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Cell movement and intercellular signaling occur simultaneously to organize morphogenesis during embryonic
development. Cell movement can cause relative positional changes between neighboring cells. When intercellu-
lar signals are local such cell mixing may affect signaling, changing the flow of information in developing tissues.
Little is known about the effect of cell mixing on intercellular signaling in collective cellular behaviors and meth-
ods to quantify its impact are lacking. Here we discuss how to determine the impact of cell mixing on cell sig-
naling drawing an example from vertebrate embryogenesis: the segmentation clock, a collective rhythm of
interacting genetic oscillators. We argue that comparing cell mixing and signaling timescales is key to determin-
ing the influence of mixing. A signaling timescale can be estimated by combining theoretical models with cell
signaling perturbation experiments. A mixing timescale can be obtained by analysis of cell trajectories from live
imaging. After comparing cell movement analyses in different experimental settings, we highlight challenges in
quantifying cell mixing from embryonic timelapse experiments, especially a reference frame problem due to
embryonic motions and shape changes. We propose statistical observables characterizing cell mixing that do
not depend on the choice of reference frames. Finally, we consider situations in which both cell mixing and sig-
naling involve multiple timescales, precluding a direct comparison between single characteristic timescales. In
such situations, physical models based on observables of cell mixing and signaling can simulate the flow of
information in tissues and reveal the impact of observed cell mixing on signaling.

Key words: cell movement, coupled oscillators, Delta-Notch signal, mean squared displacement,
synchronization.

Introduction

Information flow by intercellular signaling organizes col-
lective cellular behaviors both in tissues and cell aggre-

gates. During embryonic development, signaling may

occur simultaneously with cell movement. In some sit-

uations, cells use local biochemical signaling such as

those mediated by membrane proteins or by slowly

diffusing molecules. The resulting interaction range of

such local biochemical signaling can be smaller than

tissue size. In such cases, the movement of cells rela-
tive to their neighbors can cause rearrangements that

change cells neighbors and affect the flow of informa-

tion in the tissue. Most previous studies in develop-

ment analyzed how signaling affects movement to
generate collective cellular behaviors. In contrast, it is

less understood how cell movement affects local inter-

cellular signaling and changes information flow in

developing tissues (Uriu et al. 2014).

To test whether cell mixing, which we define as the

relative movement of cells, affects intercellular signal-

ing, the comparison of movement and signaling time-

scales is an essential step. If the movement timescale
is much slower than the signaling timescale, the effect

of relative cell movement on information flow can be

negligible. In contrast, if cells change their relative

positions before signaling completes, movement might

affect the signaling outcome, resulting in organized

cellular behaviors that differ from those observed in a

population of non-mobile cells.
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In this article, we discuss how we can compare
these two timescales to examine the influence of cell

mixing on signaling, the difficulties and pitfalls that

arise and strategies to overcome them. For this, we

focus on the example of zebrafish somitogenesis

where cell mixing and signaling occur simultaneously.

This model system has the advantage that the effect

of mixing on information flow has a clear readout in

the synchronization dynamics of coupled genetic oscil-
lators. Interplays between cell mixing and signaling in

other developmental tissues are reviewed in Uriu et al.

(2014). Here we first introduce zebrafish somitogenesis

and the segmentation clock as a system of coupled

genetic oscillators. Readers who are also interested in

somitogenesis in other species can refer to Pourquie

(2011), Kageyama et al. (2012), Saga (2012), Hubaud

& Pourquie (2014). We next review theoretical work
that shows how the ratio of timescales between mixing

and signaling changes the collective behaviors of cou-

pled oscillators. Then, we discuss quantification of cell

movement using live imaging. We compare movement

analysis in cell culture experiments with analysis in

embryonic experiments to highlight a problem specific

to embryonic tissues. We also mention how to define

and quantify signaling timescales using both theory
and experiment. Finally, we conclude that physical

modeling of cell mixing and signaling would be a pow-

erful tool to unravel the interplay between them.

Mobile genetic oscillators in zebrafish
somitogenesis

Somites are repetitive embryonic structures that differ-
entiate into various tissues such as vertebra, limb and

muscles in later developmental stages of vertebrates.

Each somite buds off from the unsegmented pre-

somitic mesoderm (PSM). In vertebrates, somites form

rhythmically, one by one from anterior to posterior

(Fig. 1A). Somitogenesis period is species specific and

in zebrafish it is roughly 30 min. Rhythmic gene

expression can be observed in cells in the PSM and
tailbud (Delaune et al. 2012; Soroldoni et al. 2014) and

the period of rhythmic gene expression sets the timing

when the next somite is formed. These cyclic genes

include her1, her7 and deltaC in zebrafish (Krol et al.

2011). The presence of delayed negative feedback of

Her1 and Her7 proteins (Fig. 1B) (Lewis 2003; Schro-

ter et al. 2012; Hanisch et al. 2013) leads to the

hypothesis that the oscillation of gene expression is
cell-autonomous. A recent experimental study shows

that isolated PSM cells indeed exhibit noisy oscillations

of gene expression (Webb et al. 2016).

The genetic oscillations need to be synchronized

across the PSM to make correct segments. Given the

presence of noise in gene expression and cell divisions

in the tissue that affect the phase of her genes oscilla-

tions (Horikawa et al. 2006; Delaune et al. 2012), cells

in the PSM and tailbud must have a mechanism to

maintain synchronization of their genetic oscillations.

Cells in the PSM and tailbud express Delta and Notch
proteins on their membrane (Wright et al. 2011) and

interact with each other through Notch signaling

(Fig. 1C) (Jiang et al. 2000; Horikawa et al. 2006; Rie-

del-Kruse et al. 2007; Ozbudak & Lewis 2008).

Because Her proteins repress the transcription of del-

taC, DeltaC protein levels also oscillate (Wright et al.

2011). Thus, cells can send information about their

phase of oscillation to neighboring cells. Cells in the
PSM and tailbud can therefore be considered as

locally coupled oscillators. In the tailbud spatially uni-

form synchronization of genetic oscillators is observed

(Soroldoni et al. 2014). In the PSM spatial kinematic

phase waves are observed as a consequence of local

synchronization of oscillators and a spatial gradient of

oscillator’s frequency (Fig. 1A) (Soroldoni et al. 2014;

Shih et al. 2015). For more details on zebrafish somi-
togenesis, readers can refer to (Oates et al. 2012;

Webb & Oates 2016; Yabe & Takada 2016).

These cells with the genetic oscillators move around

within the posterior PSM and tailbud (Mara et al.
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Fig. 1. Mobile genetic oscillators in the zebrafish segmentation

clock. (A) Left: lateral outline of a zebrafish embryo. Right: dorsal

view of gene expression pattern observed in the presomitic

mesoderm (PSM) and tailbud. (B) Negative feedback loops by

her1 and her7 in single cells produce oscillatory gene expression.

(C) Neighboring cells interact with each other by Delta-Notch sig-

naling. (D) Cells change relative positions due to movement.

