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Synchronization of Kauffman networks
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We analyze the synchronization transition for a pair of coupled identical Kauffman networks in the chaotic
phase. The annealed model for Kauffman networks shows that synchronization appears through a transcritical
bifurcation and provides an approximate description for the whole dynamics of the coupled networks. We
show that these analytical predictions are in good agreement with numerical results for sufficiently large
networks and study finite-size effects in detail. Preliminary analytical and numerical results for partially
disordered networks are also presented.
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[. INTRODUCTION naturally to the consideration of coupling between such au-
tomata. Kauffman networks can also be thought of as sim-
Synchronization of coupled elements is a form of collec-plified models of neural systems, whose synchronization
tive evolution present in a variety of complex real systemsproperties seem to be essential to their funcfi®s@]. Thus,
and mathematical models. This class of emergent behavidhe study of synchronized states in coupled Kauffman net-
has been observed in biological populatiddg, chemical works could provide useful information on the dynamics of
reactions[2], neural networkg3], and human social phe- such systems. In connection with physics, Kauffman net-
nomend 4], among other instances. Models that account fomorks are closely related to spin models with disordered
synchronization consider, for example, globally coupled lo-long-range interactiongl5], whose complex dynamical and
gistic map9g 5], chaotic oscillator$6], Hamiltonian systems equilibrium properties are not fully understood gt6].
[7], and formal neural networks]. With respect to previous work on coupled extended systems,
In the usual formulation, two identical dynamical systemsinterest in Kauffman networks resides in the fact that the

whose individual dynamics is governed by the equation transition to synchronization admits an analytical description

=F(w) are coupled to each other in the form which, as we show in this paper, results in being in excellent
agreement with numerical simulations.

Wy o= F(Wy o) + €(Wp 1— Wy o), (1) In Sec. Il we briefly review the definition of K_auffman _

’ ' ’ ' networks and the annealed model for the calculation of their

where € is the Coup"ng parameter. Full Synchronization overlaps. Next, in Sec. lll, we introduce a stochastic cou-

takes place when both systems converge asymptotically to Rling mechanism for Kauffman networks and propose an
common trajectoryw; (t) =w,(t). When the individual dy- analytical approach in the framework of the annealed model,
namics is chaotic—a particularly relevant case in connectiotivhich identifies the transition to synchronization in our sys-
with the description of real Systems_fu” Synchroniza’[iontem as a transcritical bifurcation. Section |V, where we re-
occurs above a critical value, of the coupling intensity. Port our numerical results, is the core of the present paper.
This critical point is determined by the competition betweenThere, we study the effects of spurious synchronization in
chaos and coupling, and can be calculated in terms of thBnite-size networks, consider the application of noise to the
Lyapunov exponent of the individual dynamics). system to eliminate such effects, and compare the results

While g|oba||y Coup|ed chaotic elements with a few inter- with the analytical description. Remanent finite-size effects
nal variables have been extensively studied, synchronizatioar® numerically quantified and their analytical treatment,
of spatially extended systems remains quite unexplored. R&vhich requires a formulation beyond the annealed model, is
Cenﬂy, Synchronization has been reported for a System Corp.utlinec‘. In Sec. V we discuss the SynChronization transition
sisting of two coupled complex Ginzburg-Landau equationdn some subclasses of Kauffman networks, which may be
[9]. Globally coupled neural networkE8], stochastically thought of as interpolations between generic Kauffman net-
coupled cellular automatfl0—14, and nonidentical com- works and ordered cellular automata. Finally, in Sec. VI, our
plex Ginzburg-Landau systenj43] are other examples of results are summarized and discussed.
spatially extended systems that present a critical transition to
synchronization. o _ Il. KAUFFMAN NETWORKS

In this paper we study the synchronization dynamics of
two coupled identical Kauffman networks, which are dis- Kauffman networks, also known as random Boolean net-
crete extended dynamical systems with quenched disordeworks, were introduced as a model for the problem of cell
These disordered cellular automata have been used as differentiation[17,14]. Since then, they have been the object
abstract representation of the fitness landscape in models of many studies concerning their propertjdg,18—21.
biological evolution[14]. Coevolution of several biological A Kauffman network(KN) is a disordered deterministic
species, whose genetic dynamics influence each other, leadgnamical system. It consists of asite network, where
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each site is connected % randomly chosen sites. The pa- the same changes are applied to both networks, keeping them
rameterK is known as theconnectivityof the network. We identical. The probability for a site having all its inputs com-
refer to the set oK sites connected to a given site as itsing from sites in the same state in both networka(ig <. At
neighborhood The state of each site is given by a Booleanthe next time step, consequently, such a site will be in the
variables; €{0,1} and evolves according to the inputs com- same state in both networks, no matter the evolution rule
ing from the neighbor sites. The evolution rule is chosenchosen for it. Thus, there is a fractiat) of homologous
independently and randomly for each site. To each possiblsites whose state will coincide at-1. The remaining 1
configuration of the neighborhood—there aré Zuch —a(t)X sites still have a probability of overlapping. Even if
configurations—an output is assigned: namely, 1 with probihe states of the neighborhoods of a given site are different in
ability p or O with probability 1-p. The parametep  the two networks, it may happen that the evolution rule as-
€[0,1] is known as thebias of the rule. Then, for each signs the same output to them. The probabilities ff¢w;)

variable o; we have Boolean functionsi_ such thatai(t :fi(Viz):O and forfi(,,il):fi(yiz):]_ are, respectively, (1

