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Resumen

En el presente trabajo se estudiaron las oscilaciones de Rabi generadas por la excitación

externa de un campo eléctrico hacia un medio semiconductor cuasi-unidimensional. El

fenómeno se basa en la promoción de electrones de la banda valencia hacia la banda

de conducción del medio, siendo éste un problema de muchos cuerpos interactuantes

entre śı (por Coulomb) y con la excitación externa, v́ıa interacción dipolar eléctrica, las

cuales producen transiciones únicamente interbanda: |v, k⟩ ←→ |c, k⟩ (”v” por banda de

valencia, ”c” por conducción, k cuasi-momento). Para el trabajo se consideraron modelos

que iban de menos a más complejidad, detallando cualitativa y cuantitativamente los

cambios en la medida que se agregaban variables a considerar: modelo de portadores de

carga no interactuantes entre śı (PNI) y modelo de portadores de carga interactuantes

entre śı (PI). El PNI consistió en ignorar la interacción coulombiana entre electrones

promovidos a la banda de conducción; el segundo en considerarla. El punto de partida

común de ambos fue el hamiltoniano del sistema, llegándose a un conjunto de ecuaciones

diferenciales ordinarias en el tiempo para las candidades ne,k(t), nh,k(t), Pk(t) que son,

respectivamente, densidad de electrones promovidos a la banda de conducción, densidad

de huecos en banda de valencia y polarización interbanda. El sistema de ecuaciones en

cuestión son un caso particular de las Ecuaciones de Semicondutor de Bloch (SBE).

Se partió del estudio de una part́ıcula en un sistema de dos niveles, la cual interactuaba

con un campo eléctrico mediante aproximación dipolar, observándose las oscilaciones de

Rabi y estudiando sus variaciones en amplitud y frecuencia en función de la sintonización

entre frecuencia del campo y frecuencia asociada a la enerǵıa de transición entre estados.

Se tuvo que a mayor ∆ω (desintońıa o detuning) menor amplitud de oscilación y mayor

frecuencia de la misma. Basándose en esto y en el hecho de que en el problema de muchos

cuerpos las transiciones debido al campo eléctrico son interbanda, se pudo caracterizar

bajo el modelo PNI a los electrones del semiconductor como a un conjunto de problemas de

part́ıcula única en sistema de dos niveles, un problema individual por cada cuasi-momento

k (en todo el trabajo se incluyó al ı́ndice de spin dentro del de cuasi-momento). Además,

el problema abordado por el modelo PNI pudo ser resuelto en forma exacta; en cambio,

al considerar la interacción coulombiana entre part́ıculas cargadas (modelo PI) se llegó

a un sistema de ecuaciones diferenciales ordinarias, las cuales fueron resueltas en forma

numérica por el método de Runge-Kutta 4 (RK4).

Los resultados obtenidos del modelo PI difieren de los del PNI debido a la aparición

de términos de enerǵıa que obligan a renormalizar ciertas cantidades, entre ellas las self-

energies Σe,k,Σh,k, agentes que causan el corrimiento energético entre bandas de valencia y

conducción en la medida que aparecen más huecos y electrones, respectivamente, en dichas

bandas. La self-energy máxima por estado fue calculada, arrojando Σmax ≈ 4 meV. Estas

self-energies son, a su vez, las responsables de la aparición de detuning variable en zonas

donde el modelo PI predećıa valores fijos, lo que permite las oscilaciones de Rabi completas
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hasta un |k| máximo que fue calculado: seteando parámetros para tener detuning nulo

en k = 0, luego |k| = 1, 098 × 10−2 1/Å. Por último, las diferencias entre modelos más

acuciantes resultaron ser:

cambios en el patrón de oscilaciones de Rabi (armónicas para PNI, anarmónicas

para PI);

aumento del ancho del intervalo de cuasi-momentos en donde se tienen oscilaciones

significativas;

cambios en el patrón de valores medios temporales de densidad de población, pa-

sando de un comportamiento de máximo en zona de detuning nulo y decaimiento

monótono al alejarse (PI) a uno con máximos absolutos desplazados y, entre ellos,

un juego alternado de máximos y mı́nimos locales (PNI).

aumento de densidad electrónica por unidad de longitud y de polarización por uni-

dad de longitud, además de cambios de comportamiento oscilatorio (cuasi-armónico

para PNI, anarmónico para PI).
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1.2. Transiciones ópticas dipolares en semiconductores . . . . . . . . . . . . . . 10

1.2.1. Hamiltoniano de interacción dipolar luz-semiconductor . . . . . . . 10
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1. Introducción

1.1. Interacción semi-clásica entre átomo de dos niveles y campo

eléctrico

Sea un electrón (carga e y masa m0) ligado a un núcleo atómico que forma un sistema

de dos niveles de enerǵıa ϵv, ϵc, con estados asociados |v⟩, |c⟩, respectivamente, auto-

estados del siguiente hamiltoniano:

H0 =
p2

2m0

+ V (r), (1.1.1)

siendo V (r) el potencial de interacción coulombiano entre núcleo atómico y electrón,

considerando el núcleo centrado en el origen.

Se define:

ωcv :=
ϵc − ϵv

ℏ
, (1.1.2)

asumiendo que |v⟩ corresponde al ground state y |c⟩ al nivel excited.

Se considera la incidencia de un campo eléctrico E(t; r) bajo aproximación dipolar [1],

lo cual modifica al H0 de la Ec. (1.1.1) generando un nuevo hamiltoniano:

H = H0 +HI , (1.1.3)

siendo:

HI = −e r · E(t), (1.1.4)

observando que bajo esta aproximación se da que E(t; r) ≈ E(t;0) =: E(t). Definiendo el

dipolo eléctrico d := e r, el hamiltoniano HI queda:

HI = −d · E(t). (1.1.5)

Para representar H0, HI en base {|c⟩ ; |v⟩}, se considera:

H0 = id H0 id = (|v⟩ ⟨v|+ |c⟩ ⟨c|) H0 (|v⟩ ⟨v|+ |c⟩ ⟨c|),

=⇒ H0 = ϵv |v⟩ ⟨v|+ ϵc |c⟩ ⟨c| . (1.1.6)

HI = id HI id = (|v⟩ ⟨v|+ |c⟩ ⟨c|) HI (|v⟩ ⟨v|+ |c⟩ ⟨c|),

=⇒ HI = −(dvc |v⟩ ⟨c|+ dcv |c⟩ ⟨v|)E(t), (1.1.7)

pues ⟨v|d |v⟩ = 0 ∧ ⟨c|d |c⟩ = 0, en ambos casos por paridad, y se definió:
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dcv := ⟨c|d · ê |v⟩ , (1.1.8a)

dvc := ⟨v|d · ê |c⟩ , (1.1.8b)

donde ê es el versor asociado a E(t). Las cantidades dcv, dvc son los elementos de matriz no

nulos del operador momento dipolar eléctrico, las cuales satisfacen además que dcv = d∗vc

(ver Apéndice A.1).

Considerando el estado más general del electrón:

|Ψ(t)⟩ = |v⟩Cv(t) + |c⟩Cc(t), (1.1.9)

se puede ver que su evolución temporal se rige por el H total a través de la ecuación de

Schrödinger:

iℏ
∂

∂t
|Ψ(t)⟩ = (H0 +HI) |Ψ(t)⟩ , (1.1.10)

con lo cual, notando Ci(t) ≡ Ci,
∂
∂t
Ci = Ċi, i = v, c, y aprovechando las descomposiciones

hechas en las Ecs. (1.1.6), (1.1.7), se tiene:

iℏ
(
|v⟩ Ċv + |c⟩ Ċc

)
= [ϵv |v⟩ ⟨v|+ ϵc |c⟩ ⟨c| − (dvc |v⟩ ⟨c|+ dcv |c⟩ ⟨v|)E(t)] (|v⟩Cv + |c⟩Cc) =

ϵv |v⟩Cv + ϵc |c⟩Cc − dcvE(t) |c⟩Cv − dvcE(t) |v⟩Cc,

lo cual se puede ordenar en el siguiente sistema de ecuaciones:

{
iℏĊv = ϵvCv − dvcE(t)Cc

iℏĊc = ϵcCc − dcvE(t)Cv

(1.1.11)

Para ejemplificar, se considera un campo eléctrico consistente con la aproximación

dipolar, i.e. independiente de la posición, dado por:

E(t) = E0 cos (ωt), (1.1.12)

el cual permite escribir el sistema de ecuaciones anterior de la siguiente forma:

{
iℏĊv = ϵvCv − dvcE0 cos(ωt)Cc

iℏĊc = ϵcCc − dcvE0 cos(ωt)Cv

(1.1.13)

Si se asume dcv = |dcv|e−iϕ y se define la frecuencia de Rabi ωR como

ωR :=
|dcv|E0

2ℏ
, (1.1.14)
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el sistema pasa a ser: Ċv = −i
ϵv
ℏ
Cv + 2i ωRe

iϕ cos(ωt)Cc

Ċc = −i
ϵc
ℏ
Cc + 2i ωRe

−iϕ cos(ωt)Cv

(1.1.15)

Para resolver el sistema dado por la Ec. (1.1.15), se considera el siguiente cambio de

variables:

cv = Cve
iωvt ∧ cc = Cce

iωct, (1.1.16)

en donde se definen ωv :=
ϵv
ℏ
, ωc :=

ϵc
ℏ
. Con esto:

ċve
−iωvt + (−i ωv)cve

−iωvt = −i ωvcve
−iωvt + i ωRe

iϕ (eiωt + e−iωt) cce
−iωct

=⇒ ċv = i ωRe
iϕcce

iωcvt (eiωt + e−iωt).

ċce
−iωct + (−i ωc)cce

−iωct = −i ωccce
−iωct + i ωRe

iϕ (eiωt + e−iωt) cve
−iωvt

=⇒ ċc = i ωRe
iϕcve

−iωcvt (eiωt + e−iωt).

Luego, aplicando la aproximación de onda rotante (RWA), i.e. despreciando los térmi-

nos que oscilan a frecuencias altas (ωcv + ω), queda:{
ċv = i ωRe

iϕcce
−i(ωcv−ω)t

ċc = i ωRe
−iϕcve

i(ωcv−ω)t
(1.1.17)

Se define la desintońıa entre la frecuencia de transición ωcv y la del campo ω como:

∆ω = ωcv − ω. (1.1.18)

Con esta definición, se plantea el sistema dado por la Ec. (1.1.17) en forma matricial, lo

que lleva a una ecuación de autovalores y autovectores cuyo polinomio caracteŕıstico es:

det

([
−λ i ωRe

−i(∆ωt−ϕ))

i ωRe
i(∆ωt−ϕ)) −λ

])
= λ2 + ω2

R = 0, (1.1.19)

en donde es trivial ver que los autovalores son λ = ±i ωR y, entonces, los autovectores

generan subespacios:〈
(1;−ei(∆ωt−ϕ))

〉
, para λ = −i ωR;〈

(1; ei(∆ωt−ϕ))
〉
, para λ = i ωR.

Con esto, la solución de Ec. (1.1.17) más general se escribe:

{
cv(t) = c̃1e

−iωRt + c̃2e
iωRt

cc(t) = c̃1[−ei(∆ωt−ϕ)]e−iωRt + c̃2e
i(∆ωt−ϕ)eiωRt

(1.1.20)

3



siendo c̃1, c̃2 ∈ C constantes de integración.

Luego, se puede definir una frecuencia ΩR como la hipotenusa de un triángulo rectángu-

lo conformado por las frecuencias de Rabi dos veces y la desintońıa como catetos, o sea:

ΩR =
√
(2ωR)2 +∆ω2. (1.1.21)

Con las definiciones de ∆ω y ΩR, la solución general se puede reescribir como:

{
cv(t) =

(
v1e

iΩRt/2 + v2e
−iΩRt/2

)
e−i∆ωt/2

cc(t) =
(
c1e

iΩRt/2 + c2e
−iΩRt/2

)
ei∆ωt/2

(1.1.22)

A partir de aqúı se puede entender que el sistema presenta las denominadas oscilaciones

de Rabi, i.e. una evolución temporal oscilante entre estados |v⟩ , |c⟩ a través de la frecuencia
de Rabi y de la desintońıa. Las constantes v1, v2, c1, c2 se determinan a través de las

condiciones iniciales cv(0), ċv(0), cc(0), ċc(0), asumiendo t0 = 0, en donde se obtienen:

v1 =
1

2ΩR

[
(ΩR +∆ω)cv(0) + (2ωR)e

iϕcc(0)
]
, (1.1.23a)

v2 =
1

2ΩR

[
(ΩR −∆ω)cv(0)− (2ωR)e

iϕcc(0)
]
, (1.1.23b)

c1 =
1

2ΩR

[
(ΩR −∆ω)cc(0) + (2ωR)e

−iϕcv(0)
]
, (1.1.23c)

c2 =
1

2ΩR

[
(ΩR +∆ω)cc(0)− (2ωR)e

−iϕcv(0)
]
. (1.1.23d)

Con éstas, las soluciones se pueden reescribir como:

cv(t) =

{
cv(0)

[
cos

(
ΩRt

2

)
+ i

∆ω

ΩR

sin

(
ΩRt

2

)]
+ i

2ωR

ΩR

eiϕcc(0) sin

(
ΩRt

2

)}
e−i∆ωt/2,

(1.1.24a)

cc(t) =

{
cc(0)

[
cos

(
ΩRt

2

)
− i ∆ω

ΩR

sin

(
ΩRt

2

)]
+ i

2ωR

ΩR

e−iϕcv(0) sin

(
ΩRt

2

)}
ei∆ωt/2

(1.1.24b)

Notar que las soluciones de la Ec. (1.1.24) preservan la norma de |Ψ(t)⟩, o sea:

⟨Ψ(t)|Ψ(t)⟩ = |Cc(t)|2 + |Cv(t)|2 = 1 = |cc(t)|2 + |cv(t)|2, (1.1.25)

con lo cual se puede definir una cantidad interpretable como la inversión de población

entre estados |v⟩ , |c⟩:
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W (t) := |cc(t)|2 − |cv(t)|2, (1.1.26)

la cual verifica −1 ≤ W (t) ≤ 1 y v́ıa Ec. (1.1.24), si se consideran condiciones iniciales

cv(0) = 1 ∧ cc(0) = 0, resulta ser (ver Apéndice A.2, culminando en Ec. (A.2.4)):

W (t) = −
[
∆ω2 − (2ωR)

2

Ω2
R

sin2

(
ΩRt

2

)
+ cos2

(
ΩRt

2

)]
. (1.1.27)

Nótese que en caso ∆ω = 0 (sin desintońıa), luego W (t) = − cos(2ωRt). Por otro lado,

bajo la acción de un campo eléctrico incidente, entre los estados |v⟩ , |c⟩ se induce un

momento dipolar dado por el valor de expectación del operador dipolo eléctrico, el cual

en la dirección ê del campo es:

p(t) = ⟨Ψ(t)|d · ê |Ψ(t)⟩ , (1.1.28)

luego:

p(t) = e [C∗
v (t) ⟨v|+ C∗

c (t) ⟨c|] r · ê [|v⟩Cv(t) + |c⟩Cc(t)] =

C∗
v (t) dvc Cc(t) + C∗

c (t) dcv Cv(t) = cc(t)c
∗
v(t) dvc e

−iωcvt + c.c.,

quedando para el caso cv(0) = 1 ∧ cc(0) = 0 (ver Apéndice A.3):

p(t) = 2|dcv| Re
{
i
2ωR

ΩR

[
cos

(
ΩRt

2

)
− i ∆ω

ΩR

sin

(
ΩRt

2

)]
sin

(
ΩRt

2

)
e−iωt

}
. (1.1.29)

En la Fig. 1 pueden verse las oscilaciones de Rabi para un sistema de dos niveles |v⟩ , |c⟩,
asumiendo cv(0) = 1 ∧ cc(0) = 0, en los casos sin desintońıa (Fig. 1a) y con desintońıa

no nula (Figs. 1b, 1c, 1d). Asimismo, en la Fig. 2 se aprecia la evolución temporal del

momento dipolar inducido p, también en los casos desintońıa nula (Fig. 2a) y desintońıa

no nula (Figs. 2b, 2c, 2d). Para estudiar el momento dipolar se supuso |dcv| = 1, 577 D,

resultado proveniente de la integral de una función de onda tipo ”s” con una ”p” del

átomo de hidrógeno (dcv = e ⟨c| r · ê |v⟩ = (16π/81) e r0, r0 radio de Bohr).

Cuando se tiene desintońıa nula, las transiciones entre niveles |v⟩ , |c⟩ son completas

pues los coeficientes de la Ec. (1.1.24) se reducen a funciones trigonométricas (multipli-

cadas por una fase), con frecuencia de oscilación ωR (Fig. 1a). En cambio, cuando se

introduce una desintońıa ∆ω = 2ωR, las transiciones decaen a la mitad de su amplitud,

manifestándose esto por la inversión de población: −1 ≤ W (t) ≤ 0 (Fig. 1b). Llegándose

a duplicar esta última desintońıa, i.e. ∆ω = 2 × (2ωR), la probabilidad de transición es

tal que |cc|2 < 0, 25 (si cv(0) = 1, como se está suponiendo); esto se manifiesta en la Fig.

1c. A partir de cuando la desintońıa alcanza ya un orden de magnitud mayor a 2ωR, i.e.

∆ω = 10 × (2ωR), las oscilaciones de los coeficientes se vuelven poco apreciables, por lo
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que la inversión de población: W (t) ≈ −1 (Fig. 1d).

Respecto al momento dipolar inducido p, dada la definición según Ec. (1.1.28), tiene

que ser nulo cuando se tienen estados puros |ψ⟩ = |v⟩ , |c⟩, a un dado instante, y no nulo

cuando |ψ⟩ sea una combinación lineal de estados. Esto se manifiesta en las Figs. 2. En el

caso de la Fig. 2a, como la desintońıa es nula, habrá transiciones completas, y entonces

p = 0 cuando |cv|2 = 1 ∨ |cc|2 = 1; en cambio, en las Figs. 2b, 2c, 2d puede verse que

como las transiciones nunca son completas, p = 0 sólo cuando se repite la condición inicial

en un peŕıodo de oscilación de los coeficientes (en este caso cv(0) = 1 ∧ cc(0) = 0).

Otro aspecto importante a tener en cuenta respecto a p, como puede apreciarse en la

Ec. (1.1.29) y en los ejemplos de la Fig. 2, es que está compuesto por una frecuencia rápida

que actúa de portadora, que es la ω del campo, y por una frecuencia relativamente lenta

que actúa como moduladora, siempre asociada a ΩR. Existen dos casos ĺımite en donde

las expresiones de p dejan ver con sencillez la forma de la moduladora y de la portadora:

casos desintońıa nula y desintońıa alta. Para ello, partiendo de Ec. (1.1.29), se plantea:

p(t) = 2|dcv| Re
{
i
2ωR

ΩR

cos

(
ΩRt

2

)
sin

(
ΩRt

2

)
[cos(ωt)− i sin(ωt)] +

2ωR∆ω

Ω2
R

sin2

(
ΩRt

2

)
[cos(ωt)− i sin(ωt)]

}
= 2|dcv|

[
2ωR

ΩR

cos

(
ΩRt

2

)
sin

(
ΩRt

2

)
sin(ωt) +

2ωR∆ω

Ω2
R

sin2

(
ΩRt

2

)
cos(ωt)

]
= 2|dcv|

2ωR

ΩR

sin

(
ΩRt

2

)[
cos

(
ΩRt

2

)
sin(ωt) +

∆ω

ΩR

sin

(
ΩRt

2

)
cos(ωt)

]
(1.1.30)

Caso I: ∆ω = 0 =⇒ ΩR = 2ωR.

=⇒ p(t) = |dcv| sin(2ωRt) sin(ωt). (1.1.31)

Llamando p
(I)
mod(t) := |dcv| sin(2ωRt) a la moduladora de esta última, queda:

p(t) = p
(I)
mod(t) sin(ωt). (1.1.32)

Caso II: ∆ω >> 2ωR =⇒ ΩR ≈ ∆ω.

=⇒ p(t) ≈ 2|dcv|
2ωR

∆ω
sin

(
∆ω t

2

)[
cos

(
∆ω t

2

)
sin(ωt) + sin

(
∆ω t

2

)
cos(ωt)

]
= 2|dcv|

2ωR

∆ω
sin

(
∆ω t

2

)
sin

[(
∆ω

2
+ ω

)
t

]
≈ 2|dcv|

2ωR

∆ω
sin

(
∆ω t

2

)
sin(ωt).