Local synchronization is perturbed by such cell mixing.
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2007), and it is thought that cell movement influences
axis extension (Lawton et al. 2013; Manning & Kimel-

man 2015). Cells form protrusions such as lamellipodia

in the direction of movement (Manning & Kimelman

2015). Several signaling molecules that control cell

movement in the PSM have been identified. Fgf signal-

ing activates cell movement and forms gradient along

the anterior-posterior axis of the PSM. Fgf level is

higher at the posterior and it decreases toward the
anterior (Sawada et al. 2001). Thus, it is thought that

Fgf gradient is responsible for the spatial gradient of

cell mobility along the anterior-posterior axis (Lawton

et al. 2013). In addition, it has been known that Wnt

signaling also forms a spatial gradient along anterior-

posterior axis (Bajard et al. 2014) and affects cell

movement in zebrafish (Lawton et al. 2013). Previous

studies quantified single cell movement to examine its
effect on axis elongation of embryos (Dray et al. 2013;

Lawton et al. 2013; Steventon et al. 2016). Perturba-

tion of cell movement resulted in shorter axis formation

compared to wildtype.

In addition to the effects on axis extension, time lapse

imaging indicated that cells change their relative posi-

tions in the posterior PSM and tailbud due to movement

(Mara et al. 2007). As described above, Notch receptor
and its ligands are transmembrane molecules and cells

need to be touching each other for signals to take place.

Hence, the fact that cells exchange neighbors over time

becomes relevant to signaling events that mediate syn-

chronization of oscillators. At first glance, cell mixing

could be detrimental to synchronization (Fig. 1D).

Neighboring cells with similar phase move apart, con-

tact other cells with different phases and need to syn-
chronize with these new neighbors. Thus, the

observation of cell movement raises the question of how

cell mixing in the posterior PSM and tailbud influences

synchronization of genetic oscillators.

Theoretical studies on effect of cell mixing
on synchronization of genetic oscillators

The question of how cell mixing affects synchronization

of genetic oscillators in the zebrafish segmentation

clock has been addressed in theory (Uriu et al. 2010).

Theoretical studies show that the impact of mixing on

synchronization depends on its timescale relative to

the signaling timescale. In this section, we review

these theoretical studies and related work on synchro-

nization dynamics of mobile coupled oscillators.
To study the effect of cell mixing on synchronization

of the zebrafish segmentation clock, Uriu et al. (2010,

2012) modeled cell mixing and coupled genetic oscilla-

tors. These theoretical studies suggest that cell mixing

promotes synchronization of genetic oscillators in the

segmentation clock. When cells do not exchange their
neighbors, they tend to synchronize the phase of

oscillation locally due to their limited interaction range,

forming local synchronization domains. The dynamics

are then confined to the boundaries between these

locally synchronized domains and for this reason it

takes a long time for non-mobile cells to attain global

synchronization. In contrast, when cells exchange

neighbors, they lose local synchronization as expected
because each cell meets cells with a different phase

value from the previous neighbors. However, frequent

exchanges of neighbors destabilize persistent local

phase patterns and lead to faster global synchroniza-

tion. Thus, theory predicts that cell mixing can affect

the outcome of local signaling.

The problem of synchronization of mobile entities is

common to other areas of science and technology, for
example communication networks (Wang et al. 2009)

and robot swarming (Buscarino et al. 2006). This prob-

lem has been framed in the context of time varying

networks (Skufca & Bollt 2004; Frasca et al. 2008;

Fujiwara et al. 2011) and continuum descriptions

(Peruani et al. 2010), and it poses an interesting para-

digm for nonequilibrium statistical physics (Levis et al.

2017). Previous studies on agents on switching inter-
action networks have examined the characteristic time

for attaining synchronization and stability of a synchro-

nized state. A general question in the field is what is

the rate of mobility of each agent, or alternatively the

switching rate of an interaction network, required to

enhance synchronization. Can even very slow cell mix-

ing affect signaling?

As we discuss below, the extent of the impact of cell
mixing on synchronization depends on how quickly

cells exchange neighbors relative to how quickly they

exchange signals. It is therefore important to define

mixing and signaling characteristic timescales. The

mixing timescale is how often cells exchange their

neighbors, that is a waiting time to exchange neigh-

bors. The waiting time might be difficult to measure in

tissues, so one would need to estimate it by using
other quantities. Signaling timescale is the time for

internal gene expression (or cellular state) to be chan-

ged by intercellular interactions. For example, it is rep-

resented by the rate of change in phase due to

intercellular interactions via Delta-Notch in the

segmentation clock.

Interplay of timescales in coupled mobile oscillators

To examine how the system’s behavior depends on

the relation between the mixing and signaling time-

scales, Uriu et al. (2013) introduced a one-dimensional

lattice of mobile coupled phase oscillators. An
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advantage of using a lattice model is that it allows for
simple definition of a mixing timescale as described

below. There are other descriptions of cell movement

such as cellular Potts model (Hester et al. 2011), using

an off-lattice description of cells as self-propelled parti-

cles (Uriu & Morelli 2014), and continuum descriptions

of coupled oscillators (Zhou & Kurths 2005; Ares et al.

2012; J€org et al. 2015). More broadly, cell movement

has been described and analyzed in the context of
active matter theories (Vicsek et al. 1995; Ramaswamy

2010; Vicsek & Zafeiris 2012; Marchetti et al. 2013).

In the lattice model (Uriu et al. 2013), each oscillator

exchanges its position with one of its two nearest

neighbors in the lattice at random times at a rate k
(Fig. 2A). The waiting time for next exchange for a sin-

gle oscillator is stochastic and its distribution obeys an

exponential distribution. The average waiting time for
an oscillator to exchange its location is 1/k. Then, the
mixing timescale can be defined naturally as Tm = 1/k.
In other words, in this description, each oscillator per-

forms a random walk on the one-dimensional lattice

with diffusion coefficient k.
Genetic oscillators in the one-dimensional lattice are

described as a population of phase oscillators. Phase

oscillator models have been used in the previous stud-
ies on biological rhythms including circadian clock (Liu

et al. 1997; Yamaguchi et al. 2013) and the segmen-

tation clock (Riedel-Kruse et al. 2007; Morelli et al.

2009). They are particularly useful when we consider

the changes in phase of oscillation due to external

stimuli such as light pulses and inputs from other

oscillators. In general, the phase description of

coupled genetic oscillators can be derived from a bio-
chemical model by assigning the scalar value referred

to as phase to the state space and applying linear

approximation around a limit cycle (Kuramoto 1984).

For simplicity, Uriu et al. (2013) considers a population

of identical phase oscillators with the natural frequency

x on the one-dimensional lattice. The phase dynamics

of oscillators i (i = 1, 2, . . ., N) is described as

dhi tð Þ
dt

¼ xþ j
ni

X
sin hj tð Þ � hi tð Þ

� �
; (1)

where hi is the phase of oscillator i, j is the coupling

strength between two oscillators and ni is the number

of nearest neighbors in the one-dimensional lattice.
The sinusoidal function represents coupling between

two neighboring oscillators and reduces their phase

differences. Oscillator i speeds up if it lags behind

oscillator j, and slows down if it is ahead of oscillator j.

An advantage of using the phase oscillator model is

that the signaling timescale can be defined straightfor-

wardly. The coupling strength j representing how fast

the phase of oscillators hi changes due to local inter-
actions (Fig. 2B) has units of inverse time. Thus, the

signaling timescale can be defined as Ts = 1/j in the

phase oscillator model. Biologically, the coupling

strength is a coarse-grained parameter for the strength

of Delta-Notch signaling. It would be an increasing

function of Delta and Notch protein levels on cell

membranes (Riedel-Kruse et al. 2007; Herrgen et al.

