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Mobility-induced persistent chimera states
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We study the dynamics of mobile, locally coupled identical oscillators in the presence of coupling delays. We
find different kinds of chimera states in which coherent in-phase and antiphase domains coexist with incoherent
domains. These chimera states are dynamic and can persist for long times for intermediate mobility values. We
discuss the mechanisms leading to the formation of these chimera states in different mobility regimes. This
finding could be relevant for natural and technological systems composed of mobile communicating agents.
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I. INTRODUCTION

Coupled oscillators give rise to collective dynamics in many
natural and technological contexts [1–4]. In biological sys-
tems, coupled oscillators play a crucial role in self-organizing
collective rhythms, for example, in cardiac tissue [5], circadian
rhythms [6,7], and the vertebrate segmentation clock [8,9].
Collective rhythms can emerge from the synchronization
of a population of coupled individual oscillators [2,3]. A
system of coupled oscillators involves multiple time scales,
determined by autonomous frequencies, coupling strength,
shear, noise strength, coupling delay, and the rate of movement
of oscillators. The interplay between time scales in systems of
coupled oscillators may result in complex dynamics and has
motivated the field to search for new and interesting dynamic
phenomena. For example, the interplay between coupling
strength and frequency diversity is behind the paradigmatic
synchronization transition [1,2,10]. Shear diversity also com-
petes with coupling strength in this transition [11]. The relation
of coupling delay and coupling strength determines a shift
in collective frequency and multistability [12] and can affect
pattern formation [13]. The interplay of coupling strength and
mobility sets different regimes of synchronization dynamics
from local to mean-field behavior [14,15].

Two key time scales of coupled systems whose interplay
has not been explored are those related to coupling delay and
mobility. Coupling delays can result from the complexity of
the communication mechanism, leading to finite characteristic
times for either sending or processing signals. Coupling delays
are ubiquitous in cellular systems [16,17] and can profoundly
affect dynamics [12,18] and pattern formation [13,19–21].
Mobility of oscillators sets the time scale for how often
single oscillators exchange neighbors, which is particularly
relevant in locally coupled systems. Mobility has been shown
to reduce the time the system needs to achieve synchronization
[14,15,22,23], by extending the effective range of the coupling
[15] or through coarsening [24]. Thus, both coupling delay and
mobility independently have distinct effects on the dynamics
of coupled oscillators.

*lmorelli@ibioba-mpsp-conicet.gov.ar

An interesting question regards how the different time
scales of coupling delay and mobility interact and what their
impact on oscillatory dynamics and collective organization is.
Due to coupling delay, information arriving at one oscillator at
the present time was sent at a previous time from another
oscillator. The oscillator that sent the signal was close at
the time of the interaction but can now be elsewhere due to
mobility. In this paper we study a model that incorporates these
two time scales. In contrast to the expectation that mobility
favors the relaxation to homogeneous states [14,15,25], here
we find that when considered together with coupling delays
mobility can also drive the system into heterogeneous states
with complex long-lived patterns.

II. THEORY

We consider a system of N identical phase oscillators placed
in a one-dimensional lattice of N sites. Oscillators can move
through the lattice by exchanging positions with their nearest
neighbors. The stochastic exchange of positions is modeled as
a Poisson process. We introduce a mobility rate λ such that
each pair of neighboring oscillators exchange positions with a
probability λ/2 per unit time [14,15,23]. With this modeling,
the waiting time for the next exchange event for each oscillator
is stochastic, and its statistics obey an exponential distribution
with mean 1/λ.

The state of oscillator i, with i = 1, . . . ,N , is described
by a phase θi(t) and a position xi(t) in the lattice, with xi =
1, . . . ,N without loss of generality. Position xi(t) is a discrete
variable that refers to a lattice site, and it is piecewise-constant.
The value of xi(t) changes only when oscillator i exchanges
its position. In between exchange events, phase dynamics is
given by

