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Resumen

En el presente trabajo se estudiaron las oscilaciones de Rabi generadas por la excitacion
externa de un campo eléctrico hacia un medio semiconductor cuasi-unidimensional. El
fenémeno se basa en la promocion de electrones de la banda valencia hacia la banda
de conduccion del medio, siendo éste un problema de muchos cuerpos interactuantes
entre si (por Coulomb) y con la excitacién externa, via interaccién dipolar eléctrica, las
cuales producen transiciones unicamente interbanda: |v, k) «— |c, k) ("v” por banda de
valencia, ”¢” por conduccién, k cuasi-momento). Para el trabajo se consideraron modelos
que iban de menos a mas complejidad, detallando cualitativa y cuantitativamente los
cambios en la medida que se agregaban variables a considerar: modelo de portadores de
carga no interactuantes entre si (PNI) y modelo de portadores de carga interactuantes
entre si (PI). El PNI consistié en ignorar la interacciéon coulombiana entre electrones
promovidos a la banda de conduccion; el segundo en considerarla. El punto de partida
comun de ambos fue el hamiltoniano del sistema, llegdndose a un conjunto de ecuaciones
diferenciales ordinarias en el tiempo para las candidades ne (t), nyx(t), Pe(t) que son,
respectivamente, densidad de electrones promovidos a la banda de conduccion, densidad
de huecos en banda de valencia y polarizacién interbanda. El sistema de ecuaciones en

cuestién son un caso particular de las Ecuaciones de Semicondutor de Bloch (SBE).

Se partio del estudio de una particula en un sistema de dos niveles, la cual interactuaba
con un campo eléctrico mediante aproximaciéon dipolar, observandose las oscilaciones de
Rabi y estudiando sus variaciones en amplitud y frecuencia en funcion de la sintonizacion
entre frecuencia del campo y frecuencia asociada a la energia de transicion entre estados.
Se tuvo que a mayor Aw (desintonia o detuning) menor amplitud de oscilacién y mayor
frecuencia de la misma. Basandose en esto y en el hecho de que en el problema de muchos
cuerpos las transiciones debido al campo eléctrico son interbanda, se pudo caracterizar
bajo el modelo PNI a los electrones del semiconductor como a un conjunto de problemas de
particula tinica en sistema de dos niveles, un problema individual por cada cuasi-momento
k (en todo el trabajo se incluyé al indice de spin dentro del de cuasi-momento). Ademas,
el problema abordado por el modelo PNI pudo ser resuelto en forma exacta; en cambio,
al considerar la interaccién coulombiana entre particulas cargadas (modelo PI) se llegd
a un sistema de ecuaciones diferenciales ordinarias, las cuales fueron resueltas en forma

numérica por el método de Runge-Kutta 4 (RK4).
Los resultados obtenidos del modelo PI difieren de los del PNI debido a la aparicion

de términos de energia que obligan a renormalizar ciertas cantidades, entre ellas las self-
energies X i, 2k, agentes que causan el corrimiento energético entre bandas de valencia y
conduccién en la medida que aparecen mas huecos y electrones, respectivamente, en dichas
bandas. La self-energy maxima por estado fue calculada, arrojando ,,,, ~ 4 meV. Estas
self-energies son, a su vez, las responsables de la aparicion de detuning variable en zonas

donde el modelo PI predecia valores fijos, lo que permite las oscilaciones de Rabi completas



hasta un |k| maximo que fue calculado: seteando pardmetros para tener detuning nulo
en k = 0, luego |k| = 1,098 x 1072 1/A. Por iltimo, las diferencias entre modelos més

acuciantes resultaron ser:

= cambios en el patrén de oscilaciones de Rabi (arménicas para PNI, anarmonicas

para PI);

» aumento del ancho del intervalo de cuasi-momentos en donde se tienen oscilaciones

significativas;

= cambios en el patron de valores medios temporales de densidad de poblaciéon, pa-
sando de un comportamiento de maximo en zona de detuning nulo y decaimiento
monotono al alejarse (PI) a uno con maximos absolutos desplazados y, entre ellos,

un juego alternado de maximos y minimos locales (PNI).

= aumento de densidad electrénica por unidad de longitud y de polarizacién por uni-
dad de longitud, ademds de cambios de comportamiento oscilatorio (cuasi-arménico

para PNI, anarmoénico para PI).
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1. Introduccidon

1.1. Interaccién semi-clasica entre atomo de dos niveles y campo

eléctrico

Sea un electrén (carga e y masa myg) ligado a un nicleo atémico que forma un sistema
de dos niveles de energia €,, €., con estados asociados |v), |c), respectivamente, auto-

estados del siguiente hamiltoniano:

Ho— 2 4 Vi), (1.1.1)

2m0
siendo V(r) el potencial de interacciéon coulombiano entre niicleo atémico y electron,
considerando el ntcleo centrado en el origen.

Se define:
Wep 1= — b (1.1.2)

asumiendo que |v) corresponde al ground state y |c) al nivel ezcited.

Se considera la incidencia de un campo eléctrico E(¢; r) bajo aproximacion dipolar [1],

lo cual modifica al Hy de la Ec. (1.1.1) generando un nuevo hamiltoniano:
H="Ho+Hy, (1.1.3)

siendo:

H; = —er-E(t), (1.1.4)

observando que bajo esta aproximacion se da que E(¢;r) ~ E(t; 0) =: E(¢). Definiendo el

dipolo eléctrico d := e r, el hamiltoniano H; queda:
H=—d-E(t). (1.1.5)
Para representar Ho, H; en base {|c);|v)}, se considera:
Ho = id Ho id = (Jv) (v] + [e) {c]) Ho (Jv) (v] + |e) {c]),
— Ho = €, |v) (v| + €. |c) {c]. (1.1.6)
Hi=id Hy id = (o) (v] + |e) (c]) Hr (o) {v] +[e) {e]);

— Hr = _(dvc |U> <C| + dey |C> <U|)E(t)7 (117)
pues (v|d |v) =0 A {c|d]|c) =0, en ambos casos por paridad, y se definio:

1



w = (c|d-é|v), (1.1.8a)
ve 1= (v]d - é]c), (1.1.8b)

donde é es el versor asociado a E(t). Las cantidades d.,,, d,. son los elementos de matriz no
nulos del operador momento dipolar eléctrico, las cuales satisfacen ademas que d., = d;,
(ver Apéndice A.1).

Considerando el estado méas general del electron:

(W (1)) = |v) Cu(t) + |c) Ce(t), (1.1.9)

se puede ver que su evolucion temporal se rige por el ‘H total a través de la ecuacion de

Schrodinger:

m% U (t)) = (Ho+ Hi) |V(2)), (1.1.10)

, %Ci = (C},1 = v, ¢, y aprovechando las descomposiciones

hechas en las Ecs. (1.1.6), (1.1.7), se tiene:

con lo cual, notando C;(t) = C;

ih <|v> Cy + ) Cc) = [ev [0) (v] + € [e) (e = (due [v) {e] + dev |€) (WD E@)] (Jv) Cy + |e) Co)

e [0) Cy + €0 |e) O — A E(t) ) Cy — dye B(2) [0) C,

lo cual se puede ordenar en el siguiente sistema de ecuaciones:

ihCy = €,Cy — dye E(t)C,
(1.1.11)

ihC, = €,C, — dey E(t)C,

Para ejemplificar, se considera un campo eléctrico consistente con la aproximacién

dipolar, i.e. independiente de la posicién, dado por:

E(t) = Ejy cos (wt), (1.1.12)

el cual permite escribir el sistema de ecuaciones anterior de la siguiente forma:

ihCy = €,Cy — dyFy cos(wt)C,
. (1.1.13)
ihC. = €.C. — de Eg cos(wt)C,
Si se asume d,, = |de,|e”* y se define la frecuencia de Rabi wg como
|dcv|E0
= 1.1.14
WR 2% ) ( )



el sistema pasa a ser:

C, = —i e—vC’U + 2i wgre' cos(wt)C,
h (1.1.15)

C, = —i %CC + 21 wre™ ™ cos(wt)C,

Para resolver el sistema dado por la Ec. (1.1.15), se considera el siguiente cambio de

variables:

¢y, = Cpe™t N ¢, = C.e™, (1.1.16)
€y €
en donde se definen w, := —,w,. := —. Con esto:
h h
n Cpem Wl 4 (—f w,)e e vt = —j wye,eT ™ 4§ wRet (e 4 et o et

S C'U ) wRez(bccezwcvt (ezwt + e—zwt)'
n Coe el 4 (—f we)eee T = —i wec.eT e i wpet? (e + e W) ¢ et
= . = 1 wrePc,e” et (et 4 et

Luego, aplicando la aproximacién de onda rotante (RWA), i.e. despreciando los térmi-

nos que oscilan a frecuencias altas (we, + w), queda:

_ (1.1.17)

Cp =1 wRe”’cCe”(””’“)t
¢. =i wre Pc, el

Se define la desintonia entre la frecuencia de transicién w,, y la del campo w como:
Aw = Wy — w. (1.1.18)

Con esta definicién, se plantea el sistema dado por la Ec. (1.1.17) en forma matricial, lo

que lleva a una ecuacion de autovalores y autovectores cuyo polinomio caracteristico es:

) ' mp—i(Bwt=0))
det . ! WRe
i wRez(Awt—qb)) -\

) =\ +wj =0, (1.1.19)

en donde es trivial ver que los autovalores son A = +¢ wg y, entonces, los autovectores

generan subespacios:
s ((1;—€'B1=9))) para A = —i wg;
n ((1;€A4=9))) para A = i wp.

Con esto, la solucién de Ec. (1.1.17) més general se escribe:

élefszt + C~26szt

(1.1.20)

—N—
o o
o <
—~
~ ~
~— ~—
[

é [_ei(Awt—qﬁ)]e—int 1 Gyei(Bwt=9) iwrt

3



siendo ¢1, ¢; € C constantes de integracion.

Luego, se puede definir una frecuencia {2z como la hipotenusa de un triangulo rectangu-

lo conformado por las frecuencias de Rabi dos veces y la desintonia como catetos, o sea:
QR = (2w3)2+Aw2. (1121)

Con las definiciones de Aw y €, la solucién general se puede reescribir como:

eo(£) = (0, RRI2 4 gy o—int/2) gidwt/2
{ (®) = (v ’ ) (1.1.22)

cc(t) _ (clemRt/2 + C2€—iQRt/2) pidwt/2

A partir de aqui se puede entender que el sistema presenta las denominadas oscilaciones
de Rabi, i.e. una evolucién temporal oscilante entre estados |v) , |¢) a través de la frecuencia
de Rabi y de la desintonia. Las constantes vy, vs,c1,co se determinan a través de las

condiciones iniciales ¢,(0), ¢,(0), ¢.(0), ¢.(0), asumiendo t, = 0, en donde se obtienen:

T (R + Aw)c, (0) + (2wr)ec.(0)] (1.1.23a)
vy — ﬁ (2 — Aw)e,(0) — (2wr)ee.(0)], (1.1.23D)
c = ﬁ (2 — Aw)e(0) + (2wr)e e, (0)] (1.1.23c)
=50~ (2 + Aw)c(0) — (2wr)e e, (0)] . (1.1.23d)

Con éstas, las soluciones se pueden reescribir como:

. I QRt ‘Aw . QRt 1 ,2wR ié . QRt —iAwt )2
cv(t)—{cv(O) -COS< 5 )—1—2 9, sm( 5 ) +i . ¢ c.(0) sin 5 e ,

R
(1.1.24a)
o QRt Aw QRt 1 ,QU}R —i¢ . QRt iAwt/2
c(t) = {CC(O) cos <T) i Q—Rsm <T> +i Q—Re ¢,(0) sin - ) (¢
(1.1.24b)

Notar que las soluciones de la Ec. (1.1.24) preservan la norma de |¥(t)), o sea:

(TOIW(L) = [Co(OF +[Cot)* = 1 = |ec(t)]” + |eo (1), (1.1.25)

con lo cual se puede definir una cantidad interpretable como la inversién de poblacion

entre estados |v), |¢):



W(t) = |Cc(t)|2 - |Cv(t)|27 (1'1'26)

la cual verifica —1 < W (t) < 1y via Ec. (1.1.24), si se consideran condiciones iniciales
(0) =1 A ¢.(0) =0, resulta ser (ver Apéndice A.2, culminando en Ec. (A.2.4)):

Aw? — (2wgr)? Q Q
W(t) = - w—2(wR) sin’ <—Rt) + cos® (—Rt)} . (1.1.27)
02 2 >
Notese que en caso Aw = 0 (sin desintonia), luego W (t) = — cos(2wgt). Por otro lado,

bajo la accién de un campo eléctrico incidente, entre los estados |v),|c) se induce un
momento dipolar dado por el valor de expectacion del operador dipolo eléctrico, el cual

en la direccion é del campo es:

plt) = (1) d - & [U(1)). (1.1.28)

luego:
p(t) = e[C5(t) (v] + Ce(t) el x - e[[v) Cu(t) + |c) Ce(t)] =

CH(t) dye Ce(t) + C2(t) dey Cu(t) = co(t)ci(t) dpe et + c.c.,

[

quedando para el caso ¢,(0) =1 A ¢.(0) =0 (ver Apéndice A.3):

B . QOJR QRt . Aw . QRt . QRt it
p(t) = 2|dcv| Re {Z Q_R |:COS (T) (4 Q_RSIH T Sin T e . (1129)

En la Fig. 1 pueden verse las oscilaciones de Rabi para un sistema de dos niveles |v) , |¢),
asumiendo ¢,(0) =1 A ¢.(0) = 0, en los casos sin desintonfa (Fig. la) y con desintonia
no nula (Figs. 1b, 1c, 1d). Asimismo, en la Fig. 2 se aprecia la evolucién temporal del
momento dipolar inducido p, también en los casos desintonia nula (Fig. 2a) y desintonia
no nula (Figs. 2b, 2¢, 2d). Para estudiar el momento dipolar se supuso |d.,| = 1,577 D,
resultado proveniente de la integral de una funciéon de onda tipo ”s” con una ”p” del
atomo de hidrégeno (de, = e {(c|r-é|v) = (167/81) e 1o, o radio de Bohr).

Cuando se tiene desintonia nula, las transiciones entre niveles |v), |c) son completas
pues los coeficientes de la Ec. (1.1.24) se reducen a funciones trigonométricas (multipli-
cadas por una fase), con frecuencia de oscilacion wg (Fig. 1la). En cambio, cuando se
introduce una desintonia Aw = 2wg, las transiciones decaen a la mitad de su amplitud,
manifestdndose esto por la inversién de poblacién: —1 < W (t) < 0 (Fig. 1b). Llegdndose
a duplicar esta ultima desintonia, i.e. Aw = 2 X (2wg), la probabilidad de transicién es
tal que |c.|? < 0,25 (si ¢,(0) = 1, como se estd suponiendo); esto se manifiesta en la Fig.
lc. A partir de cuando la desintonia alcanza ya un orden de magnitud mayor a 2wg, i.e.

Aw = 10 x (2wg), las oscilaciones de los coeficientes se vuelven poco apreciables, por lo

5



que la inversién de poblacion: W (t) ~ —1 (Fig. 1d).

Respecto al momento dipolar inducido p, dada la definicién segin Ec. (1.1.28), tiene
que ser nulo cuando se tienen estados puros ) = |v),|c), a un dado instante, y no nulo
cuando [1) sea una combinacién lineal de estados. Esto se manifiesta en las Figs. 2. En el
caso de la Fig. 2a, como la desintonia es nula, habra transiciones completas, y entonces
p =0 cuando |¢,|* =1 V |c|? = 1; en cambio, en las Figs. 2b, 2¢, 2d puede verse que
como las transiciones nunca son completas, p = 0 sélo cuando se repite la condicion inicial
en un periodo de oscilacién de los coeficientes (en este caso ¢,(0) =1 A ¢.(0) =0).

Otro aspecto importante a tener en cuenta respecto a p, como puede apreciarse en la
Ec. (1.1.29) y en los ejemplos de la Fig. 2, es que esta compuesto por una frecuencia rapida
que actia de portadora, que es la w del campo, y por una frecuencia relativamente lenta
que actua como moduladora, siempre asociada a (1. Existen dos casos limite en donde
las expresiones de p dejan ver con sencillez la forma de la moduladora y de la portadora:

casos desintonfa nula y desintonia alta. Para ello, partiendo de Ec. (1.1.29), se plantea:

2 Qpt Qpt
p(t) = 2|de| Re {z R s R ) sin | —2 ) [cos(wt) — isin(wt)] +

Qg 2 2
w sin® (@) [cos(wt) — i sm(wt)]}
02 2
R

2 Q Q 2wrA Q
= 2|d| lQLR cos <7Rt) sin (TRt) sin(wt) + wé;{d sin? (TRt) Cos(wt)}

. ZwR . QRt QRt . Aw . QRt
= 2|d| 0 sm( 5 ) COS( 5 )sm(wt) + 0 sm( 5 )cos(wt)}

(1.1.30)
s Caso I: Aw=0= Qp = 2wp.
= p(t) = |dey| sin(2wpt) sin(wt). (1.1.31)
Llamando pgz)d(t) := |de| sin(2wgt) a la moduladora de esta tltima, queda:
p(t) = p2) (1) sin(wt). (1.1.32)
s Caso II: Aw >> 2wp =— Qp = Aw.
2wp . [(Awt Aw t\ . C(Aw t
— p(t) = 2|d.| AL sm( 5 ) |:COS( 5 > sin(wt) + Sln( ) cos(wt)}
20r . [Awt) . Aw
= 2|d| A sm( 5 ) sin {(T —|—w) t} (1.1.33)
2wgr . Awt .
~ 2|d.y| e sm( i >sm(wt).



