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Simple model for directed networks
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We study a model for directed networks based on the Watts-Stogatz model for small-world phenomena. We
focus on some topological aspects of directed networks inspired in food web theory, namely, the fraction of
basal and top nodes in the network and node level distributions. We argue that in directed networks basal nodes
play an important role, collecting information or resources from the environment. We give analytical expres-
sions for the fraction of basal and top nodes for the model, and study the node level distributions with
numerical simulations.
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I. INTRODUCTION

The subject of complex networks has become relevan
several branches of science. Sometimes, complex sys
can be described as a large set of interacting units. Reg
less of the nature of these units and the way they inte
with each other, it is possible to define a network describ
the interactions present in the system, thinking of the unit
the nodes of the network and placing a link between t
units whenever an interaction is present. The interest in c
plex networks has been triggered both by novel theoret
approaches@1–3# and by the availability of large datasets f
networks of different origins. In the recent literature, a s
tematic study of the topological properties of neural@1,4#,
ecological@5–7#, metabolic@8#, transport@9#, technological
@1,10,11# and social@1,9,12,22,23# networks has been carrie
out, revealing a rich subject with a wide scope of applic
tions.

Most of the models proposed to account for the obser
features in real networks consist of undirected networks@13#,
i.e., networks in which the links connecting two nodes ha
no definite direction. However, in many cases of interest
interactions are not symmetric. A natural way to descr
these networks is to consider directed links. One exampl
directed networks comes from ecology, where ecosyst
can be represented by food webs@14#. In predator-prey food
webs, each species is represented as a node of the net
and a link is placed between two species whenever on
them feeds on the other. Food webs describe in this way
who-eats-who interactions in the ecosystem. The natural
to describe the flow of resources from prey to predators i
consider a directed network.1 Neural networks provide an
other example of directed networks. In fact, neurons conn
to other cells with their axon, and receive connections fr
other axon cells through their dendrites. This asymmetry
the cell can be accounted for with a directed link. In en
getic networks as the power grid, the energy flows in so

*Electronic address: morelli@ictp.trieste.it
1In some contexts, though, food webs can be represented by

directed networks because a fluctuation in the population of a
cies has consequences both on the populations of its preys an
predators.
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definite direction, from providers to consumers. Also
economy, directed networks play an important role. The n
work of goods necessary to produce other goods is an
ample. Hierarchical social networks, in which the relatio
ships between people are not symmetric, give yet ano
example of directed networks.

The relevance of directed networks has already been
ognized and emphasized@13,17#. A model for the World
Wide Web with directed links has been proposed@16# and a
spreading process occurring on a directed network has b
studied@18#. The problem of percolation in a directed scal
free network@19# and the dynamics of a spin model in
directed small world network@20# have also been consid
ered.

In this paper, we propose a model for directed netwo
based on the Watts-Stogatz model for small-world pheno
ena. It is a simple extension of the model, modified to
count for the direction of the links. We focus our study o
some static topological properties inspired in food w
theory @15#. In the following section, we introduce som
definitions concerning the topology of directed networks.
the following, we present the model and give analytical e
pressions for the fraction of basal and top nodes. Then
show numerical results for the fraction of basal nodes and
node level distribution. We finish the paper with a discuss
of the results and some remarks.

II. SOME ASPECTS OF FOOD WEB TOPOLOGY

We therefore begin with a brief discussion of some
pects of network topology inspired in food web theory.
very coarse grained classification of the species in a f
web is based on the fraction of basal species, the fractio
top species, and the fraction of intermediate species in
web. Basal species feed only on the environment, and h
no prey. Top species have no predators. Intermediate spe
have both preys and predators. Here we define basal, top
intermediate nodes in an analogous way. Basal nodes h
only outgoing links, intermediate nodes have both outgo
and incoming links, and top nodes have only incoming lin
The fractions of basal, intermediate, and top nodes in
network are noted asB, I, andT. Note that by definition,B
1T1I 51.