θ̇i(t) = ω + κ

ni

∑

j∈Vi (t−τ )

sin[θj (t − τ ) − θi(t)], (1)

with

Vi(t) = {j such that |xj (t) − xi(t)| = 1},
where ω is the autonomous frequency of the oscillators, κ

is the coupling strength, and ni is the number of neighbors
of oscillator i. The coupling delay τ accounts for the time
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FIG. 1. Order parameter shows erratic behavior in the presence of
mobility and coupling delay. The modulus |Z| of the order parameter
as a function of time in simulations of Eq. (1) with (a) τ = 0 and
λ/κ = 0 (solid black line), λ/κ = 1 (dashed red line), and λ/κ = 10
(dotted magenta line) and (b) τ = 1.2 and λ/κ = 1. In both panels
ω = 1, N = 100.

it takes to process a received signal. Therefore, the coupling
includes a summation over the neighborhood at the time of
the interaction Vi(t − τ ). Due to mobility, the neighborhood
at time t − τ may be different from the one at present time
t . We use open boundary conditions: The oscillators at both
ends of the lattice interact only with their single left or right
neighbors, respectively, and can only exchange positions with
them. This choice of open boundary conditions prevents the
formation of stable twisted states that may appear for periodic
boundary conditions [26,27], simplifying the analysis.

The model includes four independent time scales related
to phase dynamics κ−1 and ω−1, mobility λ−1, and coupling
delay τ . The interplay of mobility and phase dynamics is
characterized by the ratio λ/κ . In the absence of coupling
delay τ = 0, the onset of the effects of mobility on collective
dynamics occurs at λ/κ = 1 [15]. In the following we set
κ = 0.1 and ω = 1 and vary only λ and τ . Results reported
below were obtained for a lattice of N = 100 oscillators.
Initial conditions for the phase of each oscillator were chosen
randomly from a uniform distribution between 0 and 2π

unless noted otherwise. We consider the interaction between
oscillators starts at t = 0, so θi(t) = θi(t = 0) + ω t for t ∈
[−τ,0] and ∀ i.

We perform numerical simulations using a fourth-order
Runge-Kutta integration scheme. Position exchange is imple-
mented using an approximation of the Gillespie algorithm for
discrete time intervals [22,28]. For a detailed description of
numerical methods, see Appendix A.

III. RESULTS

In the absence of delays, mobility can speed up synchro-
nization [15]. Two routes to global synchronization are ob-
served. For low mobility, the system synchronizes by forming
local order patterns that slowly relax to global synchrony.
For larger mobility a mean-field behavior dominates, and
synchrony is achieved without the formation of local patterns.
The time evolution of the modulus |Z| of the complex order
parameter Z(t) = N−1 ∑N

j=1 eiθj (t) [3,4] shows that synchrony
is reached much faster for larger mobility through this second
route [Fig. 1(a)]. Next, we examine the time evolution of
|Z| in the presence of coupling delay and mobility. We
choose a mobility rate λ/κ = 1, which is expected to affect
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FIG. 2. In-phase chimera states. (a) Modulus |Z| of the order
parameter vs time for one realization in which the system exhibits
chimera states (top panel). Space-time plot of the phases (bottom
panel). The pink vertical bar in the top panel shows the time window
expanded in the bottom panel. (b) Snapshot of a chimera state for the
last frame of the time window above. (c) Instantaneous frequencies
of oscillators (blue dots) and averaged frequencies at each lattice site
(solid gray line) at the same time as in (b). The dashed black line
is the autonomous frequency ω and the solid green line is collective
frequency of the in-phase state �. Parameter values are λ/κ = 1,
τ = 1.2, ω = 1, N = 100. Averaged frequencies were computed with
	T ω/2π ≈ 20.

synchronization dynamics [Fig. 1(a)] [15]. For some values
of the coupling delay |Z| exhibits a persistent erratic behavior
[Fig. 1(b)]. This behavior suggests that in the presence of
coupling delay, mobility induces a state that differs from the
known two routes.

Looking closer at the phase dynamics, the observed behav-
ior of the order parameter is the consequence of complex spa-
tiotemporal patterns, in which in-phase synchronous domains
coexist with asynchronous domains (Fig. 2). These kinds of
patterns were first observed in systems with nonlocal coupling
[29] and subsequently named chimera states [30]. We observe
that chimera states are long-lived and dynamic [Fig. 2(a)].
Coherent domains spontaneously form out of incoherence,
change their sizes, and die out, while other domains may be
born in a different place in the lattice (see movies S1 and S2
in the Supplemental Material [31]). Besides in-phase chimera
states where in-phase order coexists with disorder, for low
mobility we also find other kinds: antichimera states where
antiphase order coexists with disorder and dual-chimera states
where both types of order coexist with disorder (Fig. 3).