+1)=fi[n(t)], wherev;=(o;, ... 07 ) is the set of in-  —p)2 andp?. The overlap at time-+ 1 is then

puts of sitei. The state of all sites is updated simultaneously K Kar 2 5

according to the corresponding functions. We can write an a(t+)=a®)"+[1-a®)"][p*+(1-p)°]. (3

iv(o(lfutlgn equa;lo)n ;c;r the state vector of the netwark An alternative way to characterize the difference between

LE2e e BND two networks is the difference automaton, defined by

otr)=fe®)], @ dy(H) =t @ (1), @

with flo(t) 1= (o[ v (V) . T[ ()], . . . [ on(D) D). where ® denotes Boolean addition. The density of this au-

TheK connections and the evolution rule of each site argymaton is given by
chosen at the beginning and kept fixed during the evolution.
Thus, the disorder is quenched and the dynamics is determin- 1 N
istic. For a finite number of sitel, the number of states in D(t)=— 2 d;(t), (5)
phase space is also finite—it equal$ Zhen, for any initial N =

condition, the system will eventually fall into a cycle. famd coincides with the Hamming distance between the net-

In (p,K) parameter space, Kauffman networks presen 1
phases of frozen and chaotic evolution, separated by a crit}'—vorks' Note thaD(t)=1-a(t) so that, from Eq(3), we get

cal line. The transition between these phases has been exten- D(t+1)=2p(1—p){1—[1—D(t)]¥}. 6)
sively studied and characterized by means of several order

parameters, such as the Hamming distafi@&19 and the  The Hamming distance has proved to be a suitable order
stable core sizg20]. In most of this work we will deal with  parameter in the study of the synchronization transition in
the casep=1/2 andK=3, which lies within the chaotic coupled elementary cellular automdth0—14, where the
phase. Though, as stated above, the evolution of a finite nemalysis of overlaps between states is a basic tool to define
work is periodic in the long run, at the relatively short time the effects of coupling. In the next section, we adapt the

scales relevant to the synchronization processes studied heffinealed model to the description of coupled KN's.
the evolution exhibits the typical features of chaotic dynam-

ics, namely, sensitivity to the initial conditions and damage IIl. COUPLED KAUFEMAN NETWORKS
spreading.
The annealed mod€AM) was introduced to study the A. Stochastic coupling
evolution of overlaps between states in KNiis,19. In this In order to establish a coupling mechanism between two
model, theK connectiondiy, ... ik} of each site as wellas  kN's, we first observe that, due to the discrete nature of

the Boolean function$; are randomly changed at each time KN's the usual deterministic coupling used for mas
step. This means that an entirely different realization of the;gnnot be applied here. Consequently, we introduce a form
network is used at each step. Note that, while ordinary KN'syf stochastic coupling between networks as previously done
are deterministic, the annealed model works as a probabiligy cellular automat&10], where the continuous parameter

tic automaton. The asymptotic periodic behavior of KN's isthat controls the strength of the coupling is a probability, as
absent in the annealed model. The advantage of this model &plained in the following.

that it allows for analytical calculations, and it has been The evolution of the coupled system is implemented by
shown that its ’prgd|ctlons are in good agreement with thgne syccessive application of two operators. First, the evolu-
behavior of KN's in the limitN— < [19]. tion functionf is applied to both networks as if they were not

Suppose that we have two identical KN's with the samecoupled[see Eq.(2)], yielding f(o) and f(a?). Next, the
connections and rules. We feed them with different initial gtochastic coupling operatet is applied:

conditions and let them evolve in time. We define ther-

lap a(t) between the networks as the fraction of homologous {ol(t+1),0%(t+ D)} =S oM (V) ,.T[A(D)]).  (7)
sites that are in the same state at titnén the AM, it is

possible to calculate the time evolution of the overlap. AtThe operatoiS compares the states of the networks site by
timet+ 1 the connections and the rulgsare reassigned, but site. If o(t)=o?(t), the state of the site is not modified. If,
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’ [i] | network 1 networks is given by Eq(6). Now suppose that the Ham-
ming distance of twacoupledKN'’s at timet is D(t). The
first substep in the dynamics of this system consists of the
coupling free evolution of both networks. The Hamming distance after
this substepD (t+ 6t), is therefore given by Eq6). At the
second substep, coupling acts on the system, and a fragtion

| i ] | network 2 of the homologous sites that were in different states are as-

, , , . signed the same value. This leaves a fraction- )D(t

FIG. 1. Schematic representation of the coupling mechanism., sy ot sites with different states in the two networks. Thus,

