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Interacción de electrones e impurezas magnéticas en anillos

semiconductores delgados con interacción espín-órbita

Resumen

Estudiaremos la dinámica cuántica del momento angular generada por las

interacciones espín-órbita (SOI) de Rashba y Dresselhaus, y de intercambio

(exchange) entre un electrón de conducción y un conjunto de impurezas

magnéticas, en un anillo cuántico semiconductor delgado. Nuestro objetivo

es comprender la conversión de impulso angular orbital (OAM) en impulso

angular de espín (SAM) electrónico, y la reconversión de éste al SAM de los

electrones en la capa exterior de las impurezas mediante la interacción de

intercambio. Buscamos contribuir a la búsqueda de mecanismos de magneti-

zación efectiva del sistema de impurezas mediante portadores de carga y sin

la utilización de campos magnéticos externos.

Comenzamos resolviendo el problema de autovalores para el electrón en

el anillo sin impurezas y bajo la acción de ambas SOI. Luego, estudiaremos

la dinámica de conversión de OAM a SAM electrónico generada por las SOI.

Incluiremos luego las impurezas pero omitiremos las SOI, a fin de estudiar

la conversión de SAM electrónico en SAM de cada impureza individual y

la relevancia de la mediación electrónica en la magnetización del sistema

total de impurezas. Finalmente, tomaremos un semiconductor II-VI típico y

estudiaremos cómo la interacción de Dresselhaus afecta la magnetización de

las impurezas.

Palabras clave: anillos cuánticos, semiconductores magnéticos diluidos, inter-

acción espín-órbita, Rashba, Dresselhaus



Interaction between electrons and magnetic impurities in semiconductor

Quantum Rings with spin-orbit interaction

Abstract

We study the quantun dyamics of the orbital and spin angular momenta

(OAM and SAM, respectively) of a conduction electron subject to the Rashba

and Dresselhaus spin-orbit couplings (SOI) in a narrow quantum ring doped

with few magnetic impurities. We aim to analyze the conversion of OAM into

electronic SAM and its subsequent conversion into SAM of the electrons in

the outer d shell of the impurities through the sd-exchange interaction. We

seek to contribute to the search for mechanisms to magnetize the impurities

using only the electron’s OAM, without recourse to external magnetic fields.

We begin by solving the time-independent Schrödinger equation for the

electron subject to the SOI only. We then study the OAM-to-SAM conversion

dynamics induced by both interactions. We then add the impurities but

neglect the SOI altogether, so as to study the relevance of the electron in the

conversion of electronic to impurity SAM and to the magnetization of the

system as a whole. We assume the impurity density to be small so that the

system can be studied without resorting to mean-field theories. Finally, we

pick a typical II-VI semiconductor and study how the Dresselhaus interaction

affects the magnetization of the impurities.

Keywords: quantum rings, dilute magnetic semiconductors, spin-orbit inter-

action, Rashba, Dresselhaus.
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Capítulo 1

Introducción

1.1. Objetivos y motivación

El propósito de este trabajo es estudiar la dinámica de la transferencia de

impulso angular entre un electrón de conducción sujeto a la interacción espín-órbita

(SOI), y un conjunto de impurezas magnéticas en semiconductores nanoscópicos de

geometría anular (quantum rings o QR). Estos sistemas son un caso especial de

los conocidos como semiconductores magnéticos diluidos o DMS por sus siglas en

inglés.

La motivación principal tiene su origen en la posibilidad de generar electrones de

conducción con impulso angular orbital (OAM) definido a través de la interacción

con vórtices ópticos [1], esto es, pulsos de luz que portan impulso angular orbital

definido [2], especialmente en geometrías apropiadas como dots cilíndricos [3, 4], y

las que nos ocupan en este trabajo [5, 6].

La generación de vórtices ópticos de distintos perfiles es realizable en la práctica

[7-11], y la observación teórica de que estos podrían utilizarse para excitar electro-
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1. Introducción

nes en un estado de OAM deseado es de interés en espintrónica. El interrogante

fundamental es: si se dopa un semiconductor (por ejemplo, el ZnSe) con impure-

zas magnéticas (usualmente átomos de manganeso), ¿puede el impulso angular

electrónico convertirse, mediante algún mecanismo, en magnetización efectiva del

conjunto de impurezas?

Desde la perspectiva teórica, la interacción de intercambio entre el espín de los

electrones localizados de las capas externas de las impurezas magnéticas (en el caso

de Mn, la capa d externa), y el propio de los de conducción ha sido extensamente

estudiada [12-14]. Veremos en la §1.2.3 que el modelo usualmente adoptado supone

que esta interacción es de «contacto», es decir, que ocurre en la vecindad de

cada impureza individual [12, 13, 15, 16]. Si bien este modelo acopla la densidad

electrónica al intercambio de espín entre el electrón y las impurezas (gracias al

potencial de contacto —cuya forma funcional es del tipo delta de Dirac— que decae

rápidamente fuera de la vecindad de cada una de ellas), la forma en que lo hace

conserva el impulso angular de espín (SAM) total y no produce necesariamente un

efecto neto de transferencia entre el OAM electrónico y el SAM de las impurezas

en casos de interés, como se verá en los Caps. 4 y 5.

En este trabajo exploraremos uno de los posibles mecanismos para vincular

el OAM electrónico al SAM de las impurezas, que consiste en estudiar la acción

conjunta de las interacciones de intercambio y espín-órbita. En estructuras de una

o dos dimensiones como las que consideraremos, la interacción espín-órbita puede

ser intrínseca al material, como sucede, por ejemplo, en los semiconductores de

estructura zincblenda en los que nos concentraremos; o puede producirse por la

presencia de un campo eléctrico macro o mesoscópico externo. En el primer caso, la

interacción espín-órbita da origen al término de Dresselhaus [16, 17], y, en el segundo,
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1.1. Objetivos y motivación

al término de Rashba [16, 18]. Como se verá en la §1.2.2, el término de Dresselhaus

en estructuras bidimensionales depende exclusivamente del semiconductor y del

confinamiento en la dirección de crecimiento del material, por lo que no puede

omitirse y puede ser de importancia en estructuras muy confinadas; mientras que

el término de Rashba, al menos en los casos considerados aquí, es, hasta cierto

punto, controlable externamente

Tomaremos, entonces, al espín del electrón como intermediario entre el OAM

del mismo y el SAM de las impurezas, y estudiaremos cómo la SOI afecta esta

transferencia y si la ayuda u obstaculiza.

Seguiremos a este efecto un esquema constructivo, por lo que estudiaremos cada

aspecto del problema de forma separada. Estudiaremos primero el anillo delgado sin

impurezas pero con ambos tipos de SOI. En el Cap. 2 resolveremos la ecuación de

Schrödinger independiente del tiempo para un electrón en el anillo y estudiaremos

las características principales de los autoestados y autoenergías. Dedicaremos el

Cap. 3 a la dinámica del electrón bajo estas interacciones. Posteriormente, en el Cap.

4, analizaremos la dinámica de intercambio de SAM entre el electrón y las impurezas

en el QR, suponiendo las SOI ausentes. Finalmente, incluiremos la interacción de

intercambio y la SOI de Dresselhaus para estudiar en el Cap. 5 en qué medida el

espín del electrón puede actuar como mediador. Puesto que nuestro objetivo es

comprender cada aspecto en detalle, simplificaremos nuestro análisis suponiendo

en todo momento un único electrón de conducción. Esta suposición simplifica

notablemente el problema, pues permite ignorar la interacción de Coulomb entre

electrones, sin por ello afectar el objetivo central de este trabajo.

A continuación ampliaremos breve pero detalladamente el marco teórico y

experimental en que se encuadra este trabajo.
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1. Introducción

1.2. Marco teórico

1.2.1. Aproximación de función envolvente

Una hipótesis central de la descripción de un sólido cristalino es la periodicidad

espacial ilimitada. Esta periodicidad requiere no sólo que el material sea homogéneo

en su composición, sino también que el mismo carezca de bordes o limitación alguna.

Por ello, al considerar apartamientos tanto en la pureza del semiconductor (por

ejemplo, mediante la inclusión de impurezas sustitutivas [19]) o en su geometría

(por ejemplo, suponiéndola limitada en el espacio), esta periodicidad absoluta se

pierde [19]. Usualmente, estos apartamientos del cristal ideal se realizan a través

de la inclusión de un potencial V (r) que modifica o rompe la simetría de traslación

original. Es importante mencionar que V (r) no necesariamente es un potencial

externo al cristal, puede bien ser interno: por ejemplo, el coulombiano proveniente

de una impureza iónica [19]. El Hamiltoniano total puede expresarse, así, como:

H = H0 + V (r), (1.1)

donde H0 es el Hamiltoniano del cristal ideal. La ecuación de Schrödinger que

determina los autoestados Ψ(r) de este Hamiltoniano es naturalmente más difícil de

tratar. Sin embargo, cuando V (r) varía suavemente en el cristal, es posible aplicar

el método que describiremos a continuación, que permite hallar, de forma indirecta,

los Ψ(r) y sus energías asociadas.

Supongamos que el número de celdas primitivas N del cristal es tan grande que

el conjunto de vectores de la red de Bravais {Ri}1≤i≤N puede aproximarse como

continuo, y expresemos los autoestados del Hamiltoniano (1.1) como

Ψ(r) = 1√
N

∑
n,i

Cn(Ri)Wn(r − Ri); (1.2)
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1.2. Marco teórico

en términos de las funciones de Wannier [20, 21]

Wn(r − Rj) = 1√
N

∑
k
e−ik·Rjψnk(r) (1.3)

con n el índice que numera las bandas En(k) y ψnk(r) la función de Bloch de la

banda n. Los coeficientes Cn(R) son conocidos como funciones envolventes [19].

La utilidad de expandir los estados Ψ(r) de esta forma se verá en seguida, pero

por el momento notemos que H0 satisface las relaciones:

(Wn(r; Ri), H0Wn′(r; Ri)) = δijδnn′En(k) ↔ δijδnn′En

(
−i ∂
∂R

)
, (1.4)

donde (·, ·) es el producto interno en el espacio de Hilbert. La identificación de k

con el operador −i ∂/∂R es posible siempre que R (y, por tanto, k) sean supuestos

como continuos. En este caso, es posible mostrar [19] que las variables R y k son

asociables a operadores conjugados, que guardan entre sí relaciones de conmutación

similares a las del impulso p y el operador posición r verdaderamente continuos.

Esto es,

R ↔ i
∂

∂k y k ↔ −i ∂
∂R . (1.5)

Supongamos entonces que el potencial V (r) varía suavemente y expandámoslo

en serie de Taylor alrededor del vector Ri de una celda en particular:

V (r) = V (Ri) + (r − Ri) · ∇V (Ri) +O
(
|r − Ri|2

)
≈ V (Ri); (1.6)

Si las variaciones de este potencial son muy pequeñas dentro de cada celda, es

razonable aproximarlo por el término de orden cero en cada una de ellas. Así, si

a0 es una longitud característica de la celda (por ejemplo, la longitud del vector

primitivo más largo), y suponemos que

a0|∇V (r)| ≪ V (r) (1.7)
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1. Introducción

Podemos considerar que V (r) ≈ V (R), interpretando ya R como una variable

contínua.

Juntemos ahora esta aproximación para V (r) con las relaciones de la ec. 1.4, y

notemos que podemos convertir la ecuación de Schrödinger para los Ψ(r), en una

ecuación de Schrödinger sobre las funciones envolventes (los coeficientes Cn(R)):

[En(k) + V (R)]Cn(R) = ECn(R). (1.8)

Si consideramos únicamente los estados de Bloch ψnk(r) próximos a un extremo

de la banda de conducción, (digamos, el punto Γ, o k = 0, en algunos semiconduc-

tores), y suponemos, además, que la banda alrededor de este punto es isótropa y

homogénea, podemos expandir En(k) en serie de Taylor como sigue:

En(k) ≈ En(k = 0) + ℏ2k2

2m∗
n

→ En(k = 0) + ℏ2

2m∗
n

(
−i ∂
∂R

)2

; (1.9)

donde m∗
n es la masa efectiva de la banda n [19]. Reemplazando esta expresión en

la ec. (1.8), obtenemos, finalmente: ℏ2

2m∗
n

(
−i ∂
∂R

)2

+ V (R)
Cn(R) = (E − En(k = 0))Cn(R) (1.10)

Es importante mencionar aquí que el mismo argumento puede utilizarse para

obtener una ecuación equivalente para la banda de valencia.

1.2.2. Interacción espín-órbita en estructuras

bidimensionales

El Hamiltoniano de interacción espín-órbita (SO) para un electrón en un átomo

proviene originalmente de la ecuación de Pauli y toma la forma:

HSO = ℏ
4m2

0c
2 (∇V0(r) × p) · σ⃗ (1.11)
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1.2. Marco teórico

donde m0 es la masa del electrón libre, c la velocidad de la luz en vacío, σ⃗ es el

vector de matrices de Pauli, y V0(r) el potencial del núcleo [16, 19].

La interacción espín-órbita se tiene en cuenta, en el estudio de sólidos cristalinos,

a través de este Hamiltoniano [16] o bien expresado en una forma general como un

término de la forma HSO ∝ L · σ⃗ [19]. En el primer caso, V0(r) es reinterpretado

como el potencial microscópico de la red cristalina.

Sea cual fuere la forma en que se modela la interacción, la adición de HSO

modifica tanto los estados de Bloch de electrones y huecos como en la estructura

de bandas, particularmente en el centro de la primera zona de Brillouin (PZB) [19].

Si HSO modifica la estructura de bandas, la forma en que lo hace es naturalmente

distinta para cada sólido en particular, pues depende de las propiedades de su

red cristalina. Esta cuestión es de importancia al momento de obtener modelos

aproximados para el Hamiltoniano del cristal, en especial alrededor de puntos de

la PZB de alta simetría como, por ejemplo, el punto Γ. En semiconductores de

estructura zincblenda, por ejemplo, HSO da cuenta de la dependencia de las bandas

de valencia respecto del impulso angular total de los portadores de carga, por lo

que la interacción espín-órbita no puede despreciarse totalmente en el cálculo de

estructura de bandas [16].

