FACULTAD %

%
i
DE X))

CIENCIAS EXACTAS
Y NATURALES

UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales

Departamento de Fisica

Interaccion de electrones e impurezas magnéticas en
anillos semiconductores delgados con interaccidn

espin-orbita

Tesis presentada para optar por el titulo de Doctor de la Universidad de

Buenos Aires en el area Ciencias Fisicas

Lic. José Miguel Lia

Director de tesis: Prof. Dr. Pablo Ignacio Tamborenea

Consejero de estudios: Prof. Dr. Rodolfo Sassot

Buenos Aires, 2024






Interaccién de electrones e impurezas magnéticas en anillos

semiconductores delgados con interaccion espin-o6rbita

Resumen

Estudiaremos la dindmica cudntica del momento angular generada por las
interacciones espin-érbita (SOI) de Rashba y Dresselhaus, y de intercambio
(exchange) entre un electrén de conduccién y un conjunto de impurezas
magnéticas, en un anillo cuantico semiconductor delgado. Nuestro objetivo
es comprender la conversion de impulso angular orbital (OAM) en impulso
angular de espin (SAM) electrénico, y la reconversién de éste al SAM de los
electrones en la capa exterior de las impurezas mediante la interaccién de
intercambio. Buscamos contribuir a la biisqueda de mecanismos de magneti-
zacion efectiva del sistema de impurezas mediante portadores de carga y sin
la utilizacién de campos magnéticos externos.

Comenzamos resolviendo el problema de autovalores para el electrén en
el anillo sin impurezas y bajo la accién de ambas SOI. Luego, estudiaremos
la dindmica de conversion de OAM a SAM electrénico generada por las SOI.
Incluiremos luego las impurezas pero omitiremos las SOI, a fin de estudiar
la conversion de SAM electrénico en SAM de cada impureza individual y
la relevancia de la mediacién electrénica en la magnetizaciéon del sistema
total de impurezas. Finalmente, tomaremos un semiconductor II-VT tipico y
estudiaremos como la interacciéon de Dresselhaus afecta la magnetizacion de
las impurezas.

Palabras clave: anillos cudnticos, semiconductores magnéticos diluidos, inter-

accion espin-orbita, Rashba, Dresselhaus



Interaction between electrons and magnetic impurities in semiconductor

Quantum Rings with spin-orbit interaction

Abstract

We study the quantun dyamics of the orbital and spin angular momenta
(OAM and SAM, respectively) of a conduction electron subject to the Rashba
and Dresselhaus spin-orbit couplings (SOI) in a narrow quantum ring doped
with few magnetic impurities. We aim to analyze the conversion of OAM into
electronic SAM and its subsequent conversion into SAM of the electrons in
the outer d shell of the impurities through the sd-exchange interaction. We
seek to contribute to the search for mechanisms to magnetize the impurities
using only the electron’s OAM, without recourse to external magnetic fields.

We begin by solving the time-independent Schrodinger equation for the
electron subject to the SOI only. We then study the OAM-to-SAM conversion
dynamics induced by both interactions. We then add the impurities but
neglect the SOI altogether, so as to study the relevance of the electron in the
conversion of electronic to impurity SAM and to the magnetization of the
system as a whole. We assume the impurity density to be small so that the
system can be studied without resorting to mean-field theories. Finally, we
pick a typical II-VI semiconductor and study how the Dresselhaus interaction
affects the magnetization of the impurities.

Keywords: quantum rings, dilute magnetic semiconductors, spin-orbit inter-

action, Rashba, Dresselhaus.
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Capitulo 1

Introduccion

1.1. Objetivos y motivacion

El propdsito de este trabajo es estudiar la dinamica de la transferencia de
impulso angular entre un electrén de conduccion sujeto a la interaccion espin-érbita
(SOI), y un conjunto de impurezas magnéticas en semiconductores nanoscopicos de
geometria anular (quantum rings o QR). Estos sistemas son un caso especial de
los conocidos como semiconductores magnéticos diluidos o DMS por sus siglas en
inglés.

La motivacion principal tiene su origen en la posibilidad de generar electrones de
conduccién con impulso angular orbital (OAM) definido a través de la interaccion
con vortices épticos [1], esto es, pulsos de luz que portan impulso angular orbital
definido [2], especialmente en geometrias apropiadas como dots cilindricos [3, 4], y

las que nos ocupan en este trabajo [}, 6].

La generacion de vortices opticos de distintos perfiles es realizable en la practica

[THL1], y la observacion tedrica de que estos podrian utilizarse para excitar electro-
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nes en un estado de OAM deseado es de interés en espintronica. El interrogante
fundamental es: si se dopa un semiconductor (por ejemplo, el ZnSe) con impure-
zas magnéticas (usualmente dtomos de manganeso), ;puede el impulso angular
electronico convertirse, mediante algin mecanismo, en magnetizacion efectiva del
conjunto de impurezas?

Desde la perspectiva tedrica, la interaccion de intercambio entre el espin de los
electrones localizados de las capas externas de las impurezas magnéticas (en el caso
de Mn, la capa d externa), y el propio de los de conduccién ha sido extensamente
estudiada [12414]. Veremos en la que el modelo usualmente adoptado supone
que esta interaccion es de «contacto», es decir, que ocurre en la vecindad de
cada impureza individual [12, 13} |15 [16]. Si bien este modelo acopla la densidad
electrénica al intercambio de espin entre el electrén y las impurezas (gracias al
potencial de contacto —cuya forma funcional es del tipo delta de Dirac— que decae
rapidamente fuera de la vecindad de cada una de ellas), la forma en que lo hace
conserva el impulso angular de espin (SAM) total y no produce necesariamente un
efecto neto de transferencia entre el OAM electrénico y el SAM de las impurezas
en casos de interés, como se verd en los Caps. [ y [B

En este trabajo exploraremos uno de los posibles mecanismos para vincular
el OAM electrénico al SAM de las impurezas, que consiste en estudiar la accion
conjunta de las interacciones de intercambio y espin-orbita. En estructuras de una
o dos dimensiones como las que consideraremos, la interacciéon espin-érbita puede
ser intrinseca al material, como sucede, por ejemplo, en los semiconductores de
estructura zincblenda en los que nos concentraremos; o puede producirse por la
presencia de un campo eléctrico macro o mesoscopico externo. En el primer caso, la

interaccion espin-drbita da origen al término de Dresselhaus [16],17], y, en el segundo,
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al término de Rashba [16] [18]. Como se verd en la §1.2.2] el término de Dresselhaus
en estructuras bidimensionales depende exclusivamente del semiconductor y del
confinamiento en la direccién de crecimiento del material, por lo que no puede
omitirse y puede ser de importancia en estructuras muy confinadas; mientras que
el término de Rashba, al menos en los casos considerados aqui, es, hasta cierto
punto, controlable externamente

Tomaremos, entonces, al espin del electron como intermediario entre el OAM
del mismo y el SAM de las impurezas, y estudiaremos como la SOI afecta esta
transferencia y si la ayuda u obstaculiza.

Seguiremos a este efecto un esquema constructivo, por lo que estudiaremos cada
aspecto del problema de forma separada. Estudiaremos primero el anillo delgado sin
impurezas pero con ambos tipos de SOIL. En el Cap. [2] resolveremos la ecuacién de
Schrodinger independiente del tiempo para un electréon en el anillo y estudiaremos
las caracteristicas principales de los autoestados y autoenergias. Dedicaremos el
Cap.[3|a la dindmica del electron bajo estas interacciones. Posteriormente, en el Cap.
[ analizaremos la dindmica de intercambio de SAM entre el electrén y las impurezas
en el QR, suponiendo las SOI ausentes. Finalmente, incluiremos la interacciéon de
intercambio y la SOI de Dresselhaus para estudiar en el Cap. [5| en qué medida el
espin del electrén puede actuar como mediador. Puesto que nuestro objetivo es
comprender cada aspecto en detalle, simplificaremos nuestro analisis suponiendo
en todo momento un unico electréon de conduccién. Esta suposicién simplifica
notablemente el problema, pues permite ignorar la interaccion de Coulomb entre
electrones, sin por ello afectar el objetivo central de este trabajo.

A continuacién ampliaremos breve pero detalladamente el marco tedrico y

experimental en que se encuadra este trabajo.
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1.2. Marco teodrico

1.2.1. Aproximacién de funciéon envolvente

Una hipotesis central de la descripcion de un sélido cristalino es la periodicidad
espacial ilimitada. Esta periodicidad requiere no solo que el material sea homogéneo
en su composicion, sino también que el mismo carezca de bordes o limitacion alguna.
Por ello, al considerar apartamientos tanto en la pureza del semiconductor (por
ejemplo, mediante la inclusién de impurezas sustitutivas [19]) o en su geometria
(por ejemplo, suponiéndola limitada en el espacio), esta periodicidad absoluta se
pierde [19]. Usualmente, estos apartamientos del cristal ideal se realizan a través
de la inclusién de un potencial V' (r) que modifica o rompe la simetria de traslaciéon
original. Es importante mencionar que V' (r) no necesariamente es un potencial
externo al cristal, puede bien ser interno: por ejemplo, el coulombiano proveniente

de una impureza iénica [19]. El Hamiltoniano total puede expresarse, asi, como:
H=Hy+V(r), (1.1)

donde Hj es el Hamiltoniano del cristal ideal. La ecuaciéon de Schrédinger que
determina los autoestados W(r) de este Hamiltoniano es naturalmente mas dificil de
tratar. Sin embargo, cuando V (r) varia suavemente en el cristal, es posible aplicar
el método que describiremos a continuacién, que permite hallar, de forma indirecta,
los ¥(r) y sus energias asociadas.

Supongamos que el nimero de celdas primitivas NV del cristal es tan grande que
el conjunto de vectores de la red de Bravais {R;}i<;<y puede aproximarse como

continuo, y expresemos los autoestados del Hamiltoniano (1.1} como

V() = 7= 3 CL(RIW(r — Ry); (1:2)
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en términos de las funciones de Wannier [20, 21]

W, (r — Ry) HR Y (r) (1.3)

- T

con n el indice que numera las bandas E,, (k) v ¢,x(r) la funcién de Bloch de la

banda n. Los coeficientes C,,(R) son conocidos como funciones envolventes [19)].
La utilidad de expandir los estados ¥(r) de esta forma se vera en seguida, pero

por el momento notemos que H satisface las relaciones:
.0
(Wn(r, Rz), H()Wn/(r, Rz)) = 6zj6nn’En(k) < 61]6nn’En (—Za];{> s (14)

donde (-, -) es el producto interno en el espacio de Hilbert. La identificacion de k
con el operador —i 9/OR. es posible siempre que R (y, por tanto, k) sean supuestos
como continuos. En este caso, es posible mostrar [19] que las variables R y k son
asociables a operadores conjugados, que guardan entre si relaciones de conmutaciéon
similares a las del impulso p y el operador posicién r verdaderamente continuos.
Esto es,

RHZ’3 y k& —Zai{ (1.5)

Supongamos entonces que el potencial V (r) varfa suavemente y expandamoslo

en serie de Taylor alrededor del vector R; de una celda en particular:
V() =V([R)+ @ -R)-VV(R)+ O (r—Rif’) » V(Ry);  (L6)

Si las variaciones de este potencial son muy pequenas dentro de cada celda, es
razonable aproximarlo por el término de orden cero en cada una de ellas. Asi, si
ap es una longitud caracteristica de la celda (por ejemplo, la longitud del vector

primitivo mas largo), y suponemos que

ag|VV (r)| < V(r) (1.7)

5
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Podemos considerar que V(r) ~ V(R), interpretando ya R como una variable
continua.

Juntemos ahora esta aproximacién para V(r) con las relaciones de la ec. |[1.4] y
notemos que podemos convertir la ecuaciéon de Schrodinger para los ¥(r), en una

ecuacion de Schrodinger sobre las funciones envolventes (los coeficientes Cy,(R)):
[E.(k) +V(R)]C,(R) = EC,(R). (1.8)

Si consideramos unicamente los estados de Bloch 1, (r) proximos a un extremo
de la banda de conduccién, (digamos, el punto I', 0 k = 0, en algunos semiconduc-
tores), y suponemos, ademds, que la banda alrededor de este punto es isétropa y

homogénea, podemos expandir F, (k) en serie de Taylor como sigue:

h2k> h? 9\
By (k) ~ E,(k=0)+ " 5 E,(k=0 2. 1.9
0~ Bk =0)+ 5 o BGe= 0+ g (i) 09

donde m} es la masa efectiva de la banda n [19]. Reemplazando esta expresién en

la ec. (|1.8]), obtenemos, finalmente:

() evm

Es importante mencionar aqui que el mismo argumento puede utilizarse para

Co(R) = (E — E,(k =0)Co(R)  (1.10)

obtener una ecuacién equivalente para la banda de valencia.

1.2.2. Interaccion espin-6rbita en estructuras

bidimensionales

El Hamiltoniano de interaccion espin-érbita (SO) para un electrén en un dtomo

proviene originalmente de la ecuacién de Pauli y toma la forma:

h

Hgo =
4m3c?

(VVo(r) xp)-d (1.11)
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donde mg es la masa del electrén libre, ¢ la velocidad de la luz en vacio, & es el
vector de matrices de Pauli, y Vj(r) el potencial del niicleo [16, 19].

La interaccion espin-Orbita se tiene en cuenta, en el estudio de sélidos cristalinos,
a través de este Hamiltoniano [16] o bien expresado en una forma general como un
término de la forma Hgo o< L - & [19]. En el primer caso, Vy(r) es reinterpretado
como el potencial microscépico de la red cristalina.

Sea cual fuere la forma en que se modela la interaccion, la adiciéon de Hgo
modifica tanto los estados de Bloch de electrones y huecos como en la estructura
de bandas, particularmente en el centro de la primera zona de Brillouin (PZB) [19].
Si Hso modifica la estructura de bandas, la forma en que lo hace es naturalmente
distinta para cada sélido en particular, pues depende de las propiedades de su
red cristalina. Esta cuestién es de importancia al momento de obtener modelos
aproximados para el Hamiltoniano del cristal, en especial alrededor de puntos de
la PZB de alta simetria como, por ejemplo, el punto I'. En semiconductores de
estructura zincblenda, por ejemplo, Hgo da cuenta de la dependencia de las bandas
de valencia respecto del impulso angular total de los portadores de carga, por lo
que la interaccién espin-6rbita no puede despreciarse totalmente en el calculo de
estructura de bandas [16].

Los modelos reducidos para este y otro tipo de calculos parten usualmente de
la ecuacion de autovalores de Schrodinger:

2
% + Vo(r) + Hso | € T ui(r) = E,(k)e™ u,(r); (1.12)
0

donde k es un vector de la red reciproca. La accién de p? sobre el factor e

'rul,k (I')
produce términos adicionales a los tres dentro del corchete que permiten llevar esta

ecuacién a una que solo involucra a u,k(r) v E,(k); es decir, a la parte periddica

7
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de las funciones de Bloch y las bandas [16]:

p? h2k? h
Y + Hgp + + —k- =F,(k : 1.1
2o o(r) SO ome | ma p| u(r) v (K)upk(r); (1.13)

De esta ecuacion (con o sin el término Hgg) se derivan los métodos conocidos como
k-p[19,22].

En ausencia de interaccion espin-orbita, las funciones peridédicas de Bloch, que
llamamos u), (r), forman un conjunto completo para cualquier k = kq fijo [16]. Esto
permite tomarlas como base en la cual expandir las funciones w,x(r) desconocidas.
Si se reemplaza u,x(r) por su expansion en la ec. , es posible convertir esta
ultima en un conjunto de ecuaciones acopladas que involucran los coeficientes de
la expansion de wu,(r) y los elementos de matriz del operador entre corchetes en
la ec. (1.13)), tomados todos ellos sobre funciones del conjunto {u], (r)}, es decir,
sobre funciones correspondientes a distintas bandas v. Este procedimiento permite,
por una parte, sacar a la luz el acoplamiento generado por Hgo entre las distintas
bandas; y, por otra, obtener formas aproximadas al problema de autovalores a
través de la reduccion del sistema de ecuaciones acoplado a otros que tengan en
cuenta los acoplamientos entre bandas mas importantes. Estas reducciones del

problema dan lugar a los modelos de Kane [16, 22].

Al tratar semiconductores de estructura zincblenda, es usual realizar una apro-
ximacién adicional para reducir todavia mas este sistema de ecuaciones acopladas.
Esta consiste en considerar sélo los valores de k alrededor de algin punto de
importancia de la PZB, por ejemplo, el punto I' en el que usualmente se ubica el
gap fundamental. En este caso, los valores de k satisfacen |k| < 27/a, con a la

longitud caracteristica de la red (la constante de red, por ejemplo) [16]. Bajo estas

8
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hipoétesis, es valido suponer:

h?k?

2mx

v

E,(k) ~ E,(0) + (1.14)

El valor de la masa efectiva de la banda v, m,, puede obtenerse en términos de las
constantes del problema y los elementos de matriz del operador , tomados,
como mencionamos, sobre la base de funciones de Bloch para ko = 0 y en ausencia
de Hso, {u,(r)}. La contribucién més importante a m}, proviene del acoplamiento
entre las bandas mas proximas y, por tanto, en el caso propuesto, de la amplitud
del gap [16]. Es importante mencionar aqui que tanto el valor del gap como el de
los elementos de matriz de los operadores en la ec. se obtienen buscando
el mejor acuerdo entre el modelo y los datos experimentales, siempre que no sea
posible inferirlos por medio de argumentos de simetria [16].

Uno de los modelos aproximados mas simples, que captura la fisica fundamental
[16], considera tinicamente el acoplamiento entre la banda de conducciéon y las
bandas de valencia mas préximas a esta, conocidas como de heavy-hole, light-hole y
split-off. La denominacién de las dos primeras proviene de la magnitud del valor de
la masa efectiva correspondiente a los estados cerca de sus respectivos maximos;
mientras que el nombre de la segunda es debido a su menor energia respecto de las
otras dos. Estas tres bandas de valencia surgen de la separacién de las bandas de
valencia originales (de tipo p) que provoca la interaccion espin-6rbita al acoplar
el impulso angular orbital al espin de los portadores de carga. El Hamiltoniano
resultante de este modelo de Kane particular puede expresarse en términos del
impulso k como una matriz de dimensién 8 x 8 [16, [23].

Este modelo captura dos de las formas en que la interaccion espin-érbita rompe la

degeneracion de espin de los estados de conduccion en semiconductores de estructura

9
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zincblenda, tanto en volumen (bulk) como en estructuras cuasibidimensionales. Estas
dos formas son las conocidas como interaccion de Dresselhaus [17] e interaccion de
Rashba [18]. La primera tiene su origen en la ausencia de un centro de inversion
espacial en el potencial del cristal, es decir, en la asimetria de inversion en volumen
(o BIA, por bulk inversion asymmetry), y siempre estd presente en este tipo de
semiconductores |16]. La segunda depende, en cambio, de la existencia de un
campo eléctrico macro o mesoscépico efectivo, provisto externamente o generado
por el potencial de confinamiento o por el potencial efectivo en las interfaces de
heteroestructuras |16} 24]. La asimetria generada por este campo eléctrico macro
o nanoscépico sugiere el nombre de structural inversion asymmetry (SIA) a esta
particular ruptura de la degeneracién de espin.

Los argumentos de simetria mencionados anteriormente son de capital impor-
tancia para el calculo de los elementos de matriz del modelo que indican cémo la
interaccion espin-orbita rompe esta degeneracién en cada caso. Utilizando teoria de
grupos y la teoria de invariantes (ver ref. [25]) es posible obtener, para la banda de
conduccién, los Hamiltonianos de BIA (Dresselhaus) y SIA (Rashba) en sistemas

cuasibidimensionales (cuya direccién de crecimiento se supone la [001]):

HBIA = ﬁ(kx(fz — /{ZyO'y) (115)

Hgia = alkyoy — kyoy) (1.16)

donde o, , son las conocidas matrices de Pauli. El término de Dresselhaus que
surge del modelo de Kane contiene términos cibicos en el impulso k. A fin de
obtener un Hamiltoniano lineal en k, los factores de 6rdenes superiores en k, suelen
extraerse del Hamiltoniano como valores de expectacion tomados sobre estados en

la direccion de crecimiento y confinamiento (supuesta aqui la [001]) de la estructura

10
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bidimensional [16, 26, [27]. El factor § resultante depende asi del confinamiento en
esta direccion, pero por lo demés es independiente de factores externos y queda
determinado por las propiedades del semiconductor que conforma la estructura. El
pardmetro «, en cambio, depende del campo eléctrico efectivo [16] y podria, hasta

cierto punto, ser controlable externamente.

Los Hamiltonianos Hgia v Hgia especializados para anillos cuanticos seran los

que utilizaremos en este trabajo.

1.2.3. Semiconductores magnéticos diluidos

Los semiconductores magnéticos diluidos (DMS) son aleaciones de elementos
semiconductores de los grupos II-VI (por ejemplo, CdTe [28]), ITI-V (por ejemplo,
GaAs [29]) u otros [13, [30], en las que se incluyen impurezas de un metal de
transicién en bajas densidades. Tipicamente, estos metales pertenecen al cuarto
periodo del grupo d (capa 3d incompleta) y presentan propiedades magnéticas. El
mas ampliamente considerado, tanto en estudios teéricos como experimentales, es
el Mn [15] 30|, aunque otros como el Cr [30] o el Co |14] son también utilizados. La
predominancia del Mn se debe la ausencia de impulso orbital total en la 3d, y al

hecho de que su configuracién de espin es un singlete en el ground state [31].

El interés en los DMS durante las ultimas décadas tiene su origen en el des-
cubrimiento de ordenamiento ferromagnético a temperaturas criticas elevadas
en compuestos dopados con impurezas sustitutivas de Mn [31] (por ejemplo, el
(In, Mn)As, cuyo ferromagnetismo fue descubierto por Munekata et. al. |32, 33]).
La posibilidad de acercar esta temperatura a la ambiente permitiria obtener un

material que combine propiedades de semiconductor y ferromagneto al mismo

11
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tiempo [30]. La expectativa de que esto podrias ser posible ha provocado un gran
numero de investigaciones sobre los DMS en los tltimos anos dada la aplicacion
tecnoldgica inmediata que estos materiales tendrian, especialmente en el area de
espintrénica |14, 31].

Como area de investigacion, la espintronica es joven. Su origen se remonta al
descubrimiento en la década del 80 de la interaccion de intercambio en estructuras
metalicas multicapa y del fendmeno conocido como magnetoresistencia gigante, en
el que la conductividad eléctrica de las mismas esta fuertemente ligada al estado
de espin de los portadores de carga. |14, [34536].

La posibilidad de controlar el espin de los electrones en un semiconductor que
sea asimismo ferromagnético a temperatura ambiente, o en estructuras multicapa
de este tipo, daria lugar, por tanto, a desarrollos de nuevos dispositivos: desde
nuevas memorias no volatiles hasta mayor capacidad de procesamiento de datos con
menor consumo energético [14]. La investigacién en estos materiales, especialmente
cuando el dopante es el Mn han ya generado contribuciones considerables en el
area de espintrénica [13].