Instantaneous and averaged phase velocities at each lattice
site show that oscillators within coherent domains have
the same frequency [Figs. 2(c), 3(b), and 3(d)]. The value
of the frequency within coherent domains coincides with
the collective frequency of in-phase and antiphase solutions
of Eq. (1) for nonmobile oscillators: � = ω − κ sin(�τ )
for in-phase [12,18,19,21,32] and �̃ = ω + κ sin(�̃τ ) for
antiphase coherence [33,34]. In contrast, frequencies are not
locked between lattice sites in disordered domains. Averaged
frequencies over a time window 	T make it possible to
visualize a smoother transition between the domains [gray
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FIG. 3. Antichimera and dual-chimera states. Snapshots and
instantaneous frequencies for (a),(b) an antichimera state and (c),(d)
a dual-chimera state. (b),(d) Instantaneous frequencies of oscillators
(blue dots) and averaged frequencies at each lattice site (solid gray
line) at the same time as in (a),(c), respectively. The dashed black
line is the autonomous frequency ω and solid green lines are the
collective frequencies of the in-phase state � and the antiphase state
�̃. Parameter values are (a),(b) λ/κ = 0.1 and τ = 2.48 and (c),(d)
λ/κ = 0.001 and τ = 1.44. Averaged frequencies were computed
with 	T ω/2π ≈ 20. Snapshots taken after at least t = 4000.

lines in Figs. 2(c), 3(b), and 3(d)]. However, chimera states
are dynamic, forming, disassembling, and moving across the
lattice. A larger value of 	T will result in a smoother average
frequency profile, but at the cost of blurring the boundaries
between ordered and disordered domains. Small coherent
domains which may form and disassemble faster may not be
visible in this way.

We have also observed chimera states for periodic boundary
conditions (see movie S3 in the Supplemental Material
[31]). Hence, although an open boundary condition breaks
translation invariance at boundaries, this is not crucial for
the formation of chimera states. Therefore, we employ open
boundary conditions, avoiding stable twisted states in the rest
of the paper.

We seek to identify how the occurrence of chimera states in
the system depends on time and parameter values. A diversity
of dynamical states, such as locally ordered states or states
combining domains of in-phase and antiphase order, is present
together with chimera states. To distinguish between these
states, we devise a method that introduces phase difference
motifs to identify ordered and disordered domains in the
lattice; see Appendix B.

Using this measure we first study how the likelihood of
observing chimera states changes with time, (Fig. 4). We define
the fraction fχ as the number of realizations in which chimera
states are detected by our measure, divided by the total number
of realizations. Starting from random initial conditions, the
fraction fχ+ of in-phase chimera states increases rapidly, and
for some coupling delay values this fraction decays for longer
times [Fig. 4(a)]. However, there are other delay values for
which in-phase chimera states persist within the time window

time
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FIG. 4. Transient and persistent chimera states. Fraction of
(a) in-phase chimera, (b) antichimera, and (c) dual-chimera states
vs time. Mobility to coupling ratio and delay values are (a) λ/κ = 1
and τ = 1.081 (blue line), τ = 1.131 (green line), and τ = 1.244 (red
line); (b) λ/κ = 0.1 and τ = 1.6 (blue line), τ = 1.88 (green line),
and τ = 2.48 (red line); and (c) λ/κ = 0.001 and τ = 1.36 (blue
line), τ = 1.44 (green line), and τ = 1.6 (red line). The fraction
is obtained over 512 realizations for random initial conditions.
Other parameters: ω = 1, N = 100. Parameters of the classification
method: δ = 0.15π and m0 = 6.

reported here [red line in Fig. 4(a)]. The fraction fχ− of
antichimera states quickly increases for some coupling delay
values and persists with λ/κ = 10−1 [Fig. 4(b)]. The fraction
fχ+− of dual-chimera states grows slower, yet stays larger
than zero for some coupling delay values with λ/κ = 10−3,
indicating their persistence, [Fig. 4(c)].