2010; Liao et al. 2016).

T
s/Tm1 2N 2/π2nearest 

neighbor non-local mean-field

small κ

large κ

Ts ~ 1/ κ

time

synchronization time
long short

effective coupling range

(A) (B)

(C)

Tm ~ 1/ λ

Fig. 2. Synchronization dynamics of mobile

oscillators changes with the ratio of mixing

to signaling timescales. (A) Left: neighbors in

a one-dimensional lattice exchange their

positions at a rate k setting a mixing time-

scale Tm. Right: relative positional changes

in an off-lattice model. Each polygon repre-

sents the shape of a cell. (B) The coupling

strength j sets the signaling timescale Ts.

(C) Different regimes of synchronization

dynamics induced by mixing.
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Two timescales are present in the model: the mixing
timescale Tm and the signaling timescale Ts. The

behavior of population of phase oscillators depends on

the ratio of mixing and signaling timescales Ts/Tm
(Fig. 2C) (Uriu et al. 2013). In this simple model, there

is an onset of non-local behavior at Ts/Tm = 1 where

the mobility of oscillators begins to affect synchroniza-

tion dynamics. When the ratio Ts/Tm is small (Ts/

Tm < 1), the mobility of oscillators does not affect syn-
chronization. Synchronization dynamics of these slow

mobile oscillators is dominated by coupling and similar

to that of non-mobile oscillators. They need longer

time to reach global synchronization. When Ts/Tm � 1,

the mobility of oscillators starts affecting synchroniza-

tion. As the ratio increases (Ts/Tm > 1), the population

of oscillators attains global synchronization more

quickly. Note that the model suggests that the onset
of non-local behavior does not depend on the system

size N. This is because as soon as cells can exchange

signals beyond their neighborhood by movement, their

interaction range extends effectively (Fig. 2C) and the

extended interaction range changes dynamics from

that of oscillators with nearest neighbor coupling.

Hence, the total cell number in a tissue is irrelevant

when examining whether observed cell mixing can
affect local signaling.

When Ts/Tm becomes sufficiently large, numerical

simulations indicate that oscillators behave as if they

were coupled with all the other oscillators in the lattice

(Fig. 2C). Because mixing is so fast, each oscillator

can interact with all the other oscillators before its

phase changes significantly. The system with all-to-all

coupling is referred to as a mean-field system in statis-
tical physics. In this mean-field regime, the mobile

oscillators attain global synchronization quickest. The

onset of the mean-field behavior does depend on the

system size or number of oscillators in the one-dimen-

sional lattice as Ts/Tm ~ N2 (Fig. 2C). For a larger sys-

tem, oscillators need to move faster to behave as a

mean-field coupling system. In actual biological sys-

tems, fast mixing may rather hamper signaling
because cells cannot keep time to establish communi-

cation channels with their instantaneous neighbors. In

such case, the timescale for building communication

channels is also relevant (Uriu et al. 2012). Taken

together, the relative timescales between mixing and

signaling determines system’s behavior in the simple

one-dimensional lattice model.

Mixing in complex cell movement patterns

So far we considered a simple one-dimensional model

in which cells’ positions are constrained to a lattice.

The above results also hold in an off-lattice model.

Uriu & Morelli (2014) developed a two-dimensional
off-lattice model where oscillators move around in a

continuous domain (Fig. 2A). The model was moti-

vated by the experimental observation that cells in the

zebrafish tailbud and PSM move with positive velocity

cross-correlations among them (Lawton et al. 2013).

To describe such collective cell movement, Uriu &

Morelli (2014) consider intrinsic cell movement, align-

ment of direction of movement and physical forces
between neighboring cells. Using the model the

authors examined the effect of collective cell move-

ment on synchronization of coupled genetic oscillators.

They showed that a short-range velocity correlation

can enhance synchronization more than random cell

movement, see also (Uriu 2016).

In the off-lattice model, defining the mixing timescale

is not as simple as in the lattice model. If cell move-
ment is a random walk, one can define the mixing

timescale using the diffusion coefficient of cells as dis-

cussed for the one-dimensional lattice model. How-

ever, if cell movement is not a random walk but more

complex, like including spatial velocity correlation,

defining a single characteristic timescale of movement

may be difficult. To quantify a mixing timescale in the

off-lattice model, Uriu and Morelli defined the mean
squared difference of displacement vectors (MSDD)

(Uriu & Morelli 2014):

m tð Þ ¼ �
xjðtÞ � xjðt0Þ

�� �
xiðtÞ � xiðt0Þ

��� ��2D E
ij
; (2)

where xi and xj are the positions of cells i and j in the

two-dimensional space, t0 is a reference time and 〈�〉ij
represents average over all possible pairs in the sys-

tem. Essentially, the MSDD measures how fast the

distance between two cells increases over time. Note

that the MSDD is independent of a choice of a coordi-

nate system in which cell positions are measured. This

becomes important when quantifying cell mixing in

embryonic tissues as we will see below. When the

MSDD increases faster, two neighboring cells disperse
quickly, indicating faster cell mixing. Uriu and Morelli

used the first passage time te when the MSDD

exceeds average cell diameter dc for the first time in

simulations m(te) = dc. The first passage time is a

rough representation of the waiting time for cells to

exchange neighbors. In this way, the authors defined a

mixing rate k as k = 1/te. Note that they introduced

cell diameter dc as a natural lengthscale to define mix-
ing timescale.

Using the MSDD and first passage time, Uriu &

Morelli (2014) observed that a short-range velocity

correlation maximizes the degree of cell mixing,
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consequently allowing oscillators to attain global syn-
chronization quicker. Thus, movement patterns affect

synchronization through changing the rate of cell mix-

ing. In summary, the relation between mixing and sig-

naling timescales is key in the off-lattice model as well.

Relevance to the segmentation clock in other species

We have discussed theory for zebrafish segmentation
clock. Data for cell movement in the mouse PSM is

still lacking but in the chick PSM cell movement was

quantified previously (Delfini et al. 2005; Benazeraf

et al. 2010; Oginuma et al. 2017). It was reported that

chick cells perform a random walk in the PSM (Benaz-

eraf et al. 2010; Oginuma et al. 2017). The speed of

cell movement in the chick PSM (Delfini et al. 2005;

Benazeraf et al. 2010; Oginuma et al. 2017) seems
similar to that in the zebrafish PSM (Lawton et al.

2013), suggesting similar cell mixing timescale. How

does cell mixing affect synchronization of genetic oscil-

lators in other species?

The genetic regulatory network of the segmentation

clock differs in complexity across species (Dequeant

et al. 2006; Krol et al. 2011). In chick and mouse, in

addition to Notch pathway, Fgf and Wnt pathways
gene expression oscillates in the PSM whereas in zeb-

rafish oscillatory expression is constrained to the

Notch pathway (Krol et al. 2011). A remarkable differ-

ence among species is the timescale of somitogenesis

(90 min in chick and 120 min in mouse). Because

somitogenesis period in chick and mouse is longer

than in zebrafish, signaling timescales might differ

among species. The size of the PSM is also different
among species and changes through development

(Gomez et al. 2008). The chick and mouse have a

longer PSM than zebrafish, indicating that tailbud size

could also be larger in these species. These differ-

ences in tissue lengthscales could have a role on the

synchronization at the tissue level because information

has to propagate over longer distances. Therefore, lar-

ger tissues would benefit more from mixing to syn-
chronize faster.