No obstante, la inclusién de impurezas magnéticas en las muestras no es aun
totalmente controlable. Las complejidades en las etapas de crecimiento y preparacién
de las muestras [13] o en su manipulacién posterior [14] redunda en resultados
experimentales que muchas veces son controvertidos [13], y hasta en algunos casos
contradictorios, como, por ejemplo, la observacién de ferromagnetismo de altas
temperatura critica en algunos casos y su total ausencia en otros [14]. Estas
complejidades inciden naturalmente no sélo en las propiedades magnéticas de las
muestras resultantes, sino también en la comprensién tedrica de las mismas [14].

Un problema de importancia en este sentido es la imposibilidad de predecir o

12



1.2. Marco tedrico

controlar la posicién que adoptan las impurezas, tanto a nivel macroscopico (por
ejemplo, es sabido que las impurezas pueden formar agrupamientos o clusters |14]),
como a nivel de la celda unidad de la estructura cristalina del semiconductor de
base. Es sabido que a nivel estructural las impurezas pueden adoptar posiciones
intersticiales, pero también sustitutivas. Por ejemplo, en semiconductores I1-VI,
de estructura zincblenda, los Mn pueden sustituir los elementos del grupo II, o
ubicarse entre ellos y los del grupo VI [13]. En estos materiales, la concentracion de
impurezas sustitutivas puede ser hasta cuatro veces mas elevada que, por ejemplo,
en los I1I-V [14] y normalmente constituyen centros neutros respecto de la red de
base [31]. La sustitucién de elementos del grupo II por Mn es posible debido a la
contribucién de la capa 4s a la hibridizaciéon sp® que forma los enlaces entre los
elementos II-VI [12]. En algunos casos, la estructura del semiconductor A"BV! se
mantiene en compuestos ternarios de la forma A";_,Mn,BV! en un amplio rango de
concentraciones (por ejemplo, x < 0.77 para el Zn;_,Mn,Te), aunque la estructura
tedrica del compuesto binario formado tnicamente por Mn y elementos del grupo
VI pueda ser distinta [12]. No obstante, y en términos generales, la inclusién de
impurezas en la celda modifica la estructura de bandas del semiconductor de base
anadiendo estados debajo, en, o sobre el gap (directo en los II-VI) en el limite de
alta dilucion |12} [13]. Son estos DMS basados en semiconductores II-VI los més
comprendidos y estudiados histéricamente |12} |14], aunque algunos I1I-V como
el (Ga, Mn)As han recibido mucha atencién en los dltimos anos [13]. Por ello, en
este trabajo optaremos por DMS ternarios de la forma A, Mn,B"! cuando sea

necesario.

Las importantes propiedades magnéticas de los DMS, que los diferencian de

otros compuestos ternarios no magnéticos, es principalmente debida a la interaccién
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1. INTRODUCCION

de intercambio entre portadores no localizados de conduccién o valencia (tipo s
o p, respectivamente [37]) y sus contrapartes localizadas en la capa d externa de
la impureza [15]. En el modelo mas simple posible, aplicable especialmente a los
DMS II-VI con impurezas de manganeso, la interacciéon entre estos subsistemas de
portadores localizados y no localizados es relativamente débil [15]. Esto permite
considerarlos separadamente (es decir, portadores tipo sy p, y tipo d) [12,15], y
modelar la interaccion de los no localizados con los de la capa d como dependiente
fundamentalmente del espin [15]. Esta interaccién de intercambio s-d o p-d se suele

escribir en la literatura partiendo de un Hamiltoniano de tipo Heisenberg [15]:

donde el indice i recorre las impurezas, ubicadas en R;, y J(r — R;) es un operador
efectivo que depende de tanto de la posiciéon de la impureza, supuesta fija, como
del operador posicion r del portador de carga no localizado |12, [15].

El Hamiltoniano suele simplificarse y llevarse a uno similar al de la inter-
accion de Kondo [38]. Para ello, es usual tomar como hip6tesis que las interacciones
s-d y p-d actian en escalas espaciales del orden de la celda unidad (debido a la
localizacién de las impurezas y de los electrones en las capas d), que son mucho
menores que la longitud de onda caracteristica del portador no localizado [12} 37].
A los fines précticos, por tanto, la funcién de onda envolvente (ver de este
ultimo puede suponerse constante en estas escalas. Es posible, por tanto, aproximar
el operador J(r —R;) por un producto entre una constante efectiva J y un potencial
de contacto (r — R;) [37]. De esta forma se obtiene el Hamiltoniano utilizado

normalmente en la literatura:
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En DMS del tipo A™,_,Mn,B"! que consideraremos, el valor de la constante .J
es en gran medida independiente de la densidad de impurezas [12], y su valor esta
dado esencialmente por la competencia entre dos mecanismos que se observan en
estos materiales. Estos dos mecanismos son conocidos como potencial y cinético
[37]. El primero de ellos se halla siempre presente y decae con la distancia como el
potencial coulombiano usual. El segundo, en cambio, proviene de la hibridizacién de
los niveles 3d® con los portadores tipo s o p [12, 37]. En particular, para electrones
cerca del minimo de la banda de conduccién, el mecanismo potencial predomina
sobre el cinético en estructuras zincblenda [12].

En este trabajo utilizaremos el Hamiltoniano para incluir la interacciéon

de intercambio entre electrones de conduccion e impurezas magnéticas en el anillo.
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Capitulo 2

Anillo delgado

2.1. Presentacion

Dedicaremos este capitulo a tratar en detalle la ecuacion de Schrodinger in-
dependiente del tiempo para un electréon de conduccion sujeto a las interacciones
espin-6rbita (SO) de Rashba y Dresselhaus bajo la aproximacién de anillo delgado

desarrollada por Meijer et al. [39).

Transitaremos la discusién en orden y comenzaremos por deducir un Hamilto-
niano efectivo unidimensional en la §2.2] Posteriormente, plantearemos en la
ecuacion de autovalores que le corresponde, y propondremos y desarrollaremos en
§2.41 un procedimiento para obtener sus autoestados y autoenergias. Estudiaremos
las propiedades generales de estos estados y observaremos como influye la presencia
de las interacciones SO sobre los estados de conduccion del electrén en muestras
accesibles experimentalmente. Deduciremos formas aproximadas para estos estados
y sus energias en estos casos en y, finalmente, extenderemos en el proce-

dimiento propuesto a Hamiltonianos efectivos con interacciones SO lineales en el
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2. ANILLO DELGADO

impulso pero més generales.

2.2. Aproximacién de anillo delgado

La aproximacion de anillo delgado desarrollada por Meijer et al. [39] permite
deducir un Hamiltoniano efectivo de una dimensiéon que describa la dinamica de
baja energia de un electron de conduccién cuando la seccion transversal del anillo
es muy delgada respecto de su radio. El potencial que confina al electrén a la
geometria anular determina la longitud caracteristica de esta seccion, y transforma
al anillo en un pozo cuantico de gran profundidad en la direccién transversal
[19]. En esta aproximacién las energias asociadas al confinamiento se suponen
mucho mayores que las asociadas al movimiento longitudinal; especialmente a las
componentes acimutales de las interacciones espin-orbita lineales en k, Hgia y Hgra,
dados respectivamente en las ecs. y [L.16] Si a esta aproximacién se anade el
hecho de que el electron se halla asimismo confinado en la direccion vertical, es
posible reducir el Hamiltoniano total a sus componentes longitudinales y estudiar,
asi, la dindmica a lo largo del anillo separadamente. En otras palabras, es posible
aproximar la funciéon envolvente de ground state del electrén como un producto de
«modos» verticales, transversales y longitudinales, y suponer que las interacciones
(por ejemplo, las SO) sé6lo excitan modos longitudinales, pero no tienen energia
suficiente para producir transiciones entre estados verticales o transversales. El
Hamiltoniano en una dimension resulta de tomar el valor de expectacion sobre
estos modos «fijos», y no depende, en el limite de alto confinamiento (limite
unidimensional) de la forma funcional del potencial confinante. El detalle de la

derivacion de esta aproximacién y los argumentos que la justifican se dan en el
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2.2. Aproximaciéon de anillo delgado

articulo citado arriba.

La dinamica longitudinal efectiva es entonces descripta por el Hamiltoniano
siguiente, que contiene solamente la energia cinética en esta direccion y las interac-
ciones SO lineales en p = hk,

p2
H, - <2£ + HSO> | (2.1)
Ry

Aqui, Ry(r) es el modo transversal de menor energia y p,, es el impulso longitudinal,
ambos expresados en un sistema de coordenadas cilindricas (r, ¢, z) centrado en el eje
del anillo. El Hamiltoniano de SO consta de los términos de Rashba, a(p,o, —p,0.),
y Dresselhaus, 3(p,0, — py0,), y puede reescribirse convenientemente agrupando

términos respecto de las coordenadas del impulso, como sigue

Dz p
Hso = — (aoy + foy) + %y (—ao, — Boy) = . W

de forma que la accién conjunta de ambas interacciones quede expresada como
una interaccion SO més general y también lineal en el impulso. Este arreglo de
términos serd util en la extension a los resultados de esta seccion que presentaremos
en . En la ultima igualdad en la ec. hemos definido implicitamente las
matrices ¥, = aoy, + fo, y X, = —ao, — fo,. Para expresar el Hamiltoniano
Hgso en coordenadas cilindricas, utilizamos el siguiente par de operadores p+, que

definimos en términos de los impulsos cartesianos como

P+ = p, £ip, = e (p, £ ip,). (2.3)

Estas combinaciones particulares actian sobre los autoestados de impulso angular
orbital (OAM) axial L, = —ihd, = rp, de forma similar a como lo hacen los

operadores escalera L. Los autoestados de L, que respetan la simetria del anillo
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2. ANILLO DELGADO

son las conocidas exponenciales trigonométricas e de frecuencia m entera. Asi, a
partir de (2.3]) y reordenando términos nuevamente a fin de compactar la expresion,

Hgo resulta

p

_ Py P- :
HSO = 2ﬁ<2$ zZy) + 2% (Em + zEy). (24)

Es importante notar que este operador es hermitiano, pues las matrices de Pauli
lo son, y p, = pT_. El valor de expectacion (2.1)) queda entonces determinado por
las cantidades (p,)ry, (Pg)Ro ¥ (P})Ro- Como mencionamos anteriormente, estos
operadores no dependen de la forma funcional de Ry(r) y, por tanto, siempre toman

los mismos valores, que son los siguientes

ih

<pT>Ro = %7
ih L,
h? L?
2 2 z
<p¢>Ro = _ﬁa‘P = w2

El Hamiltoniano efectivo se calcula entonces reemplazando cada operador por su
valor de expectacién donde corresponda en la expresion . No obstante, la forma
resultante puede simplificarse todavia més si se expanden los factores et prove-
nientes de (p+)g, en funciones trigonométricas, y se reagrupan convenientemente

algunos términos en un nuevo operador F(¢), que definimos aqui como
F(p) = E(Ew sen ¢ — 3, cos ). (2.6)
a

Este operador es antihermitiano F'(¢) = —F ()T, periédico en el anillo F(¢o+27) =
F(p) y su cuadrado F?(p) es una funcién escalar (es decir, es proporcional al
operador identidad en el espacio de espin). Esta dltima propiedad deriva de las
relaciones de anticonmutaciéon de las matrices de Pauli {o;,0;} = 26;;. Las tres

propiedades son fundamentales para sostener los argumentos que desarrollaremos
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2.3. Ecuacion de Schrodinger

en las préximas secciones. Finalmente, la expresion del Hamiltoniano efectivo con

la que trabajaremos es

- |
H,==2I%+ - F(p)L,

= L4 (L-F(p)); (27)

L

2h
donde Ey = h?/2m*a® es una escala de energfa cinética longitudinal, y (L.F(¢))
es una forma compacta de escribir —ih OF (p)/0¢. Asi escrito, el Hamiltoniano

explicita el acoplamiento efectivo entre el OAM axial y el de espin del electrén, ya

que F(¢) depende de las constantes de Rashba y Dresselhaus tnicamente.

2.3. Ecuacion de Schrodinger

De acuerdo con las deducciones de la seccién anterior, la ecuacion de Schrodinger
independiente del tiempo que determina los autoestados y las autoenergias del

electron en la aproximacion de anillo delgado es
(H, — E)®(p) = 0. (2.8)

El autoestado ®(p) tiene estructura de espinor, es decir, puede escribirse como
una combinacion lineal de estados ortogonales de espin 1/2 cuyos coeficientes son
funciones dependientes de la coordenada ¢. Las formas funcionales de estas tltimas
no estan restringidas mas que por la condicién necesaria de que sean univaluadas
en el anillo (es decir, periddicas en 27). Esta es la condicién de contorno de la
ecuacién de autovalores (2.8).

Nuestro objetivo es resolver la ec. . Para ello, supondremos que el autoestado
®(p) es separable en dos factores: uno comin y escalar f(y), y otro x(¢) que

le da su estructura de espinor. Tanto el primer factor como las componentes del
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2. ANILLO DELGADO

segundo toman valores en los complejos. Por el momento, no imponemos condiciones
adicionales sobre cada factor individualmente, por lo que no perdemos generalidad
al hacer esta factorizacion. Insertando la propuesta en la ecuacién de autovalores y

reordenando términos, obtenemos, finalmente

{E°L2f+( 1) [QEOL +iF]

+f[ L2+hFL + o (LF) - EHX:O

(2.9)

Supondremos razonablemente que el espinor x(¢) no es idénticamente nulo, pues de
lo contrario el autoestado propuesto seria la solucion trivial. Buscamos desacoplar

este sistema y tomaremos para ello x(¢) de entre las soluciones a la ecuacién

{2E0L +iF(9)] x(p) = 0. (2.10)

h

Esta eleccion es en principio efectiva, pues anula el término proporcional a L., f
en la ec. (2.9) y transforma el corchete que multiplica a f(¢) en un operador

proporcional a F?(y), es decir,

1

(Boiz b tPLe b (F) - B x0) = [P0 - B o) )

El corchete entonces actiia sobre x(¢) multiplicindolo por una funcién escalar que
no mezcla sus componentes, pues F%(¢p) es proporcional al operador identidad de
espin. La ec. (2.9) toma entonces la forma

{gs( )+ 1) TE)F?(‘P) E]}x(w)zo- (2.12)

Puesto que x(¢) por hipdtesis es no nulo, esta ecuacién se satisface para todo
punto ¢ en el anillo si la expresion entre llaves se anula idénticamente. Es aqui

donde se evidencia la importancia de que F?(¢) sea esencialmente una funcién
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2.4. Diagonalizacion del Hamiltoniano efectivo

escalar, pues entonces el unico factor matricial que aparece en ([2.12)) es el operador
identidad, que es comun a todos sus términos. Por esto, la condiciéon de nulidad de
la expresion entre llaves define la siguiente ecuaciéon, que involucra solamente a la

funcién f(¢) y desacopla finalmente el sistema:

P’ f(p)
&p? + f(SO) {4EOCL2

E, 0 + 8% + 2a3sen(2¢)| + E} = 0. (2.13)

2.4. Diagonalizacion del Hamiltoniano efectivo

Si bien la eleccién permite obtener dos ecuaciones independientes para
cada factor de ®(p), no cualquier producto de soluciones f(¢)x(¢) serd univaluado
en el anillo y conformara por tanto un autoestado. Es necesario entonces elegir
soluciones a las ecs. y que permitan satisfacer esta condicién. Para
ordenar la discusion que sigue, trataremos cada una por separado y comenzaremos

por la primera de ellas.

2.4.1. Factor espinor x(p)

La ec. (2.10) puede reescribirse como sigue, si se reordenan las constantes

multiplicativas apropiadamente:

Ox(p) i

ZW = TEOF(SD)X(SD)- (2.14)

Escrita asi, la ec. se emparenta con la forma usual de la ecuacién de Schro-
dinger dependiente del tiempo (TDSE) [40]. En efecto, el operador F'(¢) es antiher-
mitiano, por lo que el producto iF'(¢) es hermitiano y puede entonces interpretarse
como un Hamiltoniano. La analogia con la TDSE requiere interpretar adicional-

mente la variable angular ¢ como un «tiempo». Esto es factible pues el intervalo de
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definicion de la ec. es el de F'(¢), que no sélo cubre naturalmente el anillo,
sino que también se extiende por periodicidad a toda la recta real. Por esto, es
posible suponer que el espinor x(¢) esta definido para todo valor de ¢ real, aun
cuando baste con que esté definido en algun intervalo natural de la variable angular,
como 0 < ¢ < 27, por ejemplo.

La ec. puede tratarse entonces aplicando todo el bagaje tedrico y practico
utilizado para tratar la TDSE. La forma general de las soluciones pueden cons-
truirse, por tanto, a partir de un operador unitario U(p,0), andlogo al operador de

«evolucion temporal» de la TDSE:

x(¢) = U(p,0)x(0). (2.15)

El «Hamiltoniano» que genera la «evolucion» en nuestro caso es iF(¢)/2Ey, y
presenta dos propiedades importantes: por un lado, hereda la periodicidad de F(y)

y, por otro, satisface la relacién de conmutacién

F(9), F(¢)] = —(a® — %) sen(p — ). (2.16)

a
Esta tltima tiene como consecuencia la extrema dificultad (o llana imposibilidad)
de hallar expresiones cerradas para el espinor x(¢) o el operador U(p,0) cuando
|a| # |5]. No obstante, existen al menos dos casos en los que el conmutador
no se anula idénticamente y atn asi es posible hallar formas cerradas tanto para
U(p,0) como para x(¢). Estos son los casos puros de Rashba (5 = 0) y Dresselhaus
(v = 0), en los que la aparicién de una magnitud conservada (el impulso angular
total J, = L, + s, en el primero, y L, — s, en el segundo) permite diagonalizar el
Hamiltoniano efectivo H, por bloques de dimensién finita (2 x 2) [41} |42].

La periodicidad de F(¢) en el anillo convierte la ec. en un problema

de Floquet [43]. Como tal, esta ecuacién admite un tipo particular de soluciones,
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conocidas generalmente como pseudoperiddicas, que estan definidas en el anillo (por
ejemplo, en el intervalo 0 < ¢ < 27) y se extienden a la recta real a través de la

relacion:
X(p 4 2m) = ™ x(p). (2.17)

El factor €™ y su exponente asociado iu son conocidos como multiplicador y
exponente de Floquet, respectivamente. El valor de este ultimo depende tinicamente
de las constantes fisicas que determinan el «Hamiltoniano» iF(p)/2E, [43]. El
operador U(y,0) también satisface una relacién del tipo , pues el mismo
constituye la solucién fundamental a la ec. [43]. Esta relacién se expresa

COINo.

Ulp+27m,0) = U(p,0)U(2m,0). (2.18)

Los espinores x(¢) que satisfacen se construyen a partir de esta igualdad,
diagonalizando el operador de un periodo U(27,0) y tomando sus autovectores
como condiciones iniciales x(0) en la ec. [43, 144]. En nuestro caso, esto puede
hacerse independientemente de las constantes involucradas en el « Hamiltoniano»,
pues el operador U(2m,0) es unitario y por tanto diagonalizable, por analogia
con el operador de evolucién temporal de la TDSE [40]. Los espinores x(¢) asi
construidos son ortogonales en cada punto del anillo. Més atn, es posible mostrar
que U(p,0) es un elemento del grupo SU(2) en todo el anillo, por lo que su acciéon
punto a punto se corresponde fisicamente con una rotaciéon del espin del electron
(ver Apéndice . La direccién que adopta el espin en cada punto del anillo es,
en cierto modo, una direccién «de equilibrio» en relaciéon a la acciéon simultanea
de las interacciones de Rashba y Dresselhaus, que tienden a alienarlo en distintas

direcciones cuando actian individualmente. Esto puede intuirse de la relacion que
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guarda el espin del electréon con la magnitud conservada en cada caso: el impulso
angular total L, + s, y la cantidad L, — s,, respectivamente.

Los autovectores de U (27, 0) forman una base ortonormal de dimensién dos, pues
representan estados de espin 1/2; y sus autovalores, a los que llamaremos p, son
todos de médulo unitario, es decir, |p+| = 1. Estos tltimos son los multiplicadores
de Floquet de la ec. . Es posible mostrar que los autovalores p. satisfacen
ademads la relacién p,p_ =1, es decir, p, = p* (ver Apéndice . Los exponentes
de Floquet asociados son, por tanto, imaginarios puros. Sin perder generalidad,
podemos entonces suponer que iy = —ip_, y definir, por comodidad, p = py > 0.
La ec. admite entonces soluciones periddicas en el anillo solamente si u es
entero.

Utilizaremos el par de espinores pseudoperiodicos para construir los
autoestados ®(¢p), y los notaremos x1,(¢), explicitando su exponente de Floquet

asociado.

2.4.2. Factor escalar f(y)

La ec. (2.13)) es un caso particular de la conocida y extensamente estudiada

FEcuacion de Mathieu. La forma candnica de esta ecuaciéon es

>’ f(p)
0p?

+ [p — 2q cos(2¢)] f () = 0; (2.19)

y se escribe en términos de dos parametros adimensionales, p y ¢, cuyos valores
pueden ser complejos en general [45-47]. En nuestro caso, estos son siempre reales

pues provienen de efectuar las siguientes identificaciones:

a2+ 3 FE af
- — = —. 2.20
1WwE By 1T 18 (2:20)
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El pardmetro p es conocido como autovalor de la ecuacién de Mathieu |45] y no
esta determinado a priori, pues depende explicitamente de la energia E asociada
al autoestado ®(p). El valor de ¢, en cambio, queda completamente determinado
por las constantes fisicas del problema. Para valores reales de estos parametros, la
ecuacion de Mathieu admite soluciones pseudoperiédicas [45], usualmente denomi-
nadas me, (), que se definen en el intervalo 0 < ¢ < 7 y se extienden a la recta

real a través de la relacion
me, (p + ) = " me, (). (2.21)

El exponente de Floquet iv depende solamente de los parametros p y ¢. Sin embargo,
como p no estda determinado ain, es posible suponer que es este ultimo el que
depende de v y g, es decir, que p = p(v,q). Esta forma de relacionar los tres
parametros sera sumamente tutil cuando busquemos satisfacer la condicion de
periodicidad de ®(¢) en el anillo. Es posible demostrar que dos soluciones del tipo
, asociadas a distintos valores de p, son ortogonales en el intervalo 0 < ¢ <7
(y, por tanto, en el anillo) si sus valores de v asociados difieren en un nimero par.
En otras palabras, dos soluciones de distinta energia son ortogonales en el
anillo. El conjunto formado por estas soluciones, {me, o, () : m € Z}, constituye
una base sobre la cual puede expandirse cualquier funcion suave que satisfaga
[45]. Adicionalmente, si se extiende el intervalo a uno que abarque todo el anillo, es
posible extender asimismo las relaciones de ortogonalidad e incluir en el conjunto
de funciones ortogonales a las me, yo,,11(p), cuyos valores de v asociados difieren
en un entero impar (ver Apéndice |Al).