(1.1.33)
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Llamando p
(II)
mod(t) := 2|dcv|2ωR

∆ω
sin
(
∆ω t
2

)
a la moduladora de esta última, queda:

p(t) = p
(II)
mod(t) sin(ωt). (1.1.34)

El la Fig. 3 se grafican, según Ecs. (1.1.32), (1.1.34), los casos I y II, respectivamente

en Figs. 3a, 3b, bajo las mismas condiciones que se veńıa planteando en los ejemplos de

Figs. 1 y 2. Para el caso I se tomó ∆ω = 0, viendo que p
(I)
mod es exactamente la moduladora

de p(t), mientras que para el caso II bastó con considerar ∆ω = 10× 2ωR para que p
(II)
mod

sea una buena aproximación a la moduladora p(t).

Existen múltiples estudios en donde las oscilaciones de Rabi fueron observadas expe-

rimentalmente. Uno de ellos muy reciente es Combined time and frequency spectroscopy

with engineered dual comb spectrometer, de Sutapa Ghosh y Gadi Eisenstein [3], en donde

se excitó una muestra de Rb (combinada de 85Rb y 87Rb) para generar distintas transi-

ciones mediante un tren de pulsos láser, de tal manera que el peŕıodo entre pulsos sea

mucho menor que el tiempo de relajación de cada nivel excitado hacia el fundamental y

ello permitiera la acumulación electrónica en los respectivos excitados.

En óptica cuántica, la primera evidencia experimental de las oscilaciones de Rabi fue de

naturaleza indirecta; se dio en 1969 con el estudio Self-Induced Transparency, de Samuel

L. McCall y Erwin L. Hahn [4], en donde se observó que excitando un sistema de dos

niveles con un 2π-pulso, los átomos quedaban en el estado fundamental al final del pulso.

Esto implicó que no habŕıa absorción neta, por lo que un medio que absorbe fuertemente

a potencias bajas se volveŕıa transparente frente a un 2π-pulso. Por su parte, las primeras

evidencias directas de las oscilaciones de Rabi se dieron en 1972 [5] y 1973 [6] por parte

de Hyatt M. Gibbs, en donde se informó sobre la fluorescencia emitida por átomos de

Rb excitados resonantemente por pulsos cortos de un láser de mercurio; con una baja

densidad de átomos para evitar el desfase por colisiones, se detectaron las oscilaciones

midiendo la fluorescencia del nivel excitado en función del área del pulso.

Un resumen más abarcativo sobre las primeras evidencias experimentales de las os-

cilaciones de Rabi se encuentra en el libro Quantum Optics, an Introduction, de Mark

Fox [7].
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(a) Caso ∆ω = 0. (b) Caso ∆ω = 2ωR.

(c) Caso ∆ω = 2× (2ωR). (d) Caso ∆ω = 10× (2ωR).

Figura 1: Oscilaciones de Rabi en sistema de dos niveles |v⟩ , |c⟩ (caso cv(0) = 1 ∧ cc(0) =
0) representadas por la evolución temporal del módulo al cuadrado de los coeficientes
cv, cc del estado general |Ψ(t)⟩ = |v⟩ cv(t) + |c⟩ cc(t), considerando además la inversión
de población W . Los niveles distan energéticamente ϵv − ϵc = 1 eV entre śı, luego ωcv =
1, 520 × 1015 Hz. El campo eléctrico es de amplitud E0 = 287 dyn/esu, con lo cual la
frecuencia de Rabi es ωR = 2, 147× 1011 Hz.

8



(a) Caso ∆ω = 0. (b) Caso ∆ω = 2ωR.

(c) Caso ∆ω = 2× (2ωR). (d) Caso ∆ω = 10× (2ωR).

Figura 2: Momento dipolar inducido por las oscilaciones de Rabi en sistema de dos niveles
|v⟩ , |c⟩ (caso cv(0) = 1 ∧ cc(0) = 0), cuya diferencia de enerǵıas es ϵv − ϵc = 1 eV, luego
ωcv = 1, 520 × 1015 Hz. Campo eléctrico de amplitud E0 = 287 dyn/esu, con lo cual
ωR = 2, 147× 1011 Hz. Para el caso se tomó |dcv| = 1, 577 D.

(a) Caso ∆ω = 0. (b) Caso ∆ω >> 2ωR.

Figura 3: Comparación entre momento dipolar inducido por las oscilaciones de Rabi en
sistema de dos niveles |v⟩ , |c⟩ (caso cv(0) = 1 ∧ cc(0) = 0) y la modulación de su amplitud
en casos desintońıa nula (∆ω = 0) y desintońıa alta (∆ω = 10 × 2ωR). La diferencia de
enerǵıas es ϵv − ϵc = 1 eV, luego ωcv = 1, 520 × 1015 Hz. Campo eléctrico de amplitud
E0 = 287 dyn/esu, con lo cual ωR = 2, 147×1011 Hz. Para el caso se tomó |dcv| = 1, 577 D.

9



1.2. Transiciones ópticas dipolares en semiconductores

En un semiconductor, el gap entre la banda de valencia y la de conducción corresponde

a alguna enerǵıa Eg alcanzable mediante un campo eléctrico de frecuencia ω, desde el

infrarrojo lejano hasta niveles ópticos, de modo que Eg = ℏω.
Cuando un electrón abandona la banda de valencia y pasa a formar parte de la de

conducción, el sistema puede modelarse como si el lugar vacante fuera ocupado por un

”hueco”, éste de masa igual que la del electrón m0 pero carga |e|. Dicho sistema puede ser

simplificado como uno de dos niveles, en donde además de la interacción de las part́ıculas

con el campo esté la interacción coulombiana entre part́ıculas (electrón-electrón y electrón-

hueco). Un primer paso en el estudio de transiciones ópticas se puede hacer ignorando la

interacción coulombiana entre electrones de conducción (y con los huecos en valencia).

1.2.1. Hamiltoniano de interacción dipolar luz-semiconductor

Sea un sólido cristalino, en donde cada electrón posee el siguiente hamiltoniano:

H0 =
p2

2m0

+ V0(r), (1.2.1)

siendo V0(r) el potencial de interacción entre el electrón y los núcleos y electrones per-

tenecientes a iones. Como el sólido forma una red cristalina, el potencial será periódico

según los parámetros de red:

V0(r+Rn) = V0(r), (1.2.2)

para cualquier desplazamientoRn =
∑
i

niai, ni ∈ Z, {ai} conjunto de vectores primitivos

de la red.

Las auto-funciones del hamiltoniano H0 son las funciones de onda electrónicas que

satisfacen el Teorema de Bloch:

eik.Rnψλ(k; r) = ψλ(k; r+Rn), (1.2.3)

siendo λ el número cuántico que determina los niveles de enerǵıa (bandas, en este caso,

pues las enerǵıas dependen también de k). Luego, si L3 es el volumen del cristal, las

auto-funciones son:

ψλ(k; r) =
1

L3/2
eik.ruλ(k; r), (1.2.4)

en donde las uλ son las denominadas funciones de Bloch, las cuales son tales que uλ(k; r) =

uλ(k; r+Rn), o sea satisfacen la periodicidad de la red.

Como ψλ(k; r) = ⟨r|λ,k⟩, el H0 diagonalizado por la base de estados {|λ,k⟩} es:

H0 = ℏ
∑
λ,k

ωλ,k |λ,k⟩ ⟨λ,k| , (1.2.5)
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pudiéndose definir a las enerǵıas ϵλ,k := ℏωλ,k.

En semiconductores con gap directo, en un entorno de k = 0, las bandas de valencia y

conducción se comportan como dicta el esquema de la Fig. 4: dos parábolas, una convexa

(conducción) y otra cóncava (valencia), en donde la distancia mı́nima entre ellas se da

en k = 0 y vale Eg. Esto da lugar a la interpretación de masas efectivas tales que un

electrón libre, para un dado k, podŕıa tener una enerǵıa equivalente a la del punto que

corresponda en cada parábola E vs. k, o sea:

ϵv,k =
ℏ2k2

2mv

, (1.2.6a)

ϵc,k = Eg +
ℏ2k2

2mc

, (1.2.6b)

asumiendo v, c como los números cuánticos que caracterizan a la banda de valencia y de

conducción, respectivamente, de modo que la masa efectivamv < 0 para poder representar

la concavidad de la parábola. Con esto, para un dado k, si un electrón se encuentra en

la banda de valencia, para poder realizarse la transición necesitaŕıa de una excitación

externa que entregase un ∆E(k):

∆E(k) = Eg +
ℏ2k2

2mr

, (1.2.7)

con mr tal que

mr =
mc mv

mv −mc

, (1.2.8)

pues ϵv,k +∆E(k) = Eg +
ℏ2

2

(
1

mv

+
mv −mc

mc mv

)
k2 = Eg +

ℏ2k2

mc

= ϵc,k.

k

E

Eg

|c⟩

|v⟩

k̃

Eg +
ℏ2k̃2

2

(
1
mc
− 1

mv

)

Figura 4: Esquema de bandas de valencia y conducción en torno a k = 0.
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Por otro lado, al igual que en la sección anterior, si se agrega un campo eléctrico y se

considera la interacción dipolar de la luz con cada electrón, se tiene un HI igual al de la

Ec. (1.1.5), el cual, descompuesto en la base {|λ,k⟩}, resulta:

HI = −

( ∑
λ′,λ,k′,k

dλ′λ(k
′;k) |λ′,k′⟩ ⟨λ,k|

)
· E(t), (1.2.9)

con

dλ′λ(k
′;k) = ⟨λ′,k′|d |λ,k⟩ (1.2.10)

elementos de matriz del dipolo eléctrico.

Lo que sigue es relacionar los operadores d y p entre śı para poder explicar transiciones

interbandas. Para ello se considera el siguiente auxiliar del Apéndice A.4, que culmina en

la Ec. (A.4.1). Con esto, es trivial ver que se cumple:

dcv(k
′;k) = − i eℏ

m0 (ϵc,k′ − ϵv,k)
⟨c,k′|p |v,k⟩

= − i eℏ
m0 ∆E(k)

⟨c,k′|p |v,k⟩ ,
(1.2.11)

siendo

⟨c,k′|p |v,k⟩ =
∫
L3

d3x ψ∗
c (k

′; r) p ψv(k; r). (1.2.12)

Como se está trabajando en un entorno de k = 0 de las bandas de valencia y conduc-

ción, las funciones de Bloch uλ(k; r) se pueden aproximar por constantes respecto a k en

dicho entorno, pues vaŕıan muy tenuemente para pequeños valores de k [2], haciendo que

las auto-funciones de la Ec. (1.2.4) queden:

ψλ(k; r) ≈
1

L3/2
eik.ruλ(0; r), (1.2.13)

para λ = v, c, lo cual equivale a que las auto-funciones ψλ(k; r) adoptaran el k de la onda

plana que pre-multiplica a la función de Bloch centrada en k = 0. Luego, insertando la

Ec. (1.2.13) en Ec. (1.2.12) y operando como se muestra en el Apéndice A.5 hasta llegar

a la Ec. (A.5.1), se tiene:

⟨c,k′|p |v,k⟩ = 1

L3

∫
L3

d3x e−i(k′−k).ru∗c(0; r) (ℏk+ p)uv(0; r). (1.2.14)

Además, como vale que uλ(0; r) = uλ(0; r+Rn) para cualquier desplazamiento Rn sobre

el cristal, la integral sobre todo el volumen se puede reemplazar por una suma de integrales

en cada celda unidad de volumen l3, si se hace el cambio de variables r −→ r +Rn, con

n ∈ {1; 2; ...;N}, siendo N el número de celdas, dándose que L3 = Nl3:
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⟨c,k′|p |v,k⟩ =
N∑

n=1

e−i(k′−k).Rn

N

1

l3

∫
l3
d3x e−i(k′−k).ru∗c(0; r) (ℏk+ p)uv(0; r). (1.2.15)

Como
N∑

n=1

e−i(k′−k).Rn

N
= δk′k, resulta:

⟨c,k′|p |v,k⟩ = δk′k
1

l3

∫
l3
d3x e−i(k′−k).ru∗c(0; r) (ℏk+ p)uv(0; r)

= δk′k
1

l3

∫
l3
d3x u∗c(0; r) (ℏk+ p)uv(0; r).

(1.2.16)

Por su parte, en la integral que involucra a ℏk, el cuasi-momento k actúa como vector

(no como operador) y por tanto puede retirarse a izquierda de la integral, quedando:

1

l3

∫
l3
d3x u∗c(0; r)uv(0; r) =: δvc, (1.2.17)

la cual en este caso se anula pues v ̸= c, ya que se trata de transiciones interbandas. Con

esto, el elemento de matriz ⟨v,k′|p |c,k⟩ queda:

⟨c,k′|p |v,k⟩ = δk′k
1

l3

∫
l3
d3x u∗c(0; r) p uv(0; r). (1.2.18)

Llamando pcv(0) :=
1

l3

∫
l3
d3x u∗c(0; r) p uv(0; r), la Ec. (1.2.11) termina quedando:

dcv(k
′;k) = − i eℏ

m0 ∆E(k)
δk′k pcv(0). (1.2.19)

La función δk′k que aparece en este elemento de matriz del dipolo eléctrico indica que

las transiciones que éste es capaz de inducir siempre ocurren sin alterar el estado en el

k-espacio. Se dice por ello que son transiciones ópticas verticales. Asimismo, el elemento

de matriz del operador dipolo eléctrico en k = k′ = 0 es:

dcv(0) = −
i eℏ

m0 ∆E(0)
pcv(0), (1.2.20)

adoptando la notación dcv(0) := dcv(0;0). Con esto, multiplicando y dividiendo Ec.

(1.2.19) por ∆E(0), se tiene:

dcv(k
′;k) = dcv(0)

∆E(0)

∆E(k)
δk′k. (1.2.21)

De aqúı, recordando las Ecs. (1.2.7), (1.2.8) y que en caso de k = 0 : ∆E(0) = Eg, lo

anterior se convierte en:
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dcv(k
′;k) = dcv(0)

Eg

Eg +
ℏ2k2

2mr

δk′k. (1.2.22)

Con este último resultado, centrándose únicamente en los niveles v, c, el hamiltoniano

de interacción dipolar eléctrica HI de la Ec. (1.2.9) se puede escribir como:

HI = −
∑
k

(dcv |c,k⟩ ⟨v,k|+ d∗
cv |v,k⟩ ⟨c,k|) · E(t). (1.2.23)

1.2.2. Transiciones ópticas interbanda: dinámica de la matriz densidad

Para estudiar transiciones interbanda v, c, se considera la matriz densidad ρ(t), que se

puede expandir en base {|λ,k⟩} para λ = v, c y cada k, como:

ρ(t) =
∑
k,λ,λ′

ρλλ′(k; t) |λ,k⟩ ⟨λ′,k| . (1.2.24)

Notar que esta expresión es simplificada, en el sentido de que no incluye coherencias

entre los distintos cuasi-momentos k. Esos elementos no diagonales no son necesarios en

esta descripción de electrones no interactuantes entre śı y transiciones ópticas verticales.

La ecuación de movimiento de ρ(t) está dada por la ecuación de Liouville-Von Neu-

mann (ver Apéndice A.6, Ec. (A.6.1)):

d

dt
ρ(t) = − i

ℏ
[H, ρ(t)] , (1.2.25)

en donde H = H0 +HI , siendo H0,HI los hamiltonianos restringidos en las dos bandas

v, c. Como las transiciones interbanda se dan conservando el mismo k en cada caso, en

lugar de analizar a todo el operador ρ dado por la Ec. (1.2.24), alcanza con estudiar lo

que ocurre con cada coeficiente ρk definido como:

ρk(t) :=
∑
λ,λ′

ρλλ′(k; t) |λ,k⟩ ⟨λ′,k| . (1.2.26)

En Ec. (1.2.25), si se desarrolla H = H0 +HI en base {|λ,k⟩}, λ = c, v (Ecs. (1.2.5),

(1.2.23)), resulta que los productos internos resultantes al expresar ρk en la misma base

anula todos los términos tales que k ̸= k′, con lo cual, se tiene para cada k:

d

dt
ρk(t) = −

i

ℏ
[Hk, ρk(t)] , (1.2.27)

siendo:
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Hk := H0,k +HI,k, (1.2.28a)

H0,k := ℏωc,k |c,k⟩ ⟨v,k|+ ℏωv,k |v,k⟩ ⟨c,k| , (1.2.28b)

HI,k := − (dcv |c,k⟩ ⟨v,k|+ d∗
cv |v,k⟩ ⟨c,k|) · E(t). (1.2.28c)

Pasando al picture de interacción, la Ec. (1.2.27) se simplifica en:

d

dt
ρintk (t) = − i

ℏ
[
Hint

I,k, ρ
int
k (t)

]
, (1.2.29)

siendo:

ρintk (t) = exp

(
i

ℏ
H0t

)
ρk(t) exp

(
− i
ℏ
H0t

)
, (1.2.30)

Hint
I,k(t) = exp

(
i
H0

ℏ
t

)
HI,k exp

(
−iH0

ℏ

)
= −

[
ei(ωc,k−ωv,k)tdcv |c,k⟩ ⟨v,k|+ e−i(ωc,k−ωv,k)td∗

cv |v,k⟩ ⟨c,k|
]
· E(t).

(1.2.31)

Insertando estas dos últimas en Ec. (1.2.29):

d

dt
ρintk (t) =

i

ℏ
E(t) ·

∑
λ,λ′

ρintλ,λ′(k; t) .

[ ei(ωc,k−ωv,k)tdcv (|c,k⟩ ⟨v,k|λ,k⟩ ⟨λ′,k| − |λ,k⟩ ⟨λ′,k|c,k⟩ ⟨v,k|)+

e−i(ωc,k−ωv,k)td∗
cv (|v,k⟩ ⟨c,k|λ,k⟩ ⟨λ′,k| − |λ,k⟩ ⟨λ′,k|v,k⟩ ⟨c,k|) ] ,

(1.2.32)

siendo:

ρintλ,λ′(k; t) = ⟨λ,k| ρint(t) |λ′,k⟩

= ⟨λ,k| exp
(
i
H0

ℏ

)
ρ(t) exp

(
−iH0

ℏ

)
|λ′,k⟩

= ei(ωλ,k−ωλ′,k)tρλ,λ′(k; t),

(1.2.33)

con lo cual es trivial ver que
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ρintvv (k; t) = ρvv(k; t), (1.2.34a)

ρintcc (k; t) = ρcc(k; t), (1.2.34b)

ρintcv (k; t) = ei(ωc,k−ωv,k)tρcv(k; t), (1.2.34c)

ρintvc (k; t) = e−i(ωc,k−ωv,k)tρvc(k; t). (1.2.34d)

De esta forma, operando sobre Ec. (1.2.32) tal como muestra el Apéndice A.7, se llega

al siguiente sistema de ecuaciones diferenciales ordinarias:



d

dt
ρvv(k; t) = −

i

ℏ
[ρvc(k; t)dcv − ρcv(k; t)d∗

cv] · E(t)

d

dt
ρvc(k; t) = i(ωc,k − ωv,k)ρvc(k; t)−

i

ℏ
[ρvv(k; t)− ρcc(k; t)]d∗

cv · E(t)

d

dt
ρcv(k; t) = −i(ωc,k − ωv,k)ρcv(k; t) +

i

ℏ
[ρvv(k; t)− ρcc(k; t)]dcv · E(t)

d

dt
ρcc(k; t) =

i

ℏ
[ρvc(k; t)dcv − ρcv(k; t)d∗

cv] · E(t)

(1.2.35)

De la Ec. (1.2.35) es trivial ver que d
dt
ρcc = − d

dt
ρvv. Esto era de esperar, pues los

elementos de matriz ρλλ dan la probabilidad de encontrar un electrón en el estado |λ,k⟩.
Asimismo, se tiene que ρcv = ρ∗vc. Con esto, se tiene que las únicas ecuaciones indepen-

dientes del sistema son:
d

dt
ρcv(k; t) = −i(ωc,k − ωv,k)ρcv(k; t) + i

dcv · E(t)
ℏ

(ρvv(k; t)− ρcc(k; t))

d

dt
ρcc(k; t) = −2 Im

[
dcv · E(t)

ℏ
ρ∗cv(k; t)

] (1.2.36)

en donde se tomó ρvc(k; t)dcv · E(t)− ρcv(k; t)d∗
cv · E(t) = 2i Im [dcv · E(t)ρ∗cv(k; t)].