In light of these differences, cell mixing could be rel-

evant to synchronization of genetic oscillations for

other species as long as cell signaling is local.

Because signaling timescale may differ among spe-

cies, the impact of cell mixing on cell signaling may

also differ even when cell mixing timescales are similar

in different organisms.

Quantification of cell mixing timescale

In the previous section, we discussed how the effect

of cell mixing on synchronization depends on the

relative values of their corresponding timescales. Thus,
quantification of these two timescales in the PSM and

tailbud in zebrafish embryos is key to understanding

the effect of cell mixing on the segmentation clock.

Previously, observables for single cell movement such

as cell velocity in these tissues have been measured

(Lawton et al. 2013; Manning & Kimelman 2015).

However, statistical observables for cell mixing, that

are how cells move relative to their neighbors, are still
lacking. Here we discuss how to quantify cell mixing in

the embryonic tissues. To compute statistical observ-

ables for cell mixing, we first need to reliably track cells

using live imaging.

Cell tracking and validation

Quantification of cell mixing in embryonic tissues starts
with cell tracking, which is determining the position of

cells within tissues over time. Tracking involves two

separate steps: (i) identifying cells as distinct objects in

the image at different times, which is segmentation,

and (ii) linking the identity of a given cell across snap-

shots, referred to as linking. Various segmentation and

linking algorithms for cells have been proposed (Sbal-

zarini & Koumoutsakos 2005; Li et al. 2007; Al-Kofahi
et al. 2010; Qu et al. 2011; Amat et al. 2014; Stegma-

ier et al. 2014, 2016; Bhavna et al. 2016; Faure et al.

2016). Some algorithms perform segmentation and

linking simultaneously using information of previous

time frames (Qu et al. 2011; Amat et al. 2014). A gen-

eral question would be which algorithm one should

use to segment cells and link them between succes-

sive time frames. This would depend both on tissue
properties such as cell density, cell size and cell veloc-

ity, and imaging conditions such as the kind of fluo-

rophore that is used and whether it marks the cell

nucleus or membrane, image size, spatial and tempo-

ral resolution, image contrast and signal-to-noise ratio

determined by the quality of optics and camera. For

cell movement analysis, labeling nuclei with Histone

tag and tracking the center of each nucleus as a rep-
resentative cell position may be enough. Alternatives

are labeling cell membranes or whole cells, but seg-

mentation and characterization of cells with such label-

ings may be harder than with nuclear labeling. A

drawback of nuclear labeling though, is that nuclear

motions within cells affect statistical observables of cell

body motions (Liu et al. 2015). Simple threshold based

methods might work sufficiently well to segment nuclei
in tissues with low cell density (Keller et al. 2008). In

contrast, in tissues with higher cell density such as the

vertebrate PSM, more elaborate algorithms might be

required to tell apart two (or more) touching nuclei.

These algorithms use image intensity derivatives,
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watershed, Gaussian mixture models and combina-
tions.

Accurate nuclear segmentation and linking increase

the accuracy of cell tracking. In general, there is a

tradeoff between detection accuracy and computa-

tional time. Increasing accuracy typically requires

longer computational time. Thus, one should deter-

mine to what extent accuracy of cell tracking will be

needed before deciding which algorithm to use.
Required accuracy would depend on the biological

problem to be addressed (Bhavna et al. 2016). For

example, if we analyze cell fate and lineage, we need

very accurate cell tracking over a long time because

individual cell identity is essential (Faure et al. 2016). In

contrast, quantification of cell mixing may not need a

very accurate algorithm because mixing can be char-

acterized by quantities averaged over a population of
hundreds of cells in local tissue domains, without the

need to track for long times. Thus, assessment of

accuracy required by the biological question

addressed is fundamental for cell movement analysis.

To check the accuracy of an algorithm, we require

ground truth datasets where we know the true posi-

tions and trajectories of cells. Some previous studies

used manual segmentation and tracking of cells in
embryonic tissues to obtain such ground truth (Li et al.

2007; Amat et al. 2014; Faure et al. 2016; Stegmaier

et al. 2016). However, the human eye, good to detect

objects and patterns, may also be subjected to sys-

tematic errors. In addition, obtaining a large number of

datasets by manual annotations requires massive

efforts. An alternative approach is to construct syn-

thetic images that mimic an embryonic tissue by using
a mathematical model (Bhavna et al. 2016). For

instance, cell nuclei can be modeled as ellipsoids in a

3D space (Bhavna et al. 2016) while shapes of epithe-

lial cells may be modeled as polygons in a 2D space.

We can change parameters in synthetic images such

as cell density, nuclear orientation, spatial and tempo-

ral resolution, background and signal-to-noise ratio, to

calibrate image processing algorithms with images that
have the same statistics as in the experimental condi-

tions. In addition, defining appropriate measures for

accuracy is key to validation and this depends on the

biological question. For example, if the imaging time

resolution is high enough compared to cell velocity,

the degrees of over- and under-segmentation of nuclei

or cells become most relevant as the main source of

tracking error.
To complement this strategy, it would be good to

obtain a large number of embryonic ground truth data-

sets. Dual labeling of cell nuclei by injection of mRNAs

(Lawton et al. 2013) or transplantation of cells with a

different nuclear labeling (Bhavna et al. 2016) can

provide such datasets avoiding the need for manual
tracking. In Bhavna et al. 2016, a small number of

GFP-tagged cells from blastula stage zebrafish

embryos was transplanted into stage matched

mCherry-tagged host embryos. In the GFP channel,

cell density is sparse because only transplanted cells

are visible in the channel. Therefore, most nuclear seg-

mentation algorithms can correctly segment these

transplanted nuclei without problems. Thus, the seg-
mentation result for the sparse channel can be consid-

ered as the ground truth dataset. The detection rate of

the segmentation algorithm can be evaluated by com-

paring results for mCherry channel where all host cells

are visible and density is high with the ground truth

from GFP channel (Bhavna et al. 2016). This approach

may be also applied for cell membrane makers to gen-

erate embryonic ground truth for cell membrane
detection.

Typically, segmentation and tracking algorithms

include several parameters that may need to be tuned

for each specific embryonic image. Synthetic images

and embryonic ground truth dataset provide a way to

tune these parameters to the required level of accu-

racy.

Quantitative analysis of cell movement

From a dataset of cell trajectories we can compute

statistical observables characterizing cell mixing in

the PSM and tailbud. The characteristics of cell mix-

ing depend on underlying cell movement patterns

(Uriu & Morelli 2014). We first introduce quantification

of movement in cell culture experiments to discuss
basic properties of cell movement patterns. We

show that some informative statistical observables

can be derived from the analysis of cell displace-

ment vectors in cell culture systems, revealing key

movement features. Then, back to zebrafish somi-

togenesis, we point out pitfalls of relying on cell

displacement vectors for analyzing embryonic experi-

ments. We propose that relative displacement vec-
tors between cells can be used to characterize cell

mixing in embryonic tissues.