Los modelos reducidos para este y otro tipo de cálculos parten usualmente de

la ecuación de autovalores de Schrödinger:
[
p2

2m0
+ V0(r) +HSO

]
eik·ruνk(r) = Eν(k)eik·ruνk(r); (1.12)

donde k es un vector de la red recíproca. La acción de p2 sobre el factor eik·ruνk(r)

produce términos adicionales a los tres dentro del corchete que permiten llevar esta

ecuación a una que solo involucra a uνk(r) y Eν(k); es decir, a la parte periódica

7



1. Introducción

de las funciones de Bloch y las bandas [16]:

[
p2

2m0
+ V0(r) +HSO + ℏ2k2

2m0
+ ℏ
m0

k · p
]
uνk(r) = Eν(k)uνk(r); (1.13)

De esta ecuación (con o sin el término HSO) se derivan los métodos conocidos como

k · p [19, 22].

En ausencia de interacción espín-órbita, las funciones periódicas de Bloch, que

llamamos u′
νk(r), forman un conjunto completo para cualquier k = k0 fijo [16]. Esto

permite tomarlas como base en la cual expandir las funciones uνk(r) desconocidas.

Si se reemplaza uνk(r) por su expansión en la ec. (1.13), es posible convertir esta

última en un conjunto de ecuaciones acopladas que involucran los coeficientes de

la expansión de uνk(r) y los elementos de matriz del operador entre corchetes en

la ec. (1.13), tomados todos ellos sobre funciones del conjunto {u′
νk0(r)}, es decir,

sobre funciones correspondientes a distintas bandas ν. Este procedimiento permite,

por una parte, sacar a la luz el acoplamiento generado por HSO entre las distintas

bandas; y, por otra, obtener formas aproximadas al problema de autovalores a

través de la reducción del sistema de ecuaciones acoplado a otros que tengan en

cuenta los acoplamientos entre bandas más importantes. Estas reducciones del

problema dan lugar a los modelos de Kane [16, 22].

Al tratar semiconductores de estructura zincblenda, es usual realizar una apro-

ximación adicional para reducir todavía más este sistema de ecuaciones acopladas.

Esta consiste en considerar sólo los valores de k alrededor de algún punto de

importancia de la PZB, por ejemplo, el punto Γ en el que usualmente se ubica el

gap fundamental. En este caso, los valores de k satisfacen |k| ≪ 2π/a, con a la

longitud característica de la red (la constante de red, por ejemplo) [16]. Bajo estas

8



1.2. Marco teórico

hipótesis, es válido suponer:

Eν(k) ≈ Eν(0) + ℏ2k2

2m∗
ν

. (1.14)

El valor de la masa efectiva de la banda ν, m∗
ν , puede obtenerse en términos de las

constantes del problema y los elementos de matriz del operador (1.13), tomados,

como mencionamos, sobre la base de funciones de Bloch para k0 = 0 y en ausencia

de HSO, {u′
ν0(r)}. La contribución más importante a m∗

ν proviene del acoplamiento

entre las bandas más próximas y, por tanto, en el caso propuesto, de la amplitud

del gap [16]. Es importante mencionar aquí que tanto el valor del gap como el de

los elementos de matriz de los operadores en la ec. (1.13) se obtienen buscando

el mejor acuerdo entre el modelo y los datos experimentales, siempre que no sea

posible inferirlos por medio de argumentos de simetría [16].

Uno de los modelos aproximados más simples, que captura la física fundamental

[16], considera únicamente el acoplamiento entre la banda de conducción y las

bandas de valencia más próximas a esta, conocidas como de heavy-hole, light-hole y

split-off. La denominación de las dos primeras proviene de la magnitud del valor de

la masa efectiva correspondiente a los estados cerca de sus respectivos máximos;

mientras que el nombre de la segunda es debido a su menor energía respecto de las

otras dos. Estas tres bandas de valencia surgen de la separación de las bandas de

valencia originales (de tipo p) que provoca la interacción espín-órbita al acoplar

el impulso angular orbital al espín de los portadores de carga. El Hamiltoniano

resultante de este modelo de Kane particular puede expresarse en términos del

impulso k como una matriz de dimensión 8 × 8 [16, 23].

Este modelo captura dos de las formas en que la interacción espín-órbita rompe la

degeneración de espín de los estados de conducción en semiconductores de estructura

9



1. Introducción

zincblenda, tanto en volumen (bulk) como en estructuras cuasibidimensionales. Estas

dos formas son las conocidas como interacción de Dresselhaus [17] e interacción de

Rashba [18]. La primera tiene su origen en la ausencia de un centro de inversión

espacial en el potencial del cristal, es decir, en la asimetría de inversión en volumen

(o BIA, por bulk inversion asymmetry), y siempre está presente en este tipo de

semiconductores [16]. La segunda depende, en cambio, de la existencia de un

campo eléctrico macro o mesoscópico efectivo, provisto externamente o generado

por el potencial de confinamiento o por el potencial efectivo en las interfaces de

heteroestructuras [16, 24]. La asimetría generada por este campo eléctrico macro

o nanoscópico sugiere el nombre de structural inversion asymmetry (SIA) a esta

particular ruptura de la degeneración de espín.

Los argumentos de simetría mencionados anteriormente son de capital impor-

tancia para el cálculo de los elementos de matriz del modelo que indican cómo la

interacción espín-órbita rompe esta degeneración en cada caso. Utilizando teoría de

grupos y la teoría de invariantes (ver ref. [25]) es posible obtener, para la banda de

conducción, los Hamiltonianos de BIA (Dresselhaus) y SIA (Rashba) en sistemas

cuasibidimensionales (cuya dirección de crecimiento se supone la [001]):

HBIA = β(kxσx − kyσy) (1.15)

HSIA = α(kxσy − kyσx) (1.16)

donde σx,y son las conocidas matrices de Pauli. El término de Dresselhaus que

surge del modelo de Kane contiene términos cúbicos en el impulso k. A fin de

obtener un Hamiltoniano lineal en k, los factores de órdenes superiores en kz suelen

extraerse del Hamiltoniano como valores de expectación tomados sobre estados en

la dirección de crecimiento y confinamiento (supuesta aquí la [001]) de la estructura

10



1.2. Marco teórico

bidimensional [16, 26, 27]. El factor β resultante depende así del confinamiento en

esta dirección, pero por lo demás es independiente de factores externos y queda

determinado por las propiedades del semiconductor que conforma la estructura. El

parámetro α, en cambio, depende del campo eléctrico efectivo [16] y podría, hasta

cierto punto, ser controlable externamente.

Los Hamiltonianos HBIA y HSIA especializados para anillos cuánticos serán los

que utilizaremos en este trabajo.

1.2.3. Semiconductores magnéticos diluidos

Los semiconductores magnéticos diluidos (DMS) son aleaciones de elementos

semiconductores de los grupos II-VI (por ejemplo, CdTe [28]), III-V (por ejemplo,

GaAs [29]) u otros [13, 30], en las que se incluyen impurezas de un metal de

transición en bajas densidades. Típicamente, estos metales pertenecen al cuarto

periodo del grupo d (capa 3d incompleta) y presentan propiedades magnéticas. El

más ampliamente considerado, tanto en estudios teóricos como experimentales, es

el Mn [15, 30], aunque otros como el Cr [30] o el Co [14] son también utilizados. La

predominancia del Mn se debe la ausencia de impulso orbital total en la 3d, y al

hecho de que su configuración de espín es un singlete en el ground state [31].

El interés en los DMS durante las últimas décadas tiene su origen en el des-

cubrimiento de ordenamiento ferromagnético a temperaturas críticas elevadas

en compuestos dopados con impurezas sustitutivas de Mn [31] (por ejemplo, el

(In, Mn)As, cuyo ferromagnetismo fue descubierto por Munekata et. al. [32, 33]).

La posibilidad de acercar esta temperatura a la ambiente permitiría obtener un

material que combine propiedades de semiconductor y ferromagneto al mismo
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tiempo [30]. La expectativa de que esto podrías ser posible ha provocado un gran

número de investigaciones sobre los DMS en los últimos años dada la aplicación

tecnológica inmediata que estos materiales tendrían, especialmente en el área de

espintrónica [14, 31].

Como área de investigación, la espintrónica es joven. Su origen se remonta al

descubrimiento en la década del 80 de la interacción de intercambio en estructuras

metálicas multicapa y del fenómeno conocido como magnetoresistencia gigante, en

el que la conductividad eléctrica de las mismas está fuertemente ligada al estado

de espín de los portadores de carga. [14, 34-36].

La posibilidad de controlar el espín de los electrones en un semiconductor que

sea asimismo ferromagnético a temperatura ambiente, o en estructuras multicapa

de este tipo, daría lugar, por tanto, a desarrollos de nuevos dispositivos: desde

nuevas memorias no volátiles hasta mayor capacidad de procesamiento de datos con

menor consumo energético [14]. La investigación en estos materiales, especialmente

cuando el dopante es el Mn han ya generado contribuciones considerables en el

área de espintrónica [13].

No obstante, la inclusión de impurezas magnéticas en las muestras no es aún

totalmente controlable. Las complejidades en las etapas de crecimiento y preparación

de las muestras [13] o en su manipulación posterior [14] redunda en resultados

experimentales que muchas veces son controvertidos [13], y hasta en algunos casos

contradictorios, como, por ejemplo, la observación de ferromagnetismo de altas

temperatura crítica en algunos casos y su total ausencia en otros [14]. Estas

complejidades inciden naturalmente no sólo en las propiedades magnéticas de las

muestras resultantes, sino también en la comprensión teórica de las mismas [14].

Un problema de importancia en este sentido es la imposibilidad de predecir o
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controlar la posición que adoptan las impurezas, tanto a nivel macroscópico (por

ejemplo, es sabido que las impurezas pueden formar agrupamientos o clusters [14]),

como a nivel de la celda unidad de la estructura cristalina del semiconductor de

base. Es sabido que a nivel estructural las impurezas pueden adoptar posiciones

intersticiales, pero también sustitutivas. Por ejemplo, en semiconductores II-VI,

de estructura zincblenda, los Mn pueden sustituir los elementos del grupo II, o

ubicarse entre ellos y los del grupo VI [13]. En estos materiales, la concentración de

impurezas sustitutivas puede ser hasta cuatro veces más elevada que, por ejemplo,

en los III-V [14] y normalmente constituyen centros neutros respecto de la red de

base [31]. La sustitución de elementos del grupo II por Mn es posible debido a la

contribución de la capa 4s a la hibridización sp3 que forma los enlaces entre los

elementos II-VI [12]. En algunos casos, la estructura del semiconductor AIIBVI se

mantiene en compuestos ternarios de la forma AII
1−xMnxBVI en un amplio rango de

concentraciones (por ejemplo, x ≲ 0.77 para el Zn1−xMnxTe), aunque la estructura

teórica del compuesto binario formado únicamente por Mn y elementos del grupo

VI pueda ser distinta [12]. No obstante, y en términos generales, la inclusión de

impurezas en la celda modifica la estructura de bandas del semiconductor de base

añadiendo estados debajo, en, o sobre el gap (directo en los II-VI) en el límite de

alta dilución [12, 13]. Son estos DMS basados en semiconductores II-VI los más

comprendidos y estudiados históricamente [12, 14], aunque algunos III-V como

el (Ga, Mn)As han recibido mucha atención en los últimos años [13]. Por ello, en

este trabajo optaremos por DMS ternarios de la forma AII
1−xMnxBVI cuando sea

necesario.

Las importantes propiedades magnéticas de los DMS, que los diferencian de

otros compuestos ternarios no magnéticos, es principalmente debida a la interacción
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de intercambio entre portadores no localizados de conducción o valencia (tipo s

o p, respectivamente [37]) y sus contrapartes localizadas en la capa d externa de

la impureza [15]. En el modelo más simple posible, aplicable especialmente a los

DMS II-VI con impurezas de manganeso, la interacción entre estos subsistemas de

portadores localizados y no localizados es relativamente débil [15]. Esto permite

considerarlos separadamente (es decir, portadores tipo s y p, y tipo d) [12, 15], y

modelar la interacción de los no localizados con los de la capa d como dependiente

fundamentalmente del espín [15]. Esta interacción de intercambio s-d o p-d se suele

escribir en la literatura partiendo de un Hamiltoniano de tipo Heisenberg [15]:

H =
∑
i

J(r − Ri) Si · s, (1.17)

donde el índice i recorre las impurezas, ubicadas en Ri, y J(r − Ri) es un operador

efectivo que depende de tanto de la posición de la impureza, supuesta fija, como

del operador posición r del portador de carga no localizado [12, 15].

El Hamiltoniano (1.17) suele simplificarse y llevarse a uno similar al de la inter-

acción de Kondo [38]. Para ello, es usual tomar como hipótesis que las interacciones

s-d y p-d actúan en escalas espaciales del orden de la celda unidad (debido a la

localización de las impurezas y de los electrones en las capas d), que son mucho

menores que la longitud de onda característica del portador no localizado [12, 37].

A los fines prácticos, por tanto, la función de onda envolvente (ver §1.2.1) de este

último puede suponerse constante en estas escalas. Es posible, por tanto, aproximar

el operador J(r−Ri) por un producto entre una constante efectiva J y un potencial

de contacto δ(r − Ri) [37]. De esta forma se obtiene el Hamiltoniano utilizado

normalmente en la literatura:

H = J
∑
i

Si · s δ(r − Ri). (1.18)
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En DMS del tipo AII
1−xMnxBVI que consideraremos, el valor de la constante J

es en gran medida independiente de la densidad de impurezas [12], y su valor está

dado esencialmente por la competencia entre dos mecanismos que se observan en

estos materiales. Estos dos mecanismos son conocidos como potencial y cinético

[37]. El primero de ellos se halla siempre presente y decae con la distancia como el

potencial coulombiano usual. El segundo, en cambio, proviene de la hibridización de

los niveles 3d5 con los portadores tipo s o p [12, 37]. En particular, para electrones

cerca del mínimo de la banda de conducción, el mecanismo potencial predomina

sobre el cinético en estructuras zincblenda [12].

