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We study the dynamics of the aggregation of particles and the evolution of the mass distribution, on a
complex network which is built following the Watts-Strogatz model. The particles perform random walks
following the links on the network, and aggregate when they meet other particles. On disordered networks the
density of particles decays ast−1, while on regular networks it decays ast−1/2. For intermediate levels of
network disorder the dynamics follows that of regular networks at intermediate density, and for low density the
disorder of the network becomes relevant and the density decays ast−1. The crossover time between these two
regimes scales with network disorder ast,p−2. We study also an annealed model for the aggregation process,
in which the quenched disorder of the network is replaced by stochastic long range jumps in the particle
dynamics. The annealed model is found to obey a different scaling with network disorder, with a crossover
time t,p−1.
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I. INTRODUCTION

Aggregation processes are relevant to many areas of phys-
ics and chemistry, with a vast range of applications that go
from stellar dynamics in astrophysics[1,2] to nucleation of
droplets in vapor[3], aerosols and air pollution[4], and frac-
tal structures grown by electrodeposition of zinc on a line
electrode[5]. Also in biology and in social sciences aggre-
gation processes have been identified in a variety of phenom-
ena[6], where the gregarious behavior of some insects[7],
cluster formation at the cellular level[8], and the growth of
urban aggregates[6] are some examples. Simple models for
the aggregation of particles have been studied on many dif-
ferent scenarios, including Euclidean and fractal spaces
[9,10]. Recently, the study of natural and artificial networks
has seen significative advances[11–13]. The architecture of
some social and biological networks has been shown to dis-
play high clustering along with short average path lengths,
and the combination of these two features has been captured
by a model that interpolates between regular and random
networks[11]. It is thus relevant to study how such a net-
work architecture affects an aggregation process.

In this paper we study an aggregation process occurring
on a complex network. A number of particles are placed on
the nodes of the network, and they are allowed to move at
random following the links to neighboring nodes. Particles
aggregate when they meet, forming a new particle with the
sum of their masses. The process thus defined is an irrevers-
ible coagulation reaction

Ai + Aj → Ai+j . s1d

We note that as far as the number of particlesN is concerned,
the process can be regarded as the simpler coagulation reac-
tion

A + A → A, s2d

and the masses of the particles play no role in the dynamics.
We are interested in the dynamics of this process and the
structure of the mass distribution as the aggregation occurs.

The network is built according to the Watts-Strogatz(WS)
model [11]. This model was introduced to describe small
world phenomena and, as stated above, is an interpolation
between regular and random networks. Regular networks are
known to display a high degree of clustering. This is charac-
terized by a high value of the clustering coefficient, which
measures the average fraction of neighbors of a node that are
in turn neighbors. Random networks, on the other hand,
present very short average path lengths between nodes. The
virtue of the WS model is to capture these two features, as in
many instances of natural and artificial networks, where
short average path lengths have been observed along with
high clustering coefficients. This is the case of the
C. Elegansneural network[11], functional networks in the
human brain[14], the network defined by a power grid[11],
and the network of co-authors in several databases[15],
among other examples[13].

The WS network is built as follows. We start with a regu-
lar network consisting ofL nodes withK links per node, with
periodic boundary conditions. The nodes are arranged on a
ring, and each node is connected to itsK nearest neighbors to
the right and to the left. We choose a node, and with prob-
ability p the link to its first neighbor in a clockwise(CW)
sense is rewired to a randomly chosen node. Self-
connections and repeated connections are forbidden in the
model. Then we consider the next node in a CW sense and
repeat the operation. We proceed with the rest of the nodes
until one lap is completed. We repeat the procedure with the
links to the second nearest neighbors, and so on, up to the
Kth nearest neighbors. AfterK laps, all the links in the net-
work have been considered once, and have been rewired with
probability p to another node in the network.

Once the network has been set up, we allow one particle
at each node, all particles having identical unit massm=1.
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The total mass in the system is thusM =L. The particles
move as random walkers from one node to another, follow-
ing the links of the underlying network. At each simulation
step one particle is chosen at random and moved along a
randomly chosen link to a neighboring node. If there is al-
ready a particle in the destination node, the particles aggre-
gate and form a new particle whose mass is the sum of the
masses of the colliding particles. If not, the particle simply
leaves the old node and occupies the new one. The time
counter is then increased in 1/N, whereN is the number of
remaining particles in the system. The mass is conserved in
the aggregation process, and when the aggregation is com-
plete only one particle remains, with massL.

