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Abstract  
Computational approaches are breaking new ground in understanding how embryos 

form. Here we discuss recent studies that couple precise measurements in the embryo 

with appropriately matched modeling and computational methods to investigate 

classic embryonic patterning strategies. We include signaling gradients, activator-

inhibitor systems, and coupled oscillators, as well as emerging paradigms such as 

tissue deformation. Parallel progress in theory and experiment will play an 

increasingly central role in deciphering developmental patterning.  

 

 

 

Animal and plant patterns amaze and perplex scientists and lay people alike. But how 

are the dynamic and beautiful patterns of developing embryos generated? Used 

appropriately, theoretical techniques can assist in understanding developmental 

processes (1-5). There is considerable art in this, and the key to success is an open 

dialog between experimentalist and theorist. The first step in this dialog is to 

formulate a theoretical description of the process of interest that captures the 

properties and interactions of the most relevant variables of the system at a level of 

detail that is both useful and tractable. Once formulated, the second step is to analyze 

the theoretical model. If the model is sufficiently tractable, it may be possible to 

understand its behavior with ‘pencil and paper’ analysis, and compare this analytical 

solution directly with experimental data. Very often, however, the number of 

variables and the complexity of their interactions preclude this approach, and the 

behavior of models must be solved or simulated using computers in order to be 

understood and compared with data. This combined approach, which we refer to as 

computational biology, has become popular recently with the availability of powerful 

computers and increasingly sophisticated numerical algorithms.  
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Figure 1: Patterning strategies. (A) Signaling gradients supply global positional 

information. Horizontal axis is position within target tissue. Morphogen producing 

cells are green; cells in tissue take identities (blue, white, and red) according to 

morphogen concentration. (B) Activator-inhibitor systems incorporate local positive 

and negative feedbacks to generate pattern. Distinct cell types in red and blue. (C) 

Synchronization of genetic oscillators allows a tissue to generate a coherent temporal 

rhythm for patterning. In these snapshots, the phase of each oscillating cell is given by 

its color, which changes over time. (D) Tissue deformation can drive patterning 

reactions. Downstream of patterning information, the dynamic physical properties of 

tissues drive the morphogenesis of the embryo. t is time.  

 

 

In this review, we hope to introduce scientists familiar with computational methods 

(geeks) to a selected set of interesting developmental problems (Fig. 1), and to 

illustrate to developmental biologists (nerds), a selected set of powerful tools. We 
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focus on recent studies investigating four developmental patterning strategies: (i) 

Gradients of signaling molecules released from localized source cells that guides 

global patterns across target cell populations (Fig. 1A). This external control contrasts 

with self-organizing strategies within the cell population that use local interactions, 

such as (ii) activator-inhibitor mechanisms (Fig. 1B) and (iii) the synchronization of 

cellular oscillations (Fig. 1C). Mechanical deformations (iv) can also change the 

pattern of a cellular population (Fig. 1D). We note that although models are often 

useful in explaining and predicting developmental phenomena, the eventual fate of a 

given model is to be proven wrong, and then modified or replaced, as illustrated in the 

companion article on cell polarity by Mogilner and co workers on page X of this 

special issue. Perhaps the greatest impact of computational approaches in 

developmental biology right now is to force hypotheses to be precisely stated and to 

stimulate corresponding new quantitative experiments to test them.  

 

Patterning with signaling gradients  

Morphogens are diffusible signaling molecules that can activate target genes in a 

concentration dependent manner. During development, morphogen gradients are 

established across tissues, diffusing away from localized sources (Fig. 1A). It has 

been proposed that cells read morphogen levels to determine their position within the 

tissue and differentiate accordingly (6), and there is good evidence that morphogen 

gradients can direct cell differentiation in target cells. How these gradients are formed, 

and whether they are sufficient to control differentiation in very precise domains, are 

open questions that have benefited from computational approaches.  

