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Synchronization of Kauffman networks
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~Received 14 August 2000; published 20 February 2001!

We analyze the synchronization transition for a pair of coupled identical Kauffman networks in the chaotic
phase. The annealed model for Kauffman networks shows that synchronization appears through a transcritical
bifurcation and provides an approximate description for the whole dynamics of the coupled networks. We
show that these analytical predictions are in good agreement with numerical results for sufficiently large
networks and study finite-size effects in detail. Preliminary analytical and numerical results for partially
disordered networks are also presented.
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I. INTRODUCTION

Synchronization of coupled elements is a form of colle
tive evolution present in a variety of complex real syste
and mathematical models. This class of emergent beha
has been observed in biological populations@1#, chemical
reactions@2#, neural networks@3#, and human social phe
nomena@4#, among other instances. Models that account
synchronization consider, for example, globally coupled
gistic maps@5#, chaotic oscillators@6#, Hamiltonian systems
@7#, and formal neural networks@8#.

In the usual formulation, two identical dynamical system
whose individual dynamics is governed by the equationẇ
5F(w) are coupled to each other in the form

ẇ1,25F~w1,2!1e~w2,12w1,2!, ~1!

where e is the coupling parameter. Full synchronizatio
takes place when both systems converge asymptotically
common trajectory,w1(t)5w2(t). When the individual dy-
namics is chaotic—a particularly relevant case in connec
with the description of real systems—full synchronizati
occurs above a critical valueec of the coupling intensity.
This critical point is determined by the competition betwe
chaos and coupling, and can be calculated in terms of
Lyapunov exponent of the individual dynamics@5#.

While globally coupled chaotic elements with a few inte
nal variables have been extensively studied, synchroniza
of spatially extended systems remains quite unexplored.
cently, synchronization has been reported for a system c
sisting of two coupled complex Ginzburg-Landau equatio
@9#. Globally coupled neural networks@8#, stochastically
coupled cellular automata@10–12#, and nonidentical com-
plex Ginzburg-Landau systems@13# are other examples o
spatially extended systems that present a critical transitio
synchronization.

In this paper we study the synchronization dynamics
two coupled identical Kauffman networks, which are d
crete extended dynamical systems with quenched disor
These disordered cellular automata have been used a
abstract representation of the fitness landscape in mode
biological evolution@14#. Coevolution of several biologica
species, whose genetic dynamics influence each other, l
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-
s
ior

r
-

s

a

n

e

on
e-
n-
s

to

f
-
er.
an
of

ds

naturally to the consideration of coupling between such
tomata. Kauffman networks can also be thought of as s
plified models of neural systems, whose synchronizat
properties seem to be essential to their function@3,8#. Thus,
the study of synchronized states in coupled Kauffman n
works could provide useful information on the dynamics
such systems. In connection with physics, Kauffman n
works are closely related to spin models with disorde
long-range interactions@15#, whose complex dynamical an
equilibrium properties are not fully understood yet@16#.
With respect to previous work on coupled extended syste
interest in Kauffman networks resides in the fact that
transition to synchronization admits an analytical descript
which, as we show in this paper, results in being in excell
agreement with numerical simulations.

In Sec. II we briefly review the definition of Kauffman
networks and the annealed model for the calculation of th
overlaps. Next, in Sec. III, we introduce a stochastic co
pling mechanism for Kauffman networks and propose
analytical approach in the framework of the annealed mo
which identifies the transition to synchronization in our sy
tem as a transcritical bifurcation. Section IV, where we
port our numerical results, is the core of the present pa
There, we study the effects of spurious synchronization
finite-size networks, consider the application of noise to
system to eliminate such effects, and compare the res
with the analytical description. Remanent finite-size effe
are numerically quantified and their analytical treatme
which requires a formulation beyond the annealed mode
outlined. In Sec. V we discuss the synchronization transit
in some subclasses of Kauffman networks, which may
thought of as interpolations between generic Kauffman n
works and ordered cellular automata. Finally, in Sec. VI, o
results are summarized and discussed.

II. KAUFFMAN NETWORKS

Kauffman networks, also known as random Boolean n
works, were introduced as a model for the problem of c
differentiation@17,14#. Since then, they have been the obje
of many studies concerning their properties@14,18–21#.