Persistent in-phase chimera states occur near the regions
where in-phase and antiphase synchronization overlap and
exchange stability. A similar behavior has been recently
observed experimentally in mechanical oscillator systems
[35]. For nonmobile oscillators the in-phase and antiphase
solutions of Eq. (1) are stable within the regions defined by
κ cos(�τ ) > 0 and κ cos(�̃τ ) < 0, respectively [33,34,36],
[Fig. 5(a)]. In the bistability regions, nonmobile oscillators
visit transient states where domains of in-phase and antiphase
order coexist [violet in Fig. 5(a)]. Persistent chimera states
occurring in the vicinity of these regions of parameter
space motivated us to start from initial conditions that
consist of separate domains of in-phase and antiphase order.
We prepare initial conditions where half of the lattice is
in-phase and the other half in antiphase, with added Gaussian
noise σ = 0.1π/4. Such initial states do not include any
disordered domains, and we can examine whether mobility
induces persistent disordered domains from ordered initial
conditions, which would lead the system into chimera states.
We determine the fraction of chimera states that persist after
a transient of t = 5000, starting from these initial conditions.

We find persistent chimera states within an intermediate
range of mobility (Fig. 5). Without mobility, persistent
chimeras are not observed [Fig. 5(b)]. Instead, the system
exhibits in-phase and antiphase local order [Fig. 5(b′)]. With
increasing mobility, the three different kinds of chimera states
occur. The fraction of in-phase chimera states peaks near the
bistability regions and within the regions where in-phase order
is stable. These peaks become largest around λ/κ = 1 and
disappear for large mobility [Fig. 5(h)]. Large mobility does
not allow the formation of in-phase chimera states, but it rather
promotes in-phase local order or disordered states depending
on coupling delay values [Fig. 5(h′)]. Antichimera states form
for small λ/κ in the region where antiphase order is stable
and disappear for λ/κ ∼ 1 [Figs. 5(c)–5(e)]. Larger mobility
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FIG. 5. Mobility induces chimera states from neighboring in-phase and antiphase domains. (a),(a′) Regions in which in-phase and antiphase
order states are stable for nonmobile oscillators. (b)–(h) Fraction of in-phase chimera (blue), antichimera (red), and dual-chimera states (green)
as a function of coupling delay τ . Bistability regions of in-phase and antiphase order states in panel (a) are replicated in the next panels as light
gray bands. (b′)–(h′) Fraction of in-phase local order (lilac), antiphase local order (light green), coexistence of in-phase and antiphase (dark
red) and disordered states (dark gray) as a function of coupling delay τ . Fraction is computed at time t = 5000, over 512 realizations of initial
conditions for each set of parameters. Initial conditions were prepared with half the lattice with in-phase order and the other half with antiphase
order, with added Gaussian noise. See examples of all dynamical states in Fig. 6.

disorganizes antiphase structures and leads the system into
disordered states [Figs. 5(f′)–5(h′)]. Dual-chimera states exist
in the very small mobility regime for coupling delay values
around π/2 and 3π/2 [Figs. 5(c) and 5(d)]. All kinds of
chimera states form below λ/κ = 1, which marks the onset
of the effects of mobility in systems without coupling delay,
and disappear before the onset of mean-field behavior [15]. We
conclude that mobility induces persistent chimera states when
starting from conditions that include only ordered domains.

IV. DISCUSSION

We have shown that in the presence of coupling delay,
mobility can induce the formation of persistent chimera states
that blend disorder with in-phase and antiphase order in
different combinations (Fig. 5).

The conditions required for chimera states to form are still
a matter of debate [37]. Chimera states were first observed in
systems with some form of nonlocal coupling [29,30,38,39],
and for some time this was thought to be a condition for
chimera states to occur. Later, chimera states were also spotted
in systems with global coupling [40–43]. Chimera states in
systems with local coupling have only been reported recently
[44–47]. Here coupling is local, yet oscillators can exchange
neighbors and interact with others originally far away [15].

Phase diagrams for systems of coupled mechanical oscilla-
tors reveal that chimera states appear between regions where
in-phase and antiphase synchronization exchange stability
[35]. Besides, chimera states are thought to occur near the sta-
bility boundaries of order and disordered states in systems with
delayed coupling [48,49]. Here we observe in-phase chimera
states near the bistability region of in-phase and antiphase
states. For the very low mobility regime, in-phase chimera
states form between regions where in-phase or antiphase states
dominate [Figs. 5(b′)–5(c′)]. For larger mobility, in-phase
chimera states form between regions where in-phase order
or disorder dominate [Figs. 5(d′)–5(h′)]. Thus, our results are
consistent with both scenarios described above.