In the following section, we review some known results
on the dynamics of reactions(1) and (2) on Euclidean
spaces, and the mean field model. In Sec. III we define the
mass distribution, and some useful order parameters to de-
scribe the structure of the condensate. In Sec. IV we present
the results of numerical simulations of the model, and in Sec.
V we introduce the annealed model for the process and com-
pare the numerical results with those of the quenched net-
work model. We close in Sec. VI with a discussion of our
results.

II. DYNAMICS OF THE AGGREGATION PROCESS

Mean field results for the coagulation reaction(1) have
been known for a long time[16,17]. But the problem of
diffusion limited coagulation on Euclidean spaces has seen
further advances later in the eighties, through extensive nu-
merical simulations[18], renormalization group theory[19],
and analytical solution of the process in one dimension
[20,21] among other contributions.

A natural parameter characterizing the state of the system
during the aggregation process is the densitynstd
=Nstd /Ns0d, whereNstd is the number of particles at timet.
The mean field formulation for reaction(2) predicts an
asymptotic decay for the density[17]

nstd , t−1. s3d

Numerical simulations show that this behavior actually oc-
curs when the space dimensionalityd is larger than two, and
this result was proved[19] by means of renormalization of
the field theoretical description for this reaction. Ford=1,
below the critical dimensionality, it is found that[20]

nstd , t−1/2. s4d

The effects of the initial distribution of particles were also
considered[22]. The density decay described by Eq.(4) is
observed after a transient, when a universal interparticle dis-
tribution is achieved. This holds as long as the initial inter-
particle distribution is not fractal[23].

Here, we study the coagulation reaction described by Eqs.
(1) and (2) on a WS network. Forp=0 the WS network is
analogous to a one-dimensional space, where particles can
make jumps of length up toK. So previous results ford=1
apply in this case. Forp=1 we have a random network,
analogous to a high dimensional space, and mean field re-
sults should hold. Changing the disorder parameterp we can

go from regular to random networks. It is the aim of this
paper to determine how this change in the network architec-
ture affects the dynamics of the coagulation process.

In order to understand the dynamics at intermediate levels
of network disorder, it is relevant to recall here some recent
results[24–26] on random walks in small-world networks. It
has been found[26] that the fraction of nodes visited at time
t grows as

Sstd = t1/2fst p2d, s5d

wherefsxd is a universal scaling function that goes to a con-
stant value forx!1 and grows asÎx for x@1. These results
have been also discussed in connection to the so called target
problem on small world networks[25,27], a reaction of the
type A+B→B, where the speciesA is immobile.

Now, let us consider the dynamics of the aggregation pro-
cess at low levels of disorder,p<0. As the density de-
creases, the particles start to move without colliding. While
the number of particles in the network is still high enough,
they perform a random walk on a locally regular network,
most of the time without traversing shortcuts, until they meet
another particle. The argument off in Eq. (5) does not grow
much becausep is small andt does not grow to large values
before a collision occurs. Sof is essentially constant and the
average number of visited sites grows asÎt, as in a one-
dimensional system. It is only after the density becomes suf-
ficiently low that the particles take more time to meet each
other and traverse shortcuts in the process. Then the argu-
ment of f grows above 1 andSstd~ t. The dynamics of inter-
mediate disorder networks is thus expected to follow that of
regular networks in an intermediate density range, and to
mimic that of disordered networks as lower densities are ap-
proached.

III. STRUCTURE OF THE CONDENSATE

In the preceding section, we have introduced the density
of particlesn to describe the time evolution of the process.
During the aggregation process, particles of different masses
are formed along the network. Although the dynamics is not
sensitive to the masses of the particles in the present model,
it is nevertheless interesting to study the internal structure of
the condensate. In this section we introduce suitable order
parameters that describe the structure of the condensate as
the aggregation process takes place.

