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Aggregation process on complex networks
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We study the dynamics of the aggregation of particles and the evolution of the mass distribution, on a
complex network which is built following the Watts-Strogatz model. The particles perform random walks
following the links on the network, and aggregate when they meet other particles. On disordered networks the
density of particles decays as', while on regular networks it decays #3/2 For intermediate levels of
network disorder the dynamics follows that of regular networks at intermediate density, and for low density the
disorder of the network becomes relevant and the density decdys @ibe crossover time between these two
regimes scales with network disordertasp™2. We study also an annealed model for the aggregation process,
in which the quenched disorder of the network is replaced by stochastic long range jumps in the particle
dynamics. The annealed model is found to obey a different scaling with network disorder, with a crossover

timet~p™
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I. INTRODUCTION A+A— A, )

Aggregation processes are relevant to many areas of phy
ics and chemistry, with a vast range of applications that g
from stellar dynamics in astrophysi¢$,2] to nucleation of
droplets in vapof3], aerosols and air pollutiof#], and frac-
tal structures grown by electrodeposition of zinc on a line
electrode[5]. Also in biology and in social sciences aggre-

ahd the masses of the particles play no role in the dynamics.
Qe are interested in the dynamics of this process and the
structure of the mass distribution as the aggregation occurs.
The network is built according to the Watts-Strog@izS)
model [11]. This model was introduced to describe small
world phenomena and, as stated above, is an interpolation
MBetween regular and random networks. Regular networks are
known to display a high degree of clustering. This is charac-
terized by a high value of the clustering coefficient, which
easures the average fraction of neighbors of a node that are
n turn neighbors. Random networks, on the other hand,
Bresent very short average path lengths between nodes. The

h nificat q 44-13. Th hitect f virtue of the WS model is to capture these two features, as in
as seen significative advandgid—1J. The architecture o many instances of natural and artificial networks, where

some gocial and_biological ngtworks has been shown to diss'hort average path lengths have been observed along with
play high clustering along with short average path Iengthsh-

S igh clustering coefficients. This is the case of the
and the combination of these two features has been captur g

. . Elegansneural network{11], functional networks in the
by a model that interpolates between regular and randorﬂuman brair{14], the network defined by a power grjdi1]
networks[11]. It is thus relevant to study how such a net- ! '

K architect froct " and the network of co-authors in several databd4&s,
work architecture affects an aggregation process. __among other example43].
In this paper we study an aggregation process occurring The WS network is built as follows. We start with a regu-

on a complex network. A number of particles are placed ONar network consisting of nodes withK links per node, with

the andefS”Of the ?ﬁtwl(?rt’ "’tnd the%/baref aIIowded toPm(:_V(Ia eriodic boundary conditions. The nodes are arranged on a
random foflowing th€ 1inks 1o neighboring nodes. Fartic eSring, and each node is connected todtaearest neighbors to

aggregate when they meet, forming a new particle with thg, " iont and to the left. We choose a node, and with prob-
sum of their masses. The process thus defined is an irrevergbiIity p the link to its first neighbor in a cI(')ckwiseCW)

ible coagulation reaction sense is rewired to a randomly chosen node. Self-
connections and repeated connections are forbidden in the
model. Then we consider the next node in a CW sense and
repeat the operation. We proceed with the rest of the nodes
until one lap is completed. We repeat the procedure with the
9tiks to the second nearest neighbors, and so on, up to the

ena[6], where the gregarious behavior of some ins¢cis
cluster formation at the cellular lev@8], and the growth of
urban aggregatd®] are some examples. Simple models for
the aggregation of particles have been studied on many di
ferent scenarios, including Euclidean and fractal space
[9,10]. Recently, the study of natural and artificial networks

Ai +AJ _)Ai+j' (1)

