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Simple model for directed networks
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We study a model for directed networks based on the Watts-Stogatz model for small-world phenomena. We
focus on some topological aspects of directed networks inspired in food web theory, namely, the fraction of
basal and top nodes in the network and node level distributions. We argue that in directed networks basal nodes
play an important role, collecting information or resources from the environment. We give analytical expres-
sions for the fraction of basal and top nodes for the model, and study the node level distributions with
numerical simulations.
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I. INTRODUCTION definite direction, from providers to consumers. Also in
economy, directed networks play an important role. The net-
The subject of complex networks has become relevant ivork of goods necessary to produce other goods is an ex-
several branches of science. Sometimes, complex systerﬁ@'_‘ple- Hierarchical social networks, in yvhich the relation-
can be described as a large set of interacting units. RegargfiPS between people are not symmetric, give yet another

less of the nature of these units and the way the interac‘?Xample of directed n_etworks.
y ey inter The relevance of directed networks has already been rec-

g{)gnized and emphasizdd3,17. A model for the World

the interactions present in the system, thinking of the units aVide Web with directed links has been propo§eé] and a

the nodes of the network and placing a link between tWOspreading process occurring on a directed network has been

units whenever an interaction is present. The interest in com-; = L :

) .__studied[18]. The problem of percolation in a directed scale-
blex networks has been triggered both by novel theoretic ree neEwgrk[19]pand the dﬁnamics of a spin model in a
approachefl—3] and by the availability of large datasets for directed small world network20] have also been consid-
networks of different origins. In the recent literature, a SYS-ared
tematic study of the topological properties of neural] In.this paper, we propose a model for directed networks

ecological[5—7], metabolic|8], transport 9], technological based on the Watts-Stogatz model for small-world phenom-

[1,10,11 an_d socn’;_1[1,9,12,22,2$neMorks has been carne_zd ena. It is a simple extension of the model, modified to ac-
out, revealing a rich subject with a wide scope of applica-

tions count for the direction of the links. We focus our study on
Most of the models proposed to account for the observe ome static topological properties inspired in food web

; ) . eory [15]. In the following section, we introduce some
features in real networks consist of undirected netw{ti} definitions concerning the topology of directed networks. In

€., nejtv_vork_s In ‘.Nh'Ch the Imks_ connecting two n_odes havethe following, we present the model and give analytical ex-
no definite direction. However, in many cases of interest the ressions for the fraction of basal and top nodes. Then we

interactions are not symmetric. A natural way to descrlbephow numerical results for the fraction of basal nodes and the

these hetworks is to consider directed links. One example g ode level distribution. We finish the paper with a discussion
directed networks comes from ecology, where ecosystemg