In food web models, basal species feed only on the en
ronment. The ecosystem is an open system, and resou
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enter through basal species. This is why basal nodes are
pected to play an important role in general directed n
works. It is through basal nodes that information, energy
resources in general come into the system from the envi
ment. Note that in general directed networks, the fraction
basal and top nodes could be zero.

It is possible to build a much more detailed description
the trophic structure of the food web in terms of the trop
level distribution. The trophic level of a given species
sometimes defined as the shortest path to the basal spec
the network@15#. Note that this definition relies on the exis
tence of basal species, and also on the existence of su
path. Here we define in an analogous way the level of a no
l, as the minimum number of incoming links that has to
traversed to reach the basal nodes in the network. With
definition basal nodes are at level 0, nodes receiving li
from basal nodes are at level 1, and so on. The node l
distributionrL(l) gives the frequency of nodes at node lev
l in the network, providing a good description of its hiera
chical structure.

Finally, and for future reference, we introduce some c
cepts that have proved very useful in the characterizatio
complex networks@1,2#. The clustering coefficientci of a
given nodei is defined as the fraction of all possible conne
tions between the neighbors of sitei that is actually present
The characteristic path length is the average number of c
nections that have to be traversed to join two nodes of
network. The degreeki of a given node is simply the numbe
of links attached to nodei. The degree distribution of the
networkrK(k) gives the frequency of nodes withk links in
the network. It has to be stressed that these concepts
defined for undirected networks. The degree distribution
a directed network splits in the distribution of incoming lin
and the distribution of outgoing links@9,16#. The average
path length should be calculated considering the direction
the links @18#. The definition of a clustering coefficient fo
directed networks is less obvious.

III. THE MODEL

We consider a directed version of the Watts-Strog
model~DWS! for small-world phenomena@1#. This model is
an interpolation between regular and random networks, w
a control parameterp that measures the amount of disord
in the network. Regular networks (p50) have very high
clustering coefficients, as relatively big fractions of t
neighbors of a site are connected with each other. The c
acteristic path length in regular networks grows linearly w
the number of nodesN. On the other hand, random networ
display very short path lengths growing as ln(N) and very
small clustering. The WS model generates networks wh
have both high clustering coefficient and short characteri
path lengths, in a wide range of the parameter values. Th
features have been shown to be common to many biolog
technological, and social networks, and so the model
become paradigmatic to these phenomena.

Here we propose a simple way of building a directed n
work based on the WS rewiring procedure. We start wit
regular network consisting ofN nodes linked to theirK near-
06610
ex-
t-
r
n-
f

f

s of

h a
e,
e
is
s
el
l

-
of

-

n-
e

are
r

of

z

th
r

r-

h
ic
se
al,
s

t-
a

est neighbors and periodic boundary conditions. The no
are arranged in a ring with 2K links per node. We then re
wire the network following the procedure introduced in Re
@1#. We select a node and the link that connects this nod
its nearest neighbor in a counterclockwise sense. With pr
ability p we rewire this link to a randomly chosen node in t
network, and with probability 12p we leave it as it is. Self-
connections and repeated connections are not allowed.
direction of the link is then chosen at random. With probab
ity b the link goes out from the current node, and with pro
ability 12b it goes into it. We move counterclockwis
around the ring and repeat this procedure for each node,
one lap is completed. Then we repeat the process with
second nearest counterclockwise neighbors of each node
so on up to theKth nearest neighbors. At this point, each lin
in the network has been considered once, its direction
been chosen, and with probabilityp it has been rewired to
another node.

Several realizations of this model are shown in Fig. 1.
make a clear picture, we chooseN510 andK51. In the first
row we show three networks withp50. These are regula
networks, with no rewired links. Forb51 all the links go
counterclockwise, forb50.5 some of the links go in one
direction and some of them go in the other, and forb50 all
the links go in a clockwise direction. In the second row w
show three realizations withp50.5 andb51,0.5,0 respec-
tively. For this value ofp some links have been rewired. It i
clear that independently ofK for b50, no basal nodes exis
in the network because each node has at leastK incoming
links. Forp50 andb50,1, neither basal nor top nodes ex
in the network. For other values ofb andp, however, basal
and top nodes can appear leading to a classification of
nodes in a hierarchical structure.