A Kauffman network~KN! is a disordered deterministi
dynamical system. It consists of anN-site network, where
©2001 The American Physical Society04-1
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each site is connected toK randomly chosen sites. The pa
rameterK is known as theconnectivityof the network. We
refer to the set ofK sites connected to a given site as
neighborhood. The state of each site is given by a Boole
variables iP$0,1% and evolves according to the inputs com
ing from the neighbor sites. The evolution rule is chos
independently and randomly for each site. To each poss
configuration of the neighborhood—there are 2K such
configurations—an output is assigned: namely, 1 with pr
ability p or 0 with probability 12p. The parameterp
P@0,1# is known as thebias of the rule. Then, for each
variable s i we have Boolean functionsf i such thats i(t
11)5 f i@ni(t)#, whereni5(s i 1

, . . . ,s i K
) is the set of in-

puts of sitei. The state of all sites is updated simultaneou
according to the corresponding functions. We can write
evolution equation for the state vector of the networks
5(s1 ,s2 , . . . ,sN), as

s~ t11!5f@s~ t !#, ~2!

with f@s(t)#5„f 1@n1(t)#, f 2@n2(t)#, . . . ,f N@nN(t)#….
The K connections and the evolution rule of each site

chosen at the beginning and kept fixed during the evolut
Thus, the disorder is quenched and the dynamics is deter
istic. For a finite number of sitesN, the number of states in
phase space is also finite—it equals 2N. Then, for any initial
condition, the system will eventually fall into a cycle.

In (p,K) parameter space, Kauffman networks pres
phases of frozen and chaotic evolution, separated by a c
cal line. The transition between these phases has been e
sively studied and characterized by means of several o
parameters, such as the Hamming distance@18,19# and the
stable core size@20#. In most of this work we will deal with
the casep51/2 and K53, which lies within the chaotic
phase. Though, as stated above, the evolution of a finite
work is periodic in the long run, at the relatively short tim
scales relevant to the synchronization processes studied
the evolution exhibits the typical features of chaotic dyna
ics, namely, sensitivity to the initial conditions and dama
spreading.

The annealed model~AM ! was introduced to study th
evolution of overlaps between states in KN’s@18,19#. In this
model, theK connections$ i 1 , . . . ,i K% of each site as well as
the Boolean functionsf i are randomly changed at each tim
step. This means that an entirely different realization of
network is used at each step. Note that, while ordinary K
are deterministic, the annealed model works as a probab
tic automaton. The asymptotic periodic behavior of KN’s
absent in the annealed model. The advantage of this mod
that it allows for analytical calculations, and it has be
shown that its predictions are in good agreement with
behavior of KN’s in the limitN→` @19#.

Suppose that we have two identical KN’s with the sa
connections and rules. We feed them with different init
conditions and let them evolve in time. We define theover-
lap a(t) between the networks as the fraction of homologo
sites that are in the same state at timet. In the AM, it is
possible to calculate the time evolution of the overlap.
time t11 the connections and the rulesf i are reassigned, bu
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the same changes are applied to both networks, keeping t
identical. The probability for a site having all its inputs com
ing from sites in the same state in both networks isa(t)K. At
the next time step, consequently, such a site will be in
same state in both networks, no matter the evolution r
chosen for it. Thus, there is a fractiona(t)K of homologous
sites whose state will coincide att11. The remaining 1
2a(t)K sites still have a probability of overlapping. Even
the states of the neighborhoods of a given site are differen
the two networks, it may happen that the evolution rule
signs the same output to them. The probabilities forf i(ni

1)
5 f i(ni

2)50 and for f i(ni
1)5 f i(ni

2)51 are, respectively, (1
2p)2 andp2. The overlap at timet11 is then

a~ t11!5a~ t !K1@12a~ t !K#@p21~12p!2#. ~3!

An alternative way to characterize the difference betwe
two networks is the difference automaton, defined by

di~ t !5s i
1~ t ! % s i

2~ t !, ~4!

where % denotes Boolean addition. The density of this a
tomaton is given by

D~ t !5
1

N (
i 51

N

di~ t !, ~5!

and coincides with the Hamming distance between the
works. Note thatD(t)512a(t) so that, from Eq.~3!, we get

D~ t11!52p~12p!$12@12D~ t !#K%. ~6!

The Hamming distance has proved to be a suitable o
parameter in the study of the synchronization transition
coupled elementary cellular automata@10–12#, where the
analysis of overlaps between states is a basic tool to de
the effects of coupling. In the next section, we adapt
annealed model to the description of coupled KN’s.

III. COUPLED KAUFFMAN NETWORKS

A. Stochastic coupling

In order to establish a coupling mechanism between
KN’s, we first observe that, due to the discrete nature
KN’s, the usual deterministic coupling used for maps@5#
cannot be applied here. Consequently, we introduce a f
of stochastic coupling between networks as previously d
for cellular automata@10#, where the continuous parameterq
that controls the strength of the coupling is a probability,
explained in the following.

The evolution of the coupled system is implemented
the successive application of two operators. First, the ev
tion functionf is applied to both networks as if they were n
coupled@see Eq.~2!#, yielding f(s1) and f(s2). Next, the
stochastic coupling operatorS is applied:

$s1~ t11!,s2~ t11!%5S„f@s1~ t !#,f@s2~ t !#…. ~7!