Let m denote the mass of a given particle, andNm be the
number of particles with massm. Then we define the distri-
bution

rsm,td ;
m

M
Nmstd, s6d

where M is the total mass in the system. This distribution
gives the fraction of mass in clusters of massm at timet, and
it is normalized for all times as a consequence of mass con-
servation. The mean value of this distribution,
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kml ; o
m=1

M

mrsm,td, s7d

plays an important role in the description of the process as
we shall see. We also introduce an order parameter defined as
the fraction of the total mass that belongs to clusters of mass
m.1,

sstd ; o
m=2

M

rsm,td. s8d

If we think of the particles as divided in two phases, one
including the unit mass particles and the other including the
condensedm.1 particles, then this quantity is a measure of
the size of the condensate. Alternatively, we can think of
n1=1−s as the fraction of remaining particles of unit mass.
Note thats=1 does not mean complete aggregation, but sim-
ply states that there are no longer particles of unit mass.

Another quantity of interest in the aggregation process is
the total number of particles—clusters—withm.1, which
we callC. When the aggregation process begins, the value of
C increases as particles aggregate ands grows. But as com-
plete aggregation is approached, the number of particles
must decrease to 1. Thus, the time evolution ofC is expected
to display a nonmonotonic behavior and a maximum at in-
termediate times. The number of clustersC can be related to
the size of the condensate and the mean value of the mass
distribution through some approximations. Suppose that the
aggregation process occurs in such a way that the condensed
particles have all the same massm. This equal size clusters
(ESC) hypothesis has been put forward in the context of
coupled oscillators[28]. Within this approximation, the mean
value kml can be written as

kml =
N1

M
+

m2 Co

M
, s9d

wherem.1 is the mass of the clusters andNm=Co. The total
mass in the condensate can be written asmCo=sM, and mak-
ing use of the identityn1+s=1 we get for the number of
clusters

Co =
s2 M

kml + s− 1
. s10d

We shall test the ESC hypothesis in the following section,
comparing Eq.(10) with direct calculation ofC in numerical
simulations.

IV. NUMERICAL SIMULATIONS OF THE MODEL

We have performed extensive numerical simulations of
the system. The data presented here corresponds toL=106

networks, withK=3 connectivity, unless noted otherwise. In
networks withp.10−3, averages have been performed over
103 independent realizations. For smaller values of disorder,
averages have been done over 102 realizations.

In Fig. 1 we show the time evolution of the density, for
several values of the network disorderp, as indicated in the
legend. In a finite discrete system as the one we are studying,

the value of the density decays up to a minimumL−1. Thus
we plot, on the vertical axis,n−L−1 to take care of this. Note
that the scale is logarithmic on both axis. The well-known
results for the mean field model and for the one-dimensional
chain are recovered in the limiting casesp=1 andp=0. For
intermediate values ofp the curves are similar to the disor-
dered case. Asp becomes smaller though, the density be-
haves for some time as it does for regular networks, before
entering the disordered regime, as it was argued at the end of
Sec. II.

In the WS model, the average distance between nodes
having rewired links is proportional to 1/p [29]. The number
of visited sites grows asÎt on regular lattices. So the first
shortcut is traversed by a random walker, on average, when
Ît,1/p. The crossover observed between the regular and
random regimes should occur whenp2 t,1. This defines the
natural time scale for the process[25]. In Fig. 2 we plotp−1n
vs p2t, showing the data collapse for different values of dis-
orderp. The density is scaled according to the scaling form

FIG. 1. Numerical results for the time evolution of the reduced
densityn−L−1. The curves correspond to different levels of disorder
of the network, as indicated in the key. For random and regular
networks, we recover the well-known results described by Eqs.(3)
and(4). For intermediate values ofp, the curve follows the regular
behavior in the first stage of the process, and then random network
behavior as lower densities are approached.

FIG. 2. Data collapse for the density decay for different levels of
network disorder as indicated in the legend. The time is scaled as
p2t and the density asn/p.
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nstd = pcsp2td, s11d

where the scaling functioncsxd satisfies the asymptotic con-
ditions

csxd , Hx−1/2 if x ! 1,

x−1 if x @ 1.
s12d

Note that deviations of the asymptotic scaling form occur for
t→0, because of the uniform initial particle distribution.