1.2.3. Excitación óptica monocromática a portadores no intectuantes

Asumiendo que el campo eléctrico tiene la forma:

E(t) = ê
E0

2

(
eiωt + e−iωt

)
, (1.2.37)

y aplicando RWA, las Ecs. (1.2.36) quedan:

d

dt
ρcv(k; t) =

− i ωcv,kρcv(k; t) + i
dcvE0

2ℏ
[
ρvv(k; t)e

−iωt − ρcc(k; t)e−iωt
]
,

(1.2.38)
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d

dt
ρcc(k; t) = −2 Im

[
dcv · E0

2ℏ
ρ∗cv(k; t)e

−iωt

]
, (1.2.39)

en donde se definió dcv := dcv · ê ∧ ωcv,k := ωc,k − ωv,k.

Se puede definir la cantidad

ωR :=
dcvE0

2ℏ
, (1.2.40)

que no es otra cosa que la frecuencia de Rabi, si se asume dcv ∈ R (=⇒ d∗cv = dcv). Luego:

d

dt
ρcv(k; t) =

d

dt

[
ρcv(k; t)e

iωte−iωt
]
=

{
d

dt

[
ρcv(k; t)e

iωt
]
− i ω

[
ρcv(k; t)e

iωt
]}

e−iωt

= −i ωcv,kρcv(k; t) + i ωR

[
ρvv(k; t)e

−iωt − ρcc(k; t)e−iωt
]

=
{
−i ωcv,k

[
ρcv(k; t)e

iωt
]
+ i ωR [ρvv(k; t)− ρcc(k; t)]

}
e−iωt.

De esta forma, reagrupando:

d

dt

[
ρcv(k; t)e

iωt
]
= −i ∆ωk

[
ρcv(k; t)e

iωt
]
+ i ωR [ρvv(k; t)− ρcc(k; t)] , (1.2.41)

en donde se definió la desintońıa o detuning :

∆ωk = ωcv,k − ω. (1.2.42)

Nótese que se reescribió la Ec. (1.2.38), basada en el elemento de densidad ρcv, en la

Ec. (1.2.41), pasándose a ρcve
iωt, lo cual equivale a expresar dicha cantidad en un marco

de referencia rotante o rotating frame.

Por su parte, la Ec. (1.2.39) también puede ser reescrita en términos de ωR y del

rotating frame:

d

dt
ρcc(k; t) = −2 Im

{
ωR

[
ρcv(k; t)e

iωt
]∗}

. (1.2.43)

1.2.4. Transiciones de portadores interactuantes

El sistema de la sección anterior corresponde a un hamiltoniano electrónico general

que aglutina los términos de las Ecs. (1.2.5), (1.2.9), quedando:

H = H0 +HI . (1.2.44)

Descontando el término de interacción dipolar HI , el hamiltoniano H0 se puede gene-

ralizar considerando todas las interacciones coulombianas posibles, i.e. entre electrones de

conducción entre śı, más electrones de conducción y iones, más la interacción entre iones.

Luego, el término H0 se convierte en:

H0 = T +He−e
c +He−i

c +Hi−i
c , (1.2.45)
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en donde T es la enerǵıa cinética de los electrones y He−e
c ,He−i

c ,Hi−i
c corresponden, res-

pectivamente, a la interacción de electrones entre śı, electrones-iones y iones entre śı. Aśı

escrito, este H0 se puede interpretar como el hamiltoniano de un gas de electrones en un

sistema de iones fijos en un sólido. Si se relaja la condición de periodicidad de la red,

los iones actúan como mero entorno de cargas positivas; esto encaja en la aproximación

del jellium model, mediante la cual se puede demostrar [8] que los términos He−i
c ,Hi−i

c

contribuyen únicamente como constantes aditivas en H0, lo que permite la redefinición del

mismo considerando únicamente la interacción entre electrones dada por He−e
c . Pasando

a segunda cuantización (ver Apéndice A.8, Ecs. (A.8.11), (A.8.13)), H0 se convierte en:

H0 =
∑
k,s

ℏ2k2

2m0

a†k,sak,s +
1

2

∑
k,k′,q ̸=0

∑
s,s′

Vq a
†
k+q,sa

†
k′−q,s′ak′,s′ak,s, (1.2.46)

siendo

Vq =
1

L3

4π

ϵ0

e2

q2
, (1.2.47)

el potencial coulombiano entre electrones.

Para economizar notación, a menos que sea estrictamente necesario, los ı́ndices de

spin se pueden dar por contenidos dentro de los cuasi-momentos k. De este modo, H0 se

simplifica a:

H0 =
∑
k

ℏ2k2

2m0

a†kak +
1

2

∑
k,k′,q ̸=0

Vq a
†
k+qa

†
k′−qak′ak, (1.2.48)

Antes de reintroducir este hamiltoniano al problema original (H = H0 + HI), se lo

debe extender teniendo en cuenta que los operadores de creación y destrucción a†k, ak,

respectivamente, deben crear y destruir part́ıculas en las bandas λ = v, c, o sea que

pasan a ser a†λ,k, aλ,k, operadores de creación y destrucción de electrones en banda λ y

cuasi-momento k, lo cual extiende el H0 a:

H0 =
∑
λ,k

ℏ2k2

2mλ

a†λ,kaλ,k +
1

2

∑
λ,λ′,k,k′,q ̸=0

Vq a
†
λ,k+qa

†
λ′,k′−qaλ′,k′aλ,k. (1.2.49)

Recordando las Ecs. (1.2.6) y sumando sobre λ, λ′ = v, c, la Ec. (1.2.49) pasa a ser:

H0 =
∑
k

(
ϵv,ka

†
v,kav,k + ϵc,ka

†
c,kac,k

)
+

1

2

∑
k,k′,q ̸=0

Vq

(
a†v,k+qa

†
v,k′−qav,k′av,k

+ a†c,k+qa
†
c,k′−qac,k′ac,k + 2a†c,k+qa

†
v,k′−qav,k′ac,k

)
,

(1.2.50)

en donde se aplicaron las propiedades de anticonmutación de los operadores a†, a, según

las Ecs. (A.8.8).

En cuanto al HI dado por la Ec. (1.2.23), se lo puede expresar en segunda cuantización
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a través de operadores de campo como:

HI =

∫
d3x Ψ†(r)(−d) · E(t; r)Ψ(r), (1.2.51)

en donde

Ψ(r) =
∑
λ,k

aλ,k ψλ(k; r), (1.2.52)

siendo ψλ(k; r) las funciones de Bloch de la Ec. (1.2.13). Observar además que al campo

E se le permitió tener dependencia espacial, lo cual implica (de momento) no considerar

la aproximación dipolar. Al mismo se lo puede expresar según:

E(t; r) = ê E(t)
1

2

(
eiq·r + e−iq·r) (1.2.53)

Teniendo presente que el elemento de matriz del operador d se escribe según la Ec.

(1.2.10) y aprovechando además que dλλ′(k;k′) ∝ δkk′ (Ec. (1.2.22)), se puede desarrollar:

HI =

∫
d3x Ψ†(r)(−d) · E(t; r)Ψ(r)

= −1

2
E(t)

∫
d3x

[∑
λ,k

a†λ,kψ
∗
λ(k; r)

]
d · ê

(
eiq·r + e−iq·r) [∑

λ′,k′

aλ′,k′ψλ′(k′; r)

]
q→0−→ −E(t)

∑
λ,λ′

∑
k,k′

a†λ,k

[∫
d3x ψ∗

λ(k; r) d · ê ψλ′(k′; r)

]
aλ′,k′

= −E(t)
∑
λ,λ′

∑
k

a†λ,k dλλ′ · ê aλ′,k.

Como siempre, llamando dλλ′ := dλλ′ · ê y recordando que los términos dλλ se anulan

por paridad, luego, sumando sobre los niveles v, c:

HI = −
∑
k

dcvE(t)
(
a†c,kav,k + a†v,kac,k

)
, (1.2.54)

en donde se tomó que dvc = d∗cv ∧ dcv ∈ R.

Para estudiar transiciones interbanda v, c, conviene analizar la polarización macroscópi-

ca de interbanda, inducida por el campo E(t; r), mediante la ecuación de Heisenberg a

través del hamiltoniano H cuyas partes constitutivas se obtuvieron en las Ecs. (1.2.50),

(1.2.54). Esta polarización macroscópica está conceptualmente emparentada con el mo-

mento dipolar inducido, dado por la Ec. (1.1.28), que hab́ıa sido definido cuando se es-

tudiaron transiciones ópticas en un sistema de dos niveles. En este caso, se define P,

polarización macroscópica de interbanda, como el valor de expectación del operador di-
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polo eléctrico sobre el estado inicial (justo al instante de encendido del campo eléctrico):

P =

∫
d3x

〈
Ψ†(r) d Ψ(r)

〉
, (1.2.55)

recordando que el ı́ndice de spin está contenido en los cuasi-momentos k que se hallan en

los operadores de campo, definidos en Ec. (1.2.52). Luego:

P =
∑

λ′,λ,k′,k

〈
a†λ′,k′aλ,k

〉∫
d3x ψ∗

λ′(k′; r) d ψλ(k; r)

=
∑

λ′,λ,k′,k

〈
a†λ′,k′aλ,k

〉
dλ′λ(k

′;k),
(1.2.56)

y espećıficamente para transiciones interbanda (λ ̸= λ′):

P =
∑

λ′,λ ̸=λ′,
k′,k

〈
a†λ′,k′aλ,k

〉
dλ′λ(0)

Eg

Eg +
ℏ2k2

2mr

δk′,k

=
∑

λ′,λ ̸=λ′,k

〈
a†λ′,kaλ,k

〉
dλ′λ(0)

Eg

Eg +
ℏ2k2

2mr

,

(1.2.57)

porque las ψλ(k; r) son las funciones de Bloch y cumplen todo el desarrollo que va desde

Ec. (1.2.11) hasta Ec. (1.2.22).

Si se define la polarización (microscópica) de interbanda |λ⟩ −→ |λ′⟩ como:

Pλ′λ,k :=
〈
a†λ′,kaλ,k

〉
. (1.2.58)

Luego, se puede interpretar

nλ,k := Pλλ,k =
〈
a†λ,kaλ,k

〉
(1.2.59)

como la densidad de part́ıculas en la banda λ, con cuasi-momento k. Entonces, para

λ = c, v y para transiciones |v,k⟩ −→ |c,k⟩, se tiene:

nv,k =
〈
a†v,kav,k

〉
, (1.2.60a)

Pcv,k =
〈
a†c,kav,k

〉
, (1.2.60b)

nc,k =
〈
a†c,kac,k

〉
, (1.2.60c)

teniéndose que cumplir, además, el siguiente v́ınculo trivial:

nv,k + nc,k = 1, (1.2.61)
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siempre que no haya procesos intrabanda, como colisiones por Coulomb.

Notar que, tal como ocurŕıa en el caso de portadores no interactuantes con la matriz

densidad ρ, en donde no haćıa falta estudiar la evolución temporal de todo el operador

sino que bastaba con hacerlo para sus elementos de matriz (Ec. 1.2.27), aqúı, en lugar de

aplicar Heisenberg a todo P para estudiar transiciones interbanda, alcanza con conocer

la evolución temporal de nv,k, Pcv,k, nc,k mediante el conmutador contra los elementos Hk

de H expresados en segunda cuantización:

Hk = H0,k +HI,k. (1.2.62)

H0,k = ϵv,k a
†
v,kav,k + ϵc,k a

†
c,kac,k +

1

2

∑
k′,q ̸=0

Vq

(
a†v,k+qa

†
v,k′−qav,k′av,k

+ a†c,k+qa
†
c,k′−qac,k′ac,k + 2a†c,k+qa

†
v,k′−qav,k′ac,k

)
.

(1.2.63)

HI,k = −dcvE(t)
(
a†c,kav,k + a†v,kac,k

)
. (1.2.64)

Por ejemplo, para Pcv,k:

−iℏ d
dt

(
a†c,kav,k

)
=
[
Hk, a

†
c,kav,k

]
=
[
H0,k, a

†
c,kav,k

]
+
[
HI,k, a

†
c,kav,k

]
= ϵv,k

[
a†v,kav,k, a

†
c,kav,k

]
+ ϵc,k

[
a†c,kac,k, a

†
c,kav,k

]
+

1

2

∑
k′,q ̸=0

Vq

{[
a†v,k+qa

†
v,k′−qav,k′av,k, a

†
c,kav,k

]
+[

a†c,k+qa
†
c,k′−qac,k′ac,k, a

†
c,kav,k

]
+ 2

[
a†c,k+qa

†
v,k′−qav,k′ac,k, a

†
c,kav,k

]}
−

dcvE(t)
{[
a†c,kav,k, a

†
c,kav,k

]
+
[
a†v,kac,k, a

†
c,kav,k

]}
Operando algebraicamente sobre los operadores de creación y destrucción mediante

las relaciones de anti-conmutación y conmutación (Apéndice A.8, Ecs. (A.8.8), (A.8.9)), y

luego tomando valor de expectación en los grupos de operadores de creación y destrucción,

se llega a:

d

dt
Pcv,k =

i

ℏ
(ϵc,k − ϵv,k)Pcv,k −

i

ℏ
(nv,k − nc,k) dcvE(t)+

i

ℏ
∑

k′,q ̸=0

Vq

(〈
a†c,ka

†
c,k′av,k−qac,k′+q

〉
+
〈
a†c,ka

†
v,k′av,k−qav,k′+q

〉
+〈

a†c,k−qa
†
c,k′ac,k′−qav,k

〉
+
〈
a†c,k−qa

†
v,k′av,k′−qav,k

〉) (1.2.65)
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Aplicando aproximaciones de fase aleatoria (RPA) y campo medio, los valores de ex-

pectación de operadores de cuatro términos se pueden separar en productos de operadores

de dos términos, agrupándolos por densidades de part́ıculas y polarizaciones interbanda.

Además, los términos que incluyen q = 0 no aportan a la sumatoria, pues ésta está

definida para todo q ̸= 0, con lo cual:

∑
k′,q̸=0

Vq

〈
a†c,ka

†
c,k′av,k−qac,k′+q

〉
= −

∑
k′,q ̸=0

Vq

〈
a†c,k

(
δ0,q − ac,k′+qa

†
c,k′

)
av,k−q

〉
=

−

=0︷ ︸︸ ︷∑
k′,q ̸=0

Vq

〈
a†c,kav,k−q

〉
δ0,q+

∑
k′,q ̸=0

Vq

〈
a†c,kac,k′+qa

†
c,k′av,k−q

〉
≈

∑
q ̸=0

Vq nc,kPcv,k−q.

∑
k′,q̸=0

Vq

〈
a†c,ka

†
v,k′av,k−qav,k′+q

〉
= −

∑
k′,q ̸=0

Vq

〈
a†c,k

(
δ0,q − av,k′+qa

†
v,k′

)
av,k−q

〉
=

−

=0︷ ︸︸ ︷∑
k′,q ̸=0

Vq

〈
a†c,kav,k−q

〉
δ0,q+

∑
k′,q ̸=0

Vq

〈
a†c,kav,k′+qa

†
v,k′av,k−q

〉
≈

∑
q ̸=0

Vq Pcv,knv,k−q.

∑
k′,q̸=0

Vq

〈
a†c,k−qa

†
c,k′ac,k′−qav,k

〉
=
∑

k′,q ̸=0

Vq

〈
a†c,k−q

(
δ0,q − ac,k′−qa

†
c,k′

)
av,k

〉
=

=0︷ ︸︸ ︷∑
k′,q̸=0

Vq

〈
a†c,k−qav,k

〉
δ0,q−

∑
k′,q ̸=0

Vq

〈
a†c,k−qac,k′−qa

†
c,k′av,k

〉
≈

−
∑
q ̸=0

Vq nc,k−qPcv,k.

∑
k′,q̸=0

Vq

〈
a†c,k−qa

†
v,k′av,k′−qav,k

〉
=
∑

k′,q ̸=0

Vq

〈
a†c,k−q

(
δ0,q − av,k′−qa

†
v,k′

)
av,k

〉
=

=0︷ ︸︸ ︷∑
k′,q̸=0

Vq

〈
a†c,k−qav,k

〉
δ0,q−

∑
k′,q ̸=0

Vq

〈
a†c,k−qav,k′−qa

†
v,k′av,k

〉
≈

−
∑
q ̸=0

Vq Pcv,k−qnv,k.

Juntando todo lo anterior:

22



d

dt
Pcv,k =

i

ℏ
(ϵc,k − ϵv,k)Pcv,k −

i

ℏ
(nv,k − nc,k) dcvE(t)+

i

ℏ
∑
q ̸=0

Vq (nc,kPcv,k−q + Pcv,knv,k−q − nc,k−qPcv,k − Pcv,k−qnv,k)

=
i

ℏ
(ϵc,k − ϵv,k)Pcv,k −

i

ℏ
(nv,k − nc,k) dcvE(t)−

i

ℏ
(nv,k − nc,k)

∑
q ̸=k

Vk−qPcv,q −
i

ℏ

(∑
q ̸=k

Vk−qnc,q −
∑
q ̸=k

Vk−qnv,q

)
Pcv,k

=⇒ d

dt
Pcv,k =

i

ℏ

[(
ϵc,k −

∑
q ̸=k

Vk−qnc,q

)
−

(
ϵv,k −

∑
q ̸=k

Vk−qnv,q

)]
Pcv,k−

i

ℏ
(nv,k − nc,k)

(
dcvE(t) +

∑
q ̸=k

Vk−qPcv,q

)
.

(1.2.66)

Para nc,k y nv,k, se sigue el mismo camino que con Pcv,k (Apéndice A.9): se plantea la

ecuación de Heisenberg para a†c,kac,k y a†v,kav,k, respectivamente, se opera algebraicamente

sobre los operadores de creación y destrucción y, posteriormente, se toman valores de

expectación, llegando a ecuaciones similares a Ec. (1.2.65), para luego aplicar RPA y

campo medio sobre los valores de expectación de cada grupo de cuatro operadores para

convertirlos en productos de valores de expectación de dos, interpretables como Pcv,k, nc,k,

nv,k; se reemplazan éstos, se agrupa todo convenientemente y se llega a las siguientes:

d

dt
nc,k =

2

ℏ
Im

[(
dcvE(t) +

∑
q ̸=k

Vk−qPcv,q

)
P ∗
cv,k

]
, (1.2.67)

d

dt
nv,k = −2

ℏ
Im

[(
dcvE(t) +

∑
q ̸=k

Vk−qPcv,q

)
P ∗
cv,k

]
= − d

dt
nc,k. (1.2.68)

Antes de continuar trabajando con las Ecs. (1.2.66), (1.2.67), (1.2.68), conviene hacer

un cambio de notación que proviene de la siguiente reinterpretación: cuando un electrón

de cuasi-momento k es promovido a la banda de conducción, en su lugar, en la banda de

valencia, aparece un hueco de masa mh = −mv, carga |e| y cuasi-momento (−k).

En la notación electrón-hueco, valen las siguientes:

β†
−k := av,k, (1.2.69a)

β−k := a†v,k, (1.2.69b)

pues aniquilar/crear un electrón en valencia es crear/aniquilar un hueco. También se nota:
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α†
k := a†c,k, (1.2.70a)

αk := ac,k, (1.2.70b)

lo que permite reescribir la polarización y las poblaciones:

ne,k :=
〈
α†
kαk

〉
(1.2.71a)

nh,k :=
〈
β†
−kβ−k

〉
(1.2.71b)

Pk := Peh,k =
〈
α†
kβ

†
−k

〉
(1.2.71c)

Por su parte, las poblaciones tienen que cumplir:

nh,k = 1− nv,k, (1.2.72a)

ne,k = nc,k, (1.2.72b)

entonces, por el v́ınculo dado por Ec. (1.2.61), (1−nh,k)+ne,k = 1, aśı que las poblaciones

quedan igualadas:

ne,k = nh,k. (1.2.73)

Como los huecos son cuasi-part́ıculas de masa mh = −mv > 0, también hay que

reescribir la enerǵıa asociada a la banda de valencia ϵv,k:

ϵv,k =
ℏ2k2

2mv

= −ℏ2k2

2mh

(1.2.74)

Con los operadores de creación y destrucción α, β se podŕıa rehacer todo el problema,

partiendo de la reescritura del hamiltoniano en términos de estos operadores. No obs-

tante, habiéndose llegado a las Ecs. (1.2.66), (1.2.67), (1.2.68), basta con reempalzar las

poblaciones y la enerǵıa ϵv,k:

d

dt
Pk =

i

ℏ

[((
ℏ2k2

2mc

+ Eg

)
−
∑
q̸=k

Vk−qne,q

)
+((

ℏ2k2

2mh

+
∑
q ̸=k

Vk−q

)
−
∑
q ̸=k

Vk−qnh,q

)]
Pk−

i

ℏ
(1− nh,k − ne,k)

(
dcvE(t) +

∑
q ̸=k

Vk−qPq

)
,

(1.2.75)
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d

dt
ne,k =

2

ℏ
Im

[(
dcvE(t) +

∑
q ̸=k

Vk−qPq

)
P ∗
k

]
, (1.2.76)

y por el v́ınculo de la Ec. (1.2.73):

d

dt
nh,k =

2

ℏ
Im

[(
dcvE(t) +

∑
q ̸=k

Vk−qPq

)
P ∗
k

]
. (1.2.77)

Notar que los términos
∑

q̸=k Vk−qnh,q,
∑

q ̸=k Vk−qPq son invariantes ante el cambio

k −→ (−k), con lo cual en Ecs. (1.2.75), (1.2.76), (1.2.77) basta con cambiar la notación

Pcv −→ P y nv −→ nh.