 

An important model system for studying these questions is the early embryo of the 

fruit fly Drosophila, in part because its geometry and symmetry simplify description 

and quantitation (Fig. 2A). One of the maternally deposited cues that breaks the 

symmetry along the embryo’s long axis is bicoid mRNA, which is present only in the 

anterior pole. Bicoid protein is translated and transported (7), creating within an hour 

an exponentially-decreasing concentration gradient over several hundred micrometers 

along the embryo’s axis. This gradient directs the formation of precise domains of 

four target genes, among them hunchback, which establish the first segments of the 

future fly body (Fig. 2A). Given the stochastic nature of gene expression, discussed in 
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the companion article by Munsky and colleagues on page X of this special issue, 

morphogen concentration is expected to fluctuate, both over developmental time and 

from one individual to another. The stunning precision in the position of the 

boundaries of the segmented output pattern that is found despite these fluctuations 

puzzles both nerds and geeks. The field has wrestled with the issue of whether this 

precision can be achieved through the Bicoid gradient alone, or whether other 

mechanisms are required.  

 
Figure 2: Patterning with signaling gradients. (A) Schematic of early fruit fly 

embryo showing the maternal gradient of Bicoid protein at cycle 13 that directs the 

formation of precise target gene domains like hunchback and knirps. (B) Proposed 

gene regulatory network showing cross regulation of target genes (9). The four genes 

are also under control of Bicoid and other players, not shown. 

 

Contributing to this debate, recent papers by Manu et al. (8, 9) formulated the 

interactions between four target genes downstream of the maternal gradients in the 

early embryo using a gene regulatory network (GRN) model in which each variable 

represents the quantity of a molecular species (Fig. 2B). One of the limitations of 

GRN models is that great experimental effort is often required to estimate relevant 

values of the model’s many parameters in the embryo. Parameters for this Drosophila 

segmentation model were obtained computationally by finding those combinations 

that best reproduced a time series of quantitative spatial gene expression data from the 

embryo. The model hinted that cross-regulatory interactions between target genes in 

the GRN reduce the variability in the position of their expression domains.  
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One problem in understanding a model is that as the parameters vary, the general 

dynamic behavior of the system can change dramatically. These changes are called 

bifurcations, and using powerful tools from dynamical systems theory (10), Manu et 

al. (9) performed a bifurcation analysis of the model to identify the fundamental 

behaviors that the system can display over a given set of realistic parameter values. 

The model predicts that cells in the anterior of the embryo select a stable state of the 

dynamics, and the concentrations of targets change as Bicoid levels drop. In the 

posterior of the embryo, the system never reaches a stable state because gastrulation 

happens first. Describing the simple behaviors of a complex regulatory network in 

this compact way is appealing because it makes similarities to other regulatory 

systems clearer, and also makes falsifiable predictions about distinctive behaviors that 

can be experimentally tested.  

 

Fluctuations in gene product levels generate molecular noise that limits the precision 

of signaling gradients, and also degrades the targets’ outputs. This problem can be 

formulated precisely using the tools and concepts from information theory, originally 

used in engineering, which quantifies the flow of information through communication 

channels. A key concept is the mutual information between two variables, as for 

example Bicoid and Hunchback levels. An elegant computation by Tkačik and 

Walczak used existing precise measurements of morphogen levels (11) to estimate the 

mutual information between Bicoid and Hunchback (12). Based on their result, they 

argued that if similar results hold for the other target genes under Bicoid control, the 

combined information conveyed by the four genes would be enough so that each of 

the roughly 100 rows of nuclei could unambiguously determine its position along the 

Drosophila embryo. To test this hypothesis, combined high quality spatial expression 

data for the other target genes in the system will be necessary. Thus, information 

theory is emerging as a potentially powerful tool to quantify information transmission 

in developmental GRNs. As yet, it is unclear whether the bicoid gradient is 

sufficiently precise to instruct the precise boundaries of its target gene domains, or 

whether other mechanisms are necessary, but computational biology has a central role 

in this discussion.  
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Patterning with activator-inhibitor systems  