Llamando pg;)i(t) 1= 2|d,| 222 sin (24-) a la moduladora de esta tltima, queda:

p(t) = p" (1) sin(wt). (1.1.34)

El la Fig. 3 se grafican, segin Ecs. (1.1.32), (1.1.34), los casos I y II, respectivamente

en Figs. 3a, 3b, bajo las mismas condiciones que se venia planteando en los ejemplos de
(1)

mod

de p(t), mientras que para el caso II basté con considerar Aw = 10 X 2wg para que p

es exactamente la moduladora
€2))

mod

Figs. 1y 2. Para el caso I se tomé Aw = 0, viendo que p

sea una buena aproximacion a la moduladora p(t).

Existen multiples estudios en donde las oscilaciones de Rabi fueron observadas expe-
rimentalmente. Uno de ellos muy reciente es Combined time and frequency spectroscopy
with engineered dual comb spectrometer, de Sutapa Ghosh y Gadi Eisenstein [3], en donde
se excité una muestra de Rb (combinada de **Rb y 8 Rb) para generar distintas transi-
ciones mediante un tren de pulsos laser, de tal manera que el periodo entre pulsos sea
mucho menor que el tiempo de relajacién de cada nivel excitado hacia el fundamental y
ello permitiera la acumulacién electrénica en los respectivos excitados.

En éptica cudntica, la primera evidencia experimental de las oscilaciones de Rabi fue de
naturaleza indirecta; se dio en 1969 con el estudio Self-Induced Transparency, de Samuel
L. McCall y Erwin L. Hahn [!], en donde se observé que excitando un sistema de dos
niveles con un 27-pulso, los dtomos quedaban en el estado fundamental al final del pulso.
Esto implicé que no habria absorcion neta, por lo que un medio que absorbe fuertemente
a potencias bajas se volveria transparente frente a un 27-pulso. Por su parte, las primeras
evidencias directas de las oscilaciones de Rabi se dieron en 1972 [5] y 1973 [6] por parte
de Hyatt M. Gibbs, en donde se informé sobre la fluorescencia emitida por atomos de
Rb excitados resonantemente por pulsos cortos de un laser de mercurio; con una baja
densidad de atomos para evitar el desfase por colisiones, se detectaron las oscilaciones
midiendo la fluorescencia del nivel excitado en funcién del area del pulso.

Un resumen més abarcativo sobre las primeras evidencias experimentales de las os-
cilaciones de Rabi se encuentra en el libro Quantum Optics, an Introduction, de Mark
Fox [7].
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Figura 1: Oscilaciones de Rabi en sistema de dos niveles |v) , |¢) (caso ¢,(0) =1 A ¢.(0) =
0) representadas por la evolucién temporal del médulo al cuadrado de los coeficientes
Cyy € del estado general |U(t)) = |v) ¢, (t) + |¢) co(t), considerando ademds la inversién
de poblacién W. Los niveles distan energéticamente €, — ¢, = 1 €V entre si, luego w., =
1,520 x 10'® Hz. El campo eléctrico es de amplitud E, = 287 dyn/esu, con lo cual la
frecuencia de Rabi es wgr = 2,147 x 10'! Hz.
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Figura 2: Momento dipolar inducido por las oscilaciones de Rabi en sistema de dos niveles
[v), |e) (caso ¢,(0) =1 A ¢.(0) = 0), cuya diferencia de energias es €, — €. = 1 eV, luego
Wey = 1,520 x 10'® Hz. Campo eléctrico de amplitud E, = 287 dyn/esu, con lo cual
wr = 2,147 x 10" Hz. Para el caso se tomé |d.,| = 1,577 D.
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Figura 3: Comparacién entre momento dipolar inducido por las oscilaciones de Rabi en
sistema de dos niveles |v) , |¢) (caso ¢,(0) =1 A ¢.(0) = 0) y la modulacién de su amplitud
en casos desintonia nula (Aw = 0) y desintonia alta (Aw = 10 X 2wg). La diferencia de
energfas es €, — e, = 1 eV, luego we, = 1,520 x 10 Hz. Campo eléctrico de amplitud
Ey = 287 dyn/esu, con lo cual wg = 2,147 x 10" Hz. Para el caso se tomé |d.,| = 1,577 D.



1.2. Transiciones opticas dipolares en semiconductores

En un semiconductor, el gap entre la banda de valencia y la de conduccién corresponde
a alguna energfa E, alcanzable mediante un campo eléctrico de frecuencia w, desde el
infrarrojo lejano hasta niveles épticos, de modo que E, = hw.

Cuando un electréon abandona la banda de valencia y pasa a formar parte de la de
conduccién, el sistema puede modelarse como si el lugar vacante fuera ocupado por un
"hueco”, éste de masa igual que la del electrén mg pero carga |e|. Dicho sistema puede ser
simplificado como uno de dos niveles, en donde ademas de la interaccién de las particulas
con el campo esté la interaccion coulombiana entre particulas (electrén-electrén y electrén-
hueco). Un primer paso en el estudio de transiciones épticas se puede hacer ignorando la

interaccién coulombiana entre electrones de conduccion (y con los huecos en valencia).

1.2.1. Hamiltoniano de interaccién dipolar luz-semiconductor
Sea un solido cristalino, en donde cada electrén posee el siguiente hamiltoniano:

p2
Ho = —— + Vo(r), (1.2.1)

2m0
siendo Vp(r) el potencial de interaccién entre el electrén y los nicleos y electrones per-
tenecientes a iones. Como el solido forma una red cristalina, el potencial serd periédico

segun los parametros de red:
Vo(r + R,) = Vo(r), (1.2.2)

para cualquier desplazamiento R,, = Z n;a;, n; € 7, {a;} conjunto de vectores primitivos

)

de la red.
Las auto-funciones del hamiltoniano Hy son las funciones de onda electrénicas que

satisfacen el Teorema de Bloch:
e By (ki) = (kT + Ry,), (1.2.3)

siendo A el nimero cudntico que determina los niveles de energia (bandas, en este caso,
pues las energias dependen también de k). Luego, si L3 es el volumen del cristal, las

auto-funciones son: .
Ua(k;r) = meik'rm(k; r), (1.2.4)

en donde las uy son las denominadas funciones de Bloch, las cuales son tales que uy (k;r) =
ux(k;r + R,,), 0 sea satisfacen la periodicidad de la red.
Como ¥, (k;r) = (r|\ k), el Hy diagonalizado por la base de estados {|\, k)} es:

Ho=h)_ wilX k) (VK| (1.2.5)
Ak
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pudiéndose definir a las energias € x 1= hw) k.

En semiconductores con gap directo, en un entorno de k = 0, las bandas de valencia y
conduccién se comportan como dicta el esquema de la Fig. 4: dos parabolas, una convexa
(conduccion) y otra céncava (valencia), en donde la distancia minima entre ellas se da
en k = 0 y vale E,. Esto da lugar a la interpretaciéon de masas efectivas tales que un
electron libre, para un dado k, podria tener una energia equivalente a la del punto que

corresponda en cada parabola F vs. k, o sea:

h*k?
EU,k - 2 ) (126&)
My
h*k?
ee = Ly + 5, (1.2.6b)

asumiendo v, ¢ como los niimeros cuanticos que caracterizan a la banda de valencia y de
conduccién, respectivamente, de modo que la masa efectiva m, < 0 para poder representar
la concavidad de la pardbola. Con esto, para un dado k, si un electrén se encuentra en
la banda de valencia, para poder realizarse la transicion necesitaria de una excitacion

externa que entregase un AFE(k):

AE(Kk) =F 1.2.7
(0 =Ey+ 5, (127)
con m,. tal que
my = —e M (1.2.8)
My — M
R (1 o — Me h2k?
pues €,x + AE(k) = B, + — (— + u) k? = E, + = €ck-
2 \m, M My me
E

TN, k

Figura 4: Esquema de bandas de valencia y conduccién en torno a k = 0.
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Por otro lado, al igual que en la seccién anterior, si se agrega un campo eléctrico y se
considera la interaccién dipolar de la luz con cada electrén, se tiene un H; igual al de la

Ec. (1.1.5), el cual, descompuesto en la base {|\, k)}, resulta:

My =— ( Y Ak k) [V K) <>\,k|> CE(t), (1.2.9)

MK k

con

d)\/)\<k,;k) = </\/,k/|d‘>\,k> (1210)

elementos de matriz del dipolo eléctrico.
Lo que sigue es relacionar los operadores d y p entre si para poder explicar transiciones
interbandas. Para ello se considera el siguiente auxiliar del Apéndice A.4, que culmina en

la Ec. (A.4.1). Con esto, es trivial ver que se cumple:

do(Kik) = —— " (e, ¥|p|v,k)
mo (Gc,k/ - Gv,k) (1 9 11)
——A(c K'|plv, k) -
- mo AE(k) ) p ) )
siendo
(¢, X'|plv, k) = / &z ¥ (K;r) p ¥,(k;r). (1.2.12)
L3

Como se esta trabajando en un entorno de k = 0 de las bandas de valencia y conduc-
cién, las funciones de Bloch u, (k;r) se pueden aproximar por constantes respecto a k en
dicho entorno, pues varian muy tenuemente para pequenos valores de k [2], haciendo que

las auto-funciones de la Ec. (1.2.4) queden:

1

meik-rm(o;r), (1.2.13)

(k) =
para A = v, ¢, lo cual equivale a que las auto-funciones v, (k;r) adoptaran el k de la onda
plana que pre-multiplica a la funcién de Bloch centrada en k = 0. Luego, insertando la
Ec. (1.2.13) en Ec. (1.2.12) y operando como se muestra en el Apéndice A.5 hasta llegar
a la Ec. (A.5.1), se tiene:

1 1
(¢, X |plv, k) = 3 /3 Bz e R T (0. 1) (hk + p) u,(0; ). (1.2.14)
L

Ademas, como vale que uy(0;r) = u)(0;r + R,,) para cualquier desplazamiento R,, sobre
el cristal, la integral sobre todo el volumen se puede reemplazar por una suma de integrales
en cada celda unidad de volumen [3, si se hace el cambio de variables r — r + R,,, con
n € {1;2;...; N}, siendo N el nimero de celdas, ddndose que L3 = NI3;

12



/ N~ —k) Ry | s e
(¢,X|plv, k) = Z — N B d’r e Tur(0;r) (hk + p) u,(0;r).  (1.2.15)
n=1 1

N e—i(k'—k). R

Como Z — N - 0wk, resulta:

n=1

1 (K
(€K plonk) =G [ d e O O0) (k4 p)u,(01r)
l

1
= Ok 1—3/ d*z ur(0;r) (hk + p) u,(0;1).
l3

(1.2.16)

Por su parte, en la integral que involucra a hk, el cuasi-momento k actia como vector

(no como operador) y por tanto puede retirarse a izquierda de la integral, quedando:

1
1—3/ Bz 1w (0: 1)y (0: 1) = o, (1.2.17)
l3

la cual en este caso se anula pues v # ¢, ya que se trata de transiciones interbandas. Con

esto, el elemento de matriz (v, k| p|c, k) queda:
/ 1 3 *
(¢, K'|p v, k) = dwk 5 d°x ui(0;r) p u,(0;r). (1.2.18)
I

1
Llamando p,(0) := l_3/ d*x u’(0;1) p u,(0;r), la Ec. (1.2.11) termina quedando:
13

1 eh

Kik)=——
dcv( ’ ) mo AE(k)

6k/k pcv(()) (1219)

La funcién d que aparece en este elemento de matriz del dipolo eléctrico indica que
las transiciones que éste es capaz de inducir siempre ocurren sin alterar el estado en el
k-espacio. Se dice por ello que son transiciones opticas verticales. Asimismo, el elemento

de matriz del operador dipolo eléctrico en k = k' = 0 es:

1 eh

d.,(0) = T imo AB(0)

Pe(0), (1.2.20)

adoptando la notacién d.,(0) := d.(0;0). Con esto, multiplicando y dividiendo Ec.
(1.2.19) por AE(0), se tiene:

AE(0)

de,(k'; k) = d.,(0) AB(K)

Srerie. (1.2.21)

De aqui, recordando las Ecs. (1.2.7), (1.2.8) y que en caso de k = 0 : AE(0) = FE,

g, 1o

anterior se convierte en:
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E
de, (K5 k) = dep(0) ——25 O (1.2.22)

h2k2
Eg + 2my

Con este ultimo resultado, centrandose tinicamente en los niveles v, ¢, el hamiltoniano

de interaccién dipolar eléctrica Hy de la Ec. (1.2.9) se puede escribir como:

Hr=— (delc.k) (v, k| +d, |v,k) (¢, k|) - E(t). (1.2.23)

1.2.2. Transiciones 6pticas interbanda: dinamica de la matriz densidad

Para estudiar transiciones interbanda v, ¢, se considera la matriz densidad p(t), que se

puede expandir en base {|\, k)} para A = v, ¢ y cada k, como:

p(t) =Y ol t) AT (X K. (1.2.24)

KN
Notar que esta expresion es simplificada, en el sentido de que no incluye coherencias

entre los distintos cuasi-momentos k. Esos elementos no diagonales no son necesarios en

esta descripciéon de electrones no interactuantes entre si y transiciones épticas verticales.

La ecuacién de movimiento de p(t) estd dada por la ecuacién de Liouville-Von Neu-
mann (ver Apéndice A.6, Ec. (A.6.1)):

% () = —% 7, p(t)], (1.2.25)

en donde ‘H = Hoy + H;, siendo Hg, H; los hamiltonianos restringidos en las dos bandas
v,c. Como las transiciones interbanda se dan conservando el mismo k en cada caso, en
lugar de analizar a todo el operador p dado por la Ec. (1.2.24), alcanza con estudiar lo

que ocurre con cada coeficiente py definido como:
pil(t) ==Y panv (ks t) [\, k) (X, K] (1.2.26)
AN

En Ec. (1.2.25), si se desarrolla H = Hy + H; en base {|\, k)}, A = ¢,v (Ecs. (1.2.5),
(1.2.23)), resulta que los productos internos resultantes al expresar py en la misma base

anula todos los términos tales que k # k’, con lo cual, se tiene para cada k:

& pult) = — [ 1) (12:27)

siendo:
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Hy = ’Ho,k + HI,k; (1.2.28&)
HO,k = hx,uc,k |C, k> <’U,k‘ + hwvyk ‘U, k> <C, k‘ s (1228b)
Hix = — (dew |, k) (v, k| + d7, v, K) (¢, k|) - E(2). (1.2.28¢)

Pasando al picture de interaccién, la Ec. (1.2.27) se simplifica en:

d in mn in
() =~ [’H“L ], (1.2.29)
siendo:
pint@) = exp (%%Ot) pk(t) exp <—%7‘[0t) s (1230)
}”ﬁ(t) = exp <i%t) Hrxexp <—iﬂ)
f (1.2.31)

— [ei(wc,kfwu,k)tdcv |C, k> <U, k| + e*i(wc,k*wmk)tdzv |U, k> <C, k| . E(t)

Insertando estas dos dltimas en Ec. (1.2.29):

d int o i int
%Pk (t) = 7 E(t) - ;\; ,\x(k t) .
1.2.32
[ez(“ k— Wy k>tdw (e, k) (v, k|A, k) (X,k[ — |\ k) (X,k]c, k) (v, k|) + ( 32)
eilermean)tqr (Jo, k) (e, k|A, k) (N, k| — [\, k) (N, klv, k) (e, k)],
siendo:

P (kit) = (K| p™ (1) [N, k)
= (\, k| exp (i%)p(t) exp (—zH—> I\ k) (1.2.33)
— ei("‘))\,k_w)\’,k)tp)\7>\, (k, t)’

con lo cual es trivial ver que
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Pow (K1) = poo (ks 1), (12:342)
P’ (ki) = pec(k; t), (1.2.34b)
Pt (k: t) = e'(wc,k—wu,k)tpcv(k; t), (1.2.34c¢)
pint(k;t) = e~ iwerwuidty (e p). (1.2.34d)

De esta forma, operando sobre Ec. (1.2.32) tal como muestra el Apéndice A.7, se llega

al siguiente sistema de ecuaciones diferenciales ordinarias:

(d ? %
@pw(k; t) = K [puc(k; t)dey — peo(k; t)dy,] - E(2)

d . 1 N
_pvc(k; t) = Z(WC,k - wv,k)pw(k? t) - ﬁ [pvv(k§ t) - pee(k; t)] dg, - E(t)

Oélt Z, (1.2.35)
apcv(k; t) = _i(wc,k - wv,k)pcv(k; t) + ﬁ [va(k, t) - pcc(k7 t)] dcv ’ E(t)
d i
_cck;t:_ vck;tdcv_ cvk;td* -E(t
| el t) = 1 poclls ey — peol; )2, E(1)
De la Ec. (1.2.35) es trivial ver que %pac = —%pw. Esto era de esperar, pues los

elementos de matriz p,, dan la probabilidad de encontrar un electrén en el estado |\, k).
Asimismo, se tiene que p., = pi.. Con esto, se tiene que las tnicas ecuaciones indepen-

dientes del sistema son:

d . cde, - E(t

_pcv(k; t) = _Z(wc,k - wv,k)pcv(k; t) +1 —(> (va(k7 t) - pcc(k? t))

" a - E(D) (1.2.36)
ek ) = =2 I | =2 (ks

dtpCC( 7t) m h pcv( 7t)

en donde se tomé pye(k;t)de, - E(t) — peo(k; t)dE, - E(t) = 20 Im [d., - E(t)p, (k; t)].