CC.’Up“ng links homologou_s element§ of_two exteno_led systems—i?(he evolution of the Hamming distance for coupled networks
this case, two networks. Since coupling is symmetric, each networIs given by the map

may act on the other.
D(t+1)=F[D()]=¢(p,9){1-[1-D(1I}, (9

on the other handail(t) * aiz(t), with probability g, the '
states of the homologous sites in both networks are set to tH&ith ¢(p,d)=2p(1—-p)(1-q).

same value. This value is chosen amcm’g(t) and Uiz(t), It can be shown that the mdp) has a stable fixed point
. .

with the same probability 1/2 for each instance. With prob-P* >0 for g<qc, with

ability 1—q, even if o7 (t) # o(t), the coupling does not Qo=1—[2p(1—p)K] L. (10)

act, leaving the state of that site unchanged in both networks.

We callq the coupling probability The whole evolution can  a¢ g=0q. the system undergoes a transcritical bifurcation
be formally expressed as [22], andD* =0 becomes a stable fixed point fqr>q_.
1 5 . o B Thus, within the AM approximatiorg, stands for the critical
{fi(w). fi(#)}  with probability 1-g, coupling at which synchronization sets in. In this paper we
{ol, 02— {fi(¥h),f;(¥")}  with probability g/2, deal mostly with the cas& =3, for which the stable equi-
a2\ £ o2 . o librium D* can be given analytically as a function of the
{fi(#).fi(»)}  with probability /2. ®) coupling probabilityq. In this case, in fact, the map is de-
fined by the cubic functiorF(x)=¢(p,q)X(3—3x+x?).
We stress that we are dealing with two identical extended he stable Hamming distance is
systems and that the coupling mechanism connects homolo-

1/2
gous elements of these two systems; namely| thesite of §_ E 34+ } for q<q.,
network 1 is connected by coupling with thih site of net- D*(q)={2 2 ¢(p,q) (17
work 2, as schematically illustrated in Fig. 1. The coupling 0 for g=q..

mechanism defined above is symmetric, since each network
may influence the other. It could also be possible to consideNote that near the critical pointj=<q., this Hamming dis-
a biased, nonsymmetric coupling, in which one networktance is approximately given by
drives the othef11].

For q=0 the two networks are uncoupled and evolve in- D*(q)=6p(1-p)|d—qc|- (12)
dependently from each other. Fgr=1, in contrast, the net- ) N )
works synchronize completely at the first time step. FromTherefore, the corresponding critical exponent is equal to
then on, they follow a common trajectory in phase spacd!Nity- _ _
without further intervention of the coupling mechanism. Our ~ Ford#dc, the Hamming distance approactiz$(q) ex-
aim in the following is to study the behavior of coupled Ponentially in time. Fog=qc, on the other hand, Ed9)
KN's for intermediate values of the coupling probability, ~can be approximately written, fob(t)—0, as D(t+1)
(0,1). =D(t)—(K—1)D(t)?/2. This implies a power-law decay

In the frozen phase, where no damage spreading takd@r long times,D(t)~t*. In the next section, we compare
place, an arbitrary small coupling intensigy-0 leads even- these e_malytlcal results with those of extensive numerical
tually to synchronization. The situation is different in the Simulations.
chaotic phase. There, we find two competing driving forces
acting on the coupled system: namely, the chaotic dynamics IV. NUMERICAL RESULTS
which induces the separation between two trajectories to
grow [14] and the coupling by which the Hamming distance
between the networks decreases. In this paper, we focus o
attention on the chaotic phase.

We have performed numerical simulations of pairs of

's coupled under the scheme presented above. The results

reported in this section correspond to the casp=6fl/2 and

K= 3. We have recorded the time evolution of the Hamming

distance, performing averages owerealizations ofN-site

networks. The number of realizations is chosen in such a
The annealed model can be used to predict the behavior efay that, for different values o, rN=10°. In a typical

the pair of coupled KN’s. We recall that the time evolution realization, we start with two identical networks with differ-

equation for the Hamming distance in the case of fre®  ent random initial conditions. For each realization, new con-

B. Annealed model for coupled networks
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FIG. 2. Hamming distance as a function of time for’XHie FIG. 3. Hamming distance as a function of time for several
networks and three coupling probabilitigsaveraged over Tore- network sizesN and fixed coupling probabilitgj=0.29. Averages
alizations. The dashed line, of slopel, is to be compared with the were done over Orealizations forN<10* and over 18 realiza-
power-law decay observed near the critical coupling. tions for N=10*. The dashed curve stands for the annealed model
prediction.