In order to address the finite size effects on the dynamics
we plot, in Fig. 3, the time evolution of the reduced density
for different levels of disorder in the network:(a) p=1, (b)
p=0, and(c) p=0.001. The curves in each plot correspond to
different system sizes, namely,L=103, 104, 105, and 106. The
asymptotic regimes for the density decay are observed asL
grows. An exponential cutoff due to finite size effects is ob-
served in all cases, although forp=0 and large system sizes
it is not shown for reasons of scale. For networks with inter-
mediate level of disorder, the different regimes can be appre-
ciated only for large system sizes. In the case ofp=0.001,
we see clearly that for small networks the finite size effects
become important before the disordered regime is reached.

In the inset of Figs. 3(a) and 3(b) we plot the finite size
scaling for p=1 and p=0, respectively. In disordered net-
works, the average number of visited sites grows ast. Finite
size effects show whent,L, defining a natural time scale

tL−1. In regular networks, on the other hand, the time taken
by a random walker to explore the whole network grows as
L2. Finite size effects become important after this, sotL−2 is
the time scale for the data collapse. In both cases, the re-
duced density is scaled assn−L−1dL. We do not show a finite
size scaling forp=0.001, as we have not found an appropri-
ate scaling for this data. Just before submitting this paper we
learnt of a very recent work[30], concerning the scaling
properties of random walks in small-world networks, where
it has been argued that scaling collapse is obtained only
when the average number of shortcuts,pL, is kept constant.
We have tried this scaling in our results, but we have not
obtained a good collapse, maybe because the values ofp
were not low enough. Yet, it seems to us that the finite size
scaling of random walks and diffusion limited reactions in
small-world networks is not fully understood, and further
study is needed to clarify this point.

Figure 4 shows the time evolution of the size of the con-
densed phases and the normalized mean value of the mass
distribution kml /M. The number of clusters in the system is
plotted as a function of time in Fig. 5. The limit cases are
again in agreement with previous results, both for the mean
field model and the one-dimensional case. The curves ofsstd
for the different values ofp collapse in this scale. All the
particles go rapidly into the condensed phase as a conse-
quence of the unit density initial condition. But to complete
the condensation process takes more time. The curves of
kml /M vs t show how the coagulation takes place for differ-
ent levels of disorder. For intermediate levels of disorder the
mean mass grows ast1/2 at the first stage of the process. After
the characteristic timet,p−2, the mean mass enters the dis-
ordered regime and grows ast. In Fig. 5, full lines corre-
spond to direct measurements, and dotted lines to the ESC
calculation. The number of clusters grow linearly with time
in the first stage of the process. Then it reaches a maximum
and starts to decrease. The prediction of the ESC approxima-
tion is good in the first stage of the process, but then it fails

FIG. 3. Finite size effects in the density decay. The plots corre-
spond to different levels of disorder, as indicated in each graph. The
different curves in each plot correspond to different system sizes.
Convergence to the different asymptotic regimes is observed as sys-
tem size increases. In the inset of(a) and(b) we plot the finite size
scaling for disordered and regular networks, respectively.

FIG. 4. Plot of the size of the condensed phases and the nor-
malized mean masskml /M as a function of time. The curves ofsstd
for different values ofp collapse in this scale, but the time evolution
of kml shows remarkable differences as a function of network dis-
order p. Weakly disordered networks display at1/2 regime before
entering the linear behavior.
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underestimating the number of clusters for all levels of dis-
order in the network. This underestimation is actually impor-
tant, as it is shown in the inset of Fig. 5, where we plot 1
−Co/C vs t. We see that the relative difference grows up to
values as high as 1/2. This means that the mass distribution
is broad and not peaked as in the ESC approximation, result-
ing in a larger number of clusters than predicted.

The time evolution of the mass distribution,rmstd, is plot-
ted in Fig. 6 for some selected masses:m=1, 2, 4, 10, and
50. The fraction of mass in particles of unit massr1std de-
creases monotonically, while the fraction of mass in con-
densed particles grows up to a maximum and then decreases.
For disordered networks[Fig. 6(a)] we find thatrmstd, t−2 as
t→`, in agreement with the mean field result[17]. In regu-
lar networks though [Fig. 6(b)], rmstd, t−3/2 in the
asymptotic regime[18]. For p=0.001 [Fig. 6(c)], the time
spanned by the scale of the graph falls entirely on the regular
network regime, before crossing to the disordered network
regime. This is the reason for the observedt−3/2 decay.