We note that as far as the number of parti®ieis concerned,
the process can be regarded as the simpler coagulation re

tion Kth nearest neighbors. Aftét laps, all the links in the net-
work have been considered once, and have been rewired with
probability p to another node in the network.
*Electronic address: morelli@ictp.trieste.it Once the network has been set up, we allow one particle
"Electronic address: cerdeira@ictp.trieste.it at each node, all particles having identical unit mass1.
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The total mass in the system is thié=L. The particles go from regular to random networks. It is the aim of this
move as random walkers from one node to another, followpaper to determine how this change in the network architec-
ing the links of the underlying network. At each simulation ture affects the dynamics of the coagulation process.
step one particle is chosen at random and moved along a In order to understand the dynamics at intermediate levels
randomly chosen link to a neighboring node. If there is al-of network disorder, it is relevant to recall here some recent
ready a particle in the destination node, the particles aggreesults[24—26 on random walks in small-world networks. It
gate and form a new particle whose mass is the sum of thibas been foun{6] that the fraction of nodes visited at time
masses of the colliding particles. If not, the particle simplyt grows as
leaves the old node and occupies the new one. The time
counter is then increased in M/ whereN is the number of — 12 2

- L : . S(t) =t (t p), 5
remaining particles in the system. The mass is conserved in

the aggregation process, and when the aggregation is com-h ) i . | ling f ion th
plete only one particle remains, with mass wheref(x) is a universal scaling function that goes to a con-

In the following section, we review some known results Stant value fox<1 and grows asx for x>1. These results
on the dynamics of reactionél) and (2) on Euclidean have been also discussed in connection to the SO called target
spaces, and the mean field model. In Sec. Il we define thBroblem on small world network25,27, a reaction of the
mass distribution, and some useful order parameters to détP€A+B— B, where the specie& is immobile. _
scribe the structure of the condensate. In Sec. IV we present NOW, let us consider the dynamics of the aggregation pro-
the results of numerical simulations of the model, and in SecceSS at low levels of disordep~0. As the density de-
V we introduce the annealed model for the process and conf:/€ases, the particles start to move without colliding. While
pare the numerical results with those of the quenched netl® number of particles in the network is still high enough,

work model. We close in Sec. VI with a discussion of our they perform a random walk on a locally regular network,
results. most of the time without traversing shortcuts, until they meet

another particle. The argument bfn Eq. (5) does not grow
much becausg is small and does not grow to large values
before a collision occurs. Sbis essentially constant and the
Mean field results for the coagulation reactith) have  average number of visited sites grows #s as in a one-
been known for a long timg§16,17. But the problem of dimensional system. It is only after the density becomes suf-
diffusion limited coagulation on Euclidean spaces has seeficiently low that the particles take more time to meet each
further advances later in the eighties, through extensive nuwsther and traverse shortcuts in the process. Then the argu-
merical simulationg18], renormalization group theorf19], ment off grows above 1 an8(t)«t. The dynamics of inter-
and analytical solution of the process in one dimensiormediate disorder networks is thus expected to follow that of
[20,21] among other contributions. regular networks in an intermediate density range, and to
A natural parameter characterizing the state of the systemimic that of disordered networks as lower densities are ap-
during the aggregation process is the densityt) proached.
=N(t)/N(0), whereN(t) is the number of particles at tinte
The mean field formulation for reactio®) predicts an
asymptotic decay for the densif§7]

II. DYNAMICS OF THE AGGREGATION PROCESS

Ill. STRUCTURE OF THE CONDENSATE

n(t) ~ t™2. (3) In the preceding section, we have introduced the density
of particlesn to describe the time evolution of the process.
Numerical simulations show that this behavior aCtua”y OC'During the aggregation process, partides of different masses
curs when the space dimensionalitys larger than two, and  are formed along the network. Although the dynamics is not
this result was provefil9] by means of renormalization of sensitive to the masses of the particles in the present model,
the field theoretical description for this reaction. Fbr1, it is nevertheless interesting to study the internal structure of
below the critical dimensionality, it is found th§20] the condensate. In this section we introduce suitable order
n(t) ~ 172, @) parameters t_hat describe the structure of the condensate as
the aggregation process takes place.

The effects of the initial distribution of particles were also  Let m denote the mass of a given particle, ag be the
considered22]. The density decay described by E¢) is  number of particles with mags. Then we define the distri-
observed after a transient, when a universal interparticle disution
tribution is achieved. This holds as long as the initial inter-
particle distribution is not fractdl23]. m

Here, we study the coagulation reaction described by Egs. p(m,t) = —Ny(1), (6)
(1) and(2) on a WS network. Fop=0 the WS network is M
analogous to a one-dimensional space, where particles can
make jumps of length up t&. So previous results fal=1  where M is the total mass in the system. This distribution
apply in this case. Fop=1 we have a random network, gives the fraction of mass in clusters of masat timet, and
analogous to a high dimensional space, and mean field rétis normalized for all times as a consequence of mass con-
sults should hold. Changing the disorder paramptee can  servation. The mean value of this distribution,
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M
(m)= 2 mp(mt), (7
m=1

plays an important role in the description of the process as
we shall see. We also introduce an order parameter defined as