1.2.3. Excitacién optica monocromatica a portadores no intectuantes

Asumiendo que el campo eléctrico tiene la forma:
(e™F + e, (1.2.37)

y aplicando RWA, las Ecs. (1.2.36) quedan:
d

7, FPcv kvt =

Pk t)

dey B . .
— 1 Wey kP (K5 1) + o - [:Ovv<k§ the wh— pec(k;t)e Mt] J

(1.2.38)
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dcv : EO

d
L pkit) = —2 1
pec(k; ) m 57

dt

ot | (1.2.39)

en donde se defini6 d., :=de, - € N Wepk = Wek — Wy k-

Se puede definir la cantidad
o dchO

WR ‘= on s

que no es otra cosa que la frecuencia de Rabi, si se asume d,, € R (= d}, = d,,,). Luego:

(1.2.40)

i . _ i . iwt  —itwt] __ i . wt] . iwt —jwt
dtpcv(k; t) T [pcv(k,t)e e } = {dt [pcv(k, t)e } 1w [,Ocv<k7 t)e ]}6

= —i WepkPeo(Kit) +1 wr [,om,(k; t)e ™t — peo(k; t)e—iwt]

= {—i Werx [pev(k; )€™ ] + 1 W [pou(k;t) — pec(ks t)]} e

De esta forma, reagrupando:

d ] ; iw :
7 [pcv(k; t)em] = —7 Awy [pcv(k; t)e t] +1i wg [pow(k;t) — pee(k; )], (1.2.41)

en donde se definié la desintonia o detuning:

Awk = Wepk — W. (1242)

Noétese que se reescribié la Ec. (1.2.38), basada en el elemento de densidad p.,, en la
Ec. (1.2.41), pasandose a pe,e™*, lo cual equivale a expresar dicha cantidad en un marco
de referencia rotante o rotating frame.

Por su parte, la Ec. (1.2.39) también puede ser reescrita en términos de wg y del

rotating frame:

%pcc(k;t) = =2 Im{wr [pe(k;t)e™]"} . (1.2.43)

1.2.4. Transiciones de portadores interactuantes

El sistema de la secciéon anterior corresponde a un hamiltoniano electrénico general

que aglutina los términos de las Ecs. (1.2.5), (1.2.9), quedando:

H="Ho+H,. (1.2.44)

Descontando el término de interaccién dipolar H;, el hamiltoniano H, se puede gene-
ralizar considerando todas las interacciones coulombianas posibles, i.e. entre electrones de
conduccién entre si, mas electrones de conducciéon y iones, mas la interaccion entre iones.

Luego, el término H, se convierte en:

Ho=T+H +HT +H, (1.2.45)
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en donde T es la energia cinética de los electrones y H¢ ¢ HE™* H™ corresponden, res-
pectivamente, a la interaccién de electrones entre si, electrones-iones y iones entre si. Asi
escrito, este Hg se puede interpretar como el hamiltoniano de un gas de electrones en un
sistema de iones fijos en un sélido. Si se relaja la condicién de periodicidad de la red,
los iones actiian como mero entorno de cargas positivas; esto encaja en la aproximacion
del jellium model, mediante la cual se puede demostrar [3] que los términos H¢™* H ™
contribuyen tinicamente como constantes aditivas en Hg, lo que permite la redefinicion del
mismo considerando dnicamente la interaccién entre electrones dada por H.™¢. Pasando

a segunda cuantizacion (ver Apéndice A.8, Ecs. (A.8.11), (A.8.13)), Ho se convierte en:

h?k? 1
HO = Z 2m a’L,sak,s + 5 Z Z Vq a'Tk+q,saTk’_q75’ak’,s’ak7s7 (1246)
k,s 0 k.k/,q#£0 s,s'
siendo
1 4re?
~ (1.2.47)

T g

el potencial coulombiano entre electrones.
Para economizar notacion, a menos que sea estrictamente necesario, los indices de
spin se pueden dar por contenidos dentro de los cuasi-momentos k. De este modo, H, se

simplifica a:

h2K? 1
Ho =) ala+ s > Vo algal_qaeo, (1.2.48)
2777,0 2
k k.k’,q#£0

Antes de reintroducir este hamiltoniano al problema original (H = Ho + H;), se lo
debe extender teniendo en cuenta que los operadores de creacién y destrucciéon aL, ax,
respectivamente, deben crear y destruir particulas en las bandas A\ = v, ¢, o sea que
pasan a ser a;,w ayx, operadores de creacion y destrucciéon de electrones en banda A y

cuasi-momento k, lo cual extiende el H a:

h2k? 1
Ho = Z o CL;k(l)\,k + 5 Z Vq a§7k+qa1,7k,,qa,\/,k/ak,k. (1249)
Ak A AN K ,q£0

Recordando las Ecs. (1.2.6) y sumando sobre A\, \ = v, ¢, la Ec. (1.2.49) pasa a ser:

1
Ho= <€U7kai,kav,k + 6c,k@i,kac,k) +t3 > Va <@i,k+qai,k/_q%,k'av,k
k kk/,q#0 (1.2.50)

T T T T
+ ac,k-i—qac,k’fqa’cvk'ac’k + 2ac,k+qav,k’7qav,k'a07k )

en donde se aplicaron las propiedades de anticonmutacién de los operadores a', a, segiin
las Ecs. (A.8.8).

En cuanto al H; dado por la Ec. (1.2.23), se lo puede expresar en segunda cuantizacién
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a través de operadores de campo como:

Hr = /d% U(r)(—d) - E(t;r)¥(r), (1.2.51)
en donde
T(r) = ark ¥a(k;r), (1.2.52)
Ak

siendo ¥, (k; r) las funciones de Bloch de la Ec. (1.2.13). Observar ademds que al campo
E se le permitié tener dependencia espacial, lo cual implica (de momento) no considerar

la aproximacién dipolar. Al mismo se lo puede expresar segun:

E(t;r) =¢é E(t) % (e"9™ 4 e7aT) (1.2.53)

Teniendo presente que el elemento de matriz del operador d se escribe segun la Ec.

(1.2.10) y aprovechando ademas que dyy (k; k) o< de (Ec. (1.2.22)), se puede desarrollar:

Hy = /d% Ul(r)(—d) - E(t;r)¥(r)

= 2 B() / d'x [Z al st r)] d-é (7 + ) [Z wk/wk’%r)]

Ak MK/

v —E(t) Z Z a;,k {/ dx Py(kr) d - é P (K I')] ax K/

AN kK
= —E(1) § E a;k dyy - € ay k.
ANk
Como siempre, llamando dy := dyy - € y recordando que los términos dy, se anulan

por paridad, luego, sumando sobre los niveles v, c:

Hr = =3 deB(1) (0] s + o] ) (1.2.54)
k

en donde se tom6 que d,. = d}, A d., € R.

Para estudiar transiciones interbanda v, ¢, conviene analizar la polarizacién macroscépi-
ca de interbanda, inducida por el campo E(¢;r), mediante la ecuacién de Heisenberg a
través del hamiltoniano H cuyas partes constitutivas se obtuvieron en las Ecs. (1.2.50),
(1.2.54). Esta polarizacién macroscépica esta conceptualmente emparentada con el mo-
mento dipolar inducido, dado por la Ec. (1.1.28), que habia sido definido cuando se es-
tudiaron transiciones épticas en un sistema de dos niveles. En este caso, se define P,

polarizacion macroscopica de interbanda, como el valor de expectacién del operador di-
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polo eléctrico sobre el estado inicial (justo al instante de encendido del campo eléctrico):
p— /d% (Ui(r) d U(r)), (1.2.55)

recordando que el indice de spin esta contenido en los cuasi-momentos k que se hallan en

los operadores de campo, definidos en Ec. (1.2.52). Luego:

P= > (alworx) / & 5 (K1) d (k1)

MKk

(1.2.56)
- Z <a§/’k/a/)\7k> d)\/A(k/, k)7
N A K Kk
y especificamente para transiciones interbanda (A # \'):
T Eg
P = Z <(l/\/’k/(l)\’k> dX}‘(O)Wékl’k
N AN, g™ 2my
k' k (1.2.57)
E
= D <a§’,ka)\,k> dm(O)—E +gh2k2 :
N AAN 9" 2m,

porque las ¥, (k;r) son las funciones de Bloch y cumplen todo el desarrollo que va desde
Ec. (1.2.11) hasta Ec. (1.2.22).

Si se define la polarizacién (microscépica) de interbanda |A) — |\') como:
Pyyx = <ai\/,ka>\,k> . (1.2.58)
Luego, se puede interpretar
Mok = P = <a§’kaA7k> (1.2.59)

como la densidad de particulas en la banda A, con cuasi-momento k. Entonces, para

A = ¢,v y para transiciones |v, k) — |c, k), se tiene:

Mok = <a17kav7k> , (1.2.60a)
Pcv,k = <az,kav,k> ) (1260b)
Nex = <aiykac,k> , (1.2.60c)

teniéndose que cumplir, ademads, el siguiente vinculo trivial:

Ny k + Nek = ]-; (1261)
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siempre que no haya procesos intrabanda, como colisiones por Coulomb.

Notar que, tal como ocurria en el caso de portadores no interactuantes con la matriz
densidad p, en donde no hacia falta estudiar la evoluciéon temporal de todo el operador
sino que bastaba con hacerlo para sus elementos de matriz (Ec. 1.2.27), aqui, en lugar de
aplicar Heisenberg a todo P para estudiar transiciones interbanda, alcanza con conocer
la evolucién temporal de 1, x, Py k, ek mediante el conmutador contra los elementos Hy

de H expresados en segunda cuantizacion:

Hix = Hox + Hik (1.2.62)

Hox = €rk aT Kk T €ck aTkaijL 5 Z Vq ( vkmalk, gk Aok
K40 (1.2.63)

T 1 l T
+ a’C,k-‘rqa/C,k/—qajczk/CLC7k + 2a(),k+qa’u7k/—qaﬂuvk/ac7k :

Hix = —de E(t) ( f ok +a kack> (1.2.64)

Por ejemplo, para P, k:

—zh;i ( e, k> [Hk, gy o, k]
= [7‘[0 k@ kav k} [HI k, @ kav k}

_ T T T T
= €uk |:CLU k. k; CLC k% k + €ck aqkac,ku ac’kav,k +
.I.
P E : V { [ v k+q v, k’ av,k’&v,k7 ac,kavzk +
k’JHEO

T T T T T T
|:ac,k+qac,k’—qacvk,a“c’k7 ac,kavyk +2 ac,k+qav,k’—qavyk'a07k7 ac,kavyk o

dch(t) { [al,kav,k7 aiykav,k] + [al,kac,ka alkav,k] }

Operando algebraicamente sobre los operadores de creacién y destruccion mediante
las relaciones de anti-conmutacion y conmutacién (Apéndice A8, Ecs. (A.8.8), (A.8.9)),y

luego tomando valor de expectacion en los grupos de operadores de creacion y destruccion,

se llega a:
d ? i
%Pa}’k - ﬁ (ECk G k)PCU k™ ﬁ (nU,k - nc,k) dch(t)+
h Z V << cka k’avk qQc, k’+q> + <aiykal7k,av7k_qa%k/+q> —+ (1.2.65)
k’,q7#0

1 T T t
<ac,k—qa](),k,ac7kl7qaﬂu7k + ac,k—qav,k’ a/vvklfqavvk
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Aplicando aproximaciones de fase aleatoria (RPA) y campo medio, los valores de ex-
pectacion de operadores de cuatro términos se pueden separar en productos de operadores
de dos términos, agrupandolos por densidades de particulas y polarizaciones interbanda.
Ademas, los términos que incluyen q = 0 no aportan a la sumatoria, pues ésta esta

definida para todo q # 0, con lo cual:

oot _ T _
E:Vq <ac,kac,k/av,k—qaak/+q = Vq a K (00,q — Aek'+qle ks | Avk—q ) =

k’,q#0 k’,q#0
=0
T N
Z Va < (e kv k— q>50q+ Z Va < e xlek +qle x Av,k—q
k/,q#0 k/,q#0
§ Vq nc,chv,k7q~
q70

_ T T _
. E : Vq < ckav k' Qv k—qQv, k’+q> == E , Vq <ac,k 50,q_av,k’+q%,k/ Ay k—q ) =

k’,q#0 k/,q#0
=0
T N
Z Va < (e kv k— q>50q+ Z Va < A xo K +qly kv k—q
k/,q#0 k/,q#0
§ Vq Pcv,knv,qu-
q70

- Z Va < dek—q ck’aCk' qa“k> Z Va < Do Q(5°q acvk"qaiyk’> a”’k> -

k’,q#0 k’,q#0
=0
T
E Vq < Qg qavk> 50q E Vq < Qg g qllek'—qUe 1 Qv k
k’,q#0 k/,q#0
— E Vq nc,quPcv,k-
q70

" Z V < ck q Uk’avk' qavk> Z V < ck q <5Oq av,k’—qai7kl> a'v,k> =

k’,q#0 k/,q#0
—0
§ ’ E T
V < ck qav k> 507(1 V < ck qav k'—qQ, k/avk
k/,q#0 k/,.q#0
- E Vq Pcv,qunv,k-
q70

Juntando todo lo anterior:
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d l !

%Pcv,k = ﬁ (Ec,k - 6v,k)Pcv,k - ﬁ (nv,k - nc,k) dch(t)+
1
i_i Z Vq (nc,chv,qu + Pcv,knv,qu - nc,qupcv,k - Pcv,qunv,k)
q7#0
1 1
= =z <€c,k - 6v,k)Pcv,k - = (nv,k - nc,k) dch<t)_
h h
1
7_1 (nv,k - nc,k) Z kaqpcv,q (Z Vk qllc,q Z Vk qnv,q) cv,k
azk a7k q#k
d 7
- %Pcv,k = ﬁ €ck — Z Vk—qnc,q — | €vk — Z Vk qv,q cv,k_
| a7k a7k (1.2.66)
1
ﬁ (nv,k - nck (dch + Z Vk q cv,q) .
a7k

Para n.x y n,x, se sigue el mismo camino que con P,k (Apéndice A.9): se plantea la
ecuacion de Heisenberg para ai’kacyk y alvkav,k, respectivamente, se opera algebraicamente
sobre los operadores de creacién y destruccion y, posteriormente, se toman valores de
expectacién, llegando a ecuaciones similares a Ec. (1.2.65), para luego aplicar RPA y
campo medio sobre los valores de expectacién de cada grupo de cuatro operadores para
convertirlos en productos de valores de expectaciéon de dos, interpretables como P, x, ek,

Ny x; Se reemplazan éstos, se agrupa todo convenientemente y se llega a las siguientes:

d 2 .
Tk =3 Im (dwE +) VieqP, q) k| (1.2.67)
a7k
d 2 . d
k=7 Im <dch +§(Vk . q> Plox| = =k (1.2.68)

Antes de continuar trabajando con las Ecs. (1.2.66), (1.2.67), (1.2.68), conviene hacer
un cambio de notacion que proviene de la siguiente reinterpretacion: cuando un electron
de cuasi-momento k es promovido a la banda de conduccién, en su lugar, en la banda de

valencia, aparece un hueco de masa mj, = —m,, carga |e| y cuasi-momento (—k).