Se definen las enerǵıas de electrón y de hueco:

ϵe,k :=
ℏ2k2

2mc

+ Eg, (1.2.78a)

ϵh,k :=
ℏ2k2

2mh

+
∑
q ̸=k

Vk−q, (1.2.78b)

lo que permite entender que, en torno a k = 0, los electrones de conducción pertenecen

a la banda de enerǵıa ϵe,k = ϵc,k (tal como antes); no obstante, para los huecos, se puede

interpretar que existe una ”banda” en dicho entorno cuya enerǵıa es ϵh,k. Recordando el

esquema de la Fig. 4, esto último se esquematiza en la Fig. 5.

Se definen las auto-enerǵıas de intercambio:

Σe,k := −
∑
q ̸=k

Vk−qne,q, (1.2.79a)

Σh,k := −
∑
q ̸=k

Vk−qnh,q, (1.2.79b)

las cuales puede verse que son las responsables de renormalizar las enerǵıas de las bandas

en todo k ∈ 1ZB, según vaya cambiando la población de electrones y de huecos.

Se define la frecuencia generalizada de Rabi:

ωR,k :=
dcvE(t)

ℏ
+

1

ℏ
∑
q ̸=k

Vk−qPq. (1.2.80)

Con las definiciones adoptadas en las Ecs. (1.2.78), (1.2.79), (1.2.86), la evolución

temporal de las cantidades Pk, ne,k, nh,k se pueden resumir en el siguiente sistema de

ecuaciones diferenciales ordinarias:
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

d

dt
Pk =

i

ℏ
[(ϵe,k + Σe,k) + (ϵh,k + Σh,k)]Pk − i ωR,k (1− nh,k − ne,k) ,

d

dt
ne,k = 2 Im (ωR,kP

∗
k) ,

d

dt
nh,k = 2 Im (ωR,kP

∗
k) .

(1.2.81)

k

E

Eg

|c⟩

|v⟩

k̃

Eg +
ℏ2k̃2

2mr

+
∑
q ̸=k̃

Vk̃−q

Figura 5: Esquema de bandas de valencia y conducción en torno a k = 0 cuando se adopta
la notación electrón-hueco; se puede suponer que los huecos existen en una ”banda” cuya

enerǵıa en ese entorno es ϵh,k = ℏ2k̃2

2mh
+
∑

q ̸=k Vk−q.

1.2.5. Excitación óptica monocromática a portadores intectuantes

Adoptando un campo eléctrico cuya función temporal sea

E(t) =
E0

2

(
eiωt + e−iωt

)
, (1.2.82)

y aplicando RWA sobre las Ecs. (1.2.81), éstas se rescriben:

d

dt
Pk =

i

ℏ
[(ϵe,k + Σe,k) + (ϵh,k + Σh,k)]Pk

− i

(
dcvE0

2ℏ
e−iωt +

1

ℏ
∑
q ̸=k

Vk−qPq

)
(1− nh,k − ne,k) ,

(1.2.83)

d

dt
ne,k = 2 Im

[(
dcvE0

2ℏ
e−iωt +

1

ℏ
∑
q ̸=k

Vk−qPq

)
P ∗
k

]
, (1.2.84)

d

dt
nh,k = 2 Im

[(
dcvE0

2ℏ
e−iωt +

1

ℏ
∑
q ̸=k

Vk−qPq

)
P ∗
k

]
, (1.2.85)
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lo que da lugar a aplicar rotating frame:

d

dt
Pk =

d

dt

[(
Pke

iωt
)
e−iωt

]
=

d

dt

(
Pke

iωt
)
e−iωt − iω

(
Pke

iωt
)
e−iωt

=
i

ℏ
[(ϵe,k + Σe,k) + (ϵh,k + Σh,k)]

(
Pke

iωt
)
e−iωt

− i

[
dcvE0

2ℏ
+

1

ℏ
∑
q ̸=k

Vk−q

(
Pqe

iωt
)]

(1− nh,k − ne,k) e
−iωt

=⇒ d

dt

(
Pke

iωt
)
− iω

(
Pke

iωt
)
=

i

ℏ
[(ϵe,k + Σe,k) + (ϵh,k + Σh,k)]

(
Pke

iωt
)

− i

[
dcvE0

2ℏ
+

1

ℏ
∑
q ̸=k

Vk−q

(
Pqe

iωt
)]

(1− nh,k − ne,k) .

d

dt
ne,k =

d

dt
nh,k = 2 Im

[(
dcvE0

2ℏ
+

1

ℏ
∑
q ̸=k

Vk−qPqe
iωt

)
P ∗
ke

−iωt

]

= 2 Im

{[
dcvE0

2ℏ
+

1

ℏ
∑
q ̸=k

Vk−q

(
Pqe

iωt
)] (

Pke
iωt
)∗}

.

Bajo esta aproximación, se redefine la frecuencia de Rabi generalizada como:

ωR,k :=
dcvE0

2ℏ
+

1

ℏ
∑
q ̸=k

Vk−q

(
Pqe

iωt
)
. (1.2.86)

A su vez, se definen las frecuencias:

ωeh,k :=
(ϵe,k + Σe,k) + (ϵh,k + Σh,k)

ℏ
, (1.2.87a)

∆ωk := ωeh,k − ω, (1.2.87b)

siendo esta última el detuning entre la frecuencia ωeh,k y la del campo eléctrico. Notar la

similitud de la frecuencia de Rabi generalizada y de la desintońıa con las definidas en el

caso no interactuante (Ec. (1.2.40) y Ec. (1.2.42), respectivamente).

Con estas definiciones, el sistema dado por la Ec. (1.2.81) se convierte en:



d

dt

(
Pke

iωt
)
= i ∆ωk

(
Pke

iωt
)
− i ωR,k (1− nh,k − ne,k) ,

d

dt
ne,k = 2 Im

[
ωR,k

(
Pke

iωt
)∗]

,

d

dt
nh,k = 2 Im

[
ωR,k

(
Pke

iωt
)∗]

.

(1.2.88)
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2. Modelo de portadores no interactuantes entre śı

2.1. Solución exacta

Al pasar a notación electrón-hueco, la ecuación de la evolución temporal de nh,k quedó

redundante, sin embargo se la incluyó en todo el análisis por completitud. Si en el sistema

de la Ec. (1.2.88) se ignora la ecuación para los huecos y se anulan las interacciones

entre part́ıculas, las ecuaciones para Pke
iωt y ne,k pasan a ser idénticas a las Ecs. (1.2.41)

y (1.2.43), respectivamente, lo cual era lo esperado, interpretando a las cantidades Pk

y ne,k como los elementos de la matriz densidad ρcv(k; t) y ρcc(k; t). En el sistema de

la Ec. (1.2.88) puede verse, además, que Pke
iωt, ωR,k ∈ C, mientras que ne,k, nh,k ∈ R.

Anulando todos los coeficientes Vk−q del potencial de interacción (o sea, volviendo al

caso no interactuante entre part́ıculas), desde Ec. (1.2.86) se puede ver que, en ese caso,

ωR,k ∈ R, pues

ωR,k :=
dcvE0

2ℏ
, (2.1.1)

lo cual vuelve a ser Ec. (1.2.40), la frecuencia de Rabi en el caso no interactuante. Asi-

mismo, separando Pke
iωt en parte real e imaginaria:

Rk := Re(Pke
iωt) ∧ Ik := Im(Pke

iωt), (2.1.2)

el sistema de la Ec. (1.2.88) pasa a ser:



d

dt
Rk = −∆ωkIk,

d

dt
Ik = ∆ωkRk − ωR,k (1− ne,k − nh,k) ,

d

dt
ne,k = −2 ωR,kIk,

d

dt
nh,k = −2 ωR,kIk.

(2.1.3)

Observar que, como siempre, ∆ωk = ωeh,k − ω, pero ωeh,k pasa a ser:

ωeh,k =
∆E(k)

ℏ
, (2.1.4)

la ∆E(k) que se teńıa en la Ec. (1.2.7).

El sistema de la Ec. (2.1.3) se puede resolver en forma exacta planteando una ecuación
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matricial de autovalores y autovectores (ver Apéndice A.10), obteniéndose:

ne,k(t) =
(2ωR,k)

2

Ω2
R,k

sin2

(
ΩR,k

2
t

)
, (2.1.5a)

nh,k(t) =
(2ωR,k)

2

Ω2
R,k

sin2

(
ΩR,k

2
t

)
, (2.1.5b)

Rk(t) =
1

2

2ωR,k∆ωk

Ω2
R,k

[1− cos(ΩR,kt)] =
2ωR,k∆ωk

Ω2
R,k

sin2

(
ΩR,k

2
t

)
, (2.1.5c)

Ik(t) = −
1

2

2ωR,k

ΩR,k

sin(ΩR,kt), (2.1.5d)

siendo

ΩR,k =
√

(2ωR,k)2 + (∆ωk)2, (2.1.6)

la misma definición que en Ec. (1.1.21) pero aqúı incluyendo la variable discreta k, lo que

manifiesta que estas soluciones se asemejan a las de una part́ıcula en un sistema de dos

niveles, sólo que para cada k por separado.

2.2. Caso unidimensional

A modo de ejemplo, los resultados de las Ecs. (2.1.5) pueden verse en las Figs. 6, 7,

en donde se graficaron superficies de nivel de ne,k(t) y del módulo |Pk(t)| para el caso

unidimensional (coincidente con la dirección ê del campo E(t; r)). La densidad de huecos

nh,k(t) no se graficó pues resulta redundante. Para este ejemplo, utilizando como notación

k ≡ k dado que todas las cantidades serán expresadas en una dimensión, se consideró:

parámetro lineal de red a = 5, 653 Å y Eg = 1, 424 eV (datos de material GaAs);

intervalo de tiempo de estudio [0; τ ], τ = 32 ps;

campo eléctrico de amplitud E0 = 287 dyn
esu

y frecuencia ω = Eg/ℏ = 2, 165×1015 Hz;

con lo cual ωR,0 = 1, 748 × 1012 Hz. La ω elegida es tal que excita sin detuning a los

electrones de cuasi-momento k = 0, generando en ellos oscilaciones de Rabi completas.

Como es de esperar, a medida que k se aleja de 0, aparece un detuning ∆ωk ̸= 0, por lo

que esos electrones describen oscilaciones de Rabi incompletas, i.e. oscilaciones que decaen

en amplitud y aumentan la frecuencia en tanto crece la distancia al cuasi-momento nulo.

Además, en estas figuras, queda en manifiesto que para pequeños apartamientos de k = 0

el efecto del detuning es tan importante que saliendo del rango de cuasi-momentos tomados

en Fig. 6 ya no se aprecian promociones interbanda.
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Figura 6: ne,k(t) en modelo de portadores no interactuantes entre śı. El campo eléctrico
es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Eg/ℏ, siendo Eg = 1, 424 eV
(material GaAs), de modo que excite sin detuning a los electrones con k = 0, generando
en ellos oscilaciones de Rabi completas, de periodo T0 = 1, 797 ps, siendo ωR,0 = 1, 748×
1012 Hz. En el resto de k se observan oscilaciones de Rabi incompletas y a mayor frecuencia.

Figura 7: |Pk(t)| en modelo de portadores no interactuantes entre śı. El campo eléctrico
es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Eg/ℏ, siendo Eg = 1, 424 eV
(material GaAs), de modo que excite sin detuning a los electrones con k = 0, generando
en ellos oscilaciones de Rabi completas, de periodo T0 = 1, 797 ps, siendo ωR,0 = 1, 748×
1012 Hz. En el resto de k se observan oscilaciones de Rabi incompletas y a mayor frecuencia.
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3. Modelo de portadores interactuantes entre śı

3.1. Estimación de self-energies a partir de caso de distribución

conocida: Fermi-Dirac en cuasi-1D

Una forma prudente de avanzar en este estudio requiere de estimar las self-energies

Σe,k,Σh,k, dadas por Ec. (1.2.79), para una distribución de población electrónica en con-

ducción (y de huecos en valencia) conocida, es decir, sin pasar por el sistema de la Ec.

(1.2.88) que da su evolución temporal. De ese modo, se puede controlar cada self-energy

para cada densidad electrónica (y de huecos).

Para simplificar este análisis, se adopta el caso cuasi-unidimensional (en adelante

”cuasi-1D”), el cual consiste en considerar al material semiconductor como una cade-

na lineal de parámetro de red a, tal que existe una dimensión longitudinal de tamaño

L >> R, siendo R la máxima distancia transversal. Para fines didácticos, esto equivale a

considerar un ”cable” de largo L >> a y de ”radio” R ∼ a. En este caso, el potencial de

interacción coulombiana de un electrón se puede tomar como:

V (z) =
1

4πϵ
e2

1√
z2 +R2

, (3.1.1)

siendo ϵ la permitividad del medio y z la distancia relativa en la dirección longitudinal.

Este potencial se puede reescribir como:

V (z) =
1

4πϵ0

ϵ0
ϵ
e2

1√
z2 +R2

, (3.1.2)

y puede ser llevado a una expresión tipo Ec. (1.2.47), si se calcula su transformada de

Fourier (Apéndice A.11):

V̂k =
2

L

1

4πϵ0ϵr
e2K0(R|k|), (3.1.3)

siendo ϵr la permitividad relativa del medio con respecto al vaćıo, k cuasi-momento (k en

una dimensión) y K0 la función modificada de Bessel de segunda especie de orden 0.

Como se está en caso unidimensional y, en general, ne,k = nh,k =⇒ Σe,k = Σh,k, se

puede adoptar, para esta sección, la notación nk para la densidad de cualquier portador

y Σk para el módulo de su correspondiente self-energy. Si se asume una distribución

de Fermi-Dirac para nk, lo que corresponde al ground state a temperatura T = 0 del

hamiltoniano del gas de electrones H0 dado por Ec. (1.2.46), se tiene:

nk =

{
2 si |k| ≤ kF

0 si |k| > kF
, (3.1.4)

separando al spin de la notación de cuasi-momento, de modo que puede haber 2 portadores
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por cada k. Además, para el caso unidimensional:

kF = πn, (3.1.5)

siendo n la densidad total de part́ıculas.

Renombrando V̂k ≡ V|k|, se puede calcular el módulo de la self-energy pasando al

continuo:

Σk =
∑
q ̸=k

V|k−q|nq −→ Σ(k) =
L

2π

∫ π/a

−π/a

dq V (|k − q|)n(q). (3.1.6)

Como nq −→ n(q) = 2Θ(kF + q)Θ(kF − q), queda:

Σ(k) =
L

π

∫ kF

−kF

dq V (|k − q|) (3.1.7a)

= C̃

∫ kF

−kF

dq K0(R|k − q|), (3.1.7b)

llamando

C̃ :=
2

π

1

4πϵ0ϵr
e2. (3.1.8)

Tomando el cambio de variables q̃ = k − q =⇒ dq̃ = −dq. Luego:

Σ(k) = −C̃
∫ k−kF

k+kF

dq̃ K0(R|q̃|)

= C̃

∫ k+kF

k−kF

dq̃ K0(R|q̃|),
(3.1.9)

3.1.1. Aproximación de la interacción coulombiana por campo medio

La integral de la Ec. (3.1.9) se puede reemplazar por otra cuyo valor sea aproxima-

damente igual, pero en lugar de utilizar la interacción dada por Ec. (3.1.3) se puede

aplicar un modelo mucho más sencillo, haciendo
∫ b

a
dx K0(x) ≈

∫ b′

a
dx y(x), con x = R|q̃|.

Tomando la función K0(x) e integrando numéricamente en R≥0, puede verse que:

∫ ∞

0

dx K0(x) ≈
∫ 4

0

dx K0(x) ≈ 1,56 ≈ 3/2, (3.1.10)

observando que ∄ K0(0), pero śı se puede integrar con ĺımite inferior en 0 pues para la

integral un solo punto representa un conjunto de contenido cero.

Por otro lado, la función K0 −→ 0 rápidamente, por lo que las interacciones a largo

alcance -en términos de la variable R|q̃|- pueden desestimarse (K0(x) sólo aporta cifras

significativas integrando en [0; 4]); las de corto-medio alcance (0 < R|q̃| ≤ 2) pueden

asumirse constantes. En la Fig. (8) puede verse la función modificada de Bessel de segunda
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especie K0(x) junto a una recta constante y(x) = 3/4. Ambas funciones verifican:

∫ ∞

0

dx K0(x) ≈
∫ 2

0

dx y(x) = 3/2, (3.1.11)

de modo que si se reemplaza K0(R|q̃|) por y0(R|q̃|) = 3
4
Θ(R|q̃|)Θ(2 − R|q̃|) y se integra

en un intervalo conveniente, ambas funciones generan la misma self-energy.

3/4

2 4
x

f(x) K0(x)

y(x) = 3
4

Figura 8: Comparación K0(x) con la constante y(x) = 3/4.

Con lo dicho, la Ec. (3.1.9) pasa a ser:

Σ(k) ≈ 3

4
C̃

∫ k+kF

k−kF

dq̃ Θ(R|q̃|)Θ(2−R|q̃|). (3.1.12)

Adoptando el cambio de variable x = Rq̃ / |x| = R|q̃| =⇒ dx = Rdq̃, luego:

Σ(k) ≈ 3

4
C

∫ R(k+kF )

R(k−kF )

dx Θ(|x|)Θ(2− |x|), (3.1.13)

con C = C̃/R.

Como Θ(|x|) = 1|x|≥0 = 1 ∀ x ∈ R, entonces la integral se reduce a:

Σ(k) ≈ 3

4
C

∫ R(k+kF )

R(k−kF )

dx Θ(2− |x|). (3.1.14)

Para estudiar la integral obtenida en Ec. (3.1.14) hay que separar en casos, pues la

función escalón de Heaviside que se tiene en el integrando puede cambiar uno o ambos

ĺımites de integración. Además, estos casos también dependerán de la comparación entre

las cantidades kF , 2/R:

1. R(k + kF ) < −2 =⇒ k < − 2
R
− kF

=⇒ k ∈
(
−∞;−

(
2
R
+ kF

))
: Σ(k) = 0.

2. R(k − kF ) < −2 ∧ −2 ≤ R(k − kF ) ≤ 2 =⇒ − 2
R
− kF ≤ k < ∓

(
2
R
− kF

)
=⇒ k ∈

[
−
(
2
R
+ kF

)
;∓
(
2
R
− kF

))
: Σ(k) = 3

4
C [R(k + kF ) + 2].
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3. a) −2 ≤ R(k − kF ) < 2 ∧ −2 < R(k + kF ) ≤ 2 =⇒ 2
R
− kF ≤ k < −

(
2
R
− kF

)
=⇒ k ∈

[
2
R
− kF ;−

(
2
R
− kF

))
: Σ(k) = 3

4
C 2RkF .

b) −2 ≤ R(k − kF ) < 2 ∧ −2 < R(k − kF ) ≤ 2

=⇒ − 2
R
− kF < − 2

R
+ kF ≤ k < 2

R
− kF < 2

R
+ kF

=⇒ k ∈
[
−
(
2
R
− kF

)
; 2
R
− kF

)
: Σ(k) = 3

4
C [2−R(k − kF )].

4. −2 ≤ R(k − kF ) < 2 ∧ R(k + kF ) ≥ 2 =⇒ ∓( 2
R
− kF ) ≤ k < 2

R
+ kF

=⇒ k ∈
[
∓
(
2
R
− kF

)
; 2
R
+ kF

)
: Σ(k) = 3

4
C [2−R(k − kF )].

5. R(k − kF ) ≥ 2 =⇒ k ≥ 2
R
+ kF

=⇒ k ∈
[
2
R
+ kF ;∞

)
: Σ(k) = 0.