Tomaremos, pues, la familia {me, () : m € Z} de soluciones a la ec. ([2.13),

extendidas al intervalo 0 < ¢ < 2, y las utilizaremos para construir los autoestados
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®(p). Notaremos cada una de ellas como sigue, explicitando su normalizacién y

exponente asociado:

fom(p) = \/12_7r mey 1m (90 + Z) : (2.22)

El desplazamiento del argumento en 7 /4 proviene de efectuar el cambio de variable

que lleva el término proporcional a ¢ en la ec. (2.13) a su forma canénica ([2.19)).

2.4.3. Construccién y propiedades de ®(y)

A partir de las soluciones de Floquet para cada factor, es posible construir los
autoestados ®(¢) y obtener sus autoenergias asociadas, traduciendo la condicién
de periodicidad a una condicién sobre el exponente de Floquet del factor escalar.
En términos precisos, la condiciéon de contorno sobre un ®(y) particular se escribe

como
D(p +27) = frm(p +2m)xapu(@ + 27)

= [ £, ()] [ X ()] (2.23)

= MmEn £ (0)Xan(p) = O(p);

y se satisface si v + pu es entero. Esta condicion determina la parte fraccionaria de
v en términos de las constantes fisicas del problema, y permite obtener, junto con
el valor de ¢, la autoenergia de ®(¢) a través la relacién p = p(v, q). Escribimos,
finalmente, estas autoenergias como los autovalores de la ecuacién de Mathieu,

Eqpim =p(Fn+m,q), con m € Z, y los autoestados ®(¢) como

®aym() = = merin (+7) xaule) 224

Los autoestados @, () presentan dos propiedades importantes. Por una parte

son, al menos, doblemente degenerados. Cuando u # 0, esta degeneracion se ve a
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2.4. Diagonalizacion del Hamiltoniano efectivo

partir de la igualdad p(v, q¢) = p(—v, q), que satisfacen los autovalores de la ecuacion
de Mathieu [45]; mientras que, cuando p = 0, la existencia de degeneracién se
deduce del hecho de que cualquier combinacién de espinores periédicos es otro
espinor periédico, por lo que es posible construir dos autoestados ortogonales con
el mismo factor escalar f¢,i.,(¢) y, por tanto, con la misma energia. Podemos

escribir estos pares de autoestados degenerados como

p=0: {fu(@)x+(®), fml@)x-(¢)}
(2.25)

p#0: {ff(;wm)(‘P)Xﬁ—u(So)a fu—i—m(SO)X—u(‘P)}'

En ambos casos, esta doble degeneracién es la conocida degeneracion de Kramers,
y su razon fisica es la invariancia del Hamiltoniano efectivo H,, ante la operacién
de inversion temporal [42], que invierte simultdneamente la direcciéon del impulso
lineal y la orientacién del espin del electréon [40], es decir, p — —p y s — —s. La
inversion del impulso lineal se traduce en la inversién del impulso angular orbital,
L, pero no afecta en modo alguno a la energia cinética, que es cuadratica en p.
En consecuencia, todos los términos de H, permanecen invariantes al aplicar estas
operaciones (ver Apéndice . Los estados agrupados en un mismo par estan
por tanto vinculados entre si a través de la operacion de inversién temporal, es decir,
uno de ellos puede obtenerse invirtiendo el otro, a menos de un factor constante y
global de fase. Ambas orientaciones y4,(¢) son, por tanto, equivalentes para la
dindmica generada por H,,.

Por otra parte, los autoestados ®.,,,(¢) dan origen a una densidad de pro-
babilidad en el espacio que depende exclusivamente del factor escalar, ya que los
espinores x+,(¢) son ortonormales punto a punto; es decir,

i (2.26)

1 T
Bl () () = - |mesym (104 7 )
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2. ANILLO DELGADO

Sin embargo, estos tultimos intervienen en la densidad a través de su exponente
de Floquet caracteristico p. Finalmente, puesto que el factor escalar me, 4, (¢)
satisface una relacién del tipo (2.21)), la densidad de probabilidad es periddica en =

y por tanto en el anillo, independientemente del valor de p.

1.008 1
~ 0.998 1
~
1.007 i‘;
£ 0.9961
== 1.006
2 0.994 -
3
< 1005 0.105 -
[a]
1.004 - 200781
§=
1.003 1 * 0.0521
T T T T T T T T T 0025 T T T T T T T T T
0 % g%wﬂgﬂ'%ﬂ'gﬂ'zﬁ 0 % %%Wﬂgﬂ%ﬂngﬂ
Position [rad] Position [rad]

Figura 2.1: Izquierda: densidad de probabilidad relativa a la uniforme para el ground
state ®,,0(¢) de un anillo delgado de InSb y radio caracteristico @ = 20 nm. Derecha:
componentes en cada punto del anillo del espinor x,(¢) en la base de autoestados de
s, expresados en términos del dngulo cenital de Bloch 6. Aqui, a = 25 = 20 meV nm.
Notemos que la densidad no se aparta notoriamente de 1/27, y que la inclinacién del

espinor respecto del eje del anillo es pequena.

A modo de ejemplo, consideremos un anillo delgado de InSb (m* = 0.014 m,
[48]) y radio caracteristico @ = 20 nm. Supongamos asimismo que el electrén esta
confinado por un potencial radial parabdlico de intensidad Aiw = 30 meV, cuyo
modo radial de menor energia presenta un perfil gaussiano 39} 49].

Para uno de los autoestados de menor energia, ®,0(¢), graficamos en la Fig. [2.1

las componentes del espinor x,(¢) en la base de autoestados de s, y en funcién del
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2.5. Tratamiento perturbativo de las soluciones

angulo cenital de Bloch [40]; y la densidad de probabilidad relativa a la uniforme en
cada punto del anillo. Como vemos, la densidad de probabilidad es practicamente
constante a lo largo del anillo, y no se aparta singificativamente de la uniforme 1/27;
y el espin del electron en este estado parece estar orientado casi sobre el eje del
anillo. Para parametros alcanzables experimentalmente, este ejemplo parece indicar
que las interacciones espin-orbita no modifican sustancialmente los autoestados de
la banda de conduccién sin ellas. En otras palabras, los autoestados ®,0(¢) no se
apartan demasiado de un autoestado de L. y s.. Veremos en la secciéon que sigue
que esta observacion es valida con cierta generalidad, y no solo para los autoestados
de baja energia. Siendo entonces caracteristico de las configuraciones experimentales
del problema, este aspecto permite calcular algunas magnitudes fisicas de interés
(como la energia y los valores de expectacién impulsos angulares de orbital y de
espin) en funcién de las constantes de acoplamiento, a través de aproximaciones
sobre las funciones de Mathieu y los espinores x1,(0). Describiremos dos de estas

aproximaciones en la seccion siguiente.

2.5. Tratamiento perturbativo de las soluciones

Dividiremos la discusion en dos partes, a fin de centrarnos, como antes, en cada
factor separadamente.

Comenzamos por los espinores x4,(0) pues, como vimos, j es el pardmetro que
determina las energias del sistema. Cuando dedujimos las propiedades de estas
soluciones en la §2.4 observamos la dificultad que presentaba el célculo de las
mismas en algunos casos y notamos que esto derivaba de la analogia establecida

entre la ec. (2.14) y la ecuacién de Schrodinger dependiente del tiempo y de la
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2. ANILLO DELGADO

relacién de conmutacion (2.16]). Uno de los métodos existentes para lidiar con esta
dificultad de la TDSE es la propuesta de Magnus [50], que consiste en suponer la

existencia de un operador €2(¢) cuya exponencial es el operador U(p,0); esto es,
U(p,0) = expQ(p). (2.27)

El operador Q(¢p) se expresa usualmente como una serie de términos cuyos érdenes
son dados por un parametro de control apropiadamente definido. Esta expansion
es util en casos como el nuestro, en los que, como veremos, es posible hallar un
parametro de este tipo, pero impone una condicién de convergencia adicional que
debe cumplirse para garantizar su validez [50, |51]. En nuestro caso, dos pardmetros
de control naturales son las constantes adimensionales que sugiere la ecuacion

(también adimensional) (2.14)):

p
2CLEO.

_ . «@ Ao
aizCLEO’ 57

(2.28)

Para valores experimentales de las constantes fisicas, estos cocientes entre las escalas
de energia de las interacciones espin-érbita, a/a y B/a, y de la banda libre, Ey, son
pequenos. La tabla muestra algunos valores para semiconductores tipicamente
utilizados en geometrias de una y dos dimensiones como la nuestra. Para estos
valores de & y 3 es posible mostrar que la expansién de Magnus es convergente
(ver Apéndice [Al).

Consideramos entonces la propuesta de Magnus y, siguiendo el procedimiento
de Blanes et al. [50], expandimos el operador () a tercer orden en & y 3 como
sigue:

Q) = —in(p) - o +iQp. (2.29)
En esta expresién, n(y) es un vector periédico en 2w de componentes n, =
B(cosp — 1) —asen p, n, = a(cosp — 1) — Bsen p, y n, = (a® — 5%)sen ¢; y Qp es
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2.5. Tratamiento perturbativo de las soluciones

Material m*/m. Acop. [meV nm] Acop. adim. Refs.
GaAs  0.067 3 0.053 52, /53]
InSb 0.014 20 0.073 [48, 54, |55]
mAs  0.023 30 0.181 2, 6]
GaN  0.130 1 0.034 7]
Zn0  0.186 0.115 0.056 58]

Tabla 2.1: Intensidades de acoplamientos espin-Orbita lineales en el impulso alcanzables
experimentalmente para algunos semiconductores de estructura ZincBlenda y Wurtzita
en geometrias de una (Quantum Wires) y dos (Quantum Rings) dimensiones [59]. En
esta tabla no distinguimos el tipo de acoplamiento, si de Rashba o de Dresselhaus, ya que
nos interesa mostrar valores realistas para las constantes de acoplamiento espin-6rbita.
Mostramos estos valores en la columna Acop., y los adimensionalizamos en Acop. adim.
siguiendo la forma en la ec. . El lector interesado puede consultar las referencias

citadas para cada material.

un operador independiente de ¢, definido como
Qo = (a* = 5*)(2a0, — 280, + 0.). (2.30)

La aproximacién satisface las dos propiedades principales requeridas por
U(p,0): es antihermitiana, pues sus términos lo son; y cumple (0) = 0. Su
exponencial es entonces unitaria en todo punto, e igual a la identidad en el origen.
Los dos términos de no conmutan entre si, por lo que la exponencial de ()
no es factorizable como producto de las exponenciales de cada uno de ellos [60].
Sin embargo, este conmutador es de cuarto orden en los parametros de control a
y B, pues es expresable como suma de conmutadores entre matrices de Pauli de
los cuales estos parametros se extraen como factores comunes. Supondremos que
estos conmutadores (y cualquier otro de mayor orden) sélo introducen correcciones

pequenas a la factorizacion de exp Q(p), y aproximaremos este operador como

U(p,0) = exp (—in(y) - o) exp(iQ2yp). (2.31)
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2. ANILLO DELGADO

Aqui se evidencia la utilidad de agrupar los términos periédicos en 27 en un vector
n(p) y separarlos de los lineales: al orden propuesto, el operador U(yp,0) satisface
la relacién de pseudoperiodicidad . Los multiplicadores de Floquet de los
espinores x1,(p) son entonces los autovalores de exp(2mi€)), y sus exponentes
asociados son imaginarios puros, pues provienen del operador hermitiano €.

Los autovalores y autovectores del operador {2y permiten entonces obtener
aproximaciones a los espinores x+,(¢) y a g en términos de los parametros de

control. Al orden mas bajo, la aproximacién a p resulta:
wr et — G2 (2.32)

Notemos que la misma se anula tnicamente si |a| = ||, por lo que sélo en este
caso se tendran espinores x,(¢) periddicos en el anillo. Notablemente, cuando se
da esta igualdad, se anula el conmutador . La ecuacion es integrable
manualmente en este caso, y los espinores pueden calcularse exactamente. La razén
fisica detras de esta particularidad es la aparicién de una magnitud conservada que
determina una orientacion de equilibrio que el espin mantiene a lo largo del anillo
[61]. En todos los demds casos, como mencionamos anteriormente, el espin adopta
distintas orientaciones en cada punto del anillo [62].

Por otra parte, la forma aproximada de los espinores xi,(y) se construye
aplicando el operador a los autovectores de )y, que son estos espinores
evaluados en el origen, es decir, x4+,(0). Como cualquier espinor de espin 1/2,
estos ultimos pueden describirse geométricamente sobre la esfera de Bloch a través
de un angulo cenital 01, que describe la inclinacién del espinor respecto de la
proyeccion pura +1/2 de s,, y otro acimutal ¢4, que describe la fase relativa entre

las componentes del espinor [60]. Estos dngulos, al orden més bajo, dependen de
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2.5. Tratamiento perturbativo de las soluciones

los parametros de control como sigue

—o\ £1/2

tan% = (@2 +52) , tanogy = —

Q[Rm

(2.33)

De aqui se deduce de inmediato que los espinores ortonormales de la banda libre
(= 8= 0) son los mismos autoestados de s, como sugiere el término de orden
cuadratico en €2y. La fase relativa ¢4, por su parte, es la misma para ambos
espinores x+,(¢), y tiende a valores consistentes con los esperados en los limites de
Rashba puro (5 = 0) y Dresselhaus puro (@ = 0) [41} 42].

Seguimos con el factor escalar. Aqui la discusion se bifurca y se presentan dos
tratamientos independientes, uno para las funciones de Mathieu periédicas (u = 0)
y otro para las pseudoperiddicas (u # 0) [45]. Puesto que, como vimos arriba, los
espinores en el caso periddico pueden calcularse manualmente, nos dedicaremos
aqui a tratar solamente los casos no periodicos.

Las funciones de Mathieu de orden no entero (esto es, no periddicas) que
intervienen en nuestro problema pueden expandirse en serie de Fourier como sigue

s ey .
n=—o0
Los coeficientes ¢y, pueden definirse en relacion con ¢y, y tanto este tltimo como
los primeros quedan finalmente determinados por la condicién de normalizacion.
Cuando p y el parametro ¢ de la funcién de Mathieu toman valores pequenos, el
comportamiento asint6tico hacia valores pequenos de los cocientes ¢y, /o es descrip-
tible en términos de estos dos pardmetros y del entero m [45]. Esta relacién puede
expresarse de forma reducida, explicitando el factor que contribuye mayormente a

la misma, como

— ~— (n#0). (2.35)
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Notemos que ¢ — 0 en nuestro caso, pues, de acuerdo a la definicién que adoptamos
en ([2.20]), este parametro es exactamente el producto de los parametros de control,
es decir, ¢ = @f. Al depender de m, el miembro derecho de la relacién (2.35))
depende del estado considerado. Por ejemplo, de si se trata del ground state o de un
estado excitado, que en general corresponden a m = 0 y m # 0, respectivamente.
Cuando se trata de m = 0, todos los coeficientes son pequetios pues el miembro
derecho va como ¢"/n, y, por esto, considerar solamente el término de frecuencia
nula (proporcional a ¢y) de la serie de Fourier es suficiente para obtener una
buena aproximacién al factor escalar. La situacién es distinta para m # 0 (en
general, los excitados en este limite), pues el coeficiente ¢_s,,, correspondiente a
n = —m, se comporta como ¢"/u y bien puede no ser pequeno. Sin embargo, un
estudio numeérico permite mostrar que, cuando los parametros de control toman
los valores experimentales dados en la tabla y si se supone que |q| < |u|, basta
con considerar los primeros tres términos de menor frecuencia para obtener buenas
aproximaciones a cualquier estado excitado. Entendemos que una aproximacion es
buena si es 1til para calcular otras que aproximen con mas o menos buena precision
la dependencia respecto de los parametros de control de cantidades fisicas de interés

como la energia y las proyecciones L, y s, de los impulsos angulares.

Por todo lo anterior, consideramos estas aproximaciones para cada factor del
autoestado @, () y calculamos sobre el mismo los valores de expectacién de su

energia asociada y de los operadores L, y s,. Suponiendo |g| < |u|, obtenemos, al
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Figura 2.2: Exponente p, energia y valores de expectacién de las proyecciones L, y s,
de los impulsos angulares orbital y de espin, en funcién del acoplamiento de Dresselhaus
(B) para el ground state ®4,0(yp) del electrén en un anillo delgado de InSb y radio
caracteristico a = 20 nm. La intensidad del acoplamiento de Rashba esta fijado en

a = 20 meV nm. Las lineas continuas corresponden a los datos obtenidos numéricamente,

y las de guiones a los computados a través de las férmulas (2.32)) y (2.36[—2.38). En todos

los casos, el rango de 3 garantiza el cumplimiento de la condicién af < |a? — 52\

orden mas bajo en & y B,

Eipm = Ey [(m T p)?— (% + 52) + 2lm ff))? — 1]] , (2.36)
(L2) £y = £h lu +m T 2[(1"1_?:1);(15))2]2] , (2.37)
(82)4pm = £h B — (@ + B + %] . (2.38)

Notemos que las aproximaciones a L, y s, respetan las conservaciones del impulso

angular total J, = L, + s, y de la cantidad L, — s, en los casos de Rashba (5 = 0)
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y Dresselhaus (o = 0), respectivamente. En otras palabras, cuando 5 =0, el valor
de expectacion (J,)y,m no depende de @, y, de forma similar, cuando & = 0, la
cantidad (L, — $.)+,m no depende de B,

Finalmente, aplicamos estas aproximaciones al caso realista mencionado en
y consideramos el electrén en el ground state ®.,0(yp) de un anillo delgado
de InSb y radio caracteristico a = 20 nm. Fijamos la intensidad de la interaccion
de Rashba en @ = 20 meV nm y consideramos un rango de valores de 3, para

los cuales calculamos numéricamente los valores de expectacién mencionados y

los comparamos con nuestras aproximaciones (2.36)), (2.37) y (2.38)). Presentamos

estos resultados en la Fig. 2.2

2.6. Extension del Hamiltoniano efectivo

En la propusimos la factorizacién del autoestado ® en un factor escalar
y otro espinor. La viabilidad de esta separacion estaba fundada esencialmente en
el hecho de que el cuadrado del operador F(p), F?(), resultaba proporcional al
operador identidad en el espacio de espin. Esta propiedad permitia desvincular
la ec. del factor espinor y llevarla a un caso particular de la ecuacion de
Mathieu. Veremos en esta seccién que esta propiedad no se modifica si se extiende
el Hamiltoniano de espin-érbita a una forma mas general.

El operador F(¢p) esté definido a partir de las matrices ¥, y ¥, que son combi-
naciones lineales de las matrices de Pauli o; cuyos coeficientes reales corresponden
a los acoplamientos espin-drbita introducidos por Hgo. Las propiedades de F(y)
que observamos oportunamente no dependen de la forma particular de estas combi-

naciones, siempre que los coeficientes que intervienen en ellas sean reales. En otras
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2.6. Extensién del Hamiltoniano efectivo

palabras, >, y ¥, bien podrian ser combinaciones lineales arbitrarias sin que por
ello sea necesario modificar los argumentos esgrimidos para desacoplar la ecuacion
de Schrodinger como hicimos en .

A partir de esta observacién, podemos suponer que el Hamiltoniano Hgg es
més general y consta de términos de la forma o;;p;0;, con «;; constante y real,
indexados por ¢ = x,y vy J = x,y,2. Un Hamiltoniano de este tipo aparece al
considerar, por ejemplo, la influencia de esfuerzos de corte (strain) en el cristal [63,
64]. Es importante notar que esta generalizacién desestima explicitamente términos
proporcionales a p., por lo que, en principio, la misma no invalida las hipotesis
consideradas sobre la geometria del anillo. La forma final de Hgp es reducible a la

ya deducida ({2.2)), pero con las definiciones

Yo = QueOy + g0y + 0,05,

(2.39)

Dy = Qga0q + Oy Oy + 0120
Puesto que, como observamos, los valores particulares de las constantes «;; no
intervienen en las propiedades de F'(¢), la ecuacion que rige el factor espinor
y las propiedades de sus soluciones no se ven alteradas, pero si se modifica la

ecuacion para el factor escalar para hacer lugar a estos cambios en ¥, y 3,. Esta

ultima resulta ahora:

o 1
E, 8{1520) + (8a2Eo [Zi + 32— Q] cos (2¢ + g + W)} + E) flp) =0. (2.40)

Aqui, @ = (iX, + X,)? y es proporcional al operador identidad, |Q| es el médulo y
wg = Arg ) el argumento principal del factor escalar que multiplica a este operador.
Los autoestados del Hamiltoniano efectivo H, son similares, en su estructura, a los

deducidos en la y se escriben como

1 %) s
@ium(ﬁp) = ﬁ Mexy+m <90 + 7Q + 2) Xiu(%o)' (2.41)
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Finalmente, el exponente u depende ahora de todas las «;; de forma no trivial. Es
probable, por tanto, que existan interacciones de tipo espin-orbita que, aun siendo

fisicamente diferentes, conduzcan a autoestados similares.

2.7. Ruptura de la simetria de inversion
temporal

La presencia de un campo magnético (externo) en la regién interior al anillo
rompe las simetria de inversién temporal y la degeneracion asociada a la misma.
Esta ruptura se manifiesta en la forma funcional de los autoestados a través de
la modificacion que el flujo magnético introduce en los exponentes de Floquet
de los factores x(¢). Este efecto de origen topolégico es conocido como efecto
Aharonov-Bohm [65], y surge, en geometrias como la nuestra, por la sola presencia
de flujo magnético en la regién interna delimitada por el anillo. La ruptura de
esta degeneracion es, entonces, cualitativamente distinta a la que podria surgir por
interaccion dipolar directa entre el espin del electron y un campo magnético externo
(por ejemplo, de tipo Zeeman). En lo que sigue, analizaremos este efecto para una
configuraciéon tratable manualmente y comenzaremos desde un Hamiltoniano total

y similar al propuesto en [39]:

p? 1

H +V(r)+<p-%, (2.42)

St

- 2m*

donde V() es el potencial de confinamiento del anillo y > es un «vectory general

de combinaciones lineales de matrices de Pauli, cuyas componentes son de la forma

[2-39).
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2.7. Ruptura de la simetria de inversién temporal

Figura 2.3: Esquema del anillo delgado y de la zona donde existe flujo magnético.

Incluimos el efecto del campo magnético al Hamiltoniano del anillo suponiendo
que el mismo es nulo sobre el semiconductor (esto es, en la regién |r| > b; ver Fig.
2.3)) v constante y axial sobre la regiéon complementaria. Adoptamos, ademas, el
gauge de Coulomb para el potencial vector asociado A, V + A =0, y lo escribimos

en términos del flujo magnético ®p sobre la regién interna |r| < b, como

(2.43)

Notemos que el el campo magnético es nulo sobre el anillo, pues V X A =0 en la

region r > b.