Analytical results for the stability of chimera states are
scarce [48,50,51]. Here we find that chimera states appear
either as transient or persistent states (Fig. 4). Even the most
persistent chimera states we observe are dynamic, with ordered
domains that form and disappear in a background of disorder.
Because mobility affects distinctly the different forms of order
and disorder, there may be more than one mechanism at
play. For example, mobility introduces disorder into antiphase
domains, while it favors order within in-phase domains. The
interplay of these mechanisms could underlie the different
kinds of chimera states reported here.
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Reliable detection and classification of chimera states poses
a challenge. Because the dynamical properties of chimera
states differ between systems, different quantitative measures
have been proposed to characterize chimeras [52–54]. The
need for a universal systematic way of defining chimera states
has motivated the development of different methods [55–57].
These methods have proved to be successful in a variety of
contexts, yet here we found the necessity to develop a new
approach to distinguish between chimera states and a diversity
of other dynamical states. The computational method devised
here succeeds to distinguish chimera states from every other
dynamical state occurring in the system and furthermore makes
it possible to identify different kinds of chimera states.

Chimeras have been recently reported in carefully designed
experiments with photo- and electrochemical [42,58–61], opti-
cal [62,63], and mechanical systems [35,64]. These dynamical
states are thought to play a role also in some natural phe-
nomena like unihemispheric sleep [65] and in psychophysical
experiments [66]. Our work suggests an unexpected avenue of
research to look for chimera states in engineered and natural
systems. Technological applications featuring mobile coupled
oscillators have motivated recent theoretical studies [24,67]
and might give rise to chimera states provided that communi-
cation delays are present [68]. A biological system where our
results could be relevant is the vertebrate segmentation clock.
The segmentation clock is a tissue generating dynamic patterns
that acts during embryonic development and is responsible for
the segmented repetitive structure of the vertebrate body axis
[8,69–71]. It consists of a population of genetic oscillators
at the cellular level [72] which are coupled through a local
communication mechanism [73–75]. Individual cells have to
process the signals received from neighbors, cleaving and
transporting macromolecules from their outer membrane to the
nucleus where signals are delivered to the oscillator [76]. This
introduces significant coupling delays which are thought to
affect the collective rhythm and pattern formation [13,17,21].
Besides this delayed local coupling, cells move within the
posterior part of the tissue and exchange neighbors over time
[77–81]. This exchange of neighbors is expected to affect
information flow in the tissue [14,22,81,82]. Therefore, both
key ingredients in the theory are present in this system and it is
possible that perturbations to delays or mobility could induce
the formation of chimera states.

ACKNOWLEDGMENTS

We thank I. M. Lengyel and J. N. Freitas for valuable
comments on the manuscript. The authors would like to
thank Centro de Simulación Computacional para Aplicaciones
Tecnológicas (CSC-CONICET) for computational resources.
L.G.M. acknowledges support from ANPCyT Grants No.
PICT 2012 1954 and No. PICT 2013 1301 and FOCEM Mer-
cosur (COF 03/11). K.U. acknowledges support from JSPS
KAKENHI Grant No. 26840085, the FY2014 Researcher
Exchange Program between JSPS and CONICET, and the
Kanazawa University Discovery Initiative program.

APPENDIX A: NUMERICAL METHODS

As described in the main text, we consider a system of N

phase oscillators with phases θi , with i = 1, . . . ,N , placed at

discrete positions xi = 1, . . . ,N in a one-dimensional lattice
of N sites. The phases of the oscillators evolve according to
Eq. (1), which we integrate numerically using a fourth-order
Runge-Kutta algorithm with a constant time step dt . Equation
(1) includes a delayed coupling between first neighbors in
the lattice. The value of the delay in the coupling is one of
the relevant parameters of the model and is always set as an
integer multiple of the time step

τ = nτdt, (A1)

where nτ is a natural number.
Additionally, oscillators are able to move through the lattice

by exchanging positions with their nearest neighbors. This
stochastic exchange of oscillators positions is described as
a Poisson process. We introduce a mobility rate λ so that
each pair of neighboring oscillators has a probability λ/2
of exchanging positions per unit time. The mobility rate λ

is another relevant parameter of our model and can be set
independently from the other parameters, such as the delay
value τ .