can be represented by food wedlid]. In predator-prey food f the results and some remarks.
webs, gach_ species is represented as a node of the network, | soME ASPECTS OF FOOD WEB TOPOLOGY
and a link is placed between two species whenever one of
them feeds on the other. Food webs describe in this way the We therefore begin with a brief discussion of some as-
who-eats-who interactions in the ecosystem. The natural wagects of network topology inspired in food web theory. A
to describe the flow of resources from prey to predators is toyery coarse grained classification of the species in a food
consider a directed networkNeural networks provide an- web is based on the fraction of basal species, the fraction of
other example of directed networks. In fact, neurons connedop species, and the fraction of intermediate species in the
to other cells with their axon, and receive connections fromweb. Basal species feed only on the environment, and have
other axon cells through their dendrites. This asymmetry ofho prey. Top species have no predators. Intermediate species
the cell can be accounted for with a directed link. In ener-have both preys and predators. Here we define basal, top, and
getic networks as the power grid, the energy flows in soméntermediate nodes in an analogous way. Basal nodes have
only outgoing links, intermediate nodes have both outgoing
and incoming links, and top nodes have only incoming links.
*Electronic address: morelli@ictp.trieste.it The fractions of basal, intermediate, and top nodes in the
1In some contexts, though, food webs can be represented by ufetwork are noted aB, I, andT. Note that by definitionB
directed networks because a fluctuation in the population of a spe+ T+1=1.
cies has consequences both on the populations of its preys and its In food web models, basal species feed only on the envi-
predators. ronment. The ecosystem is an open system, and resources
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enter through basal species. This is why basal nodes are e&st neighbors and periodic boundary conditions. The nodes
pected to play an important role in general directed netare arranged in a ring withk links per node. We then re-
works. It is through basal nodes that information, energy, owire the network following the procedure introduced in Ref.
resources in general come into the system from the envirorj<]. We select a node and the link that connects this node to
ment. Note that in general directed networks, the fraction ofts nearest neighbor in a counterclockwise sense. With prob-
basal and top nodes could be zero. ability p we rewire this link to a randomly chosen node in the
It is possible to build a much more detailed description ofnetwork, and with probability  p we leave it as it is. Self-
the trophic structure of the food web in terms of the trophicconnections and repeated connections are not allowed. The
level distribution. The trophic level of a given species isdirection of the link is then chosen at random. With probabil-
sometimes defined as the shortest path to the basal speciesityfb the link goes out from the current node, and with prob-
the network{15]. Note that this definition relies on the exis- ability 1—b it goes into it. We move counterclockwise
tence of basal species, and also on the existence of suchagound the ring and repeat this procedure for each node, until
path. Here we define in an analogous way the level of a nodene lap is completed. Then we repeat the process with the
\, as the minimum number of incoming links that has to besecond nearest counterclockwise neighbors of each node, and
traversed to reach the basal nodes in the network. With thiso on up to thé&(th nearest neighbors. At this point, each link
definition basal nodes are at level 0, nodes receiving linkén the network has been considered once, its direction has
from basal nodes are at level 1, and so on. The node levdéleen chosen, and with probabilipyit has been rewired to
distributionp , (\) gives the frequency of nodes at node levelanother node.
\ in the network, providing a good description of its hierar-  Several realizations of this model are shown in Fig. 1. To
chical structure. make a clear picture, we choolle=10 andK=1. In the first
Finally, and for future reference, we introduce some contow we show three networks with=0. These are regular
cepts that have proved very useful in the characterization afietworks, with no rewired links. Fdo=1 all the links go
complex networkd1,2]. The clustering coefficient; of a  counterclockwise, fob=0.5 some of the links go in one
given nodd is defined as the fraction of all possible connec-direction and some of them go in the other, andider0 all
tions between the neighbors of sitéhat is actually present. the links go in a clockwise direction. In the second row we
The characteristic path length is the average number of corshow three realizations witp=0.5 andb=1,0.5,0 respec-
nections that have to be traversed to join two nodes of thévely. For this value ofp some links have been rewired. It is
network. The degrek; of a given node is simply the number clear that independently &€ for b=0, no basal nodes exist
of links attached to nodé The degree distribution of the in the network because each node has at Igastcoming
network pk (k) gives the frequency of nodes withlinks in  links. Forp=0 andb=0,1, neither basal nor top nodes exist
the network. It has to be stressed that these concepts aiiethe network. For other values bfandp, however, basal
defined for undirected networks. The degree distribution forand top nodes can appear leading to a classification of the
a directed network splits in the distribution of incoming links nodes in a hierarchical structure.
and the distribution of outgoing linkE9,16]. The average In order to avoid confusion in the following discussion,
path length should be calculated considering the direction ofve introduce here a definition. Note that each node has at
the links[18]. The definition of a clustering coefficient for leastK links. These are the links that fpr=0 are connected
directed networks is less obvious. to the K nearest counterclockwise neighbors of each node.
We say that a given node owns tKdinks that connect it to
its K nearest counterclockwise neighbors before the rewiring
process.
We consider a directed version of the Watts-Strogatz It is possible to find an analytical expression for the frac-
model(DWS) for small-world phenomengl]. This model is  tion of basal nodeg in the network. We call i{3 to distin-
an interpolation between regular and random networks, witlguish from the numerical results fd@. In general, is a
a control parametep that measures the amount of disorderfunction of the number of nodel, the connectivityk, the
in the network. Regular networkgp&0) have very high disorder parametqs, and the bia. As it was noted above,
clustering coefficients, as relatively big fractions of thefor b=0 all the links are set as incoming and no basal nodes
neighbors of a site are connected with each other. The chagan appear in the network, $(N,K,p,0)=0. Let us now
acteristic path length in regular networks grows linearly withconsider the casp=0 in more detail. In this case, no links
the number of nodeN. On the other hand, random networks are rewired and the network remains regular. Each node has
display very short path lengths growing asNij(and very its ownK links, and also keeps th¢ links connecting it to
small clustering. The WS model generates networks whiclits K clockwise neighbors. The probability for a node to be-
have both high clustering coefficient and short characteristicome a basal node is given by the product of the independent
path lengths, in a wide range of the parameter values. Theg@obabilities for each of its own links to be set as outgoing,
features have been shown to be common to many biologicafnd the otheK links to be set as incoming to their respective
technological, and social networks, and so the model haswners. This gives the expression
become paradigmatic to these phenomena.
Here we propose a simple way of building a directed net- B(N,K,0b)=bX(1-Db)K. (1)
work based on the WS rewiring procedure. We start with a
regular network consisting di nodes linked to theikK near-  The caséd =1 is also straightforward. All the links are set as