Para deducir el nuevo Hamiltoniano efectivo en presencia del campo A, basta
con expandir el Hamiltoniano original completo y observar qué términos estan
presentes en este nuevo caso y ausentes en el anterior. Puesto que la inclusion de A

en el Hamiltoniano se realiza a través del cambio p — p — €A, las partes cinética y
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potencial, Hy, y de espin-6rbita, Hgo, resultan, respectivamente:

1
Ho = 5— (p—eA)? +V(r) (2.44)
= —LQVQ—H/(T) + ! p2+i[ep-A—26A-p+e2A2}
2m* " 2m** % 2m*
1 - 1 = e =
Hso=—-(p—eA)- ¥X=—-p-Y——-A-X 2.4
SO h(P cA) nP 7 (2.45)

El Hamiltoniano total en presencia de campo se construye, entonces, anadiendo al
original un Hamiltoniano dependiente del potencial vector. Los términos de este
ultimo introducen nuevas dependencias con las coordenadas, que, naturalmente,
vendran dadas por la estructura de A. En el caso analizado aqui, estas dependencias
son sblo radiales y los términos afiadidos se comportan sobre el anillo de forma
similar a la componente p, del impulso. Es razonable suponer que atn en este
caso se sostiene la hipotesis de Meijer et al. que permite separar la funcién de
onda total en modos radiales y acimutales. Finalmente, el nuevo Hamiltoniano
efectivo resulta de anadir al Hamiltoniano original los valores de expectaciéon de los
términos nuevos, dependientes todos ellos de A, tomados sobre el modo radial de

menor energia. Asi, obtenemos:

8 O 1 d dp\°
_ 2 . B =+ o B B
H, = —Ey0; + lF(gp) -+ z—% EO] Oy + 5 (0,F) 1—2%1?(90) + Ey <2%> , (2.46)

donde llamamos ®y = h/2e al cuanto de flujo magnético.

El tratamiento de la ecuacion de autovalores de Schrodinger para este nuevo
Hamiltoniano sigue los pasos ya utilizados en el caso sin campo. En efecto, podemos
suponer, como antes, que cada nuevo autoestado puede expresarse como el producto
entre una amplitud global y un espinor x(¢), y elegir este dltimo de entre las

soluciones de la ecuacion

M) _ 1 [F@) ; f;E] W) = PRl (247)
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2.7. Ruptura de la simetria de inversién temporal

en donde hemos definido, en la tltima igualdad, un nuevo operador

Fo) = F(p) + z"?on. (2.48)

Esta eleccién de x(¢) es efectiva para reducir la ecuacion de Schrodinger a una
ecuacién escalar (de Mathieu) para la amplitud, pues permite anular la contribu-
cién del término proporcional a F(¢) en ]:ISO, que es explicitamente no diagonal.
Notemos que es efectivamente en este término donde radica la diferencia sustancial
entre los casos con y sin campo, pues los otros términos, en su conjunto, pueden
llevarse a la forma conocida si se desplaza espectro de energias en la cantidad
—FEy(®5/2®0)? v se sustituye el operador (9,F) por (0,F). Esta sustitucion es
factible ya que F(yp) y F(¢p) difieren inicamente en una constante aditiva.

El operador F'(p) comparte con F(p) la propiedad de periodicidad en el anillo
y el caracter de operador antihermitiano, pues la constante que los diferencia
es puramente imaginaria y, por tanto, antihermitiana. Estas son dos de las tres
propiedades que en el caso sin campo nos permitieron construir formalmente un
par de soluciones pseudoperiodicas y ortogonales punto a punto en el anillo. La
ec. se asemeja, entonces, a la ec. del caso sin campo. Los resultados
generales respecto de la construccién de estas soluciones, expuestos en la §2.4]
pueden utilizarse sin modificaciones para hallar los nuevos espinores. Sin embargo,
no es necesario rehacer todas las operaciones, pues estos nuevos espinores son los
del caso sin campo, pero desfasados por un factor dependiente del flujo magnético;

esto es,

~ iq)—Bgo

Xz () = €07 x1u(9)- (2.49)
El factor de fase introduce un desplazamiento constante, oy = ®5/2®q, en los

exponentes de Floquet de los espinores originales, que se traslada directamente
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2. ANILLO DELGADO

al espectro de energias a través de la condicién de periodicidad en el anillo que
debe satisfacer el nuevo modo acimutal <i>(<p). El hecho de que este desplazamiento
sea constante (o, mas precisamente, que tenga su signo determinado) muestra que,
en presencia de campo, no es equivalente para el electréon recorrer el anillo en un
sentido o en otro. Es por esto que la degeneracién que observamos en la ec.
se rompe en general, pues esta depende no sélo del intercambio de la orientacion
del espin, sino también de la del impulso. Esta ruptura puede deducirse en términos
precisos como sigue. Por un lado, notemos que la amplitud de cada modo <i>(g0) es
una funcién de Mathieu de orden v, por lo que su autoenergia asociada dependera
del médulo de este orden, |v|, y no de su signo. A su vez, la condicién de contorno
(2.23) vincula el orden v con los exponentes i+, de modo que, como antes, cada
espinor x(¢) tiene asociada una funcién de Mathieu distinta. Si separamos la

condicién sobre v en dos, una para cada fi+, podemos escribir

Vit p+ po = my,

(2.50)

Vo — pt po =m-

donde, como antes, m4 son nimeros enteros. De estas relaciones se ve que no es
posible, para cualquier py en general, hallar una relaciéon entre los m4 tal que
vy = —v_. En efecto, notemos que la suma de las ecs. establece que esto
solo es posible si 2p1y es entero, es decir, si el flujo magnético 5 en el interior del

anillo es un multiplo entero del cuanto de flujo ®.
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Capitulo 3

Dinamica en el anillo sin

impurezas y con SOI

3.1. Presentacion

En este capitulo comenzaremos el estudio de la dindmica de un electrén confinado
en un anillo cuantico, delgado y carente de impurezas magnéticas, bajo la accién de
las interacciones de espin-érbita de Rashba y Dresselhaus. Este es el siguiente paso
en direccion al problema mas general de varios electrones sujetos a las interacciones

SO e interactuando con las impurezas magnéticas.

El Hamiltoniano por el que comenzaremos serd el que hemos deducido en
§2.2] Analizaremos primero, en la la dindmica de un electrén bajo la accién
individual de una de las dos interacciones SO. Posteriormente, en la §3.4] relajaremos
la restriccion de anillo cuasi-1D y supondremos que existen transiciones entre el
estado radial de menor energia y el primer excitado. Utilizaremos en este caso el

Hamiltoniano deducido por Shakouri et al. [49]. Compararemos ambos modelos y
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3. DINAMICA EN EL ANILLO SIN IMPUREZAS Y CON SOI

decidiremos sobre la prevalencia de uno sobre otro para nuestro objetivo.

3.2. Dinamica individual de las SOI de Rashba y
Dresselhaus

El Hamiltoniano de un electrén de conduccién, confinado y sujeto a las inter-
acciones de Rashba y Dresselhaus, que mostramos en la ec. 2.4 de la §2.2] puede
llevarse a la siguiente forma que explicita y distingue las contribuciones de ambas

interacciones:

«

() oy —pr0 ) + 5 (o +poo) (3.1)

EO [
H = 2 )
z ¢ A

El primer término en esta expresion es el Hamiltoniano de banda libre, Hj, mientras
que el segundo y el tercero son, respectivamente, los Hamiltonianos de Rashba y

Dresselhaus:
o
Hp =i (p-oy —pyo),
(3.2)

S

Hp = ﬁ(p+a+ +p-o-)
Por tltimo, los operadores oy = (0, % i0y)/2 son los conocidos de subida y bajada
de espin 1/2.
Consideremos ahora el espacio de Hilbert generado por los autoestados de L.:

{|¢) : £ € Z} y observemos que los operadores p; actiian sobre estos estados de

forma similar a como los o4+ actian sobre los autoestados de s.; es decir:
h 1
pell) = (ﬂ + 2) 041 (3.3)

Debido a que el Hamiltoniano de la ec. involucra, como vemos, operadores que

actian de forma simple sobre autoestados de L, y s., es natural tomar el conjunto
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3.2. Dindmica individual de las SOI de Rashba y Dresselhaus

B=A{|l,o): 0 e€Z,oc=+1/2} como base del espacio de Hilbert total del sistema.
La accion individual de Hg y Hp sobre estos estados puede calcularse directamente,
y permite observar mas claramente como ambos vinculan de forma estrecha los

impulsos angulares orbital y de espin del electron:

Hg|l,0) = hwg(l+ o) |l + 20,5),

(3.4)

Hp|t,0) = 20ihwp (o — L) |{ — 20,5)
En esta expresion hemos definido las frecuencias wg = a/ha y wp = [/ha, y
hemos llamado ¢ = —o. De estas expresiones se observa claramente que, de forma
individual, la conversion de OAM en SAM electrénico es exactamente reversible,
y oscilatoria con una frecuencia que depende del acoplamiento (a/a o 5/a) y de
ambos impulsos. Notemos que la accién de Hg p es ciclica, esto es, los estados de
B son autoestados de Hﬁ p- Por tanto, la accién conjunta de Hy + Hp p sobre un
estado |, o) de B solamente da como resultado una combinacién lineal de dicho
estado y de aquél con el que comparte el mismo autovalor de L, + s, en el caso de
Hgr,ode L, — s,, en el caso de Hp.

En otras palabras, cuando solo una de las dos interacciones esta presente, el
Hamiltoniano total en la base B se desacopla en bloques de autovalor constante
de L, + s, o L, — s,. Puesto que las posibles proyecciones del espin del electron
son £1/2; no es dificil ver que cada uno de estos bloques es de dimensién dos y es
generado por el par de estados Bgr = {|(,0), | + 20,5)} en el caso de Rashba, y
Bp ={|¢,0),|¢ —20,5)} en el caso de Dresselhaus. Cuando solamente una de las
dos interacciones esta presente, el Hamiltoniano total es diagonalizable por bloques
y el operador de evoluciéon temporal, restringido a un bloque particular, puede
calcularse exactamente. Para ver esto tltimo, tomemos un bloque particular de

cada caso, digamos Br y Bp, y reescribamos el Hamiltoniano restringido a cada
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3. DINAMICA EN EL ANILLO SIN IMPUREZAS Y CON SOI

uno de ellos en términos de las matrices de Pauli o, , . y del operador identidad,

como sigue:

1
Hy+ Hp = E, [4 I 0)2} + hwn(l + 0)0s — 20Ey((+ 0)ou; (3.5

Ho+ Hp = By E - 0)2] — ohwp(l — 0)oy — Bo(l— 0)on. (3.6

Estos Hamiltonianos restringidos tienen una forma funcional similar a la de los
generadores de rotacion de espin 1/2 [40] |66]. Podemos, entonces, calcular el opera-
dor de evolucién temporal utilizando resultados ya conocidos, si identificamos los
coeficientes que multiplican a las matrices de Pauli en cada caso como componentes

de un «vector» cartesiano:

np = (0 + o) [hwrd — 2053, (3.7)

np = —(( — o) [lwpi + 20 E?] (3.8)

Si tenemos en cuenta la forma funcional del operador de rotacién, e“™%/2" ohserva-
mos que la norma de estos vectores determina la frecuencia de transicion entre los
dos estados de la base, y por tanto la frecuencia de conversion de OAM electrénico
en SAM. Llamaremos a estas frecuencias iQdpp = |[¢ + eg,po|\/wk p +wj, con
€er = —€p = 1y Ey = hwy. Es importante observar, por un lado, que i es
proporcional al impulso angular total, ¢ + o, mientras que €2p lo es a la cantidad
¢ — o, conservada por la interaccion SO de Dresselhaus. Por otro lado, ambas
son invariantes ante la inversion simultanea del espin del electréon y del sentido
de su impulso angular orbital; es decir, ante un cambio (¢,0) — (—¢,—0). Esta
ultima propiedad esta relacionada con la invariancia ante inversiéon temporal del

Hamiltoniano total en cada caso.
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3.2. Dindmica individual de las SOI de Rashba y Dresselhaus

A partir de estas definiciones obtenemos, finalmente:

Ur.p(t,ty) =exp {—i {(ﬁ + ER,DJ)Q + ﬂ wo(t — to)} (3.9)

[COS(QR,D(t - to)) + Z'Q]_%}DIIR,D . ESGH(QR,D(t — to))} .
Un resultado importante que se desprende de estos operadores es que la amplitud
de transicion entre los dos estados del sistema no depende de ¢ ni de o, y por tanto

de la energia del electron de conduccion:

WR,D
2 2
VWrD T Wo

De aqui es posible deducir que el maximo impulso angular intercambiado por un

|<€—|—2637D0',(_7|Q]_%71D11R,D'6|€,0>‘ = (310)

electrén inicialmente en alguno de ellos es hwy /(wh p + wi). Si consideramos
valores realistas para las constantes de acoplamiento, notamos que esta cantidad
es suficiente para observar cambios macroscépicos en la orientacion de espin del
electron. Tomemos, a modo de ejemplo, un QR de GaAs (m* = 0.063m.) y radio
a = 50 nm, con acoplamiento de Rashba de constante a = 10.8 meV nm [49]. La
dindmica de la ocupacién de ambos estados para un electréon inicialmente en uno de
ellos puede verse en la Fig. . Para estos valores, hwy, p/(Wg p +wp) =~ 0.44h. Lo
que favorece este cambio significativo es precisamente el confinamiento del electrén
a esta estructura cuasi-unidimensional, lo que limita efectivamente el impulso en
el plano a su componente k| = k, = L./h. Transicionar entre un nivel y el otro
implica, pues, ganar o perder una unidad de h, y constituye un cambio al que el
espin debe adaptarse debido a la conservaciéon de L, + s, o L, — s..

El intercambio significativo entre ambos impulsos angulares es, por tanto,
factible en estas estructuras, e independiente del tipo de interaccién SO que se halle

presente. Que no prevalezca una interaccion sobre otra es relevante en la bisqueda
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Figura 3.1: Variacién temporal de la probabilidad de ocupacién de los estados en cuatro
bloques distintos, para un electrén inicialmente en un autoestado de Hy y sujeto a las
interacciones de Rashba (columna izquierda) y Dresselhaus (columna derecha). Para este
calculo, consideramos un QR de GaAs y radio efectivo a = 50 nm. Se observa que, para
valores tipicos de a y 3, el OAM convertido a SAM en un ciclo es significativo (=~ h/2) e

independiente de la energia inicial del electrén (en esencia, su OAM inicial, /).

de un método de control coherente de la transferencia de OAM al SAM electrénico
y de éste al SAM de las impurezas en los DMS, pues la interaccion de Rashba es,
en algunos casos y hasta cierto punto, controlable externamente, a diferencia de
la de Dresselhaus, que depende fundamentalmente de la estructura cristalina del
semiconductor y del confinamiento del anillo [16]. Igualmente importante para esta
busqueda es el hecho de que la frecuencia de transiciéon, y no la amplitud, dependa
del OAM del electréon. Esta cantidad se convierte, entonces, en un parametro de

control que puede ajustarse convenientemente, segin el caso. Por ejemplo, en el
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3.2. Dindmica individual de las SOI de Rashba y Dresselhaus

caso de Rashba, valores bajos de |¢| facilitarian el control, por ejemplo, a través
de un campo eléctrico dependiente del tiempo, dado que el factor de frecuencia
(2m)~ 1 /w? + w? puede alcanzar valores del orden de las decenas de GHz y ser,
por tanto, prohibitivamente alto. Valores mas altos de |¢| pueden en cambio ser
utiles para acelerar el intercambio y adelantarse a efectos de relajacion |67, 68| y
decoherencia [694{72] en nanoestructuras.

Hasta aqui hemos discutido las generalidades de la dindmica de un electrom,
sin hacer suposiciones sobre su estado inicial. En lo que sigue, supondremos que
el mismo ha sido previamente excitado a un estado de polarizacién |p| < 1/2 e

impulso orbital inicial A~'(L,) = ¢ + er p(1/2 — p), de la forma:

1 ]
) :\/§+pwaT>+el¢\/§—P|€+2€R,D,¢>- (3.11)

Una discusion detallada sobre las estrategias para preparar estos estados seria, en
el caso general, demasiado extensa para tratarla aqui. El lector interesado puede
consultar la Ref. [73] y otras alli incluidas. No obstante, los estados en los que
estaremos mayormente interesados, que corresponden a |p| = 1/2, pueden obtenerse
experimentalmente mediante el uso de haces de twisted-light [1+3], 5].

En la Fig. variamos la fase relativa e*® y la polarizacién p, a fin de observar
como se modifica la transferencia de impulso angular con el estado inicial. Para
ello, dejamos evolucionar el sistema y calculamos la maxima desviacién de (s,) con
respecto a hp que, como se desprende de la forma de los operadores de evolucion
de la ec. , se alcanza durante un ciclo para algin 0 < ¢ < 27/Qpg p. De este
estudio se desprende, como esperariamos, que la transferencia de OAM a SAM
puede aumentarse hasta alcanzar casi la inversiéon de espin (aproximadamente

0.7h) si se logra preparar el estado del electréon en una combinacién simétrica o
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

a =108 meV nm (f=0) [ =10.8 meV nm (o =0)
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Figura 3.2: Maxima desviacién de la polarizacion del espin del electrén respecto de la
inicial Ap en un ciclo para distintos estados iniciales de la forma dada en la ec. .
Los parametros del anillo son los mismos de la Fig. [3.I] Observamos que las desviaciones
decrecen cuando el estado inicial es proximo a un autoestado del Hamiltoniano total
en cada caso, y se anula en el mismo; mientras que las desviaciones mas largas son del
orden de 0.7 > h/2, y corresponden a las combinaciones simétricas y antisimétricas
de estos autoestados, como esperabamos. Para estos estados, los cambios son atin més

significativos que los hallados en el ejemplo de la Fig. @
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3.3. Dinamica conjunta de las SOI de Rashba y Dresselhaus

antisimétrica de los autoestados [41, 42]. Destacamos aqui que, incluso en estos

casos mas generales, esta transferencia maxima no depende del valor de |¢] (ver

Apéndice .

3.3. Dinamica conjunta de las SOI de Rashba y
Dresselhaus

En la seccion anterior estudiamos la dinamica del electréon sujeto a sélo una
de las dos interacciones SO. Ahora supondremos que ambas estdn presentes, y no

haremos suposiciones sobre la intensidad de los respectivos acoplamientos.

A: ---<a—/a>(6—20,6)%(6,0)<O[—/(>I(£—|—20,6)<B—/a>...
B w0 Y s P

Figura 3.3: Diagrama que esquematiza la forma en que las interacciones SOI de Rashba
y Dresselhaus acoplan los estados del espacio de Hilbert total o, equivalentemente, los
subsistemas de dos niveles de autovalor £+ ¢ o ¢ — o constante. Estas cadenas de estados
pueden generarse manualmente operando alternadamente con Hg y Hp sobre un estado
cualquiera del espacio de Hilbert. Notemos que ambas cadenas permanecen disjuntas adin
durante la evolucién temporal debido a la simetria del Hamiltoniano total respecto de

operaciones del grupo doble Cos.

La separaciéon del Hamiltoniano total en una colecciéon de subsistemas de
dos niveles, que observamos en la secciéon anterior, deja de valer cuando ambas
interacciones actiian simultdneamente. Si partimos de esta separacion, digamos,

para el caso de Rashba, no es dificil ver que la inclusién de la SOI de Dresselhaus
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3. DINAMICA EN EL ANILLO SIN IMPUREZAS Y CON SOI

conectara entre si cualquier par de subsistemas adyacentes, es decir, cualquier par
de subsistemas cuyo impulso angular total, £ + o, difiera en una unidad de h. Por
supuesto, lo mismo vale si se parte del caso de Dresselhaus y luego se anade la SOI
de Rashba. Presentamos un esquema de esta vinculacién entre subsistemas en la
Fig. 3.3

Este esquema revela una propiedad interesante del Hamiltoniano, y es que
un electrén que ocupa inicialmente un estado en una cadena puede, en principio,
visitar cualquier otro estado de la misma cadena, pero nunca transicionar hacia
estados de la cadena complementaria. En otras palabras, en la misma base B de
la §3.2] el Hamiltoniano se separa ahora en dos bloques infinitos pero inconexos.
La razon detras de esta separacion es la pervivencia de una simetria de rotacién
en 7 alrededor del eje del anillo, que deja invariante tanto Hy como Hr y Hp. En

—ilam/h se verifica que RHRT = H. Cuando esta rotacién

otras palabras, si R =¢
opera sobre un autoestado de .J, (como son todos los estados en B) de autovalor j,,
modifica la fase global del mismo en +i, dependiendo de si j, 4+ 1/2 es par o impar,
respectivamente. La rotacion R que se asocia con esta simetria es un elemento
del grupo doble y ciclico C; [66], y las fases +i globales son las representaciones
unidimensionales I's y T'y [74], 75]. Los estados de las cadenas A y B en la Fig. [3.3
pertenecen, asi, a distintas representaciones irreducibles del grupo de simetria del

Hamiltoniano, y, por tanto, los elementos de matriz de este tltimo que conectan
tales estados son nulos [66].

A pesar de que todos los estados en una misma cadena estan conectados entre si,
la probabilidad que un electrén tiene de visitar un estado energéticamente alejado
de su estado inicial decrece répidamente. Esto se observa en la Fig. [3.4] en la que

hemos tomado valores experimentalmente factibles para los parametros del sistema
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o= 25 = 5.4 meV nm =10.8 meV nm
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Figura 3.4: Probabilidad de ocupacién de los estados adyacentes al estado electrénico
inicial (arriba: |1,1); abajo: |5,])), para distintas constantes de acoplamiento e impulso
angular orbital del electréon. Observemos que, incluso para electrones de alta energia
(esto es, inicialmente en |5,])) y acoplamientos SOI fuertes (columna derecha), esta
probabilidad decrece notablemente a partir del tercer estado adyacente. Los pardmetros

del anillo son los ya mencionados en la Fig.

vy hemos graficado estas probabilidades para los primeros estados adyacentes al
estado inicial del electrén, que se supone polarizado en espin y de impulso angular
definido. Recordemos que estos estados pueden generarse a través de haces de
twisted-light.

La funcién onda inicial del electréon no se «expande» maés alla de los primeros
estados adyacentes al inicial. Podemos comprender esto si observamos que los
elementos de matriz del Hamiltoniano, que conectan estos estados, son propor-
cionales pero sistematicamente menores a la diferencia de energia entre ellos. La

conservacion de la energia impide que se ocupen los estados de energia mucho
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3. DINAMICA EN EL ANILLO SIN IMPUREZAS Y CON SOI

mayor o mucho menor de la inicial.