En este trabajo utilizaremos el Hamiltoniano (1.18) para incluir la interacción

de intercambio entre electrones de conducción e impurezas magnéticas en el anillo.
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Capítulo 2

Anillo delgado

2.1. Presentación

Dedicaremos este capítulo a tratar en detalle la ecuación de Schrödinger in-

dependiente del tiempo para un electrón de conducción sujeto a las interacciones

espín-órbita (SO) de Rashba y Dresselhaus bajo la aproximación de anillo delgado

desarrollada por Meijer et al. [39].

Transitaremos la discusión en orden y comenzaremos por deducir un Hamilto-

niano efectivo unidimensional en la §2.2. Posteriormente, plantearemos en §2.3 la

ecuación de autovalores que le corresponde, y propondremos y desarrollaremos en

§2.4 un procedimiento para obtener sus autoestados y autoenergías. Estudiaremos

las propiedades generales de estos estados y observaremos cómo influye la presencia

de las interacciones SO sobre los estados de conducción del electrón en muestras

accesibles experimentalmente. Deduciremos formas aproximadas para estos estados

y sus energías en estos casos en §2.5 y, finalmente, extenderemos en §2.6 el proce-

dimiento propuesto a Hamiltonianos efectivos con interacciones SO lineales en el

17
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impulso pero más generales.

2.2. Aproximación de anillo delgado

La aproximación de anillo delgado desarrollada por Meijer et al. [39] permite

deducir un Hamiltoniano efectivo de una dimensión que describa la dinámica de

baja energía de un electrón de conducción cuando la sección transversal del anillo

es muy delgada respecto de su radio. El potencial que confina al electrón a la

geometría anular determina la longitud característica de esta sección, y transforma

al anillo en un pozo cuántico de gran profundidad en la dirección transversal

[19]. En esta aproximación las energías asociadas al confinamiento se suponen

mucho mayores que las asociadas al movimiento longitudinal; especialmente a las

componentes acimutales de las interacciones espín-órbita lineales en k, HBIA y HSIA,

dados respectivamente en las ecs. 1.15 y 1.16. Si a esta aproximación se añade el

hecho de que el electrón se halla asimismo confinado en la dirección vertical, es

posible reducir el Hamiltoniano total a sus componentes longitudinales y estudiar,

así, la dinámica a lo largo del anillo separadamente. En otras palabras, es posible

aproximar la función envolvente de ground state del electrón como un producto de

«modos» verticales, transversales y longitudinales, y suponer que las interacciones

(por ejemplo, las SO) sólo excitan modos longitudinales, pero no tienen energía

suficiente para producir transiciones entre estados verticales o transversales. El

Hamiltoniano en una dimensión resulta de tomar el valor de expectación sobre

estos modos «fijos», y no depende, en el límite de alto confinamiento (límite

unidimensional) de la forma funcional del potencial confinante. El detalle de la

derivación de esta aproximación y los argumentos que la justifican se dan en el
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artículo citado arriba.

La dinámica longitudinal efectiva es entonces descripta por el Hamiltoniano

siguiente, que contiene solamente la energía cinética en esta dirección y las interac-

ciones SO lineales en p .= ℏk,

Hφ =
〈
p2
φ

2m∗ +HSO

〉
R0

. (2.1)

Aquí, R0(r) es el modo transversal de menor energía y pφ es el impulso longitudinal,

ambos expresados en un sistema de coordenadas cilíndricas (r, φ, z) centrado en el eje

del anillo. El Hamiltoniano de SO consta de los términos de Rashba, α(pxσy−pyσx),

y Dresselhaus, β(pxσx − pyσy), y puede reescribirse convenientemente agrupando

términos respecto de las coordenadas del impulso, como sigue

HSO = px
ℏ

(ασy + βσx) + py
ℏ

(−ασx − βσy) = px
ℏ

Σx + py
ℏ

Σy; (2.2)

de forma que la acción conjunta de ambas interacciones quede expresada como

una interacción SO más general y también lineal en el impulso. Este arreglo de

términos será útil en la extensión a los resultados de esta sección que presentaremos

en §2.6. En la última igualdad en la ec. (2.2) hemos definido implícitamente las

matrices Σx
.= ασy + βσx y Σy

.= −ασx − βσy. Para expresar el Hamiltoniano

HSO en coordenadas cilíndricas, utilizamos el siguiente par de operadores p±, que

definimos en términos de los impulsos cartesianos como

p±
.= px ± ipy = e±iφ(pr ± ipφ). (2.3)

Estas combinaciones particulares actúan sobre los autoestados de impulso angular

orbital (OAM) axial Lz .= −iℏ∂φ = rpφ de forma similar a como lo hacen los

operadores escalera L±. Los autoestados de Lz que respetan la simetría del anillo
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son las conocidas exponenciales trigonométricas eimφ de frecuencia m entera. Así, a

partir de (2.3) y reordenando términos nuevamente a fin de compactar la expresión,

HSO resulta

HSO = p+

2ℏ (Σx − iΣy) + p−
2ℏ (Σx + iΣy). (2.4)

Es importante notar que este operador es hermitiano, pues las matrices de Pauli

lo son, y p+ = p†
−. El valor de expectación (2.1) queda entonces determinado por

las cantidades ⟨pr⟩R0 , ⟨pφ⟩R0 y ⟨p2
φ⟩R0 . Como mencionamos anteriormente, estos

operadores no dependen de la forma funcional de R0(r) y, por tanto, siempre toman

los mismos valores, que son los siguientes

⟨pr⟩R0 = iℏ
2a,

⟨pφ⟩R0 = −iℏ
a
∂φ = Lz

a
,

⟨p2
φ⟩R0 = −ℏ2

a2∂
2
φ = L2

z

a2 .

(2.5)

El Hamiltoniano efectivo se calcula entonces reemplazando cada operador por su

valor de expectación donde corresponda en la expresión (2.1). No obstante, la forma

resultante puede simplificarse todavía más si se expanden los factores e±iφ prove-

nientes de ⟨p±⟩R0 en funciones trigonométricas, y se reagrupan convenientemente

algunos términos en un nuevo operador F (φ), que definimos aquí como

F (φ) .= i

a
(Σx senφ− Σy cosφ). (2.6)

Este operador es antihermitiano F (φ) = −F (φ)†, periódico en el anillo F (φ+2π) =

F (φ) y su cuadrado F 2(φ) es una función escalar (es decir, es proporcional al

operador identidad en el espacio de espín). Esta última propiedad deriva de las

relaciones de anticonmutación de las matrices de Pauli {σi, σj} = 2δij. Las tres

propiedades son fundamentales para sostener los argumentos que desarrollaremos

20



2.3. Ecuación de Schrödinger

en las próximas secciones. Finalmente, la expresión del Hamiltoniano efectivo con

la que trabajaremos es

Hφ = E0

ℏ2 L
2
z + i

ℏ
F (φ)Lz + i

2ℏ(LzF (φ)); (2.7)

donde E0
.= ℏ2/2m∗a2 es una escala de energía cinética longitudinal, y (LzF (φ))

es una forma compacta de escribir −iℏ ∂F (φ)/∂φ . Así escrito, el Hamiltoniano

explicita el acoplamiento efectivo entre el OAM axial y el de espín del electrón, ya

que F (φ) depende de las constantes de Rashba y Dresselhaus únicamente.

2.3. Ecuación de Schrödinger

De acuerdo con las deducciones de la sección anterior, la ecuación de Schrödinger

independiente del tiempo que determina los autoestados y las autoenergías del

electrón en la aproximación de anillo delgado es

(Hφ − E)Φ(φ) = 0. (2.8)

El autoestado Φ(φ) tiene estructura de espinor, es decir, puede escribirse como

una combinación lineal de estados ortogonales de espín 1/2 cuyos coeficientes son

funciones dependientes de la coordenada φ. Las formas funcionales de estas últimas

no están restringidas más que por la condición necesaria de que sean univaluadas

en el anillo (es decir, periódicas en 2π). Esta es la condición de contorno de la

ecuación de autovalores (2.8).

Nuestro objetivo es resolver la ec. (2.8). Para ello, supondremos que el autoestado

Φ(φ) es separable en dos factores: uno común y escalar f(φ), y otro χ(φ) que

le da su estructura de espinor. Tanto el primer factor como las componentes del
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segundo toman valores en los complejos. Por el momento, no imponemos condiciones

adicionales sobre cada factor individualmente, por lo que no perdemos generalidad

al hacer esta factorización. Insertando la propuesta en la ecuación de autovalores y

reordenando términos, obtenemos, finalmente{
E0

ℏ2 L
2
zf +

(1
ℏ
Lzf

) [2E0

ℏ
Lz + iF

]
+f

[
E0

ℏ2 L
2
z + i

ℏ
FLz + i

2ℏ(LzF ) − E
]}
χ = 0.

(2.9)

Supondremos razonablemente que el espinor χ(φ) no es idénticamente nulo, pues de

lo contrario el autoestado propuesto sería la solución trivial. Buscamos desacoplar

este sistema y tomaremos para ello χ(φ) de entre las soluciones a la ecuación

[2E0

ℏ
Lz + iF (φ)

]
χ(φ) = 0. (2.10)

Esta elección es en principio efectiva, pues anula el término proporcional a Lzf

en la ec. (2.9) y transforma el corchete que multiplica a f(φ) en un operador

proporcional a F 2(φ), es decir,

[
E0

ℏ2 L
2
z + i

ℏ
FLz + i

2ℏ(LzF ) − E
]
χ(φ) =

[ 1
4E0

F 2(φ) − E
]
χ(φ). (2.11)

El corchete entonces actúa sobre χ(φ) multiplicándolo por una función escalar que

no mezcla sus componentes, pues F 2(φ) es proporcional al operador identidad de

espín. La ec. (2.9) toma entonces la forma

{
E0

ℏ2 (L2
zf) + f(φ)

[ 1
4E0

F 2(φ) − E
]}
χ(φ) = 0. (2.12)

Puesto que χ(φ) por hipótesis es no nulo, esta ecuación se satisface para todo

punto φ en el anillo si la expresión entre llaves se anula idénticamente. Es aquí

donde se evidencia la importancia de que F 2(φ) sea esencialmente una función

22



2.4. Diagonalización del Hamiltoniano efectivo

escalar, pues entonces el único factor matricial que aparece en (2.12) es el operador

identidad, que es común a todos sus términos. Por esto, la condición de nulidad de

la expresión entre llaves define la siguiente ecuación, que involucra solamente a la

función f(φ) y desacopla finalmente el sistema:

E0
∂2f(φ)
∂φ2 + f(φ)

{ 1
4E0a2

[
α2 + β2 + 2αβ sen(2φ)

]
+ E

}
= 0. (2.13)

2.4. Diagonalización del Hamiltoniano efectivo

Si bien la elección (2.10) permite obtener dos ecuaciones independientes para

cada factor de Φ(φ), no cualquier producto de soluciones f(φ)χ(φ) será univaluado

en el anillo y conformará por tanto un autoestado. Es necesario entonces elegir

soluciones a las ecs. (2.10) y (2.13) que permitan satisfacer esta condición. Para

ordenar la discusión que sigue, trataremos cada una por separado y comenzaremos

por la primera de ellas.

2.4.1. Factor espinor χ(φ)

La ec. (2.10) puede reescribirse como sigue, si se reordenan las constantes

multiplicativas apropiadamente:

i
∂χ(φ)
∂φ

= i

2E0
F (φ)χ(φ). (2.14)

Escrita así, la ec. (2.10) se emparenta con la forma usual de la ecuación de Schrö-

dinger dependiente del tiempo (TDSE) [40]. En efecto, el operador F (φ) es antiher-

mitiano, por lo que el producto iF (φ) es hermitiano y puede entonces interpretarse

como un Hamiltoniano. La analogía con la TDSE requiere interpretar adicional-

mente la variable angular φ como un «tiempo». Esto es factible pues el intervalo de
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definición de la ec. (2.10) es el de F (φ), que no sólo cubre naturalmente el anillo,

sino que también se extiende por periodicidad a toda la recta real. Por esto, es

posible suponer que el espinor χ(φ) está definido para todo valor de φ real, aun

cuando baste con que esté definido en algún intervalo natural de la variable angular,

como 0 ≤ φ < 2π, por ejemplo.

La ec. (2.10) puede tratarse entonces aplicando todo el bagaje teórico y práctico

utilizado para tratar la TDSE. La forma general de las soluciones pueden cons-

truirse, por tanto, a partir de un operador unitario U(φ, 0), análogo al operador de

«evolución temporal» de la TDSE:

χ(φ) = U(φ, 0)χ(0). (2.15)

El «Hamiltoniano» que genera la «evolución» en nuestro caso es iF (φ)/2E0, y

presenta dos propiedades importantes: por un lado, hereda la periodicidad de F (φ)

y, por otro, satisface la relación de conmutación

[F (φ), F (φ′)] = 1
a2 (α2 − β2) sen(φ− φ′). (2.16)

Esta última tiene como consecuencia la extrema dificultad (o llana imposibilidad)

de hallar expresiones cerradas para el espinor χ(φ) o el operador U(φ, 0) cuando

|α| ≠ |β|. No obstante, existen al menos dos casos en los que el conmutador (2.16)

no se anula idénticamente y aún así es posible hallar formas cerradas tanto para

U(φ, 0) como para χ(φ). Estos son los casos puros de Rashba (β = 0) y Dresselhaus

(α = 0), en los que la aparición de una magnitud conservada (el impulso angular

total Jz .= Lz + sz en el primero, y Lz − sz en el segundo) permite diagonalizar el

Hamiltoniano efectivo Hφ por bloques de dimensión finita (2 × 2) [41, 42].