En la notacion electrén-hueco, valen las siguientes:

Bl = (1.2.69a)
Bk = aly, (1.2.69b)

pues aniquilar/crear un electrén en valencia es crear/aniquilar un hueco. También se nota:
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af ==al,, (1.2.70a)
Qg = Qck, (1270]1))

lo que permite reescribir la polarizacién y las poblaciones:

Nek 1= <041T<04k> (1.2.71a)
nmk:=:<ﬁikﬁfk> (1.2.71b)
Py = Popx = <04L51k> (1.2.71c)

Por su parte, las poblaciones tienen que cumplir:

Npk = 1-— UDR'S (1272&)
Nek = Nek, (1.2.72D)

entonces, por el vinculo dado por Ec. (1.2.61), (1 —npx)+n.x = 1, asi que las poblaciones

quedan igualadas:

Nek = MNpk- (1.2.73)

Como los huecos son cuasi-particulas de masa m;, = —m, > 0, también hay que

reescribir la energia asociada a la banda de valencia €, k:

WK Rk

(1.2.74)

6’1) _= =
ok 2mv th

Con los operadores de creacion y destruccion «, 3 se podria rehacer todo el problema,
partiendo de la reescritura del hamiltoniano en términos de estos operadores. No obs-
tante, habiéndose llegado a las Ecs. (1.2.66), (1.2.67), (1.2.68), basta con reempalzar las

poblaciones y la energia €, x:

d 7 h2k2
%Pk: [(( > ZV}( qneq>
a7k

h?k?
<2mh P ) —kaqnh,q) Be (127)
a7k
7_7/ 1_nhk_nek (dch +kaq )7
q#k
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d 2 )
ek =7 Im (dwE(t) +> Vk_qpq) P, (1.2.76)
a7k
y por el vinculo de la Ec. (1.2.73):
d 2 .
e =3 Im | dey (1) + ;(Vk_qpq P (1.2.77)

Notar que los términos Zq 1 Vi—aMh,q Zq 1. Vik—qPq son invariantes ante el cambio
k — (—k), con lo cual en Ecs. (1.2.75), (1.2.76), (1.2.77) basta con cambiar la notacién
P, — Py n, — ny.

Se definen las energias de electréon y de hueco:

h?k?

€ex ‘= + E,, (1.2.78a)
h2k2

= Vie— 1.2.78b

€h.k o + ;{ k—q> ( )

lo que permite entender que, en torno a k = 0, los electrones de conduccién pertenecen
a la banda de energia €, x = €.k (tal como antes); no obstante, para los huecos, se puede
interpretar que existe una "banda” en dicho entorno cuya energia es €, x. Recordando el

esquema de la Fig. 4, esto ultimo se esquematiza en la Fig. 5.

Se definen las auto-energias de intercambio:

Sek ==Y Viqlea, (1.2.79a)
a7k

Zh,k = - Z Vk_qnh,q, (1279b)
a#k

las cuales puede verse que son las responsables de renormalizar las energias de las bandas

en todo k € 1ZB, segiin vaya cambiando la poblacién de electrones y de huecos.

Se define la frecuencia generalizada de Rabi:

de,E(t) 1
WRY = % +3 > Vicaly. (1.2.80)
q7k

Con las definiciones adoptadas en las Ecs. (1.2.78), (1.2.79), (1.2.86), la evolucién
temporal de las cantidades Fg, nex, npx se pueden resumir en el siguiente sistema de

ecuaciones diferenciales ordinarias:
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(d ?

Epk =% [(€ex + 2ek) + (enx + Znk)] Px — 7 wrk (1 — npx — Nek) ,

d
gk = 2 Im (wrxBy), (1.2.81)
—Npk = 21Im (CURJ(Plj) .

\ dt

Figura 5: Esquema de bandas de valencia y conduccion en torno a k = 0 cuando se adopta
la notacion electrén-hueco; se puede suponer que los huecos existen en una ”banda” cuya

energia en ese entorno es e,k = 3. + Zq;ék Vi—q-

1.2.5. Excitacién 6ptica monocromatica a portadores intectuantes

Adoptando un campo eléctrico cuya funcién temporal sea
E(t) = — (¢“" +e ™), (1.2.82)

y aplicando RWA sobre las Ecs. (1.2.81), éstas se rescriben:

d .
%Pk = ﬁ [(€ex + Xek) + (enx + Znx)] P
LLE (1.2.83)
—1 ( Opiwt 4 Zqu > (1 —npx — Nex)
q7fk
d dev i ]
i =2 Im ( b4 ka a ) : (1.2.84)
L qaék J
d dchO 71wt ]
k=2 Im ( +3 ;{Vk a ) : (1.2.85)
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lo que da lugar a aplicar rotating frame:

d d W —iw d W —iw . w —iw
EP}‘ —a [(Pke t) € t] 7 (P e t) b —dw (Pke t) et
% [(68 Kk + e k) (Gh,k + Eh,k)] (Pkei“’t) e Wt
dCUE zw —iw
— 2h0 hZqu t (1—nh,k—ne,k)€ !
d - , ' .
— % (Pkezm) —w (Pkezwt) = % [(€e7k + Zak) + (6}171( + Emk)] (Pkewt)
dch
— 0 Z Vk q zwt (1 — nh,k — n&k) .
q#k
d d dC’UE * —ZUJ
Enak anhk =21Im ( 0 Z Vk qP BMt> t]

Z Vi q zwt

(Pkeiwt)*} .

Bajo esta aproximacion, se redefine la frecuencia de Rabi generalizada como:

WRk =

ka a (Pye™). (1.2.86)

A su vez, se definen las frecuencias:

o e by
Wehk i= (Ce + Dei) —; (e + h’k), (1.2.87a)

Awg 1= Wepx — W, (1.2.87b)

siendo esta ultima el detuning entre la frecuencia wep, x y la del campo eléctrico. Notar la
similitud de la frecuencia de Rabi generalizada y de la desintonia con las definidas en el
caso no interactuante (Ec. (1.2.40) y Ec. (1.2.42), respectivamente).

Con estas definiciones, el sistema dado por la Ec. (1.2.81) se convierte en:

( d . )
% (Pkem) =1 Awk (pk€Wt) —1 WR k (1 —Npk — ne,k) s

%ne,k =21Im |:UJR7k (Pkeio')t)*] s (1288)

d iwt) *
L anhk:21m[ (Pke t) ]
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2. Modelo de portadores no interactuantes entre si

2.1. Solucion exacta

Al pasar a notacion electrén-hueco, la ecuacion de la evolucién temporal de np, x quedé
redundante, sin embargo se la incluy6 en todo el analisis por completitud. Si en el sistema
de la Ec. (1.2.88) se ignora la ecuacién para los huecos y se anulan las interacciones
entre particulas, las ecuaciones para Pxe™' y n.y pasan a ser idénticas a las Ecs. (1.2.41)
y (1.2.43), respectivamente, lo cual era lo esperado, interpretando a las cantidades P
Y Nex como los elementos de la matriz densidad pe,(k;t) v pec(k;t). En el sistema de
la Ec. (1.2.88) puede verse, ademds, que Pie™! wry € C, mientras que n.x,nyx € R.
Anulando todos los coeficientes Vi_q del potencial de interaccion (o sea, volviendo al
caso no interactuante entre particulas), desde Ec. (1.2.86) se puede ver que, en ese caso,

wrk € R, pues
dchO
= 2.1.1
vak 2h Y ( )

lo cual vuelve a ser Ec. (1.2.40), la frecuencia de Rabi en el caso no interactuante. Asi-

mismo, separando Pye™? en parte real e imaginaria:
Ry = Re(Pee™) A Iy := Im(BPee™), (2.1.2)

el sistema de la Ec. (1.2.88) pasa a ser:

(4 R = —Awd
% k = —RAWklk,
d
Ejk = AwkRx — wrk (1 —nex — i),
; (2.1.3)
ek = —2 wrxlk,
d = -2 I
\dtnh,k = WR k1k-

Observar que, como siempre, Awg = Wepk — W, PETO Wep k PASA & SET:

o = AEh (k) (2.1.4)

la AE(k) que se tenfa en la Ec. (1.2.7).

El sistema de la Ec. (2.1.3) se puede resolver en forma exacta planteando una ecuacién
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matricial de autovalores y autovectores (ver Apéndice A.10), obteniéndose:

2 2 Q
Nex(t) = % sin’ ( R’kt> , (2.1.5a)
’ QR 2
2 2 Q
npx(t) = (w+k) sin? ( R’kt) : (2.1.5b)
’ Q% x 2
12 A 2 A Q
Ri(t) = L20REA 11 ()] = ZOREA 2 (_ ) . (@2150)
2 Qpy Q% x 2
12
L) = — = 2B Gin(Qpit), (2.1.5d)
2 Qpx ’
siendo
Qpk = \/(2603,1()2 + (Awy)?, (2.1.6)

la misma definicién que en Ec. (1.1.21) pero aqui incluyendo la variable discreta k, lo que
manifiesta que estas soluciones se asemejan a las de una particula en un sistema de dos

niveles, s6lo que para cada k por separado.

2.2. Caso unidimensional

A modo de ejemplo, los resultados de las Ecs. (2.1.5) pueden verse en las Figs. 6, 7,
en donde se graficaron superficies de nivel de n.x(t) y del médulo |Px(t)| para el caso
unidimensional (coincidente con la direccién é del campo E(t;r)). La densidad de huecos
nnx(t) no se graficé pues resulta redundante. Para este ejemplo, utilizando como notacién

k = k dado que todas las cantidades serdn expresadas en una dimension, se considerd:

» pardmetro lineal de red a = 5,653 A y E, =1,424 eV (datos de material GaAs);
= intervalo de tiempo de estudio [0; 7], 7 = 32 ps;

= campo eléctrico de amplitud Ey = 287 22 y frecuencia w = E,/h = 2,165 x 10'° Hz;

con lo cual wry = 1,748 x 10" Hz. La w elegida es tal que excita sin detuning a los
electrones de cuasi-momento k£ = 0, generando en ellos oscilaciones de Rabi completas.
Como es de esperar, a medida que k se aleja de 0, aparece un detuning Awy # 0, por lo
que esos electrones describen oscilaciones de Rabi incompletas, i.e. oscilaciones que decaen
en amplitud y aumentan la frecuencia en tanto crece la distancia al cuasi-momento nulo.
Ademas, en estas figuras, queda en manifiesto que para pequenos apartamientos de k = 0
el efecto del detuning es tan importante que saliendo del rango de cuasi-momentos tomados

en Fig. 6 ya no se aprecian promociones interbanda.
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Figura 6: n.x(f) en modelo de portadores no interactuantes entre si. El campo eléctrico
es de amplitud Ey = 287 dyn/esu y se eligi6 frecuencia w = E,/h, siendo E, = 1,424 eV
(material GaAs), de modo que excite sin detuning a los electrones con k = 0, generando
en ellos oscilaciones de Rabi completas, de periodo T = 1,797 ps, siendo wgry = 1, 748 X
10'2 Hz. En el resto de k se observan oscilaciones de Rabi incompletas y a mayor frecuencia.
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Figura 7: |P.(t)| en modelo de portadores no interactuantes entre si. El campo eléctrico
es de amplitud Ey = 287 dyn/esu y se eligi6 frecuencia w = E,/h, siendo E, = 1,424 eV
(material GaAs), de modo que excite sin detuning a los electrones con k = 0, generando
en ellos oscilaciones de Rabi completas, de periodo T = 1,797 ps, siendo wgro = 1, 748 X
102 Hz. En el resto de k se observan oscilaciones de Rabi incompletas y a mayor frecuencia.
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3. Modelo de portadores interactuantes entre si

3.1. [Estimacion de self-energies a partir de caso de distribucion

conocida: Fermi-Dirac en cuasi-1D

Una forma prudente de avanzar en este estudio requiere de estimar las self-energies
Yex, Xnk, dadas por Ec. (1.2.79), para una distribucién de poblacién electrénica en con-
duccién (y de huecos en valencia) conocida, es decir, sin pasar por el sistema de la Ec.
(1.2.88) que da su evolucién temporal. De ese modo, se puede controlar cada self-energy
para cada densidad electrénica (y de huecos).

Para simplificar este andlisis, se adopta el caso cuasi-unidimensional (en adelante
"cuasi-1D”), el cual consiste en considerar al material semiconductor como una cade-
na lineal de parametro de red a, tal que existe una dimension longitudinal de tamano
L >> R, siendo R la maxima distancia transversal. Para fines didacticos, esto equivale a
considerar un "cable” de largo L >> a y de "radio” R ~ a. En este caso, el potencial de
interaccién coulombiana de un electrén se puede tomar como:

1, 1

= 1.1

siendo € la permitividad del medio y z la distancia relativa en la direccion longitudinal.

Este potencial se puede reescribir como:

1 1
V(z) = —— ¢

= 1.2
inco ¢ VRt RE (3.1.2)

y puede ser llevado a una expresién tipo Ec. (1.2.47), si se calcula su transformada de
Fourier (Apéndice A.11):
~ 2 1
k= 7
L 4mege,

e*Ko(R|k|), (3.1.3)

siendo €, la permitividad relativa del medio con respecto al vacio, k cuasi-momento (k en
una dimensién) y Ky la funcién modificada de Bessel de segunda especie de orden 0.
Como se estd en caso unidimensional y, en general, n.x = npx = Xk = Znk, S€
puede adoptar, para esta seccion, la notacién n, para la densidad de cualquier portador
y X para el mdédulo de su correspondiente self-energy. Si se asume una distribucién
de Fermi-Dirac para ny, lo que corresponde al ground state a temperatura 7" = 0 del

hamiltoniano del gas de electrones H, dado por Ec. (1.2.46), se tiene:

2 si |kl <k
nk:{ st |kl < kp (3.1.4)

0 st |/{Z| > kp
separando al spin de la notacién de cuasi-momento, de modo que puede haber 2 portadores
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por cada k. Ademads, para el caso unidimensional:
kp = mn, (3.1.5)

siendo n la densidad total de particulas.
Renombrando V, = Vik), se puede calcular el modulo de la self-energy pasando al

continuo:

w/a

Se= Y Vieeany — S0 = o= [ dg V(lk = dn(a) (316)
q#k /e

Como n, — n(q) = 20(kr + ¢)O(kr — q), queda:

L [*F
Y(k) = ;/ dg V(lk —q|) (3.1.7a)

—kp

~ kF
= C’/ dq Ko(R|k — ql), (3.1.7b)

—kp

llamando 5 1

C.== 2, 3.1.8
7T47T€0€T€ ( )

Tomando el cambio de variables § = k — ¢ = dq = —dq. Luego:

m@:—é/_FMKMMW
ktkp (3.1.9)

_ pktkre
=o/ di Ko(RIq)),
k

—kp

3.1.1. Aproximacion de la interacciéon coulombiana por campo medio

La integral de la Ec. (3.1.9) se puede reemplazar por otra cuyo valor sea aproxima-
damente igual, pero en lugar de utilizar la interaccion dada por Ec. (3.1.3) se puede
aplicar un modelo mucho més sencillo, haciendo f; dx Ko(z) =~ f: dx y(x), con z = R|q|.

Tomando la funcién Ky(x) e integrando numéricamente en Rsq, puede verse que:

00 4
/ dr Ko(z) ~ / dr Ko(x) ~ 1,56 ~ 3/2, (3.1.10)
0 0

observando que 3 K(0), pero si se puede integrar con limite inferior en 0 pues para la
integral un solo punto representa un conjunto de contenido cero.

Por otro lado, la funcién Ky — 0 rapidamente, por lo que las interacciones a largo
alcance -en términos de la variable R|G|- pueden desestimarse (Ky(x) sélo aporta cifras
significativas integrando en [0;4]); las de corto-medio alcance (0 < R|G| < 2) pueden

asumirse constantes. En la Fig. (8) puede verse la funcién modificada de Bessel de segunda
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especie Ko(z) junto a una recta constante y(x) = 3/4. Ambas funciones verifican:

/OOO dr Ko(x) = /02 dr y(z) = 3/2, (3.1.11)

de modo que si se reemplaza Ko(R|q|) por yo(R|G|) = 30(R|q|)O(2 — R|q|) y se integra

en un intervalo conveniente, ambas funciones generan la misma self-energy.

(@)1 — Ko()

3/41

Figura 8: Comparacién Ky(z) con la constante y(z) = 3/4.

Con lo dicho, la Ec. (3.1.9) pasa a ser:
3 . k+kp
HM%ZC/ dj ©(R|G))©(2 — R|q)). (3.1.12)
k—kp

Adoptando el cambio de variable x = R / |z| = R|G| = dx = Rdq, luego:

3 R(k+kF)

Y(k) ~ —C/ dx O(|z])©(2 — |z]), (3.1.13)
4 SRtk

con C' = C/R.

Como O(Jz]) = 10 = 1V = € R, entonces la integral se reduce a:

3 R(k-i—kF)
mmz-c/’ dz 02 — |z). (3.1.14)
4 JR(k—kp)

Para estudiar la integral obtenida en Ec. (3.1.14) hay que separar en casos, pues la
funcién escalon de Heaviside que se tiene en el integrando puede cambiar uno o ambos
limites de integracién. Ademas, estos casos también dependeran de la comparacién entre
las cantidades kp, 2/R:

L Rk+kp)<—2=k<—%—kp
— ke (—o0;— (£ +kr)) : (k) =0.