—
T

the fraction of the total mass that belongs to clusters of mass =}
m>1, S
M
s(t)= 2 p(myb). ®)
m=2

If we think of the particles as divided in two phases, one
including the unit mass particles and the other including the
condensedn>1 particles, then this quantity is a measure of
the size of the con_densate. Al_te_rnatlvely, we Can_thlnk of FIG. 1. Numerical results for the time evolution of the reduced
n;=1-s as the fraction of remaining particles Of, unit mas_s'densityn—L‘l. The curves correspond to different levels of disorder
Note thats=1 does not mean complete ?ggregat'o,n’ but SIM%f the network, as indicated in the key. For random and regular
ply states that there are no longer particles of unit mass. networks, we recover the well-known results described by Ejs.
Another quantity of interest in the aggregation process isind(4). For intermediate values g, the curve follows the regular

the total number of particles—clusters—with>1, which  pehavior in the first stage of the process, and then random network
we callC. When the aggregation process begins, the value afehavior as lower densities are approached.

C increases as particles aggregate amggows. But as com-

plete aggregation is approached, the number of particlethe value of the density decays up to a minimumt. Thus
must decrease to 1. Thus, the time evolutiolCa$ expected we plot, on the vertical axis)—L™* to take care of this. Note

to display a nonmonotonic behavior and a maximum at inthat the scale is logarithmic on both axis. The well-known
termediate times. The number of clust€rgan be related to results for the mean field model and for the one-dimensional
the size of the condensate and the mean value of the mashain are recovered in the limiting cages1 andp=0. For
distribution through some approximations. Suppose that thintermediate values gf the curves are similar to the disor-
aggregation process occurs in such a way that the condensddred case. Ap becomes smaller though, the density be-
particles have all the same mags This equal size clusters haves for some time as it does for regular networks, before
(ESO hypothesis has been put forward in the context ofentering the disordered regime, as it was argued at the end of
coupled oscillator$28]. Within this approximation, the mean Sec. Il.

value(m) can be written as In the WS model, the average distance between nodes
having rewired links is proportional to p/[29]. The number

of visited sites grows ast on regular lattices. So the first
shortcut is traversed by a random walker, on average, when
Vt~1/p. The crossover observed between the regular and

_Ny
<m>—,vI

2C
s B o

M 9

whereu> 1 is the mass of the clusters aNg=C,. The total
mass in the condensate can be writtepu&s=sM, and mak-
ing use of the identityn;+s=1 we get for the number of
clusters

£ M

:(m)+s—1' (10

(o]

We shall test the ESC hypothesis in the following section,

comparing Eq(10) with direct calculation ofC in numerical
simulations.

IV. NUMERICAL SIMULATIONS OF THE MODEL

We have performed extensive numerical simulations of

the system. The data presented here correspondts i@’
networks, withK=3 connectivity, unless noted otherwise. In

networks withp> 1073, averages have been performed over
10° independent realizations. For smaller values of disorder,

averages have been done ovef f€nlizations.

In Fig. 1 we show the time evolution of the density, for
several values of the network disordgras indicated in the
legend. In a finite discrete system as the one we are studyin

random regimes should occur whpht~ 1. This defines the
natural time scale for the procefs]. In Fig. 2 we plotp™n

vs p%t, showing the data collapse for different values of dis-
orderp. The density is scaled according to the scaling form

4

10 :
1071010 10” 10;7 10° 10° 10" 10" 10°
pt

FIG. 2. Data collapse for the density decay for different levels of
network disorder as indicated in the legend. The time is scaled as
@t and the density as/p.
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10" F (¢) p=0.001 FIG. 4. Plot of the size of the condensed phasmd the nor-
—~ 1 malized mean masgsn)/M as a function of time. The curves s(t)
10°F —L=10 N for different values op collapse in this scale, but the time evolution
......... L= of (m) shows remarkable differences as a function of network dis-
10—5 e L= ' AN order p. Weakly disordered networks displayt¥? regime before
L=10 Ly entering the linear behavior.
E \x %": A .
107 g tL™L. In regular networks, on the other hand, the time taken
10 10 10 10 10 10 by a random walker to explore the whole network grows as