Cells in a morphogen gradient use the local level of an externally provided signal to 

produce patterns (Fig. 1A). However, patterns such as spots and stripes can arise 

spontaneously from entirely local interactions. In 1952 Alan Turing proposed a 

reaction-diffusion (RD) mechanism to explain spontaneous pattern formation without 

signaling gradients (13). Specifically, he considered two diffusing chemical 

components, an activator and an inhibitor (Figs. 1B and 3A). By self-activation, the 

activator can locally increase its concentration (Fig. 3A). The activator in that region 

produces the inhibitor, which suppresses the activator in surrounding space due to 

faster diffusion. As a result, local peaks of activator self-organize from the almost 

homogeneous starting state, leading to the spontaneous formation of spatial patterns, 

such as stripes and spots in a two-dimensional space (so-called Turing patterns; Fig. 

1B). 

 

Figure 3: Patterning with activator-inhibitor systems. (A) Local activation and 

lateral inhibition generates spatially heterogeneous patterns. (B) Interactions between 

black and yellow pigment cells produce Turing patterns in zebrafish skin. Mutual 

inhibition between them functions as self-activation for the yellow cells. Each yellow 

cell activates distant black cells. Therefore, inhibition of the yellow cell by the black 

cell works as a lateral inhibition. (C) Different modeling approaches to spontaneous 

pattern formation. 
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Subsequently, RD systems have been considered to play important roles in 

spontaneous pattern formation (14, 15). Although spatial structures very similar to 

simulated Turing patterns have been observed in development, until recently there 

was scant evidence showing that the Turing mechanism causes these structures. 

Indeed, conceptually elegant RD models of the Drosophila segmentation process 

introduced above proved to be entirely wrong (16), and this failure may even have left 

some developmental biologists wary of further theoretical efforts. However, 

identification of interaction rules and key molecular components in several putative 

RD systems (17, 18) now suggests the potential of a long-awaited experimental 

verification of these ideas.  

 

Skin pattern formation in fish has long been a candidate for patterning using the 

Turing mechanism (19). To identify key interaction rules in the system, Nakamasu et 

al. studied stripe formation in zebrafish skin (20). These black and yellow stripes are 

self-organized over three weeks by local interactions between black and yellow 

pigment cells, which fulfill the condition for Turing patterns (Fig. 3B). To confirm 

that the experimentally observed interactions between pigment cells can generate 

stripes, the authors first used deterministic partial differential equations to model 

cellular dynamics. However, because the width of each stripe in zebrafish is only 

around ten cells, Nakamasu et al. pointed out that stochastic effects caused by smaller 

cell numbers might prevent stable stripe formation. In that situation, it would be a 

better formulation to explicitly describe stochastic behaviors of each single pigment 

cell, such as birth, movement and cell death. The authors developed a cellular 

automaton-based model (Fig. 3C) including the observed pigment cell interactions to 

study the robustness of stripe patterns against stochastic effects. Although such 

detailed models usually include several parameters not measured experimentally, 

simulations of the cell-based model produced patterns similar to those obtained by the 

deterministic model and observed on the zebrafish skin. Combining investigations of 

the molecular and cellular basis of the cellular-level interaction rules (21) with further 

theoretical studies should reveal whether this is indeed a Turing system. 

 

Interestingly, gradient patterning strategies can also be formulated as RD systems, 

since gradients can arise from diffusion of morphogens and the pattern emerges due to 
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reactions that involve these morphogens. However, the different length-scales 

involved in activator-inhibitor systems give rise to qualitatively different patterns, 

which are local in nature. This is an example of how very different developmental 

patterning strategies can be described using similar model formulations.  

 

Patterning with genetic oscillations 

The growing body axis of all vertebrate embryos is rhythmically and sequentially 

subdivided into segments. For example, in the zebrafish embryo, the multicellular 

segments are ~50 micrometers long and form with a periodicity of 30 minutes. 