Todo el análisis anterior se puede resumir en las Figs. (9), (10), (11), para los casos

kF <
2
R
(⇐⇒ n < 1

π
2
R
), kF = 2

R
(⇐⇒ n = 1

π
2
R
), kF >

2
R
(⇐⇒ n > 1

π
2
R
), respectivamente.

3
4
C 2RkF

−
(
2
R
+ kF

)
−
(
2
R
− kF

)
2
R
− kF 2

R
+ kF

k

Σ(k) n < 1
π

2
R

Figura 9: Σ(k) en caso kF <
2
R
.

3
4
C 2RkF = 3C

−
(
2
R
+ kF

)
= −2kF 2

R
+ kF = 2kF

k

Σ(k) n = 1
π

2
R

Figura 10: Σ(k) en caso kF = 2
R
.
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3C

−
(
2
R
+ kF

)
2
R
− kF −

(
2
R
− kF

)
2
R
+ kF

k

Σ(k) n > 1
π

2
R

Figura 11: Σ(k) en caso kF >
2
R
.

Como puede observarse, para este modelo de interacción constante a corto-medio al-

cance, se da que:

Σmax =

{
3
4
C 2Rπn si n < 1

π
2
R

3C si n ≥ 1
π

2
R

, (3.1.15)

siendo

C =
2

π

1

4πϵ0ϵr

e2

R
, (3.1.16)

con lo cual, en resumen:

Σmax =

{
3 1

4πϵ0ϵr
e2 n si n < 1

π
2
R

3 1
4πϵ0ϵr

e2 1
π

2
R

si n ≥ 1
π

2
R

. (3.1.17)

Por ejemplo, considerando al material GaAs: ϵr = 12,4 ∧ Eg = 1, 424 eV. Tomando

parámetro de red a = 5,653 Å, radio R = 100 a y suponiendo una densidad electrónica

en conducción n ≥ 1
π

2
R
, la Ec. (3.1.17) arroja el valor Σmax = 3, 922 × 10−3 eV, lo que

implica que, como máximo, una self-energy de una cadena lineal atómica cuasi-1D de estas

caracteŕısticas de GaAs puede representar un 0,27% del gap entre valencia y conducción.

En la Fig. 12 se representan las curvas de self-energy en función del cuasi-momento k

para los casos n << 1
π

2
R

(Fig. 12a), n < 1
π

2
R

(Fig. 12b), n = 1
π

2
R

(Fig. 12c), n > 1
π

2
R

(Fig. 12d), en donde se comparan las soluciones obtenidas por integración exacta del

potencial aproximado que contiene la función y0(R|k − q|) -siendo q el cuasi-momento

que se integra- junto con su análoga discretizada y la solución discretizada del potencial

coulombiano V|k−q|, estas últimas integradas numéricamente por regla de Simpson. En

ambos casos, las discretizaciones en variable cuasi-momento k se realizaron particionando

un entorno de la 1ZB según dim(k) = 2Q+ 1, siendo Q = 104.

En adelante, al trabajar con self-energies es conveniente adoptar la unidad meV. Aśı,

por ejemplo, para GaAs : Eg = 1424 meV ∧ Σmax = 3, 922 meV ≈ 4 meV.
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(a) Caso n = 1
π

2
R × 10−2 << 1

π
2
R . (b) Caso n = 1

π
2
R × 10−1 < 1

π
2
R .

(c) Caso n = 1
π

2
R × 100 = 1

π
2
R . (d) Caso n = 1

π
2
R × 101 > 1

π
2
R .

Figura 12: Self-energy para distribución de Fermi-Dirac en cuasi-1D de material GaAs:
Eg = 1,424 eV, a = 5,653 Å, R = 100 a. En rojo se representan las soluciones Σ(k)
integrando en forma exacta al potencial aproximado que contiene y0(R|k − q|), siendo q
el cuasi-momento que se integra. En verde las soluciones de este mismo potencial pero
discretizado e integrado numéricamente por regla de Simpson (en todos los casos, las
curvas verdes quedan totalmente solapadas por las rojas). En azul las self-energies del
potencial coulombiano cuasi-1D verdadero V|k−q|, integrado numéricamente por regla de
Simpson. En ambas discretizaciones en variable cuasi-momento se particionó un entorno
de la 1ZB con parámetro Q = 104, siendo dim(k) = 2Q+ 1.

3.1.2. Efecto de la self-energy en la aparición de detuning: comparación con

sistema de dos niveles

Para tomar dimensión del efecto que generan las self-energies en los casos de ejemplo

descriptos en la Fig. 12, se puede comparar lo que ocurre en cuasi-momento k = 0 con

el sistema de dos niveles estudiado en la Sección 1.1, que ejemplificaba cuatro casos de

detuning en la Fig. 1 (ϵc− ϵv = 1000 meV, ωcv = 1,520× 1015 Hz, ωR = 2,147× 1011 Hz),

en donde se teńıan las siguientes:

∆ω = 0 =⇒ ∆ω

ωcv

= 0 =⇒ oscilaciones de amplitud 1/2 (coeficientes de 0 a 1).
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∆ω = 2ωR =⇒ ∆ω

ωcv

= 2, 825× 10−4 =⇒ oscilaciones con amplitud 1/4.

∆ω = 2× 2ωR =⇒ ∆ω

ωcv

= 5, 650× 10−4 =⇒ oscilaciones con amplitud < 1/8.

∆ω = 10× 2ωR =⇒ ∆ω

ωcv

= 2, 825× 10−3 =⇒ oscilaciones con amplitud < 1/40.

De este último resultado se puede concluir que basta un detuning ∼ 10−3 veces la

frecuencia asociada a la enerǵıa de transición para llevar a las oscilaciones a ser práctica-

mente nulas.

En el caso del problema cuasi-1D habiéndose asumido una distribución de Fermi-Dirac,

no se tiene información sobre cómo fue generado dicho poblamiento de bandas, pero se

puede estimar un detuning para cada k dada una densidad electrónica n según los casos

vistos (en comparación con 1
π

2
R
); por comodidad y sin pérdida de generalidad se hará para

k = 0. En general, de las Ecs. (1.2.78), (2.1.4), se tiene que:

∆ωk =
(ϵe,k + Σe,k) + (ϵh,k + Σh,k)

ℏ
− ω

=
(ϵe,k + ϵh,k) + (Σe,k + Σh,k)

ℏ
− ω,

(3.1.18)

siendo

ϵe,k + ϵh,k =
ℏ2k2

2mc

+ Eg +
ℏ2k2

2mh

+
∑
q ̸=k

Vk−q

=

(
Eg +

∑
q̸=k

Vk−q

)
+

(
ℏ2k2

2mc

+
ℏ2k2

2mh

)
.

(3.1.19)

Con lo cual, para k = 0 se eliminan los términos cinéticos y queda el primer paréntesis,

reinterpretable como:

ϵe,0 + ϵh,0 = Eg +
∑
q ̸=0

Vq =: Ẽg, (3.1.20)

es decir, se puede definir una renormalización de la enerǵıa de gap Ẽg, en donde la cantidad∑
q ̸=0 Vq ≈ 4 meV, pues equivale a resolver el problema de la sección anterior pero para

banda llena (el valor Σmax ≈ 4 meV por Ec. (3.1.17)). Con esta definición de Ẽg, para

k = 0, la Ec. (3.1.18) se convierte en:

∆ω0 =
Ẽg + (Σe,0 + Σh,0)

ℏ
− ω. (3.1.21)

Volviendo a la notación escalar -pues se está en cuasi-1D- y definiendo

Σ0 := Σe,0 = Σh,0, (3.1.22)

dado que las self-energies son iguales pues las poblaciones son iguales, entonces:
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∆ω0 =
Ẽg + 2Σ0

ℏ
− ω. (3.1.23)

Si desde esta simple expresión se elige una frecuencia de excitación ω = Ẽg/ℏ, el
detuning queda, sencillamente:

∆ω0 =
2Σ0

ℏ
, (3.1.24)

con lo cual, cada vez que se quiera relativizar una frecuencia de detuning con la de

transición en k = 0, se tendrá: ∣∣∣∣∣ ∆ω0

Ẽg/ℏ

∣∣∣∣∣ =
∣∣∣∣∣2Σ0

Ẽg

∣∣∣∣∣ , (3.1.25)

puesto que Σe,k,Σh,k < 0 ∀ k.
Con todo esto, para los casos de la Fig. 12, tomándose las self-energies en k = 0 dadas

por la aproximación de campo medio, y siendo Eg = 1424 meV =⇒ Ẽg = 1428 meV, se

tienen los siguientes casos:

n =
1

π

2

R
× 10−2 <<

1

π

2

R
: |Σ0| ≈ 4× 10−2 meV =⇒

∣∣∣∣∣2Σ0

Ẽg

∣∣∣∣∣ ≈ 5,5× 10−5.

n =
1

π

2

R
× 10−1 <

1

π

2

R
: |Σ0| ≈ 4× 10−1 meV =⇒

∣∣∣∣∣2Σ0

Ẽg

∣∣∣∣∣ = 5,5× 10−4.

n ≥ 1

π

2

R
: |Σ0| ≈ 4 meV =⇒

∣∣∣∣∣2Σ0

Ẽg

∣∣∣∣∣ = 5,5× 10−3.

Como puede verse, en el caso de densidad más baja se tiene un detuning ∼ 10−5 veces

la frecuencia asociada a la enerǵıa de transición en k = 0, con lo cual las oscilaciones de

Rabi serán muy significativas, de amplitud > 1/4, ya que se está a un orden de magnitud

por debajo del caso ∆ω = 2ωR en el sistema de dos niveles, que era ∼ 10−4 respecto a la

frecuencia asociada a la enerǵıa de transición. Para la densidad intermedia, esta relación

trepa hasta 5, 5× 10−4, un valor similar al caso de ∆ω = 2× 2ωR para el sistema de dos

niveles, lo que implica oscilaciones de amplitudes ∼ 1/8. Por su parte, para la densidad

más alta, se alcanza un detuning ∼ 10−3 con relación a la frecuencia asociada a la enerǵıa

de transición, lo cual, haciendo la misma comparación, sitúa a las oscilaciones en amplitud

< 1/40.

Este resultado arroja una predicción cualitativa que puede hacerse en caso de tener una

distribución cualquiera en cuasi-1D, 2D y 3D: si se setean las condiciones iniciales tales

que ne,k(0) = 0 ∀ k y se elige la frecuencia del campo eléctrico para que coincida con la

cantidad renormalizada Ẽg/ℏ, en el modelo no interactuante se generarán oscilaciones de

Rabi completas en k = 0, las cuales irán atenuándose en la medida que crezca el término

cinético de la enerǵıa; en el modelo interactuante, en cambio, al aumentar un tanto la

densidad de electrones promovidos en torno a k = 0 se espera que la self-energy generada
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actúe como detuning, de modo que tenderá a atenuar la amplitud de las oscilaciones de

Rabi alĺı y, por el contrario, en regiones en donde el término cinético actuaba de detuning

natural, al ser las self-energies cantidades < 0 y al crecer en módulo éstas, se podŕıan

generar oscilaciones de Rabi relativamente apreciables en dichas regiones separadas de

k = 0.

3.2. Caso distribución cualquiera en cuasi-1D

Para esta sección -y de aqúı en adelante sin contar los apéndices- se utilizará como

notación k ≡ k, dado que todas las cantidades serán expresadas en una dimensión, a

menos que haya que explicitar el cuasi-momento de manera vectorial para no perder

generalidad. Las condiciones iniciales se asumirán:


ne,k(0) = 0,

nh,k(0) = 0,

Pk(0) = 0.

(3.2.1)

Otros datos relevantes son:

Eg = 1424 meV (datos de material GaAs);

mh = 0,4 m0 ∧ mc = 0,067 m0, m0 masa del electrón;

parámetro lineal de red a = 5, 653 Å, radio R = 100 a;

intervalo de tiempo de estudio [0; τ ], τ = 32 ps;

campo eléctrico de amplitud E0 = 287 dyn
esu

.

Con respecto a la frecuencia ω del campo eléctrico, la misma se tomará:

ω =
Ẽg

ℏ
, (3.2.2)

siendo Ẽg la dada por Ec. (3.1.20). Luego, como se indicó hacia el final de la sección

anterior, es lógico pensar que al poblar la banda de conducción en la región en torno

a k = 0 se generará un detuning lo suficientemente importante como para inhibir las

oscilaciones de Rabi en dicha región; no obstante, al alejarse del entorno k = 0, las

enerǵıas de electrón y hueco -que están dadas por Ec. (3.1.19)- pueden entrar en sintońıa

(parcial) con el campo, dado que las self-energies que se forman en los distintos k se
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compensan con los términos cinéticos:

∆ωk =
(ϵe,k + Σe,k) + (ϵh,k + Σh,k)

ℏ
− ω

=
Ẽg + (Σe,k + Σh,k) +

(
ℏ2k2
2me

+ ℏ2k2
2mh

)
ℏ

− ω

=
Ẽg + (Σe,k + Σh,k) +

ℏ2k2
2mr

ℏ
− ω

=
(Σe,k + Σh,k) +

ℏ2k2
2mr

ℏ
,

(3.2.3)

siendo mr la masa reducida del par electrón-hueco. Luego, existirá sintońıa total para un

dado k en caso de que el término cinético se equipare con la suma de self-energies:

ℏ2k2

2mr

= Σe,k + Σh,k. (3.2.4)

Recordando que, como máximo, cada self-energy puede valer ≈ 4 meV , esta resinto-

nización entonces tiene un |k| ĺımite, el cual se da en aquella enerǵıa cinéntica máxima

capaz de compensar la suma de las self-energies de electrón y hueco máximas:

ℏ2k2

2mr

= 8 meV =⇒ |k| = 1,098× 10−2 1/Å. (3.2.5)

Considerando las condiciones iniciales dadas por Ec. (3.2.1) y los datos de material y

campo eléctrico mencionados, esta predicción hecha por la Ec. (3.2.5) -de que existe un

|k| máximo que podrá experimentar una sintońıa plena con el campo- puede visualizarse

en las Figs. 13, 14, en donde se han graficado las superficies de nivel correspondientes a

ne,k(t) y |Pk(t)|, respectivamente, para el problema interactuante resuelto numéricamente

con el método de Runge-Kutta 4 (RK4). Para esta simulación, la semi-discretización en

k se hizo mediante parámetro Q = 1 × 103 / dim(k) = 2Q + 1, mientras que t se partió

en N = 1× 105 particiones.

Bajo la misma discretización del problema pero focalizando la simulación en tiempos

más tempranos (Fig. 15), puede verse el comportamiento ”deslocalizado” de las oscila-

ciones de Rabi, las cuales van ”propagándose” a través de los distintos k en función de

la sintońıa que se va obteniendo con la frecuencia del campo eléctrico; esto es debido

a la renormalización de las enerǵıas de electrón y hueco v́ıa self-energies. Volviendo al

panorama más ampliado que presenta la Fig. 13, puede apreciarse cómo el fenómeno de

poblamiento electrónico pierde la armońıa que presentaba en el modelo sin interacción

coulombiana (Fig. 6), en donde cada electrón se comportaba como si estuviera sometido

a un problema de dos niveles individual en función de su propio detuning (Fig. 1). En el

caso interactuante, las oscilaciones en un estado |λ,k⟩ nunca llegan a ser armónicas pues

la renormalización de la self-energy detunea el estado con respecto a la frecuencia del
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campo y por tanto cambia la amplitud de oscilación; simultáneamente se da la renorma-

lización de la frecuencia generalizada de Rabi (Ec. (1.2.86)), lo que afecta a la frecuencia

de oscilación del |λ,k⟩. Este permanente juego de cambios de amplitud y frecuencia hace

que sea muy dif́ıcil dotar al estado de una función suave que describa la población de

electrones y huecos en función del tiempo.

Figura 13: Superficie de nivel de ne,k(t). El campo eléctrico es de amplitud E0 =
287 dyn/esu y se eligió frecuencia ω = Ẽg/ℏ, siendo Ẽg = Eg +

∑
q ̸=0 Vq, Eg = 1424 meV

(material GaAs),
∑

q ̸=0 Vq ≈ 4 meV, de modo que excite sin detuning a los electrones con
k = 0 en una fase temprana.
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Figura 14: Superficie de nivel de |Pk(t)|. El campo eléctrico es de amplitud E0 =
287 dyn/esu y se eligió frecuencia ω = Ẽg/ℏ, siendo Ẽg = Eg +

∑
q ̸=0 Vq, Eg = 1424 meV

(material GaAs),
∑

q ̸=0 Vq ≈ 4 meV, de modo que excite sin detuning a los electrones con
k = 0 en una fase temprana.

(a) Densidad de electrones en |c⟩. (b) Amplitud de polarización.

Figura 15: Superficies de nivel de (a) ne,k(t), (b) |Pk(t)| para tiempos cortos. El campo
eléctrico es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Ẽg/ℏ, siendo
Ẽg = Eg +

∑
q ̸=0 Vq, Eg = 1424 meV (material GaAs),

∑
q ̸=0 Vq ≈ 4 meV, de modo que

excite sin detuning a los electrones con k = 0 en una fase temprana.
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4. Análisis y comparación entre modelos

Partiendo del hamiltonianoH0 dado por Ec. (1.2.50), el modelo de portadores no inter-

actuantes proviene de desestimar la interacción coulombiana entre electrones promovidos

a la banda de conducción, mientras que el modelo de portadores interactuantes, como es

trivial, proviene de considerar dicha interacción.

En las Secciones 2 y 3 se ha simulado un sistema bajo el modelo de portadores no

interactuantes entre śı (PNI) y un sistema bajo el de portadores interactuantes entre śı

(PI), respectivamente, bajo las mismas condiciones (campo eléctrico, red, sintonización

campo-bandas). Las Figs. 6, 7 (caso no interactuante) y 13, 14 (caso interactuante) mues-

tran las evidentes diferencias entre un modelo incompleto y un modelo f́ısicamente más

realista. En esta sección se los analizará y comparará cualitativa y cuantitativamente,

haciendo uso de la construcción de algunas definiciones que no existen en la literatura

pero que sirven para caracterizar mejor el estudio.

4.1. Ancho de sintońıa significativa

En el modelo de portadores no interactuantes el detuning se da únicamente por la

diferencia entre ωeh,k (Ec. 2.1.4) y la frecuencia ω del campo eléctrico. Por ello, al estar

en sintońıa en k = 0, las oscilaciones de Rabi decaen en amplitud conforme se consideran

cuasi-momentos cada vez más lejanos al origen (la amplitud de las oscilaciones se comporta

tal cual el problema de dos niveles; esto ocurre para cada k por separado). Bajo las

mismas condiciones (ω en sintońıa con la frecuencia asociada a k = 0), en el modelo de

portadores interactuantes ello no ocurre sino hasta pasado el ĺımite dado por Ec. (3.2.5).

Cualitativamente, puede verse en las Figs. 6 y 13 que existe un ”ancho” de cuasi-momentos

por encima del cual las oscilaciones se vuelven relativamente pequeñas y, a partir de alĺı,

aumentando en |k|, decrecen hasta volverse poco apreciables. En el estudio del problema

de dos niveles se hab́ıa visto que para una población inferior a 1/4 del total, la amplitud

de la oscilación de Rabi era a su vez menor a 1/4 veces la amplitud de la oscilación con

población completa (i.e. oscilación de amplitud < 1/8).

Se define el ancho de sintońıa significativa, notado como ∆k(T ):

∆k(T ) := k(T )
s − k(T )

i , (4.1.1)

i.e., la diferencia entre extremos del intervalo de cuasi-momentos I(T ) =
[
k
(T )
i ; k

(T )
s

]
, el

cual cumple:

∀ k ∈ 1ZB \ I(T ) : ⟨ne,k(·)⟩ <
1

8
, (4.1.2)

con ⟨ne,k(·)⟩ el valor medio temporal para cada k en todo el intervalo temporal τ :

⟨ne,k(·)⟩ =
1

τ

∫ τ

0

dt ne,k(t). (4.1.3)
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Lo que manifiesta Ec. (4.1.2) es que k
(T )
i , k

(T )
s son los cuasi-momentos mı́nimo y máxi-

mo, repectivamente, tales que la densidad electrónica, en promedio temporal, alcanza al

menos 1/8 (y, por consiguiente, si fuera una oscilación armónica alcanzaŕıa 1/8 de ampli-

tud). Esto no significa que dentro de dentro de I(T ) no pueda existir un k / ⟨ne,k(·)⟩ < 1/8;

el intervalo lo que garantiza es que por fuera de él esta cota al valor medio de la densidad

electrónica no se superará nunca más.