La periodicidad de F (φ) en el anillo convierte la ec. (2.14) en un problema

de Floquet [43]. Como tal, esta ecuación admite un tipo particular de soluciones,
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conocidas generalmente como pseudoperiódicas, que están definidas en el anillo (por

ejemplo, en el intervalo 0 ≤ φ < 2π) y se extienden a la recta real a través de la

relación:

χ(φ+ 2π) = e2πiµχ(φ). (2.17)

El factor e2πiµ y su exponente asociado iµ son conocidos como multiplicador y

exponente de Floquet, respectivamente. El valor de este último depende únicamente

de las constantes físicas que determinan el «Hamiltoniano» iF (φ)/2E0 [43]. El

operador U(φ, 0) también satisface una relación del tipo (2.17), pues el mismo

constituye la solución fundamental a la ec. (2.14) [43]. Esta relación se expresa

como:

U(φ+ 2π, 0) = U(φ, 0)U(2π, 0). (2.18)

Los espinores χ(φ) que satisfacen (2.17) se construyen a partir de esta igualdad,

diagonalizando el operador de un periodo U(2π, 0) y tomando sus autovectores

como condiciones iniciales χ(0) en la ec. (2.15) [43, 44]. En nuestro caso, esto puede

hacerse independientemente de las constantes involucradas en el «Hamiltoniano»,

pues el operador U(2π, 0) es unitario y por tanto diagonalizable, por analogía

con el operador de evolución temporal de la TDSE [40]. Los espinores χ(φ) así

construidos son ortogonales en cada punto del anillo. Más aún, es posible mostrar

que U(φ, 0) es un elemento del grupo SU(2) en todo el anillo, por lo que su acción

punto a punto se corresponde físicamente con una rotación del espín del electrón

(ver Apéndice A). La dirección que adopta el espín en cada punto del anillo es,

en cierto modo, una dirección «de equilibrio» en relación a la acción simultánea

de las interacciones de Rashba y Dresselhaus, que tienden a alienarlo en distintas

direcciones cuando actúan individualmente. Esto puede intuirse de la relación que
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2. Anillo delgado

guarda el espín del electrón con la magnitud conservada en cada caso: el impulso

angular total Lz + sz y la cantidad Lz − sz, respectivamente.

Los autovectores de U(2π, 0) forman una base ortonormal de dimensión dos, pues

representan estados de espín 1/2, y sus autovalores, a los que llamaremos ρ±, son

todos de módulo unitario, es decir, |ρ±| = 1. Estos últimos son los multiplicadores

de Floquet de la ec. (2.14). Es posible mostrar que los autovalores ρ± satisfacen

además la relación ρ+ρ− = 1, es decir, ρ+ = ρ∗
− (ver Apéndice A). Los exponentes

de Floquet asociados son, por tanto, imaginarios puros. Sin perder generalidad,

podemos entonces suponer que iµ+ = −iµ−, y definir, por comodidad, µ .= µ+ ≥ 0.

La ec. (2.14) admite entonces soluciones periódicas en el anillo solamente si µ es

entero.

Utilizaremos el par de espinores pseudoperiódicos (2.17) para construir los

autoestados Φ(φ), y los notaremos χ±µ(φ), explicitando su exponente de Floquet

asociado.

2.4.2. Factor escalar f(φ)

La ec. (2.13) es un caso particular de la conocida y extensamente estudiada

Ecuación de Mathieu. La forma canónica de esta ecuación es

∂2f(φ)
∂φ2 + [p− 2q cos(2φ)]f(φ) = 0; (2.19)

y se escribe en términos de dos parámetros adimensionales, p y q, cuyos valores

pueden ser complejos en general [45-47]. En nuestro caso, estos son siempre reales

pues provienen de efectuar las siguientes identificaciones:

p
.= α2 + β2

4a2E2
0

+ E

E0
, q

.= αβ

4a2E2
0
. (2.20)
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2.4. Diagonalización del Hamiltoniano efectivo

El parámetro p es conocido como autovalor de la ecuación de Mathieu [45] y no

está determinado a priori, pues depende explícitamente de la energía E asociada

al autoestado Φ(φ). El valor de q, en cambio, queda completamente determinado

por las constantes físicas del problema. Para valores reales de estos parámetros, la

ecuación de Mathieu admite soluciones pseudoperiódicas [45], usualmente denomi-

nadas meν(φ), que se definen en el intervalo 0 ≤ φ ≤ π y se extienden a la recta

real a través de la relación

meν(φ+ π) = eiνπ meν(φ). (2.21)

El exponente de Floquet iν depende solamente de los parámetros p y q. Sin embargo,

como p no está determinado aún, es posible suponer que es este último el que

depende de ν y q, es decir, que p
.= p(ν, q). Esta forma de relacionar los tres

parámetros será sumamente útil cuando busquemos satisfacer la condición de

periodicidad de Φ(φ) en el anillo. Es posible demostrar que dos soluciones del tipo

(2.21), asociadas a distintos valores de p, son ortogonales en el intervalo 0 ≤ φ ≤ π

(y, por tanto, en el anillo) si sus valores de ν asociados difieren en un número par.

En otras palabras, dos soluciones (2.21) de distinta energía son ortogonales en el

anillo. El conjunto formado por estas soluciones, {meν+2m(φ) : m ∈ Z}, constituye

una base sobre la cual puede expandirse cualquier función suave que satisfaga (2.21)

[45]. Adicionalmente, si se extiende el intervalo a uno que abarque todo el anillo, es

posible extender asimismo las relaciones de ortogonalidad e incluir en el conjunto

de funciones ortogonales a las meν+2m+1(φ), cuyos valores de ν asociados difieren

en un entero impar (ver Apéndice A).

Tomaremos, pues, la familia {meν+m(φ) : m ∈ Z} de soluciones a la ec. (2.13),

extendidas al intervalo 0 ≤ φ < 2π, y las utilizaremos para construir los autoestados
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2. Anillo delgado

Φ(φ). Notaremos cada una de ellas como sigue, explicitando su normalización y

exponente asociado:

fν+m(φ) = 1√
2π

meν+m

(
φ+ π

4

)
. (2.22)

El desplazamiento del argumento en π/4 proviene de efectuar el cambio de variable

que lleva el término proporcional a q en la ec. (2.13) a su forma canónica (2.19).

2.4.3. Construcción y propiedades de Φ(φ)

A partir de las soluciones de Floquet para cada factor, es posible construir los

autoestados Φ(φ) y obtener sus autoenergías asociadas, traduciendo la condición

de periodicidad a una condición sobre el exponente de Floquet del factor escalar.

En términos precisos, la condición de contorno sobre un Φ(φ) particular se escribe

como
Φ(φ+ 2π) = fν+m(φ+ 2π)χ±µ(φ+ 2π)

=
[
e2πi(ν+m)fν+m(φ)

] [
e±2πiµχ±µ(φ)

]
= e2πi(ν+m±µ)fν+m(φ)χ±µ(φ) = Φ(φ);

(2.23)

y se satisface si ν ± µ es entero. Esta condición determina la parte fraccionaria de

ν en términos de las constantes físicas del problema, y permite obtener, junto con

el valor de q, la autoenergía de Φ(φ) a través la relación p
.= p(ν, q). Escribimos,

finalmente, estas autoenergías como los autovalores de la ecuación de Mathieu,

E∓µ+m = p(∓µ+m, q), con m ∈ Z, y los autoestados Φ(φ) como

Φ±µm(φ) = 1√
2π

me∓µ+m

(
φ+ π

4

)
χ±µ(φ). (2.24)

Los autoestados Φ±µm(φ) presentan dos propiedades importantes. Por una parte

son, al menos, doblemente degenerados. Cuando µ ̸= 0, esta degeneración se ve a
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2.4. Diagonalización del Hamiltoniano efectivo

partir de la igualdad p(ν, q) = p(−ν, q), que satisfacen los autovalores de la ecuación

de Mathieu [45]; mientras que, cuando µ = 0, la existencia de degeneración se

deduce del hecho de que cualquier combinación de espinores periódicos es otro

espinor periódico, por lo que es posible construir dos autoestados ortogonales con

el mismo factor escalar f∓µ+m(φ) y, por tanto, con la misma energía. Podemos

escribir estos pares de autoestados degenerados como

µ = 0 : {fm(φ)χ+(φ), fm(φ)χ−(φ)}

µ ̸= 0 : {f−(µ+m)(φ)χ+µ(φ), fµ+m(φ)χ−µ(φ)}.
(2.25)

En ambos casos, esta doble degeneración es la conocida degeneración de Kramers,

y su razón física es la invariancia del Hamiltoniano efectivo Hφ ante la operación

de inversión temporal [42], que invierte simultáneamente la dirección del impulso

lineal y la orientación del espín del electrón [40], es decir, p 7→ −p y s 7→ −s. La

inversión del impulso lineal se traduce en la inversión del impulso angular orbital,

L, pero no afecta en modo alguno a la energía cinética, que es cuadrática en p.

En consecuencia, todos los términos de Hφ permanecen invariantes al aplicar estas

operaciones (ver Apéndice A). Los estados agrupados en un mismo par (2.25) están

por tanto vinculados entre sí a través de la operación de inversión temporal, es decir,

uno de ellos puede obtenerse invirtiendo el otro, a menos de un factor constante y

global de fase. Ambas orientaciones χ±µ(φ) son, por tanto, equivalentes para la

dinámica generada por Hφ.

Por otra parte, los autoestados Φ±µm(φ) dan origen a una densidad de pro-

babilidad en el espacio que depende exclusivamente del factor escalar, ya que los

espinores χ±µ(φ) son ortonormales punto a punto; es decir,

Φ†
±µm(φ) · Φ±µm(φ) = 1

2π

∣∣∣∣me∓µ+m

(
φ+ π

4

)∣∣∣∣2 (2.26)
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2. Anillo delgado

Sin embargo, estos últimos intervienen en la densidad a través de su exponente

de Floquet característico µ. Finalmente, puesto que el factor escalar me∓µ+m(φ)

satisface una relación del tipo (2.21), la densidad de probabilidad es periódica en π

y por tanto en el anillo, independientemente del valor de µ.
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Figura 2.1: Izquierda: densidad de probabilidad relativa a la uniforme para el ground
state Φµ0(φ) de un anillo delgado de InSb y radio característico a = 20 nm. Derecha:
componentes en cada punto del anillo del espinor χµ(φ) en la base de autoestados de
sz, expresados en términos del ángulo cenital de Bloch θ. Aquí, α = 2β = 20 meV nm.
Notemos que la densidad no se aparta notoriamente de 1/2π, y que la inclinación del
espinor respecto del eje del anillo es pequeña.

A modo de ejemplo, consideremos un anillo delgado de InSb (m∗ = 0.014me

[48]) y radio característico a = 20 nm. Supongamos asimismo que el electrón está

confinado por un potencial radial parabólico de intensidad ℏω = 30 meV, cuyo

modo radial de menor energía presenta un perfil gaussiano [39, 49].

Para uno de los autoestados de menor energía, Φµ0(φ), graficamos en la Fig. 2.1

las componentes del espinor χµ(φ) en la base de autoestados de sz y en función del
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2.5. Tratamiento perturbativo de las soluciones

ángulo cenital de Bloch [40]; y la densidad de probabilidad relativa a la uniforme en

cada punto del anillo. Como vemos, la densidad de probabilidad es prácticamente

constante a lo largo del anillo, y no se aparta singificativamente de la uniforme 1/2π;

y el espín del electrón en este estado parece estar orientado casi sobre el eje del

anillo. Para parámetros alcanzables experimentalmente, este ejemplo parece indicar

que las interacciones espín-órbita no modifican sustancialmente los autoestados de

la banda de conducción sin ellas. En otras palabras, los autoestados Φ±µ0(φ) no se

apartan demasiado de un autoestado de Lz y sz. Veremos en la sección que sigue

que esta observación es válida con cierta generalidad, y no sólo para los autoestados

de baja energía. Siendo entonces característico de las configuraciones experimentales

del problema, este aspecto permite calcular algunas magnitudes físicas de interés

(como la energía y los valores de expectación impulsos angulares de orbital y de

espín) en función de las constantes de acoplamiento, a través de aproximaciones

sobre las funciones de Mathieu y los espinores χ±µ(0). Describiremos dos de estas

aproximaciones en la sección siguiente.

2.5. Tratamiento perturbativo de las soluciones

Dividiremos la discusión en dos partes, a fin de centrarnos, como antes, en cada

factor separadamente.

Comenzamos por los espinores χ±µ(0) pues, como vimos, µ es el parámetro que

determina las energías del sistema. Cuando dedujimos las propiedades de estas

soluciones en la §2.4, observamos la dificultad que presentaba el cálculo de las

mismas en algunos casos y notamos que esto derivaba de la analogía establecida

entre la ec. (2.14) y la ecuación de Schrödinger dependiente del tiempo y de la
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2. Anillo delgado

relación de conmutación (2.16). Uno de los métodos existentes para lidiar con esta

dificultad de la TDSE es la propuesta de Magnus [50], que consiste en suponer la

existencia de un operador Ω(φ) cuya exponencial es el operador U(φ, 0); esto es,

U(φ, 0) = exp Ω(φ). (2.27)

El operador Ω(φ) se expresa usualmente como una serie de términos cuyos órdenes

son dados por un parámetro de control apropiadamente definido. Esta expansión

es útil en casos como el nuestro, en los que, como veremos, es posible hallar un

parámetro de este tipo, pero impone una condición de convergencia adicional que

debe cumplirse para garantizar su validez [50, 51]. En nuestro caso, dos parámetros

de control naturales son las constantes adimensionales que sugiere la ecuación

(también adimensional) (2.14):

ᾱ
.= α

2aE0
, β̄

.= β

2aE0
. (2.28)

Para valores experimentales de las constantes físicas, estos cocientes entre las escalas

de energía de las interacciones espín-órbita, α/a y β/a, y de la banda libre, E0, son

pequeños. La tabla 2.1 muestra algunos valores para semiconductores típicamente

utilizados en geometrías de una y dos dimensiones como la nuestra. Para estos

valores de ᾱ y β̄ es posible mostrar que la expansión de Magnus es convergente

(ver Apéndice A).