Movement analysis in cell culture experiments. Cell

movement has been studied in cell culture experimen-

tal systems where experimental conditions may be

strictly controlled. Because cells’ behaviors can

change with their density, the quantification methods
may depend on the density of cells in the system. We

first discuss analysis of single isolated cells. Then, we

discuss cell movement analysis at higher cell density

where a population of cells may exhibit collective

movement.
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Isolated single cell movement. Movement analysis of
single isolated cells can reveal intrinsic properties of

cell motility. The first step of quantification is to com-

pute cell displacement vectors from cell trajectory

data. To do this, we need to set a reference frame or

coordinate system for analysis. The reference frame is

the origin and axes of a spatial coordinate system from

which the position of each cell is measured. Defining a

reference frame in cell culture experiments is often
straightforward because in most cases a lab reference

frame can be introduced as a coordinate system fixed

on the image. For example, the origin can be set at

the top left corner of the image and axes defined

along the image boundaries. Once a reference frame

is set, the cell displacement vector Dx from the refer-

ence time t0 can be computed, Dx(t) = x(t + t0) � x

(t0). Using cell displacement vectors, various quantities
can be obtained such as instantaneous cell velocity

v = Dx(t)/Dt and velocity auto-correlation for single

cells. The mean squared displacement (MSD) is one of

the most widely used quantities in cell movement

analysis because its behavior hints about the type of

movement that cells perform. The MSD is defined as

md tð Þ ¼ xi t þ t0ð Þ � xi t0ð Þj j2
D E

i
; (3)

where 〈�〉i denotes the average over a population of

cells. Note that the MSD is based on the displacement

vector Dx(t) of each cell. The MSD increases over time
and its rate of increase is a measure of cell mobility.

Very often the MSD is a power law function of time,

md(t) / ta and the value of the exponent a reveals the

type of movement (Fig. 3A). When cell movement is a

random walk, the MSD increases linearly over time

(a � 1) and its slope is an estimate of the diffusion

coefficient of the cells (Gardiner 2009). The MSD may

lose precision in estimating the diffusion coefficient
when number of cells is limited and their trajectories

are short. In such cases, the covariance between two

successive displacement vectors can provide more

accurate estimate of the diffusion coefficient (Vester-

gaard et al. 2015). In contrast, when a cell exhibits

directed motion, for example in chemotaxis where cells

are attracted by a chemical, the exponent a is close to

two, md(t) / t2 (Fig. 3A). Such movement is called bal-
listic motion since it implies a movement with uniform

velocity (Gardiner 2009).

In some cell types, the exponent of the MSD is in

the range 1 < a < 2 (Fig. 3A). This type of anomalous

diffusion is referred to as super-diffusion. Super-

diffusion has been observed in Madin-Darby canine

kidney (MDCK) cells (Dieterich et al. 2008) and Dic-

tyostelium cells (Takagi et al. 2008). In these cells, it
was also observed that the exponent of the MSD

changes over time within the range 1 < a < 2, indi-

cating the existence of different modes of cell move-

ment. In the presence of anomalous diffusion, the

distribution of cell positions at a given time t is

M
S

D
, M

S
D

D
ve

lo
ci

ty
 a

ut
o-

co
rr

el
at

io
n

time

cell | vi – vj |

AD

PRW

ba
llis

tic
 ~

t2

dif
fus

ive
 ~t

AD

PRW

vi vj

mixing

(A) (B)

(C)

lab reference 
frame

Fig. 3. Cell movement analysis in cell cul-

ture and embryonic experiments. (A) Top:

Time evolution of mean squared displace-

ment (MSD) and mean squared difference

of displacement vectors (MSDD). Log

scales in both vertical and horizontal axes.

AD: anomalous diffusion. PRW: persistent

random walk. Bottom: Time evolution of

velocity auto-correlations. (B) Top: global

tissue motions cause cell displacement in

a lab reference frame. Left: an embryonic

motion. Right: axis extension. Dashed and

solid lines show embryonic outline before

and after global motion. Open and solid

dots show corresponding position of a

given cell. (C) Difference of velocity vec-

tors between neighboring cells.
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non-Gaussian whereas it is Gaussian for normal diffu-
sion (Dieterich et al. 2008; Takagi et al. 2008).

Remarkably, a slower decay of velocity auto-correla-

tion than exponential decay was observed in cells

performing super-diffusion (Fig. 3A) (Upadhyaya et al.

2001; Dieterich et al. 2008). Hence, a long lasting

memory of cell velocity would be an explanation for

the emergence of the anomalous diffusive behaviors

(Upadhyaya et al. 2001; Dieterich et al. 2008; Takagi
et al. 2008).

Typically, a single cell moves in one direction for

some characteristic time and then changes its direc-

tion of movement randomly. This characteristic time of

the movement may be linked to dynamics of cell polar-

ity molecules (Maiuri et al. 2015) and rearrangement of

cytoskeletal networks. It is referred to as persistence

time sp and signals a crossover in the MSD curve
(Fig. 3A). At short time scale (<sp), the MSD increases

/ t2 because of cell’s ballistic motion while at long

time scale (>sp) it increases / t because of random

changes in direction of motions. This type of move-

ment is referred to as persistent random walk. The

persistent time sp can be estimated by fitting the Furth

formula for a persistent random walk model. The per-

sistent random walk model was used to describe
movement of various cells, including mouse fibroblasts

cells (Gail & Boone 1970), mesenchymal cells (Liu

et al. 2015), and endodermal Hydra cells (Rieu et al.

2000) on 2D substrates. Thus, the mode of cell move-

ment appears different depending on the timescale of

observation.

Importantly, even movement observables of a single

isolated cell on 2D substrates contain several charac-
teristic timescales. For instance, the exponent of the

MSD changes over time, showing different migratory

regimes (Dieterich et al. 2008; Takagi et al. 2008).

The velocity auto-correlation for some cell types

decays as a sum of two exponential functions (Sel-

meczi et al. 2005; Takagi et al. 2008; Li et al. 2011;

Wu et al. 2014), indicating that at least two charac-

teristic timescales are involved. In human WT fibrosar-
coma HT1080 cells, such two characteristic

timescales arise due to anisotropy of persistent time

in primary and nonprimary directions of migration (Wu

et al. 2014). In theory, fluctuations in the direction of

movement may induce more than one crossover in

the MSD at different timescales (Peruani & Morelli

2007). Multiple timescales may also reflect complex

cellular processes like intracellular protein dynamics,
formation of cellular protrusion and actual cell body

motions. Thus, quantities based on cell displacement

vectors characterize types of cell movement and can

uncover the presence of different migratory modes

within a single cell.