Podemos estimar cuanto se «expande» la funcién de onda inicial a partir del
término dominante (primer término no nulo) de la probabilidad de transicion entre
dos estados de la misma cadena. Para ello, supongamos un electréon inicialmente en
el estado |¢,0) y tomemos un estado de la misma cadena ‘E + 2ko, (—1)k0>, con
k € Zy k # 0. Para simplificar la discusion, supondremos, ademas, que la transicion
no invierte el sentido del OAM, es decir, que ¢(¢ 4+ 2ko) > 0. Los estados en B
que difieren en el signo del OAM tienen energias similares (o son degenerados en
ausencia de SOI) y superiores a la del estado (perturbado) de OAM nulo. Partiendo

de estas hipotesis, obtenemos:

| (¢4 2ka, (—=1)Fe|U(,0)

0,0)| ~ 2(aB)" o + A0y + B 1] (3.12)

En esta expresion, U(t,0) es el operador de evolucién temporal, k = 2n + m, con
n€Z, me{-1,0,1}, y nm > 0; y las constantes a y 5 son aquellas definidas
en la ec. . Si consideramos nuevamente valores realistas para los parametros
del anillo, a = 50 nm y m* = 0.063m,, y para las constantes de acoplamiento,
a = =10.8 meV nm, (a/a = /a = 0.216 meV), obtenemos de esta expresion
que sdlo los |k| < 3 tienen una probabilidad significativa de ser ocupados. Una
consecuencia practica de este resultado es que el cambio en el impulso angular de
un electron estd limitado, pues: |A(J,)| = 2h|n — 0., —1]. Una consecuencia teérica
es que, en estos casos, el Hamiltoniano (infinito) correspondiente a la cadena del
estado |¢, o) puede ser aproximado por un Hamiltoniano de dimensién finita que
considere sdlo los primeros |k| estados adyacentes al inicial.

Para estudiar mas en detalle estos resultados, consideramos los mismos estados

iniciales de la Fig.[3.4] |1,1) v |5, ), y graficamos en las Figs. [3.5p-b la probabilidad
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3.3. Dinamica conjunta de las SOI de Rashba y Dresselhaus

i
1.0 a =38 =>54meV nm
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1.04 y a=p£=10.8 meV nm
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(a) Estado inicial |1,7). (b) Estado inicial |5, ).

Figura 3.5: Probabilidad de ocupacion del estado inicial mencionado y sus dos primeros
vecinos, para distintas intensidades del acoplamiento de Rashba. Observemos que los
segundos estados llegan a probabilidades de alrededor del 30 %, incluso para acoplamientos
muy superiores a los hallados experimentalmente. Los parametros del anillo son los ya

mencionados en la Fig.

de ocupacién para los primeros dos estados adyacentes a cada uno de ellos. Lo
hacemos para tres valores distintos de a: 5/2, f y 24, con 8 = 10.8 meV nm en
todos los casos. Como vemos, el incremento del OAM inicial naturalmente influye
en la frecuencia con que se pueblan y despueblan estos estados, pero no influye
significativamente en la maxima poblaciéon que alcanzan, en el rango estudiado, los
segundos estados adyacentes. Para los parametros elegidos, las poblaciones de los
cinco estados (cuatro adyacentes y el inicial) alcanzan, para ambos OAM iniciales,

valores similares en la ventana temporal elegida. Esto ultimo se ve mas claramente
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3. DINAMICA EN EL ANILLO SIN IMPUREZAS Y CON SOI

en la Fig.[3.4] en la que pueden observarse la dindmica de las poblaciones a tiempos
relativamente mayores. Recordemos que la diferencia de energia entre ambos estados
iniciales es notoria: el estado |1,1) tiene una energia del orden de Ejy, mientras que
ésta es del orden de 25E, para el estado |5,]). A tiempos menores, la transferencia
de poblacién del estado inicial se da mayormente a los primeros vecinos, |0,]) y
12,1), v |4,1) v |6,71), respectivamente. Pero, como vemos, en cualquier caso la
dindmica queda mayormente confinada a estos pocos estados, incluso en el caso

extremo en que o = 2.

3.4. Inclusion del primer nivel radial excitado

Es posible relajar la hipdtesis de anillo cuasi-unidimensional y permitir que el
electron transicione entre el estado radial de menor energia y el primero excitado.
Utilizaremos a este fin el modelo de Shakouri et al. [49]. Hemos elegido este modelo
en especial porque, por una parte, el mismo se reduce al de Meijer et al. en el limite
de anillo delgado, y, por otra, porque de ¢l se derivan los mismos Hamiltonianos de
Rashba y Dresselhaus obtenidos en la ec. .

Los autores modelan la estructura anular a partir de un potencial de confina-
miento armonico e isétropo (parabdlico) de intensidad Aw en la direccion radial. Este
potencial determina un ancho efectivo para el anillo, de magnitud d = ay/2E/hw.
Es importante destacar aqui que este modelo es tipicamente utilizado en la literatura
[76, [77].

Los estados de un electron estan ahora caracterizados por tres niimeros cuanticos
n,{y o, siendon = 0,1 el correspondiente al nivel radial que el electrén ocupa. Los

elementos de matriz del Hamiltoniano que conectan estados dentro de un mismo
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I 11
a/a a
(L£+2m5)e——1——ﬁ(L&a) (L€—2m5)ﬁ—£l——ﬁ(L&U)
= =] 3 =]
~ ~ ~ ~
3 3 Q. Nay
ala B/a

0,0,0) —— (0,6 +20,5) (0,4,0) ——— (0,¢ — 25,5)

Figura 3.6: Esquema de un sistema de cuatro niveles de igual autovalor de L, + s, (I)
y L, — s, (II), cuando sélo la interaccién de Rashba o de Dresselhaus estdn presentes,
respectivamente. Los elementos de matriz del Hamiltoniano que involucran un cambio en
el modo radial dependen del ancho efectivo del anillo d, pero no de £ o o, a diferencia

de los elementos de matriz que no cambian el modo radial, que son exactamente los
deducidos en las ecs. (3.4).

nivel radial son, como mencionamos, exactamente los mismos que en el caso en
el que se considera un tinico nivel radial, es decir, los deducidos en las ecs. .
Los elementos que generan las transiciones entre distintos niveles radiales son, en
cambio, proporcionales a «/d y (/d e independientes tanto de ¢ como de o. De
aqui se desprende que los Hamiltonianos de Rashba y Dresselhaus en este modelo
conservan, como antes, las cantidades L, + s, y L, — s., respectivamente; incluso
en transiciones entre modos radiales.

Los mismos argumentos utilizados en la pueden utilizarse en este caso para
mostrar que, en ausencia de una de las dos interacciones, el Hamiltoniano total se
separa en bloques de cuatro estados que comparten el mismo autovalor de L, + s,
en el caso de Rashba, o de L, — s, en el de Dresselhaus. La estructura general de
estos bloques queda resumida en el esquema de la Fig. [3.6]

El Hamiltoniano total es también separable en dos bloques infinitos cuando

ambas interacciones estan presentes, al igual que en el modelo de un inico modo
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a a
. (1,0 —20,0) 6/ (1,¢,0) (1,0 +20,0) «— B/ .
(0,0 —20,0) (0,0,0) «—— (0, + 20,0) «—— .
ala

Figura 3.7: Esquema de la forma en que las interacciones de Rashba y Dresselhaus
conectan los estados pertenecientes a uno de los, en principio, dos bloques infinitos en
los que se separa el Hamiltoniano total. Cada estado en este bloque adquiere la misma
fase global frente a la rotacién R = e~""/=/" El esquema corresponde a la extensién
de la cadena A en la Fig. Para anillos suficientemente delgados d/a < 1 como el
considerado en este caso (a partir de Shakouri et al. [49)]), las transiciones dentro de un

mismo modo radial son en general mucho mas rapidas que aquellas entre modos.

radial. Los estados del espacio de Hilbert que conforman estos dos bloques pueden

iwJ=/h continta

hallarse, tal como para el modelo anterior, observando que R = e~
siendo una simetria del sistema, pues el potencial de confinamiento supuesto tiene
simetria cilindrica. Presentamos esquematicamente la estructura del bloque que
contiene los estados (0,¢,0) y (1,¢,0) en la Fig. Esta estructura es la extension

de la cadena A en la Fig. [3.3] Por claridad, en la Fig. omitimos el bloque

complementario, que contiene los estados (0,4,5) y (1,¢,7).

A fin de estudiar la influencia del primer modo radial excitado en la dinamica
del sistema, comparamos los valores de expectacién (L.) y (s,) en ambos modelos
para seis estados iniciales distintos, que difieren entre si inicamente por el OAM
inicial. El electrén es, por tanto, inicialmente excitado en el modo radial de menor
energia, y posee distintos valores de OAM (0 < ¢ < 5) pero igual polarizacién

de espin. Los resultados para un QR de GaAs (m* = 0.063m.), a = 50 nm y
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3.4. Inclusion del primer nivel radial excitado

(N1)/{No)

1 0.5 0.03 1
0.02 1

01 0.0
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0.02 1
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07 —0.51 0.00 1
5] , 0.5 0.03 1
2 | / N 0.0 A 0.021
AN ' /~ N 0.01 1
11 —0.51 0.00 1
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31 ~ | 0.0 1
J \m\ﬁw 0.011
21 —0.51 0.001
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Figura 3.8: Evolucién temporal de los valores de expectacién (L,) y (s.) para un

electrén inicialmente en los estados (0, ¢,71), con ¢ creciente desde ¢ = 0 (primera fila)

hasta ¢ = 5 (tltima fila). La curva azul corresponde al modelo de un tinico modo radial,

mientras que la naranja corresponde al modelo de dos modos radiales. La tercera columna

muestra la ocupacién del primer modo radial excitado, relativa a la ocupacion del modo

radial de menor energia. Los pardmetros del anillo son los ya mencionados en la Fig. [3.1]

vy a =20 =21.6 meV nm.
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3. DINAMICA EN EL ANILLO SIN IMPUREZAS Y CON SOI

a = 20 = 21.6 meV nm se muestran en la Fig. |3.8, Para un anillo de estas
caracteristicas, d ~ a/8. Tal y como hicimos en el anélisis de la dindmica en el
modelo anterior, elegimos estados iniciales de OAM y SAM definidos porque pueden

generarse experimentalmente y simplifican enormemente el anélisis.

Los valores de expectacién del OAM y SAM del electrén (primera y segunda
columna de la Fig. desde la izquierda) muestran que las diferencias entre ambos
modelos son mas relevantes a bajas energias (bajo £), y se hacen poco significativas
a medida que la energia inicial del electrén aumenta. Observemos que, en todos los
casos, la ocupacion relativa del primer modo radial excitado es pequena y no supera
el 3% en todo el rango temporal, incluso para electrones de baja energia. Esto es
esperable, pues el primer modo excitado es de muy alta energia (al menos hw) y la
interaccién SOI no es lo suficientemente fuerte para permitir al electrén ocupar
este modo, es decir, fiw > a/d > (5/d. Notemos, asimismo, que el comportamiento
en el tiempo de la probabilidad de ocupacién del modo de mayor energia cambia
notoriamente con /. Este cambio parecer darse mayormente en la modulacién, y no
tanto en la frecuencia dominante. Nuevamente, esto es esperable, y podemos intuirlo
si miramos las diferencias de energia entre los niveles involucrados. Para los valores
de ¢ considerados, es razonable que la frecuencia dominante sea practicamente
constante y del orden de w, mientras que la modulacién dependa del £ inicial. Para
valores bajos de ¢, esta modulacién es muy suave, y se hace mas pronunciada a
medida que ¢ crece. Para valores altos de ¢, la modulaciéon parece «comprimir»
mas las variaciones de amplitud y reducir los intervalos temporales en los que estas
son mas grandes. Vemos que aumentar ¢ redunda en una menor influencia de las
transiciones entre modos radiales en los valores de expectacion (L,) y (s,). En

otras palabras, en términos relativos, las correcciones introducidas por la presencia
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3.4. Inclusion del primer nivel radial excitado

del modo excitado «pesan» menos para altos ¢, y las transiciones dentro de un
mismo modo radial parecen dominar la dindmica. Si fijamos hw y comparamos los
elementos de matriz que corresponden a transiciones entre modos, con los elementos
que corresponden a las transiciones dentro de un mismo modo, podemos esperar
que la dominancia de estas dltimas se mantenga para valores cada vez mas altos
de ¢. En cualquier caso, es notable que ya para ¢ = 3 las curvas obtenidas con uno
y otro modelo se aproximen tanto. Es importante destacar aqui que estos analisis
deben hacerse a Aw fijo. Tomar el limite de anillo cuasi-unidimensional debe hacerse
con cuidado, ya que los elementos de matriz del Hamiltoniano proporcionales a 1/d
divergen al suponer Ej/hw — 0. La forma correcta de tomar este limite es descrita
y discutida por Shakouri et al. en la Ref. [49)].

Destacamos finalmente que observariamos resultados similares si el electréon
comenzara en el primer nivel radial excitado. Por conservacion de la energia, el
electréon en este caso no podria ceder una cantidad de energia del orden de hw v,
por tanto, no podria transicionar al estado radial de menor energia.

De estos resultados concluimos que la inclusion del primer modo radial excitado
proporciona una descripcion mas precisa de la dinamica de electrones de muy baja
energia. Concluimos que es més precisa, y no simplemente distinta, porque ambos
modelos estan sustentados sobre las mismas hipétesis fundamentales (por ejemplo,
que los modos radiales y acimutales son separables). Sin embargo, observamos que
esta mejora se obtiene a través de introducir mayor complejidad en el Hamilto-
niano total, sin proporcionar una diferencia del todo significativa en los casos que
pretendemos estudiar. Por tanto, consideramos que el modelo de un tinico modo es,

a primer orden, una buena aproximacion para continuar con nuestro estudio.
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Capitulo 4

Interaccion entre electrones e

impurezas en el anillo sin SOI

4.1. Presentacion

Nuestro objetivo ahora es comenzar el estudio de la dindmica entre electrones
e impurezas magnéticas en el anillo. Modelaremos la interaccion a través de un
Hamiltoniano de contacto de tipo Kondo [38], como es usual en la literatura.
Anadiremos esta interacciéon al Hamiltoniano de la banda libre, que sera la parte
cinética del deducido en la ec. en el Cap. , en vista de los resultados obtenidos
en la Esta eleccién nos permitira, por una parte, simplificar el problema tanto
como sea posible, teniendo la confianza de que considerar un tinico modo radial
es una buena aproximacion; y, por otra, reducir el Hamiltoniano de Kondo a una
aproximacion cuasi-unidimensional aplicando las hipétesis de Meijer et al., ya
descritas en la §2.2] Finalmente, puesto que buscamos comprender esta dindmica

en detalle, supondremos en todo nuestro analisis que ninguna de las interacciones
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4. INTERACCION ENTRE ELECTRONES E IMPUREZAS EN EL ANILLO SIN SOI

SO estan presentes.

La dinamica de un sistema de muchos cuerpos como este queda totalmente deter-
minada por las ecuaciones de movimiento de Heisenberg para las matrices densidad
de los electrones y de las impurezas. Sin embargo, como se verd, la complejidad
de las ecuaciones resultantes es tal que las mismas forman un sistema acoplado
e infinito. No es posible, por tanto, continuar el tratamiento del problema en el
picture de Heisenberg sin antes truncar este sistema. Para hacer esto, seguiremos el
esquema de Thurn y Axt [78], desarrollado para DMS en el bulk. Este esquema nos
permite obtener un sistema de ecuaciones finito, cerrado y tratable numéricamente.
La propuesta de los autores consiste en observar que las matrices densidad pueden
expandirse exactamente en dos partes: una que proviene de aproximar las matrices
densidad de varias particulas por sus formas factorizadas («campo medio»); y otras
que provienen de las correlaciones inherentes a la interaccion entre particulas. Estas
ultimas son irreducibles a formas factorizadas, y son las que generan la jerarquia.
Ignorando juiciosa y apropiadamente ciertas correlaciones, es posible obtener una

aproximacion tratable al sistema de ecuaciones original.

Comenzaremos en la §4.2) expresando el Hamiltoniano unidimensional efectivo
que contiene la interaccion entre los electrones y las impurezas en términos de
operadores de segunda cuantizacion. Posteriormente, en la derivaremos las
ecuaciones de Heisenberg y las expresaremos de modo que queden evidenciadas las
correlaciones que luego ignoraremos. Habiendo obtenido el conjunto aproximado,
estudiaremos, en la §4.4] sistemas sencillos, compuestos por un electrén y unas pocas
impurezas inicialmente en estados puros, cuyas dinamicas puedan ser calculadas
exactamente a través de la integracion numérica de la ecuacién de Schrodinger

dependiente del tiempo para la funcién de onda total. Compararemos estas solucio-
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4.2. Modelo efectivo en una dimensién

nes con las obtenidas utilizando el sistema truncado. Este analisis nos servira para
estimar la fiabilidad del esquema de truncamiento y su aplicabilidad a este sistema
en rangos temporales que son del orden de los hallados en la interaccion entre

electrones (particularmente los excitados 6pticamente) y el sistema de impurezas

en DMS [79:81].

4.2. Modelo efectivo en una dimension

La interaccion de intercambio entre electrones de conduccion y el espin de los

electrones en la capa d de los manganesos es descrita por el Hamiltoniano

Nain Ne

Hsd:JZZSI-sié(rI—ri). (4.1)

I=1 i=1
En esta expresion J es la constante volumétrica de acoplamiento, que depende
mayormente del material y no de la cantidad de impurezas en él [12]; Ny, el nimero
de impurezas en el sistema, N, el nimero de electrones, y S; el espin total de la
impureza I, ubicada en rj, que interacttia con el espin del electréon ¢, cuya posicién
viene dada por r;, s6lo cuando entra en contacto con él, como muestra la delta de
Dirac §(r; — r;). Notemos que las impurezas en este modelo son distinguibles.

En la aproximacion de anillo delgado, el confinamiento de los electrones reduce
los grados de libertad esencialmente al movimiento a lo largo del anillo. Si seguimos
el procedimiento expuesto en la y tomamos el valor de expectacion de Hy sobre
los modos axial (paralelos al eje del anillo) y radial de menor energia, obtenemos el

siguiente Hamiltoniano efectivo:

<Hsd Z - 8;0(p1 — @i). (4.2)

<\%
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4. INTERACCION ENTRE ELECTRONES E IMPUREZAS EN EL ANILLO SIN SOI

En esta expresion, (-),., significa tomar el valor de expectacion del operador entre
corchetes sobre los estados radiales y axiales de menor energia. El efecto de confina-
miento en las direcciones radial y axial queda, entonces, subsumido en la constante
V', que es el volumen del sistema. Al conjunto de constantes {¢;} que determinan
las posiciones (la distribucién) de las impurezas lo llamaremos realizacion de Hgy.
Asimismo, al hacer la aproximacion de anillo delgado, suponemos que cada impure-
za se halla aproximadamente centrada en las direcciones transversales. Podriamos
introducir un factor escalar por cada impureza, que dé cuenta de variaciones en
esta posicion, dado que la ubicacién de las impurezas es dificil de determinar
durante el proceso de fabricacion. Esto introduce una complejidad que no deberia
afectar notoriamente la dinamica en un anillo cuasi-unidimensional, por lo que
supondremos que estas pequenas desviaciones transversales no son significativas.

El Hamiltoniano efectivo total resulta, entonces, de sumar (Hgq),, al Hamilto-
niano efectivo de la banda libre, que consiste en la energia cinética de los electrones
en la direccion longitudinal; esto es:

Ne /2
=0 2m* TZ

A fin de simplificar la notacién, en lo que sigue llamaremos simplemente H,; a
<Hsd>7'z-

Introducimos ahora, siguiendo a Thurn y Axt [78], las matrices densidad de las
impurezas a través de la igualdad:

Sr=>_(I,n|S;|I,n') P.,. (4.4)

nn’

Los estados |I,n), con n € {—5/2,—-3/2,...,3/2,5/2}, son autoestados del opera-

dor S, de espin 5/2, es decir, del operador S, de la impureza I. Esta definicién
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4.2. Modelo efectivo en una dimensién

de las P! permite subsumir en ellas toda dependencia temporal en el picture de
Heisenberg, y considerar, por tanto, los elementos de matriz (I, n|S;|I,n’) como
constantes e independientes de I para todo tiempo. El valor de expectacién de Sy
sobre cualquier estado inicial arbitrario queda, asi, dado por: (S;)(t) = tr {SPI (t)},

con S el operador vector de espin 5/2.

Las matrices P! son todas hermitianas y satisfacen las relaciones de conmutacion
! . 7 . . .
[P1, PI'] = 0si I # I, pues en este caso cada una acttia sobre una impureza distinta,
I I 1 _ pI _ pI : :
Y [Piing Prsng = PrinyOnans — PrynyOning- Estas propiedades pueden verificarse
manualmente a partir de la definicién de las P7, esto es, P!, = |I,nXI,n'|. Por ser

matrices densidad, las P!(t) deben ser asimismo semidefinidas positivas y satisfacer

la condicién tr PZ(t) = 1 para todo tiempo.

La expresion del Hamiltoniano efectivo de la ec. en segunda cuantizacion es:

J
H = EO Z mQC;JCKU + V Z Snn’ ° SUU’pég’C;’U’ceU‘Pr{n” (45)
Lo EIT?LI’
ol'o

2 como en la ec. (2.7), c}a es el operador que

En esta expresion Fy = h%/2m*a
crea un electrén en el estado |¢, o), phy = e =¥)¢1 son fases que dan cuenta de la
transiciéon del electrén entre estados de distinto OAM al interactuar con la impureza
I; ¥y Suw ¥ Seor son los elementos de matriz de los operadores S y s, de espin 5/2 y
1/2, respectivamente. Los elementos S, no refieren a ninguna impureza en especial,

sino que son comunes a todas ellas. La distincién entre impurezas queda subsumida

en el indice I de las fases pf, y los operadores de dos particulas c;,a,c@gpén,.
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4. INTERACCION ENTRE ELECTRONES E IMPUREZAS EN EL ANILLO SIN SOI

4.3. Dinamica aproximada de un tnico electréon

y pocas impurezas

Consideremos un unico electréon de conduccion interactuando con las impurezas,
sobre cuya cantidad no haremos suposiciones por el momento, aunque recordamos
que su numero esta acotado por la hipotesis de dilucién. Las ecuaciones de Heisen-
berg para las matrices densidad de las impurezas, (P!), y del electrén, <CL¢71 Clroa)s

tomando el valor de expectaciéon sobre un estado inicial arbitrario, son:

L0
Zhat ’anLQ - ZpZK/SUU ‘ TL27“L<CZJC€' /Pn1n>

Y (4.6)
Snn1 <C€O'C€l /Pnn2>)

0
Zh@ <Cz10'10£2‘72> Eo(gz e )(C;10'10£20'2>

+ = Z Snn’ : (Pégl Sooq <CEUC[2(;2 P?fn’) (47)

Inn
I t I
_pEQZSUQU <C€10'1 CfUPnn’)) °

Observemos que la dinamica de estas matrices depende de ellas mismas y de la
matriz densidad del operador de dos particulas <cz, o PL ). La jerarquia comienza
a desarrollarse a partir de aqui, y, como veremos, la ecuaciéon para este ultima
matriz dependera de operadores de tres particulas: unos que vinculan un electron
con dos impurezas, y otros que vinculan dos electrones con una impureza. Puesto
que, por hipotesis, hemos supuesto que solo hay un electrén presente en el sistema,
estos ultimos términos no contribuiran a la jerarquia, a diferencia de los primeros,

que deberemos aproximar para obtener un conjunto de ecuaciones cerrado. La
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s . . + I . .
dindmica de la matriz (c) ,, 0, Py, ,,) Viene entonces dada por:

0
Zhat <Cz10165202p > E0(£2 g%)<czlalcz20'2pl >

ning nin2

+ Z ( ngn SU20p£€2 <CE101050P,{1,1> (48)

nﬁa

T T .
- Snm *Soo1 Peey <CEJC€202 nn2>) + Q )

El término Q' condensa las contribuciones de los operadores de tres particulas, y

resulta:

< Z Snn ' SGQUpMQ<C€101650PT{1712PT{71>
Vi (4.9)

SUUlng <C€JC€202P7£1712P1/ >) :
Notemos que este término es no nulo sélo cuando existe mas de una impureza en el
sistema. El indice I en el término Q' refiere, como en todas las demds matrices en
que aparece, a una impureza determinada del sistema. La restriccién I # I’ en la
sumatoria del miembro derecho indica que Q! contiene todas las contribuciones a
la dindmica de <c£ 01 Cts0s Pl ) que provienen de la presencia de otras impurezas.