Consideramos entonces la propuesta de Magnus y, siguiendo el procedimiento

de Blanes et al. [50], expandimos el operador Ω(φ) a tercer orden en ᾱ y β̄ como

sigue:

Ω(φ) ≈ −in(φ) · σ + iΩ0φ. (2.29)

En esta expresión, n(φ) es un vector periódico en 2π de componentes nx =

β̄(cosφ− 1) − ᾱ senφ, ny = ᾱ(cosφ− 1) − β̄ senφ, y nz = (ᾱ2 − β̄2) senφ; y Ω0 es
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2.5. Tratamiento perturbativo de las soluciones

Material m∗/me Acop. [meV nm] Acop. adim. Refs.
GaAs 0.067 3 0.053 [52, 53]
InSb 0.014 20 0.073 [48, 54, 55]
InAs 0.023 30 0.181 [52, 56]
GaN 0.130 1 0.034 [57]
ZnO 0.186 0.115 0.056 [58]

Tabla 2.1: Intensidades de acoplamientos espín-órbita lineales en el impulso alcanzables
experimentalmente para algunos semiconductores de estructura ZincBlenda y Wurtzita
en geometrías de una (Quantum Wires) y dos (Quantum Rings) dimensiones [59]. En
esta tabla no distinguimos el tipo de acoplamiento, si de Rashba o de Dresselhaus, ya que
nos interesa mostrar valores realistas para las constantes de acoplamiento espín-órbita.
Mostramos estos valores en la columna Acop., y los adimensionalizamos en Acop. adim.
siguiendo la forma en la ec. (2.28). El lector interesado puede consultar las referencias
citadas para cada material.

un operador independiente de φ, definido como

Ω0
.= (ᾱ2 − β̄2)(2ᾱσx − 2β̄σy + σz). (2.30)

La aproximación (2.29) satisface las dos propiedades principales requeridas por

U(φ, 0): es antihermitiana, pues sus términos lo son; y cumple Ω(0) = 0. Su

exponencial es entonces unitaria en todo punto, e igual a la identidad en el origen.

Los dos términos de (2.29) no conmutan entre sí, por lo que la exponencial de Ω(φ)

no es factorizable como producto de las exponenciales de cada uno de ellos [60].

Sin embargo, este conmutador es de cuarto orden en los parámetros de control ᾱ

y β̄, pues es expresable como suma de conmutadores entre matrices de Pauli de

los cuales estos parámetros se extraen como factores comunes. Supondremos que

estos conmutadores (y cualquier otro de mayor orden) sólo introducen correcciones

pequeñas a la factorización de exp Ω(φ), y aproximaremos este operador como

U(φ, 0) ≈ exp (−in(φ) · σ) exp(iΩ0φ). (2.31)
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2. Anillo delgado

Aquí se evidencia la utilidad de agrupar los términos periódicos en 2π en un vector

n(φ) y separarlos de los lineales: al orden propuesto, el operador U(φ, 0) satisface

la relación de pseudoperiodicidad (2.18). Los multiplicadores de Floquet de los

espinores χ±µ(φ) son entonces los autovalores de exp(2πiΩ0), y sus exponentes

asociados son imaginarios puros, pues provienen del operador hermitiano Ω0.

Los autovalores y autovectores del operador Ω0 permiten entonces obtener

aproximaciones a los espinores χ±µ(φ) y a µ en términos de los parámetros de

control. Al orden más bajo, la aproximación a µ resulta:

µ ≈ ᾱ2 − β̄2. (2.32)

Notemos que la misma se anula únicamente si |α| = |β|, por lo que sólo en este

caso se tendrán espinores χ±µ(φ) periódicos en el anillo. Notablemente, cuando se

da esta igualdad, se anula el conmutador (2.16). La ecuación (2.14) es integrable

manualmente en este caso, y los espinores pueden calcularse exactamente. La razón

física detrás de esta particularidad es la aparición de una magnitud conservada que

determina una orientación de equilibrio que el espín mantiene a lo largo del anillo

[61]. En todos los demás casos, como mencionamos anteriormente, el espín adopta

distintas orientaciones en cada punto del anillo [62].

Por otra parte, la forma aproximada de los espinores χ±µ(φ) se construye

aplicando el operador (2.31) a los autovectores de Ω0, que son estos espinores

evaluados en el origen, es decir, χ±µ(0). Como cualquier espinor de espín 1/2,

estos últimos pueden describirse geométricamente sobre la esfera de Bloch a través

de un ángulo cenital θ±, que describe la inclinación del espinor respecto de la

proyección pura +1/2 de sz, y otro acimutal ϕ±, que describe la fase relativa entre

las componentes del espinor [60]. Estos ángulos, al orden más bajo, dependen de
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2.5. Tratamiento perturbativo de las soluciones

los parámetros de control como sigue

tan θ±
2 =

(
ᾱ2 + β̄2

)±1/2
, tanϕ± = − β̄

ᾱ
. (2.33)

De aquí se deduce de inmediato que los espinores ortonormales de la banda libre

(ᾱ = β̄ = 0) son los mismos autoestados de sz, como sugiere el término de orden

cuadrático en Ω0. La fase relativa ϕ±, por su parte, es la misma para ambos

espinores χ±µ(φ), y tiende a valores consistentes con los esperados en los límites de

Rashba puro (β̄ = 0) y Dresselhaus puro (ᾱ = 0) [41, 42].

Seguimos con el factor escalar. Aquí la discusión se bifurca y se presentan dos

tratamientos independientes, uno para las funciones de Mathieu periódicas (µ = 0)

y otro para las pseudoperiódicas (µ ̸= 0) [45]. Puesto que, como vimos arriba, los

espinores en el caso periódico pueden calcularse manualmente, nos dedicaremos

aquí a tratar solamente los casos no periódicos.

Las funciones de Mathieu de orden no entero (esto es, no periódicas) que

intervienen en nuestro problema pueden expandirse en serie de Fourier como sigue

me∓µ+m

(
φ+ π

4

)
=

∞∑
n=−∞

c2ne
i(∓µ+m+2n)(φ+π/4). (2.34)

Los coeficientes c2n pueden definirse en relación con c0, y tanto este último como

los primeros quedan finalmente determinados por la condición de normalización.

Cuando µ y el parámetro q de la función de Mathieu toman valores pequeños, el

comportamiento asintótico hacia valores pequeños de los cocientes c2n/c0 es descrip-

tible en términos de estos dos parámetros y del entero m [45]. Esta relación puede

expresarse de forma reducida, explicitando el factor que contribuye mayormente a

la misma, como
c2n

c0
∼ q|n|

µ+m+ n
, (n ̸= 0). (2.35)
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Notemos que q → 0 en nuestro caso, pues, de acuerdo a la definición que adoptamos

en (2.20), este parámetro es exactamente el producto de los parámetros de control,

es decir, q = ᾱβ̄. Al depender de m, el miembro derecho de la relación (2.35)

depende del estado considerado. Por ejemplo, de si se trata del ground state o de un

estado excitado, que en general corresponden a m = 0 y m ̸= 0, respectivamente.

Cuando se trata de m = 0, todos los coeficientes son pequeños pues el miembro

derecho va como qn/n, y, por esto, considerar solamente el término de frecuencia

nula (proporcional a c0) de la serie de Fourier es suficiente para obtener una

buena aproximación al factor escalar. La situación es distinta para m ̸= 0 (en

general, los excitados en este límite), pues el coeficiente c−2m, correspondiente a

n = −m, se comporta como qm/µ y bien puede no ser pequeño. Sin embargo, un

estudio numérico permite mostrar que, cuando los parámetros de control toman

los valores experimentales dados en la tabla 2.1 y si se supone que |q| < |µ|, basta

con considerar los primeros tres términos de menor frecuencia para obtener buenas

aproximaciones a cualquier estado excitado. Entendemos que una aproximación es

buena si es útil para calcular otras que aproximen con más o menos buena precisión

la dependencia respecto de los parámetros de control de cantidades físicas de interés

como la energía y las proyecciones Lz y sz de los impulsos angulares.

Por todo lo anterior, consideramos estas aproximaciones para cada factor del

autoestado Φ±µm(φ) y calculamos sobre el mismo los valores de expectación de su

energía asociada y de los operadores Lz y sz. Suponiendo |q| < |µ|, obtenemos, al
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Figura 2.2: Exponente µ, energía y valores de expectación de las proyecciones Lz y sz
de los impulsos angulares orbital y de espín, en función del acoplamiento de Dresselhaus
(β) para el ground state Φ+µ0(φ) del electrón en un anillo delgado de InSb y radio
característico a = 20 nm. La intensidad del acoplamiento de Rashba está fijado en
α = 20 meV nm. Las líneas continuas corresponden a los datos obtenidos numéricamente,
y las de guiones a los computados a través de las fórmulas (2.32) y (2.36—2.38). En todos
los casos, el rango de β̄ garantiza el cumplimiento de la condición ᾱβ̄ < |ᾱ2 − β̄2|.

orden más bajo en ᾱ y β̄,

E±µm = E0

[
(m∓ µ)2 − (ᾱ2 + β̄2) + (ᾱβ̄)2

2[(m∓ µ)2 − 1]

]
, (2.36)

⟨Lz⟩±µm = ±ℏ
[
µ±m∓ (m∓ µ)(ᾱβ̄)2

2[1 − (m∓ µ)2]2

]
, (2.37)

⟨sz⟩±µm = ±ℏ
[

1
2 − (ᾱ2 + β̄2) + (ᾱβ̄)2

1 − (m∓ µ)2

]
. (2.38)

Notemos que las aproximaciones a Lz y sz respetan las conservaciones del impulso

angular total Jz = Lz + sz y de la cantidad Lz − sz en los casos de Rashba (β = 0)
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y Dresselhaus (α = 0), respectivamente. En otras palabras, cuando β̄ = 0, el valor

de expectación ⟨Jz⟩±µm no depende de ᾱ, y, de forma similar, cuando ᾱ = 0, la

cantidad ⟨Lz − sz⟩±µm no depende de β̄.

Finalmente, aplicamos estas aproximaciones al caso realista mencionado en

§2.4.3 y consideramos el electrón en el ground state Φ+µ0(φ) de un anillo delgado

de InSb y radio característico a = 20 nm. Fijamos la intensidad de la interacción

de Rashba en α = 20 meV nm y consideramos un rango de valores de β, para

los cuales calculamos numéricamente los valores de expectación mencionados y

los comparamos con nuestras aproximaciones (2.36), (2.37) y (2.38). Presentamos

estos resultados en la Fig. 2.2.

2.6. Extensión del Hamiltoniano efectivo

En la §2.3 propusimos la factorización del autoestado Φ en un factor escalar

y otro espinor. La viabilidad de esta separación estaba fundada esencialmente en

el hecho de que el cuadrado del operador F (φ), F 2(φ), resultaba proporcional al

operador identidad en el espacio de espín. Esta propiedad permitía desvincular

la ec. (2.12) del factor espinor y llevarla a un caso particular de la ecuación de

Mathieu. Veremos en esta sección que esta propiedad no se modifica si se extiende

el Hamiltoniano de espín-órbita (2.2) a una forma más general.

El operador F (φ) está definido a partir de las matrices Σx y Σy, que son combi-

naciones lineales de las matrices de Pauli σi cuyos coeficientes reales corresponden

a los acoplamientos espín-órbita introducidos por HSO. Las propiedades de F (φ)

que observamos oportunamente no dependen de la forma particular de estas combi-

naciones, siempre que los coeficientes que intervienen en ellas sean reales. En otras
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2.6. Extensión del Hamiltoniano efectivo

palabras, Σx y Σy bien podrían ser combinaciones lineales arbitrarias sin que por

ello sea necesario modificar los argumentos esgrimidos para desacoplar la ecuación

de Schrödinger (2.8) como hicimos en §2.3.

A partir de esta observación, podemos suponer que el Hamiltoniano HSO es

más general y consta de términos de la forma αijpiσj, con αij constante y real,

indexados por i = x, y y j = x, y, z. Un Hamiltoniano de este tipo aparece al

considerar, por ejemplo, la influencia de esfuerzos de corte (strain) en el cristal [63,

64]. Es importante notar que esta generalización desestima explícitamente términos

proporcionales a pz, por lo que, en principio, la misma no invalida las hipótesis

consideradas sobre la geometría del anillo. La forma final de HSO es reducible a la

ya deducida (2.2), pero con las definiciones

Σx
.= αxxσx + αxyσy + αxzσz,

Σy
.= αxxσx + αyyσy + αyzσz.

(2.39)

Puesto que, como observamos, los valores particulares de las constantes αij no

intervienen en las propiedades de F (φ), la ecuación (2.14) que rige el factor espinor

y las propiedades de sus soluciones no se ven alteradas, pero sí se modifica la

ecuación para el factor escalar para hacer lugar a estos cambios en Σx y Σy. Esta

última resulta ahora:

E0
∂2f(φ)
∂φ2 +

( 1
8a2E0

[
Σ2
x + Σ2

y − |Q| cos (2φ+ φQ + π)
]

+ E
)
f(φ) = 0. (2.40)

Aquí, Q .= (iΣx + Σy)2 y es proporcional al operador identidad, |Q| es el módulo y

φQ = ArgQ el argumento principal del factor escalar que multiplica a este operador.

Los autoestados del Hamiltoniano efectivo Hφ son similares, en su estructura, a los

deducidos en la §2.4, y se escriben como

Φ±µm(φ) = 1√
2π

me∓µ+m

(
φ+ φQ

2 + π

2

)
χ±µ(φ). (2.41)
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2. Anillo delgado

Finalmente, el exponente µ depende ahora de todas las αij de forma no trivial. Es

probable, por tanto, que existan interacciones de tipo espín-órbita que, aun siendo

físicamente diferentes, conduzcan a autoestados similares.