Collective cell movement. As cell density increases,
cells are more likely to contact and interact with each

other. A population of cells often changes behaviors

depending on the density. For instance, diversity of

movement behaviors of single fibroblast cells increases

as a consequence of increasing cell density and inter-

cellular interactions (Vedel et al. 2013). Epithelial cells

undergo a transition of movement patterns that is rem-

iniscent of a glass transition of a supercooled fluid with
increasing cell density (Angelini et al. 2011) or with

maturation of cell-cell and cell-surface interactions

(Garcia et al. 2015). For some cell types such as fish

keratocytes (Szabo et al. 2006), endothelial cells

(Szabo et al. 2010) and mammalian epithelial cells like

MDCK, MCF10A and HBEC (Haga et al. 2005; Tambe

et al. 2011; Nnetu et al. 2012; Vedula et al. 2012;

Garcia et al. 2015), it has been observed that long-
range positive velocity cross-correlations arise when

the cell density becomes high. Such correlated move-

ment is referred to as collective cell movement. Active

matter theory suggests that emergence of large scale,

positive velocity correlations may result from local inter-

actions (Vicsek et al. 1995; Chen et al. 2017), includ-

ing physical contact forces between cells (Szabo et al.

2006) and cell shape dependent alignment (Peruani
et al. 2006).

Collective cell movement has been observed in

embryogenesis and wound healing (Friedl & Gilmour

2009; Rorth 2009) and extensively studied in cell cul-

ture experiments. A key step for quantifying migratory

behaviors of a population of cells is to obtain a velocity

field. The velocity field reveals spatial heterogeneity of

speed (Angelini et al. 2011; Garcia et al. 2015) and
characteristic movement patterns such as the exis-

tence of vortex motions (Vedula et al. 2012). The

velocity field can be constructed using cell trajectories

after tracking single cells. Another way to obtain a

velocity field that does not require single cell tracking

is to use particle image velocimetry (PIV). PIV obtains

the direction of motion by computing cross-correlation

of image intensity of local sub-domains between two
successive time frames and determined the direction

with the maximum cross-correlation (Angelini et al.

2011; Vedula et al. 2012; Garcia et al. 2015; Chen

et al. 2017).

Various quantities that characterize migration pat-

terns can be computed from the velocity field and

cell trajectories. In addition to the single cell observ-

ables above, such as MSD and velocity auto-correla-
tion, the velocity order parameter and velocity cross-

correlation would be useful quantities to reveal to

what extent a population of cells behaves collectively.

The velocity order parameter is the modulus of the

average velocity over a population of cells, which
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quantifies the degree of alignment of velocities (Vicsek
et al. 1995). Velocity cross-correlation between cells

can be defined as

C tð Þ ¼ vi tð Þ � vj tð Þ
vi tð Þj j vj tð Þ

�� ��
* +

ij

; (4)

where � indicates the inner product of vectors and

〈. . .〉ij denotes the average over possible cell pairs. The

cross-correlation C measures the angle between

velocity vectors vi and vj. If the angle is small, the two
cells move in a same direction and C is close to 1. In

contrast, if the angle is close to p, they move in oppo-

site directions and C is close to �1. By using the

cross-correlation, the lengthscale of collective cell

movement can be quantified. Previous studies quanti-

fied the velocity correlation length for different cell

types (Upadhyaya et al. 2001; Haga et al. 2005;

Sepulveda et al. 2013; Garcia et al. 2015).
To reveal mechanisms that drive the observed col-

lective cell movement, computing a correlation func-

tion between the direction of movement and

presumptive factors would be useful. Previously, a

positive correlation between the direction of polar-

ization of collagen gel substrate and the direction of

migration was observed for MDCK cells (Haga et al.

2005). Tambe et al. (2011) revealed correlation
between the orientation of the local maximal princi-

pal stress in a cell sheet and the direction of the

cell velocity vector for various cell types including

MDCK cells. In HBEC populations, Garcia et al.

(2015) detected a clear correlation between the

strength of cell–cell, cell–surface interactions and

velocity correlation length.

The MSD can also be used to quantify single cell
motions when a population of cells undergoes collec-

tive movement. Typically, the exponent of the MSD

tends to become larger than 1 for timescales where

collective cell movement is observed (Haga et al.

2005; Nnetu et al. 2012). A population of MDCK cells

moves collectively on a soft collagen gel surface and

the exponents of their MSD curves are also larger than

one, approximately 1.7 (Haga et al. 2005). Nearly bal-
listic motions of MCF-10A cells with an MSD exponent

approximately 1.8 within a monolayer sheet ensure

integrity of the migrating sheet of cells (Nnetu et al.

2012). Probably, longer persistence of direction of

motions due to cell-cell interactions causes this super-

diffusive behavior of the MSD. Again, in such cases

the persistence time can be measured by temporal

velocity auto-correlations of a single cell (Rieu et al.

2000; Upadhyaya et al. 2001; Sepulveda et al. 2013;

Vedel et al. 2013).

We would like to emphasize that the statistical
observables discussed so far rely on single cell dis-

placement vectors measured in the lab reference

frame of cell culture experiments. In these experimen-

tal systems, the only contribution to displacement vec-

tors comes from cell movements, and therefore these

statistical observables faithfully characterize movement

properties.

Movement analysis in embryonic experiments. In con-

trast, one should be careful about using displacement

vectors of single cells and derivative quantities to char-

acterize cell movement in embryonic experimental sys-

tems. This is partly because embryos themselves can

move under a microscope. The movement of an embryo

causes a global tissue motion that can be decomposed

in translation and rotation as in a rigid body (Feynman
et al. 1963). Cell displacement vectors measured in the

lab reference frame will include those contributions

(Fig. 4). Besides these global motions, during develop-

ment embryos can grow and change shape. For exam-

ple, in zebrafish embryos, the tailbud progresses

posteriorly due to axis extension and lifts from the yolk

at around 15 somite stage (Fig. 3B). Such tissue defor-

mation may also induce cell drifts (Morishita et al. 2015).
Obviously, the MSD for single cells can be affected and

its exponent tends to become larger than 1 due to per-

sistence intrinsic to global tissue motions (Fig. 4). In

addition, such global motions may give rise to strong

cross-correlations of displacement vectors between

cells, even though these cells move randomly within the

tissue. Hence, measuring the degree of collective

motions in embryonic tissues is often difficult and must
be done carefully.

Therefore, if one wants to quantify single cells move-

ment within embryos, setting an appropriate reference

frame is key. If embryos move little under the micro-

scope during imaging period and tissue deformation

timescales are much slower than the process we are

analyzing, we can set a lab reference frame and use

movement observables as those discussed above for
cell culture experimental systems. For example, interki-

netic nuclear migration of neuroepithelial cells were

analyzed in a slice culture system by computing the

MSD of migrating nuclei at a lab reference frame (Nor-

den et al. 2009). Another way to use the lab reference

frame is to fix embryos by mounting them in agarose

(Mara et al. 2007; Arboleda-Estudillo et al. 2010). Col-

lective motions of mesoderm and endoderm progenitor
cells during gastrulation of zebrafish embryos were

characterized in this way using the MSD and velocity

cross-correlations (Arboleda-Estudillo et al. 2010).

Recently, an explant system of the zebrafish tailbud

allowed cell movement in the tissue to be quantified
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without being affected by global tissue motions (Man-
ning & Kimelman 2015). The analysis revealed that

wildtype cells in the tailbud explants moved in anterior

direction with longer persistence than tbx16:msgn1

morpholino knockdown cells (Manning & Kimelman

2015). While these strategies may circumvent the ref-

erence frame problem in some situations, they might

introduce perturbations affecting the motion of cells in

other contexts.
An alternative strategy to deal with tissue motions is

to use an image registration algorithm that follows and

subtracts embryonic movement on the microscope

stage. Registration algorithms can correct for transla-

tions and rotations (Annila et al. 2013; Qu et al. 2015).