The operatorS compares the states of the networks site
site. If s i

1(t)5s i
2(t), the state of the site is not modified. I
4-2
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SYNCHRONIZATION OF KAUFFMAN NETWORKS PHYSICAL REVIEW E63 036204
on the other hand,s i
1(t)Þs i

2(t), with probability q, the
states of the homologous sites in both networks are set to
same value. This value is chosen amongs i

1(t) and s i
2(t),

with the same probability 1/2 for each instance. With pro
ability 12q, even if s i

1(t)Þs i
2(t), the coupling does no

act, leaving the state of that site unchanged in both netwo
We callq thecoupling probability. The whole evolution can
be formally expressed as

$s i
1 ,s i

2%→H $ f i~ni
1!, f i~ni

2!% with probability 12q,

$ f i~ni
1!, f i~ni

1!% with probability q/2,

$ f i~ni
2!, f i~ni

2!% with probability q/2.
~8!

We stress that we are dealing with two identical extend
systems and that the coupling mechanism connects hom
gous elements of these two systems; namely, thei th site of
network 1 is connected by coupling with thei th site of net-
work 2, as schematically illustrated in Fig. 1. The coupli
mechanism defined above is symmetric, since each netw
may influence the other. It could also be possible to cons
a biased, nonsymmetric coupling, in which one netwo
drives the other@11#.

For q50 the two networks are uncoupled and evolve
dependently from each other. Forq51, in contrast, the net
works synchronize completely at the first time step. Fr
then on, they follow a common trajectory in phase spa
without further intervention of the coupling mechanism. O
aim in the following is to study the behavior of couple
KN’s for intermediate values of the coupling probability,q
P(0,1).

In the frozen phase, where no damage spreading ta
place, an arbitrary small coupling intensityq.0 leads even-
tually to synchronization. The situation is different in th
chaotic phase. There, we find two competing driving forc
acting on the coupled system: namely, the chaotic dynam
which induces the separation between two trajectories
grow @14# and the coupling by which the Hamming distan
between the networks decreases. In this paper, we focus
attention on the chaotic phase.

B. Annealed model for coupled networks

The annealed model can be used to predict the behavio
the pair of coupled KN’s. We recall that the time evolutio
equation for the Hamming distance in the case of twofree

FIG. 1. Schematic representation of the coupling mechani
Coupling links homologous elements of two extended systems
this case, two networks. Since coupling is symmetric, each netw
may act on the other.
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networks is given by Eq.~6!. Now suppose that the Ham
ming distance of twocoupledKN’s at time t is D(t). The
first substep in the dynamics of this system consists of
free evolution of both networks. The Hamming distance af
this substep,D(t1dt), is therefore given by Eq.~6!. At the
second substep, coupling acts on the system, and a fractq
of the homologous sites that were in different states are
signed the same value. This leaves a fraction (12q)D(t
1dt) of sites with different states in the two networks. Thu
the evolution of the Hamming distance for coupled netwo
is given by the map

D~ t11!5F@D~ t !#5w~p,q!$12@12D~ t !#K%, ~9!

with w(p,q)52p(12p)(12q).
It can be shown that the map~9! has a stable fixed poin

D* .0 for q,qc , with

qc512@2p~12p!K#21. ~10!

At q5qc the system undergoes a transcritical bifurcati
@22#, and D* 50 becomes a stable fixed point forq.qc .
Thus, within the AM approximation,qc stands for the critical
coupling at which synchronization sets in. In this paper
deal mostly with the caseK53, for which the stable equi-
librium D* can be given analytically as a function of th
coupling probabilityq. In this case, in fact, the map is de
fined by the cubic functionF(x)5w(p,q)x(323x1x2).
The stable Hamming distance is

D* ~q!5H 3

2
2

1

2 F231
4

w~p,q!G
1/2

for q,qc ,

0 for q>qc .

~11!

Note that near the critical point,q&qc , this Hamming dis-
tance is approximately given by

D* ~q!56p~12p!uq2qcu. ~12!

Therefore, the corresponding critical exponent is equa
unity.

For qÞqc , the Hamming distance approachesD* (q) ex-
ponentially in time. Forq5qc , on the other hand, Eq.~9!
can be approximately written, forD(t)→0, as D(t11)
5D(t)2(K21)D(t)2/2. This implies a power-law deca
for long times,D(t);t21. In the next section, we compar
these analytical results with those of extensive numer
simulations.

IV. NUMERICAL RESULTS

We have performed numerical simulations of pairs
KN’s coupled under the scheme presented above. The re
reported in this section correspond to the case ofp51/2 and
K53. We have recorded the time evolution of the Hammi
distance, performing averages overr realizations ofN-site
networks. The number of realizations is chosen in suc
way that, for different values ofN, rN>106. In a typical
realization, we start with two identical networks with diffe
ent random initial conditions. For each realization, new co

.
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LUIS G. MORELLI AND DAMIÁ N H. ZANETTE PHYSICAL REVIEW E63 036204
nections and local functions are chosen. The networks
allowed to evolve freely, without coupling, for a transie
time t of, typically, 103 steps. This is done for the network
to reach their asymptotic dynamics before coupling is
lowed to act. After this transient, we turn the coupling o
reset the time to zero, and start measuringD(t).