IIl. THE MODEL
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FIG. 1. Some realizations of the DWS model with=10 andK=1. In the first row, we hav@=0, and(a) b=1, (b) b=0.5,(c) b
=0. In the second rowp=0.5 and(d) b=1, (e) b=0.5, (f) b=0.

outgoing, so the probability for a node to become basal is K
given by the probability for losing it& clockwise links and [1-b(1—p)]K= 2
not receiving any further rewired link from other nodes of 1=
the network. The probability for losing th€ clockwise links

is simply pX. The probability of not receiving further links
can be approximated by (11/N)PNK where pNK is the

K\ .
i)p'[(l—b)(l—p)]K'- ©)

The exponential factor stands for the probability to receive
only rewired new links that are set as incoming to their
average number of rewired links and 1/N) gives the OWner nodes. Concerning the exponential factor, note that
probability for a link to miss a given node. This is an ap- there are, on averagpKN rewired links. WherK <N, the
proximation valid fork <N, where the fact that repeated probability for each of these links to hit a given node ikl 1/

links are not allowed is neglected. Within this approximation2nd the probability to miss it is (21/N). The probability
we have for a node to receive only rewired links that go out from it is

1 pKN
1- N” . (6)

B(N.K,p,1)=p (1~ 1N)PNK, @) f(N,K,p'b):{T+

which can be further simplified, iN>1, in the form

B(N,K,p,1) = pKePK. 3) For N>1 this can be approximated by

— a—PbK
Note that theN dependence drops in this last expression. In f(N,K,p,b)=e"P"% @

the general case, it is still possible to write down an approxi-

mate expression for the fraction of basal nodes in the netNOte that Eq.(4) reduces to Eqs(1) and (3) in the corre-
work, sponding cases. Note further that fpe=1, we have the

simple form
K,p,b)=b"[1-b(1-p)]¥e P°K 4

B(K,p,b)=b[1-b(1-p)] @ BK L) ~beK @
In this expression, the fact®® stands, as in Eq1), for the
probability to have thék own links of a given node set as  An expression for the fraction of top nodesn the net-
outgoing. The second factor comes from the probability forwork can also be written in a similar way, yielding
the remainingnot rewired of theK clockwise links to be set
as incoming to their owners, 7(K,p,b)=(1—b)X[p+b(1—p)]Ke PA-DK (g
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FIG. 2. In the top row, we plot
numerical (dotg and analytical
(lines) results for the fraction of
basal node® vs disorder param-

eterp, for K=1,2,3, and(a b
=1, (b) b=0.5. In the bottom, we
plot B vs b for (c) p=1 and(d)
p=0. The fraction of basal nodes
is found to increase with disorder
[(@ and (b)]. Whenp=1 (c), the
fraction of basal nodes grows with
b, while for p=0 (d) it has a

B 0.2 1 B 027 1 maximum atb=0.5.
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Because of the symmetry of the network construction, wehis kind of substructure the node level becomes ill defined,
have since there is no way to reach basal nodes from them follow-
ing incoming links. In the numerical simulations with the
parameters we have considered, we have seen that these
structures are usually very rare except wheaO andb
Note that knowingB andT, one can also compute the value ~0.5.
of I.