nections and local functiono are chose_n. The network_s are The dependence @ (t) on the size of the system can be
allowed to evolve freely, without coupling, for a transient
time 7 of, typically, 1 steps. This is done for the networks
to reach their asymptotic dynamics before coupling is al
lowed to act. After this transient, we turn the coupling on

partially ascribed to the effect afpurious synchronization
Because of the discrete nature of KN’s, two finite-size net-
‘works can be brought to the same state by a fluctuation
. 'caused by the stochastic coupling. In such a case, the two
reset the time to zero, and start measuirg). networks will remain synchronized from then on. This event
During the evolution, the state of each site in both neétg more frequent for small networks, where the relative size
works varies due to the competing effect of the local rulesy cryations increases. Near the critical point, furthermore,
and the coupling mechanism. Two homologous sites that Ghere the Hamming distance vanishes asymptotically, the
brought to the same state by coupling can later become difstact of fluctuations is strongly enhanced. The net result of
ferent due to the action of the local evolution. As a result, therioys synchronization is that the effective critical cou-
relative state of homologous sites keeps varying in & cOMyjing for finite-size networks shifts to lower values Ksle-
plex, random way. This erratic individual behavior deter-creases. As a consequence, the average Hamming distance in
mines fluctuations in the evolution of tHB(t). For long  4yr simulations may vanish even for coupling probabilities
times, these fluctuations take place around a WeII-deflnegequc, as illustrated in Figs. 2 and 3.
mean value which, due to the effect of coupling, is lower gy rious synchronization can be avoided by adding noise
than the average distance between uncoupled networks. 5 the system. Such a strategy has already been adopted in

_In Fig. 2 we show the time evolution of the Hamming thjs field, specifically in the study of globally coupled cha-
distanceD(t) for different values of the coupling parameter - maps[23,24}, to prevent synchronization due to round-

q. The values ofg have been chosen to display the threeqft errors in computer simulations. We implement the addi-

typical behaviors: namely, synchronization fpe-qc, criti-  tjon of noise as a new substep in the dynamics of our system.
cal decay fog~qc, and convergence to a finite distance for after the evolution and coupling substeps, we flip the state of
q<9e- each site in one of the networks with a small probabiljty

For the present values gf and K, the annealed model Figyre 4 jllustrates the effect of noise in the evolution of
predicts a critical coupling probability,= 1/3 [cf. Eq.(10)].  D(t) for q=0.29 andN=1C®. For this coupling intensity,
Itis, however, clear from Fig. 2 that the power-law decay inyhere the consequences of spurious synchronization are vast,
D(t) is observed for a lower coupling=0.29. Simulations  the pehavior of the Hamming distance with and without
of the same networks with=1/3, on the other hand, always gise changes drastically.
lead to synchronization. In fact, the annealed model is ex- Note that noise eliminates spurious synchronization for
pected to provide a good approximation to our system in they< ¢ put also prevents the KN’s from exactly synchroniz-
limit N—c [19]. Figure 3 shows the time evolution of the jng even forg>q.. Therefore, the critical behavior that
Hamming distance for a fixed coupling probabilityy  characterizes the synchronization transition in the absence of
=0.29, and several values Nf The AM prediction from Eq.  noise disappears as noise is added and is recovered only for
(9) is also shown. The strong dependence with the size of th%HO (but »#0). The effect of noise can be straightfor-
network is apparent. In particular, we find that for this COU-wardly incorporated in the AM approximation. The map that

pling strength 1®site networks synchronize whereas gjves the time evolution of the Hamming distance is now
10*-site networks do not. The AM result gives a good de-

scription for the case dfl=10". D(t+1)=(1-n)F[D()]+ »{1-F[D(D)]}, (13
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FIG. 6. Hamming distance as a function of time for*ite
networks and three values of the coupling probabijtyaveraged
over 1@ realizations. The noise intensity is=10"%.

FIG. 4. Hamming distance as a function of time for’Xe
networks withq=0.29 and two values of the noise intensity
averaged over forealizations. The effects of spurious synchroni-

zation for =0 are apparent.
to+T

with F[D(t)] given by Eq.(9). As for the model without (D) T tzzto D). a4
noise, for K=3 it is possible to analytically find the

asymptotic distanceD’ predicted by Eq.(13). Figure 5 Averages are performed over a time spanf 5 10° time
showsD* as a function of the coupling probability for ~ Steéps, when the asymptotic regime of the coupled system has
various noise intensities. Note the approximation to the critilP€en reached, i.e., for sufficiently large valuestgf As

cal behavior a)— 0. The inset displays the difference be- above, we choosg=10"* and determingD) for several

_ o7 910 4 i
tween D* and the asymptotic distance in the absence of/alues oiN. Results foN=2", 2°, and 2“are presented in
noise as a function . Fig. 7. The AM prediction for this value of is also shown,

In Fig. 6, we compare the prediction of E6L3) with as a curve. We see that the AM results systematically over-

numerical results for the Hamming distance of two coupleeStimate the values ¢D) and that the agreement improves
10%-site KN's with noise intensityy=10"4, for three values for larger values oN. Therefore, even when noise has been

of the coupling intensity. The agreement is excellent duringadded to avoid spurious synchronization, finite-size effects

the transients, but some noticeable discrepancies persist RESISt o
the asymptotic value, especially fqr=q.. These remanent finite-size effects are measured by the