To simulate this Poisson process, we use an approximation
of the Gillespie algorithm for discrete time intervals. The
distribution of waiting times te for the next exchange event
in the lattice of N oscillators is

P (te) = a0 exp (−a0 te), (A2)

where a0 = (N − 1) λ/2 is the propensity for an exchange
event [28]. We generate a discrete set of random waiting times
{te} drawn from this distribution. We approximate each of
the waiting times te in this set by the closest larger integer
multiple of dt . As a result, we obtain a discretized waiting
time ted:

te → ted = ne dt with ne = ceil(te/dt). (A3)

Therefore, exchange events occur at time points that are
integer multiples of the integration step. This discretization
of the waiting times introduces a perturbation from the
Poissonian statistics. For this perturbation to be negligible,
this approximation requires small-enough dt compared to
the average time interval between two successive exchange
events 〈te〉 = 1/a0; that is, dt 
 1/a0. Thus, to obtain accurate
realizations of exchange events, we set dt ≤ 〈te〉/10 in all
simulations [22]. If dt > 0.01 in this equation, we set dt =
0.01. Thus, the time step dt for numerical integration is fixed
within each simulation and is the same for simulations with
the same parameter values.

In summary, the theoretical model described here is
implemented numerically as follows. Given a mobility rate
λ, we fix a time step dt as stated before. Next we set the
delay value τ as in Eq. (A1) by choosing a number nτ of time
steps. We then choose the initial phases θi(t = 0) and positions
xi(t = 0) for the oscillators i = 1, . . . ,N and set their history
for t in [−τ,0). No exchange events occur before t = 0, so
xi(t) = xi(t = 0) for t in [−τ,0) and ∀ i. Finally, we iterate
the following steps.

(1) Generate the time for the next exchange event te from
the distribution in Eq. (A2) and also randomly choose which
pair of oscillators will exchange positions from a uniform
distribution in the amount of nearest-neighbor pairsU(N − 1).
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FIG. 6. Examples of the variety of dynamical states that the system can visit depending on parameters. For each of the states, the top,
middle, and bottom panels show a snapshot of phases, the spatial profile for phase differences, and instantaneous phase velocities, respectively.
The middle panels illustrate how the classification method works for δ = 0.15π and m0 = 6: Peaked motifs are marked in red, and ordered
domains are green. Solid green lines in the bottom panel show the in-phase � and antiphase �̃ collective frequencies. Parameters: (a) λ/κ = 102

and τ = 2.2; (b) λ/κ = 10 and τ = 0.56 (left), λ/κ = 10−2 and τ = 1.2 (right); (c) λ/κ = 0 and τ = 2.2 (left), λ/κ = 0 and τ = 2.24 (right);
(d) λ/κ = 0 and τ = 1.36; (e) λ/κ = 1 and τ = 4.88; (f) λ/κ = 10−2 and τ = 2.4; (g) λ/κ = 10−2 and τ = 4.76.
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space space space200 200 200

0

0

FIG. 7. Typical disorder and order phase snapshots (top) and
corresponding phase differences (bottom). Red error bars indicate
the noise tolerance window defined by ±δ, here δ = 0.15π . For
ordered patterns, all subsequent phase differences lay inside the noise
tolerance window, while most subsequent phase differences in the
disordered pattern lay outside.

(2) Integrate ne time steps of Eq. (1) with Runge-Kutta al-
gorithm, with fixed positions for all the oscillators in the lattice.

(3) Update positions and neighborhoods affected by the
exchange event and go back to step (1).

APPENDIX B: CLASSIFICATION
OF DYNAMICAL STATES

To measure a fraction of chimera states and study how
this fraction changes with time and with parameter values,
we need to distinguish between the different kinds of states
that occur. There is not a unique method for discriminating
chimeras which is useful for the vast variety of systems where
they occur [55–57].