2. R(k—k}?)<—2 A —2§R(/{Z—/{?F)§2:>—%—kpgk<:!:(%—kp)
—= ke[ (2+kp);F(%2—kp)):S(k)=3C [R(k + kp) +2].
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3. a) 2<R(k—kp) <2 N 2<R(k+kp)<2= 2 —kp<k<—(%—kp)
= k€ [Z2—kp;— (%2 —kr)):S(k) = 3C 2Rkp.
b) 2< R(k—kp) <2 A —2< R(k —kp) <2
—= —2 —kp<—24+kp<k<Z—kr<2+kp
= ke[ (3—kp);2—kr):3S(k)=3C[2—R(k — kr)].

4. —2< Rk—Fkp) <2 AN Rk+kp)>2= F(% —kr) <k < 2% +kp
— k€ [F (3~ kr)s 4 +he)  S(k) = 3C 2= R(k — k)],

5. R(k—kp)>2=k>2+kp
— k€ [2+ kp;00) : B(k) =0.

Todo el anéhsis anterior se puede resumir en las Figs. (9), (10), (11), para los casos
1

kp<2(=n<iZ)kr=%(<=n==12) kp>2 (< n> 12) respectivamente.

B(k) —n<12
3C 2Rkp
2 2 I 2 2 k
~ (% +kr) (& —kr) | T—kr rTEr
Figura 9: $(k) en caso kp < 2.
k] —n=1j
3C 2Rkp = 3C
2 2 k

Figura 10: ¥(k) en caso kp = 2.
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2 —n>-1h
3C
. I I : k
— (& +kr) 7 ke | — (%~ Fkr) R kr

Figura 11: ¥(k) en caso kp > 2.

Como puede observarse, para este modelo de interacciéon constante a corto-medio al-

cance, se da que:

S3C2Rmn si n< iZ
— 4 T R
Yimaz = { a0 G om> 12 (3.1.15)
— 7R
siendo 50 1 )
e
C=— — 3.1.16
T 4mepe, R ( )
con lo cual, en resumen:
12 - 12
S = 4 o " PSR (3.1.17)
3 47Teloe7~€2 %% Si n Z %%

Por ejemplo, considerando al material GaAs: €, = 12,4 A E, = 1,424 eV. Tomando
pardmetro de red a = 5,653 A, radio R = 100 a y suponiendo una densidad electrénica
en conduccion n > %%, la Ec. (3.1.17) arroja el valor ¥,,,, = 3,922 x 1072 eV, lo que
implica que, como maximo, una self-energy de una cadena lineal atémica cuasi-1D de estas
caracteristicas de GaAs puede representar un 0,27 % del gap entre valencia y conduccién.
En la Fig. 12 se representan las curvas de self-energy en funcién del cuasi-momento k
para los casos n << %% (Fig. 12a), n < %% (Fig. 12b), n = %% (Fig. 12¢), n > %%
(Fig. 12d), en donde se comparan las soluciones obtenidas por integracién exacta del
potencial aproximado que contiene la funcién yo(R|k — ¢|) -siendo ¢ el cuasi-momento
que se integra- junto con su analoga discretizada y la solucién discretizada del potencial
coulombiano Vj;_,, estas 1dltimas integradas numéricamente por regla de Simpson. En
ambos casos, las discretizaciones en variable cuasi-momento £ se realizaron particionando
un entorno de la 1ZB segtin dim(k) = 2Q + 1, siendo Q = 10%.

En adelante, al trabajar con self-energies es conveniente adoptar la unidad meV. Asi,
por ejemplo, para GaAs : E; = 1424 meV A X0 = 3,922 meV ~ 4 meV.
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Figura 12: Self-energy para distribucién de Fermi-Dirac en cuasi-1D de material GaAs:
E, = 1,424 eV,a = 5,653 A R = 100 a. En rojo se representan las soluciones (k)
integrando en forma exacta al potencial aproximado que contiene yo(R|k — ¢|), siendo ¢
el cuasi-momento que se integra. En verde las soluciones de este mismo potencial pero
discretizado e integrado numéricamente por regla de Simpson (en todos los casos, las
curvas verdes quedan totalmente solapadas por las rojas). En azul las self-energies del
potencial coulombiano cuasi-1D verdadero Vj;_,, integrado numéricamente por regla de

Simpson. En ambas discretizaciones en variable cuasi-momento se particioné un entorno
de la 1ZB con pardmetro @ = 10, siendo dim(k) = 2Q + 1.

3.1.2. Efecto de la self-energy en la aparicién de detuning: comparacion con

sistema de dos niveles

Para tomar dimensién del efecto que generan las self-energies en los casos de ejemplo
descriptos en la Fig. 12, se puede comparar lo que ocurre en cuasi-momento £ = 0 con
el sistema de dos niveles estudiado en la Seccién 1.1, que ejemplificaba cuatro casos de
detuning en la Fig. 1 (e, — €, = 1000 meV, we, = 1,520 x 10 Hz, wp = 2,147 x 10 Hz),
en donde se tenian las siguientes:

s Aw=0=

= 0 = oscilaciones de amplitud 1/2 (coeficientes de 0 a 1).
wC'U

36



g 2,825 x 10~* = oscilaciones con amplitud 1/4.
wC’U

s Aw = 2w =

» Aw =2 X 2wp = = 5,650 x 10~* = oscilaciones con amplitud < 1/8.

wC’U

- 2,825 x 10™% = oscilaciones con amplitud < 1/40.
wCU

s Aw =10 X 2wgp =

De este tltimo resultado se puede concluir que basta un detuning ~ 1072 veces la
frecuencia asociada a la energia de transicion para llevar a las oscilaciones a ser practica-
mente nulas.

En el caso del problema cuasi-1D habiéndose asumido una distribucién de Fermi-Dirac,
no se tiene informacion sobre cémo fue generado dicho poblamiento de bandas, pero se
puede estimar un detuning para cada k dada una densidad electrénica n segin los casos
vistos (en comparacién con %}%); por comodidad y sin pérdida de generalidad se haré para
k = 0. En general, de las Ecs. (1.2.78), (2.1.4), se tiene que:

e e b
Awy = (€ex + Xex) + (enx + Xnx) W

h
3.1.18
(e +€nk) + (Zex + Znx) B ( )

FI, ?

siendo

h2k? h2k?
€ek T Epk = o + LB, + o + Z Vk—q
c h
a7k

Pk?  hPKk?
= <E9+kaq> + (ch + th) .

a7k

(3.1.19)

Con lo cual, para k = 0 se eliminan los términos cinéticos y queda el primer paréntesis,

reinterpretable como:

€eo+eno =Eg+ Y Vg =:E, (3.1.20)
q#0
es decir, se puede definir una renormalizacion de la energia de gap Eg, en donde la cantidad
Zq 20 Vq = 4 meV, pues equivale a resolver el problema de la seccién anterior pero para
banda llena (el valor ¥4, ~ 4 meV por Ec. (3.1.17)). Con esta definicién de E,, para
k =0, la Ec. (3.1.18) se convierte en:
E,+ (Xeo + o)

Awg = —2 - - w. (3.1.21)

Volviendo a la notacién escalar -pues se estd en cuasi-1D- y definiendo

ZO = 2610 = Ehp, (3122)

dado que las self-energies son iguales pues las poblaciones son iguales, entonces:
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_ Ey+2%,

AUJO 7

—w. (3.1.23)

Si desde esta simple expresién se elige una frecuencia de excitaciéon w = E,/h, el

detuning queda, sencillamente:

Awy = 2—? (3.1.24)

con lo cual, cada vez que se quiera relativizar una frecuencia de detuning con la de

transicion en k = 0, se tendra:
AWO
E,/h

2>
E,

, (3.1.25)

puesto que Xk, Xpr < 0V K.
Con todo esto, para los casos de la Fig. 12, toméndose las self-energies en k = 0 dadas
por la aproximacion de campo medio, y siendo E, = 1424 meV =—> Eg = 1428 meV, se

tienen los siguientes casos:

12 12 2))
s n=——=x102 << =2 1 |S| 24 x 1072 meV = |—=—2| ~ 5,5 x 107°.
™R ™R g
12 12 2%
sn=—-=x10"" < =2 S| 4 x 107 meV = | =22 =55 x 1074
TR ™R g

12

2%
s> =S A4 meV = [0
TR

=55x 1073,

g

Como puede verse, en el caso de densidad més baja se tiene un detuning ~ 1075 veces
la frecuencia asociada a la energia de transicién en k£ = 0, con lo cual las oscilaciones de
Rabi serdn muy significativas, de amplitud > 1/4, ya que se estd a un orden de magnitud
por debajo del caso Aw = 2wg en el sistema de dos niveles, que era ~ 10™* respecto a la
frecuencia asociada a la energia de transicion. Para la densidad intermedia, esta relacion
trepa hasta 5,5 x 107, un valor similar al caso de Aw = 2 x 2wp para el sistema de dos
niveles, lo que implica oscilaciones de amplitudes ~ 1/8. Por su parte, para la densidad
m4s alta, se alcanza un detuning ~ 1072 con relacién a la frecuencia asociada a la energia
de transicién, lo cual, haciendo la misma comparacién, sitia a las oscilaciones en amplitud
< 1/40.

Este resultado arroja una prediccion cualitativa que puede hacerse en caso de tener una
distribuciéon cualquiera en cuasi-1D, 2D y 3D: si se setean las condiciones iniciales tales
que n.x(0) = 0V k y se elige la frecuencia del campo eléctrico para que coincida con la
cantidad renormalizada Eg /h, en el modelo no interactuante se generaran oscilaciones de
Rabi completas en k = 0, las cuales iran atenuandose en la medida que crezca el término
cinético de la energia; en el modelo interactuante, en cambio, al aumentar un tanto la

densidad de electrones promovidos en torno a k = 0 se espera que la self-energy generada
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actiie como detuning, de modo que tendera a atenuar la amplitud de las oscilaciones de
Rabi alli y, por el contrario, en regiones en donde el término cinético actuaba de detuning
natural, al ser las self-energies cantidades < 0 y al crecer en moédulo éstas, se podrian

generar oscilaciones de Rabi relativamente apreciables en dichas regiones separadas de
k=0.

3.2. Caso distribucion cualquiera en cuasi-1D

Para esta seccién -y de aqui en adelante sin contar los apéndices- se utilizara como
notacion k = k, dado que todas las cantidades seran expresadas en una dimensién, a
menos que haya que explicitar el cuasi-momento de manera vectorial para no perder

generalidad. Las condiciones iniciales se asumiréan:

nak(O) = O,
n(0) = 0, (3.2.1)
P(0)=0
Otros datos relevantes son:
» F, = 1424 meV (datos de material GaAs);
= my =04 mg AN m.= 0,067 mg, my masa del electrén;
» pardmetro lineal de red a = 5,653 A, radio R = 100 a;
= intervalo de tiempo de estudio [0; 7], 7 = 32 ps;
= campo eléctrico de amplitud Ey = 287 %.
Con respecto a la frecuencia w del campo eléctrico, la misma se tomaréa:
E,
= =, 3.2.2
w=— (3.2.2)

siendo Eg la dada por Ec. (3.1.20). Luego, como se indicé hacia el final de la seccién
anterior, es légico pensar que al poblar la banda de conducciéon en la regiéon en torno
a k = 0 se generara un detuning lo suficientemente importante como para inhibir las
oscilaciones de Rabi en dicha regién; no obstante, al alejarse del entorno k£ = 0, las
energias de electrén y hueco -que estan dadas por Ec. (3.1.19)- pueden entrar en sintonia

(parcial) con el campo, dado que las self-energies que se forman en los distintos k se
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compensan con los términos cinéticos:

(€ek + Zek) + (€nr + Znk)

Awy, = W —w
E~g + (EGJC + Eh,k) + (%’f + %)
7 . . p22 (3.2.3)
g+ (Zer + Zhx) + o,
B (Bek + Xnr) + ’;i’fQ
h )

siendo m,. la masa reducida del par electron-hueco. Luego, existira sintonia total para un

dado k en caso de que el término cinético se equipare con la suma de self-energies:

h%k?

2m,

= Ee,k + Zh,k- (324)

Recordando que, como maximo, cada self-energy puede valer ~ 4 meV, esta resinto-
nizacién entonces tiene un |k| limite, el cual se da en aquella energia cinéntica maxima

capaz de compensar la suma de las self-energies de electron y hueco méaximas:

h?k?

5 = 8meV — k| = 1,098 x 1072 1/A. (3.2.5)
m’/‘

Considerando las condiciones iniciales dadas por Ec. (3.2.1) y los datos de material y
campo eléctrico mencionados, esta prediccién hecha por la Ec. (3.2.5) -de que existe un
|k| méximo que podra experimentar una sintonfa plena con el campo- puede visualizarse
en las Figs. 13, 14, en donde se han graficado las superficies de nivel correspondientes a
Nek(t) y |Px(t)], respectivamente, para el problema interactuante resuelto numéricamente
con el método de Runge-Kutta 4 (RK4). Para esta simulacién, la semi-discretizacién en
k se hizo mediante pardmetro Q = 1 x 10® / dim(k) = 2Q + 1, mientras que ¢ se parti6
en N =1 x 10° particiones.

Bajo la misma discretizacion del problema pero focalizando la simulacién en tiempos
méas tempranos (Fig. 15), puede verse el comportamiento ”deslocalizado” de las oscila-
ciones de Rabi, las cuales van "propagandose” a través de los distintos k& en funcién de
la sintonia que se va obteniendo con la frecuencia del campo eléctrico; esto es debido
a la renormalizacion de las energias de electréon y hueco via self-energies. Volviendo al
panorama mas ampliado que presenta la Fig. 13, puede apreciarse cémo el fenémeno de
poblamiento electronico pierde la armonia que presentaba en el modelo sin interaccion
coulombiana (Fig. 6), en donde cada electrén se comportaba como si estuviera sometido
a un problema de dos niveles individual en funcién de su propio detuning (Fig. 1). En el
caso interactuante, las oscilaciones en un estado |\, k) nunca llegan a ser arménicas pues

la renormalizacién de la self-energy detunea el estado con respecto a la frecuencia del
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campo y por tanto cambia la amplitud de oscilacién; simultaneamente se da la renorma-
lizacion de la frecuencia generalizada de Rabi (Ec. (1.2.86)), lo que afecta a la frecuencia
de oscilacién del |\, k). Este permanente juego de cambios de amplitud y frecuencia hace
que sea muy dificil dotar al estado de una funcién suave que describa la poblacién de

electrones y huecos en funcién del tiempo.

0.90
0.75
0.60

0.45

k [1072 1/A]

0.30

0.15

0.00

0 5 10 15 20 25 30
Tiempo [ps]

Figura 13: Superficie de nivel de ne,k~(t). El campo eléctrico es de amplitud Fy =
287 dyn/esu y se eligi6 frecuencia w = E,/h, siendo E, = E, + Zq;&o V,, By = 1424 meV
(material GaAs), >° ., Vy =~ 4 meV, de modo que excite sin detuning a los electrones con
k = 0 en una fase temprana.
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Figura 14: Superficie de nivel de [Py(t)|. El campo eléctrico es de amplitud Fy =
287 dyn/esu y se eligi6 frecuencia w = E,/h, siendo E, = E, + 3, Vy, By = 1424 meV
(material GaAs), >, Vy ~ 4 meV, de modo que excite sin detuning a los electrones con

k = 0 en una fase temprana.
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(a) Densidad de electrones en |c). (b) Amplitud de polarizacién.

10'2 1Al

Figura 15: Superficies de nivel de (a) n.x(t), (b) |Pc(t)| para tiempos cortos. El campo
eléctrico es de amplitud Ey = 287 dyn/esu y se eligié frecuencia w = Eg /h, siendo
E’g =FE,+ Zq?éo V,, E, = 1424 meV (material GaAs), Z#O V, = 4 meV, de modo que
excite sin detuning a los electrones con £ = 0 en una fase temprana.

42



4. Analisis y comparaciéon entre modelos

Partiendo del hamiltoniano H, dado por Ec. (1.2.50), el modelo de portadores no inter-
actuantes proviene de desestimar la interaccion coulombiana entre electrones promovidos
a la banda de conduccion, mientras que el modelo de portadores interactuantes, como es
trivial, proviene de considerar dicha interaccién.

En las Secciones 2 y 3 se ha simulado un sistema bajo el modelo de portadores no
interactuantes entre si (PNI) y un sistema bajo el de portadores interactuantes entre si
(PI), respectivamente, bajo las mismas condiciones (campo eléctrico, red, sintonizacion
campo-bandas). Las Figs. 6, 7 (caso no interactuante) y 13, 14 (caso interactuante) mues-
tran las evidentes diferencias entre un modelo incompleto y un modelo fisicamente més
realista. En esta seccién se los analizarda y comparard cualitativa y cuantitativamente,
haciendo uso de la construccion de algunas definiciones que no existen en la literatura

pero que sirven para caracterizar mejor el estudio.