Figure 7 presents some snapshots of the mass distribution
rtsmd at different stages of the process. The time interval
spanned by the snapshots forp=1 goes up tot<23103. For
p=0 andp=0.001, the time interval goes up tot<33104. In
all cases, the last snapshot corresponds to a densityn
<10−3. Figure 7(a) shows the distribution for disordered net-
works. We find that at intermediate times the distribution is
linear inm for small mass values and decays as an exponen-
tial for large masses. As the asymptotic regime is reached the
linear behavior extends over the whole distribution, with a
peak atm=L. For regular networks we find a quite different
situation[Fig. 7(b)], as for small mass values the distribution
is quadratic. Note that a linear growthrsm,td,m implies
that Nm,1, while rsm,td,m2 implies that Nm,m. The
mass distribution forp=0.001 networks[Fig. 7(c)] resembles
the mass distribution of regular networks[Fig. 7(b)]. Indeed,
for this system size and the times considered, the system is in
the regular regime, as can be seen in Fig. 3.

V. ANNEALED MODEL FOR THE AGGREGATION
PROCESS

In this section we present an annealed model for the ag-
gregation process on a WS network. The use of annealed
models has proven very useful in the understanding of sev-
eral problems, as random spreading in small-world networks
[31], the dynamics of rumor propagation[32], and activity
propagation in a system of mobile elements[33].

The annealed model replaces the quenched disorder of the
network by a stochastic process. The particles move on a
regular network with periodic boundary conditions. At each
time step, a particle is chosen at random. With probability
s1−pd, the particle moves to one of its 2K nearest neighbors
in the regular network. With complementary probabilityp,
the particle makes a long range jump to a site chosen ran-
domly among theL nodes of the network. The aggregation
process is defined as before.

In Figs. 8(a) and 8(b) we compare numerical results of the
annealed model with the quenched network model, for net-
works withp=1 andp=0.001, respectively. Continuous lines
stand for the quenched model and dotted lines for the an-
nealed model. Averages have been done over 102 realiza-
tions. The qualitative aspects of both models are similar, with
the same regimes in the density decay. However, the an-
nealed model presents a faster particle density decay, and this
deviation is larger forp=0.001 than forp=1. Note that we
do not show results for regular networks, since both models
coincide whenp=0.

FIG. 5. Full lines stand for the time evolution of the number of
clustersC and dotted lines for the ESC predictionCo. From left to
right, the curves correspond top=1, 0.001, and 0. In the inset we
plot 1−Co/C vs t for different values ofp. The relative difference
betweenC and Co grows up to 1/2, due to the broadening in the
mass distribution. See Fig. 4 legend for line type labels.

FIG. 6. Time evolution of the distributionrmstd for selected
values of the particle massm, as indicated. Note carefully that for
the time spanned in this scale thep=0.001 networks are close to the
regular network regime(Fig. 1).
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In the insets of Figs. 8(a) and 8(b), we plot the relative
difference 1−nA/nQ vs time, wherenA andnQ stand for the
density in the annealed and the quenched models, respec-
tively. The difference grows up to an almost constant value,
and then goes to zero when aggregation is complete in both
models. Remarkably, this constant value is independent ofL,
for sufficiently large systems. The difference between the
annealed model and the quenched model results does not
diminish asL→`.

In the annealed model, when a particle makes a long
range jump to another region of the network, the probability
to jump back to the node where it came from is very low.
This is because the long range link is not actually there, but
random long range jumps are directed to randomly chosen
nodes each time they occur. In the quenched network model,
however, when a particle traverses a rewired link towards
another region of the network, there is always a relatively
high probability for it to come back to where it came from,
following the same link in the reversed direction. This is
reflected in the different scaling of the two models with net-
work disorder, as we show below.