In the system considered here, a diversity of dynamical
states are present together with chimera states [Figs. 6(a)–6(g),
top panels]:

(a) disorder;
(b) in-phase local order;
(c) antiphase local order;
(d) coexistence of in-phase and antiphase.
(e) in-phase chimera states (χ+);
(f) antichimera states (χ−);
(g) dual-chimera states (χ+−).
Our approach uses phase differences to identify ordered and

disordered domains in the lattice. Given a snapshot at time t of
the system state, we first consider the absolute value of phase
differences between first neighbors, modulo 2π ,

	ϑk(t) = min { |ϑk+1(t) − ϑk(t)| , 2π − |ϑk+1(t) − ϑk(t)| },
where ϑk(t) is the phase value at site k at the time t , with k =
0, . . . ,N − 2 (Fig. 7, bottom panels). While disordered parts
of the snapshots display variable phase differences with large
changes from one site to the next, phase differences for ordered
domains remain almost constant (Fig. 7). Therefore, we seek a
way to identify whether consecutive phase differences change
abruptly going up or down or stay almost constant.
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FIG. 8. (a) Possible phase difference motifs arranged to show
the signatures of order (top) and disorder (middle). Other occur-
ring motifs (bottom) are not used by our classification scheme.
(b) Histogram of three-node motifs for disordered states. Green
and red bars are flat and peaked motifs, respectively; black bars
are all other motifs. Snapshots were prepared by taking N = 100
phases from a uniform distribution between [0,2π ]. Total sample
snapshots considered: 5 × 105. (c),(d) Probability of finding at least
one domain of m consecutive zeros in a disordered state. Probability
was computed over 106 sample disordered snapshots, with noise
threshold δ = 0.15π . The black line in the right panel shows the
exponential fit used to estimate the decay rate and to choose m0.

We introduce phase difference motifs consisting of three
nodes, corresponding to three consecutive phase differences
[Fig. 8(a)]. Motifs are labeled with two numbers, one for each
of its two links. These numbers reflect how similar a phase
difference 	ϑk is from the following 	ϑk+1. We assign the
labels to a link according to the following criteria:

(i) if −δ < 	ϑk+1 − 	ϑk < δ, link value is 0;
(ii) if 	ϑk+1 − 	ϑk > δ, link value is 1;
(iii) if 	ϑk+1 − 	ϑk < −δ, link value is −1.
The quantity δ determines the threshold of noise that we

admit for defining order and is a parameter of our method. In
Figs. 4 and 5 we choose δ = 0.15π , which is a 15% of the
maximum possible value of the phase differences.

Figure 8(b) shows the distribution of motifs for a snapshot
consisting of randomly chosen phases for all the oscillators
in the one-dimensional lattice. It becomes evident that such
disordered snapshots are characterized by a larger fraction
of peaked motifs {(1, − 1),(−1,1)} than other motifs. Thus,
peaked motifs are a hallmark of disorder and we consider
the presence of at least one peaked motif in a snapshot as an
indicator that some amount of disorder is present in the system.

Similarly, we can identify the presence of order by looking
for flat motifs {(0,0)}. Flat motifs can also happen by chance in
disordered states [Fig. 8(b)]. Therefore, we consider that there
is order present in the system if there is at least one domain
with a minimum amount m0 of consecutive zeros. To calibrate
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this parameter, we study the distribution of consecutive zeros
in disordered states [Figs. 8(c) and 8(d)]. The number of
consecutive zeros that could appear in a disordered state
decays exponentially. We consider as a reference the value
of m for which the exponential falls to a value of 1% of its
maximum for m = 2. A linear fit shows this happens roughly
for m > 5 [Fig. 8(d)]. Then, we consider that if at least m0 = 6
consecutive zeros are present in a snapshot of the system state,
the snapshot presents an ordered domain. This domain could
have the size of the system or could coexist with other motifs.

With the described procedure, we are able to locally
distinguish the presence of order and disorder in a snapshot
of the system state [Figs. 6(a)–6(g), middle panels]. When
domains with at least m0 consecutive zeros coexist with at
least one peaked motif, our approach identifies a chimera state.
In-phase and antiphase ordered domains can be distinguished
by evaluating the mean value of the phase differences within
the domains. Therefore, our approach is capable to classify the
seven types of states displayed in Fig. 6, according to which
domain kinds are present.
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