The classification in basal, top, and intermediate nodes is
very coarse. Nevertheless, it gives important information on
the structure of the network. The knowledge of the fraction
of basal and top nodes is important to understand the flow of In this section, we present results from numerical simula-
resources in any directed network. The node level distributions of the model. Averages have been done ovérréal-
tion gives a more precise picture of the position of the nodeézations inN= 10> nodes networks. In all figures, dots cor-
in the network, and will be studied with the help of numeri- respond to numerical results and lines to analytical results,
cal simulations in the following section. unless otherwise noted.

Some remarks have to be made on the DWS model. With In Fig. 2, we plot the fraction of basal nodBsas a func-
the rewiring procedure described above, the network can bdion of p andb for K=1,2,3. Figure 2a) showsB vs p for
come disconnected. We have discarded these events in the=1. For p=0 no basal nodes exist, and the fraction of
numerical simulations, since we are interested in connecteldasal nodes grows monotonically with disorder in the net-
networks of definite sizes. Besides, we have excluded fronwork for pe[0,1]. Note also thaB decreases sensibly as the
the model the possibility of self-connections and repeateg¢onnectivityK is increased. The analytical results are in very
connections, even with different directions. In a directed netgood agreement with the numerical results for the values of
work this last interaction would result in a loop consisting of K considered here. Figurel® showsB vs p for b=0.5. In
two nodesA and B, whereA is connected t@ andB is in  this case, the direction of the links is chosen with equal prob-
turn connected t@é\. These features are known to be presentability in one way or the other. The fraction of basal nodes
in some real networks. Here we have neglected them in ordetoes not vary significantly witlp in this case. Figure (2)
to simplify the model, but they could be straightforwardly shows the plot of the fraction of basal nodes as a function of
incorporated. Finally, we note that directed loops might apthe biasb for maximum disordep=1, and Fig. 2d) shows
pear in these networks. The simplest instance is a three-nodgvs b for p=0. In all cases, we find good agreement with
loop, whereA is connected td, B is connected t&C, Cis  the analytical result4).
connected toA, and other links go out fromd, B, and C In Fig. 3, we plotB vs K for several values op andb.
connecting the triangle to the network, but no links comeNote that the scale is logarithmic in the vertical axis, to stress
from other nodes ta\, B, or C. Thus, the triangle is con- the exponential decay & with K. In fact, Eq.(4) can be cast
nected to the network only by outgoing links. For nodes inin the exponential form

7(K,p,b)=B(K,p,1—h). (10

IV. NUMERICAL RESULTS
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10° [ . =10.5=05 =0.5 and(b) b=1. In the first case, note the tail of the distribution
p=19,06=0. for p=0. When the network is regular, a wide range of path lengths
f 4 p=10,b=10 is found. Both forb=0.5 andb=1, the distribution becomes
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FIG. 3. Numerical(dot9 and analytical(lines) results for the Figure Sa)_ showsp, (1) for d'ﬁer?nt connectivitiesK
fraction of basal nodeB vs connectivityK. Note the logarithmic :1’3_’5 _and_flxe_d3= 1 andb=1. We find, as expected, that
scale in the vertical axis. The fraction of basal nodes decays expdD€ distribution is broader for smaller valuestof Next we
nentially with connectivity. In the inset, we plot the fraction of Plot, in Fig. db), the level distribution forp=0 and b
realizations with no basal nodes vs normalized connectivity. = 0.5. Here we find that the distribution becomes broader as
WhenaK/In N<1, almost all realizations of the network have basal K increases from 1 to 5. This is unexpected at first sight,
nodes, while foraK/In N>1 realizations with no basal nodes be- because the average path length is known to decreake as
come more probable. For large enough connectivity, almost all regrows. However, a& grows the fraction of basal nodes de-
alizations of the network have no basal nodes. cays exponentiallyFig. 3. For p=0 the network is regular,
and as basal nodes become less abundant, the average dis-
B(K,p,b)=e"«P:bK (1) tance to them grows. AK keeps growing, the point where
B<1/N is reached. ForrK/InNN>1, the only realizations
with with basal nodes have most probalidy- 1/N. The average
maximum distance to the only basal node in the network can
a(p,b)=pb—Inb—In[1-b(1-p)]. (12 be estimated abl/2K, neglecting the direction of the links.
The shape op, (M) is thus steplike, witho~2K/N for A
Numerical results are again in good agreement with(Bg. <N/2K andp=0 for A>N/2K. When actually considering
in the range considered. For large valueskofve find B the direction of the links, the value of the average maximum
<1/N. This means that in some realizations of the networkevel moves to higher values and the valuepois smaller.
there are no basal nodes, yielding an average valuB of This can be seen in Fig.(%» for K=10. Note that fluctua-
below 1N. From Eg.(11) we have that the conditio  tions in the direction of the links can result in realizations
=N"1is met whenaK=InN. Thus foraK>InN, a signifi-  with a higher maximum level. This yields a monotonically
cant fraction of the realizations of the network has no basal
nodes. This is shown in the inset of Fig. 3, where we plot the