In order to avoid confusion in the following discussio
we introduce here a definition. Note that each node ha
leastK links. These are the links that forp50 are connected
to the K nearest counterclockwise neighbors of each no
We say that a given node owns theK links that connect it to
its K nearest counterclockwise neighbors before the rewir
process.

It is possible to find an analytical expression for the fra
tion of basal nodesb in the network. We call itb to distin-
guish from the numerical results forB. In general,b is a
function of the number of nodesN, the connectivityK, the
disorder parameterp, and the biasb. As it was noted above
for b50 all the links are set as incoming and no basal no
can appear in the network, sob(N,K,p,0)[0. Let us now
consider the casep50 in more detail. In this case, no link
are rewired and the network remains regular. Each node
its own K links, and also keeps theK links connecting it to
its K clockwise neighbors. The probability for a node to b
come a basal node is given by the product of the indepen
probabilities for each of its own links to be set as outgoin
and the otherK links to be set as incoming to their respecti
owners. This gives the expression

b~N,K,0,b!5bK~12b!K. ~1!

The caseb51 is also straightforward. All the links are set a
7-2
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FIG. 1. Some realizations of the DWS model withN510 andK51. In the first row, we havep50, and~a! b51, ~b! b50.5, ~c! b
50. In the second row,p50.5 and~d! b51, ~e! b50.5, ~f! b50.
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outgoing, so the probability for a node to become basa
given by the probability for losing itsK clockwise links and
not receiving any further rewired link from other nodes
the network. The probability for losing theK clockwise links
is simply pK. The probability of not receiving further links
can be approximated by (121/N)pNK, where pNK is the
average number of rewired links and (121/N) gives the
probability for a link to miss a given node. This is an a
proximation valid forK!N, where the fact that repeate
links are not allowed is neglected. Within this approximati
we have

b~N,K,p,1!5pK~121/N!pNK, ~2!

which can be further simplified, ifN@1, in the form

b~N,K,p,1!5pKe2pK. ~3!

Note that theN dependence drops in this last expression.
the general case, it is still possible to write down an appro
mate expression for the fraction of basal nodes in the
work,

b~K,p,b!5bK@12b~12p!#Ke2pbK. ~4!

In this expression, the factorbK stands, as in Eq.~1!, for the
probability to have theK own links of a given node set a
outgoing. The second factor comes from the probability
the remaining~not rewired! of theK clockwise links to be se
as incoming to their owners,
06610
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@12b~12p!#K5(
i 50

K S K

i D pi@~12b!~12p!#K2 i . ~5!

The exponential factor stands for the probability to rece
only rewired new links that are set as incoming to th
owner nodes. Concerning the exponential factor, note
there are, on average,pKN rewired links. WhenK!N, the
probability for each of these links to hit a given node is 1/N,
and the probability to miss it is (121/N). The probability
for a node to receive only rewired links that go out from it

f ~N,K,p,b!5F12b

N
1S 12

1

ND G pKN

. ~6!

For N@1 this can be approximated by

f ~N,K,p,b!5e2pbK. ~7!

Note that Eq.~4! reduces to Eqs.~1! and ~3! in the corre-
sponding cases. Note further that forp51, we have the
simple form

b~K,1,b!5bKe2bK. ~8!

An expression for the fraction of top nodest in the net-
work can also be written in a similar way, yielding

t~K,p,b!5~12b!K@p1b~12p!#Ke2p(12b)K. ~9!
7-3
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FIG. 2. In the top row, we plot
numerical ~dots! and analytical
~lines! results for the fraction of
basal nodesB vs disorder param-
eter p, for K51,2,3, and~a! b
51, ~b! b50.5. In the bottom, we
plot B vs b for ~c! p51 and ~d!
p50. The fraction of basal node
is found to increase with disorde
@~a! and ~b!#. Whenp51 ~c!, the
fraction of basal nodes grows with
b, while for p50 ~d! it has a
maximum atb50.5.
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Because of the symmetry of the network construction,
have

t~K,p,b!5b~K,p,12b!. ~10!