To study such discrepancies in detail, and thus test théifferencesD* =D7 —(D) between the AM prediction and

AM results, we compute from our numerical simulations thethe numerical average defined in E4). In Fig. 8 we plot
average asymptotic value ﬁf(t), defined as 6D* as a function of\ for different Coupllng intensities. The

inset showsD? and(D) as a function ofN for the same

0.5

03— 0.4
[
0.4 > 0.2
- A o
*; 0.1 8
03f N L §
D i \‘\.\ 0.%.2 ] 0.2
o [ il
02} ' g
ceeme=10 T S g
0.1F e n=102 N 4 s} 0.1
- M =107
_______ Tl = 10-4
—n= 0 . e e e —
095 0.2 0.4 0.6 0.8 1.0 0
q .

FIG. 5. Analytical results of the annealed model for the

asymptotic Hamming distan@’; , for different noise intensitieg. FIG. 7. Asymptotic Hamming distance for three network sizes
The inset shows the deviatidh’;—Dg from the distance in the N, averaged over % 10° time steps and forealizations. The noise
absence of noise. intensity is»=10"*. The curve corresponds to the AM prediction.
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100 : : : The average of the distance between two states(16y.can
" g=00 be written as
Tl e ¢=01 N
101 LA | . : N o : Z : 8% E D ’ =2do(1—d 2 2 2 18
e o o u : ‘ < (0-10- )>QR_ R( - R)_ N = ‘fi ' ( )
e ., >
5D*102 | g 04 R ' . ’ ] where ¢ =(0i)q,—dr=(0{)q,—dr. Here, we have. as-
S 031 _um eeeeed m : . NN sumed that the occurrence of stategnd o’ is probabilis-
o 02l o aaai - s N tically uncorrelated.
1031 - o1l N 1 N d The quantitiest; measure, for each realization of the net-
E ’ O, _eee9 ~. ot work, the average deviation of the state of each site from the
T 00 mpaematipn ‘\; average densitgy over the whole network. Let us introduce
4 . N . . G the distributionl'g(&) as the fraction of sites in the KN with
10750 T 02 103 10¢  deviation ¢ for a specific realizatiorR. Unfortunately, the
N explicit form of I'r(&) is not known. It is, however, known

that this is a nontrivial distribution, in particular due to exis-

_FIG. 8. Difference b(.etween n mer.lcal results and th.e AM P tence of the so-called stable c¢@9]. The stable core is a set
diction for the asymptotic Hamming distance as a function of size, f sites that h | th totic. fixed stat
for four coupling probabilities). The dashed lines have slopel. of sites that have always the same asymploliC, Tixed states,

The inset shows the asymptotic Hamming distance in semiIogarith'—rrespeCt'Vely of the initial F:o_ndmon. For '_[hese sites,

mic scale, to appreciate the behavior for small valuehl.of (0i)0,=0 or 1, so that the deviatiorgs adopt their extremal
values,& = —dg or 1—dg, respectively. Using the distribu-

values ofg. There are two well-differentiated regimes in the tion I'r(&) to replace the sum in E¢18) by an integral, we

size dependence @D*. For smallN, the deviation between have

the AM estimate and numerical results is practically con-

stant. For large values df the deviation decreases, seem- / _ _ _ R 2

ingly as a power lawsD* ~N~2 Least-squares fits fdx (D(@,0"))q,=2dr(1~dg) Zf_dR Tr(£)¢7de.

>10? yield z=1.1+0.2 for the exponent. (19

To find an explanation for these finite-size effects, it is

necessary to go beyond the annealed approximation. In tHdOw, analytical results on the size of the stable cl&€]

following, we outline an approach to the calculation of thesuggest that, a— o, I'r(£) approaches an asymptotic pro-

Hamming distance based on statistical averages over statBle I'(§) which depends op andK, but becomes indepen-

1-d

of the KN’s. The density of a state=(o4, ...,0n) of a dent of the specific realization of the network. For large
single KN is defined as sizes, we may assume a dependence of the form
1 N Tr(§)~T(§)—N"'Tg(8), (20
p(O‘)ZN_ (o (15) . X . . ..
i=1 where T}, is the first (analytica) correction due to finite

) sizes. Within these assumptions, Efj9) takes the form
[cf. Eq.(5)], whereas the distance between two statesnd

o’ reads 2 (1-dr | )
(D(0,0"))q,=Do— NJ I'r(§)€°d¢, (21)
1 N —dg
N — 412
D(o,0)= 2 (o= a))". (16 here
For fixed p, K, andN, a realizationR of the network is _ N ~dr 2
defined by the connections and the local rules. We ddlige Do=2dr(1~dg) fo . T(§)¢7de (22

as the set of all the states visited by the KN for this realiza-

tion, at asymptotically large times and from all the possibleis the asymptotic distance fdt— .