Los operadores de la forma c[mc@gPI PI', en efecto, modifican como mucho el

nins* nn’
estado del electron y de dos impurezas distintas. Esta interaccién indirecta entre
impurezas es mediada por el electron y genera la jerarquia infinita y acoplada, aun
cuando no haya mas que un electréon de conduccion. Resulta necesario, por tanto,
aproximarla para poder continuar.
Hacemos esta aproximacion en dos pasos. Primero, escribimos las matrices
densidad de tres particulas en Q' como suma de dos tipos de términos: los de tipo
«campo medio», que provienen de factorizar el valor de expectacion <c}1(71 Ctsos Pl )

en productos de valores de expectacién tomados sobre operadores de una y dos

particulas; y los de tipo «correlaciony, que son irreducibles a términos totalmente
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4. INTERACCION ENTRE ELECTRONES E IMPUREZAS EN EL ANILLO SIN SOI

factorizados. Al hacer esta expansién, seguimos la propuesta de Thurn y Axt de
utilizar la teoria de Kubo [82] para escribir el valor de expectacion de productos de

variables estocasticas en general. Asi, obtenemos:

<CZlUICZ202PIP]/> :<Pl><0;10166202pl/> + <PI/><CE10'10£20'2P1>
+ (C;1m%m>5<PIPI/> - < E1o1cf202><P]><Pll> (4'10)

+ 5<cz10104202P1PI/>;

Por claridad, omitimos en esta expresién los subindices de las matrices P!. El segun-
do paso consiste en observar que los términos irreducibles (PTPT') y §(c}. , cty0y PTPT')
pueden ignorarse. En efecto, el primero de estos, definido como §{P’ PI/> =
(PTPT"y — (PT\(P!") cuando I # I', proviene de la interaccién directa entre im-
purezas. En un sistema diluido y en ausencia de clusters, es esperable que este
término no sea significativo, debido a la gran distancia espacial que existe entre las
impurezas. Un argumento similar sirve para suponer que, a priori, el segundo de
estos términos, d (c}la Cts0y PT P! "), tampoco seré relevante frente a los de «campo
medio». En el apéndice [C| mostramos que, para truncar la jerarquia, alcanza con
despreciar este tiltimo término, sin que sea necesario despreciar también § (P! P! /).
El conjunto de ecuaciones de Heisenberg obtenido siguiendo este procedimiento
queda, entonces, cerrado al nivel de operadores de tres particulas, e incluye las
matrices densidad de las impurezas, (P’), la electrénica, <c}102c@202>, la y de inter-
accion (CLUICKZ,,QPI ). En lo que sigue, estudiaremos la precision del esquema de
truncamiento para reproducir la dindmica en sistemas de pocas impurezas cuyos
estados iniciales factorizables en productos de un estado electronico y Ny, estados
de impureza individuales. Estos casos simples nos permitiran estudiar la viabili-

dad del esquema de truncamiento, pues para ellos es posible resolver la ecuacién
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de Schrodinger dependiente del tiempo para el sistema total, sin recurrir a un
tratamiento en términos de matrices densidad.

Supondremos un QR delgado de Zn, Mn, Te en el limite de alta dilucién (z < 1),
Nvn/V =~ 1072 nm™3, con Ny, = 2,3 y V & 777 nm?®. Para calcular el volumen
del anillo supondremos una altura efectiva de 1.5 nm [77], un radio efectivo de
a = 14 nm [76], y un ancho efectivo de aproximadamente 8.4 nm. Este ltimo
pardmetro lo estimamos suponiendo, como es habitual en la literatura [49, 77, 83],
un potencial de confinamiento radial y parabdlico. En el limite de alta dilucion, la
constante de intercambio .J para el (Zn, Mn)Te es J = 11 meV nm?, e independiente
del niimero de impurezas [12], como mencionamos anteriormente. Obtenemos, asf,
el acoplamiento efectivo J/V ~ 0.0142 meV. Supondremos, ademads, que la masa
efectiva de la banda de conduccién para el (Zn, Mn)Te es aproximadamente aquella
del ZnTe en el limite de alta dilucién, por lo que tomaremos m* = 0.2m,. Esta
masa efectiva da una escala de energia Ey =~ 0.972 meV, que es mucho mayor que
la del acoplamiento de intercambio J/V. Esta relacién es importante puesto que,
siendo Ey > J/V, esperamos que el electrén ocupe mayormente el modo radial
de mas baja energia, y valga por tanto la aproximacién fundamental de la que
partimos, aunque el ancho efectivo del anillo sea aproximadamente la mitad del
radio efectivo, y no mucho menor a este.

Integraremos el sistema de ecuaciones de Heisenberg truncado y la ecuaciéon
de Schrodinger exacta suponiendo una base suficientemente amplia de estados
electronicos que abarca energias hasta 25F,. Supondremos asimismo, a menos
que indiquemos lo contrario, que el sistema comienza en un estado de la forma
[0,0) |Mny) ... |Mny,, ), donde |¢,0) es un autoestado de electrén de OAM y SAM

definidos; y |[Mny) es el estado inicial de la impureza I. Para estados de esta forma,

73



4. INTERACCION ENTRE ELECTRONES E IMPUREZAS EN EL ANILLO SIN SOI

es posible ver que, inicialmente, las matrices densidad de dos y tres particulas,
(PTPT) y (¢}, Ct0, PTPT"), son iguales as sus formas factorizadas (esto es, a sus
contribuciones de «campo medio»), y sus partes de correlacién son nulas.

Las condiciones sobre el electréon, como se ha dicho anteriormente, pueden
generarse en la practica por excitacién éptica a través del uso de haces de twisted-
light 2}, 13, 5, |84]. Las condiciones sobre las impurezas pueden, en cambio, ser
mas dificiles de reproducir. A fin de reducir juiciosamente el niimero de grados
de libertad en estos estados, supondremos que las impurezas estan inicialmente
magnetizadas de forma que el espin de cada una se halla orientado sobre el plano
xz y forma un angulo 0 < g < 7 con el eje del anillo. Esto es, supondremos, a

menos que se indique lo contrario, que:
IMng) = d®/?(B)]S.;5/2) ; (4.11)

donde d©®/?)(3) es la matriz d de Wigner de espin 5/2 [66], y |.S.; 5/2) es el autoestado
del operador S, de espin 5/2 de autovalor 5/2. Notemos que el Hamiltoniano efectivo
de la ec. es un operador escalar respecto de rotaciones sobre el espin total,
por lo que obtendriamos la misma dindmica si, en lugar de elegir xz, eligiésemos
cualquier otro plano que contuviera al eje del anillo. Es posible deducir que el
truncamiento de la jerarquia no rompe esta simetria.

Finalmente, dado que trabajaremos con una cantidad pequena de impurezas,
supondremos que las mismas estan distribuidas en el anillo en los vértices de
un poligono regular de Ny, lados cuando Ny, > 2, o que se ubican en posicion
diametralmente opuesta cuando Ny, = 2. Si bien esta configuracion es altamente
simétrica y dificil de obtener en la practica, pues es imposible predecir la posicion

de las impurezas durante el proceso de fabricaciéon de la muestra, es, sin embargo,
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util para garantizar la condicion de alta dilucion, ya que la maxima separacion de
las impurezas en un anillo cuasi-unidimensional se alcanza precisamente con esta

distribucién.

4.4. Estudio numérico del truncamiento

Supongamos que las impurezas estan inicialmente magnetizadas sobre el eje x
(8 =m/2) y que el electrén se encuentra en el estado |1,7). En estas condiciones,
la proyeccion paralela al eje del anillo de la magnetizaciéon de una de las Ny,
impurezas evoluciona en el tiempo como muestra la Fig. [f.Th. Notemos que no es
necesario especificar el indice de la impureza elegida, ya que todas evolucionan
acompasadamente debido a la alta simetria de su distribucién espacial y de su
estado inicial (ver apéndice . En la figura, la linea sélida representa la dindmica
de referencia (la solucién exacta), mientras que las lineas de guiones (azul) y guiones
y puntos (verde) muestran, respectivamente, la dindmica aproximada tanto si se
desprecian las correlaciones de la interaccién directa entre impurezas (6(P!P!")),
como si se incluyen en el sistema truncado.

Observamos que en el rango temporal elegido, la aproximaciéon reproduce
con altisima precision la magnetizacion exacta. La inclusion de las correlaciones
provenientes de la interaccion directa entre impurezas no modifica significativamente
los resultados, como esperamos en el limite de alta dilucién. Para el mismo ntimero
de impurezas, esta correspondencia tan proxima entre la dindmica aproximada y la
exacta se observa asimismo cuando las impurezas comienzan polarizadas en otras
direcciones. En efecto, como se observa en la Fig. [4.1p, la diferencia relativa entre

la solucién aproximada y la exacta no supera el 1% cuando la separacion entre ellas
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Figura 4.1: (a): Magnetizacién de las impurezas paralela al eje del anillo para una
polarizacién inicial de 5h/2 paralela al eje z. La curva sélida muestra la solucién exacta,
mientras que la curva de guiones y de guiones y puntos muestran, respectivamente, las
soluciones aproximadas despreciando o incluyendo las correlaciones de la interaccién
directa entre impurezas (§(P'P")). (b): Méxima diferencia relativa entre la solucién
aproximada (sin 6(PTPT")) y la exacta para distintos 4ngulos de orientacién iniciales.
(c-d): Lo mismo que en (a) pero suponiendo orientaciones iniciales 5y diferentes para
cada una de las Ny, = 2 (¢) o Ny = 3 (d) impurezas, ubicadas en ;. La magnetizacién

se muestra relativa a la inicial. El estado inicial del electrén es |1,1) en todos los casos.
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4.4. BEstudio numérico del truncamiento

alcanza el maximo global. Las Figs. [{.Tk-d muestran un ejemplo de este caso cuando
el sistema contiene dos y tres impurezas, respectivamente. Mencionamos aqui que
las soluciones aproximadas reproducen con igual precision la magnetizacion exacta
cuando las impurezas comienzan en estados puros elegidos de forma totalmente
aleatoria.

De estos resultados concluimos, por un lado, que el esquema de truncamiento es
excelente para reproducir la magnetizacion de las impurezas en este rango temporal
y cuando estas y el electron se encuentran en estados puros; y, por otro, que en
el limite de alta dilucién es valido ignorar las correlaciones §(P'P!). Notemos
que, por conservaciéon del SAM total, una alta precisién en la reproduccién de
la magnetizacion de las impurezas, cuando éstas son pocas, acota el error en la

aproximaciéon del SAM electrénico.

]
=1
g
=
E
=
o
o
W)
—— [2,]) (Schrédinger) === [2,]) (Trunc.) ‘7%
—4 o e [2,1) (Schrédinger) =—-+= [2,7) (Trunc.)
0 5 10 15 0 5 10 15
Time [ps] Time [ps]

Figura 4.2: (a): Poblacion de los estados [2,1) y |2,]) electrénicos adyacentes en
energia al estado inicial |1,7). La linea s6lida representa la solucién de referencia (exacta)
calculada en el picture de Schrodinger, mientras que la de guiones representa la solucion
aproximada (sin §(PYP!")). La polarizacién inicial de cada impureza es 5h/2 y paralela
al eje x. (b): Poblacién de los mismos estados cuando las impurezas estan inicialmente

en el estado totalmente no polarizado. En ambos casos consideramos Ny, = 3.
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El esquema de truncamiento, sin embargo, no reproduce con la misma precisién
las ocupaciones de los estados electrénicos o de espin de las impurezas. Si suponemos
la misma configuracion inicial que para la Fig. , notamos que las primeras (los
elementos diagonales de la matriz densidad electrénica (c} Lo Cts,)) toman valores
negativos dentro del rango temporal elegido, particularmente para los primeros
estados més proximos en energfa al inicial, como muestra la [£.2h. La magnitud
de estos valores no afecta al calculo de observables como la magnetizacién de
las impurezas, pero es, sin embargo, demasiado grande para asociarlo a errores
numéricos. El mismo comportamiento se observa para otras condiciones iniciales, e
incluso cuando las impurezas comienzan en el estado completamente no polarizado,
descrito por la matriz densidad (P!, )(t = 0) = £0,,n, para todo I, como se
observa en la Fig. £.2b. Para tratar este tltimo caso, suponemos inicialmente nulos
los términos de correlacién entre impurezas y electrones, ¢ <C;101 Cty0, PL), v entre
impurezas (P! P!"), cuando estos tltimos son incluidos en la dindmica. Al tomar
esta condicién inicial seguimos nuevamente a Thurn y Axt, y suponemos que el
tiempo que tardan estas correlaciones en generarse es mucho mayor al tiempo de
excitacion inicial del sistema [78]. Esto es razonable en nuestro caso, dado que
el tiempo de excitacion del sistema es esencialmente el de excitacién 6ptica del

electrén.

La hermiticidad de las matrices densidad aproximadas se conserva en todos
los casos estudiados. Los valores negativos para las poblaciones indican, por tanto,
que la condicién de ser semidefinidas positivas no se respeta durante la evolucion
temporal. Para la matriz densidad electronica, el signo del menor autovalor muestra
que esto sucede en (casi) todos los casos y desde el primer paso de integracién,

como se ve en la Fig. @ Ratificamos que este comportamiento no es un efecto de
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Figura 4.3: (a): Menor autovalor de la matriz densidad electrénica <c;1 o, Claoy) €1
el tiempo cuando las impurezas estan inicialmente polarizadas a distintos angulos de
inclinacién sobre el plano zz. (b): Lo mismo que en (a) pero suponiendo que las impurezas
se encuentran en el estado totalmente no polarizado. En ambos casos suponemos Ny, = 3

y el electrén inicialmente en |1,71).

error numérico (la reduccién del paso de integracién en un orden, por ejemplo, no
proporciona ninguna mejora), sino propio del esquema de truncamiento. La tinica
configuracién en que no se observa este problema es aquella para la cual todas las
impurezas se encuentran inicialmente polarizadas paralelamente al eje del anillo
(8 =0). Si consideramos que el estado electrénico inicial también es el de maxima
proyeccion en la misma direccién, observamos que esta configuracion corresponde
al estado de méaxima proyeccion del SAM total. Es, por tanto, un autoestado de
SAM total con proyeccion méxima 5Ny, /24 1/2. Puesto que el Hamiltoniano total
y el esquema de truncamiento conservan esta cantidad, es inmediato ver que ni el
espin del electron ni los de las impurezas tienen, en este caso, otros estados a los
cuales transicionar sin romper la conservacion del SAM total. Por tanto, no existe

variacién en la magnetizacién. Sin embargo, el sistema si evoluciona, pues el OAM
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del electréon no se conserva. Es por tanto razonable que el truncamiento aplicado
sobre el término de interaccion indirecta entre impurezas no tenga efecto neto sobre
la dindmica. Aproximar o no esta interaccién es irrelevante en este caso, y esto
se refleja en la conservacion de la semidefinitud positiva de la matriz densidad
electrénica.

Notemos que la conservaciéon de la hermiticidad puede garantizarse directamente
en la ecuacion de Heisenberg truncada, pues esta condicion depende, como mucho,
de los valores de las matrices densidad en cada tiempo ¢. Sin embargo, la condicién
de semidefinitud positiva es esencialmente una condicion sobre la segunda derivada
temporal de la matriz densidad, pues sus elementos diagonales deben alcanzar
minimos locales toda vez que se anulan. Por tanto, la misma depende fuertemente
de la aproximacién sobre los Q. La diferencia entre estas propiedades se ve, en
otras palabras, en el hecho de que la hermiticidad s6lo requiere que los elementos
diagonales sean reales, mientras que la semidefinitud positiva requiere, ademas, que
estos sean no negativos.

Lo discutido para la matriz densidad electrénica sucede también para las otras
matrices de dos y tres particulas. Y en todos los casos la adicién de las correlaciones
s(PTp! /> solo introduce pequenas correcciones. Esto es indicativo de que el problema
se halla principalmente en el truncamiento de los Q.

Para estos rangos temporales, que exceden los tipicos de teoria de perturbaciones
dependiente del tiempo, podemos concluir que la aproximacion es util para estimar
correctamente los observables como la magnetizacion de las impurezas, que no es
muy sensible a estos pequenos errores en las poblaciones. Sin embargo, tanto en
caso simples como en otros mas complejos, en los que no se cuenta con soluciones

exactas de referencia, es necesario determinar las circunstancias en que estos errores
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en las poblaciones pueden ignorarse.
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Capitulo 5

Dinamica del intercambio de SAM

en presencia de SOI

5.1. Presentacion

En este capitulo integraremos lo estudiado en los capitulos anteriores. Integra-
remos numéricamente las ecuaciones (4.6)), (4.7) v (4.8)), teniendo en consideracién
las limitaciones de la aproximacion descrita en el Cap. [dl Consideraremos, por

tanto, un tnico electréon de conduccion.

Como mencionamos anteriormente, nuestro objetivo es comprender la generali-
dad de la transferencia de SAM electronico a SAM de las impurezas en presencia de
interaccion espin-érbita. A este respecto, consideraremos tinicamente la interaccion
de Dresselhaus, y omitiremos la de Rashba. La razon detras es simple: ambas inter-
acciones generan dinamicas comparables en el sistema que estamos tratando, tal
como se mostré en el Cap. [3] pero sélo la de Dresselhaus es fundamentalmente una

propiedad tanto del semiconductor del QR, como del confinamiento. La interaccién
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de Rashba, como vimos, puede ser ajustada o suprimida en algunas estructuras,
pero la de Dresselhaus es mas dificil de modificar sin cambiar el semiconductor
considerado o el confinamiento (lo cual podria alejarnos de la condicién de anillo
delgado, por ejemplo).

La inclusion de la interacciones SOI de Dresselhaus o Rashba puede hacerse
sin modificar sustancialmente las hipdtesis que conducen al truncamiento descrito
en el Cap. [4, pues las SOI no incluyen términos directos de interaccién con las
impurezas, sino que vinculan el OAM con el SAM del electrén. Por tanto, podemos
incluir las ecuaciones de Heisenberg que derivan de los Hamiltonianos de las ecs.
sin modificar el truncamiento desarrollado en la . Cabe enfatizar que las
interacciones de intercambio y de espin-érbita son tratadas en pie de igualdad. En
otras palabras, las ecuaciones de Heisenberg derivadas de los Hamiltonianos de
espin-orbita son las mismas que las utilizadas para estudiar la dindmica en ausencia
de la interaccién de intercambio, y son incluidas directamente y sin modificaciones
adicionales en el sistema de ecuaciones truncado. Destacamos este aspecto dado que
el tratamiento de la dinamica de electrones en presencia de ambas interacciones,
puede ser distinto en el bulk o en otras geometrias |85 |86].

Consideraremos un anillo delgado de Zn;_,Mn,Se en el limite de alta dilucién
(r < 1), con una densidad de impurezas Ny, /V = 1.52 X 1072 nm ™3 ( Ny, = 20),
un radio efectivo de a = 14 nm y un ancho efectivo de 7.3 nm, que corresponde a un
potencial paraboélico confinante de intensidad Aw = 15 meV. Supondremos, como en
la §4.3] que la masa efectiva del electrén en el borde de la banda de conduccion es,
en el limite de alta dilucion, la del ZnSe sin impurezas, esto es, m* = 0.16m,. Estos

parametros dan una escala de energia de la banda libre (sin SOI ni intercambio) de

Ey = 1.22 meV.
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El acoplamiento de intercambio para el (Zn, Mn)Se en las condiciones propuestas
es J = 11.8 meV nm®. La constante de Dresselhaus efectiva, 3/a, para este (y otros)
materiales puede calcularse a partir de la constante de Dresselhaus en el bulk, que
para el ZnSe es yp = 14.3 meV nm? 16} 185], y de la geometria del anillo. Suponiendo
que el confinamiento en direccion vertical es adecuadamente descrito por un pozo
cuadrado, en este caso de ancho h = 3 nm, y que el electrén siempre se halla
en el modo axial de menor energfa, obtenemos 3/a = (yp/a)(w/h)* ~ 1.12 meV.
Notemos que este valor es del orden de Ej y, por tanto, 3/a > J/V ~ 9x 1073 meV.
Podriamos considerar otros materiales, pero a los fines de nuestro estudio esto
solo modificarfa ligeramente los parametros efectivos que entran en las ecuaciones.
Esto es debido al hecho de que el orden de las constantes J y yp es compartido
por un gran nimero de materiales de estructura zincblenda (con excepcién del
InSb, en el que 7p es notoriamente superior [16]). Asimismo, podriamos variar
las caracteristicas del anillo, pero esto, por lo anterior, no modificaria el orden de
los acoplamientos efectivos (8/a y J/V') ni la relacién entre ellos, a menos que
reduzcamos o aumentemos significativamente el confinamiento. En el primer caso,
incrementariamos mucho el peso de la interaccion SOI frente a la de intercambio, y
no observariamos el efecto de esta ultima en el rango temporal en el que podemos
trabajar dadas las limitaciones metodoldgicas expuestas en el Cap. ] En el segundo
caso, nos alejariamos de la aproximacion de anillo delgado que nos permitio reducir

la dindmica espacial a una dimension.

Finalmente, para realizar la integracion numérica de las ecuaciones de Heisen-
berg, supondremos que las impurezas se encuentran inicialmente no magnetizadas y
en un estado totalmente isétropo, descrito por la matriz densidad (P! ) = 16, ,,.

nin2/ ~ 6

Dada la relacién §/a ~ Ey > J/V, supondremos una base restringida de autoesta-
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dos electrénicos de Hy cuyas autoenergias no superan 9F,. Supondremos, como lo
hemos hecho en los capitulos anteriores, que el electron comienza en un estado de
OAM determinado, esto es, en un autoestado de L.. No haremos hipétesis sobre el

estado de espin del electréon a menos que sea necesario.

5.2. Dinamica en ausencia de SOI

Comencemos suponiendo que es posible omitir la interaccién de Dresselhaus (8 =
0). El Hamiltoniano en este caso es, como vimos, Hy+ Hgg, y es un operador escalar
respecto de rotaciones que involucren tnicamente al espin total S = Zﬁwf S;+s.
Esta simetria esta ligada a la conservaciéon del SAM total, como mencionamos
en el Cap. |3 v es de importancia porque permite estudiar la magnetizacion total
de las impurezas observando el comportamiento del SAM electrénico. Asimismo,
impone una restriccion a la magnetizacion que pueden alcanzar las impurezas en
su conjunto y, por tanto, a la magnetizaciéon de cada una de ellas en particular.