Note that knowingB andT, one can also compute the valu
of I.

The classification in basal, top, and intermediate node
very coarse. Nevertheless, it gives important information
the structure of the network. The knowledge of the fract
of basal and top nodes is important to understand the flow
resources in any directed network. The node level distri
tion gives a more precise picture of the position of the no
in the network, and will be studied with the help of nume
cal simulations in the following section.

Some remarks have to be made on the DWS model. W
the rewiring procedure described above, the network can
come disconnected. We have discarded these events in
numerical simulations, since we are interested in conne
networks of definite sizes. Besides, we have excluded f
the model the possibility of self-connections and repea
connections, even with different directions. In a directed n
work this last interaction would result in a loop consisting
two nodesA and B, whereA is connected toB and B is in
turn connected toA. These features are known to be pres
in some real networks. Here we have neglected them in o
to simplify the model, but they could be straightforward
incorporated. Finally, we note that directed loops might
pear in these networks. The simplest instance is a three-n
loop, whereA is connected toB, B is connected toC, C is
connected toA, and other links go out fromA, B, and C
connecting the triangle to the network, but no links com
from other nodes toA, B, or C. Thus, the triangle is con
nected to the network only by outgoing links. For nodes
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this kind of substructure the node level becomes ill defin
since there is no way to reach basal nodes from them foll
ing incoming links. In the numerical simulations with th
parameters we have considered, we have seen that t
structures are usually very rare except whenp50 and b
'0.5.

IV. NUMERICAL RESULTS

In this section, we present results from numerical simu
tions of the model. Averages have been done over 104 real-
izations inN5103 nodes networks. In all figures, dots co
respond to numerical results and lines to analytical resu
unless otherwise noted.

In Fig. 2, we plot the fraction of basal nodesB as a func-
tion of p andb for K51,2,3. Figure 2~a! showsB vs p for
b51. For p50 no basal nodes exist, and the fraction
basal nodes grows monotonically with disorder in the n
work for pP@0,1#. Note also thatB decreases sensibly as th
connectivityK is increased. The analytical results are in ve
good agreement with the numerical results for the values
K considered here. Figure 2~b! showsB vs p for b50.5. In
this case, the direction of the links is chosen with equal pr
ability in one way or the other. The fraction of basal nod
does not vary significantly withp in this case. Figure 2~c!
shows the plot of the fraction of basal nodes as a function
the biasb for maximum disorderp51, and Fig. 2~d! shows
B vs b for p50. In all cases, we find good agreement w
the analytical result~4!.

In Fig. 3, we plotB vs K for several values ofp and b.
Note that the scale is logarithmic in the vertical axis, to str
the exponential decay ofB with K. In fact, Eq.~4! can be cast
in the exponential form
7-4
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SIMPLE MODEL FOR DIRECTED NETWORKS PHYSICAL REVIEW E67, 066107 ~2003!
b~K,p,b!5e2a(p,b)K, ~11!

with

a~p,b!5pb2 ln b2 ln@12b~12p!#. ~12!

Numerical results are again in good agreement with Eq.~4!
in the range considered. For large values ofK we find B
,1/N. This means that in some realizations of the netw
there are no basal nodes, yielding an average value oB
below 1/N. From Eq. ~11! we have that the conditionb
5N21 is met whenaK5 ln N. Thus foraK. ln N, a signifi-
cant fraction of the realizations of the network has no ba
nodes. This is shown in the inset of Fig. 3, where we plot
fraction of realizations with no basal nodes vsaK/ ln N, for
several values ofp andb.