initial conditions. In other words, the s&y contains all the We now associatéD(a,0”))q,, with the distance be-
states that belong to the limit cycles of the dynamics. It isnyeen the states of two coupled KN's at a giéong) time.
possible to introduce a probability distributidPz(e) over  |ndeed, in our system both networks have the same connec-
Qg, given by the frequency with which a given stateis  tjons and rules, and correspond therefore to the same realiza-
visited at asymptotically Iarge times aVeraged over all |n|t|a|t|0n R of the network. According to the def|n|t|c(m_) and(s)'
conditions. Averages oveflr will be computed with this  after an average over realizations of the network for figed

distribution. For instance, the average of the denﬁliy K, andN is performed, the distan((@(a-’ 0-’)>QR coincides
with the Hamming distanc€D), Eq.(14), considered above.
dr=(p(0))q_= 2 Pr(o)p(0). (17) In Eq. (21), thus, Dy should correspond to the Hamming

R oclp distance predicted by the AM approximation, valid fdr
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TABLE I. Cellular automata neighborhoods and their outputsThe bias for rule 22 ip=3/8. This DCA, however, cannot
for the evolution rule 22. The frequencipdor each neighborhood be thought of as a KN witlp=3/8. In a generic KN with this
obtained from numerical results and from the analytical approximabias, in fact, the local evolution could be substantially differ-
tion used in the Appendix are also quoted. ent from the behavior of rule 22. In particular, the dynamics
at some sites may be governed by nonchaotic rules, giving

Label Neighborhood ~ Output  Prumerical  Panalytcal rise to sensible differences in the global behavior. This is
0 {0,0,0 0 0.19350  0.19204  clearly illustrated, for instance, by a measurement of the
1 {0,0,34 1 014075  0.14006 asymptotic density of a rule-22 DCA, which yields
2 {0,1,0 1 014071  0.14096 ~0-423, instead ofi=p=0.375. _

3 01,1 0 0.10287 0.10298 _ The formulation o_f an annealed model of DCA requires a
4 {1,0,0 1 0.14079 0.14096 different appr_oach, in order to.account for the homog_eneny
5 11,0,1} 0 0.10290 010298 of the dynamlcal rules. Wg define the AM by_ reassigning .aII
6 {1:1:0} 0 0.10289 0.10298 ';he fc?_nnﬁctlsons at e?r(]:httlmehstepév\l;)ut kfeplrl:g thtehfunctllons
2 11 0 0.07559 0.07524 =T fixed. Suppose that we have two networks with overlap

a(t). The probability for a site to have exact—1| of its
reassigned inputs coming from homologous sites in the same
state is

—o, and the first correction to the AM estimate is given by
the additional term. As found from our simulations, this term
depends on the network size & !. The ansatz20) is pi(t)=
therefore supported by numerical results. Note that these
conclusions are independent of the strength of couplingw
measured by the probability, since the only effect of the

coupling dynamics in connection with the above analysis i
to change the set of asymptotic stafeég and the profile of

K _
| at)< '[1—a()]". (23

e introduce the quantiti, as the probability for two ho-
smologous sites having all blitinputs coming from homolo-
gous sites in the same state to give the same output. The

the distributionl’(£). overlap at timet+1 is then given by
K
V. DISORDERED CELLULAR AUTOMATA AND a(t+1)= E Ap(t). (24)
PARTIALLY ORDERED NETWORKS =0

According to the results reported in the previous sectionsThe quantitiesA; depend on the evolution rule, and their
the synchronization transitions of stochastically coupledvalue is fixed. They can be evaluated within some approxi-
KN’s on the one hand and of stochastically coupled elemenmations, as shown in the Appendix. Note thg=1 be-
tary cellular automatdECA [25]) on the other are qualita- cause, no matter the rule, if the inputs are all equal, the
tively different. Namely, they belong to different universality outputs will coincide. In the annealed model for KN's we
classes. Whereas we have found that synchronization iRad Ay=1 and A,=p?+(1—p)? for 1=1,... K. For K
KN’s appears through a transcritical bifurcation—with a =3 the map for the Hamming distance can be cast in the
critical exponent equal to unity for the asymptotic Hammingform
distance—the corresponding transition in ECA has been
shown to exhibit nontrivial exponenfd0], which seems to D(t+1)=B;D(t)+B,D(t)?>+B3D(1)3, (25)
suggest that it belongs to the universality class of directed
percolation12]. It is therefore relevant to study a third class with B;=3(1—A;), B,=3(2A;—A,—1), andBz=—3A;
of systems, intermediate between ECA and generic KN’s. +3A,— A3+ 1. Coupling enters then the formulation exactly