After registration, a lab reference frame may be used.

Although registration can also correct for tissue shape

changes, if these occur on lengthscales comparable to
cell displacements, image registration may introduce

local deformations that alter the statistics of cell move-

ment.

Thus, if global tissue motions are observed in the

embryonic images, using a lab reference frame is

problematic. In some cases, it may be possible to

introduce an embryonic reference frame that can

remove the contributions of global tissue motions
(Fig. 4). For example, in the analysis of neural tube for-

mation, the average position of a group of cells was

used as a local reference frame for measuring move-

ment of each cell in the group (Xiong et al. 2013). Pre-

vious studies that addressed axis extension of the

vertebrate PSM set an embryonic reference frame

using extracellular matrix (ECM) that drifts with sur-

rounding cells (Benazeraf et al. 2010) or a tissue land-
mark in the anterior PSM (Lawton et al. 2013) to

analyze cell movement. Such embryonic reference

frames need to be correlated with global tissue

motions (Fig. 4). The reference frame of the average

position of a cell group removes contributions of global

tissue motions but may introduce biases in estimation

of diffusion coefficient of cells if the number of cells for

averaging is small. ECM should not deform or move
itself but rather be advected by tissue elongation and

deformation. Motions of distant tissue domains need

to be correlated strongly so that the anterior PSM

functions as an embryonic reference frame for the

region of interest.

If we are interested in relative cell movement or cell

mixing, another strategy would be to use statistical

observables that are based on cell pairs. Note that the
observables for cell mixing and those for single cell

movement are different, because cell mixing can be

quantified by observing the motion of a cell in terms of

other neighboring cells. By relying on an observable

based on cell pairs, the movement components that

are common to the pair such as global tissue motions
due to embryonic movement, are cancelled out.

Therefore, such observables do not depend on the

choice of reference frame. For example, difference in

velocity vectors between neighboring cells indicates

local variations of cell velocity (Fig. 3C). Higher local

variations of cell velocity suggest higher degree of cell

mixing. Following this idea, one can compute the spa-

tial derivative of velocity vectors. Because a velocity
vector in a 3D space has three components v = (vx,

vy, vz) and there are three directions (x, y, z), this cal-

culation provides a 3 9 3 matrix, the velocity gradient

tensor, at each position in the tissue. Several charac-

teristics can be derived from the velocity gradient ten-

sor. For example, the eigenvalues of the matrix may

represent the degree of local variations of velocity vec-

tors. In addition, the determinant of the tensor reveals
the rate of local tissue growth at each position. Such

local measure of tissue growth will complement its glo-

bal measures, like volumetric growth rate and axis

extension rate of the PSM and somites (Steventon

et al. 2016).

Another simple quantity for cell mixing that can be

calculated from cell trajectories is the time evolution of

the MSDD introduced before. By computing the differ-
ence of displacement vectors between two cells, the

MSDD can also cancel out the contributions of global

tissue motions (Fig. 4). As discussed before, the rate

of MSDD increase represents the degree of cell mix-

ing. In addition, similar to the MSD, the MSDD can

reveal the type of cell movement by its exponent

(Figs 3A and 4) (Uriu & Morelli 2014). A quantity similar

to the MSDD was used previously to characterize
motions of subcellular molecules when a cell itself

moved under the microscopes (Marshall et al. 1997;

Rafelski et al. 2011).

A drawback of using cell-pair-based quantities is

that they do not reveal single cell velocities. One way

to circumvent this issue and estimate properties of

single cell movement in an embryonic tissue, such as

cell velocity and velocity auto-correlation, is to use a
physical model of cell movement. The physical model

can be fitted to the statistical observables for cell

mixing obtained from experiment, such as MSDD.

Numerical simulations of the fitted model can allow

for computing various movement observables that are

difficult to measure in embryonic tissues. The results

of the fitted model may be used to check whether an

embryonic reference frame works properly by com-
paring movement observables of single cells from

simulations with those from quantification at the

embryonic reference frame. Thus, a physical model

can complement the cell mixing dataset obtained

from imaging data.
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Fig. 4. Statistical observables for cell mixing in embryonic experiments.
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We have described the challenges posed by cell
movement analysis in embryonic experiments, and

outlined a number of strategies that have been pro-

posed and employed. These strategies have their dis-

tinct advantages and drawbacks, and the choice of

strategy should depend on the experimental system

and question. We hope here we have provided some

guidelines to facilitate this choice.

Quantification of signaling timescale

To quantify the impact of cell mixing on signaling we

still need to determine the signaling timescale. In gen-

eral, we expect this to be more difficult than determin-

ing the mixing timescale because it requires live

imaging and time series analysis of the activity of a

reporter gene related to the signaling event. For exam-
ple, the timescale of Delta-Notch signaling may be

determined by monitoring how fast activities of down-

stream genes change after an input signal. This chal-

lenging experiment was performed on Chinese

hamster ovary cells plated on a Delta protein coated

surface (Sprinzak et al. 2010). In this experimental sys-

tem, Notch activity increases at the rate of several

hours under the constant activation of Delta proteins
(Sprinzak et al. 2010), which is much slower than the

period of the segmentation clock. This observation

suggests that the signaling timescale of Delta-Notch

may strongly depend on cell types.

Theoretical models provide a way to indirectly deter-

mine the signaling timescale when combined with

experiments. An advantage of a theoretical formulation

of intercellular signaling is to rigorously specify what
the signaling timescale represents within the formula-

tion. One example is the coupling strength in a phase

oscillator model (Kuramoto 1984). This coupling

strength has not been directly measured in the zebra-

fish segmentation clock yet. Instead, it was estimated

by fitting theory to experimental data (Fig. 5A) (Riedel-

Kruse et al. 2007; Herrgen et al. 2010). Data for

defective segments induced by inhibition of Delta-
Notch signaling was used to estimate a coupling

strength between cells in the context of a mean-field

theory where every cell couples to every other cell

(Kuramoto 1984; Pikovsky et al. 2001; Riedel-Kruse

et al. 2007). In Delta-Notch mutants the first approxi-

mately five somites form normally, but defective seg-

ment boundaries appear after these normal somites.

Treatment with a Delta-Notch signal inhibitor DAPT
also causes segment defects after the formation of

several normal somites (Fig. 5A). In the framework of

the mean-field theory, these observations can be inter-

preted as arising from a decaying degree of phase

synchronization, due to noise and a reduced coupling

strength. When the degree of phase synchronization
becomes lower than a critical value, only defective

segments are formed (Riedel-Kruse et al. 2007; Liao

et al. 2016). The coupling strength was estimated by

fitting the mean-field coupling theory to the depen-

dence of the anterior limit of defects (ALD) on DAPT

treatment concentration, or antisense morpholino for

notch1a mRNA concentration (Fig. 5A) (Riedel-Kruse

et al. 2007). The estimated value of the coupling
strength was about 0.07 min�1 (Riedel-Kruse et al.