During the evolution, the state of each site in both n
works varies due to the competing effect of the local ru
and the coupling mechanism. Two homologous sites that
brought to the same state by coupling can later become
ferent due to the action of the local evolution. As a result,
relative state of homologous sites keeps varying in a co
plex, random way. This erratic individual behavior dete
mines fluctuations in the evolution of theD(t). For long
times, these fluctuations take place around a well-defi
mean value which, due to the effect of coupling, is low
than the average distance between uncoupled networks.

In Fig. 2 we show the time evolution of the Hammin
distanceD(t) for different values of the coupling paramet
q. The values ofq have been chosen to display the thr
typical behaviors: namely, synchronization forq.qc , criti-
cal decay forq'qc , and convergence to a finite distance f
q,qc .

For the present values ofp and K, the annealed mode
predicts a critical coupling probabilityqc51/3 @cf. Eq. ~10!#.
It is, however, clear from Fig. 2 that the power-law decay
D(t) is observed for a lower coupling,q50.29. Simulations
of the same networks withq51/3, on the other hand, alway
lead to synchronization. In fact, the annealed model is
pected to provide a good approximation to our system in
limit N→` @19#. Figure 3 shows the time evolution of th
Hamming distance for a fixed coupling probability,q
50.29, and several values ofN. The AM prediction from Eq.
~9! is also shown. The strong dependence with the size of
network is apparent. In particular, we find that for this co
pling strength 103-site networks synchronize wherea
104-site networks do not. The AM result gives a good d
scription for the case ofN5104.

FIG. 2. Hamming distance as a function of time for 103-site
networks and three coupling probabilitiesq, averaged over 104 re-
alizations. The dashed line, of slope21, is to be compared with the
power-law decay observed near the critical coupling.
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The dependence ofD(t) on the size of the system can b
partially ascribed to the effect ofspurious synchronization.
Because of the discrete nature of KN’s, two finite-size n
works can be brought to the same state by a fluctua
caused by the stochastic coupling. In such a case, the
networks will remain synchronized from then on. This eve
is more frequent for small networks, where the relative s
of fluctuations increases. Near the critical point, furthermo
where the Hamming distance vanishes asymptotically,
effect of fluctuations is strongly enhanced. The net resul
spurious synchronization is that the effective critical co
pling for finite-size networks shifts to lower values asN de-
creases. As a consequence, the average Hamming distan
our simulations may vanish even for coupling probabiliti
below qc , as illustrated in Figs. 2 and 3.

Spurious synchronization can be avoided by adding no
to the system. Such a strategy has already been adopte
this field, specifically in the study of globally coupled ch
otic maps@23,24#, to prevent synchronization due to roun
off errors in computer simulations. We implement the ad
tion of noise as a new substep in the dynamics of our syst
After the evolution and coupling substeps, we flip the state
each site in one of the networks with a small probabilityh.
Figure 4 illustrates the effect of noise in the evolution
D(t) for q50.29 andN5103. For this coupling intensity,
where the consequences of spurious synchronization are
the behavior of the Hamming distance with and witho
noise changes drastically.

Note that noise eliminates spurious synchronization
q,qc , but also prevents the KN’s from exactly synchroni
ing even for q.qc . Therefore, the critical behavior tha
characterizes the synchronization transition in the absenc
noise disappears as noise is added and is recovered onl
h→0 ~but hÞ0). The effect of noise can be straightfo
wardly incorporated in the AM approximation. The map th
gives the time evolution of the Hamming distance is now

D~ t11!5~12h!F@D~ t !#1h$12F@D~ t !#%, ~13!

FIG. 3. Hamming distance as a function of time for seve
network sizesN and fixed coupling probabilityq50.29. Averages
were done over 103 realizations forN,104 and over 102 realiza-
tions for N5104. The dashed curve stands for the annealed mo
prediction.
4-4
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SYNCHRONIZATION OF KAUFFMAN NETWORKS PHYSICAL REVIEW E63 036204
with F@D(t)# given by Eq.~9!. As for the model without
noise, for K53 it is possible to analytically find the
asymptotic distanceDh* predicted by Eq.~13!. Figure 5
showsDh* as a function of the coupling probabilityq for
various noise intensities. Note the approximation to the c
cal behavior ash→0. The inset displays the difference b
tween Dh* and the asymptotic distance in the absence
noise as a function ofq.