broader with increasing order, as a consequence of decreasing av-
erage path lengths.

. N ; (@) (b)

fraction of realizations with no basal nodes «K/In N, for L e 0.05
several values op andb. . . 10" fﬁ\:\ TRl ool b ko

A detailed characterization of the hierarchical arrange- 4}/ ) ke I k=S
ment of the nodes in the network can be given in terms of the,, s N p°‘°3

o : N |

node level distributiorp,(\). In Fig. 4, we plotp, for K o W\ 002t
=3 and various values gi and b. Realizations withB=0 , AN oof! |
have been discarded since the node level is ill defined in ' L\ Lo
those cases, and averages have been done over realizatioc %o s 10 is %% 30 %0 6080 100 120
with B#0. In Fig. 4a), we plotp,(\) for K=3, b=0.5, A A

and p=0,0.1,1. The distributions show exponential tails. FIG. 5. (8 Node level distributions fop=1, b=1, andK

Fpr p=0 an approximate fraction 0.18 of r_lodes belongs t0=1,3,5. With increasing connectivity, the distribution becomes
directed loop .structur.es as the one desqubed at the end gf]arper as average path lengths become shatieNode level
Sec. lll. As disorder increases, the fraction of basal nodeg;stibutions forp=0, b=0.5, andK=1,3,5,10. Here weplot
slightly increaseqsee Fig. 20)]. The average path length nymerical results as lines. This is the case of a regular network with
decreases with increasing disord@l. As a result of these no rewired links, and the direction set in one way or the other with
two combined effects, the exponential decay is faster foequal probability. Here we find that for small valuestothe dis-
higher levels of disorder. In Fig.(8), we plotp,(\) for b tribution becomes broader &sincreases, and then it becomes step-
=1 andp=0,0.2,1. like for higher values oK.

066107-5



LUIS G. MORELLI PHYSICAL REVIEW E 67, 066107 (2003

1.00 0.10 — v T v T v T
I E W) p=0 b=05 0O | [ " ). b
OO (] p=1 b=05 O 0.08 10 \'l.‘ a0
075 - Plo" "_ %y
* éﬁ@:ﬂlﬂl—lu D Q [ 10° ' . .o
o3} = o '006F
o oy lo|o' 10 10° 10'
V 0.50 | 06} ) O 1 9 N
Y- - o, 004}
8 o}
02
025} 3 i
! o 0.02
00 05 1.0 15 20 25 30 D
aK/InN @
0,00 Sl e O B 0%00 002 004 006 008 010
10’ 10' 107 10’ 10* ’ ‘ : /N : | :
N

