each C
according to the corresponding rule, R̂i(s1,2)
5 f @s i 21

1,2 ,s i
1,2,s i 11

1,2 #. The stochastic coupling operatorŜ
compares the statess i

1 and s i
2 of the homologous cells in

each CA for alli . If s i
15s i

2 , both states are kept invarian
Otherwise, with probability 12p they are also left un-
changed, but with the complementary probabilityp, the
states are made equal either tos i

1 or to s i
2 . This latter choice

is made with probability 1/2. Therefore,
R8 © 1998 The American Physical Society
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Ŝi~s1,2!55
s i

1,2 if s i
15s i

2,

s i
1,2 with probability 12p, if s i

1Þs i
2,

s i
1 with probabilityp/2, if s i

1Þs i
2,

s i
2 with probabilityp/2, if s i

1Þs i
2.

~2!

This form of coupling, in which the state of homologou
cells in each CA are occasionally made equal, adapts to
discrete evolution of these systems the process of mu
relaxation implied by the coupling terms of Eq.~1!. On the
other hand, it introduces a novel stochastic element that
mediately raises the question on whether this random c
pling is as efficient in producing synchronization as det
ministic mechanisms.

It is clear that when thecoupling probability pvanishes,
the two CA evolve independently of each other. From diff
ent random initial conditions, and except for a few trivi
evolution rules, their states will always differ to some exte
On the other hand, forp51, the two CA are fully synchro-
nized after the first evolution step. From then on, they w
reproduce the evolution of a noncoupled CA but their sta
will be mutually identical. This suggests that some kind
transition should occur in the interval 0,p,1. As we show
below, in fact, a rather abrupt transition between desynch

FIG. 1. Evolution of two coupled rule-18 cellular automata, w
a coupling probabilityp50.2, just above the synchronization tra
sition. The temporal axis points rightwards. The upper and
lower plots show 300 successive states of the two autom
whereas the central plot displays the corresponding difference
tomaton. Each automaton has 500 cells but, for the sake of cla
only a selected region of 150 cells is shown.
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nization and full synchronization takes place for nontriv
evolution rules at a critical value of the coupling probabilit

To study the behavior of the two coupled CA at interm
diate values ofp we have performed extensive numeric
simulations. We have focused our attention on the so-ca
rule 18 @9#, for which f @0,0,1#5 f @1,0,0#51 and
f @s i 21 ,s i ,s i 11#50 otherwise. Rule 18 gives rise to non
periodic evolution in the limitN→`, and generates homo
geneous but disordered triangular spatiotemporal patt
~Fig. 1!. In our simulations, we have takenN5600 andN
51000. Each realization consists of a first stage where
two CA with random initial configurations are left to evolv
without coupling during 200 time steps. During this sta
~whose length, as we have tested, is generically indepen
of N for rule 18! transients elapse and the CA enter th
asymptotic regime, characterized by typical spatiotempo
trianglelike structures~see Fig. 1!. Once the CA are within
this regime, coupling is switched on.

In order to study the properties of synchronization of t
CA we have analyzed the evolution of thedifference au-
tomaton~DA!, in which the state of thei th cell is defined as
the Boolean difference betweens i

1(t) and s i
2(t), d i(t)

5s i
1(t) % s i

2(t)5us i
1(t)2s i

2(t)u. As a ‘‘macroscopic’’
quantity characterizing the state of the DA we have cho
its densityr(t), defined as

r~ t !5
1

N(
i 51

N

d i~ t !, ~3!

(0<r(t)<1). For sufficiently large values ofp we have
found that limt→`r(t)50, corresponding to full synchroni
zation of the CA, as illustrated in Fig. 1, whereas for sm
coupling probabilities, limt→`r(t)5rÞ0. The asymptotic
valuer of the DA density seems therefore to provide a su
ableorder parameterfor the synchronization transition. Fig
ure 2 showsr as a function ofp, averaged over 50 realiza
tions that differ in the initial conditions of the CA and ove

e
a,
u-

ty,

FIG. 2. Asymptotic density of the difference automatonr as a
function of the coupling probabilityp. Full ~empty! dots correspond
to two symmetrically~asymmetrically! coupled cellular automata
Squares correspond to three coupled cellular automata. The a
in the horizontal axis indicates the value ofpc50.193. Inset: Log-
log plot of r vs up2pcu, with pc50.193. The straight line is a
least-square linear fitting, with slopeb50.34.
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104 time steps. For smallp, r varies rather smoothly from its
value with no coupling. As the coupling probability ap
proaches the valuep'0.2, however, a sudden decay ofr is
observed. For larger values ofp a tiny exponential tail is
observed and, finally, the asymptotic DA density vanish
identically. The critical-like behavior of the appearance
synchronization is therefore apparent. This suggests the
istence of a critical coupling probability,pc'0.2, above
which the evolution of the two CA is fully synchronized
Note that the fact that we do not observe a completely sh
transition inr as a function ofp can reasonably be ascribe
to the finiteness of the computation time in our numeri
simulations. Occasionally, in fact, some structures in the
are extremely persistent just abovepc .

The synchronization regime,p.pc , could also be char-
acterized by means of a single nonvanishing parame
namely, the synchronization time. In fact, the timeT that full
synchronization takes to settle down from the moment w
coupling is switched on depends strongly on the coupl
probability. For a single realization,T is defined by the con-
dition r(t)Þ0 for t,T but r(t)50 for t>T. Figure 3
shows a plot ofT as a function ofp, averaged over 500
realizations. We see that it diverges as the coupling proba
ity approachespc . The identification ofT21, or a similar
function ofT, as an order parameter would however be m
leading, as the synchronization time stands for a dynam
feature of the transient evolution and does not characte
the synchronized state.