Esta simetria, ademas, simplifica notoriamente el analisis de la dinamica de
intercambio cuando las impurezas se hallan inicialmente en un estado totalmente
isotropo, pues permite suponer que el espin del electron se halla siempre polarizado
sobre el eje del anillo, sin por ello perder generalidad en el estudio. En otras
palabras, si la polarizacion inicial del espin del electron se halla en una direccién
que no es el eje del anillo, podemos llevarla mediante rotaciones al eje, siempre que
compensemos estas rotaciones con rotaciones inversas aplicadas sobre los espines
de las impurezas. Sin embargo, estas tultimas no modifican el estado inicial de las
mismas. La dindmica de intercambio para una polarizacién inicial esta, por tanto,

vinculada a la dindmica para otra polarizacion a través de rotaciones que involucran
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unicamente al espin total.

De la naturaleza escalar del Hamiltoniano y de la simetria del estado inicial de
las impurezas se deduce, ademas, que la dindamica del impulso angular orbital no
depende de la polarizacion inicial del espin del electron, independientemente de
que este comience o no en un autoestado de L,. Esto es consecuencia directa del
hecho de que las rotaciones mencionadas anteriormente actiian solamente sobre el
espacio de espin.

Destacamos aqui que estas observaciones se deducen de la estructura del Hamil-
toniano y de las condiciones iniciales, y no dependen en absoluto de las hipdtesis
subyacentes al truncamiento de las ecuaciones de Heisenberg.

En la Fig. 5.1Th-b mostramos la dindmica del impulso angular electrénico y
la magnetizacion total de las impurezas, respectivamente, para una realizacion
particular y arbitraria de Hyy y un electrén inicialmente excitado en un estado |¢, 7).
Por «realizaciéon» de Hyy entendemos, como en §4.2] el conjunto de pardmetros
{¢1} que dan las posiciones de las impurezas en el anillo.

A pesar de ser relativamente pequena respecto de la energia de la banda libre,
observamos una gran influencia de la interaccién de intercambio sobre la dindmica
del OAM electronico y la magnetizacion de las impurezas, especialmente cuando
¢ # 0. Por una parte, vemos que las curvas de OAM opuesto (esto es, de £ y —/()
parecen ser una reflejo de la otra respecto del eje (L,) = 0; y todas ellas parecen
cambiar de signo casi al mismo tiempo. Por otra parte, vemos que el intercambio de
SAM no depende significativamente del OAM inicial cuando éste es no nulo, y en
todos los casos esta transferencia es de tal magnitud que produce la inversiéon del
signo del SAM electronico. Mencionamos aqui que, por simetria, la magnetizacion

de las impurezas se da en direccién del eje del anillo (es decir, en la direccién de
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Figura 5.1: (a): Evolucién en el tiempo del OAM electrénico para una realizacién
particular y arbitraria de Hgq. El electrén se halla inicialmente en el autoestado |¢, 1) de Hy

y las impurezas se encuentran en el estado totalmente mixto (isétropo) (PL .. ) = £8,,p,.

(b): SAM total de las impurezas. (c): Valor de expectacién de la energia de exchange
en el tiempo (Hyq). (d): Probabilidad de ocupacién de los autoestados de Hy de OAM
|¢| = 1 para un electrén inicialmente en |1,1). Estos estados degenerados en ausencia de
la interaccién de intercambio. En (b-d) la realizacién de Hgq es la misma. (e-h): Para cada
estado en (d), diferencia entre la probabilidad de ocupacién en (d) y la que se obtiene

para otras cuatro realizaciones de Hgy distintas y tomadas al azar.

polarizacién inicial del espin del electrén) y no existe, por tanto, magnetizacién
sobre el plano. Hechas estas observaciones generales, profundicemos en cada una
de ellas.

La aparente relacion entre las curvas de (L) para distintos OAM iniciales es
efectivamente confirmada por la dindamica de las ocupaciones de los autoestados
de Hy que serian degenerados en ausencia de Hgzy. Como observamos en la Fig.
para el caso en que el electrén comienza en el estado |1,1), la dindmica
electrénica se halla esencialmente reducida a cuatro niveles: el inicial y otros tres

que serian degenerados con este si la interaccion de intercambio no estuviera, es
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5.2. Dindmica en ausencia de SOI

decir, {|1,1),|-1,1),|—1,])}. En el intervalo de tiempo estudiado, observamos
que la ocupacién total se mantiene casi en la unidad, y fluctiia alrededor de esta
con amplitudes del orden de 1073, En otras palabras, la dindmica electrénica queda
confinada a un sistema de cuatro niveles, o dos si no se explicita el espin. En el
régimen de alta dilucion, la interaccion de intercambio no es, pues, suficientemente
fuerte para inducir transiciones entre estados por fuera de este subespacio (lo que
requerirfa una diferencia de energia al menos del orden de Ej). Esto se refleja en la
Fig. 5.1c. E1 OAM electrénico se halla por tanto limitado a A|¢| cuando ¢ # 0y
fluctia alrededor de (L,) = 0 cuando ¢ = 0.

Supongamos ahora que ¢ # 0 (el caso ¢ = 0 lo analizaremos méas adelante) y
restrinjamos, a modo de aproximacion, el espacio de Hilbert de estados electronicos
a estos cuatro niveles. Las transiciones entre estados de diferente OAM preservan o
invierten el signo de ¢, como si el scattering fuese inicamente forward o backward.
Esto se refleja en los desfasajes p! introducidos por los potenciales de contacto tipo
delta de Dirac (ver §4.2)), que s6lo pueden tomar los valores conjugados e*2*1. Si
mantenemos la restriccion de la base electronica a cuatro niveles, definidos por
¢ # 0, cambiar £ a ¢’ # 0 es equivalente a mantener constante el valor de ¢ y cambiar,
en su lugar, la distribucién de impurezas de {¢r} a {¢} = (¢'/{)¢r}. Sin embargo,
esta modificacion sélo introduce ligeras variaciones en las ocupaciones de los niveles
degenerados, como puede verse en la Fig. [5.Ip-h para cuatro distribuciones tomadas
al azar. Mas aln, estas variaciones parecen no afectar la ocupacién total de los
estados de OAM |1) y |—1), esto es, las sumas de las ocupaciones de {|1,1),|1,])} vy
{|=1,1),]=1,4)}. Observamos esto en la Fig.[5.2l En otras palabras, las variaciones
en las ocupaciones de los niveles |+1,1), producidas al cambiar la distribucién

de impurezas, parecen ser exactamente compensadas por cambios opuestos en
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Figura 5.2: Ocupacion total de los estados de OAM definido |¢| < 2 en un rango temporal
extenso, cuando el electrén comienza en el estado de OAM definido |¢,1) y las impurezas

en el estado isétropo <P7{1n2> = %5,11”2. En este rango, las ocupaciones de los autoestados

de Hy, de espin y OAM defindios, se vuelven negativas. Notemos que la ocupacion
total de cada nivel de OAM definido son siempre positivas, a pesar de que la matriz
densidad electrénica <c};1 #,Claoy) 10 sea semidefinida positiva. Las ocupaciones excesivas
o deficientes de un estado de espin |¢,1) y |¢,]) son, entonces, compensadas por defecto

o0 exceso en la ocupacion del estado complementario: |¢,]) y |¢,1), respectivamente.

las ocupaciones de |£1,]), de forma que la ocupacién total de cada nivel |£1)
permanece practicamente invariante y débilmente dependiente de la realizacién
particular de Hgy. Puesto que (L.)/¢ depende tinicamente de la ocupacién total
de cada nivel |£1), este valor es también insensible a la distribucién electrénica y,
por lo anterior, al valor de ¢. Las curvas de (L.) en la Fig. estan, por tanto,

relacionadas unas con otras pues pueden reducirse a una curva comun (L) /(.

Es interesante notar que lo mismo se observa también a tiempos mas largos,
cuando las ocupaciones de los estados |1,1) y |1,]) se vuelven negativas. En este

punto destacamos un aspecto de la la Fig. [5.2] vinculado al problema metodolégico

90



5.2. Dindmica en ausencia de SOI

tratado en el Cap. [dl Si bien sabemos que el truncamiento no conserva la semi-
definitud positiva de las matrices densidad (es decir, no es una aproximacién que
genera una evoluciéon Hamiltoniana) vemos que, para tiempos mas largos de los
que permiten confiar en los resultados del truncamiento, las ocupaciones de los
estados |+1) se mantienen siempre positivas, aunque las ocupaciones individuales
de [1,1) y |1,]) se vuelvan negativas rapidamente. De aqui podemos ver que, para
cada realizacién de Hyy la ocupacion «excedente» («deficientey) de un estado de
OAM vy espin definidos es compensada por la ocupacion «deficientey» («excedentey )

del estado de igual OAM y espin complementario.

La Fig. nos revela que la dindmica del nivel |1), para las condiciones iniciales
que estamos tratando, es oscilatoria y su periodo y amplitud estdn muy bien
definidos. Esto es esperable no sélo para ¢ = 1, sino para cualquier ¢ # 0, pues sélo
dos niveles de OAM definido invervienen esencialmente en la dindmica (los de £7/)
y sus ocupaciones deben conservar el nimero de electrones (en nuestro caso, uno).
En otras palabras, la dindamica en este subespacio se comporta como un sistema
de dos niveles. Podemos agregar esta observacion a las mencionadas en el Cap.
[ y enfatizar nuevamente que, a pesar de no ser Hamiltoniano, el truncamiento
utilizado reproduce adecuadamente diversos aspectos fisicos del sistema que estamos
estudiando.

Retomando el andlisis de la Fig. [5.1p, destacamos que la dindmica de la mag-
netizaciéon total (S,) depende de la distribuciéon de impurezas. Podemos deducir
que esto serd asi atendiendo nuevamente a los graficos de las Figs. [5.Ip-h. Si la
suma de las ocupaciones de los estados |, 1) y |¢,]) es insensible a la realizacion de
H,,, la diferencia entre ellas no lo es y, por tanto, tampoco podra serlo en general

el valor de expectacién del espin del electrén, (s.), o la magnetizacién total (S,),
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que esta ligada al primero por conservacién del SAM total. Sin embargo, en el
rango temporal en el que estamos trabajando, el efecto de estas variaciones es tan

pequeno que no alcanza a percibirse en las curvas de (S.).

Analicemos ahora la dindamica observada cuando el electrén comienza en el
autoestado |0) de L,. Como vemos en las Fig. [5.1h-b, la dindmica este caso
es notoriamente diferente, atin a tiempos muy cortos en los que los errores de
truncamiento no llegan a acumularse. Podemos comprender sus peculiaridades
si procedemos como antes, teniendo en cuenta que el OAM electrénico en este
caso oscila alrededor de (L.) = 0, pues la intensidad efectiva de la interaccién de
intercambio nuevamente limita las transiciones del electron a otros estados de OAM

degenerados con el inicial.

Las transiciones mas relevantes en este caso son entre los estados |0,1) y
|0, ). Si reducimos nuevamente el subespacio de estados electrénicos a estos dos,
observariamos un comportamiento similar al de un sistema de dos niveles. Si
sumamos en espin observamos en cambio que el sistema se comporta como si
fuera esencialmente de un nivel, tal como muestra la Fig. [5.2] En otras palabras,
los estados de OAM R # 0 practicamente no se ocupan en este caso. Al hacer
cualquiera de estas reducciones estamos efectivamente suprimiendo las transiciones
a otros estados de OAM definido y, por tanto, estamos suprimiendo el efecto de los
potenciales de contacto sobre la matriz densidad electrénica. La ubicacién de cada
impureza en el anillo ya no es importante, pues los elementos de matriz diagonales
de estos potenciales no dependen de las {¢r}, y los términos de interaccién entre
los electrones y las impurezas pueden reducirse a un tnico término de interaccion

entre el espin del electrén y el de un espin total y no localizado 78], dado por
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S =y S
J Nun
H:H0+V<ZS[>°S (51)

I=1

No obstante, esta reducciéon no elimina la interaccion indirecta entre impurezas,
pues cada término s+ S; no conmuta con s - Sy para [ # I’. La dindmica generada
por este Hamiltoniano de la ec. no es, por tanto, equivalente a la de Ny,
interacciones individuales entre el electrén y las impurezas.

Puesto que la distribucién de las impurezas ya no entra en H,y, cualquier
reordenamiento de las impurezas por intercambio de indices no tiene efecto alguno
sobre la dindmica. Esta nueva simetria trae como consecuencia que el electron
transfiera en todo momento la misma cantidad de SAM a cada impureza. En
otras palabras, el SAM total se distribuye uniformemente en todas las impurezas
(como cuando estas forman un poligono regular), y las impurezas se magnetizan
(o desmagnetizan) de forma sincrénica si empiezan, como en nuestro caso, todas
en el mismo estado. A tiempos cortos, vemos que esta restriccion ralentiza la
magnetizacion y la hace comparativamente menos efectiva que en los casos en los

que cada impureza intercambia SAM con el electrén a ritmos diferentes.

5.3. Dinamica en presencia de SOI

Incluyamos ahora la interaccién de Dresselhaus fijando, como dijimos, 5/a =
1.12 meV. El Hamiltoniano total ahora contiene tres términos: los dos con que
venimos trabajando, Hy v Hq, v el de Dresselhaus, dado en la ec. .

En la mencionamos que tanto los autoestados como las autoenergias
del Hamiltoniano Hy + Hp pueden calcularse exactamente si se subdivide este

en bloques de 2 x 2 de autovalor de L, — s, definido (cantidad conservada por
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la interaccién de Dresselhaus). Si reordenamos el espacio de Hilbert de estados
electrénicos y lo suponemos dividido en subespacios de la forma {|¢,1),[¢ —1,])},
podemos trabajar con los autoestados de H) = Hy + Hp:

. s 0 . 0
17 . —sln g 7 .
ezﬁgp 61&0

o — () — )
vy () = N i COS% Y (p) = V2 i Smg ;
cuyas autoenergias asociadas son
?:: l(e-i)l(z-i) \/1+tan29+ﬂ. (5.3)
El dngulo cenital 6 queda enteramente determinado por tan = 3/aFEy, que, en
nuestro caso, resulta 6 ~ m/4. Si el electrén comienza en alguno de los autoestados
Yif (), su espin apuntara hacia el eje del anillo (¥) o en la direccién opuesta
(¢, ). En ambos casos, el espin describird una «coronay» alrededor del anillo. Si,
en cambio, el electrén comienza en un autoestado de Hy, |¢, o), su estado inicial
involucrara inicamente el bloque de H{, dado por {|{,0),|l — 20,5)}.

En ausencia de Hgq, los autoestados de Hy son doble (¢ = 0) o cuddruplemente
degenerados (¢ # 0), pues Hy es independiente del espin y cuadratico en L.
Esta simetria axial se reduce en H|, a rotaciones en 7 alrededor del eje del anillo
(ver §3.3). Sin embargo, persiste la simetria de inversién temporal (ver Cap. [2)),
y la degeneracion de Kramers. Los autoestados de H|, son siempre doblemente
degenerados si /a < Ey, como en nuestro caso (5/aEy ~ 0.92). A partir de la
forma matricial de cada bloque de H{ en la base {|¢,1),[¢ — 1,1)}, puede verse
que el autoestado degenerado de ¥ (¢) es ¥, (). Este estado pertenece a otro
bloque de H|, y su orientacién de espin es diametralmente opuesta a la de wgh(gp).

El reordenamiento del subespacio de estados electronicos en bloques de 2 x 2 es

sumamente 1til pues la intensidad de la interacciéon de Dresselhaus es similar a la
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escala de energia de la banda libre Ej y, por tanto, mucho mayor que la intensidad
de la interaccion de intercambio. Aprovechando que podemos diagonalizar H|
exactamente, podemos estudiar la dindmica conjunta en presencia de las dos

interacciones tomando la base de autoestados de H|.

I B
(~L4) e-D 2,-)
1 (0’+) At (17_)
_Eo |
2

Figura 5.3: Autoestados de H{) de menor energia y primeros excitados. Por claridad,
los estados ¥ () se notan como (¢, =), y sus energias se miden respecto de Fy. Las
flechas curvadas marcan las transiciones de alta energia entre estados de Dresselhaus
pertenecientes a un mismo bloque (por ejemplo, para £ = 0, AE =~ ﬁﬁ/a ~ 1.58 meV).
Las flechas de guiones indican transiciones de mucha menor energia (AE =~ 0.4 meV)
entre estados degenerados perturbados por Hy. Notemos que H,y introduce transiciones
entre cualquier par de autoestados de H{. Sin embargo, esperamos que los més relevantes

a la dindamica sean los que marcamos aqui.

En las condiciones de nuestro sistema, es esperable que la interaccion de in-
tercambio induzca transiciones principalmente entre autoestados degenerados de
H{ degenerados. En la Fig. mostramos esquematicamente las transiciones mas
relevantes entre los autoestados de Hj de mas baja energia.

Para comparar con los resultados obtenidos en §5.2] analizaremos el caso en
que el electrén comienza en un estado de OAM definido |£1) y de espin polarizado
sobre el plano zz a distintos dngulos 0 < 9 < 7 respecto del eje del anillo.

En la Fig. mostramos la dindmica del OAM y de la magnetizacion de las

impurezas, suponiendo, como siempre, que estas comienzan en el estado isétropo
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Figura 5.4: Evolucion temporal del OAM electrénico y de la magnetizacion total de
las impurezas. El electrén se supone inicialmente en un estado de OAM definido |+1)
y polarizacién de espin sobre el plano xz a un angulo 9 del eje del anillo. Por claridad,
sélo se muestran las curvas (S,) para el caso |1). Las impurezas estan distribuidas como
en las Figs. p.Th-d. El estado inicial de las impurezas se supone, como siempre, isétropo

[ . pl _ 1 .
y de minima pureza: (P;,,,) = §0nin,- Las curvas en gris y marcadas con cuadrados

corresponden a la dindmica para la misma realizacién de Hgq y configuracion inicial, pero

sin SOL.

(PL Y = 10,0, En la dindmica de (L) observamos que la SOI introduce oscilacio-

ninz/ ~ 6
nes de alta frecuencia que perturban notoriamente la tendencia del OAM a cambiar
de signo (es decir, la tendencia de la corriente eléctrica (j,) x (L) a invertir su
sentido). Observamos que esta tendencia es similar al caso sin SOI, y proviene
mayormente del scattering en las impurezas. Estas oscilaciones de alta frecuencia
provienen (con un error del orden de 1072) de los intercambios rapidos de OAM con
SAM electrénico dentro de un mismo subespacio de autoestados {¢} (0), ¥, (¢)}, ¥
por tanto dependen, como mostramos en la (ver definicién de hQdp o |[¢ — o),

tanto del OAM como de la polarizacién de espin iniciales. Cuando la polarizacion
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de espin se halla sobre el eje del anillo (9 = 0, 7), observamos que sélo intervienen
las transiciones dentro del bloque definido por el estado |£1,1) (9 =0) o |£1,])
(9 = m). En cambio, cuando la polarizacién se halla fuera del eje (0 < 9 < 7),
intervienen las transiciones entre autoestados en cada subespacio. Esto altimo se
observa en las curvas en la Fig. [5.4] como superposicién de oscilaciones de alta pero
distinta frecuencia. En términos generales, entonces, los bloques que intervienen
en la dinamica estan esencialmente determinados por el estado inicial del electron.
Esta observacion es validada, como en el caso de la seccién anterior, por el hecho
de que, en cada subespacio, la suma de las ocupaciones de los autoestados de H|,
oscila alrededor de un valor constante con una amplitud del orden de entre 10~ y
1072,

En las curvas de (S,) estas transiciones de alta energia tienen una amplitud
menor, pues la evolucion de esta cantidad estd dominada por la interaccion de
intercambio. Esto se observa especialmente en el caso ¥ = m/2, en el que la
magnetizacion oscila alrededor de (S.) = 0 con una amplitud de 1073%h debido
a la interaccion de Dresselhaus que permite al espin del electrén adquirir una
polarizacién fuera del plano del anillo (y, por tanto, magnetizar las impurezas en
direccién perpendicular a este).

Tanto la interaccién de intercambio como la de Dresselhaus modifican el SAM
del electrén, aunque en esta geometria y con este confinamiento, esta tltima lo
hace transfiriéndolo hacia y desde el OAM a un ritmo con el que la de intercambio
no puede competir. En definitiva, en el intervalo de tiempo estudiado, el proceso
de magnetizacién se ve obstaculizado por las constantes inversiones del espin,

producidas por la SOI, y el proceso de magnetizacion se ralentiza.
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Capitulo 6

Conclusiones

En este trabajo hemos estudiado la interaccion de un electrén de conducciéon
con un conjunto de impurezas magnéticas en un anillo semiconductor delgado y
unidimensional, cuando en éste se halla presente la interaccién de espin-orbita de
Dresselhaus. En lugar de concentrarnos directamente en este sistema, hemos optado
por estudiar primeramente diversos aspectos del sistema sin impurezas. Esto nos
permitié comprender mejor la dindmica de transferencia del espin de los electrones
a las impurezas, y entender como compiten la interaccién de intercambio y la
interaccion espin-orbita. Asimismo, el estudio previo del sistema sin impurezas nos
dio mayor seguridad al momento de argumentar las conclusiones sobre el sistema
con impurezas, que mencionamos en el iltimo capitulo. Mencionamos aqui algunas
de las conclusiones principales a las que hemos llegado en cada parte de este estudio

«constructivoy.

En el Cap. [2| estudiamos la ecuacion de Schrodinger independiente del tiempo
de un electréon de conduccién sujeto a las interacciones espin-érbita de Rashba

y Dresselhaus en un anillo semiconductor delgado. Dedujimos el Hamiltoniano
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total de una dimension utilizando el método de Meijer et al.. Observamos que este
problema podia estudiarse usando la teoria de Floquet, y pudimos obtener la forma
general de los autoestados y las autoenergias asociadas sin imponer condiciones
sobre la intensidad relativa de las constantes de acoplamiento o y 3. Observamos
que para valores tipicos y no tanto de estos acoplamientos efectivos (ver Tabla
, es posible utilizar formas aproximadas tanto de los autoestados como de las

autoenergias, deducidas usando tratamientos perturbativos conocidos (ver §2.5)).

En el Cap.[3]comenzamos con la dindmica. Primero, en la §3.2] estudiamos el caso
en que s6lo una de las dos interacciones espin-érbita esta presente y suponiendo que
el electron se hallaba en un estado puro. Observamos que, debido a la conservacion
del impulso angular total, L, + s,, en el caso de Rashba, o de la cantidad L, — s,
en el caso de Dresselhaus, estas interacciones conectan ciclicamente estados que
comparten el mismo autovalor de estos operadores. Esto nos permitio llevar la
forma matricial del Hamiltoniano a una forma diagonal por bloques de 2 x 2 y
obtener explicitamente el operador de evolucién temporal en cada caso, lo que nos

permitié estimar el impulso angular transferido entre L, y s..