2.7. Ruptura de la simetría de inversión

temporal

La presencia de un campo magnético (externo) en la región interior al anillo

rompe las simetría de inversión temporal y la degeneración asociada a la misma.

Esta ruptura se manifiesta en la forma funcional de los autoestados a través de

la modificación que el flujo magnético introduce en los exponentes de Floquet

de los factores χ(φ). Este efecto de origen topológico es conocido como efecto

Aharonov-Bohm [65], y surge, en geometrías como la nuestra, por la sola presencia

de flujo magnético en la región interna delimitada por el anillo. La ruptura de

esta degeneración es, entonces, cualitativamente distinta a la que podría surgir por

interacción dipolar directa entre el espín del electrón y un campo magnético externo

(por ejemplo, de tipo Zeeman). En lo que sigue, analizaremos este efecto para una

configuración tratable manualmente y comenzaremos desde un Hamiltoniano total

y similar al propuesto en [39]:

H = p2

2m∗ + V (r) + 1
ℏ

p · Σ⃗, (2.42)

donde V (r) es el potencial de confinamiento del anillo y Σ⃗ es un «vector» general

de combinaciones lineales de matrices de Pauli, cuyas componentes son de la forma

(2.39).
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2.7. Ruptura de la simetría de inversión temporal

ΦB
ẑ

a

b

φ

Figura 2.3: Esquema del anillo delgado y de la zona donde existe flujo magnético.

Incluimos el efecto del campo magnético al Hamiltoniano del anillo suponiendo

que el mismo es nulo sobre el semiconductor (esto es, en la región |r| > b; ver Fig.

2.3) y constante y axial sobre la región complementaria. Adoptamos, además, el

gauge de Coulomb para el potencial vector asociado A, ∇ · A = 0, y lo escribimos

en términos del flujo magnético ΦB sobre la región interna |r| ≤ b, como

A(r) = Aφ(r)φ̂ = ΦB

2πr φ̂


(
r
b

)2
r ≤ b

1 r > b.

(2.43)

Notemos que el el campo magnético es nulo sobre el anillo, pues ∇ × A = 0 en la

región r > b.

Para deducir el nuevo Hamiltoniano efectivo en presencia del campo A, basta

con expandir el Hamiltoniano original completo y observar qué términos están

presentes en este nuevo caso y ausentes en el anterior. Puesto que la inclusión de A

en el Hamiltoniano se realiza a través del cambio p → p − eA, las partes cinética y
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2. Anillo delgado

potencial, H0, y de espín-órbita, HSO, resultan, respectivamente:

H0 = 1
2m∗ (p − eA)2 + V (r) (2.44)

=
[
− ℏ2

2m∗ ∇2
r + V (r)

]
+ 1

2m∗p
2
φ + 1

2m∗

[
ep · A − 2eA · p + e2A2

]
HSO = 1

ℏ
(p − eA) · Σ⃗ = 1

ℏ
p · Σ⃗ − e

ℏ
A · Σ⃗ (2.45)

El Hamiltoniano total en presencia de campo se construye, entonces, añadiendo al

original un Hamiltoniano dependiente del potencial vector. Los términos de este

último introducen nuevas dependencias con las coordenadas, que, naturalmente,

vendrán dadas por la estructura de A. En el caso analizado aquí, estas dependencias

son sólo radiales y los términos añadidos se comportan sobre el anillo de forma

similar a la componente pφ del impulso. Es razonable suponer que aún en este

caso se sostiene la hipótesis de Meijer et al. que permite separar la función de

onda total en modos radiales y acimutales. Finalmente, el nuevo Hamiltoniano

efectivo resulta de añadir al Hamiltoniano original los valores de expectación de los

términos nuevos, dependientes todos ellos de A, tomados sobre el modo radial de

menor energía. Así, obtenemos:

H̃φ = −E0∂
2
φ +

[
F (φ) + i

ΦB

Φ0
E0

]
∂φ + 1

2(∂φF ) − i
ΦB

2Φ0
F (φ) +E0

(
ΦB

2Φ0

)2

, (2.46)

donde llamamos Φ0
.= h/2e al cuanto de flujo magnético.

El tratamiento de la ecuación de autovalores de Schrödinger para este nuevo

Hamiltoniano sigue los pasos ya utilizados en el caso sin campo. En efecto, podemos

suponer, como antes, que cada nuevo autoestado puede expresarse como el producto

entre una amplitud global y un espinor χ̃(φ), y elegir este último de entre las

soluciones de la ecuación

∂χ̃(φ)
∂φ

= 1
2E0

[
F (φ) + i

ΦB

Φ0
E0

]
χ̃(φ) .= 1

2E0
F̃ (φ)χ̃(φ); (2.47)
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2.7. Ruptura de la simetría de inversión temporal

en donde hemos definido, en la última igualdad, un nuevo operador

F̃ (φ) .= F (φ) + i
ΦB

Φ0
E0. (2.48)

Esta elección de χ̃(φ) es efectiva para reducir la ecuación de Schrödinger a una

ecuación escalar (de Mathieu) para la amplitud, pues permite anular la contribu-

ción del término proporcional a F (φ) en H̃φ, que es explícitamente no diagonal.

Notemos que es efectivamente en este término donde radica la diferencia sustancial

entre los casos con y sin campo, pues los otros términos, en su conjunto, pueden

llevarse a la forma conocida (2.7) si se desplaza espectro de energías en la cantidad

−E0(ΦB/2Φ0)2 y se sustituye el operador (∂φF ) por (∂φF̃ ). Esta sustitución es

factible ya que F (φ) y F̃ (φ) difieren únicamente en una constante aditiva.

El operador F̃ (φ) comparte con F (φ) la propiedad de periodicidad en el anillo

y el carácter de operador antihermitiano, pues la constante que los diferencia

es puramente imaginaria y, por tanto, antihermitiana. Estas son dos de las tres

propiedades que en el caso sin campo nos permitieron construir formalmente un

par de soluciones pseudoperiódicas y ortogonales punto a punto en el anillo. La

ec. (2.47) se asemeja, entonces, a la ec. (2.14) del caso sin campo. Los resultados

generales respecto de la construcción de estas soluciones, expuestos en la §2.4,

pueden utilizarse sin modificaciones para hallar los nuevos espinores. Sin embargo,

no es necesario rehacer todas las operaciones, pues estos nuevos espinores son los

del caso sin campo, pero desfasados por un factor dependiente del flujo magnético;

esto es,

χ̃µ̃±(φ) = e
i

ΦB
2Φ0

φ
χ±µ(φ). (2.49)

El factor de fase introduce un desplazamiento constante, µ0
.= ΦB/2Φ0, en los

exponentes de Floquet de los espinores originales, que se traslada directamente
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2. Anillo delgado

al espectro de energías a través de la condición de periodicidad en el anillo que

debe satisfacer el nuevo modo acimutal Φ̃(φ). El hecho de que este desplazamiento

sea constante (o, más precisamente, que tenga su signo determinado) muestra que,

en presencia de campo, no es equivalente para el electrón recorrer el anillo en un

sentido o en otro. Es por esto que la degeneración que observamos en la ec. (2.25)

se rompe en general, pues esta depende no sólo del intercambio de la orientación

del espín, sino también de la del impulso. Esta ruptura puede deducirse en términos

precisos como sigue. Por un lado, notemos que la amplitud de cada modo Φ̃(φ) es

una función de Mathieu de orden ν, por lo que su autoenergía asociada dependerá

del módulo de este orden, |ν|, y no de su signo. A su vez, la condición de contorno

(2.23) vincula el orden ν con los exponentes µ̃±, de modo que, como antes, cada

espinor χ̃(φ) tiene asociada una función de Mathieu distinta. Si separamos la

condición sobre ν en dos, una para cada µ̃±, podemos escribir
ν+ + µ+ µ0 = m+,

ν− − µ+ µ0 = m−

(2.50)

donde, como antes, m± son números enteros. De estas relaciones se ve que no es

posible, para cualquier µ0 en general, hallar una relación entre los m± tal que

ν+ = −ν−. En efecto, notemos que la suma de las ecs. (2.50) establece que esto

sólo es posible si 2µ0 es entero, es decir, si el flujo magnético ΦB en el interior del

anillo es un múltiplo entero del cuanto de flujo Φ0.
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Capítulo 3

Dinámica en el anillo sin

impurezas y con SOI

3.1. Presentación

En este capítulo comenzaremos el estudio de la dinámica de un electrón confinado

en un anillo cuántico, delgado y carente de impurezas magnéticas, bajo la acción de

las interacciones de espín-órbita de Rashba y Dresselhaus. Este es el siguiente paso

en dirección al problema más general de varios electrones sujetos a las interacciones

SO e interactuando con las impurezas magnéticas.

El Hamiltoniano por el que comenzaremos será el que hemos deducido en

§2.2. Analizaremos primero, en la §3.2, la dinámica de un electrón bajo la acción

individual de una de las dos interacciones SO. Posteriormente, en la §3.4, relajaremos

la restricción de anillo cuasi-1D y supondremos que existen transiciones entre el

estado radial de menor energía y el primer excitado. Utilizaremos en este caso el

Hamiltoniano deducido por Shakouri et al. [49]. Compararemos ambos modelos y
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3. Dinámica en el anillo sin impurezas y con SOI

decidiremos sobre la prevalencia de uno sobre otro para nuestro objetivo.

3.2. Dinámica individual de las SOI de Rashba y

Dresselhaus

El Hamiltoniano de un electrón de conducción, confinado y sujeto a las inter-

acciones de Rashba y Dresselhaus, que mostramos en la ec. 2.4 de la §2.2, puede

llevarse a la siguiente forma que explicita y distingue las contribuciones de ambas

interacciones:

H = E0

ℏ2 L
2
z + i

α

ℏ
(p−σ+ − p+σ−) + β

ℏ
(p+σ+ + p−σ−). (3.1)

El primer término en esta expresión es el Hamiltoniano de banda libre, H0, mientras

que el segundo y el tercero son, respectivamente, los Hamiltonianos de Rashba y

Dresselhaus:
HR = i

α

ℏ
(p−σ+ − p+σ−),

HD = β

ℏ
(p+σ+ + p−σ−)

(3.2)

Por último, los operadores σ± = (σx ± iσy)/2 son los conocidos de subida y bajada

de espín 1/2.

Consideremos ahora el espacio de Hilbert generado por los autoestados de Lz:

{|ℓ⟩ : ℓ ∈ Z} y observemos que los operadores p± actúan sobre estos estados de

forma similar a como los σ± actúan sobre los autoestados de sz; es decir:

p± |ℓ⟩ = ℏ
a

(
±ℓ+ 1

2

)
|ℓ± 1⟩ . (3.3)

Debido a que el Hamiltoniano de la ec. 3.1 involucra, como vemos, operadores que

actúan de forma simple sobre autoestados de Lz y sz, es natural tomar el conjunto
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3.2. Dinámica individual de las SOI de Rashba y Dresselhaus

B = {|ℓ, σ⟩ : ℓ ∈ Z, σ = ±1/2} como base del espacio de Hilbert total del sistema.

La acción individual de HR y HD sobre estos estados puede calcularse directamente,

y permite observar más claramente cómo ambos vinculan de forma estrecha los

impulsos angulares orbital y de espín del electrón:

HR |ℓ, σ⟩ = ℏωR(ℓ+ σ) |ℓ+ 2σ, σ̄⟩ ,

HD |ℓ, σ⟩ = 2σiℏωD(σ − ℓ) |ℓ− 2σ, σ̄⟩
(3.4)

En esta expresión hemos definido las frecuencias ωR .= α/ℏa y ωD
.= β/ℏa, y

hemos llamado σ̄ .= −σ. De estas expresiones se observa claramente que, de forma

individual, la conversión de OAM en SAM electrónico es exactamente reversible,

y oscilatoria con una frecuencia que depende del acoplamiento (α/a o β/a) y de

ambos impulsos. Notemos que la acción de HR,D es cíclica, esto es, los estados de

B son autoestados de H2
R,D. Por tanto, la acción conjunta de H0 +HR,D sobre un

estado |ℓ, σ⟩ de B solamente da como resultado una combinación lineal de dicho

estado y de aquél con el que comparte el mismo autovalor de Lz + sz, en el caso de

HR, o de Lz − sz, en el caso de HD.

En otras palabras, cuando solo una de las dos interacciones está presente, el

Hamiltoniano total en la base B se desacopla en bloques de autovalor constante

de Lz + sz o Lz − sz. Puesto que las posibles proyecciones del espín del electrón

son ±1/2, no es difícil ver que cada uno de estos bloques es de dimensión dos y es

generado por el par de estados BR = {|ℓ, σ⟩ , |ℓ+ 2σ, σ̄⟩} en el caso de Rashba, y

BD = {|ℓ, σ⟩ , |ℓ− 2σ, σ̄⟩} en el caso de Dresselhaus. Cuando solamente una de las

dos interacciones está presente, el Hamiltoniano total es diagonalizable por bloques

y el operador de evolución temporal, restringido a un bloque particular, puede

calcularse exactamente. Para ver esto último, tomemos un bloque particular de

cada caso, digamos BR y BD, y reescribamos el Hamiltoniano restringido a cada
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3. Dinámica en el anillo sin impurezas y con SOI

uno de ellos en términos de las matrices de Pauli σx, y, z y del operador identidad,

como sigue:

H0 +HR = E0

[1
4 + (ℓ+ σ)2

]
+ ℏωR(ℓ+ σ)σx − 2σE0(ℓ+ σ)σz; (3.5)

H0 +HD = E0

[1
4 + (ℓ− σ)2

]
− 2σℏωD(ℓ− σ)σy − E0(ℓ− σ)σz. (3.6)

Estos Hamiltonianos restringidos tienen una forma funcional similar a la de los

generadores de rotación de espín 1/2 [40, 66]. Podemos, entonces, calcular el opera-

dor de evolución temporal utilizando resultados ya conocidos, si identificamos los

coeficientes que multiplican a las matrices de Pauli en cada caso como componentes

de un «vector» cartesiano:

nR = (ℓ+ σ) [ℏωRx̂− 2σE0ẑ] , (3.7)

nD = −(ℓ− σ) [ℏωDŷ + 2σE0ẑ] (3.8)

Si tenemos en cuenta la forma funcional del operador de rotación, eiφn·σ⃗/2ℏ, observa-

mos que la norma de estos vectores determina la frecuencia de transición entre los

dos estados de la base, y por tanto la frecuencia de conversión de OAM electrónico

en SAM. Llamaremos a estas frecuencias ℏΩR,D
.= |ℓ + ϵR,Dσ|

√
ω2
R,D + ω2

0, con

ϵR = −ϵD = 1 y E0 = ℏω0. Es importante observar, por un lado, que ΩR es

proporcional al impulso angular total, ℓ+ σ, mientras que ΩD lo es a la cantidad

ℓ − σ, conservada por la interacción SO de Dresselhaus. Por otro lado, ambas

son invariantes ante la inversión simultánea del espín del electrón y del sentido

de su impulso angular orbital; es decir, ante un cambio (ℓ, σ) → (−ℓ,−σ). Esta

última propiedad está relacionada con la invariancia ante inversión temporal del

Hamiltoniano total en cada caso.
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3.2. Dinámica individual de las SOI de Rashba y Dresselhaus

A partir de estas definiciones obtenemos, finalmente:

UR,D(t, t0) = exp
{

−i
[
(ℓ+ ϵR,Dσ)2 + 1

4

]
ω0(t− t0)

}
[
cos(ΩR,D(t− t0)) + iΩ−1

R,DnR,D · σ⃗ sen(ΩR,D(t− t0))
]
.