The form of the asymptotic DA density as a function
the coupling probability forp,pc ~Fig. 2! calls for a fitting
of these data with a critical-like power-law function

r5Aup2pcub. ~4!

To perform this fitting, we have constructed a log-log plot
r versusup2pcu for different values of the critical probabil
ity and looked for the value ofpc that gave the best linea
correlation for the numerical data, withr.0.03, in order to
avoid the exponential tail observed for small DA densiti
The slope of the least-square linear fitting gives the criti
exponentb. This optimal fitting is achieved forpc50.193

FIG. 3. Synchronization timeT as a function of the coupling
probability p. Inset:T as a function of the relaxation timet. The
straight line stands for the linear fit fort.30. Its slope is about
12.8.
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60.001, and the corresponding critical exponent isb50.34
60.01. The log-log plot for this value ofpc is shown in the
inset of Fig. 2, where the straight line stands for the line
fitting. Remarkably enough, this fitting holds practically
the whole domain of coupling probabilities. Note moreov
that b is suggestively close to 1/3.

These numerical results make it possible to build up
description of the coupled CA dynamics~and, in particular,
of the synchronization transition! in terms of the evolution of
a single ‘‘macroscopic’’ quantity, namely, the DA densit
Let us assume that, for two uncoupled CA, the DA dens
evolves according tor(t11)5f„r(t)…. It is therefore clear
that, in the presence of the stochastic coupling mechan
described above, the evolution ofr(t) will be governed by
the equation

r~ t11!5~12p!f„r~ t !…. ~5!

Now, for p,pc , the nonvanishing asymptotic value of th
DA density should satisfyr5(12p)f(r), which allows us
to obtainf(r)5r/@12p(r)#, where the coupling probabil
ity p has to be seen as a function ofr, through its connection
with the stationary value of the DA density. According to o
results, this connection can be well approximated by Eq.~4!,
with suitable values ofA, pc , andb. We can thus estimate
f(r) for 0<r<r0, i.e., for 0<p<pc , as f(r)5r/@1
2pc1(r/A)1/b#. For small values ofr, i.e. near the syn-
chronization transition,f is linear in r, f(r)'r/(12pc)
'1.24r, and has a higher-order correction of orderr111/b

which, in general, is nonanalytical.
According to Eq.~5!, a leading linear term inf(r) im-

plies that, within the synchronization regime and forp
'pc , r(t)'@(12p)/(12pc)# tr(0) if r(0) is small. This
predicts relaxation tor50 within a typical time t5
21/ln@(12p)/(12pc)#. It can be reasonably assumed that t
synchronization timeT measured in our simulations near th
transition is proportional tot. This implies that, forp
'pc , T5Bup2pcu21, with B a constant. This formulation
therefore, predicts an integer exponent for the divergenc
the synchronization time asp→pc from above. To test this
prediction, we have plotted, in the inset in Fig. 3, the sy
chronization timeT as a function of the predicted relaxatio
time t;up2pcu21. As expected, they are linearly correlate
for large values oft.

In order to test the robustness of stochastic coupling
tween CA, we have analyzed some variants, namely, two-
asymmetric coupling and three-CA symmetric coupling.
the first case, coupling acts in one direction only, so that
of the CA is slaved to the other, which evolves free
Three-CA symmetric coupling is a straightforward extens
of the situation considered in this Rapid Communication.
both cases, we have found that, for rule 18, a synchroniza
transition of the same type as described above occurs~Fig.
2!. Remarkably, the critical value ofp is, within our numeri-
cal precision, the same as for two symmetrically coup
CA, which seems to indicate thatpc is fully determined by
some feature of the individual dynamics. For three coup
CA, we have observed that the evolution of the DA diffe
qualitatively from the case of two CA but, beyond the critic
point, its density vanishes asymptotically. This suggests
stochastic coupling could also be able to synchronize la
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populations of CA. A detailed account of these results w
be given in a forthcoming work@10#.

We have moreover studied the effects of stochastic c
pling on elementary CA governed by other evolution rules
is found that CA whose asymptotic evolution is periodic
time can be synchronized at any value of the coupling pr
ability, and a synchronization transition is observed for co
plex evolution rules only. In fact, it can be easily proven th
coupled CA in periodic states, where the corresponding
is thus also periodic, will necessarily synchronize within
characteristic relaxation time. In aperiodic CA, instead,
DA density grows as time elapses and synchronization
possible for sufficiently strong coupling only. This wou
make possible establishing a classification criterion for C
in terms of their characteristic behavior under the effects
stochastic coupling. Such a criterion could be especially
evant for non-elementary and many-dimensional CA, wh
the problem of classification is still open.

The synchronization transition that we have here stud
in coupled cellular automata is qualitatively similar to cri
cal phenomena shown to occur in a wide class of none
librium systems which have recently attracted a great dea
ce
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interest, including contact processes, chemical reactio
damage spreading, self-organized criticality and directed p
colation ~DP!. Some of those critical phenomena are b
lieved to belong to the same universality class@11#, namely,
the DP class, with a critical exponentb'0.28. Such as many
other models with vanishing-density transitions, the pres
system does not seem to belong to the same univers
class. In fact, our results show a critical exponent definit
higher than that of the DP transition.

Cellular automata have been successfully applied
model wide classes of natural and artificial systems, such
for instance, biological populations, physico-chemical p
cesses and computational devices@7#. These systems hav
also been shown to respond in a nontrivial way to coupl
mechanisms@2–4#. Thus, besides the interest of studyin
coupled cellular automata as an instance of complex, s
tially extended dynamical objects able to display mutual s
chronization, they could provide insight on the rich dynam
of those real systems.

Financial support from the Fundacio´n Antorchas, Argen-
tina, is gratefully acknowledged.
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