L2. Finite size effects become important after thistlst’ is

FIG. 3. Finite size effects in the density decay. The plots correfh€ time scale for the data collapse. In both cases, the re-
spond to different levels of disorder, as indicated in each graph. Theuced density is scaled &s- L™HL. We do not show a finite
different curves in each plot correspond to different system sizesSize scaling fop=0.001, as we have not found an appropri-
Convergence to the different asymptotic regimes is observed as syate scaling for this data. Just before submitting this paper we
tem size increases. In the inset(af and(b) we plot the finite size  learnt of a very recent work30], concerning the scaling

scaling for disordered and regular networks, respectively. properties of random walks in small-world networks, where
it has been argued that scaling collapse is obtained only
n(t) = p(p), (11) when the average number of shortcyik, is kept constant.

We have tried this scaling in our results, but we have not
where the scaling functiom(x) satisfies the asymptotic con- obtained a good collapse, maybe because the valugs of

ditions were not low enough. Yet, it seems to us that the finite size
scaling of random walks and diffusion limited reactions in
X2 it x<1, small-world networks is not fully understood, and further
X ~ { w1 i x>1 (120 study is needed to clarify this point.

Figure 4 shows the time evolution of the size of the con-

Note that deviations of the asymptotic scaling form occur fordensed phase and the normalized mean value of the mass
t—0, because of the uniform initial particle distribution. ~ distribution{m)/M. The number of clusters in the system is

In order to address the finite size effects on the dynamicglotted as a function of time in Fig. 5. The limit cases are
we plot, in Fig. 3, the time evolution of the reduced densityagain in agreement with previous results, both for the mean
for different levels of disorder in the networla) p=1, (b) field model and the one-dimensional case. The curvestpf
p=0, and(c) p=0.001. The curves in each plot correspond tofor the different values op collapse in this scale. All the
different system sizes, namely=10%, 10%, 1(°, and 16. The  particles go rapidly into the condensed phase as a conse-
asymptotic regimes for the density decay are observeld as quence of the unit density initial condition. But to complete
grows. An exponential cutoff due to finite size effects is ob-the condensation process takes more time. The curves of
served in all cases, although fp=0 and large system sizes (m)/M vst show how the coagulation takes place for differ-
it is not shown for reasons of scale. For networks with inter-ent levels of disorder. For intermediate levels of disorder the
mediate level of disorder, the different regimes can be appremean mass grows &% at the first stage of the process. After
ciated only for large system sizes. In the casepe®.001, the characteristic time~ p~2, the mean mass enters the dis-
we see clearly that for small networks the finite size effectordered regime and grows asin Fig. 5, full lines corre-
become important before the disordered regime is reachedspond to direct measurements, and dotted lines to the ESC

In the inset of Figs. @) and 3b) we plot the finite size calculation. The number of clusters grow linearly with time
scaling forp=1 and p=0, respectively. In disordered net- in the first stage of the process. Then it reaches a maximum
works, the average number of visited sites grows. &nite  and starts to decrease. The prediction of the ESC approxima-
size effects show whet~L, defining a natural time scale tion is good in the first stage of the process, but then it fails

051107-4



AGGREGATION PROCESS ON COMPLEX NETWORKS PHYSICAL REVIEW@D, 051107(2004

106 § v ) 100 E Lhhkii IR LLL LA B AL LR LA B ”"E
5; - L 10-1 (a) p = 1 1
10 ; %) E //’ E
b 10 !. ,‘/ 15
10°¢ 10°F / ‘
° F 4F /!
I, 10 ' F /
l_; 10 3 F
[ 1 E
10°F 107F
. S10°E
10 s1n3E /
: 107 /
r Q a2 F /
10° 10°F
10 - Naiol " Ciwgul T
107! r (€) p =0.001 §
FIG. 5. Full lines stand for the time evolution of the number of 107 E . ST ]
clustersC and dotted lines for the ESC predicti@y. From left to 3 h
right, the curves correspond =1, 0.001, and 0. In the inset we 10 R
plot 1-C,/C vst for different values ofp. The relative difference 10-4 / b
betweenC and C, grows up to 1/2, due to the broadening in the 5 { e N
mass distribution. See Fig. 4 legend for line type labels. 10