Inspired by such clock-like regularity, Cooke and Zeeman proposed the Clock and 

Wavefront model in 1976 (22). In this model, a biological clock ticks at the posterior 

of the elongating embryo and the distance advanced by a wavefront along the 

embryonic axis during a cycle of the clock sets the length of a forming segment. More 

than twenty years later, the model was revived with the discovery of genetic 

oscillations in the chick embryo (23). This segmentation clock appears to be a tissue-

level rhythmic pattern generator (24), in which a population of progenitor cells 

behave as coupled oscillators, self-organizing a collective rhythm through mutual 

synchronization (Fig. 1C).  

 

A clue to the existence of such a synchronized cell population came from zebrafish 

mutants that disrupt Delta-Notch intercellular signaling, in which coherent 

oscillations and segmental patterning are gradually lost (25). The current hypothesis is 

that in the wildtype embryo, Delta ligands under the control of a single-cell oscillator 

activate Notch receptors in the membrane of neighboring cells, and these receptors 

coordinate oscillating gene expression in the receiving cell (Fig. 4A). Without Delta-

Notch signaling, the single cells’ oscillations gradually lose synchrony. The 

plausibility of this synchronization hypothesis has been studied using GRN models 

showing that the Delta-Notch mechanism described above could keep neighboring 

cells oscillating in synchrony (26, 27).  
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Figure 4: Patterning with genetic oscillations. (A). Cyclic gene expression 

oscillates in individual cells due to a negative feedback loop, and oscillations are 

coupled to neighbor cells through the Notch pathway. (B) The mutual effects of 

cellular oscillators can be described by models of coupled phase oscillators. 

 

Given the previously mentioned difficulty of determining GRN parameters from 

embryos (28), an alternative and complementary model formulation is to use an 

effective theory with variables that represent processes for which there is a particular 

interest or a possibility of experimental comparison. For the segmentation clock, this 

approach has been applied to investigate the synchronization hypothesis using 

theories based on coupled phase oscillators (Fig. 4B). In a phase oscillator model, the 

variables corresponding to oscillating molecular species are substituted by a single 

variable: the phase of the oscillation cycle, which advances in time with a given 

intrinsic frequency. The effect of Delta-Notch signaling is captured by a coupling 

function that speeds up or slows down a cellular oscillator depending on the phase of 

neighboring cells. Phase oscillator models do not offer direct insight about dynamics 

of individual molecular species, but their simplicity allows powerful insights about 

system-level dynamics from paper and pencil analysis. Furthermore, they allow a 

direct fit to experimental data relying on a few coarse-grained parameters like the 

period of the oscillations (29). 

 

Using a phase oscillator model, the synchronization problem of the segmentation 

clock was formulated as a competition between noise and the intercellular coupling 

that keeps cells in synchrony (30). Together with quantitative experimental 
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disruptions of Notch signaling in zebrafish, the model allowed estimation of the noise 

level and coupling strength relevant for the tissue-level synchrony of the clock. 

Coupling involves the new synthesis of Delta ligand every cycle (Fig. 4A), and to 

represent the anticipated duration of the ligand-receptor mechanism, Morelli et al. 

(29) included explicit time delays in the coupling function of a phase oscillator model. 

This delayed coupling theory made the prediction that changing the coupling strength 

could change the clock period, and motivated the study of the dynamics of Notch 

mutants. Quantitative time-lapse measurements of segmentation period and analysis 

of clock gene expression patterns in mutants matched the theoretical predictions, and 

so identified the first candidates for segmentation clock period mutants (31).  

 

Although these studies have revealed some surprising insights into the segmentation 

clock’s dynamics, most quantitative data used to test models have come from static 

images (28, 31), and the desynchronization of the clock has not been directly 

observed. The advent of new techniques to observe cyclic gene expression in vivo 

(32) will allow key assumptions of the existing models to be directly tested.  