In Fig. 6, we compare the prediction of Eq.~13! with
numerical results for the Hamming distance of two coup
104-site KN’s with noise intensityh51024, for three values
of the coupling intensity. The agreement is excellent dur
the transients, but some noticeable discrepancies persi
the asymptotic value, especially forq'qc .

To study such discrepancies in detail, and thus test
AM results, we compute from our numerical simulations t
average asymptotic value ofD(t), defined as

FIG. 4. Hamming distance as a function of time for 103-site
networks withq50.29 and two values of the noise intensityh,
averaged over 103 realizations. The effects of spurious synchron
zation forh50 are apparent.

FIG. 5. Analytical results of the annealed model for t
asymptotic Hamming distanceDh* , for different noise intensitiesh.
The inset shows the deviationDh* 2D0* from the distance in the
absence of noise.
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Averages are performed over a time spanT of 53103 time
steps, when the asymptotic regime of the coupled system
been reached, i.e., for sufficiently large values oft0 . As
above, we chooseh51024 and determinê D& for several
values ofN. Results forN527, 210, and 214 are presented in
Fig. 7. The AM prediction for this value ofh is also shown,
as a curve. We see that the AM results systematically ov
estimate the values of^D& and that the agreement improve
for larger values ofN. Therefore, even when noise has be
added to avoid spurious synchronization, finite-size effe
persist.

These remanent finite-size effects are measured by
differencedD* 5Dh* 2^D& between the AM prediction and
the numerical average defined in Eq.~14!. In Fig. 8 we plot
dD* as a function ofN for different coupling intensities. The
inset showsDh* and ^D& as a function ofN for the same

FIG. 6. Hamming distance as a function of time for 104-site
networks and three values of the coupling probabilityq, averaged
over 102 realizations. The noise intensity ish51024.

FIG. 7. Asymptotic Hamming distance for three network siz
N, averaged over 53103 time steps and 103 realizations. The noise
intensity ish51024. The curve corresponds to the AM predictio
4-5
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LUIS G. MORELLI AND DAMIÁ N H. ZANETTE PHYSICAL REVIEW E63 036204
values ofq. There are two well-differentiated regimes in th
size dependence ofdD* . For smallN, the deviation between
the AM estimate and numerical results is practically co
stant. For large values ofN the deviation decreases, seem
ingly as a power law,dD* ;N2z. Least-squares fits forN
.102 yield z51.160.2 for the exponent.

To find an explanation for these finite-size effects, it
necessary to go beyond the annealed approximation. In
following, we outline an approach to the calculation of t
Hamming distance based on statistical averages over s
of the KN’s. The density of a states5(s1 , . . . ,sN) of a
single KN is defined as

r~s!5
1

N (
i 51

N

s i ~15!

@cf. Eq. ~5!#, whereas the distance between two statess and
s8 reads

D~s,s8!5
1

N (
i 51

N

~s i2s i8!2. ~16!

For fixed p, K, and N, a realizationR of the network is
defined by the connections and the local rules. We defineVR
as the set of all the states visited by the KN for this reali
tion, at asymptotically large times and from all the possi
initial conditions. In other words, the setVR contains all the
states that belong to the limit cycles of the dynamics. It
possible to introduce a probability distributionPR(s) over
VR , given by the frequency with which a given states is
visited at asymptotically large times averaged over all ini
conditions. Averages overVR will be computed with this
distribution. For instance, the average of the densityr is

dR5^r~s!&VR
5 (

sPVR

PR~s!r~s!. ~17!

FIG. 8. Difference between numerical results and the AM p
diction for the asymptotic Hamming distance as a function of s
for four coupling probabilitiesq. The dashed lines have slope21.
The inset shows the asymptotic Hamming distance in semiloga
mic scale, to appreciate the behavior for small values ofN.
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The average of the distance between two states, Eq.~16!, can
be written as

^D~s,s8!&VR
52dR~12dR!2

2

N (
i 51

N

j i
2 , ~18!

where j i5^s i&VR
2dR5^s i8&VR

2dR . Here, we have as

sumed that the occurrence of statess ands8 is probabilis-
tically uncorrelated.

The quantitiesj i measure, for each realization of the ne
work, the average deviation of the state of each site from
average densitydR over the whole network. Let us introduc
the distributionGR(j) as the fraction of sites in the KN with
deviation j for a specific realizationR. Unfortunately, the
explicit form of GR(j) is not known. It is, however, known
that this is a nontrivial distribution, in particular due to exi
tence of the so-called stable core@20#. The stable core is a se
of sites that have always the same asymptotic, fixed sta
irrespectively of the initial condition. For these site
^s i&VR

50 or 1, so that the deviationsj i adopt their extremal

values,j i52dR or 12dR , respectively. Using the distribu
tion GR(j) to replace the sum in Eq.~18! by an integral, we
have

^D~s,s8!&VR
52dR~12dR!22E

2dR

12dR
GR~j!j2dj.