Luego, en la §3.3] agregamos el efecto de la interaccién restante y notamos
que los Hamiltonianos reducidos (los bloques de 2 x 2) se enlazaban entre si (ver
Fig. . A pesar de que las cantidades L, £+ s, ya no se conservan, observamos
que el Hamiltoniano total ain podia dividirse en dos bloques inconexos, debido a
la persistencia de una simetria de rotaciéon en 7 alrededor del eje del anillo (Cy).
Notamos que, para valores tipicos de las constantes « y 3, la probabilidad de que el
electrén ocupara estados adyacentes (en el sentido de la Fig. a su estado inicial
era tanto mas pequena cuanto mas alejados los primeros se hallaban de este tltimo.

Vimos que, en efecto, para un electrén en un estado inicial puro, sélo los primeros
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tres o cuatro estados adyacentes tenian alguna probabilidad de ser ocupados a
tiempos que son del orden de la interaccién entre el electrén y las impurezas [78-81,
87).

Finalmente, en la §3.4] relajamos la condiciéon de anillo unidimensional vy,
siguiendo a Shakouri et al., supusimos que el electréon podia transicionar entre los
dos primeros estados radiales de mas baja energia. Notamos que las cadenas A y
B de la Fig. en este caso se ampliaban, pero sin afectar la simetria Cy (ver Fig.
. Vimos que, si bien la inclusion del primer nivel radial excitado proporciona una
descripcion mas precisa de la dindmica, esta introduce una complejidad innecesaria
para nuestros propositos, pues la probabilidad de que el electréon ocupe el estado

radial excitado es muy pequena (ver Fig. 3.8)).

Habiendo estudiado en detalle el problema del electrén en el anillo sujeto a la
interaccién espin-érbita, comenzamos, en el Cap. [4] estudiando las generalidades
del sistema conformado por el electrén de conduccién y un conjunto de impurezas
magnéticas que actian como centros de dispersién fijos con cuyos espines el espin del
electréon puede interactuar. Modelamos esta interaccion como es usual en la literatura
(a través de un Hamiltoniano de contacto tipo Kondo, que conserva el impulso
angular total de espin) y dedujimos en la el Hamiltoniano unidimensional
utilizando la aproximacién de Meijer et al. a partir del Hamiltoniano en volumen.
En la dedujimos las ecuaciones de movimiento de Heisenberg para las matrices
densidad electrénicas, de impurezas y de primer orden de interaccién entre las
impurezas y el electrén. Adoptamos un tratamiento en el formalismo de segunda
cuantizacion, distinto al adoptado en los capitulos anteriores, pues este resulta, por
un lado, mas apropiado para expresar las condiciones iniciales en las que pueden

hallarse las impurezas y, por otro, por razones numéricas que vuelven el tratamiento
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en otro formalismo numéricamente prohibitivo. El tratamiento en este formalismo
revel6, como observamos oportunamente, la existencia de una jerarquia infinita de
ecuaciones que, a primer orden fuera de la aproximacion de campo medio, acoplan
las matrices densidad electréonicas de cada impureza a aquellas que describen
interacciones entre pares de impurezas y entre el electron y dos impurezas distintas.
Siguiendo a Thurn y Axt, truncamos esta jerarquia a primer orden, suponiendo que
el sistema es diluido y que estas interacciones que involucran mas de una impureza
no son apreciables. Nuestro analisis numérico de este truncamiento, expuesto en
la §4.4] revel6 que el truncamiento a primer orden reproduce adecuadamente la
dindmica de observables como el impulso angular del electrén y la magnetizacion
de las impurezas en casos simples en que el tratamiento exacto de la ecuacién de
Schrodinger es factible. Sin embargo, ain en estos casos, la dindmica del sistema
truncado no es Hamiltoniana, pues no preserva la semidefinitud positiva de las
matrices densidad. En efecto, observamos en la Fig. que el menor autovalor de la
matriz electronica se hace negativo tan pronto como se producen unos pocos pasos
de integracion, excepto en un caso en el que el truncamiento reproduce exactamente
el resultado esperado. Esto restringe el rango temporal en que el truncamiento
es confiable en casos en que no existe (0 no es posible hallar sencillamente) una
solucion exacta con la cual comparar la aproximada. No obstante, es notable que,
aun con este inconveniente, el truncamiento reproduzca las simetrias del sistema y

sus efectos en los observables.

Nos adentramos, finalmente, en nuestro objetivo inicial y agregamos al sistema
de electréon e impurezas la interaccion espin-érbita de Dresselhaus. Optamos por
esta interaccion, en lugar de la de Rashba, porque, de las dos, es la que depende tni-

camente de las propiedades del semiconductor, de la geometria y del confinamiento,
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y no es controlable externamente. Sin embargo, dada la similitud entre las formas
funcionales de ambos Hamiltonianos (ver , esperamos que los resultados con
una u otra interaccién sean también cualitativamente similares.

Comenzamos, en la §5.2] analizando la dindmica sin interaccién espin-érbita
cuando el nimero de impurezas es suficientemente grande para ser fisicamente
interesante y, a la vez, numéricamente tratable sin recurrir a aproximaciones sobre
la ubicacion de las impurezas. Estas tiltimas son necesarias cuando su niimero es tan
grande que resulta conveniente reemplazar la nocién de distribuciéon de impurezas
por una densidad (homogénea), como sucede en el bulk.

Para nuestro tratamiento elegimos un semiconductor particular, el ZnSe, y
valores tipicos para un anillo delgado. Los parametros para este material son
similares en otros materiales para nuestra geometria, por lo que es esperable que
los resultados obtenidos en este caso sean representativos de estos otros. Vimos que
la interaccion de intercambio es comparativamente pequena frente a la escala de
energia de los estados acimutales del electron en el anillo, por lo que la dindmica de
éste (y, por tanto, la de transferencia de impulso angular de espin hacia y desde las
impurezas) queda concentrada en un subespacio de Hilbert compuesto por estados
electronicos que, en ausencia de toda interaccion, serian degenerados. Notamos,
ademas, que la distribucion de impurezas no altera notoriamente la ocupacién
total de los niveles de impulso angular orbital definido (y, por tanto, no afecta
notoriamente la dindmica de éste), pero si impacta en la dindmica de transferencia
de impulso angular de espin, a pesar de que este impacto no se perciba en los
resultados, debido a las restricciones metodolégicas antes mencionadas.

Finalmente, en la agregamos la interaccion de Dresselhaus y observamos

que, debido al confinamiento, esta era del orden de la escala de energia de los
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estados acimutales de la banda libre. Esto, y el conocimiento adquirido en el Cap.
nos permiti6 abordar el problema como lo hicimos en la §5.2] Observamos, como
esperabamos, que la interaccién de intercambio sélo conecta estados de Dresselhaus
degenerados, y que la dindmica del electréon, como antes, queda confinada al
subespacio definido por éstos. Dedujimos, por tanto, que la dinamica en casos mas
generales, cuando el espin del electron comienza polarizado fuera del eje del anillo,
puede estudiarse teniendo en cuenta tinicamente los bloques de Dresselhaus que
intervienen en la descomposicién de este estado inicial. Notamos que la presencia
de la interaccion de Dresselhaus obstaculiza notoriamente la transferencia de espin
de los electrones a las impurezas, debido a la preeminencia, en el caso estudiado, de
las transiciones entre estados de un mismo bloque, que provocan una inversién del
espin a una frecuencia mucho mas alta de la asociada a la transferencia de impulso
angular entre el electréon y las impurezas. Si vemos al electron como nuestra fuente
de impulso angular para magnetizar a las impurezas, notamos que la interaccion
de Dresselhaus desvia, en cierta forma, este recurso. Creemos que incrementar el
numero de impuerzas modificaria estos resultados, pues permitiria a la interaccion
de intercambio competir con la de Dresselhaus. Sin embargo, enfatizamos que, esto
requeriria aplicar una aproximacion adicional al esquema de truncamiento utilizado.
Incluir la interacciéon de Rashba es otro camino a explorar, pues la posibilidad
de controlarla externamente permitiria incluir una dependencia temporal en el
Hamiltoniano, o bien, como vimos en la §3.3] involucraria en la dindmica otros
bloques de Dresselhaus no presentes en la descomposicion del estado electrénico

inicial. Esto, sin duda, volveria la dinamica mas rica e interesante.

Dejamos estas opciones como caminos a explorar en trabajos futuros, como asi

también estudiar la posibilidad de paliar, evitar o hallar una solucién numéricamente
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viable al problema hallado en el método de truncamiento.
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Apéndice A

Anillo delgado

En este apéndice detallamos las justificaciones que sostienen algunos de los
resultados utilizados en el Capitulo [2| Las derivaciones completas y formales pueden

hallarse en las referencias ya citadas.

Inversiéon temporal del Hamiltoniano efectivo

La operaciéon de inversion temporal usualmente se define a través de la accién
de un operador © sobre otros operadores (asociados a observables) del sistema [40].
Las que aqui necesitamos son las siguientes:

OpO~' = —p
(A1)

OsO ! = —s.

La ultima de ellas se verifica para particulas de espin semientero, como el electron
de nuestro caso. En particular, cuando se trata de fermiones de espin 1/2, esta

relacion conduce a una forma explicita para © cuando este actiia sobre el observable
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s l40]a

© = no,C. (A.2)

En esta féormula, 1 es una fase constante, || = 1, o, es la conocida matriz de
Pauli, y C el operador de conjugacion, que actiia sobre un escalar, un vector o
una matriz conjugando sus componentes. De estas relaciones se observa que el
término de energia cinética en H, es invariante ante la acciéon de O, y que los
términos provenientes de p - s también lo son, pues los signos que ambos introducen

al conmutar con © se cancelan mutuamente.

Propiedades de U(p,0)

Por analogia con su par temporal de la ecuacion de Schrodinger dependiente del
tiempo, el operador U(p, 0) puede escribirse como una serie cuyos términos derivan
de integrar sucesivamente (esto es, «por partes») una propuesta de solucion a la
ec. (2.14)). Esta serie —conocida como serie de Dyson [40], [50]— habitualmente se
expresa de forma compacta a través del operador exponencial y de un operador T

que tiene en cuenta el orden en que debe realizarse la integracion a fin de respetar

la relacion (2.16) [40]:

El operador 7 toma usualmente el nombre de operador de ordenamiento temporal y
aqui refiere a la variable angular ¢. Notemos que esta expresién garantiza que U(0, 0)
sea el operador identidad. Puesto que la operacion de conjugacién hermitiana no

interfiere con el orden de integracién (pues ¢ es siempre real), es posible observar a
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partir de esta serie, o de su expresion compacta, que U(p,0) es unitario si F'(p) es
antihermitiano.

El determinante de U(y, 0) se obtiene a partir de la férmula de Liouville [43]:
det U(p,0) = exp /(p tr F(¢') d¢' =1, (A.4)
0

y es independiente de ¢, pues la traza de F(p) es nula para todo ¢. Nuevamente,
esto es consecuencia de las propiedades de las matrices de Pauli que componen este
operador, pues tro; =0, (i = z,y, 2).

Asi, en todo el anillo U(y,0) es unitario y su determinante es la unidad, y
admite ademas una representaciéon matricial de 2 x 2, pues opera sobre espinores
de espin 1/2. Estas tres propiedades convierten a este operador en un elemento del

grupo SU(2) [60]. Los autovalores de U(2, 0) satisfacen, entonces,

det U(2m,0) = p1p- = [px| = 1; (A.5)
y sus autovectores asociados son ortonormales,

XL0)xs(0) = 8o (5,8 = %), (A.6)

pues, por ser unitaria, U (27, 0) es diagonalizable. De aqui se deduce que los espinores

X+ () son ortonormales punto a punto en el anillo, ya que

Xi(@)Xs’(QO) = Xl(())UT(SD’ O)U(907 O)Xs’(o) = 05y (A7)

Ortonormalidad de las funciones de Mathieu

Las funciones de Mathieu de orden entero son ortogonales en el intervalo que

cubre el anillo [45]. Las de orden no entero también lo son en el mismo intervalo
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pero por extension, ya que satisfacen, si v es real [45],

| el () mes o (9) dp = o (A8)

siendo aqui n y m numeros enteros. En el intervalo 0 < ¢ < m, esta relacion
requiere que la diferencia entre los 6rdenes de las funciones involucradas sea par. Si
extendemos el intervalo de ¢ a todo el anillo, se hace posible incluir las funciones
cuyos ordenes difieran en un nimero entero, independientemente de su paridad.
Para ver esto, notemos que

2

0 me;er(SD) meVJrn(SD) dp =

27

/ me;, .. () me, (@) dp + / me;, . () me, (@) dp =
0 m (A.9)

| mel (@) mey () dp+ [ mel (o 4+ m)me, s (a + 1) da =

(14 mm) [Tmne () mes () dip

En el ultimo paso hemos utilizado la propiedad mencionada en la ec. . La
ortogonalidad entre las funciones propuestas depende, como antes, de la diferencia
n — m. Si esta es par, entonces estamos en el caso conocido . Si, en cambio,
la diferencia es impar, se anula el factor que acompana a la integral, aunque esta

ultima pueda tomar un valor no nulo.

Convergencia de la serie de Magnus

La convergencia de la serie que describe perturbativamente al operador Q(¢p)
que consideramos en depende, naturalmente, del «Hamiltoniano» iF(y)/2E,

que rige la ec. (2.14)). Blanes et al. [50] proveen el siguiente criterio para decidir
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sobre la convergencia de esta serie en el intervalo 0 < ¢ < ¢

I
55 IIF@k dg <. (A.10)

Si bien en la §2.4 no hemos impuesto restricciones sobre el intervalo en el cual toma
valores ¢, para aplicar este criterio supondremos razonablemente que este cubre al
anillo s6lo una vez; es decir, tomaremos 0 < ¢ < 27.

La norma espectral ||F(p)||s queda determinada por las constantes de aco-
plamiento « y 3 a través del radio espectral de F(¢), p[F(p)] [88], que puede

acotarse:

IF(@)lle = Vo [F@F(@)] = o P2 < ot Bl (A1)

Si consideramos que estos valores tipicamente son los de la tabla (2.1]), y tomamos
para uno de los parametros el mayor de los que alli listamos (0.181 meV nm para

el InAs, en las condiciones dadas en el epigrafe de la tabla), observamos que

1 2m _ _
ﬁ/ |1F(p)|]2 dp < 2m|a+ f| < drmax{|al|, ||} = 0.7247 < 7m.  (A.12)
o /0
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Apéndice B
Dinamica en el anillo

En este apéndice detallamos las operaciones que dan lugar a algunas de las

conclusiones mencionadas en el Capitulo [3]

Conservaciéon de J, y L, — s,

Nuestro objetivo es mostrar que [Hg, J,] = [Hgr, L, + s.| = [Hp, L, — s.] =0,
donde Hi y Hp son los Hamiltonianos de Rashba y Dresselhaus que presentamos
en la ec. 3.2l

Notemos que [L., s.] = [L., 04+] = 0. Para obtener las igualdades buscadas, basta,
entonces, con calcular [py, L,] v [04, s.], y mostrar que [Hg, L,] = —[Hg, s.] y que
[Hp, L.] = [Hp, s.]. No es dificil obtener la relacién|[o, s,] = For manualmente,
por lo que sélo mostraremos en lo que sigue el calculo de los conmutadores [p4, L.].

Repetimos aqui, por claridad, la forma general de los primeros, que presentamos

en la ec. 2.3

pe = —ihet¥ (aT + iQa) . (B.1)
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Puesto que L, = —ihd,, los conmutadores [pi,d,] = ih ! [ps, L.] resultan:

[ps.0,) = psd, +ih (Fie™? + 90, (ar + ;a@)
= p£0, + Fhe* <8r + ;8w) + ihet? <ar + ;aw) 9, (B2

- p:l:agp + :Fheiw) <ar + r@ga) - p:i:atp = F1p+.

De este resultado y del deducido para el conmutador [0, s,], observamos que:

[Hp, L] = i% (Ip- Lo = [pr, L)) = ia(p-os +pio-)
= —ia(p_(—0y) — pyo_) = —ia(p_[oy, 5. = pilo_,s])  (B3)
= —[Hg, s:].
Y, de forma similar, obtenemos:
(H, L) = 2 (1ps Lo + oo L) = Blp-o— — peo)
= B(p-o-+pi(—04) = Bp-lo—,s.] +pilos,s.]) (B

= [HR7SZ] .

Independencia de (s.(t)) respecto de |/|

Consideremos un estado arbitrario [¢)) de la forma dada en la ec. y
perteneciente a un sistema de dos niveles de autovalor L, + s, constante. El mismo
argumento puede aplicarse para un estado del mismo tipo pero de autovalor L, — s,
constante. El operador de evolucion temporal es el correspondiente al caso de
Rashba, Ug(t,ty), y su forma es la presentada en la ec. . El estado del electron

a tiempo 0 <t es |[¢(t)) = Ug(t,0) [¢), y el valor de expectacion del operador s,
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sobre este ultimo es:

(W(t)]s:[9 (1)) = (Pls:|v) cos*(Qpt)
+ (Y]iQ% [0 - 7, 5:][¢) cos(Qrt) sin(Qpt) (B.5)
+ Q5% (Yng - Fs.ng - G| sin®(Qgt).
A partir de la ec. se deduce que ((t)|s,|1(t)) alcanza sus extremos para

valores de 2zt que satisfacen la condicion:

(V]I ng + &, 5.]|1)
(W]s:|0) — Qp° (g - Fs.np - F|Y)

(Wloylp) hfJwd +wh  +1/2

~ 2wg (Vs [9) + hwo (Dlo ) €+ 1/2]

Notemos que, si ¢ # 0, el término del lado derecho depende tinicamente del signo

tan(2Qgt) =
(B.6)

de ¢, que coincide con el de ¢ + 1/2. Esta dependencia proviene del numerador, y
no se traslada al valor de (1(t)|s,|¢(t)) cuando se insertan en la expresion de la
ec. los valores de 2{2zt obtenidos al invertir la relacién . La eleccion de
un ¢ particular modifica la ubicacién de los extremos, pues modifica la frecuencia

Qg, pero no la amplitud que alcanza (1(t)|s,|i(t)) en ellos.
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Apéndice C

Interaccion entre electrones e

impurezas sin SOI

En este apéndice desarrollaremos dos calculos: el primero nos permitira justificar
la posibilidad de incluir las correlaciones 6(P'P!") en el sistema de ecuaciones de
Heisenberg truncadas, sin que esto extienda la jerarquia mas alld de matrices
densidad de dos y tres particulas. El segundo, en cambio, justifica el hecho de
que la dindmica de todas las impurezas es idéntica cuando se dan conjuntamente
las condiciones de que, primero, estas se distribuyen sobre el anillo formando un
poligono regular de Ny, lados; segundo, adoptan el mismo estado puro inicial;
y tercero, el electron comienza polarizado y en un autoestado de OAM definido:

[€,0).

119
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Inclusion de las correlaciones 9§ (PI P]/>

Las ecuaciones de Heisenberg para las cantidades (P! P"") solamente involu-
cran conmutadores de la forma [PTPT, PI"]. Estos conmutadores generan términos
proporcionales a PIP!"| como puede verse de la definicién de las P! dada en la
ec. ([#4). La evolucién temporal de cada (PP (I # I'), depende, en conse-
cuencia, Unicamente de matrices densidad de tres particulas (czm Ctyoy PTPT). Por
tanto, no es necesario despreciar el término 0(P'PT") (I # I') en la expansién de
langlec}, . ct,0, PTPT') dada en la ec. ({.10). En consecuencia, agregar la dinimica
de (PIP! '> al conjunto de ecuaciones truncadas no requiere expandir este a matrices
densidad de mas de tres particulas. Dicho de otro modo, para truncar la jerarquia
en este caso sélo es necesario despreciar en Q' las correlaciones §(c} . cr0y PTPT).
Notemos, finalmente, que los operadores P! conmutan con cualquier operador
electronico ¢y, por lo que la dindmica de los mismos es generada tnicamente por

el Hamiltoniano de exchange Hgy.

Dinamica acompasada de las impurezas

Supongamos que las impurezas estan ubicadas en los vértices de un poligono
regular de Ny, lados y consideremos una rotaciéon R del grupo de simetria de
este poligono regular. La operacién RHR' sobre el Hamiltoniano total no afecta
los operadores escalares Hy v S;+s en H, pero si traslada los argumentos de los
potenciales delta de Dirac en un multiplo de 27/Nyp,. Esta traslacién sobre el
anillo es ciclica, y es equivalente a una permutacion ciclica de las impurezas que

las reubica en distintos vértices del mismo poligono, pues la operacion mueve los

120



@1 a otros ¢ (mddulo 27).

El Hamiltoniano rotado puede, obtenerse, por tanto, a través de esta permutacion
equivalente, que modifique los indices de las impurezas en H, sin trasladar los
argumentos de los potenciales tipo delta. En otras palabras, la operacién RHR' es
equivalente a OrH OAE para algin Or que cambie las «etiquetas» de Sy sin afectar

los parametros ;.

El operador de permutaciéon Or puede expresarse como composicién (producto)
de operaciones de permutacion de a pares, que sélo intercambian dos impurezas.

Definimos estos operadores como:

OII’ = Z PT{ pr (C.1)

1n2= n2ni’
ninz

Notemos que Oy = Op; = O[_Il,, como es requerido.

Con estas herramientas, descompongamos la rotacion R en un producto de dos
rotaciones: R = RoamBRsan. El primer factor a la izquierda actta sobre el OAM
del electron, y por tanto depende tinicamente de L., mientras que el segundo actia
solamente sobre el SAM total del espin y de las impurezas. Consideremos, ahora, el
estado [10) = |¢,0) [Mn) - - - |[Mn). En este, como siempre, |¢, ) es un autoestado de
los operadores electrénicos L, y s,, con autovalores £ y o, respectivamente; y |Mn)
es un estado de una impureza, repetido Ny, veces en el producto. Observemos que
1) es un autoestado de Roan y de Or para cualquier rotacién R, pues intercambiar

cualquier par de |Mn) en |¢) no modifica este tltimo.

Llamemos U(t, ty) al operador de evolucién temporal y ST la componente z del

121
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operador Sy en el picture de Schréodinger. Podemos escribir, entonces:

@UTSIU) = ($|ORRUTRIOrSIORRU R Ogly)

= (Y| REamUTS! U Rsam|v)

= (Y[REAUTS! U Rsamil)

= (WIUTSIUY)
En esta expresion hemos omitido, por simplicidad, la dependencia temporal de
Ul(t, to). La segunda igualdad del miembro derecho es consecuencia, por un lado,
de que el operador S! conmuta con cualquier rotacién R paralela al eje del anillo:
[S., R] = 0; y, por otro, de que la operacién Or modifica el indice de S!. v por
tanto traduce este operador en otro S, para algtn par (I,1') (I # I'), esto es:
OLS 1 Or=25 5. La cuarta igualdad, en cambio, se sigue del hecho de que el operador

H es un operador escalar frente a cualquier rotacion que involucre al espin total,

por lo que [H, Rsam] = 0.
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