Por simetŕıa en torno a k = 0 del esquema de bandas del problema (Fig. 5), en caso

de sintonizar con k = 0, es trivial ver que k
(T )
i = −k(T )

s . Luego, en este caso, la Ec. (4.1.1)

se reduce a:

∆k(T ) := 2 k(T )
s , (4.1.4)

que es lo que ocurre para los modelos no interactuante e interactuante estudiados, arro-

jando:

PNI: k
(T )
s = 0, 776× 10−2 1/Å =⇒ ∆k(T ) = 1, 552× 10−2 1/Å.

PI: k
(T )
s = 1, 078× 10−2 1/Å =⇒ ∆k(T ) = 2, 156× 10−2 1/Å.

En resumen, ∆k(T ) crece ≈ 39% respecto al PNI.

4.2. Comportamiento oscilatorio en cuasi-momento de máxima

sintonización inicial

En el modelo de portadores no interactuantes, al sintonizar la ω del campo con k = 0

alĺı se obtienen oscilaciones de Rabi completas para ne,0(t), nh,0(t), aśı como puede verse

que |P0(t)| se explica netamente por Im[P0(t)], dado que Re[P0(t)] = 0 ∀ t ∈ [0; τ ]. Estos

resultados salen a la luz si en Ec. (2.1.5) se impone k = 0. En la Fig. 16 puede verse

todo lo antedicho. En caso del modelo interactuante, como se manifiesta en Fig. 17, el

detuning no nulo aparece al instante que van poblándose los distintos estados vecinos del

k = 0, con lo cual no sólo se pierden las oscilaciones completas, sino que en las sucesi-

vas renormalizaciones de la self-energy Σ0 y de ωR,0 producen oscilaciones anarmónicas,

de frecuencia y amplitud permanentemente cambiantes. Otro aspecto a descatar es que

Re[P0(t)] oscila, también anarmónicamente, de tal manera que se compensa con Im[P0(t)]

para cumplir |P0(t)| ≤ 1/2 ∀ t ∈ [0; τ ]. Por último, vale la pena mencionar que el estado

|c, 0⟩ por momentos experimenta oscilaciones completas, lo cual ocurre cuando los estados

vecinos se despueblan, pues ello genera una disminución de Σ0, lo que implica una mejora

de la sintonización con ω.
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Figura 16: Amplitudes de ne,0(t), Re[P0(t)], Im[P0(t)], |P0(t)| en el modelo PNI. El campo
eléctrico es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Eg/ℏ, siendo
Eg = 1, 424 eV (material GaAs), de modo que excite sin detuning a los electrones con
k = 0, generando en ellos oscilaciones de Rabi completas, de periodo T0 = 1, 797 ps,
siendo ωR,0 = 1, 748× 1012 Hz.

Figura 17: Amplitudes de ne,0(t), Re[P0(t)], Im[P0(t)], |P0(t)| en el modelo PI. El campo
eléctrico es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Ẽg/ℏ, siendo
Ẽg = Eg +

∑
q ̸=0 Vq, Eg = 1424 meV (material GaAs),

∑
q ̸=0 Vq ≈ 4 meV, de modo que

excite sin detuning a los electrones con k = 0 en una fase temprana.
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4.3. Estudio de amplitudes de oscilación dentro del intervalo de

sintońıa significativa

En el problema no interactuante, además de que todas las oscilaciones son armónicas,

las amplitudes de oscilación decrecen conforme aumenta |k|; en el problema interactuante,

en cambio, no hay una relación directa entre la monotońıa de |k| y la amplitud (variable)

de las oscilaciones, siempre que se esté dentro del intervalo I(T ).

Para realizar un estudio cualitativo, se consideran tres valores k0, k1, k2 de cuasi-

momentos:

k0 = 0,

k1 = 0, 225× 10−2 1/Å,

k2 = 0, 447× 10−2 1/Å,

los cuales son tales que k0, k1, k2 ∈ I(T ) del problema no interactuante (luego, también

pretenecen al I(T ) homólogo del problema interactuante). Si se grafican las densidades

ne,k0(t), ne,k1(t), ne,k2(t) puede verse la monotońıa en la cáıda de la amplitud conforme

aumenta |k| en el problema no interactuante (Fig. 18), mientras que ello no ourre en el

problema interactuante (Fig. 19).

Para generalizar la idea y comprobar la monotońıa y no monotońıa de los modelos

de portadores no interactuantes e interactuantes, respectivamente, se consideran las Figs.

20, 21, en donde se ha graficado, en cada caso, las cantidades ⟨ne,k(·)⟩, ⟨|Pk(·)|⟩, tomando

valor medio en el intervalo [0; τ ] como indica Ec. (4.1.3), para la primera y

⟨|Pk(·)|⟩ =
1

τ

∫ τ

0

dt |Pk(t)|, (4.3.1)

para la segunda. Además, en estas imágenes puede verse que los máximos de ⟨|Pk(·)|⟩
coinciden con ⟨ne,k(·)⟩ = 1/2, disminuyendo cuando en promedio un estado se puebla o

se despuebla, y con respecto a ⟨ne,k(·)⟩:

en PNI, se aprecia el máximo absoluto en torno a k = 0, disminuyendo monótona-

mente con forme |k| ↗;

en PI, se dan un juego alternado de máximos y mı́nimos locales en la zona central

del intervalo I(T ), obteniéndose los máximos absolutos al acercarse al borde del

mismo; esto se debe a que, como se comentó en Sección 3.2, existe un |k| máximo

a ser excitado sin detuning (Ec. (3.2.5)), aśı que por encima suyo ocurrirá que

⟨ne,k(·)⟩ ↘, generando self-energies cada vez más bajas hacia la frontera de I(T ) y

permitiendo que se formen máximos absolutos de densidad de población promedio.
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Para estudiar cuantitativamente el comportamiento oscilatorio dentro del intervalo I(T )

de cada modelo, se consideran medidas de tendencia central y de dispersión para población

y polarización en los cuasi-momentos particulares k0, k1, k2. Con Ecs. (4.1.3), (4.3.1) se

pueden obtener valores medios para los k0, k1, k2, particularizando en cada cuasi-momento,

y para analizar las fluctuaciones se consideran la varianza y la dispersión cuadrática media

de ne,k(t), |Pk(t)|:

σ2
ne,k

=
1

τ

∫ τ

0

dt (ne,k(t)− ⟨ne,k(·)⟩)2, (4.3.2a)

σne,k
=
√
σ2
ne,k

. (4.3.2b)

σ2
Pk

=
1

τ

∫ τ

0

dt (|Pk(t)| − ⟨|Pk(·)|⟩)2, (4.3.3a)

σPk
=
√
σ2
Pk
. (4.3.3b)

En las Tablas I, II se muestran los resultados de las medidas de tendencia central y

de dispersión mencionadas para ne,k(t) y |Pk(t)| en cuasi-momentos k0, k1, k2, tanto para

modelo de portadores no interactuantes como para interactuantes.

Figura 18: Comparación de amplitudes de ne,k(t) en k0 = 0, k1 > k0, k2 > k1, con
k0, k1, k2 ∈ I(T ), en el modelo de PNI. El campo eléctrico es de amplitud E0 = 287 dyn/esu
y se eligió frecuencia ω = Eg/ℏ, siendo Eg = 1, 424 eV (material GaAs), de modo que
excite sin detuning a los electrones con k = 0, generando en ellos oscilaciones de Rabi
completas, de periodo T0 = 1, 797 ps, siendo ωR,0 = 1, 748× 1012 Hz. En el resto de k se
observan oscilaciones de Rabi incompletas y a mayor frecuencia.
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Figura 19: Comparación de amplitudes de ne,k(t) en k0 = 0, k1 > k0, k2 > k1, con
k0, k1, k2 ∈ I(T ), en el modelo de PI. El campo eléctrico es de amplitud E0 = 287 dyn/esu
y se eligió frecuencia ω = Ẽg/ℏ, siendo Ẽg = Eg +

∑
q ̸=0 Vq, Eg = 1424 meV (material

GaAs),
∑

q ̸=0 Vq ≈ 4 meV, de modo que excite sin detuning a los electrones con k = 0 en
una fase temprana.

Figura 20: Valores medios temporales ⟨ne,k(·)⟩, ⟨|Pk(·)|⟩ en el modelo PNI. El campo
eléctrico es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Eg/ℏ, siendo
Eg = 1, 424 eV (material GaAs), de modo que excite sin detuning a los electrones con
k = 0, generando en ellos oscilaciones de Rabi completas, de periodo T0 = 1, 797 ps,
siendo ωR,0 = 1, 748× 1012 Hz.
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Figura 21: Valores medios temporales ⟨ne,k(·)⟩, ⟨|Pk(·)|⟩ en el modelo PI. El campo
eléctrico es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Ẽg/ℏ, siendo
Ẽg = Eg +

∑
q ̸=0 Vq, Eg = 1424 meV (material GaAs),

∑
q ̸=0 Vq ≈ 4 meV, de modo que

excite sin detuning a los electrones con k = 0 en una fase temprana.

Portadores no interactuantes Portadores interactuantes
k ⟨ne,k(·)⟩ σ2

ne,k
σne,k

⟨ne,k(·)⟩ σ2
ne,k

σne,k

[×10−1] [×10−1]

k0 0, 504 1, 246 0, 353 0, 417 0, 653 0, 256

k1 0, 490 1, 198 0,346 0, 350 0, 454 0, 213

k2 0, 376 0, 707 0, 266 0, 407 0, 748 0, 274

Tabla I: Medidas de tendencia central y de dispersión para ne,k(t) en k0, k1, k2.

Portadores no interactuantes Portadores interactuantes
k ⟨|Pk(·)|⟩ σ2

Pk
σPk

⟨|Pk(·)|⟩ σ2
Pk

σPk

[×10−1] [×10−1]

k0 0, 319 0, 237 0, 154 0, 408 0, 117 0, 108

k1 0, 336 0, 195 0, 140 0, 413 0, 112 0, 106

k2 0,381 0, 196 0, 139 0, 391 0, 135 0, 116

Tabla II: Medidas de tendencia central y de dispersión para |Pk(t)| en k0, k1, k2.
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4.4. Densidad electrónica y polarización por unidad de longitud

A tiempo t, se definen, respectivamente, la densidad electrónica y la polarización por

unidad de longitud como:

⟨ne,·(t)/L⟩ =
∫
1ZB

dk ne,k(t), (4.4.1)

⟨|P·(t)|/L⟩ =
∫
1ZB

dk |Pk(t)|. (4.4.2)

Estas cantidades se representan en las Figs. 22, 23 para el problema no interactuante

y el interactuante, respectivamente, en donde puede verse, como viene ocurriendo en

todos los análisis comparativos, que en el modelo no interactuante los comportamientos

son cuasi-armónicos (una vez el sistema deja atrás las condiciones iniciales, i.e. entra en

régimen estacionario), mientras que en el interactuante son anarmónicos (también se ve

un régimen transitorio que se abandona luego de transcurrido cierto tiempo). Luego, como

en la sección anterior, se pueden calcular medidas temporales de tendencia central y de

dispersión:

⟨ne,·(·)/L⟩ =
1

τ

∫ τ

0

dt ⟨ne,·(t)/L⟩ , (4.4.3a)

⟨|P·(·)|/L⟩ =
1

τ

∫ τ

0

dt ⟨|P·(t)|/L⟩ . (4.4.3b)

σ2
ne/L =

1

τ

∫ τ

0

dt (⟨ne,·(t)/L⟩ − ⟨ne,·(·)/L⟩)2, (4.4.4a)

σne/L =
√
σ2
ne/L

. (4.4.4b)

σ2
P/L =

1

τ

∫ τ

0

dt (⟨|P·(t)|/L⟩ − ⟨|P·(·)|/L⟩)2, (4.4.5a)

σP/L =
√
σ2
P/L. (4.4.5b)

Los resultados de aplicar Ecs. (4.4.3), (4.4.4), (4.4.5) pueden verse en la Tabla III,

tanto para el modelo de portadores no interactuantes como interactuantes. En ellos puede

verse una mayor densidad de población electrónica por unidad de longitud para el modelo

de portadores interactuantes, aśı como una mayor fluctuación, lo cual tiene sentido de ser,

puesto que el intervalo I(T ) es más amplio.
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Figura 22: Valores medios ⟨ne,·(t)/L⟩, ⟨|P·(t)|/L⟩ en el modelo PNI. El campo eléctrico
es de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Eg/ℏ, siendo Eg = 1, 424 eV
(material GaAs), de modo que excite sin detuning a los electrones con k = 0, generando
en ellos oscilaciones de Rabi completas, de periodo T0 = 1, 797 ps, siendo ωR,0 = 1, 748×
1012 Hz.

Figura 23: Valores medios ⟨ne,·(t)/L⟩, ⟨|P·(t)|/L⟩ en el modelo PI. El campo eléctrico es
de amplitud E0 = 287 dyn/esu y se eligió frecuencia ω = Ẽg/ℏ, siendo Ẽg = Eg+

∑
q ̸=0 Vq,

Eg = 1424 meV (material GaAs),
∑

q ̸=0 Vq ≈ 4 meV, de modo que excite sin detuning a
los electrones con k = 0 en una fase temprana.
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Portadores no interactuantes Portadores interactuantes
X ⟨X·(·)/L⟩ σ2

X/L σX/L ⟨X·(·)/L⟩ σ2
X/L σX/L

[×10−3 1/Å] [×10−6 1/Å
2
] [×10−3 1/Å] [×10−3 1/Å] [×10−6 1/Å

2
] [×10−3 1/Å]

ne 6, 517 3, 557 1, 886 8, 326 7, 360 2, 713

|P | 8, 790 0, 565 0, 752 10, 930 1, 422 1, 192

Tabla III: Medidas de tendencia central y de dispersión para ⟨ne,·(t)/L⟩, ⟨|P·(t)|/L⟩ en los
modelos PNI y PI.

5. Conclusiones

Se ha estudiado un problema many-body partiéndose de modelos sencillos que fueron

complejizándose, ganando realismo f́ısico. A modo de mensaje coloquial, puede decirse que

el estudio de part́ıcula en sistema de dos niveles representa el problema ”a orden cero”;

luego, el problema many-body de portadores de carga no interactuantes entre śı seŕıa

un modelo de bajo nivel, mientras que el problema many-body de portadores de carga

interactuantes entre śı seŕıa un modelo de nivel medio (en Sección 6 se da una propuesta

para aumentar aún más la complejidad del modelo, y con ello su realismo f́ısico).

Los resultados parciales que se fueron obteniendo sirvieron de base para predicciones

sobre el modelo más complejo estudiado, el de portadores de carga interactuantes entre

śı, el cual conservó ciertas ráıces de comportamiento provenientes del inmediato modelo

más sencillo, el de portadores no interactuantes entre śı.

Del hamiltoniano del problema many-body se llegó a un sistema de ecuaciones diferen-

ciales ordinarias (Ec. (1.2.88)), las cuales son las Ecuaciones de Semiconductor de Bloch

(SBE) con excitación óptica monocromática, pero descontando términos de interacción

por colisiones entre portadores de carga. Las ecuaciones a resolver correspond́ıan a densi-

dad de electrones ne y huecos nh en las bandas de conducción y valencia, respectivamente,

y a la polarización P , todo en función del tiempo t y del cuasi-momento k. La forma de las

ecuaciones permitieron hacer ne,k(t) = nh,k(t), de modo que bastó con resolver la ecuación

para ne.

5.1. Problema de única part́ıcula en sistema de dos niveles

Una part́ıcula en interacción dipolar con un campo eléctrico de amplitud E0 y fre-

cuencia ω, experimentará oscilaciones entre estados |v⟩ , |c⟩ con una frecuencia ΩR

dada por Ec. (1.1.21); son las llamadas oscilaciones de Rabi.

La amplitud y la frecuencia de estas oscilaciones dependerán del detuning entre ω

y ωcv, la frecuencia de transición entre estados dada por Ec. (1.1.2).
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Para detuning nulo se tendrá la máxima amplitud, correspondiente a oscilaciones

completas entre estados (inversión de población), con frecuencia de oscilación 2ωR.

Se analizaron detunings múltiplos de 2ωR, observándose que para un detuning ∆ω =

2×2ωR la amplitud de las oscilaciones decae a menos de 1/4 de la máxima amplitud.

5.2. Problema many-body de portadores no interactuantes en-

tre śı

Si al hamiltoniano H0 (Ec. (1.2.50)) se le anulan los coeficientes de interacción

coulombiana, se tiene un modelo de portados de carga no interactuantes entre śı,

los cuales únicamente interactúan con el campo eléctrico (amplitud E0, frecuencia

ω) y realizan transiciones interbanda que conservan el cuasi-momento, es decir entre

estados estados |v,k⟩ , |c,k⟩ ,k ∈ 1ZB.

El problema pudo ser resuelto de manera exacta a partir de Ec. (2.1.3), obteniéndose

funciones ne, nh, Re(P ), Im(P ) dadas por Ec. (2.1.5).

Se simuló un caso con detuning nulo en k = 0. El fenómeno se comportó como un

conjunto de problemas de part́ıcula única en sistemas de dos niveles con detuning

dependiente del cuasi-momento (Fig. 6). Bajo las condiciones de simulación (campo

eléctrico sintonizado en k = 0, tiempo de aplicación, coindiciones iniciales), se dio

que:

• ancho de sintońıa significativa fue ∆k(T ) = 1, 552× 10−2 1/Å;

• se observaron oscilaciones de Rabi completas (amplitud máxima) en k = 0, con

población y polarización variando armónicamente en el tiempo;

• para k = 0 : Re[P0(t)] = 0 ∀ t ∈ [0; τ ] =⇒ |Im[P0(t)]| = |P0(t)|;

• los máximos de ⟨|Pk(·)|⟩ coinciden con ⟨ne,k(·)⟩ = 1/2, disminuyendo cuando

en promedio un estado se puebla o se despuebla;

• < ne,k(·) > posee máximo absoluto en k = 0;

• las amplitudes de oscilación decrecen monótonamente si |k| ↗ (aumentando el

detuning), en tanto aumenta la frecuencia (ver datos en Tablas I, II);

• ⟨ne,·(t)/L⟩, ⟨|Pe, ·(t)/L|⟩ alcanzan un régimen estacionario de oscilaciones cuasi-

armónicas (ver Fig. 22).

5.3. Problema many-body de portadores interactuantes entre śı

Aprovechando un modelo de distribución electrónica tipo Fermi-Dirac en cuasi-1D,

se estimó la self-energy máxima que puede tener asociado un portador de carga
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de cuasi-momento k en una cadena lineal atómica, la cual llega a valer |Σmax| =
3, 922 meV ≈ 4 meV; este valor se da únicamente cuando se hallan promovidos

todos los portadores vecinos de dicho k, por lo que son alcanzables por Coulomb.

Con self-energies |Σ| ∼ 10−2 × |Σmax| alcanza para desintonizar tanto al estado que

se obtienen oscilaciones prácticamente nulas asociadas a dicho estado.

Existe un |k| ĺımite capaz de sintonizar con un campo cuya frecuencia fue seteada

con detuning nulo en k = 0, el cual es |k| = 1,098× 10−2 1/Å.