The probability to make a long range jump, at each time
step, isp. On average, the first jump is made whenpt,1.
This defines, for the annealed model, a time scale and the
crossover time between the regular and random regimes. In
Fig. 9 we plot the scaled densityp−1/2n vs scaled timept, for

different values ofp indicated in the graph. The density is
found to obey a scaling form

nstd = p1/2 cAsptd, s13d

where the scaling functioncAsxd satisfies

FIG. 7. Snapshots of the mass distributionrtsmd at different
times. These simulations were done on networks ofL=103 nodes,
averaging over 107 realizations. See the text for details on the times
in which the snapshots were taken. As shown by the dotted lines,
for p=1 the distribution is linear at low mass values, while forp
=0 it is quadratic.

FIG. 8. Numerical results of the density decay in the annealed
and the quenched network models, for disordered networks with(a)
p=1, and(b) p=0.001. The curves correspond to networks of dif-
ferent sizes, from left to right:L=104, 105, and 106. Continuous
lines stand for the quenched model and dotted lines for the annealed
model. The inset shows the relative difference between the models
for the same data.

FIG. 9. Data collapse of the density decay in the annealed
model. Simulations were performed onL=106 networks, averaging
over 102 realizations. The crossover from thet−1/2 to thet−1 regime
occurs whenpt,1. Note the difference with the quenched network
model, Fig. 2.
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cAsxd , Hx−1/2 if x ! 1,

x−1 if x @ 1.
s14d

The characteristic time for the crossover between the regular
and the disordered regimes ist,p−1, in contrast with the
result obtained for the quenched model(11), wheret,p−2.

VI. SUMMARY AND DISCUSSION

We have defined an aggregation process on a complex
network, built according to the Watts-Strogatz model[11].
Unit mass particles are distributed uniformly on the nodes of
the network, with unit density. The particles move on the
network following the links, and aggregate when they meet.
We have studied the dynamics of this process. Asymptoti-
cally, the density of particles decays ast−1 in the disordered
network, as mean field model predicts, while on regular net-
works it decays ast−1/2. For intermediate levels of disorder
we find thatn, t−1 as n→0, but n, t−1/2 at intermediate
values of the density. This happens at low levels of network
disorder and for large system sizes. When the density is still
high enough, the particles usually meet before traversing
shortcuts. But as the density gets smaller particles walk the
network for longer times and traverse shortcuts before meet-
ing, so the disordered structure of the network becomes im-
portant in the dynamics. This is reflected in the scaling form
(11), which holds in the asymptotic time limit for large sys-
tem sizes.

We have also studied the structure of the condensate as
the aggregation takes place. Due to the dense initial condi-
tion the particles aggregate rapidly in clusters ofm.1. We
study the time evolution of the mean masskml as a rough
measure of the behavior of the mass distribution. The mean
mass grows ast1/2 in regular networks, and it has a linear
growth in disordered networks. We have also seen that the

number of clustersC grows linearly at the first stage of the
aggregation process, again due to the dense initial condition.
After achieving a maximum,C decays following a power
law ast−1/2 in regular networks andt−1 in random networks.
In order to understand the evolution of the condensate we
have studied the time evolution of the mass density for some
values of the mass,rmstd. To complete the picture of the
evolution of the condensate we have measured the mass dis-
tribution at different times,rtsmd.

Finally, we have considered an annealed model for the
aggregation process, in which the disorder of the network is
replaced by a stochastic process in the dynamics. Particles
move on a regular network, making long range jumps with
probability p. The annealed model behaves similarly to the
quenched network model. But the two models have different
time scales and do not coincide whenL→`.

Here we have studied a simple aggregation process. The
probability of aggregation when two particles meet is equal
to 1, and the masses of the particles do not affect the dynam-
ics. As an extension to the model, it should be relevant to
consider the effects of the masses on the dynamics. Heavy
particles could have a smaller diffusion coefficient and larger
cross section than light particles. While in the present model
these effects are taken to balance[18], it could be interesting
to see how the dynamics changes when they do not, for
different network architectures. It should also be interesting
to consider reversible reactions, where it is possible for a
cluster of large massm to split into clusters of massesm1 and
m2 such thatm=m1+m2. Finally, the analytical solution for
the present simple model could be attempted as an extension
of the approaches developed in Ref.[20] or in Ref. [22].
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