~19!

Now, analytical results on the size of the stable core@20#
suggest that, asN→`, GR(j) approaches an asymptotic pro
file G(j) which depends onp andK, but becomes indepen
dent of the specific realization of the network. For lar
sizes, we may assume a dependence of the form

GR~j!'G~j!2N21GR8 ~j!, ~20!

where GR8 is the first ~analytical! correction due to finite
sizes. Within these assumptions, Eq.~19! takes the form

^D~s,s8!&VR
5D02

2

NE2dR

12dR
GR8 ~j!j2dj, ~21!

where

D052dR~12dR!22E
2dR

12dR
G~j!j2dj ~22!

is the asymptotic distance forN→`.
We now associatêD(s,s8)&VR

with the distance be-
tween the states of two coupled KN’s at a given~long! time.
Indeed, in our system both networks have the same con
tions and rules, and correspond therefore to the same rea
tion R of the network. According to the definition~4! and~5!,
after an average over realizations of the network for fixedp,
K, andN is performed, the distancêD(s,s8)&VR

coincides

with the Hamming distancêD&, Eq.~14!, considered above
In Eq. ~21!, thus, D0 should correspond to the Hammin
distance predicted by the AM approximation, valid forN

-
,
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→`, and the first correction to the AM estimate is given
the additional term. As found from our simulations, this te
depends on the network size asN21. The ansatz~20! is
therefore supported by numerical results. Note that th
conclusions are independent of the strength of coupl
measured by the probabilityq, since the only effect of the
coupling dynamics in connection with the above analysis
to change the set of asymptotic statesVR and the profile of
the distributionGR(j).

V. DISORDERED CELLULAR AUTOMATA AND
PARTIALLY ORDERED NETWORKS

According to the results reported in the previous sectio
the synchronization transitions of stochastically coup
KN’s on the one hand and of stochastically coupled elem
tary cellular automata~ECA @25#! on the other are qualita
tively different. Namely, they belong to different universali
classes. Whereas we have found that synchronization
KN’s appears through a transcritical bifurcation—with
critical exponent equal to unity for the asymptotic Hammi
distance—the corresponding transition in ECA has b
shown to exhibit nontrivial exponents@10#, which seems to
suggest that it belongs to the universality class of direc
percolation@12#. It is therefore relevant to study a third cla
of systems, intermediate between ECA and generic KN’s

In a generic KN there are two sources of disorder. W
have the network topology, determined by the random cho
of connections, and the local evolution rules, which are a
chosen at random. On the other hand, in cellular autom
both the topology and the dynamical rules are fully homo
neous. ECA can indeed be interpreted as a very special
class of KN’s with K53, where the choice of dynamica
rules and connections is deterministic. In order to distingu
between the effects of disorder in the topology and in
dynamics on the synchronization transition, we consider n
the subclass of KN’s where the connections are still cho
at random but the local rule is the same for all sites. We re
to these networks as disordered cellular automata~DCA!.

We focus here on the evolution rule defined by the Bo
ean function f ($0,0,1%)5 f ($0,1,0%)5 f ($1,0,0%)51 and f
50 for the remaining five possible neighborhoods~see Table
I!. This function is known in the literature as rule 22@25#.

TABLE I. Cellular automata neighborhoods and their outp
for the evolution rule 22. The frequenciesp for each neighborhood
obtained from numerical results and from the analytical approxim
tion used in the Appendix are also quoted.

Label Neighborhood Output pnumerical panalytical

0 $0,0,0% 0 0.19350 0.19294
1 $0,0,1% 1 0.14075 0.14096
2 $0,1,0% 1 0.14071 0.14096
3 $0,1,1% 0 0.10287 0.10298
4 $1,0,0% 1 0.14079 0.14096
5 $1,0,1% 0 0.10290 0.10298
6 $1,1,0% 0 0.10289 0.10298
7 $1,1,1% 0 0.07559 0.07524
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The bias for rule 22 isp53/8. This DCA, however, canno
be thought of as a KN withp53/8. In a generic KN with this
bias, in fact, the local evolution could be substantially diffe
ent from the behavior of rule 22. In particular, the dynam
at some sites may be governed by nonchaotic rules, giv
rise to sensible differences in the global behavior. This
clearly illustrated, for instance, by a measurement of
asymptotic density of a rule-22 DCA, which yieldsd
'0.423, instead ofd5p50.375.

The formulation of an annealed model of DCA requires
different approach, in order to account for the homogene
of the dynamical rules. We define the AM by reassigning
the connections at each time step, but keeping the funct
f i5 f fixed. Suppose that we have two networks with over
a(t). The probability for a site to have exactlyK2 l of its
reassigned inputs coming from homologous sites in the s
state is

pl~ t !5S K
l Da~ t !K2 l@12a~ t !# l . ~23!