A detailed characterization of the hierarchical arran
ment of the nodes in the network can be given in terms of
node level distributionrL(l). In Fig. 4, we plotrL for K
53 and various values ofp and b. Realizations withB50
have been discarded since the node level is ill defined
those cases, and averages have been done over realiz
with BÞ0. In Fig. 4~a!, we plot rL(l) for K53, b50.5,
and p50,0.1,1. The distributions show exponential tai
For p50 an approximate fraction 0.18 of nodes belongs
directed loop structures as the one described at the en
Sec. III. As disorder increases, the fraction of basal no
slightly increases@see Fig. 2~b!#. The average path lengt
decreases with increasing disorder@1#. As a result of these
two combined effects, the exponential decay is faster
higher levels of disorder. In Fig. 4~b!, we plot rL(l) for b
51 andp50,0.2,1.

FIG. 3. Numerical~dots! and analytical~lines! results for the
fraction of basal nodesB vs connectivityK. Note the logarithmic
scale in the vertical axis. The fraction of basal nodes decays e
nentially with connectivity. In the inset, we plot the fraction
realizations with no basal nodesn vs normalized connectivity.
WhenaK/ ln N,1, almost all realizations of the network have bas
nodes, while foraK/ ln N.1 realizations with no basal nodes b
come more probable. For large enough connectivity, almost al
alizations of the network have no basal nodes.
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Figure 5~a! showsrL(l) for different connectivitiesK
51,3,5 and fixedp51 andb51. We find, as expected, tha
the distribution is broader for smaller values ofK. Next we
plot, in Fig. 5~b!, the level distribution forp50 and b
50.5. Here we find that the distribution becomes broade
K increases from 1 to 5. This is unexpected at first sig
because the average path length is known to decreaseK
grows. However, asK grows the fraction of basal nodes d
cays exponentially~Fig. 3!. For p50 the network is regular,
and as basal nodes become less abundant, the averag
tance to them grows. AsK keeps growing, the point wher
B,1/N is reached. ForaK/ ln N@1, the only realizations
with basal nodes have most probablyB51/N. The average
maximum distance to the only basal node in the network
be estimated asN/2K, neglecting the direction of the links
The shape ofrL(l) is thus steplike, withr'2K/N for l
,N/2K andr50 for l.N/2K. When actually considering
the direction of the links, the value of the average maxim
level moves to higher values and the value ofr is smaller.
This can be seen in Fig. 5~b! for K510. Note that fluctua-
tions in the direction of the links can result in realizatio
with a higher maximum level. This yields a monotonical

o-

l

e-

FIG. 4. Node level distributions forK53 networks, with~a! b
50.5 and~b! b51. In the first case, note the tail of the distributio
for p50. When the network is regular, a wide range of path leng
is found. Both for b50.5 and b51, the distribution becomes
broader with increasing order, as a consequence of decreasin
erage path lengths.

FIG. 5. ~a! Node level distributions forp51, b51, and K
51,3,5. With increasing connectivity, the distribution becom
sharper as average path lengths become shorter.~b! Node level
distributions for p50, b50.5, andK51,3,5,10. Here weplot
numerical results as lines. This is the case of a regular network
no rewired links, and the direction set in one way or the other w
equal probability. Here we find that for small values ofK the dis-
tribution becomes broader asK increases, and then it becomes ste
like for higher values ofK.
7-5
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LUIS G. MORELLI PHYSICAL REVIEW E67, 066107 ~2003!
decreasing tail in the distribution of levels, not seen in
figure for reasons of scale. In many cases of interest, the
of the network does not exceed 103 nodes. This is the cas
for the neural network ofC. Elegansand for the dataset
available for some ecosystems. Nevertheless, it is interes
to study the behavior of the model for largeN values. On the
other hand, some systems show large connectivity va
with K/N;1, so it is also interesting to understand the d
viations from the analytical results in this case, where
approximations involved in the calculation ofb are no
longer valid.