Se simuló un caso con detuning nulo en k = 0. Bajo las condiciones de simulación

(campo eléctrico sintonizado en k = 0, tiempo de aplicación, coindiciones iniciales)

idénticas a las de la simulación del problema many-body de portadores no interac-

tuantes, obteniéndose:

• intentos de oscilaciones de Rabi completas en k = 0, las cuales fueron ate-

nuándose a medida que crećıa la self-energy |Σ0| debido al poblamiento en la

vecindad del estado, mientras que las regiones en donde el término cinético

hubiera actuado como detuning natural (problema no interactuante), al ser

Σk < 0, terminaban sintonizándose para dar oscilaciones apreciables (esto has-

ta |k| = 1,098× 10−2 1/Å), como puede verse en Fig. 13;

• ancho de sintońıa significativa en torno a 39% más grande que en el caso no

interactuante, siendo ∆k(T ) = 2, 156× 10−2 1/Å;

• oscilaciones anarmónicas de frecuencia y amplitud permanentemente cambian-

tes debido a las sucesivas renormalizaciones de la self-energy Σ0 y de ωR,0;

• Re[P0(t)] oscila, también anarmónicamente, de tal manera que se compensa

con Im[P0(t)] para cumplir |P0(t)| ≤ 1/2 ∀ t ∈ [0; τ ];

• los máximos de ⟨|Pk(·)|⟩ coinciden con ⟨ne,k(·)⟩ = 1/2, disminuyendo cuando

en promedio un estado se puebla o se despuebla;

• se tiene un juego alternado de máximos y mı́nimos locales en la zona central

del intervalo I(T ), obteniéndose los máximos absolutos al acercarse al borde

del mismo; esto se debe a que |k| = 1,098× 10−2 1/Å es el módulo máximo a

ser excitado sin detuning (Ec. (3.2.5)), aśı que por encima suyo ocurrirá que

⟨ne,k(·)⟩ ↘, generando self-energies cada vez más bajas hacia la frontera de

I(T ) y permitiendo que se formen máximos absolutos de densidad de población

promedio;

• las amplitudes de oscilación no decrecen con el crecimiento de |k|, en tanto

aumenta la frecuencia (ver datos en Tablas I, II);

• ⟨ne,·(t)/L⟩, ⟨|Pe, ·(t)/L|⟩ alcanzan un régimen estacionario pero de oscilaciones

anarmónicas (ver Fig. 23);

• ⟨ne,·(·)/L⟩ , ⟨|P·(·)/L|⟩ ↗ respecto al modelo PNI (ver datos en Tabla III).
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6. Propuestas a futuro

Probar proposición de relación causal: ∆k(T ) ↗ =⇒ ⟨ne,·(·)/L⟩ , ⟨|P·(·)/L|⟩ ↗.

Estudiar el mismo problema cuasi-1D pero alterando las condiciones iniciales y

parámetros del campo eléctrico; por ejemplo sintonizarlo con un k ̸= 0.

Agregar al hamiltoniano H0 (Ec. (1.2.50)) un término de interacción por scattering

entre electrones promovidos, de modo que se puedan dar transiciones intra-banda.

Optimizar parámetros para buscar valores cŕıticos y/o comportamientos deseados.

Explorar casos particulares que permitan dar expresiones anaĺıticas para Σe,k, Σh,k.

Generalizar el problema a cuasi-2D y 3D, rescribiendo el potencial electrostático

V (r) y su respectiva transformada de Fourier V̂k, en cada caso.

Reformular el concepto de ancho de sintońıa significativa ∆k(T ) hacia, por ejemplo,

un ”radio” (mı́nimo, máximo, promedio, etc.), tal que no dependa de la dimensión

del problema.
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A. Apéndice

A.1. Demostración identidad dcv = d∗vc

Sin pérdida de generalidad, la identidad se puede demostrar en una dimensión. Basta

con ver que ⟨c|x |v⟩ = ⟨v|x |c⟩∗:

⟨c|x |v⟩ = ⟨c| id x id |v⟩ = ⟨c|
(∫

dx′′ |x′′⟩ ⟨x′′|
)
x

(∫
dx′ |x′⟩ ⟨x′|

)
|v⟩

=

∫
dx′′

∫
dx′ ⟨c|x′′⟩ ⟨x′′|x |x′⟩ ⟨x′|v⟩ =

∫
dx′′

∫
dx′ ⟨c|x′′⟩x′ ⟨x′′|x′⟩ ⟨x′|v⟩

=

∫
dx′′

∫
dx′ ⟨c|x′′⟩x′δ(x′′ − x′) ⟨x′|v⟩ =

∫
dx′ ⟨c|x′⟩x′ ⟨x′|v⟩

=

∫
dx′ ⟨x′|c⟩∗ x′ ⟨x′|v⟩ =

(∫
dx′ ⟨x′|v⟩∗ x′ ⟨x′|c⟩

)∗

= ⟨v|x |c⟩∗ .

Otra forma -mucho más sencilla- de ver que ⟨c|x |v⟩ = ⟨v|x |c⟩∗ se basa en que x es

operador hermı́tico:

⟨c|x |v⟩ = ⟨c|x† |v⟩ = ⟨v|x |c⟩∗.

A.2. Inversión de población W (t) en sistema de dos niveles

Se transcriben las Ecs. (1.1.24), (1.1.26):
cv(t) =

{
cv(0)

[
cos

(
ΩRt

2

)
+ i

∆ω

ΩR

sin

(
ΩRt

2

)]
+ i

2ωR

ΩR

eiϕcc(0) sin

(
ΩRt

2

)}
e−i∆ωt/2

cc(t) =

{
cc(0)

[
cos

(
ΩRt

2

)
− i ∆ω

ΩR

sin

(
ΩRt

2

)]
+ i

2ωR

ΩR

e−iϕcv(0) sin

(
ΩRt

2

)}
ei∆ωt/2

W (t) = |cc(t)|2 − |cv(t)|2

Para que operar algebraicamente se vuelva más sencillo, se consideran las siguientes

definiciones: A := cos

(
ΩRt

2

)
, B :=

∆ω

ΩR

sin

(
ΩRt

2

)
, C :=

2ωR

ΩR

sin

(
ΩRt

2

)
cv0 := cv(0), cc0 := cc(0)

Con esto, lo anterior se convierte en:{
cv(t) =

[
cv0 (A+ iB) + i eiϕcc0 C

]
e−i∆ωt/2

cc(t) =
[
cc0 (A− iB) + i e−iϕcv0 C

]
ei∆ωt/2
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Se definen:{
z1 := [cv0 A− sin(ϕ)cc0 C] + i [cv0 B + cos(ϕ)cc0 C]

z2 := [cc0 A+ sin(ϕ)cv0 C]− i [cc0 B − cos(ϕ)cv0 C]

De modo que, para el coeficiente cv(t):

|cv(t)|2 = [Re(z1)]
2 + [Im(z1)]

2

= c2v0 A
2 − 2cv0 A sin(ϕ)cc0 C + sin2(ϕ)c2c0 C

2

+ c2v0 B
2 + 2cv0 B cos(ϕ)cc0 C + cos2(ϕ)c2c0 C

2

= c2v0(A
2 +B2)− 2cv0cc0 [A sin(ϕ)−B sin(ϕ)] C + c2c0 C

2.

(A.2.1)

Y de igual manera, para cc(t):

|cc(t)|2 = [Re(z2)]
2 + [Im(z2)]

2

= c2c0(A
2 +B2) + 2cc0cv0 [A sin(ϕ)−B sin(ϕ)] C + c2v0 C

2.
(A.2.2)

=⇒ W (t) = (c2c0 − c2v0)(A2 +B2) + 4 cc0cv0 [A sin(ϕ)−B cos(ϕ)] C − (c2c0 − c2v0) C2,

quedando

W (t) = (c2c0 − c2v0)(A2 +B2 − C2) + 4 cc0cv0 [A sin(ϕ)−B cos(ϕ)]C (A.2.3)

Luego, si se toman condiciones iniciales cv0 = 1 ∧ cc0 = 0 =⇒ W (t) = −(A2+B2−C2),

o sea:

W (t) = −
[
(∆ω)2 − (2ωR)

2

Ω2
R

sin2

(
ΩRt

2

)
+ cos2

(
ΩRt

2

)]
(A.2.4)

A.3. Dipolo eléctrico p(t) en sistema de dos niveles

Se transcriben las soluciones de la Ec. (1.1.24) junto con la equivalencia del dipolo

eléctrico p(t) en función de éstas:


cv(t) =

{
cv(0)

[
cos

(
ΩRt

2

)
+ i

∆ω

ΩR

sin

(
ΩRt

2

)]
+ i

2ωR

ΩR

eiϕcc(0) sin

(
ΩRt

2

)}
e−i∆ωt/2

cc(t) =

{
cc(0)

[
cos

(
ΩRt

2

)
− i ∆ω

ΩR

sin

(
ΩRt

2

)]
+ i

2ωR

ΩR

e−iϕcv(0) sin

(
ΩRt

2

)}
ei∆ωt/2

p(t) = cc(t)c
∗
v(t) dvc e

−iωcvt + c.c.

Llamando A := cc(t)c
∗
v(t) dvc e

−iωcvt, claramente p(t) = A + c.c. = 2 Re(A), con lo

cual, para llegar a Ec. (1.1.29) basta ver que:
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A = i |dcv|
2ωR

ΩR

[
cos

(
ΩRt

2

)
− i ∆ω

ΩR

sin

(
ΩRt

2

)]
sin

(
ΩRt

2

)
e−iωt. (A.3.1)

Para operar algebraicamente de manera más sencilla, se definen: C := cos

(
ΩRt

2

)
, S := sin

(
ΩRt

2

)
cv0 := cv(0), cc0 := cc(0) / cv0, cc0 ∈ R

A = cc(t)c
∗
v(t) dvc e

−iωcvt = dvc cc(t)c
∗
v(t) e

−iωcvt

= dvc

[
cc0

(
C − i∆ω

ΩR

S

)
+ i cv0

2ωR

ΩR

e−iϕS

]
ei

∆ωt
2

.

[
cv0

(
C − i∆ω

ΩR

S

)
− i cc0

2ωR

ΩR

e−iϕS

]
ei

∆ωt
2 e−iωcvt

= dvc

[
cc0

(
C − i∆ω

ΩR

S

)
+ i cv0

2ωR

ΩR

e−iϕS

] [
cv0

(
C − i∆ω

ΩR

S

)
− i cc0

2ωR

ΩR

e−iϕS

]
e−iωt

= dvc

[
cc0cv0

(
C − i∆ω

ΩR

S

)2

− i (c2c0 − c2v0)
(
C − i∆ω

ΩR

S

)
2ωR

ΩR

e−iϕS +

cc0cv0

(
2ωR

ΩR

e−iϕS

)2
]
e−iωt

.

Aplicando condiciones iniciales cv0 = 1 ∧ cc0 = 0, lo anterior se reduce a:

A = dvc i

(
C − i∆ω

ΩR

S

)
2ωR

ΩR

e−iϕS e−iωt

= i |dcv|eiϕ
2ωR

ΩR

(
C − i∆ω

ΩR

S

)
S e−iϕe−iωt

= i |dcv|
2ωR

ΩR

(
C − i∆ω

ΩR

S

)
S e−iωt,

que es adonde se pretend́ıa llegar (Ec. (A.3.1)).

A.4. Relación entre valores de expectación de operadores x y p

Si H =
p2

2m
+ V (x) / H |n⟩ = ϵn |n⟩ =⇒ ⟨ñ| [x,H] |n⟩ = −(ϵñ − ϵn) ⟨ñ|x |n⟩.

Además: [x,H] = 1

2m

[
x, p2

]
=

1

2m
( p [x, p] + [x, p] p ) =

iℏ
m

p

=⇒ ⟨ñ|
(
iℏ
m

p

)
|n⟩ = −(ϵñ − ϵn) ⟨ñ|x |n⟩, llegándose a:
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⟨ñ|x |n⟩ = − iℏ
m(ϵñ − ϵn)

⟨ñ| p |n⟩ . (A.4.1)

A.5. Operador p aplicado a eik.ruλ(0; r)

Se parte de Ec. (1.2.12), en donde p se aplica a ψλ(k; r). Si se toma uλ(k; r) ≈
uλ(0; r) =: uλ, lo cual es independiente de k, luego:

p eik.ruλ = −iℏ∇
(
eik.ruλ

)
= −iℏ

(
ikeik.ruλ + eik.r∇uλ

)
= ℏk eik.ruλ + eik.rp uλ.

En resumen:

p eik.ruλ = eik.r (ℏk+ p)uλ. (A.5.1)

A.6. Ecuación de Liouville-Von Neumann para ρ(t)

Si ρ(t) = |ψ(t)⟩ ⟨ψ(t)| =⇒ d

dt
ρ(t) =

(
d

dt
|ψ(t)⟩

)
⟨ψ(t)|+ |ψ(t)⟩

(
d

dt
⟨ψ(t)|

)
.

Como
d

dt
|ψ(t)⟩ = − i

ℏ
H |ψ(t)⟩, luego:

d

dt
ρ(t) =

(
− i
ℏ
H |ψ(t)⟩

)
⟨ψ(t)|+ |ψ(t)⟩

(
i

ℏ
⟨ψ(t)|H

)
= − i

ℏ
(H |ψ(t)⟩ ⟨ψ(t)| − |ψ(t)⟩ ⟨ψ(t)|H) .

Finalmente:

d

dt
ρ(t) = − i

ℏ
[H, ρ(t)] . (A.6.1)

A.7. Sistema de ecuaciones diferenciales para los ρλλ′(k, t)

Como todas las operaciones se hacen para (k;t) genéricos, se puede adoptar, sin pérdida

de generalidad, una notación que no incluya referencias a k, t, y aśı hacer más sencillo

seguir el razonamiento. Con el mismo fin de economizar notación, se consideran E(t) ≡ E,

dλλ′ escalares y se definen las diferencias de frecuencias ωλλ′ = ωλ − ωλ′ .

ρk =
∑
λ,λ′

= ρλλ′ |λ⟩ ⟨λ′| =⇒ ρintk =
∑
λ,λ′

eiωλλ′ tρλλ′ |λ⟩ ⟨λ′|.

d

dt
ρintk =

∑
λ,λ′

(
iωλλ′eiωλλ′ tρλλ′ + eiωλλ′ t

d

dt
ρλλ′

)
|λ⟩ ⟨λ′|,

y desarrollando término a término:
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d

dt
ρintk =

d

dt
ρvv |v⟩ ⟨v|+ e−iωcvt

(
−iωcvρvc +

d

dt
ρvc

)
|v⟩ ⟨c|+

eiωcvt

(
iωcvρcv +

d

dt
ρcv

)
|c⟩ ⟨v|+ d

dt
ρcc |c⟩ ⟨c| .

(A.7.1)

Asimismo, desarrollando término a término la Ec. (1.2.32):

d

dt
ρintk =

i

ℏ
E
∑
λ,λ′

eiωλλ′ tρλλ′ [ eiωcvtdcv (|c⟩ ⟨v|λ⟩ ⟨λ′| − |λ⟩ ⟨λ′|c⟩ ⟨v|)+

e−iωcvtd∗cv (|v⟩ ⟨c|λ⟩ ⟨λ′| − |λ⟩ ⟨λ′|v⟩ ⟨c|) ]

=
i

ℏ
E
∑
λ,λ′

eiωλλ′ tρλλ′ [
(
eiωcvtdcv |c⟩ ⟨v|+ e−iωcvtd∗cv |v⟩ ⟨c|

)
|λ⟩ ⟨λ′| −

|λ⟩ ⟨λ′|
(
eiωcvtdcv |c⟩ ⟨v|+ e−iωcvtd∗cv |v⟩ ⟨c|

)
]

=
i

ℏ
E [ ρvv

(
eiωcvtdcv |c⟩ ⟨v| − e−iωcvtd∗cv |v⟩ ⟨c|

)
+

e−iωcvtρvc
(
eiωcvtdcv |c⟩ ⟨c| − eiωcvtdcv |v⟩ ⟨v|

)
+

eiωcvtρcv
(
e−iωcvtd∗cv |v⟩ ⟨v| − e−iωcvtd∗cv |c⟩ ⟨c|

)
+

ρcc
(
e−iωcvtd∗cv |v⟩ ⟨c| − eiωcvtdcv |c⟩ ⟨v|

)
]

=
i

ℏ
E [ ρvv

(
eiωcvtdcv |c⟩ ⟨v| − h.c.

)
+ ρvcdcv (|c⟩ ⟨c| − |v⟩ ⟨v|)+

ρcvd
∗
cv (|v⟩ ⟨v| − |c⟩ ⟨c|)− ρcc

(
eiωcvtdcv |c⟩ ⟨v| − h.c.

)
] .

Agrupando todo convenientemente en cada proyector |λ⟩ ⟨λ′|:

d

dt
ρintk =

i

ℏ
E [ (ρvcdcv − ρcvd∗cv) (|c⟩ ⟨c| − |v⟩ ⟨v|)+

eiωcvt (ρvv − ρcc) dcv |c⟩ ⟨v| − e−iωcvt (ρvv − ρcc) d∗cv |v⟩ ⟨c| ] .
(A.7.2)

Igualando término a término según cada proyector |λ⟩ ⟨λ′| en las Ecs. (A.7.1), (A.7.2),

se tiene: 

d

dt
ρvv = −

i

ℏ
E (ρvcdcv − ρcvd∗cv)

d

dt
ρvc = iωcvρvc −

i

ℏ
Ed∗cv (ρvv − ρcc)

d

dt
ρcv = −iωcvρcv +

i

ℏ
Edcv (ρvv − ρcc)

d

dt
ρvv =

i

ℏ
E (ρvcdcv − ρcvd∗cv)

(A.7.3)
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A.8. Operadores en segunda cuantización

En esta sección auxiliar se intentará ser lo más resumido posible, además de utilizar

una notación ligera; para una mayor profundización ver cita bibliográfica [9].

Dada una base de estados de una part́ıcula {|ul⟩}, un estado de un sistema de fermio-

nes consiste en enlistar los niveles ocupados: |ui;uj; ...uk; ...⟩, siendo i, j, k conjuntos de

números cuánticos.

Se define al operador de creación a† como aquél que:

a†i |uj; ...;uk; ...⟩ := |ui;uj; ...;uk; ...⟩ , (A.8.1)

es decir, crea una part́ıcula en el estado |ui⟩. Asimismo se puede definir al operador

destrucción a:

ai |ui;uj; ...;uk; ...⟩ := |uj; ...;uk; ...⟩ , (A.8.2)

ergo, aquél que desocupa el estado |ui⟩. Con éstos, es trivial poder definir:

ni := a†iai, (A.8.3)

operador número de ocupación (en estado |ui⟩), con lo cual se obtiene

N =
∑
i

a†iai, (A.8.4)

el operador número total de part́ıculas.

Por principio de exclusión de Pauli, los operadores a†i , ai tienen que cumplir:

a†i |...;ui−1;ui;ui+1; ...⟩ = 0, (A.8.5)

si el estado |ui⟩ está ocupado y

ai |...;ui−1;ui+1; ...⟩ = 0, (A.8.6)

si el estado |ui⟩ está desocupado. En otras palabras:

a†ia
†
i := 0 ∧ aiai := 0. (A.8.7)

Los operadores de creación y destrucción cumplen las siguientes relaciones de anti-
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conmutación:

{aλ, a†λ′} = δλλ′ , (A.8.8a)

{a†λ, a
†
λ′} = 0, (A.8.8b)

{aλ, aλ′} = 0. (A.8.8c)

Aprovechando estas últimas, se pueden construir las relaciones de conmutación:

[aλ, a
†
λ′ ] = δλλ′ − 2 a†λ′aλ, (A.8.9a)

[a†λ, a
†
λ′ ] = −2 a†λ′a

†
λ, (A.8.9b)

[aλ, aλ′ ] = −2 aλ′aλ. (A.8.9c)

A.8.1. Operadores de 1 part́ıcula

Sea {|ul⟩} una base de estados de una part́ıcula. Sea f operador de 1 part́ıcula. Sea

F =
∑N

q=1 f(q), operador que actúa como la identidad para (N−1) part́ıculas, salvo para

la q-ésima en cada caso. Luego, en primera cuantización, F será:

F =
∑
k,l

fkl

N∑
q=1

|q : uk⟩ ⟨q : ul| , (A.8.10)

con fkl = ⟨uk| f |ul⟩. No obstante, en segunda cuantización F se escribe:

F =
∑
k,l

fkl a
†
kal, (A.8.11)

y haciendo un cambio de base a la de autoestados {|fl⟩} de f :

F =
∑
k

fk nk. (A.8.12)

A.8.2. Operadores de 2 part́ıculas

Sea {|ul⟩} una base de estados de una part́ıcula. Sea g un operador de 2 part́ıculas, o sea

g = g(q; q′) opera en el espacio producto de las part́ıculas q, q′. Sea G = 1
2

∑N
q,q′,q ̸=q′ g(q; q

′),

operador que actúa como identidad para (N − 2) part́ıculas salvo para las q-ésima y q’-

ésima, en cada caso. Se puede demostrar que, en segunda cuantización, G será:

G =
1

2

∑
i,j,k,l

gijkl a
†
ia

†
jalak, (A.8.13)
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con gijkl = ⟨1 : ui; 2 : uj| g(1; 2) |1 : uk; 2 : ul⟩.