We introduce the quantityAl as the probability for two ho-
mologous sites having all butl inputs coming from homolo-
gous sites in the same state to give the same output.
overlap at timet11 is then given by

a~ t11!5(
l 50

K

Alpl~ t !. ~24!

The quantitiesAl depend on the evolution rule, and the
value is fixed. They can be evaluated within some appro
mations, as shown in the Appendix. Note thatA051 be-
cause, no matter the rule, if the inputs are all equal,
outputs will coincide. In the annealed model for KN’s w
had A051 and Al5p21(12p)2 for l 51, . . . ,K. For K
53 the map for the Hamming distance can be cast in
form

D~ t11!5B1D~ t !1B2D~ t !21B3D~ t !3, ~25!

with B153(12A1), B253(2A12A221), andB3523A1
13A22A311. Coupling enters then the formulation exact
as in Eq.~9!, as an additional factor 12q in the evolution of
D(t).

In Fig. 9, the curve stands for the asymptotic valueD* as
a function of the coupling probability predicted from E
~25! for rule 22. The prediction is qualitatively similar to tha
for KN’s, in particular, in the region close to the synchron
zation transition. Numerical results on DCA with rule 22 f
N5211 are also shown in Fig. 9. To avoid spurious synch
nization, a small amount of noise,h51024, has been added
The agreement with the AM is reasonably good, thou
some systematic deviations are clearly visible in the zone
the transition. As before, these deviations may be attribu
to finite-size effects.

Finally, as an interpolation between DCA and ECA w
consider partially ordered cellular automata~POCA!, con-
structed in the following way. We start with anN-site ECA,
which consists of a one-dimensional array where each si

-
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connected to itself and to its two nearest neighbors. Then
each site, each neighbor is redrawn at random from
whole network with probabilityu. With the complementary
probability 12u, the neighbor is preserved. The resulti
topological structure of connections is analogous to tha
small-world networks@26#. For u51, we recover the DCA
networks discussed above. Results of numerical simulat
on POCA with rule 22 are shown in Fig. 9 foru50.1 and
u50.3. Data for ECA with rule 22 (u50) are also shown
We see that, in spite of the relatively low values ofu, the
asymptotic Hamming distance of POCA depends on the c
pling probability q in a way qualitatively similar to that o
KN’s. In particular, it does not exhibit the abrupt dependen
on q observed in ECA near the critical point. This would b
in agreement with the crossover scenario in small-world n
works @27#, where it is known that even small amounts
disorder induce behaviors which already resemble tha
fully random structures.

VI. SUMMARY AND DISCUSSION

We have studied the behavior of two Kauffman netwo
interacting through a form of symmetric stochastic couplin
As for many other localized or extended, random or de
ministic, coupled dynamical systems@5–12#, we have found
that coupled Kauffman networks can synchronize their e
lution if coupling is strong enough. In our case, there is
critical value of the coupling probabilityq beyond which the
two networks converge to the same trajectory as ti
elapses.

In contrast with the situation encountered for other e
tended systems@8–13#, however, for Kauffman networks i
has been possible to give an analytical description of
synchronization transition, in excellent agreement with n
merical results for large-size systems. This formulation
provided by an extension of the so-called annealed mo
@18,19# to the system of coupled networks. The model giv
the evolution of the overlap between the two networks—

FIG. 9. Numerical results for the asymptotic Hamming distan
in coupled 211-site disordered cellular automata with the evoluti
rule 22, for different amounts of disorder. The curve stands for
annealed model prediction for DCA.
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in other words, of their Hamming distance—and makes
possible to evaluate its asymptotic value. The asympt
Hamming distanceD* is used as an order parameter for t
synchronization transition. For coupled Kauffman networ
in the chaotic phase, the annealed model predicts the e
tence of a critical coupling probabilityqc , such thatD* is
finite for q,qc and vanishes forq.qc . At the critical point,
D* ;uq2qcu, and the transition has the character of a tra
scritical bifurcation.

The transition predicted by the annealed model is qual
tively different from that observed in the deterministic ve
sion of this kind of systems, more specifically in cellul
automata. For elementary cellular automata, in fact, the c
cal behavior of the Hamming distance exhibits nontrivial e
ponents@10# It has been suggested that, at least for so
evolution rules, the synchronization transition in cellular a
tomata belongs to the class of directed percolation@12#. On
the other hand, by analogy with the problem of dama
spreading, synchronization in Kauffman networks could b
long to the class of directed percolation in disordered s
tems@28#.

Results from extensive numerical simulations of relative
large networks (104 sites!, performed for Kauffman net-
works in the chaotic regime (p51/2, K53), are in good
agreement with the predictions of the annealed model bot
the temporal evolution and in the asymptotic behavior of
system. However, for small networks some systematic de
tures from the analytical results are apparent.