In a generic KN there are two sources of disorder. Weas in Eq.(9), as an additional factor-1q in the evolution of
have the network topology, determined by the random choic®(t).
of connections, and the local evolution rules, which are also In Fig. 9, the curve stands for the asymptotic valiie as
chosen at random. On the other hand, in cellular automata function of the coupling probability predicted from Eq.
both the topology and the dynamical rules are fully homoge{25) for rule 22. The prediction is qualitatively similar to that
neous. ECA can indeed be interpreted as a very special suler KN’s, in particular, in the region close to the synchroni-
class of KN’s withK=3, where the choice of dynamical zation transition. Numerical results on DCA with rule 22 for
rules and connections is deterministic. In order to distinguistN= 2! are also shown in Fig. 9. To avoid spurious synchro-
between the effects of disorder in the topology and in thenization, a small amount of noise=10"*, has been added.
dynamics on the synchronization transition, we consider novirhe agreement with the AM is reasonably good, though
the subclass of KN’s where the connections are still chosesome systematic deviations are clearly visible in the zone of
at random but the local rule is the same for all sites. We refethe transition. As before, these deviations may be attributed
to these networks as disordered cellular autonia@A). to finite-size effects.

We focus here on the evolution rule defined by the Bool- Finally, as an interpolation between DCA and ECA we
ean functionf({0,0,1})=f({0,1,0,)=1({1,0,0t)=1 andf  consider partially ordered cellular automafOCA), con-
=0 for the remaining five possible neighborhodslse Table structed in the following way. We start with atsite ECA,

[). This function is known in the literature as rule P25]. which consists of a one-dimensional array where each site is

036204-7



LUIS G. MORELLI AND DAMIA N H. ZANETTE PHYSICAL REVIEW E63 036204

0.5l . . . . . . in other words, of their Hamming distance—and makes it
_ possible to evaluate its asymptotic value. The asymptotic
3| Hamming distanc®* is used as an order parameter for the
1 synchronization transition. For coupled Kauffman networks
in the chaotic phase, the annealed model predicts the exis-
tence of a critical coupling probabilitg., such thatD* is
finite for q<q. and vanishes fog>q,. At the critical point,
D*~|g—q.|, and the transition has the character of a tran-
scritical bifurcation.

The transition predicted by the annealed model is qualita-
tively different from that observed in the deterministic ver-
sion of this kind of systems, more specifically in cellular
automata. For elementary cellular automata, in fact, the criti-

00 o1 03 03 0.4 05 06 07 cal behavior of the Hamming distance exhibits nontrivial ex-

q ponents[10] It has been suggested that, at least for some
_ evolution rules, the synchronization transition in cellular au-

FIG. 9. Numerical results for the asymptotic Hamming distance;gmata belongs to the class of directed percolafit]. On
in coupled 2'-site disordered cellular automata with the evolution the other hand, by analogy with the problem of damage
rule 22, for different a_mpunts of disorder. The curve stands for thespreading, synchronization in Kauffman networks could be-
annealed model prediction for DCA. long to the class of directed percolation in disordered sys-

. ) ] tems[28].
connected to itself and to its two nearest neighbors. Then, for Resyits from extensive numerical simulations of relatively
each site, each neighbor is redrawn at random from thParge networks (19 siteg, performed for Kauffman net-
whole r_u_etwork with probabilitw._ With the complementar_y works in the chaotic regimep=1/2, K=3), are in good
probability 1— 6, the neighbor is preserved. The resulting agreement with the predictions of the annealed model both in
topological structure of connections is analogous to that ofhe temporal evolution and in the asymptotic behavior of the
small-world networkq26]. For 6=1, we recover the DCA  gystem. However, for small networks some systematic depar-
networks discussed above. Results of numerical simulationgres from the analytical results are apparent.
on POCA with rule 22 are shown in Fig. 9 fé*=0.1 and These deviations can be partially explained taking into
6=0.3. Data for ECA with rule 22 §=0) are also shown. account the occasional events of spurious synchronization
We see that, in spite of the relatively low values@fthe  for q<q., due to the effect of suitably large fluctuations on
asymptotic Hamming distance of POCA depends on the Colwgyr discrete finite-size system. The effect of these fluctua-
pling probability q in a way qualitatively similar to that of tjons becomes more important as the coupling probability
KN’s. In particular, it does not exhibit the abrupt dependencegpproaches its critical value. In any case, spurious synchro-
on g observed in ECA near the critical point. This would be njzation can be successfully eliminated by adding a small
in agreement with the crossover scenario in small-world netamount of noise to the dynamics' Moreover, noise can also
works [27], where it is known that even small amounts of pe incorporated into the annealed model. We have intro-
disorder induce behaviors which already resemble that ofjyced noise in the simulations and observed that remanent
fully random structures. finite-size effects persist. These must now be ascribed to the
failure of the annealed model in describing finite networks.
By means of a more detailed statistical description of the
overlaps between networks, in fact, we have been able to