(3.9)

Un resultado importante que se desprende de estos operadores es que la amplitud

de transición entre los dos estados del sistema no depende de ℓ ni de σ, y por tanto

de la energía del electrón de conducción:

| ⟨ℓ+ 2ϵR,Dσ, σ̄|Ω−1
R,DnR,D · σ⃗|ℓ, σ⟩ | = ωR,D√

ω2
R,D + ω2

0
(3.10)

De aquí es posible deducir que el máximo impulso angular intercambiado por un

electrón inicialmente en alguno de ellos es ℏω2
R,D/(ω2

R,D + ω2
0). Si consideramos

valores realistas para las constantes de acoplamiento, notamos que esta cantidad

es suficiente para observar cambios macroscópicos en la orientación de espín del

electrón. Tomemos, a modo de ejemplo, un QR de GaAs (m∗ = 0.063me) y radio

a = 50 nm, con acoplamiento de Rashba de constante α = 10.8 meV nm [49]. La

dinámica de la ocupación de ambos estados para un electrón inicialmente en uno de

ellos puede verse en la Fig. 3.1. Para estos valores, ℏω2
R,D/(ω2

R,D + ω2
0) ≈ 0.44ℏ. Lo

que favorece este cambio significativo es precisamente el confinamiento del electrón

a esta estructura cuasi-unidimensional, lo que limita efectivamente el impulso en

el plano a su componente k∥ = kφ = Lz/ℏ. Transicionar entre un nivel y el otro

implica, pues, ganar o perder una unidad de ℏ, y constituye un cambio al que el

espín debe adaptarse debido a la conservación de Lz + sz o Lz − sz.

El intercambio significativo entre ambos impulsos angulares es, por tanto,

factible en estas estructuras, e independiente del tipo de interacción SO que se halle

presente. Que no prevalezca una interacción sobre otra es relevante en la búsqueda
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Figura 3.1: Variación temporal de la probabilidad de ocupación de los estados en cuatro
bloques distintos, para un electrón inicialmente en un autoestado de H0 y sujeto a las
interacciones de Rashba (columna izquierda) y Dresselhaus (columna derecha). Para este
cálculo, consideramos un QR de GaAs y radio efectivo a = 50 nm. Se observa que, para
valores típicos de α y β, el OAM convertido a SAM en un ciclo es significativo (≈ ℏ/2) e
independiente de la energía inicial del electrón (en esencia, su OAM inicial, ℏℓ).

de un método de control coherente de la transferencia de OAM al SAM electrónico

y de éste al SAM de las impurezas en los DMS, pues la interacción de Rashba es,

en algunos casos y hasta cierto punto, controlable externamente, a diferencia de

la de Dresselhaus, que depende fundamentalmente de la estructura cristalina del

semiconductor y del confinamiento del anillo [16]. Igualmente importante para esta

búsqueda es el hecho de que la frecuencia de transición, y no la amplitud, dependa

del OAM del electrón. Esta cantidad se convierte, entonces, en un parámetro de

control que puede ajustarse convenientemente, según el caso. Por ejemplo, en el
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3.2. Dinámica individual de las SOI de Rashba y Dresselhaus

caso de Rashba, valores bajos de |ℓ| facilitarían el control, por ejemplo, a través

de un campo eléctrico dependiente del tiempo, dado que el factor de frecuencia

(2π)−1
√
ω2
R + ω2

0 puede alcanzar valores del orden de las decenas de GHz y ser,

por tanto, prohibitivamente alto. Valores más altos de |ℓ| pueden en cambio ser

útiles para acelerar el intercambio y adelantarse a efectos de relajación [67, 68] y

decoherencia [69-72] en nanoestructuras.

Hasta aquí hemos discutido las generalidades de la dinámica de un electrón,

sin hacer suposiciones sobre su estado inicial. En lo que sigue, supondremos que

el mismo ha sido previamente excitado a un estado de polarización |p| ≤ 1/2 e

impulso orbital inicial ℏ−1⟨Lz⟩ = ℓ+ ϵR,D(1/2 − p), de la forma:

|ψ⟩ =
√

1
2 + p |ℓ, ↑⟩ + eiϕ

√
1
2 − p |ℓ+ 2ϵR,D, ↓⟩ . (3.11)

Una discusión detallada sobre las estrategias para preparar estos estados sería, en

el caso general, demasiado extensa para tratarla aquí. El lector interesado puede

consultar la Ref. [73] y otras allí incluidas. No obstante, los estados en los que

estaremos mayormente interesados, que corresponden a |p| = 1/2, pueden obtenerse

experimentalmente mediante el uso de haces de twisted-light [1-3, 5].

En la Fig. 3.2 variamos la fase relativa eiϕ y la polarización p, a fin de observar

cómo se modifica la transferencia de impulso angular con el estado inicial. Para

ello, dejamos evolucionar el sistema y calculamos la máxima desviación de ⟨sz⟩ con

respecto a ℏp que, como se desprende de la forma de los operadores de evolución

de la ec. (3.9), se alcanza durante un ciclo para algún 0 ≤ t < 2π/ΩR,D. De este

estudio se desprende, como esperaríamos, que la transferencia de OAM a SAM

puede aumentarse hasta alcanzar casi la inversión de espín (aproximadamente

0.7ℏ) si se logra preparar el estado del electrón en una combinación simétrica o
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3. Dinámica en el anillo sin impurezas y con SOI
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Figura 3.2: Máxima desviación de la polarización del espín del electrón respecto de la
inicial ℏp en un ciclo para distintos estados iniciales de la forma dada en la ec. (3.11).
Los parámetros del anillo son los mismos de la Fig. 3.1. Observamos que las desviaciones
decrecen cuando el estado inicial es próximo a un autoestado del Hamiltoniano total
en cada caso, y se anula en el mismo; mientras que las desviaciones más largas son del
orden de 0.7ℏ > ℏ/2, y corresponden a las combinaciones simétricas y antisimétricas
de estos autoestados, como esperábamos. Para estos estados, los cambios son aún más
significativos que los hallados en el ejemplo de la Fig. 3.1.
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3.3. Dinámica conjunta de las SOI de Rashba y Dresselhaus

antisimétrica de los autoestados [41, 42]. Destacamos aquí que, incluso en estos

casos más generales, esta transferencia máxima no depende del valor de |ℓ| (ver

Apéndice B).

3.3. Dinámica conjunta de las SOI de Rashba y

Dresselhaus

En la sección anterior estudiamos la dinámica del electrón sujeto a sólo una

de las dos interacciones SO. Ahora supondremos que ambas están presentes, y no

haremos suposiciones sobre la intensidad de los respectivos acoplamientos.

A: . . . (`− 2σ, σ̄) (`, σ) (`+ 2σ, σ̄) . . .
α/a β/a α/a β/a

B: . . . (`− 2σ̄, σ) (`, σ̄) (`+ 2σ̄, σ) . . .
α/a β/a α/a β/a

Figura 3.3: Diagrama que esquematiza la forma en que las interacciones SOI de Rashba
y Dresselhaus acoplan los estados del espacio de Hilbert total o, equivalentemente, los
subsistemas de dos niveles de autovalor ℓ+ σ o ℓ− σ constante. Estas cadenas de estados
pueden generarse manualmente operando alternadamente con HR y HD sobre un estado
cualquiera del espacio de Hilbert. Notemos que ambas cadenas permanecen disjuntas aún
durante la evolución temporal debido a la simetría del Hamiltoniano total respecto de
operaciones del grupo doble C2.

La separación del Hamiltoniano total en una colección de subsistemas de

dos niveles, que observamos en la sección anterior, deja de valer cuando ambas

interacciones actúan simultáneamente. Si partimos de esta separación, digamos,

para el caso de Rashba, no es difícil ver que la inclusión de la SOI de Dresselhaus
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3. Dinámica en el anillo sin impurezas y con SOI

conectará entre sí cualquier par de subsistemas adyacentes, es decir, cualquier par

de subsistemas cuyo impulso angular total, ℓ+ σ, difiera en una unidad de ℏ. Por

supuesto, lo mismo vale si se parte del caso de Dresselhaus y luego se añade la SOI

de Rashba. Presentamos un esquema de esta vinculación entre subsistemas en la

Fig. 3.3.

Este esquema revela una propiedad interesante del Hamiltoniano, y es que

un electrón que ocupa inicialmente un estado en una cadena puede, en principio,

visitar cualquier otro estado de la misma cadena, pero nunca transicionar hacia

estados de la cadena complementaria. En otras palabras, en la misma base B de

la §3.2, el Hamiltoniano se separa ahora en dos bloques infinitos pero inconexos.

La razón detrás de esta separación es la pervivencia de una simetría de rotación

en π alrededor del eje del anillo, que deja invariante tanto H0 como HR y HD. En

otras palabras, si R = e−iJzπ/ℏ, se verifica que RHR† = H. Cuando esta rotación

opera sobre un autoestado de Jz (como son todos los estados en B) de autovalor jz,

modifica la fase global del mismo en ±i, dependiendo de si jz + 1/2 es par o impar,

respectivamente. La rotación R que se asocia con esta simetría es un elemento

del grupo doble y cíclico C2 [66], y las fases ±i globales son las representaciones

unidimensionales Γ3 y Γ4 [74, 75]. Los estados de las cadenas A y B en la Fig. 3.3

pertenecen, así, a distintas representaciones irreducibles del grupo de simetría del

Hamiltoniano, y, por tanto, los elementos de matriz de este último que conectan

tales estados son nulos [66].

A pesar de que todos los estados en una misma cadena están conectados entre sí,

la probabilidad que un electrón tiene de visitar un estado energéticamente alejado

de su estado inicial decrece rápidamente. Esto se observa en la Fig. 3.4, en la que

hemos tomado valores experimentalmente factibles para los parámetros del sistema
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| − 3, ↑〉
| − 2, ↓〉
| − 1, ↑〉
|0, ↓〉
|1, ↑〉
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|5, ↑〉

α = 1
2β = 5.4 meV nm α = β = 10.8 meV nm
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Time [ps]
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Figura 3.4: Probabilidad de ocupación de los estados adyacentes al estado electrónico
inicial (arriba: |1, ↑⟩; abajo: |5, ↓⟩), para distintas constantes de acoplamiento e impulso
angular orbital del electrón. Observemos que, incluso para electrones de alta energía
(esto es, inicialmente en |5, ↓⟩) y acoplamientos SOI fuertes (columna derecha), esta
probabilidad decrece notablemente a partir del tercer estado adyacente. Los parámetros
del anillo son los ya mencionados en la Fig. 3.1.

y hemos graficado estas probabilidades para los primeros estados adyacentes al

estado inicial del electrón, que se supone polarizado en espín y de impulso angular

definido. Recordemos que estos estados pueden generarse a través de haces de

twisted-light.

La función onda inicial del electrón no se «expande» más allá de los primeros

estados adyacentes al inicial. Podemos comprender esto si observamos que los

elementos de matriz del Hamiltoniano, que conectan estos estados, son propor-

cionales pero sistemáticamente menores a la diferencia de energía entre ellos. La

conservación de la energía impide que se ocupen los estados de energía mucho

55



3. Dinámica en el anillo sin impurezas y con SOI

mayor o mucho menor de la inicial.

Podemos estimar cuánto se «expande» la función de onda inicial a partir del

término dominante (primer término no nulo) de la probabilidad de transición entre

dos estados de la misma cadena. Para ello, supongamos un electrón inicialmente en

el estado |ℓ, σ⟩ y tomemos un estado de la misma cadena
∣∣∣ℓ+ 2kσ, (−1)kσ

〉
, con

k ∈ Z y k ̸= 0. Para simplificar la discusión, supondremos, además, que la transición

no invierte el sentido del OAM, es decir, que ℓ(ℓ + 2kσ) ≥ 0. Los estados en B

que difieren en el signo del OAM tienen energías similares (o son degenerados en

ausencia de SOI) y superiores a la del estado (perturbado) de OAM nulo. Partiendo

de estas hipótesis, obtenemos:

∣∣∣ 〈ℓ+ 2kσ, (−1)kσ
∣∣∣U(t, 0)

∣∣∣ℓ, σ〉∣∣∣ ≈ 2(ᾱβ̄)|n|[δm,0 + ᾱδm,1 + β̄δm,−1]. (3.12)

En esta expresión, U(t, 0) es el operador de evolución temporal, k = 2n+m, con

n ∈ Z, m ∈ {−1, 0, 1}, y nm ≥ 0; y las constantes ᾱ y β̄ son aquellas definidas

en la ec. (2.28). Si consideramos nuevamente valores realistas para los parámetros

del anillo, a = 50 nm y m∗ = 0.063me, y para las constantes de acoplamiento,

α = β = 10.8 meV nm, (α/a = β/a = 0.216 meV), obtenemos de esta expresión

que sólo los |k| < 3 tienen una probabilidad significativa de ser ocupados. Una

consecuencia práctica de este resultado es que el cambio en el impulso angular de

un electrón está limitado, pues: |∆⟨Jz⟩| = 2ℏ|n− δm,−1|. Una consecuencia teórica

es que, en estos casos, el Hamiltoniano (infinito) correspondiente a la cadena del

estado |ℓ, σ⟩ puede ser aproximado por un Hamiltoniano de dimensión finita que

considere sólo los primeros |k| estados adyacentes al inicial.