anl F 44y sl o ul 4y

-1 0 1 2 3 4 5
underestimating the number of clusters for all levels of dis- 107 100 10 10" 107 10° 10
order in the network. This underestimation is actually impor- ¢
tant, as it is shown in the inset of Fig. 5, where we plot 1 ) ) o
-C,/C vst. We see that the relative difference grows up to FIG. 6. Time gvolutlon of the _dlstrlbutlom:m(t) for selected
values as high as 1/2. This means that the mass distributiofflues of the particle mass, as indicated. Note carefully that for
is broad and not peaked as in the ESC approximation, resultbe time spanned in this scale the 0.001 networks are close to the

ing in a larger number of clusters than predicted. regular network regimeFig. 1).

The time evolution of the mass distributign,(t), is plot-
ted in Fig. 6 for some selected masses:1, 2, 4, 10, and V. ANNEALED MODEL FOR THE AGGREGATION
50. The fraction of mass in particles of unit masst) de- PROCESS

creases monotonically, while the fraction of mass in con-
densed particles grows up to a maximum and then decreases. In this section we present an annealed model for the ag-
For disordered networK&ig. @] we find thatp(t) ~t2as  gregation process on a WS network. The use of annealed
t—oe, in agreement with the mean field res[l]. In requ-  models has proven very useful in the understanding of sev-
lar networks though [Fig. 6b)], pm(t)~t™2 in the eral problems, as random spreading in small-world networks
asymptotic regimg18]. For p=0.001[Fig. 6(c)], the time  [31], the dynamics of rumor propagatidB82], and activity
spanned by the scale of the graph falls entirely on the regulgsropagation in a system of mobile eleme[2§].
network regime, before crossing to the disordered network The annealed model replaces the quenched disorder of the
regime. This is the reason for the obsertet¥ decay. network by a stochastic process. The particles move on a
Figure 7 presents some snapshots of the mass distributiaegular network with periodic boundary conditions. At each
p(m) at different stages of the process. The time intervatime step, a particle is chosen at random. With probability
spanned by the snapshots for 1 goes up ta=~2x 10°. For  (1-p), the particle moves to one of itK2nearest neighbors
p=0 andp=0.001, the time interval goes uptte- 3 10%. In in the regular network. With complementary probabilfty
all cases, the last snapshot corresponds to a demsity the particle makes a long range jump to a site chosen ran-
~10°3. Figure 7a) shows the distribution for disordered net- domly among the_ nodes of the network. The aggregation
works. We find that at intermediate times the distribution isprocess is defined as before.
linear inm for small mass values and decays as an exponen- In Figs. §a) and §b) we compare numerical results of the
tial for large masses. As the asymptotic regime is reached th@nnealed model with the quenched network model, for net-
linear behavior extends over the whole distribution, with aworks withp=1 andp=0.001, respectively. Continuous lines
peak atm=L. For regular networks we find a quite different stand for the quenched model and dotted lines for the an-
situation[Fig. 7(b)], as for small mass values the distribution nealed model. Averages have been done ovérrgfliza-
is quadratic. Note that a linear growgim,t)~m implies  tions. The qualitative aspects of both models are similar, with
that N,,~1, while p(m,t)~n? implies thatN,,~m. The the same regimes in the density decay. However, the an-
mass distribution fop=0.001 network$Fig. 7(c)] resembles nealed model presents a faster particle density decay, and this
the mass distribution of regular networl&g. 7(b)]. Indeed, deviation is larger fop=0.001 than forp=1. Note that we
for this system size and the times considered, the system is fito not show results for regular networks, since both models
the regular regime, as can be seen in Fig. 3. coincide whemp=0.
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FIG. 8. Numerical results of the density decay in the annealed
m and the quenched network models, for disordered networks(@jith
p=1, and(b) p=0.001. The curves correspond to networks of dif-
FIG. 7. Snapshots of the mass distributipfim) at different  ferent sizes, from left to right.=10%, 10°, and 16. Continuous
times. These simulations were done on network& ®10° nodes, |ines stand for the quenched model and dotted lines for the annealed
averaging over 10realizations. See the text for details on the times model. The inset shows the relative difference between the models
in which the snapshots were taken. As shown by the dotted linegor the same data.
for p=1 the distribution is linear at low mass values, while for

=0 itis quadratic. different values ofp indicated in the graph. The density is

found to obey a scaling form

In the insets of Figs. @) and &b), we plot the relative
difference 1-x/ng vs time, wheren, andng stand for the n(t) = p*2 ya(pt), (13
density in the annealed and the quenched models, respec-
tively. The difference grows up to an almost constant Valuewhere the scaling functioma(x) satisfies
and then goes to zero when aggregation is complete in both

models. Remarkably, this constant value is independeht of 3
for sufficiently large systems. The difference between the 10 ' ' ' ' '
annealed model and the quenched model results does not
diminish asL — o, 1
In the annealed model, when a particle makes a long 10°7 |

range jump to another region of the network, the probability

to jump back to the node where it came from is very low.