We have studied the behavior of two Kauffman networksaccount for such remanent effects, also explaining the depen-
interacting through a form of symmetric stochastic coupling.dence of the deviation from the annealed model on the net-
As for many other localized or extended, random or deterwork size.
ministic, coupled dynamical systerfis—12], we have found Finally, we have presented preliminary numerical results
that coupled Kauffman networks can synchronize their evoon disordered and partially ordered stochastically coupled
lution if coupling is strong enough. In our case, there is acellular automata. These systems can be seen as providing a
critical value of the coupling probability beyond which the  kind of interpolation between Kauffman networks, with their
two networks converge to the same trajectory as timeompletely random connections and dynamical rules, and
elapses. cellular automata, which are fully ordered. In the case of

In contrast with the situation encountered for other ex-disordered networks with the same evolution rule on all the
tended systemg8—13], however, for Kauffman networks it sites, it is possible to extend the annealed model, which pre-
has been possible to give an analytical description of thalicts the same class of synchronization transition as for
synchronization transition, in excellent agreement with nuKauffman networks. Numerical simulations agree with these
merical results for large-size systems. This formulation ispredictions. Increasing the order in the connections by means
provided by an extension of the so-called annealed modedf a scheme analogous to the construction of a small-world
[18,19 to the system of coupled networks. The model givesnetwork[26], we have also considered partially disordered
the evolution of the overlap between the two networks—or structures. Even for small amounts of structural disorder, the

DCA, rule 22

POCA, rule 22,0
POCA, rule 22,0
ECA, rule 22

0.
0.
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behavior associated with the synchronization transitiorK=3, there are eight possible neighborhoods, which we la-
seems to resemble that of Kauffman networks more than thdgel from 0 to 7 as shown in Table |. Within the above as-
of cellular automata. This leads us to conjecture that theumption, the frequencp; of each neighborhood can be
synchronization transition of partially disordered automata isestimated in terms of the densityas

in the same universality class as for coupled Kauffman net-

works. Nevertheless, further extensive simulations and a po=(1-d)?,
careful determination of the critical exponents are necessary
to draw any conclusions on this point. p1=p,=p,=d(1-d)?,
In this paper we have considered coupled Kauffman net- 5 (A1)
works with identical architectures. In contrast, naturally P3=Ps=Ppe=d(1—d),
coupled systems, especially in the biological realm, are typi- 3
cally not identical. Thus, a relevant extension of the present pr=d”.

work is to consider nonidentical elements. Synchronizatio

of nonidentical coupled elements has been addressed pre _?r:qeov?rt,hwefrnote t::ait the (:enns;d)ﬁgnr;]n tudrn \t/)v(iatxvrr:tti; ”:
ously in ensembles of nonlinear oscillat¢29] and in cha- erms of the trequencies; of neignbornooads onzero

otic extended systenjd 3]. It has been found that moderate output. For rule 22 these neighborhoods ré,0}, {0,1,0},

differences in the dynamical parameters lead to approximat@nd{o’o’l} (see Table), so that we have

synchronization, where some correlation between the states d=p;+p,+p (A2)
of the coupled oscillators persists. The same kind of partial 12t

synchronization is expected to occur for coupled nonidenticompining Eqs(A1) and (A2) yields d=1— y3/3~0.423,

cal Kauffman networks. Along a similar line, another pos-yyhich agrees with the numerical measurement reported in

sible extension of our system considers inhomogeneous cogac. v, The corresponding values of the frequenpieare

pling [30], where a different coupling probability is assigned spown in Table |. They are in very good agreement with the

to each site. These generalizations are the subject of work \j1yes obtained from numerical simulations, also shown in

progress. the table. This supports our above assumption of uncorre-
lated neighborhood frequencies.

ACKNOWLEDGMENTS Once the frequencigs; are known, we are able to calcu-
late the coefficient®\,. As a specific example, we discuss
A3 . By definition, this is the probability for two homologous
sites having all but three inputs coming from homologous
sites in the same state to give the same output. Thus, we are
in the case where the two neighborhoods have all homolo-
gous sites in different states. The pairs of neighborhoods that
satisfy this condition arg0,7}, {1,6}, {2,5, and {3,4}.

In this appendix we illustrate the computation of the co-Among them, however, only the paf0,7} has the same
efficientsA, in Eq. (24) with an explicit example. We recall output for both neighborhoodsee Table)l The coefficient
thatA, is defined as the probability for two homologous sitesAs is therefore given by
having all butl inputs coming from homologous sites in the
same state to give the same output. Aa— PoP7 _ 1 (A3)

Let us assume that the frequency with which a given 8 PoP7+ P1Ps+ P2Ps+P3ps 4°
neighborhood appears in a state of the whole network is fully
determined by the densityof the state. Namely, we neglect The computation of the other coefficients is accomplished in
the correlations between neighborhood frequencies, assod- similar way, yieldingA,=4(19-8+/3)/169 andA,=(9
ated with the spatial patterns generated by the dynamics. Fof V3)/13. MoreoverAo=1.
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APPENDIX: COEFFICIENTS FOR THE
ANNEALED MODEL
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