 

Patterning with mechanical deformations 

We complete our roster of patterning mechanisms with a recently discovered case 

driven by tissue deformations. An apparently simple behavior for an epithelial sheet is 

to elongate along one axis, while shrinking along the orthogonal axis. During 

Drosophila development, the wing blade epithelium stretches into the familiar 

elongate wing shape, and each of the hairs protruding from the wing cells points 

distally, an example of planar cell polarity (PCP) patterning (Fig. 5A). Although 

proximo-distal gradients of PCP pathway components have been observed, they are 

not sufficient to produce the final wing hair polarity (33). Examination of cell shapes 

and trajectories from time-lapse movies shows that sharp contraction of the 

neighboring hinge region exerts anisotropic tension on the wing blade (34). Over a 

period of 15 hours, the blade deforms with a shear gradient arising from the cellular 

flow in the tissue. 
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Figure 5: Patterning by mechanical deformation. (A) Overview of Drosophila 

wing development during pupariation, when the wing blade elongates and proximo-

distal planar polarity is established. (B) Schematic of the vertex model used to 

calculate stable cell packing geometries. 	
  

 

 

Aigouy et al. explored the role of tissue shear in aligning the axis of cellular polarity 

with the proximo-distal axis of the wing blade by formulating a 2D vertex model of 

epithelial cell shape (Fig. 5B) (35) incorporating an effective description of the local 

recruitment of complementary PCP molecules to apposing cell boundaries (34). This 

new model predicts that polarity is reoriented by local rotation and cell flow-induced 

shear. Simulations show that shear associated with oriented cell division, proximo-

distal cell elongation, and cell rearrangement also contribute to the alignment of cell 

polarity with the long axis of the wing. Future work can investigate how the 3D baso-

lateral surfaces of the epithelial cells in the wing affect this description, and how the 

PCP protein complexes involved dynamically reorganize during cellular 

rearrangement. Thus, remarkably, the final planar cell polarity of the completed wing 

may be a direct consequence of the externally applied stresses responsible for its 

B

A

bladehinge blade
hinge

t

Development of pupal wing planar polarity

local
polarity

Early pupa Late pupa

Vertex model of cell packing geometry

junction

vertex

Force balance at vertex
determined by

energy minimization
Energy = elasticity + line tension + contractility 

co
ntr

ac
ilit

y a
nd

 ad
he

sio
n

alo
ng

 ju
nc

tio
ns

ac
tom

yo
sin

 ac
tiv

ity

area

mate
ria

l p
rop

ert
ies

 

an
d a

rea

tension on blade
from hinge

Proximal Distal

Anterior

Posterior



	
   13	
  

extension, via simple physical rules like those that determine molecular polarity in 

liquid crystals (36).  

 

In this review, we have mainly discussed chemical aspects of pattern formation as 

separate from downstream mechanics of morphogenesis (37, 38). Turing already 

wondered whether a closer linkage might be at work (13), and it seems timely to 

reconsider development as having integrated mechanochemical aspects (39). For 

example, motivated by recent findings on cell cortex dynamics in the nematode 

Caenorhabditis (40), Bois et al. studied pattern formation in an active fluid in which 

mechanical contraction causes the flow of reactive chemical species (41). This 

theoretical analysis showed that an active fluid extends the parameter space in which 

classical Turing systems generate spatial patterns. To what extent continuous 

feedback between chemical and mechanical processes also underlies tissue-level 

phenomena in development is not yet clear, but it may be widespread.  

 

Outlook 

With the wide range of approaches in use, how should the developmental biologist 

select the appropriate modeling and computational methods? And where should the 

computational scientist dig for interesting problems in the vast field of developmental 

biology? Previous reviews have given multiple examples and advice (1-5). Here we 

argue that the first step is key: the level of description and model type should be 

matched to the best available data. The data should be quantitative, accurate, and 

precise and the model should make falsifiable predictions. Although some researchers 

are fluent in both domains, most often a successful computational approach to 

developmental biology will involve a long-term dialog between experts across 

disciplinary boundaries. As advances in imaging and molecular methods increase 

experimental resolution and complexity, corresponding theoretical and computational 

developments will be required to assemble the puzzle. This codependence should 

generate a wealth of new opportunities for geeks and nerds alike.  
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