In Fig. 6, we plot the fraction of realizations with no bas
nodes as a function of the number of nodesN, for K55, p
50 and 1, andb50.5. For small values ofN, the connec-
tivity is relatively high and basal nodes rarely occur, son
'1. As N grows, the network becomes less connected
basal nodes become more frequent, son decays to zero. In
the inset of Fig. 6, we shown vs aK/ ln N for the same data
We find that the transition from networks with basal nodes
networks without basal nodes occurs aroundaK/ ln N51, as
it was seen in the inset of Fig. 3. Note that now it isN that
varies along the curve.

Now we would like to study how does the fraction
basal nodes varies with system size. In the numerical res
presented in Figs. 2 and 3, the value ofB is obtained nor-
malizing over all realizations, including those with no bas
nodes. The level distribution, on the other hand, is defin
only when basal nodes exist, and so it is normalized o
realizations with basal nodes. The fraction of nodes at le
zero, rL(0), is then the fraction of basal nodes in realiz
tions withB.0. In the upper inset of Fig. 7, we plotrL(l)
vs N for l50, 1, and 2. We see thatrL(l) goes to an
asymptotic value asN grows. To compare the value ofrL(0)
with the analytical resultb, we plot in Fig. 7 the difference
rL(0)2b vs 1/N. We find that this difference follows a
straight line with slope 0.99560.005, also shown in the plot
This suggests that the first correction to the analytical ca
lation for smallN values is of the order of 1/N, so

FIG. 6. Fraction of realizations with no basal nodes as a fu
tion of system size forK55, b50.5, andp50,1. In the inset, we
plot the same data plotted vsaK/ ln N.
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rL~0!5b1
1

N
. ~13!

In the lower inset of Fig. 7, we plotrL(0)2b vs N in a
log-log plot in order to show the behavior for largeN.
We find that the difference goes to zero faster thanN21 for
largeN.

V. DISCUSSION

We presented a model for directed networks based on
Watts-Strogatz model for small-world phenomena. The
rection of the links is set as outgoing from the owner no
with probability b, and as incoming with probability 12b.
We found analytical expressions for the fraction of basal a
top nodes in the network, which are in good agreement w
results from numerical simulations. We also studied no
level distributions with the aid of numerical simulations. F
nally, we considered the effects of size on these properti

We stress the relevance of basal nodes in the structur
directed networks. In neural and some technological n
works, information enters the system through the basal no
and moves through the network following directed link
eventually reaching top nodes. In the case of food webs
economic networks, it is resources that enter the sys
through basal nodes. In any case, basal nodes determin
boundary of the network, the interphase between the e
ronment and the system. In a similar way, top nodes ar
the end of the chain. They represent the units where in
mation ends up. For this reason, the fractions of basal
top nodes are expected to play an important role in dyna
cal processes occurring on directed networks. Furtherm
the node level distribution gives detailed information abo
the arrangement of the network relative to basal nodes. T
distribution could give information on the organization a

-
FIG. 7. Plot of the differencerL(0)2b vs 1/N. For small sys-

tem sizes, the difference grows as 1/N. In the upper left corner, we
plot the fraction of nodes at levell as a function of system size, fo
K55, p50, b50.5, andl50, 1, and 2. We find thatrL(l) goes
to an asymptotic value asN grows. In the down right corner we
show the differencerL(0)2b vs N, and find that for largeN it falls
faster than 1/N, shown as a continuous line.
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efficiency of the network to distribute resources or inform
tion.

There is another quantity studied in food web theo
which has not been considered here, namely, the degre
omnivory in the network. An omnivorous is a species fee
ing in more than one trophic level. It is possible to define
distributionrO( l ) giving the frequency of species feeding o
l different trophic levels. The mean of this distributio
should give a measure of the omnivory degree in the fo
web. In a general directed network, this would give a m
sure of the interactions among different levels.

Finally, some remarks should be made on the limitatio
Ph

tl.

-

06610
-

of
-
e

d
-

s

of the model we have studied. While many known netwo
present exponential or scale-free degree distributions,
WS model is known to yield Poissonian degree disributio
We have also studied the fraction of basal nodes and n
level distributions in models of directed growing networ
that have exponential degree distributions, but results will
published elsewhere@21#.
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