4.1. Ancho de sintonia significativa

En el modelo de portadores no interactuantes el detuning se da unicamente por la
diferencia entre wepx (Ec. 2.1.4) y la frecuencia w del campo eléctrico. Por ello, al estar
en sintonia en k = 0, las oscilaciones de Rabi decaen en amplitud conforme se consideran
cuasi-momentos cada vez més lejanos al origen (la amplitud de las oscilaciones se comporta
tal cual el problema de dos niveles; esto ocurre para cada k por separado). Bajo las
mismas condiciones (w en sintonfa con la frecuencia asociada a k = 0), en el modelo de
portadores interactuantes ello no ocurre sino hasta pasado el limite dado por Ec. (3.2.5).
Cualitativamente, puede verse en las Figs. 6 y 13 que existe un "ancho” de cuasi-momentos
por encima del cual las oscilaciones se vuelven relativamente pequenas y, a partir de alli,
aumentando en |k|, decrecen hasta volverse poco apreciables. En el estudio del problema
de dos niveles se habia visto que para una poblacién inferior a 1/4 del total, la amplitud
de la oscilacién de Rabi era a su vez menor a 1/4 veces la amplitud de la oscilacién con
poblacién completa (i.e. oscilacién de amplitud < 1/8).

Se define el ancho de sintonia significativa, notado como Ak™):

AR = @ — "

S (] Y

(4.1.1)

i.e., la diferencia entre extremos del intervalo de cuasi-momentos 1) = [k‘ET); k:éT)}, el
cual cumple:
1

VEc1ZB\ I : (n.i(-) < 3 (4.1.2)

con (n.x(-)) el valor medio temporal para cada k en todo el intervalo temporal 7:

(nex()) = = /O it nea(t). (4.1.3)

T
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Lo que manifiesta Ec. (4.1.2) es que kl(T), kS son los cuasi-momentos minimo y maxi-
mo, repectivamente, tales que la densidad electronica, en promedio temporal, alcanza al
menos 1/8 (y, por consiguiente, si fuera una oscilacién arménica alcanzaria 1/8 de ampli-
tud). Esto no significa que dentro de dentro de ™) no pueda existir un k / (n.x(-)) < 1/8;
el intervalo lo que garantiza es que por fuera de él esta cota al valor medio de la densidad
electronica no se superara nunca mas.

Por simetria en torno a k = 0 del esquema de bandas del problema (Fig. 5), en caso

kD

de sintonizar con k = 0, es trivial ver que ki(T) = — . Luego, en este caso, la Ec. (4.1.1)

se reduce a:
AR =2 kD) (4.1.4)

que es lo que ocurre para los modelos no interactuante e interactuante estudiados, arro-

jando:

s PNL k{7 = 0,776 x 1072 1/A = AK(™ = 1,552 x 1072 1/A.,

s PL AT =1,078 x 1072 1/A = AK™ = 2,156 x 1072 1/A.

En resumen, Ak crece ~ 39 % respecto al PNI.

4.2. Comportamiento oscilatorio en cuasi-momento de maxima
sintonizacién inicial

En el modelo de portadores no interactuantes, al sintonizar la w del campo con k =0
allf se obtienen oscilaciones de Rabi completas para n.(t), nso(t), asi como puede verse
que | Py(t)] se explica netamente por Im[Py(t)], dado que Re[Py(t)] =0V t € [0;7]. Estos
resultados salen a la luz si en Ec. (2.1.5) se impone & = 0. En la Fig. 16 puede verse
todo lo antedicho. En caso del modelo interactuante, como se manifiesta en Fig. 17, el
detuning no nulo aparece al instante que van poblandose los distintos estados vecinos del
k = 0, con lo cual no sélo se pierden las oscilaciones completas, sino que en las sucesi-
vas renormalizaciones de la self-energy >y y de wgo producen oscilaciones anarménicas,
de frecuencia y amplitud permanentemente cambiantes. Otro aspecto a descatar es que
Re[Py(t)] oscila, también anarménicamente, de tal manera que se compensa con Im/[FPy(t)]
para cumplir |Py(t)| < 1/2 V t € [0; 7]. Por tltimo, vale la pena mencionar que el estado
lc, 0) por momentos experimenta oscilaciones completas, lo cual ocurre cuando los estados

vecinos se despueblan, pues ello genera una disminucion de ¥y, lo que implica una mejora

de la sintonizacién con w.
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t), Re[Po(t)], Im[Py(t)], | Po(t)| en el modelo PNI. El campo

eléctrico es de amplitud Ey = 287 dyn/esu y se eligié frecuencia w = E,/h, siendo

Figura 16: Amplitudes de n. o

1,424 eV (material GaAs), de modo que excite sin detuning a los electrones con

E, =

1,797 ps,

k = 0, generando en ellos oscilaciones de Rabi completas, de periodo Tj

= 1,748 x 10'2 Hz.
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eléctrico es de amplitud Ey = 287 dyn/esu y se eligié frecuencia w

Figura 17: Amplitudes de n.q
E,

E,/h, siendo

Zq;éo Vy = 4 meV, de modo que

= 1424 meV (material GaAs),

Eg + Zq#OVJ Eg

excite sin detuning a los electrones con £ = 0 en una fase temprana.
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4.3. Estudio de amplitudes de oscilacién dentro del intervalo de
sintonia significativa

En el problema no interactuante, ademas de que todas las oscilaciones son armoénicas,
las amplitudes de oscilacién decrecen conforme aumenta |k|; en el problema interactuante,
en cambio, no hay una relacién directa entre la monotonia de |k| y la amplitud (variable)
de las oscilaciones, siempre que se esté dentro del intervalo 1.

Para realizar un estudio cualitativo, se consideran tres valores kg, k1, ko de cuasi-

momentos:

=k =0,225 x 1072 1/A,
m ky = 0,447 x 1072 1/A,

los cuales son tales que ko, ki, ks € I™) del problema no interactuante (luego, también
pretenecen al ™) homdélogo del problema interactuante). Si se grafican las densidades
Ne ko (1), Neky (1), ek, (t) puede verse la monotonia en la caida de la amplitud conforme
aumenta |k| en el problema no interactuante (Fig. 18), mientras que ello no ourre en el
problema interactuante (Fig. 19).

Para generalizar la idea y comprobar la monotonia y no monotonia de los modelos
de portadores no interactuantes e interactuantes, respectivamente, se consideran las Figs.
20, 21, en donde se ha graficado, en cada caso, las cantidades (n.x(+)), (| Px(+)]), tomando

valor medio en el intervalo [0; 7] como indica Ec. (4.1.3), para la primera y

(RO = [t IR (43.1)

para la segunda. Ademads, en estas imédgenes puede verse que los maximos de (|Py(-)|)
coinciden con (nex(-)) = 1/2, disminuyendo cuando en promedio un estado se puebla o

se despuebla, y con respecto a (n.x(-)):

= en PNI, se aprecia el maximo absoluto en torno a k = 0, disminuyendo monoétona-

mente con forme |k| 7

» en PI, se dan un juego alternado de maximos y minimos locales en la zona central
del intervalo I™) obteniéndose los maximos absolutos al acercarse al borde del
mismo; esto se debe a que, como se comenté en Seccién 3.2, existe un |k| maximo
a ser excitado sin detuning (Ec. (3.2.5)), asi que por encima suyo ocurrird que
(ner(-)) N\, generando self-energies cada vez mas bajas hacia la frontera de 1) y

permitiendo que se formen maximos absolutos de densidad de poblacién promedio.
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Para estudiar cuantitativamente el comportamiento oscilatorio dentro del intervalo (7
de cada modelo, se consideran medidas de tendencia central y de dispersion para poblacion
y polarizacién en los cuasi-momentos particulares kg, k1, ko. Con Ecs. (4.1.3), (4.3.1) se
pueden obtener valores medios para los kg, k1, ko, particularizando en cada cuasi-momento,

y para analizar las fluctuaciones se consideran la varianza y la dispersién cuadréatica media

de nex(t), | Pe(t)|:

dt (nei(t) — (nex(-))? (4.3.2a)

Ne k

Q
N
R
qwo\\‘

Opes =1/ One., (4.3.2b)
7= / at (|1Pu(t)] = (P (4.3.3a)

Op, = \/0h,- (4.3.3b)

En las Tablas I, II se muestran los resultados de las medidas de tendencia central y

de dispersién mencionadas para n.x(t) y |Px(t)| en cuasi-momentos ko, k1, ko, tanto para

modelo de portadores no interactuantes como para interactuantes.

1

T

Amplitud

T

0 5 10 15 20 25 30
Tiempo [ps]

Figura 18: Comparaciéon de amplitudes de n.x(t) en ky = 0, ky > ko, k2 > ki, con
ko, k1, ks € I™) | en el modelo de PNI. El campo eléctrico es de amplitud Ey = 287 dyn/esu
y se eligi6 frecuencia w = E,;/h, siendo E, = 1,424 eV (material GaAs), de modo que
excite sin detuning a los electrones con k£ = 0, generando en ellos oscilaciones de Rabi
completas, de periodo Ty = 1,797 ps, siendo wro = 1,748 x 10'? Hz. En el resto de k se
observan oscilaciones de Rabi incompletas y a mayor frecuencia.
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Figura 19: Comparaciéon de amplitudes de n.x(t) en ky = 0, ky > ko, k2 > k1, con
ko, k1, ke € IT) en el modelo de PI. El campo eléctrico es de amplitud Ly = 287 dyn /esu
y se eligi6 frecuencia w = FE,/h, siendo E, = E, + > ., Vy, Ey = 1424 meV (material
GaAs), 3,0 Ve~ 4 meV, de modo que excite sin detuning a los electrones con k = 0 en
una fase temprana.
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Figura 20: Valores medios temporales (n.x(-)), (|Px(-)]) en el modelo PNI. El campo
eléctrico es de amplitud Ey = 287 dyn/esu y se eligié frecuencia w = E,/h, siendo
E, = 1,424 eV (material GaAs), de modo que excite sin detuning a los electrones con

k = 0, generando en ellos oscilaciones de Rabi completas, de periodo Ty = 1,797 ps,
siendo wg o = 1,748 x 10'? Hz.
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Figura 21: Valores medios temporales (n.x(-)), (|P:(-)[) en el modelo PI. El campo
eléctrico es de amplitud Ey = 287 dyn/esu y se eligié frecuencia w = FE,/h, siendo
E,=FE, + > gz0 Var By = 1424 meV (material Gads), >V, ~ 4 meV, de modo que
excite sin detuning a los electrones con £ = 0 en una fase temprana.

Portadores no interactuantes || Portadores interactuantes

k </n’57k7()> U’?le’k Une,k <ne7k(')> O-zbng gne,k’
[x1071] [x1071]

ko 0,504 1,246 0,353 0,417 0,653 0,256

k1 0,490 1,198 0,346 0, 350 0,454 0,213

ko 0,376 0,707 0, 266 0,407 0,748 0,274

Tabla I: Medidas de tendencia central y de dispersién para n.(t) en ko, k1, ka.

Portadores no interactuantes || Portadores interactuantes
k| (PG | 0B, op, (1P | 0B, op,
[x1071] (X107
ko 0,319 0,237 0,154 0,408 0,117 | 0,108
kq 0,336 0,195 0,140 0,413 0,112 | 0,106
ko 0,381 0,196 0,139 0,391 0,135 | 0,116

Tabla II: Medidas de tendencia central y de dispersién para |Py(t)| en ko, k1, ko.
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4.4. Densidad electréonica y polarizacién por unidad de longitud

A tiempo t, se definen, respectivamente, la densidad electrénica y la polarizacién por

unidad de longitud como:

(ne. (1)/ L) = / d non(t), (4.4.1)

1ZB

(IP(6)]/L) = / dk |Pu(8)]. (4.4.2)

1ZB

Estas cantidades se representan en las Figs. 22, 23 para el problema no interactuante

y el interactuante, respectivamente, en donde puede verse, como viene ocurriendo en
todos los andlisis comparativos, que en el modelo no interactuante los comportamientos
son cuasi-arménicos (una vez el sistema deja atrds las condiciones iniciales, i.e. entra en
régimen estacionario), mientras que en el interactuante son anarmonicos (también se ve
un régimen transitorio que se abandona luego de transcurrido cierto tiempo). Luego, como
en la seccion anterior, se pueden calcular medidas temporales de tendencia central y de

dispersion:

/0 "t (. ()/L). (4.4.3a)
/0 "t (1P(1)]/L). (4.4.3b)

=7 [t (e O8O/} (1.4.40)

Opo /L = aie/L. (4.4.4D)

shu =1 [t (PO - (PO, (4.4.50)

UP/L = ’/UIQD/L' (445b)

Los resultados de aplicar Ecs. (4.4.3), (4.4.4), (4.4.5) pueden verse en la Tabla III,
tanto para el modelo de portadores no interactuantes como interactuantes. En ellos puede
verse una mayor densidad de poblacién electrénica por unidad de longitud para el modelo
de portadores interactuantes, asi como una mayor fluctuacién, lo cual tiene sentido de ser,

puesto que el intervalo I™) es mas amplio.
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Figura 22: Valores medios (n..(t)/L), (|P(t)|/L) en el modelo PNI. El campo eléctrico
es de amplitud Ey = 287 dyn/esu y se eligi6 frecuencia w = E,/h, siendo E, = 1,424 eV
(material GaAs), de modo que excite sin detuning a los electrones con k = 0, generando
en ellos oscilaciones de Rabi completas, de periodo Ty = 1,797 ps, siendo wrp = 1, 748 X

102 Hz.
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Figura 23: Valores medios (n..(t)/L), (|P.(t)|/L) en el modelo PI. El campo eléctrico es
de amplitud Ey = 287 dyn/esu y se eligi6 frecuencia w = E,/h, siendo E, = E, +2 g0 Var
E, = 1424 meV (material GaAs), Zq#o V, ~ 4 meV, de modo que excite sin detuning a
los electrones con k = 0 en una fase temprana.



Portadores no interactuantes Portadores interactuantes
X (X.()/L) Ug(/L ) OX/L (X.()/L) U?{/L , OX/L
[x1073 1/A] | [x107¢ 1/A"] | [x107 1/A] || [x1073 1/A] | [x1070 1/A"] | [x1073 1/A]
N, 6,517 3,557 1, 886 8,326 7,360 2,713
| P| 8,790 0,565 0,752 10,930 1,422 1,192

Tabla III: Medidas de tendencia central y de dispersién para (n..(t)/L), (|P.(t)|/L) en los
modelos PNI y PIL.

5. Conclusiones

Se ha estudiado un problema many-body partiéndose de modelos sencillos que fueron
complejizandose, ganando realismo fisico. A modo de mensaje coloquial, puede decirse que
el estudio de particula en sistema de dos niveles representa el problema ”a orden cero”;
luego, el problema many-body de portadores de carga no interactuantes entre si seria
un modelo de bajo nivel, mientras que el problema many-body de portadores de carga
interactuantes entre si serfa un modelo de nivel medio (en Seccién 6 se da una propuesta
para aumentar ain mas la complejidad del modelo, y con ello su realismo fisico).

Los resultados parciales que se fueron obteniendo sirvieron de base para predicciones
sobre el modelo méas complejo estudiado, el de portadores de carga interactuantes entre
si, el cual conservé ciertas raices de comportamiento provenientes del inmediato modelo
mas sencillo, el de portadores no interactuantes entre si.

Del hamiltoniano del problema many-body se llegd a un sistema de ecuaciones diferen-
ciales ordinarias (Ec. (1.2.88)), las cuales son las Ecuaciones de Semiconductor de Bloch
(SBE) con excitacién 6ptica monocromética, pero descontando términos de interaccién
por colisiones entre portadores de carga. Las ecuaciones a resolver correspondian a densi-
dad de electrones n. y huecos ny en las bandas de conduccién y valencia, respectivamente,
y a la polarizacién P, todo en funcién del tiempo t y del cuasi-momento k. La forma de las
ecuaciones permitieron hacer n. x(t) = np x(t), de modo que basté con resolver la ecuacién

para 7.

5.1. Problema de tnica particula en sistema de dos niveles

= Una particula en interaccion dipolar con un campo eléctrico de amplitud Ej y fre-
cuencia w, experimentard oscilaciones entre estados |v),|c) con una frecuencia Qg

dada por Ec. (1.1.21); son las llamadas oscilaciones de Rabi.

= La amplitud y la frecuencia de estas oscilaciones dependeran del detuning entre w

Y Wey, la frecuencia de transicién entre estados dada por Ec. (1.1.2).
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5.2.

5.3.

Para detuning nulo se tendrd la maxima amplitud, correspondiente a oscilaciones

completas entre estados (inversién de poblacién), con frecuencia de oscilacién 2wg.

Se analizaron detunings multiplos de 2wg, observandose que para un detuning Aw =

2 x 2wg la amplitud de las oscilaciones decae a menos de 1/4 de la maxima amplitud.

Problema many-body de portadores no interactuantes en-
tre si

Si al hamiltoniano H, (Ec. (1.2.50)) se le anulan los coeficientes de interaccién
coulombiana, se tiene un modelo de portados de carga no interactuantes entre si,
los cuales inicamente interactiian con el campo eléctrico (amplitud Ep, frecuencia
w) y realizan transiciones interbanda que conservan el cuasi-momento, es decir entre
estados estados |v,k) ,|c, k) . k € 1ZB.