2007). Another experiment used DAPT perturbation to

determine the coupling strength (Herrgen et al. 2010).

However, we defer its discussion to the next section

where we consider multiple timescales in signaling.

These two independent estimations of the coupling

strength by Riedel-Kruse et al. (2007) and Herrgen

et al. (2010) in the zebrafish segmentation clock gave
a consistent value, j ~ 0.07 min�1. Thus, combining

theory with experimental perturbation of Delta-Notch

signaling has allowed the coupling strength to be

estimated in the context of a theory of coupled phase

oscillators.

Still, direct measurement of the signaling timescale

would be important because the estimated timescale

may depend on theory, which is based on some
assumptions. Direct quantification could be carried out

by measuring how fast the phase difference between
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A
LD

time

ex
pr

es
si

on

(A)  Estimation by fitting theory

(B) Direct measurement

ALD
defectivenormal

theory

experiment

time

ph
as

e 
di

ffe
re

nc
e

~ e– t / Ts

Fig. 5. Quantification of signaling timescale. (A) The signaling

timescale can be determined from estimation of coupling

strength j, by fitting theory to experimental data of the anterior

limit of defects (ALD) in zebrafish embryos. The solid blue lines

indicate normal somite boundaries. ALD decreases with the

increase of DAPT concentration. (B) Single cell observation of

neighboring synchronizing oscillators allows the determination of

the signaling timescale directly as a characteristic timescale of

the phase difference decay.
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two touching PSM cells decreases over time, with a
live reporter of segmentation clock gene expression

(Fig. 5B) (Aulehla et al. 2008; Delaune et al. 2012; Sor-

oldoni et al. 2014; Shimojo et al. 2016). In cell culture

experiments, a sparse cell population in a dish (Masa-

mizu et al. 2006; Webb et al. 2016) would allow for

such measurement. In embryos, the phases of oscilla-

tors become desynchronized with their neighbors after

a cell division (Horikawa et al. 2006). It has been
reported that the phases of divided cells tend to be

delayed to those of surrounding undivided cells

(Delaune et al. 2012). How fast these divided cells get

synchronized back with surrounding cells in the tissue

would reveal the coupling strength in the embryo.

More than one characteristic timescale:
simulating the flow of information

If it is possible to determine a single timescale for cell

mixing, such as a diffusion coefficient of cells, and one

for signaling, such as the coupling strength, the effect

of mixing on signaling could be elucidated based on

theory as described above (Uriu et al. 2013). If the

mixing timescale is faster than signaling timescale,

mixing will affect signaling. However, it may happen
that an experiment reveals more than one timescale

associated either with mixing or signaling. In such

case, a straightforward comparison is not possible and

the theory has to be extended.

It may be difficult to determine a single characteristic

timescale for cell mixing from cell movement statistical

observables. For example, even isolated cells on a 2D

substrate exhibit several timescales reflected in their
MSD and velocity auto-correlation as described above

(Selmeczi et al. 2005; Dieterich et al. 2008; Takagi

et al. 2008; Li et al. 2011; Wu et al. 2014). In addition,

cell movement may not be a simple random walk, as

we have seen in examples of collective cell movement.

Indeed, the exponent of the MSD for cells in the tail-

bud of zebrafish embryos was approximately 1.5 and,

moreover, short-range velocity correlation was also
reported (Lawton et al. 2013). Such complex cell

movement with multiple timescales makes direct com-

parison between mixing and signaling difficult.

Multiple timescales can also occur in signaling, and

this can impact dynamics and synchronization. For

example, communication channels for signaling may

need to build up after two cells come into contact due

to mobility. As cells come in touch with each other
their contact surface grows and receptor and ligand

proteins on the cell membranes should associate to

elicit new signals. This sets another timescale of recov-

ering signaling after movement. A theoretical study

showed that when this additional timescale is present

there is an optimal mobility timescale that allows for
fastest synchronization (Uriu et al. 2012). Communica-

tion delays introduce another timescale that can be

relevant to signaling. Delta-Notch signaling involves

time delays due to production and transport of Delta

and Notch proteins (Morelli et al. 2009). In the frame-

work of a delayed coupling theory (Morelli et al. 2009;

Herrgen et al. 2010; Ares et al. 2012), the somitogen-

esis period is interpreted as a result of the collective
period of cells. Phase oscillator models predict that

the collective period is a function of the coupling

strength j given that Delta-Notch signal involves time

delays. Remarkably, the somitogenesis period in living

embryos changes depending on applied DAPT levels

as predicted by the phase oscillator theory (Herrgen

et al. 2010). Using this framework the coupling

strength was also estimated, together with the cou-
pling delay, from the change in somitogenesis period

induced by DAPT treatment (Herrgen et al. 2010).

How can the impact of mixing on signaling be deter-

mined in such situations? Physical modeling of cell

mixing and intercellular signaling could address this

problem (Fig. 6). As we mentioned above, a model for

cell movement can be fitted to the data of cell mixing

obtained from live imaging. The fitted model allows us
to simulate signaling dynamics in the presence of

reproduced cell mixing. For the zebrafish segmentation

clock, a coupled phase oscillator model can be com-

bined with a fitted model for cell mixing in the PSM

and tailbud. Such a combined model would simulate

synchronization dynamics of the oscillators with

time

M
S

D
D

reproduced cell mixing coupled oscillators with
estimated signaling timescales

Determination of impact of mixing on signaling

Fig. 6. Physical models quantifying the impact of cell mixing on

cell signaling. Physical models can be developed that describe

cell mixing and signaling, which can both display more than one

characteristic timescale. Cell mixing in an embryonic tissue can

be reproduced after fitting such a model to MSDD embryonic

data. Together with signaling timescales determined by other

experiments as shown in Figure 5, such a model would allow

simulation of the flow of information in the tissue to determine

the impact of mixing on signaling.
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signaling events that may involve multiple timescales in
reproduced cell mixing conditions. Using simulations

would allow locating the system’s behavior on a time-

scales map like the one established for the one-dimen-

sional lattice model (Fig. 2C). The combined model

could further predict how synchronization dynamics

changes when the rate of cell mixing is reduced from

its value as observed in wild type embryos. Such pre-

diction could then be tested experimentally with a per-
turbation of cell mobility by drugs and quantification of

synchronization level by the live reporter of the genetic

oscillator. Thus, modeling may be essential when the

determination of a single timescale characterizing mix-

ing and signaling is not possible.

Conclusion

In this review article, we have argued that quantifica-

tion of cell mixing and signaling timescales is essential

to understand their interplay. Although advances in live

imaging allows cell movement to be analyzed in

embryonic experiments, careful setting of a reference

frame is required to obtain statistical observables char-

acterizing cell movement. Given that in embryos there

are global cell motions like whole embryo movements
and tissue shape changes, we argued that using

movement observables that do not depend on a

choice of a reference frame is paramount. Quantifica-

tion of signaling timescale poses different challenges,

but it can be carried out combining theory with the

measurement of macroscopic observables. Physical

modeling reveals the impact of cell mixing on signaling

and provides experimentally testable predictions. Since
cell movement and signaling are ubiquitous during

morphogenesis, the approach proposed in this paper

could be useful more broadly to understand the physi-

cal processes undergoing during embryonic develop-

ment.
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