. o . FIG. 7. Plot of the difference,(0)— 8 vs 1N. For small sys-
FIG. 6. Fraction of realizations with no basal nodes as a funcs . .
. : ; m , the difference grows ad1/n the er left corner, we
tion of system size foK=5, b=0.5, andp=0,1. In the inset, we tem sizes, the diffe grow upp W

plot the fraction of nodes at leval as a function of system size, for
plot the same data plotted veK/In N. K=5, p=0, b=0.5, and\=0, 1, and 2. We find thai, (\) goes
to an asymptotic value aN grows. In the down right corner we
decreasing tail in the distribution of levels, not seen in theshow the difference ,(0)— 8 vs N, and find that for larg& it falls
figure for reasons of scale. In many cases of interest, the sizaster than M, shown as a continuous line.
of the network does not exceed®10odes. This is the case
for the neural network ofC. Elegansand for the datasets 1
available for some ecosystems. Nevertheless, it is interesting pA(0) =B+ - (13
to study the behavior of the model for larijevalues. On the

ot.her hand, some .system_s show large connectivity values, the lower inset of Fig. 7, we plop,(0)—S vs N in a
thh K/IN~1, soitis als_o mterestlng to qnderstand the de'log-log plot in order to show the behavior for largé
viations from the analytical results in this case, where th&sx find that the difference goes to zero faster thart for
approximations involved in the calculation ¢ are no large N.
longer valid.

In Fig. 6, we plot the fraction of realizations with no basal
nodes as a function of the number of nodésfor K=5, p
=0 and 1, andb=0.5. For small values o, the connec- We presented a model for directed networks based on the
tivity is relatively high and basal nodes rarely occur, 80 Watts-Strogatz model for small-world phenomena. The di-
~1. As N grows, the network becomes less connected angection of the links is set as outgoing from the owner node
basal nodes become more frequentsdecays to zero. In  with probability b, and as incoming with probability % b.
the inset of Fig. 6, we show vs aK/In N for the same data. We found analytical expressions for the fraction of basal and
We find that the transition from networks with basal nodes tatop nodes in the network, which are in good agreement with
networks without basal nodes occurs arourt/InN=1, as  results from numerical simulations. We also studied node
it was seen in the inset of Fig. 3. Note that now ifNghat level distributions with the aid of numerical simulations. Fi-
varies along the curve. nally, we considered the effects of size on these properties.

Now we would like to study how does the fraction of  We stress the relevance of basal nodes in the structure of
basal nodes varies with system size. In the numerical resul@irected networks. In neural and some technological net-
presented in Figs. 2 and 3, the valueBis obtained nor-  works, information enters the system through the basal nodes
malizing over all realizations, including those with no basaland moves through the network following directed links,
nodes. The level distribution, on the other hand, is define@ventually reaching top nodes. In the case of food webs and
only when basal nodes exist, and so it is normalized oveeconomic networks, it is resources that enter the system
realizations with basal nodes. The fraction of nodes at levethrough basal nodes. In any case, basal nodes determine the
zero, p,(0), isthen the fraction of basal nodes in realiza- boundary of the network, the interphase between the envi-
tions withB>0. In the upper inset of Fig. 7, we plpt, (\) ronment and the system. In a similar way, top nodes are at
vs N for A=0, 1, and 2. We see that,(\) goes to an the end of the chain. They represent the units where infor-
asymptotic value all grows. To compare the value pf, (0) mation ends up. For this reason, the fractions of basal and
with the analytical resul, we plot in Fig. 7 the difference top nodes are expected to play an important role in dynami-
pA(0)—pB vs IN. We find that this difference follows a cal processes occurring on directed networks. Furthermore,
straight line with slope 0.9950.005, also shown in the plot. the node level distribution gives detailed information about
This suggests that the first correction to the analytical calcuthe arrangement of the network relative to basal nodes. This
lation for smallN values is of the order of IV, so distribution could give information on the organization and

V. DISCUSSION
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efficiency of the network to distribute resources or informa-of the model we have studied. While many known networks
tion. present exponential or scale-free degree distributions, the
There is another quantity studied in food web theoryWS model is known to yield Poissonian degree disributions.
which has not been considered here, namely, the degree @fe have also studied the fraction of basal nodes and node
omnivory in the network. An omnivorous is a species feed-evel distributions in models of directed growing networks
ing in more than one trophic level. It is possible to define thethat have exponential degree distributions, but results will be
distributionpo(l) giving the frequency of species feeding on published elsewher1].
| different trophic levels. The mean of this distribution

should give a measure of the omnivory degree _in the food ACKNOWLEDGMENT
web. In a general directed network, this would give a mea-
sure of the interactions among different levels. The author wishes to thank M. A. Montemurro for fruitful
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