El problema pudo ser resuelto de manera exacta a partir de Ec. (2.1.3), obteniéndose
funciones n., ny, Re(P), Im(P) dadas por Ec. (2.1.5).

Se simulé un caso con detuning nulo en £ = 0. El fenémeno se comporté como un
conjunto de problemas de particula tnica en sistemas de dos niveles con detuning
dependiente del cuasi-momento (Fig. 6). Bajo las condiciones de simulacién (campo
eléctrico sintonizado en k = 0, tiempo de aplicacién, coindiciones iniciales), se dio

que:

e ancho de sintonfa significativa fue Ak = 1,552 x 1072 1/A;

e se observaron oscilaciones de Rabi completas (amplitud méxima) en k& = 0, con

poblacién y polarizacién variando armoénicamente en el tiempo;
e para k =0: Re[Py(t)] =0V t € [0;7] = [Im[Py(t)]| = |Po(t)];

e los méaximos de (|P;(-)|) coinciden con (n.x(-)) = 1/2, disminuyendo cuando

en promedio un estado se puebla o se despuebla;
o < n.x(-) > posee maximo absoluto en k = 0;

e las amplitudes de oscilacién decrecen mondtonamente si |k|  (aumentando el

detuning), en tanto aumenta la frecuencia (ver datos en Tablas I, II);

o (n..(t)/L), (|Pe,-(t)/L]|) alcanzan un régimen estacionario de oscilaciones cuasi-

armonicas (ver Fig. 22).

Problema many-body de portadores interactuantes entre si

= Aprovechando un modelo de distribucién electrénica tipo Fermi-Dirac en cuasi-1D,

se estimo la self-energy maxima que puede tener asociado un portador de carga

23



de cuasi-momento k en una cadena lineal atémica, la cual llega a valer |¥,,..| =
3,922 meV = 4 meV; este valor se da tinicamente cuando se hallan promovidos

todos los portadores vecinos de dicho k, por lo que son alcanzables por Coulomb.

Con self-energies |X| ~ 1072 x |3,,4.| alcanza para desintonizar tanto al estado que

se obtienen oscilaciones practicamente nulas asociadas a dicho estado.

Existe un |k| limite capaz de sintonizar con un campo cuya frecuencia fue seteada
con detuning nulo en k = 0, el cual es |k| = 1,098 x 1072 1/A.

Se simulé un caso con detuning nulo en £ = 0. Bajo las condiciones de simulacion
(campo eléctrico sintonizado en k£ = 0, tiempo de aplicacién, coindiciones iniciales)
idénticas a las de la simulacién del problema many-body de portadores no interac-

tuantes, obteniéndose:

e intentos de oscilaciones de Rabi completas en k& = 0, las cuales fueron ate-
nuandose a medida que crecia la self-energy [3y| debido al poblamiento en la
vecindad del estado, mientras que las regiones en donde el término cinético
hubiera actuado como detuning natural (problema no interactuante), al ser
Yk < 0, terminaban sintonizéndose para dar oscilaciones apreciables (esto has-
ta |k| = 1,098 x 102 1/A), como puede verse en Fig. 13;

e ancho de sintonia significativa en torno a 39 % mas grande que en el caso no
interactuante, siendo Ak = 2,156 x 1072 1/A;

e oscilaciones anarmonicas de frecuencia y amplitud permanentemente cambian-

tes debido a las sucesivas renormalizaciones de la self-energy ¢ y de wg;

e Re[Py(t)] oscila, también anarmdnicamente, de tal manera que se compensa
con I'm[Py(t)] para cumplir |Py(t)] < 1/2V t € [0;7];
e los méaximos de (|Pg(-)|) coinciden con (n.x(-)) = 1/2, disminuyendo cuando

en promedio un estado se puebla o se despuebla;

e se tiene un juego alternado de maximos y minimos locales en la zona central
del intervalo ™), obteniéndose los méximos absolutos al acercarse al borde
del mismo; esto se debe a que |k| = 1,098 x 1072 1/A es el médulo méximo a
ser excitado sin detuning (Ec. (3.2.5)), asi que por encima suyo ocurrird que
(ner(-)) N\, generando self-energies cada vez mas bajas hacia la frontera de
I y permitiendo que se formen méximos absolutos de densidad de poblacién

promedio;

e las amplitudes de oscilacién no decrecen con el crecimiento de |k|, en tanto

aumenta la frecuencia (ver datos en Tablas I, II);

o (n..(t)/L), (|Pe,-(t)/L|) alcanzan un régimen estacionario pero de oscilaciones

anarmoénicas (ver Fig. 23);

o (n..(\)/L),(|P.(-)/L|) / respecto al modelo PNI (ver datos en Tabla III).
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6.

Propuestas a futuro
Probar proposicién de relacién causal: Ak A = (n..(-)/L),{|P.(")/L|) /.

Estudiar el mismo problema cuasi-1D pero alterando las condiciones iniciales y

parametros del campo eléctrico; por ejemplo sintonizarlo con un k # 0.

Agregar al hamiltoniano Hy (Ec. (1.2.50)) un término de interaccién por scattering

entre electrones promovidos, de modo que se puedan dar transiciones intra-banda.
Optimizar parametros para buscar valores criticos y/o comportamientos deseados.
Explorar casos particulares que permitan dar expresiones analiticas para 2. j, 2, k.

Generalizar el problema a cuasi-2D y 3D, rescribiendo el potencial electrostatico

V(r) y su respectiva transformada de Fourier Vi, en cada caso.

Reformular el concepto de ancho de sintonfa significativa Ak(™) hacia, por ejemplo,
un "radio” (minimo, méximo, promedio, etc.), tal que no dependa de la dimensién

del problema.

95



A. Apéndice

A.1. Demostracién identidad d., = d;,

Sin pérdida de generalidad, la identidad se puede demostrar en una dimensién. Basta

con ver que {c|z|v) = (v|x|c)":

(el x o) = (el id x id |0) = (c] (/ da” 2 (x”|) . (/ da’ |2') m) 1)

_ / d” / da! (clay (2" & |2') (o' |0) = / da” / dx {ela"y 2 (&)} (')
_ / i / da! (cla") &/8(" — o) (' |v) = / da’ {cla’) o/ (a'])

= [a oy e @i = ([as' @iy o o))

(ol x|y

Otra forma -mucho mds sencilla- de ver que (c|z|v) = (v|z|c)” se basa en que z es

operador hermitico:

(clzfv) = (c[ 2" v} = (v] ]c)".

A.2. Inversion de poblacién W (t) en sistema de dos niveles

Se transcriben las Ecs. (1.1.24), (1.1.26):

Qpt A Qpt Yom Ot |
co(t) =13 ¢(0) |cos TR +i Q—:sin TR T QL}femcc(O) sin( ; )}ezAwt/Z

Qpt A Qgt 2 A O nt ‘
c.(t) =14c¢(0) |cos (TR) —1 Q_:Sin (TR +4 QL;G—Z%U(O) sin ( ; )}ezAwt/Q

W(t) = le(t)* —le(t)

Para que operar algebraicamente se vuelva mas sencillo, se consideran las siguientes

definiciones:

L QRt L Aw . QRt L QWR . QRt
A.—COS(T),B.—Q—R SID(T),C.—Q—RSIH T

oo = (0), ceo == ¢.(0)
Con esto, lo anterior se convierte en:

Cv(t) = [CUO (A + ZB) + 9 ei¢cco C] e—iAwt/Q
Cc(t) - [CCO (A — ZB) +1 €7i¢CU0 C} eiAWt/Q
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Se definen:

21 1= [cpo A — sin(d)ce Cl+1i [cyo B+ cos(@)eq C
29 :=[ceg A+ sin(¢)cyo Cl — i [co B — cos(d)cyo C

De modo que, para el coeficiente ¢, (t):

o (1)* = [Re(=21)]” + [Tm(z1)]”
=) A* — 2c, A sin(¢)ce C + sin®(¢)c%, C?

(A.2.1)
+ 2y B* 4+ 2cy0 B cos(¢)cey C + cos?(p)cZ, C?
= (A% + B?) — 2c,9c0 [Asin(¢) — Bsin(¢)] C + ¢, C2.
Y de igual manera, para c.(t):
c.(t)]? = [Re(z 2 4 [Im(z9)]?
) = [Re(z2) + 1m(=) o

= (A% + B?) + 2c.oc00 [Asin(¢) — Bsin(¢)] C + 2, C2.

= W(t) = () — ) (A% + B?) + 4 coocyo [Asin(¢) — Beos(d)] C — (¢ — ) C,

quedando
W(t) = (& — ) (A* + B* — C?) + 4 cecyo [Asin(¢) — Bcos(¢)] C (A.2.3)
Luego, si se toman condiciones iniciales c,o = 1 A cog = 0 = W(t) = —(A%+B*-C?),
o sea:
Aw)? — (2wg)? Q Q
W(t) =— (Aw) 2( “r) sin? (—Rt> + cos® (—Rt)} (A.2.4)
0 2 2

A.3. Dipolo eléctrico p(t) en sistema de dos niveles

Se transcriben las soluciones de la Ec. (1.1.24) junto con la equivalencia del dipolo

eléctrico p(t) en funcién de éstas:

Qgt A Qgt 2 , Ont ‘
cp(t) = 4 ¢(0) |cos TR +1 Q—:Sin TR +1 QL:GWCC(O) sin (—5 )}@—mwt/Q

Qrt A Qrt 2 . o ‘
et = Qe s () i Gin ()] 1 e (T3 o

p(t) = c(t)ci(t) dye et +coc

Llamando A := c.(t)ci(t) dye e ™=, claramente p(t) = A + c.c. = 2 Re(A), con lo
cual, para llegar a Ec. (1.1.29) basta ver que:
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. QCUR QRt ) Aw . QRt . QRt it
A=1 |dcv|Q—R |:COS (T) ] Q_R Sin T sin T € . (ASl)

Para operar algebraicamente de manera mas sencilla, se definen:

o Qpt o Ot
C.-cos( 5 ),S.—sm( 5 )

0 := €y(0), ceo = cc(0) / cpo,c0 €R

A= co(D)ey(t) due €7 = dye co(t)c(t) e

v

= dvc |:CCO (C — ZQ—RS) + 1 Cyo Q—RB ¢S:| e AQ

R
Aw . 2R g ifet gt
) [Cvo (C — ZQ—RS> — 1 Co Q—Re S} e e
Aw . 2w —i Aw . 2w —i —iw
== dvc |iCcO (C - ZQ_RS> +1 Cy0 Q_:e ¢S:| |icv0 <C - ZQ_RS) — 1 Cq Q_]fe ¢S € .

2 Aw )\ 2wg _;
= dye [ccgcvo (C — iQ—RS> —i (% — ) (C — i—S) ZRemivg 4

Qg Qr
2 o\ 2
Ce0Co0 <QL:<22¢’S>

Aplicando condiciones iniciales c,o =1 A ¢ = 0, lo anterior se reduce a:

A Yr .
A=d,, i (C _ ZQ—:S> Qije—ws et
QCUR ,A(JJ

=7 |dcv|€i¢ Q_R (C - ZQ—RS) S e_i‘be_m

2 A |
— i |du| Qij (C - ZQ—:s> S et

que es adonde se pretendia llegar (Ec. (A.3.1)).

A.A4.

Relacion entre valores de expectacion de operadores = y p

p2

SiH = P +V(z) | H|n) =€, |n) = (0| [z, H] |n) = —(€; — €,) (R] x |n).

:%[as,pﬂ:%(p[x,p}+[$ap]p):gp

Ademas: [z, H]

1
= (7] (% p) In) = —(en — €,) (R] 2 |n), llegdndose a:
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(A2 n) = ———2 (@l p|n). (A1)

m(eq — €,)

A.5. Operador p aplicado a e¢*%u,(0;r)

Se parte de Ec. (1.2.12), en donde p se aplica a ¥,(k;r). Si se toma uy(k;r) =~
ux(0;1) =: uy, lo cual es independiente de k, luego:

p e*Tuy = —ihV (e™7uy) = —ih (ike™ uy + e**Vuy) = ik e uy + ¢*p u,.

En resumen:
p e®Tuy = ™7 (hk + p) uy. (A.5.1)

A.6. Ecuacién de Liouville-Von Neumann para p(t)

S p(0) = 10(0) (0(0] = 200 = (1) ) w0l + oo (o).

Como T 16(1)) =~ TH1(1), Inego:

%p(t) _ (—%’H |¢(t)>) (b (t)] + | (1)) (% (¥(t)] H)

= L (D) O] ~ (0 (60| H)

Finalmente:
Lot = — 1, p(t)]. (A6.1)

A.7. Sistema de ecuaciones diferenciales para los p)y (k,?)

Como todas las operaciones se hacen para (k;t) genéricos, se puede adoptar, sin pérdida
de generalidad, una notacién que no incluya referencias a k, t, y asi hacer mas sencillo
seguir el razonamiento. Con el mismo fin de economizar notacién, se consideran E(t) = E,

dyy escalares y se definen las diferencias de frecuencias wyy = wy — wy.

pe= > = paw [A) (N = g = e o [A) (V.

AN AN

d N : Wy \/ Wy \/ d
Wkt:Z<WM’€ Wipax +e “taw) A (N,

AN

y desarrollando término a término:
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d

d , d
G =g 10) 1+ (ipic ) I0) el +

dt

. d d
Wept . _ _
€ (chvpcv + dtpcv> ’C> <’U’ + dtpCC ’C> <C’ :

Asimismo, desarrollando término a término la Ec. (1.2.32):

d in 4 Wy 7 W
S =B Wy [ € () 0] (X = [X) (Vo) (ul) +
AN

ety () (el ) (V] = 3 V) (el) ]

—L B oty [ (94, |6} (u] + e, [v) {el) [A) (V] -
AN
) (Y] (e d [c) (0] 4+ et o) (c) |

(= S ) ) 4
watpvc ( zwcvtdcv |C> <C’ - lwwtdcv ’U> < ‘)
chtpcv ( zwcutdzv |U> <U| . chvtd* |C> < ’)

Dec (e_wcvtdzv v) {c| — et lc) <U|) ]

I%E [ poo (€978 6) (0] = ) + poctlen (1) {e] — [0) (]) +

Pevdyy, (V) (V] = [e) {c]) = pec (eiwwtdcv lc) (v] — h-c') ]

Agrupando todo convenientemente en cada proyector |[\) (\'|:

d in i *
dt pkt _ﬁE [ (pvcdcv - pcvdcv) (|C> <C| B |U> <U|) +
" (puy — Pec) dew |€) (v] — €7 (pyy — pec) diy [0) (] ]

(A.7.1)

(A.7.2)

Igualando término a término segtin cada proyector |A\) (X'| en las Ecs. (A.7.1), (A.7.2),

se tiene:
(d )
— Pov = ——F vcdcv - cvd*
i =L (p Pevde,)
d )
vc—' cv vc__Ed* vv — Fce
ZiPve = Weopoe = = Edy (poo = pec)
d

. 1
7 Pcv = —WevPev + ﬁEdcv (pvv - pcc)

E (pvcdcv - pcvd:v)

dt
a, 1
\dtp’U’U - h
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A.8. Operadores en segunda cuantizacion

En esta seccion auxiliar se intentara ser lo mas resumido posible, ademas de utilizar

una notacion ligera; para una mayor profundizacién ver cita bibliografica [9].

Dada una base de estados de una particula {|u;)}, un estado de un sistema de fermio-
nes consiste en enlistar los niveles ocupados: |w;;u;;...ux; ...), siendo 4, j, k conjuntos de

nimeros cuanticos.
Se define al operador de creacién a' como aquél que:
T e e — cap e o
al |ug; g ) = g ugs s ugs ) (A.8.1)
es decir, crea una particula en el estado |u;). Asimismo se puede definir al operador

destruccion a:

Qi [Wis Wy o Uk o) = U U ) (A.8.2)

ergo, aquél que desocupa el estado |u;). Con éstos, es trivial poder definir:
n; == ala;, (A.8.3)
operador nimero de ocupacién (en estado |u;)), con lo cual se obtiene
N = Za}ai, (A.8.4)
i
el operador niimero total de particulas.
Por principio de exclusién de Pauli, los operadores aZT, a; tienen que cumplir:
aZT oy i1 U5 Uiy g ) = 0, (A.8.5)
si el estado |u;) estd ocupado y

al‘,uz,l,uerl,} = O, (A86)

si el estado |u;) estd desocupado. En otras palabras:

alal :==0 A aa; :=0. (A.8.7)

Los operadores de creacién y destruccion cumplen las siguientes relaciones de anti-
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conmutacion:

{ax,al,} = dav, (A.8.8a)
{al,al} =0, (A.8.8b)
{a)\, a)\/} = 0. (A88C)

Aprovechando estas tltimas, se pueden construir las relaciones de conmutacion:

lax, al,] = oax — 2 ala, (A.8.9a)
[aif\a (li—\/] = _2 af\,ai\, (A89b)
[Cl)\,a/\/] = -2 ayay. (A89C>

A.8.1. Operadores de 1 particula

Sea {|u;)} una base de estados de una particula. Sea f operador de 1 particula. Sea
F = Zévzl f(q), operador que actia como la identidad para (N — 1) particulas, salvo para

la g-ésima en cada caso. Luego, en primera cuantizacién, F' sera:

N
F:kalz]q:uk) (q:w, (A.8.10)
k,l q=1

con fr; = (ug| f |w). No obstante, en segunda cuantizacién F' se escribe:

F= Z fkl a,tal, <A811)
k,l

y haciendo un cambio de base a la de autoestados {|f;)} de f:
F = Z fi Mg (A.8.12)
k

A.8.2. Operadores de 2 particulas

Sea {|u;) } una base de estados de una particula. Sea g un operador de 2 particulas, o sea
g = g(q; ¢') opera en el espacio producto de las particulas ¢, ¢'. Sea G = 1 Zévq, ota 96T,
operador que actiia como identidad para (N — 2) particulas salvo para las ¢-ésima y ¢~

ésima, en cada caso. Se puede demostrar que, en segunda cuantizacién, G sera:

1
G= 3 Z Gijki aza;alak, (A.8.13)

i)j)kﬂl
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con Gijrr = (1 w32 ui| g(1;2) |12 w2 0 ).