This is because the long range link is not actually there, but «
random long range jumps are directed to randomly chosen 'gq,
nodes each time they occur. In the quenched network model,

-3 L i
however, when a particle traverses a rewired link towards 10
another region of the network, there is always a relatively
high probability for it to come back to where it came from, 10° . , . , )

following the same link in the reversed direction. This is 107 107 100 10" 10" 10°
reflected in the different scaling of the two models with net- Dt
work disorder, as we show below.

The probability to make a long range jump, at each time £ 9. Data collapse of the density decay in the annealed
step, isp. On average, the first jump is made whet~1.  model. Simulations were performed 10 networks, averaging
This defines, for the annealed model, a time scale and thgver 1& realizations. The crossover from thié/2 to thet™ regime
crossover time between the regular and random regimes. kitcurs whemt~ 1. Note the difference with the quenched network
Fig. 9 we plot the scaled densipy?n vs scaled timept, for ~ model, Fig. 2.
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x 12 if X<1, number of cluster€ grows linearly at the first stage of the

Ya(x) ~ { (14)  aggregation process, again due to the dense initial condition.

After achieving a maximumC decays following a power
The characteristic time for the crossover between the reguldaw ast™'2 in regular networks anti™* in random networks.
and the disordered regimes tis-p™t, in contrast with the In order to understand the evolution of the condensate we
result obtained for the quenched mog#&l), wheret~ p™2. have studied the time evolution of the mass density for some
values of the mass,,(t). To complete the picture of the
evolution of the condensate we have measured the mass dis-
tribution at different timesp,(m).

We have defined an aggregation process on a complex Finally, we have considered an annealed model for the
network, built according to the Watts-Strogatz mofEl].  aggregation process, in which the disorder of the network is
Unit mass particles are distributed uniformly on the nodes ofeplaced by a stochastic process in the dynamics. Particles
the network, with unit density. The particles move on themove on a regular network, making long range jumps with
network following the links, and aggregate when they meetprobability p. The annealed model behaves similarly to the
We have studied the dynamics of this process. Asymptotiguenched network model. But the two models have different
cally, the density of particles decays @$in the disordered time scales and do not coincide when- .
network, as mean field model predicts, while on regular net- Here we have studied a simple aggregation process. The
works it decays a$ /2 For intermediate levels of disorder probability of aggregation when two particles meet is equal
we find thatn~t"! asn—0, but n~tY2 at intermediate to 1, and the masses of the particles do not affect the dynam-
values of the density. This happens at low levels of networkcs. As an extension to the model, it should be relevant to
disorder and for large system sizes. When the density is stitonsider the effects of the masses on the dynamics. Heavy
high enough, the particles usually meet before traversingarticles could have a smaller diffusion coefficient and larger
shortcuts. But as the density gets smaller particles walk theross section than light particles. While in the present model
network for longer times and traverse shortcuts before meethese effects are taken to balarjté], it could be interesting
ing, so the disordered structure of the network becomes imto see how the dynamics changes when they do not, for
portant in the dynamics. This is reflected in the scaling formdifferent network architectures. It should also be interesting
(11), which holds in the asymptotic time limit for large sys- to consider reversible reactions, where it is possible for a
tem sizes. cluster of large mass to split into clusters of masses; and

We have also studied the structure of the condensate @8, such thatm=m;+m,. Finally, the analytical solution for
the aggregation takes place. Due to the dense initial condthe present simple model could be attempted as an extension
tion the particles aggregate rapidly in clusterstof 1. We  of the approaches developed in RgI0] or in Ref. [22].
study the time evolution of the mean mass) as a rough
measure of the behavior of the mass distribution. The mean ACKNOWLEDGMENTS
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xt if x>1.
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