These deviations can be partially explained taking in
account the occasional events of spurious synchroniza
for q,qc , due to the effect of suitably large fluctuations o
our discrete finite-size system. The effect of these fluct
tions becomes more important as the coupling probab
approaches its critical value. In any case, spurious sync
nization can be successfully eliminated by adding a sm
amount of noise to the dynamics. Moreover, noise can a
be incorporated into the annealed model. We have in
duced noise in the simulations and observed that rema
finite-size effects persist. These must now be ascribed to
failure of the annealed model in describing finite networ
By means of a more detailed statistical description of
overlaps between networks, in fact, we have been able
account for such remanent effects, also explaining the dep
dence of the deviation from the annealed model on the
work size.

Finally, we have presented preliminary numerical resu
on disordered and partially ordered stochastically coup
cellular automata. These systems can be seen as provid
kind of interpolation between Kauffman networks, with the
completely random connections and dynamical rules,
cellular automata, which are fully ordered. In the case
disordered networks with the same evolution rule on all
sites, it is possible to extend the annealed model, which
dicts the same class of synchronization transition as
Kauffman networks. Numerical simulations agree with the
predictions. Increasing the order in the connections by me
of a scheme analogous to the construction of a small-wo
network @26#, we have also considered partially disorder
structures. Even for small amounts of structural disorder,

e

e
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SYNCHRONIZATION OF KAUFFMAN NETWORKS PHYSICAL REVIEW E63 036204
behavior associated with the synchronization transit
seems to resemble that of Kauffman networks more than
of cellular automata. This leads us to conjecture that
synchronization transition of partially disordered automata
in the same universality class as for coupled Kauffman n
works. Nevertheless, further extensive simulations an
careful determination of the critical exponents are neces
to draw any conclusions on this point.

In this paper we have considered coupled Kauffman n
works with identical architectures. In contrast, natura
coupled systems, especially in the biological realm, are ty
cally not identical. Thus, a relevant extension of the pres
work is to consider nonidentical elements. Synchronizat
of nonidentical coupled elements has been addressed p
ously in ensembles of nonlinear oscillators@29# and in cha-
otic extended systems@13#. It has been found that modera
differences in the dynamical parameters lead to approxim
synchronization, where some correlation between the st
of the coupled oscillators persists. The same kind of par
synchronization is expected to occur for coupled nonide
cal Kauffman networks. Along a similar line, another po
sible extension of our system considers inhomogeneous
pling @30#, where a different coupling probability is assigne
to each site. These generalizations are the subject of wo
progress.
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APPENDIX: COEFFICIENTS FOR THE
ANNEALED MODEL

In this appendix we illustrate the computation of the c
efficientsAl in Eq. ~24! with an explicit example. We recal
thatAl is defined as the probability for two homologous sit
having all butl inputs coming from homologous sites in th
same state to give the same output.

Let us assume that the frequency with which a giv
neighborhood appears in a state of the whole network is f
determined by the densityd of the state. Namely, we neglec
the correlations between neighborhood frequencies, ass
ated with the spatial patterns generated by the dynamics.
s.

.
ii,
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K53, there are eight possible neighborhoods, which we
bel from 0 to 7 as shown in Table I. Within the above a
sumption, the frequencypi of each neighborhoodi can be
estimated in terms of the densityd as

p05~12d!3,

p15p25p45d~12d!2,
~A1!

p35p55p65d2~12d!,

p75d3.

Moreover, we note that the densityd can in turn be written in
terms of the frequenciespi of neighborhoods with nonzero
output. For rule 22 these neighborhoods are$1,0,0%, $0,1,0%,
and$0,0,1% ~see Table I!, so that we have

d5p11p21p4 . ~A2!

Combining Eqs.~A1! and ~A2! yields d512A3/3'0.423,
which agrees with the numerical measurement reported
Sec. V. The corresponding values of the frequenciespi are
shown in Table I. They are in very good agreement with
values obtained from numerical simulations, also shown
the table. This supports our above assumption of unco
lated neighborhood frequencies.

Once the frequenciespi are known, we are able to calcu
late the coefficientsAl . As a specific example, we discus
A3 . By definition, this is the probability for two homologou
sites having all but three inputs coming from homologo
sites in the same state to give the same output. Thus, we
in the case where the two neighborhoods have all hom
gous sites in different states. The pairs of neighborhoods
satisfy this condition are$0,7%, $1,6%, $2,5%, and $3,4%.
Among them, however, only the pair$0,7% has the same
output for both neighborhoods~see Table I!. The coefficient
A3 is therefore given by

A35
p0p7

p0p71p1p61p2p51p3p4
5

1

4
. ~A3!

The computation of the other coefficients is accomplished
a similar way, yieldingA154(1928A3)/169 andA25(9
1A3)/13. Moreover,A051.
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