A.8.3. Operadores de campo

Se definen los operadores de campo:

U(r) =) dulr)ax, (A.8.14a)
Vir) = yi(r)al, (A.8.14b)

siendo ay, az operadores de destruccién y creacién de particulas en el estado |ug) €

{Ju;)}, base de estados de una particula, y ¢(r) = (r|ug). Los operadores ¢ (r)ay y
w,’;(r)az representan la destruccion y creacion, respectivamente, de una particula en un

determinado estado |ug) y en una posicién r.

Luego, de la Ec. (A.8.3) se puede construir el concepto de operador densidad de
particulas:

n(r) = U)o (r), (A.8.15)

del que se obtiene, andlogamente a la Ec. (A.8.4), el niimero total de particulas integrando

en r.

N = /d% Ul (r)¥(r). (A.8.16)

Por su parte, los operadores de 1 y 2 particulas de las Ecs. (A.8.11), (A.8.13), respec-

tivamente, se pueden reescribir:

P / & / B (x| F ') U (r) 0 (r), (A.8.17)
y

G = %/d?’x/dgx'/d?’x"/d%"' (1:r;2:0g(1;2) [1: 2”2 2") Ul ()Wl (e )T (x”) W (x").
(A.8.18)

A.9. Ecuacion de Heisenberg para operador nimero

La evolucién temporal de cada operador ntimero n,yx = al}kawk, Nek = alkac’k se
plantea a través de la ecuacion de Heisenberg, en donde sélo contribuye el término del

hamiltoniano ‘H = Ho + H; que tenga el mismo cuasi-momento k. Se plantea el caso n, x
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(la resolucién para n. es totalmente andloga):

—zhj( kayk) [Hm kavk]

= [Ho k> Q k% k} |:HI k> Q kav k}
e t n i f n
= €k |Q ka'v k, @ kav k €ck aqkac,ka av’kav,k
T
Py § : V { |: v k+q v k’ (luk/a,v,k, av,kavak +
k’,q#O
T T T T T T
[&c,k+qac,k’—qaczk/a07k7 &v,kavyk +2 ac,k—l—qav,k’—qavvk/acvk’ av,kavyk -

dch(t) { |:a:r;7kav,k7 al,kav,k] + [al,kac,ky al7kav,ki| }
(A.9.1)

Como los términos de energia cinética y de interacciéon dipolar no mezclan cuasi-
momentos, para simplifcar su resolucion se puede ahorrar notacion eliminando momentanea-

mente la etiqueta k.

A.9.1. Resolucion término de energia cinética

o [ahav, alau] + e [alac, ala,] = 0+ e [alac, ala,]

= € (ai [a Qe, av] + [aTac,aH av)

= € (alal Qc, av + a [ f av} a. + al [ac, al] a, + [al, a” acav)
:—alalavac

= €, —2(1T Tavac — 2a aUaTac — 2a acaU -2 aTaTacav

:al (évc_avai)ac

= (—2e. | dla,ala. + alala,a.

= (—2)e. (alavalac — alavalac)

=0

= €k alvkav,k, aj),kav,k} + ek [ai,kacﬁh a;kav’k} = 0. (A.9.2)

A.9.2. Resolucion término de interaccién dipolar

Equivale a resolver:
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[aiav,alav} + [alac,alav} = al [av,alav] + [aT aTav] a, + al [ac,aiav} + [aT aTav] Qe

c) v v v
= alal [ay, a,) +al [ay, al] a, + df [al, a,] a, + [al, al ] Goan +
=0

—~
alal [ac, a,) + al [ac,al] a, + al [al, a,] a. + [al, al] avac

al(é Qavav)av + al(éw - 2aval)av+

al (8w — 2alac)a, + al (8, — 2a,a!)a,.
,0 =0
= l 2aTaJr Uy Ay 2alav ay QaT Tacav +al e — 2a avaTaC
= ala, — 2al (0pe — alay)a, + ala. — 24l (6., — ala,)a,
=0
=ala —i—2aT Tajfzv —2al ac+a CLC—FQZL?\TCLUCLC
a.a
_ ala, — ala,
= I - (alav)T

= (ala,) — {(ala,)") = P., — P}, = 2ilm(P,,) = —2ilm(FP;,)

= d., E(t) {< [aivka%k, al}kav,k}> + <[a17kac,k, alkav,k} >} =—-2i Im (dwE(t)P:uk) .
(A.9.3)

A.9.3. Resolucion del término de energia potencial electrostatica

Aqui no se puede prescindir de las etiquetas del cuasi-momento, no obstante si se
puede -sin pérdida de generalidad- operar en una dimension, se decir reemplazar k, k', q

por k, k', q, respectivamente. Ademds, para aligerar la resolucion, se plantean por separado:

1
K’ q#0
1
=3 Z V, Oy, (A.9.4D)
K’ q#0
= > V, G, (A.9.4c)
k'’ ,q#0
siendo
01 = [aLanLquavvk/am, aj)’kavjk} s (A95a)
Cy = [al,kﬂal’k,_qacyk/ac,k, al,kav,k} : (A.9.5b)
Cy = [alkﬂal,ﬁ,_qawk/aqk, alkauk] ) (A.9.5¢)
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En la resolucién, siempre que aparezca un término tipo 6, se asumird nulo, ya que

q = 0 esta explicitamente excluido de cada sumatoria.

t T 1
C]- - al},k—l—qa”u,k‘/—qav7k/a’v7k’ av,kavvk

—1_gf —0—qaf
=1 av,kavxk =0 av,k+qavxk

T T T _ T T
_av,k—l—qauk/—qavzk/ a’”vkawk Ay k av,k avzka’v,k—&—q av,k’—qa”,k'avyk

—0— T _ _,t
=0 av,k/avyk/,q 76k(k’7q) av’k, Ay k

—— =0 ——
_aT aT Ay @ —aT aT a /aT Ay kA —|—(IT aT a aT Ay jor G
vk+q Yok —qv.k v,k v,k+q%v k' —qYv.k Yy g G kYo k v,k"v,k+q v,kWy k' —q v,k Qv k
=—a, 1/ Qy,k

—(ZT a /aT a ‘I‘(IT aT a a —aT aT UJT Ay Ay k! QA
- v,k+qPv .k Oy g —q%u.k v,k% v, k4+q%v.k+q%v.k v,k k+q%u k' —q YvkYvk v,k

=Ofav’k+qaz’k
P =0
—a! oy 1) Qo) — al al a a —i—aT al al Ay ! Gy kG
- v, k+qv k" Yy g — Yk vk+q Yo kYvkt+q Yvk v,k% k+q%, k! —gWv. k" Qo kU k

T T T T
_av,k+qavak/av,k’—qavak + av,k—&-qa’v,]ﬂrqav,kavvk‘

Luego, si se toma valor de expectaciéon en todo C; y se aplican RPA y campo medio:

) =3 3V, ()

k' ,q#0
R g0 Va Mo ktqMo,k R g0 Va Mo k+qNok
17 ~ 15 ~
_ T T T T
= =5 2 Vel irgtowad o yun) +5 Vi (0l iy yuirgad v (A.9.6)
K g0 q#0
1
~ 5 E ‘/;1 (_nv,k—l-qnv,k +nv,k+qnv,k)
970
=0.
_ |41 T T
CQ - [ac,k+qac,k’—qacvk'acvk7 av,kaThk
:0—al’kacﬂk :O_GE,k+qav,k
— —
_ t T T ot T T
= Qe gy gep—qek’ Aeklyp Aok — Ay Qo kQegyg e glek Aek
=0—al ya, =0—“Z,kuq%k
—_—— —_—
=—a  al Qop@l . Gepa +al ,a oy k] Qe ' G,
- c,k+q " c,k'—q e,k Uy k; c,k%v.k v,k c,k+q v,k%e k' —q ¢,k Ue,k
_CLJr aT CLJr Qe k! Qe A —(IT CLJr CZT Ay Qe 1 A
- C,k—‘rq C,k/—q ’U,k cvkl Cvk U,k ’U,k C,k+q C,k‘/—q Uzk Czk/ C7k

_ oot Tt T
— ac,kJrqav,ka’c,k:’fqank/a’Cvka’U:k + a’v,kac,k+qa0,k’fqacak'avakacak

Tt T S | T
_ av,k’ac,k’—l—qac,k’fqa&k'a’czka’vvk a’v,ka’c,k—&-qac,kz’fqa@,k'acvka%k

= 0.

Con esto ultimo, resulta trivial:
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(Vo) =5 > Vy (Ca) =0 (A.9.7)

Por tltimo, resta estudiar Cs:

_ T T T
03 - ac,k—i—qa’v,k’fqavyk/a’cyk’ av,kavvk
=0-a] ;ac =0—a 1 40k

—

_ T T T T T T
_ac,kJrqav,k’—an,k' a’Qk’a’v,k aUJC_av,k a’vykac,kﬂrq a’v,k’—qavvk/a’cvk’

=0k} Oy g :5k<k’—q)’az,k/—qav’k
T T T Tt T
= _aC,k+qa/U,kl—q avvk/a/'l),k ac7kav7k + a/'l),ka/c,k-‘rq avzkav,k,—q a/UJC/ajc?k
= —aT aT Qe Qo + aJr aT aT Aoy ! Qe | Oy |+
- c,k+q%v,k—q%c,k%v .k c,k+qv,k'—q v,k v,k Ue, kW, k

Tt P R T
Ay 1 Qe fot-qQu,k+qOck — Ay g Qe gy Oy g7 — g Ao,k Qo k! Qe

Los términos con seis operadores se anulan entre si, al ubicar al , @ izquierda de todo

en el primero y a,; a derecha de todo en el segundo, dado que, por anticonmutacion,
apareceran dos signos que se compensaran luego de cada permutacion entre operadores
de creacion con creacion y de destruccion con destruccion, respectivamente. El desarrollo

queda entonces:

_ T Tt
03 — ac,k—i—qav,k—qac’ka”’k + av,kzac,kz—l—qa%k-i‘qacyk

_ T T i T
- ac,k:Jrq 0— a%k’a’v,qu Qe — ac,k+q 0— av,k-{—qaq)’k Qe k

4T T T T
ac,k’—i—qa’vvka’v,k—qacak + ac,k—i—qa’ﬂ,k-‘rqav,kacvk'

Asumiendo:
<ai,k+qav»kal,quacvk> ~ <al,kav7kal,quacvk—Q>
~ (alyaun) (ol ytenq) (A.9.8)
= Pcv,k:PUc,k—q7
<ai,k+qav,k+qal,kacyk> ~ <ai,k+qav,k+q> <ai,k@c,k> (A.9.9)
= Pcv,k—l—quc,kn -
luego:
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(Va) = D Va (Ca)

k' ,q#0

NV (L i i i
q ac,k+qavvka’v,quacvk + ac,k+qav7k+qav,kacvk

970
~ Z ‘/q (_Pcv,kpvc,qu + Pc’v,kJrquc,k)

q7#0
= Z Vk—q (_Pcv,kpvc,q + Pcv,qPUc,k)

2 (A.9.10)
= Z kaq (_Pcv,kpc*v,q + PCU,ch*v,k’)

q#k
=Y Vies [ (PavaPrs)” + PPl

a7k
=2i Im (Z Vk_chv,qP;v,k) .

q#k

A.10. Solucién exacta a modelo de portadores no interactuantes

entre si

Se reescribe la Ec. (2.1.3) pero quitando las referencias al cuasimomento k para eco-
nomizar notacion; asimismo, como n, = ny, se adopta la notacion n := n, = ny. Luego,

se puede plantear el siguiente sistema ecuaciones diferenciales ordinarias:

(d

—R=-Awl

dtR W

d

%I =Aw R—wgr(1—2n), (A.10.1)
d

kETL:—Q(A}RI,

Matricialmente, este sistema es:

% = Ax + b, (A.10.2)
R 0 —Aw O 0
x=|I| NA=|Aw 0 2wgr| N b=|-wgl|. (A.10.3)
n 0 —2&)3 0 0

Para resolver el sistema homogéneo asociado, se plantea el polinomio caracteristico y

se buscan autovalores:

0= P(\) = det(\ id — A) = N + (2wp)?A + (Aw)2A = A[A? + (2w)? + (Aw)?].

Definiendo Qp = /(2wg)? + (Aw)? = 0= AN*+ Q%) = A =0 V A=+ iQp.
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Para A = 0, los autovectores a / a € <<1; 0; — Aw>>.

2wpR

Para A = i), los autovectores b / b € << A‘*’, 1; @2511:)>

Para A = —i(2, los autovectores ¢ / ¢ € << gw.q; —12{2"’;‘>>
La solucion particular es:
Xp:CE’€:>OZAXp+b:>Xp:—A71b.

I

Una posible solucién particular es x, = [O 0

N[ =

Juntando todo, considerando constantes A, B, C' € R, la solucién general queda:

R(t) 1 ZS—: | zé—: . 0
I =A| 0 |+B| 1 | +C| 1 [e ™+ |0
Aw 2w 2w
n(t) S o7 —%a 3

Suponiendo la condicién inicial x = 0, se determinan A, B, C"

[(0)=0=B+C=C=—

= [(t) = 2iBsin(Qgt).

R0)=0=A+i§2(B-C)=A+2i52B = A= —2i5*

A 2 A
— R(t) = ~2i=2B + 222 B cos(Qnt) = —2i~~ B[1 — cos(Qt)],
Qr Qr Qgr
y también:
(Aw)? 2wpg
t)=2i———B+2i——2B Qpt) + =
n(t) ol +2i O, cos(Q2gpt) +
con lo cual:
() — 9; (Aw)? 2w _1_ (Aw)® | 2wp _
n(0) =0=2iy - B+ 258 B+ = =2i(5 4t o8 ) B= 2itn LB
— 5=k

Con esto, finalmente:

1 2wrAw 2wpAw . Qr
R(t) = 5 0z [1— cos(Qrt)] = Q—%sm ( 5 t)
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(A.10.4)

(A.10.5)

(A.10.6)

(A.10.7)

(A.10.8)



12
I(t) = —EQL: sin(Qpt), (A.10.9)

1 (Aw)2 _ 1(2&)1{)2
22 0

S
—~

~+~
~—

cos(Qgt) + =

|
/—"\[\”

. Qig (30 + (2o con(@)]

%{ o 912 [(Aw)® + (QWR)ZCOS(QRM} (A.10.10)

11 -
=502 [(QwR) (2wr)* cos(Qrt)]

1 (2wg)?

=5 523 [1 — cos(Qgt)]

(20)3)2

Q
= 5 sin® (—Rt) .
Q5 2

A.11. Transformada de Fourier de V(z) en caso cuasi-1D

Partiéndose de Ec. (3.1.2), se plantea:

f/k = z/ dz e_isz(z)

11 6062/00 dz e~k 1
L47T60 € e V22 + R2
dz e ——=—— + dz 7" —n=——
. Nyl NeEy:

L47reo e (
1 1 € o /0 1 —ik(—2") 1 /OO ik 1
—e’ | — dz' eV + dz e s ____—_____
" Lire e ( - R+ R Jo N (A.11.1)
—e dz' """ —— + I —
"~ Lire ¢ ( 0 N(CIEES A VAR
1 1 €0 2/00 ik ik 1
d a4 1Rz
L47reo ee 0 N (6 te ),/Z2+R2

21 €, Oodz cos(kz)
~ Ldne € 0 V22+ R?
Se define - .
Ko(w) ;:/ g <ot (A.11.2)
0 2+1

con Re(w) > 0, funcién modificada de Bessel de segunda especie de orden 0. Con esto:

Vi = ——?62K0(R|k;|). (A.11.3)
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