A.8.3. Operadores de campo

Se definen los operadores de campo:

Ψ̂(r) =
∑
k

ψk(r)ak, (A.8.14a)

Ψ̂†(r) =
∑
k

ψ∗
k(r)a

†
k, (A.8.14b)

siendo ak, a
†
k operadores de destrucción y creación de part́ıculas en el estado |uk⟩ ∈

{|ul⟩}, base de estados de una part́ıcula, y ψ(r) = ⟨r|uk⟩. Los operadores ψk(r)ak y

ψ∗
k(r)a

†
k representan la destrucción y creación, respectivamente, de una part́ıcula en un

determinado estado |uk⟩ y en una posición r.

Luego, de la Ec. (A.8.3) se puede construir el concepto de operador densidad de

part́ıculas:

n(r) = Ψ†(r)Ψ(r), (A.8.15)

del que se obtiene, análogamente a la Ec. (A.8.4), el número total de part́ıculas integrando

en r:

N =

∫
d3x Ψ†(r)Ψ(r). (A.8.16)

Por su parte, los operadores de 1 y 2 part́ıculas de las Ecs. (A.8.11), (A.8.13), respec-

tivamente, se pueden reescribir:

F =

∫
d3x

∫
d3x′ ⟨r| f |r′⟩Ψ†(r)Ψ(r′), (A.8.17)

y

G =
1

2

∫
d3x

∫
d3x′

∫
d3x′′

∫
d3x′′′ ⟨1 : r; 2 : r′| g(1; 2) |1 : r′′; 2 : r′′′⟩Ψ†(r)Ψ†(r′)Ψ(r′′)Ψ(r′′′).

(A.8.18)

A.9. Ecuación de Heisenberg para operador número

La evolución temporal de cada operador número nv,k = a†v,kav,k, nc,k = a†c,kac,k se

plantea a través de la ecuación de Heisenberg, en donde sólo contribuye el término del

hamiltoniano H = H0 +HI que tenga el mismo cuasi-momento k. Se plantea el caso nv,k
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(la resolución para nc,k es totalmente análoga):

−iℏ d
dt

(
a†v,kav,k

)
=
[
Hk, a

†
v,kav,k

]
=
[
H0,k, a

†
v,kav,k

]
+
[
HI,k, a

†
v,kav,k

]
= ϵv,k

[
a†v,kav,k, a

†
v,kav,k

]
+ ϵc,k

[
a†c,kac,k, a

†
v,kav,k

]
+

1

2

∑
k′,q ̸=0

Vq

{[
a†v,k+qa

†
v,k′−qav,k′av,k, a

†
v,kav,k

]
+[

a†c,k+qa
†
c,k′−qac,k′ac,k, a

†
v,kav,k

]
+ 2

[
a†c,k+qa

†
v,k′−qav,k′ac,k, a

†
v,kav,k

]}
−

dcvE(t)
{[
a†c,kav,k, a

†
v,kav,k

]
+
[
a†v,kac,k, a

†
v,kav,k

]}
(A.9.1)

Como los términos de enerǵıa cinética y de interacción dipolar no mezclan cuasi-

momentos, para simplifcar su resolución se puede ahorrar notación eliminando momentánea-

mente la etiqueta k.

A.9.1. Resolución término de enerǵıa cinética

ϵv
[
a†vav, a

†
vav
]
+ ϵc

[
a†cac, a

†
vav
]
= 0 + ϵc

[
a†cac, a

†
vav
]

= ϵc
(
a†v
[
a†cac, av

]
+
[
a†cac, a

†
v

]
av
)

= ϵc
(
a†va

†
c [ac, av] + a†v

[
a†c, av

]
ac + a†c

[
ac, a

†
v

]
av +

[
a†c, a

†
v

]
acav

)
= ϵc

−2a†va†cavac − 2a†vava
†
cac − 2a†ca

†
vacav − 2

=−a†va
†
cavac︷ ︸︸ ︷

a†va
†
cacav


= (−2)ϵc

a†vava†cac +
=a†v(δvc−ava

†
c)ac︷ ︸︸ ︷

a†va
†
cavac


= (−2)ϵc

(
a†vava

†
cac − a†vava†cac

)
= 0

=⇒ ϵv,k

[
a†v,kav,k, a

†
v,kav,k

]
+ ϵc,k

[
a†c,kac,k, a

†
v,kav,k

]
= 0. (A.9.2)

A.9.2. Resolución término de interacción dipolar

Equivale a resolver:
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[
a†cav, a

†
vav
]
+
[
a†vac, a

†
vav
]
= a†c

[
av, a

†
vav
]
+
[
a†c, a

†
vav
]
av + a†v

[
ac, a

†
vav
]
+
[
a†v, a

†
vav
]
ac

= a†ca
†
v

=0︷ ︸︸ ︷
[av, av] +a

†
c

[
av, a

†
v

]
av + a†v

[
a†c, av

]
av +

[
a†c, a

†
v

] =0︷︸︸︷
avav +

=0︷︸︸︷
a†va

†
v [ac, av] + a†v

[
ac, a

†
v

]
av + a†v

[
a†v, av

]
ac +

=0︷ ︸︸ ︷[
a†v, a

†
v

]
avac

= a†c(δvv − 2a†vav)av + a†v(δcv − 2ava
†
c)av+

a†v(δcv − 2a†vac)av + a†v(δvv − 2ava
†
v)ac

= a†cav − 2a†ca
†
v

=0︷︸︸︷
avav−2a†vava†cav − 2

=0︷︸︸︷
a†va

†
v acav + a†vac − 2a†vava

†
vac

= a†cav − 2a†v(δvc − a†cav)av + a†vac − 2a†v(δvv − a†vav)ac

= a†cav + 2a†va
†
c

=0︷︸︸︷
avav−2a†vac + a†vac + 2

=0︷︸︸︷
a†va

†
v avac

= a†cav − a†vac
= a†cav − (a†cav)

†

=⇒
〈
a†cav

〉
−
〈
(a†cav)

†〉 = Pcv − P ∗
cv = 2iIm(Pcv) = −2iIm(P ∗

cv)

=⇒ dcvE(t)
{〈[

a†c,kav,k, a
†
v,kav,k

]〉
+
〈[
a†v,kac,k, a

†
v,kav,k

]〉}
= −2i Im

(
dcvE(t)P

∗
cv,k

)
.

(A.9.3)

A.9.3. Resolución del término de enerǵıa potencial electrostática

Aqúı no se puede prescindir de las etiquetas del cuasi-momento, no obstante śı se

puede -sin pérdida de generalidad- operar en una dimensión, se decir reemplazar k,k′,q

por k, k′, q, respectivamente. Además, para aligerar la resolución, se plantean por separado:

V1 =
1

2

∑
k′,q ̸=0

Vq C1, (A.9.4a)

V2 =
1

2

∑
k′,q ̸=0

Vq C2, (A.9.4b)

V3 =
∑
k′,q ̸=0

Vq C3, (A.9.4c)

siendo

C1 =
[
a†v,k+qa

†
v,k′−qav,k′av,k, a

†
v,kav,k

]
, (A.9.5a)

C2 =
[
a†c,k+qa

†
c,k′−qac,k′ac,k, a

†
v,kav,k

]
, (A.9.5b)

C3 =
[
a†c,k+qa

†
v,k′−qav,k′ac,k, a

†
v,kav,k

]
. (A.9.5c)
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En la resolución, siempre que aparezca un término tipo δq0 se asumirá nulo, ya que

q = 0 está expĺıcitamente exclúıdo de cada sumatoria.

C1 =
[
a†v,k+qa

†
v,k′−qav,k′av,k, a

†
v,kav,k

]

= a†v,k+qa
†
v,k′−qav,k′

=1−a†v,kav,k︷ ︸︸ ︷
av,ka

†
v,k av,k − a†v,k

=0−a†v,k+qav,k︷ ︸︸ ︷
av,ka

†
v,k+q a†v,k′−qav,k′av,k

= a†v,k+q

=0−av,k′a
†
v,k′−q︷ ︸︸ ︷

a†v,k′−qav,k′ av,k − a†v,k+qa
†
v,k′−qav,k′a

†
v,k

=0︷ ︸︸ ︷
av,kav,k +a

†
v,ka

†
v,k+q

=δk(k′−q)−a†
v,k′−q

av,k︷ ︸︸ ︷
av,ka

†
v,k′−q av,k′av,k

= −a†v,k+qav,k′a
†
v,k′−qav,k + a†v,ka

†
v,k+qav,k+qav,k − a†v,ka

†
v,k+qa

†
v,k′−q

=−av,k′av,k︷ ︸︸ ︷
av,kav,k′ av,k

= −a†v,k+qav,k′a
†
v,k′−qav,k − a

†
v,k+q

=0−av,k+qa
†
v,k︷ ︸︸ ︷

a†v,kav,k+q av,k + a†v,ka
†
v,k+qa

†
v,k′−qav,k′

=0︷ ︸︸ ︷
av,kav,k

= −a†v,k+qav,k′a
†
v,k′−qav,k + a†v,k+qav,k+qa

†
v,kav,k.

Luego, si se toma valor de expectación en todo C1 y se aplican RPA y campo medio:

⟨V1⟩ =
1

2

∑
k′,q ̸=0

Vq ⟨C1⟩

= −1

2

≈
∑

q ̸=0 Vq nv,k+qnv,k︷ ︸︸ ︷∑
k′,q ̸=0

Vq

〈
a†v,k+qav,k′a

†
v,k′−qav,k

〉
+
1

2

≈
∑

q ̸=0 Vq nv,k+qnv,k︷ ︸︸ ︷∑
q ̸=0

Vq

〈
a†v,k+qav,k+qa

†
v,kav,k

〉
≈ 1

2

∑
q ̸=0

Vq (−nv,k+qnv,k + nv,k+qnv,k)

= 0.

(A.9.6)

C2 =
[
a†c,k+qa

†
c,k′−qac,k′ac,k, a

†
v,kav,k

]

= a†c,k+qa
†
c,k′−qac,k′

=0−a†v,kac,k︷ ︸︸ ︷
ac,ka

†
v,k av,k − a†v,k

=0−a†c,k+qav,k︷ ︸︸ ︷
av,ka

†
c,k+q a†c,k′−qac,k′ac,k

= −a†c,k+qa
†
c,k′−q

=0−a†v,kac,k′︷ ︸︸ ︷
ac,k′a

†
v,k ac,kav,k + a†v,ka

†
c,k+q

=0−a†
c,k′−q

av,k︷ ︸︸ ︷
av,ka

†
c,k′−q ac,k′ac,k

= a†c,k+qa
†
c,k′−qa

†
v,kac,k′ac,kav,k − a

†
v,ka

†
c,k+qa

†
c,k′−qav,kac,k′ac,k

= −a†c,k+qa
†
v,ka

†
c,k′−qac,k′ac,kav,k + a†v,ka

†
c,k+qa

†
c,k′−qac,k′av,kac,k

= a†v,ka
†
c,k+qa

†
c,k′−qac,k′ac,kav,k − a

†
v,ka

†
c,k+qa

†
c,k′−qac,k′ac,kav,k

= 0.

Con esto último, resulta trivial:
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⟨V2⟩ =
1

2

∑
k′,q ̸=0

Vq ⟨C2⟩ = 0. (A.9.7)

Por último, resta estudiar C3:

C3 =
[
a†c,k+qa

†
v,k′−qav,k′ac,k, a

†
v,kav,k

]

= a†c,k+qa
†
v,k′−qav,k′

=0−a†v,kac,k︷ ︸︸ ︷
ac,ka

†
v,k av,k − a†v,k

=0−a†c,k+qav,k︷ ︸︸ ︷
av,ka

†
c,k+q a†v,k′−qav,k′ac,k

= −a†c,k+qa
†
v,k′−q

=δk′k−a†v,kav,k′︷ ︸︸ ︷
av,k′a

†
v,k ac,kav,k + a†v,ka

†
c,k+q

=δk(k′−q)−a†
v,k′−q

av,k︷ ︸︸ ︷
av,ka

†
v,k′−q av,k′ac,k

= −a†c,k+qa
†
v,k−qac,kav,k + a†c,k+qa

†
v,k′−qa

†
v,kav,k′ac,kav,k+

a†v,ka
†
c,k+qav,k+qac,k − a†v,ka

†
c,k+qa

†
v,k′−qav,kav,k′ac,k

Los términos con seis operadores se anulan entre śı, al ubicar a†v,k a izquierda de todo

en el primero y av,k a derecha de todo en el segundo, dado que, por anticonmutación,

aparecerán dos signos que se compensarán luego de cada permutación entre operadores

de creación con creación y de destrucción con destrucción, respectivamente. El desarrollo

queda entonces:

C3 = −a†c,k+qa
†
v,k−qac,kav,k + a†v,ka

†
c,k+qav,k+qac,k

= a†c,k+q

(
0− av,ka†v,k−q

)
ac,k − a†c,k+q

(
0− av,k+qa

†
v,k

)
ac,k

= −a†c,k+qav,ka
†
v,k−qac,k + a†c,k+qav,k+qa

†
v,kac,k.

Asumiendo:

〈
a†c,k+qav,ka

†
v,k−qac,k

〉
≈
〈
a†c,kav,ka

†
v,k−qac,k−q

〉
≈
〈
a†c,kav,k

〉〈
a†v,k−qac,k−q

〉
= Pcv,kPvc,k−q,

(A.9.8)

〈
a†c,k+qav,k+qa

†
v,kac,k

〉
≈
〈
a†c,k+qav,k+q

〉〈
a†v,kac,k

〉
= Pcv,k+qPvc,k,

(A.9.9)

luego:
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⟨V3⟩ =
∑
k′,q ̸=0

Vq ⟨C3⟩

=
∑
q ̸=0

Vq

(
−
〈
a†c,k+qav,ka

†
v,k−qac,k

〉
+
〈
a†c,k+qav,k+qa

†
v,kac,k

〉)
≈
∑
q ̸=0

Vq (−Pcv,kPvc,k−q + Pcv,k+qPvc,k)

=
∑
q ̸=k

Vk−q (−Pcv,kPvc,q + Pcv,qPvc,k)

=
∑
q ̸=k

Vk−q

(
−Pcv,kP

∗
cv,q + Pcv,qP

∗
cv,k

)
=
∑
q ̸=k

Vk−q

[
−
(
Pcv,qP

∗
cv,k

)∗
+ Pcv,qP

∗
cv,k

]
= 2i Im

(∑
q ̸=k

Vk−qPcv,qP
∗
cv,k

)
.

(A.9.10)

A.10. Solución exacta a modelo de portadores no interactuantes

entre śı

Se reescribe la Ec. (2.1.3) pero quitando las referencias al cuasimomento k para eco-

nomizar notación; asimismo, como ne = nh, se adopta la notación n := ne = nh. Luego,

se puede plantear el siguiente sistema ecuaciones diferenciales ordinarias:

d

dt
R = −∆ω I,

d

dt
I = ∆ω R− ωR (1− 2n) ,

d

dt
n = −2 ωR I,

(A.10.1)

Matricialmente, este sistema es:

ẋ = Ax+ b, (A.10.2)

x =

RI
n

 ∧ A =

 0 −∆ω 0

∆ω 0 2ωR

0 −2ωR 0

 ∧ b =

 0

−ωR

0

 . (A.10.3)

Para resolver el sistema homogéneo asociado, se plantea el polinomio caracteŕıstico y

se buscan autovalores:

0 = P (λ) = det(λ id− A) = λ3 + (2ωR)
2λ+ (∆ω)2λ = λ [λ2 + (2ωR)

2 + (∆ω)2].

Definiendo ΩR :=
√
(2ωR)2 + (∆ω)2 =⇒ 0 = λ(λ2 + Ω2

R) =⇒ λ = 0 ∨ λ = ± iΩR.
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Para λ = 0, los autovectores a / a ∈
〈(

1; 0;− ∆ω
2ωR

)〉
.

Para λ = iΩ, los autovectores b / b ∈
〈(
i∆ω
ΩR

; 1; i2ωR

ΩR

)〉
.

Para λ = −iΩ, los autovectores c / c ∈
〈(
−i∆ω

ΩR
; 1;−i2ωR

ΩR

)〉
.

La solución particular es:

xp = c⃗te =⇒ 0 = Axp + b =⇒ xp = −A−1b.

Una posible solución particular es xp =
[
0 0 1

2

]T
.

Juntando todo, considerando constantes A,B,C ∈ R, la solución general queda:

R(t)I(t)

n(t)

 = A

 1

0

− ∆ω
2ωR

+B

i
∆ω
ΩR

1
2ωR

ΩR

 eiΩRt + C

−i
∆ω
ΩR

1

−2ωR

ΩR

 e−iΩRt +

00
1
2

 (A.10.4)

Suponiendo la condición inicial x = 0, se determinan A,B,C:

I(0) = 0 = B + C =⇒ C = −B

=⇒ I(t) = 2iB sin(ΩRt). (A.10.5)

R(0) = 0 = A+ i∆ω
ΩR

(B − C) = A+ 2i∆ω
ΩR
B =⇒ A = −2i∆ω

ΩR

=⇒ R(t) = −2i∆ω
ΩR

B + 2i
2ωR

ΩR

B cos(ΩRt) = −2i
∆ω

ΩR

B [1− cos(ΩRt)] , (A.10.6)

y también:

n(t) = 2i
(∆ω)2

2ωRΩR

B + 2i
2ωR

ΩR

B cos(ΩRt) +
1

2
, (A.10.7)

con lo cual:

n(0) = 0 = 2i (∆ω)2

2ωRΩR
B + 2i2ωR

ΩR
B + 1

2
=⇒ −1

2
= 2i

(
(∆ω)2

2ωRΩR
+ 2ωR

ΩR

)
B = 2i ΩR

2ωR
B

=⇒ B = i
4
2ωR

ΩR
.

Con esto, finalmente:

R(t) =
1

2

2ωR∆ω

Ω2
R

[1− cos(ΩRt)] =
2ωR∆ω

Ω2
R

sin2

(
ΩR

2
t

)
, (A.10.8)
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I(t) = −1

2

2ωR

ΩR

sin(ΩRt), (A.10.9)

n(t) = −1

2

(∆ω)2

Ω2
R

− 1

2

(2ωR)
2

Ω2
R

cos(ΩRt) +
1

2

=
1

2

{
1− 1

Ω2
R

[
(∆ω)2 + (2ωR)

2 cos(ΩRt)
]}

=
1

2

{
(∆ω)2 + (2ωR)

2

Ω2
R

− 1

Ω2
R

[
(∆ω)2 + (2ωR)

2 cos(ΩRt)
]}

=
1

2

1

Ω2
R

[
(2ωR)

2 − (2ωR)
2 cos(ΩRt)

]
=

1

2

(2ωR)
2

Ω2
R

[1− cos(ΩRt)]

=
(2ωR)

2

Ω2
R

sin2

(
ΩR

2
t

)
.

(A.10.10)

A.11. Transformada de Fourier de V (z) en caso cuasi-1D

Partiéndose de Ec. (3.1.2), se plantea:

V̂k =
1

L

∫ ∞

−∞
dz e−ikzV (z)

=
1

L

1

4πϵ0

ϵ0
ϵ
e2
∫ ∞

−∞
dz e−ikz 1√

z2 +R2

=
1

L

1

4πϵ0

ϵ0
ϵ
e2
(∫ 0

−∞
dz e−ikz 1√

z2 +R2
+

∫ ∞

0

dz e−ikz 1√
z2 +R2

)
=

1

L

1

4πϵ0

ϵ0
ϵ
e2

(
−
∫ 0

∞
dz′ e−ik(−z′) 1√

(z′)2 +R2
+

∫ ∞

0

dz e−ikz 1√
z2 +R2

)

=
1

L

1

4πϵ0

ϵ0
ϵ
e2

(∫ ∞

0

dz′ eikz
′ 1√

(z′)2 +R2
+

∫ ∞

0

dz e−ikz 1√
z2 +R2

)

=
1

L

1

4πϵ0

ϵ0
ϵ
e2
∫ ∞

0

dz
(
eikz + e−ikz

) 1√
z2 +R2

=
2

L

1

4πϵ0

ϵ0
ϵ
e2
∫ ∞

0

dz
cos(kz)√
z2 +R2

.

(A.11.1)

Se define

K0(ω) :=

∫ ∞

0

dt
cos(ωt)√
t2 + 1

, (A.11.2)

con Re(ω) > 0, función modificada de Bessel de segunda especie de orden 0. Con esto:

V̂k =
2

L

1

4πϵ0

ϵ0
ϵ
e2K0(R|k|). (A.11.3)
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