Para estudiar más en detalle estos resultados, consideramos los mismos estados

iniciales de la Fig. 3.4, |1, ↑⟩ y |5, ↓⟩, y graficamos en las Figs. 3.5a-b la probabilidad
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(b) Estado inicial |5, ↓⟩.

Figura 3.5: Probabilidad de ocupación del estado inicial mencionado y sus dos primeros
vecinos, para distintas intensidades del acoplamiento de Rashba. Observemos que los
segundos estados llegan a probabilidades de alrededor del 30 %, incluso para acoplamientos
muy superiores a los hallados experimentalmente. Los parámetros del anillo son los ya
mencionados en la Fig. 3.1.

de ocupación para los primeros dos estados adyacentes a cada uno de ellos. Lo

hacemos para tres valores distintos de α: β/2, β y 2β, con β = 10.8 meV nm en

todos los casos. Como vemos, el incremento del OAM inicial naturalmente influye

en la frecuencia con que se pueblan y despueblan estos estados, pero no influye

significativamente en la máxima población que alcanzan, en el rango estudiado, los

segundos estados adyacentes. Para los parámetros elegidos, las poblaciones de los

cinco estados (cuatro adyacentes y el inicial) alcanzan, para ambos OAM iniciales,

valores similares en la ventana temporal elegida. Esto último se ve más claramente
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3. Dinámica en el anillo sin impurezas y con SOI

en la Fig. 3.4, en la que pueden observarse la dinámica de las poblaciones a tiempos

relativamente mayores. Recordemos que la diferencia de energía entre ambos estados

iniciales es notoria: el estado |1, ↑⟩ tiene una energía del orden de E0, mientras que

ésta es del orden de 25E0 para el estado |5, ↓⟩. A tiempos menores, la transferencia

de población del estado inicial se da mayormente a los primeros vecinos, |0, ↓⟩ y

|2, ↓⟩, y |4, ↑⟩ y |6, ↑⟩, respectivamente. Pero, como vemos, en cualquier caso la

dinámica queda mayormente confinada a estos pocos estados, incluso en el caso

extremo en que α = 2β.

3.4. Inclusión del primer nivel radial excitado

Es posible relajar la hipótesis de anillo cuasi-unidimensional y permitir que el

electrón transicione entre el estado radial de menor energía y el primero excitado.

Utilizaremos a este fin el modelo de Shakouri et al. [49]. Hemos elegido este modelo

en especial porque, por una parte, el mismo se reduce al de Meijer et al. en el límite

de anillo delgado, y, por otra, porque de él se derivan los mismos Hamiltonianos de

Rashba y Dresselhaus obtenidos en la ec. (3.2).

Los autores modelan la estructura anular a partir de un potencial de confina-

miento armónico e isótropo (parabólico) de intensidad ℏω en la dirección radial. Este

potencial determina un ancho efectivo para el anillo, de magnitud d
.= a
√

2E0/ℏω.

Es importante destacar aquí que este modelo es típicamente utilizado en la literatura

[76, 77].

Los estados de un electrón están ahora caracterizados por tres números cuánticos

n, ℓ y σ, siendo n = 0, 1 el correspondiente al nivel radial que el electrón ocupa. Los

elementos de matriz del Hamiltoniano que conectan estados dentro de un mismo
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3.4. Inclusión del primer nivel radial excitado

I

(1, `+ 2σ, σ̄)
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α
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d

α
/d

α/a

α/a

II

(1, `− 2σ, σ̄)

(0, `, σ)

(1, `, σ)

(0, `− 2σ, σ̄)

β
/d

β
/d

β/a

β/a

Figura 3.6: Esquema de un sistema de cuatro niveles de igual autovalor de Lz + sz (I)
y Lz − sz (II), cuando sólo la interacción de Rashba o de Dresselhaus están presentes,
respectivamente. Los elementos de matriz del Hamiltoniano que involucran un cambio en
el modo radial dependen del ancho efectivo del anillo d, pero no de ℓ o σ, a diferencia
de los elementos de matriz que no cambian el modo radial, que son exactamente los
deducidos en las ecs. (3.4).

nivel radial son, como mencionamos, exactamente los mismos que en el caso en

el que se considera un único nivel radial, es decir, los deducidos en las ecs. (3.4).

Los elementos que generan las transiciones entre distintos niveles radiales son, en

cambio, proporcionales a α/d y β/d e independientes tanto de ℓ como de σ. De

aquí se desprende que los Hamiltonianos de Rashba y Dresselhaus en este modelo

conservan, como antes, las cantidades Lz + sz y Lz − sz, respectivamente; incluso

en transiciones entre modos radiales.

Los mismos argumentos utilizados en la §3.2 pueden utilizarse en este caso para

mostrar que, en ausencia de una de las dos interacciones, el Hamiltoniano total se

separa en bloques de cuatro estados que comparten el mismo autovalor de Lz + sz,

en el caso de Rashba, o de Lz − sz en el de Dresselhaus. La estructura general de

estos bloques queda resumida en el esquema de la Fig. 3.6.

El Hamiltoniano total es también separable en dos bloques infinitos cuando

ambas interacciones están presentes, al igual que en el modelo de un único modo
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(1, `, σ)(1, `− 2σ, σ̄) (1, `+ 2σ, σ̄). . . α/a . . .β/a

(0, `, σ)(0, `− 2σ, σ̄) (0, `+ 2σ, σ̄). . .
α/a

. . .
β/a

β/a α/a

β/a α/a

α/d β/dβ/dα/d

Figura 3.7: Esquema de la forma en que las interacciones de Rashba y Dresselhaus
conectan los estados pertenecientes a uno de los, en principio, dos bloques infinitos en
los que se separa el Hamiltoniano total. Cada estado en este bloque adquiere la misma
fase global frente a la rotación R = e−iπJz/ℏ. El esquema corresponde a la extensión
de la cadena A en la Fig. 3.3. Para anillos suficientemente delgados d/a ≪ 1 como el
considerado en este caso (a partir de Shakouri et al. [49]), las transiciones dentro de un
mismo modo radial son en general mucho más rápidas que aquellas entre modos.

radial. Los estados del espacio de Hilbert que conforman estos dos bloques pueden

hallarse, tal como para el modelo anterior, observando que R = e−iπJz/ℏ continúa

siendo una simetría del sistema, pues el potencial de confinamiento supuesto tiene

simetría cilíndrica. Presentamos esquemáticamente la estructura del bloque que

contiene los estados (0, ℓ, σ) y (1, ℓ, σ) en la Fig. 3.7. Esta estructura es la extensión

de la cadena A en la Fig. 3.3. Por claridad, en la Fig. 3.7 omitimos el bloque

complementario, que contiene los estados (0, ℓ, σ̄) y (1, ℓ, σ̄).

A fin de estudiar la influencia del primer modo radial excitado en la dinámica

del sistema, comparamos los valores de expectación ⟨Lz⟩ y ⟨sz⟩ en ambos modelos

para seis estados iniciales distintos, que difieren entre sí únicamente por el OAM

inicial. El electrón es, por tanto, inicialmente excitado en el modo radial de menor

energía, y posee distintos valores de OAM (0 ≤ ℓ ≤ 5) pero igual polarización

de espín. Los resultados para un QR de GaAs (m∗ = 0.063me), a = 50 nm y
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Figura 3.8: Evolución temporal de los valores de expectación ⟨Lz⟩ y ⟨sz⟩ para un
electrón inicialmente en los estados (0, ℓ, ↑), con ℓ creciente desde ℓ = 0 (primera fila)
hasta ℓ = 5 (última fila). La curva azul corresponde al modelo de un único modo radial,
mientras que la naranja corresponde al modelo de dos modos radiales. La tercera columna
muestra la ocupación del primer modo radial excitado, relativa a la ocupación del modo
radial de menor energía. Los parámetros del anillo son los ya mencionados en la Fig. 3.1,
y α = 2β = 21.6 meV nm.
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α = 2β = 21.6 meV nm se muestran en la Fig. 3.8. Para un anillo de estas

características, d ≈ a/8. Tal y como hicimos en el análisis de la dinámica en el

modelo anterior, elegimos estados iniciales de OAM y SAM definidos porque pueden

generarse experimentalmente y simplifican enormemente el análisis.

Los valores de expectación del OAM y SAM del electrón (primera y segunda

columna de la Fig. 3.8 desde la izquierda) muestran que las diferencias entre ambos

modelos son más relevantes a bajas energías (bajo ℓ), y se hacen poco significativas

a medida que la energía inicial del electrón aumenta. Observemos que, en todos los

casos, la ocupación relativa del primer modo radial excitado es pequeña y no supera

el 3 % en todo el rango temporal, incluso para electrones de baja energía. Esto es

esperable, pues el primer modo excitado es de muy alta energía (al menos ℏω) y la

interacción SOI no es lo suficientemente fuerte para permitir al electrón ocupar

este modo, es decir, ℏω ≫ α/d ≫ β/d. Notemos, asimismo, que el comportamiento

en el tiempo de la probabilidad de ocupación del modo de mayor energía cambia

notoriamente con ℓ. Este cambio parecer darse mayormente en la modulación, y no

tanto en la frecuencia dominante. Nuevamente, esto es esperable, y podemos intuirlo

si miramos las diferencias de energía entre los niveles involucrados. Para los valores

de ℓ considerados, es razonable que la frecuencia dominante sea prácticamente

constante y del orden de ω, mientras que la modulación dependa del ℓ inicial. Para

valores bajos de ℓ, esta modulación es muy suave, y se hace más pronunciada a

medida que ℓ crece. Para valores altos de ℓ, la modulación parece «comprimir»

más las variaciones de amplitud y reducir los intervalos temporales en los que estas

son más grandes. Vemos que aumentar ℓ redunda en una menor influencia de las

transiciones entre modos radiales en los valores de expectación ⟨Lz⟩ y ⟨sz⟩. En

otras palabras, en términos relativos, las correcciones introducidas por la presencia
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del modo excitado «pesan» menos para altos ℓ, y las transiciones dentro de un

mismo modo radial parecen dominar la dinámica. Si fijamos ℏω y comparamos los

elementos de matriz que corresponden a transiciones entre modos, con los elementos

que corresponden a las transiciones dentro de un mismo modo, podemos esperar

que la dominancia de estas últimas se mantenga para valores cada vez más altos

de ℓ. En cualquier caso, es notable que ya para ℓ = 3 las curvas obtenidas con uno

y otro modelo se aproximen tanto. Es importante destacar aquí que estos análisis

deben hacerse a ℏω fijo. Tomar el límite de anillo cuasi-unidimensional debe hacerse

con cuidado, ya que los elementos de matriz del Hamiltoniano proporcionales a 1/d

divergen al suponer E0/ℏω → 0. La forma correcta de tomar este límite es descrita

y discutida por Shakouri et al. en la Ref. [49].

Destacamos finalmente que observaríamos resultados similares si el electrón

comenzara en el primer nivel radial excitado. Por conservación de la energía, el

electrón en este caso no podría ceder una cantidad de energía del orden de ℏω y,

por tanto, no podría transicionar al estado radial de menor energía.

De estos resultados concluimos que la inclusión del primer modo radial excitado

proporciona una descripción más precisa de la dinámica de electrones de muy baja

energía. Concluimos que es más precisa, y no simplemente distinta, porque ambos

modelos están sustentados sobre las mismas hipótesis fundamentales (por ejemplo,

que los modos radiales y acimutales son separables). Sin embargo, observamos que

esta mejora se obtiene a través de introducir mayor complejidad en el Hamilto-

niano total, sin proporcionar una diferencia del todo significativa en los casos que

pretendemos estudiar. Por tanto, consideramos que el modelo de un único modo es,

a primer orden, una buena aproximación para continuar con nuestro estudio.
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Capítulo 4

Interacción entre electrones e

impurezas en el anillo sin SOI

4.1. Presentación

Nuestro objetivo ahora es comenzar el estudio de la dinámica entre electrones

e impurezas magnéticas en el anillo. Modelaremos la interacción a través de un

Hamiltoniano de contacto de tipo Kondo [38], como es usual en la literatura.

Añadiremos esta interacción al Hamiltoniano de la banda libre, que será la parte

cinética del deducido en la ec. (2.1) en el Cap. 2, en vista de los resultados obtenidos

en la §3.4. Esta elección nos permitirá, por una parte, simplificar el problema tanto

como sea posible, teniendo la confianza de que considerar un único modo radial

es una buena aproximación; y, por otra, reducir el Hamiltoniano de Kondo a una

aproximación cuasi-unidimensional aplicando las hipótesis de Meijer et al., ya

descritas en la §2.2. Finalmente, puesto que buscamos comprender esta dinámica

en detalle, supondremos en todo nuestro análisis que ninguna de las interacciones
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4. Interacción entre electrones e impurezas en el anillo sin SOI

SO están presentes.

La dinámica de un sistema de muchos cuerpos como este queda totalmente deter-

minada por las ecuaciones de movimiento de Heisenberg para las matrices densidad

de los electrones y de las impurezas. Sin embargo, como se verá, la complejidad

de las ecuaciones resultantes es tal que las mismas forman un sistema acoplado

e infinito. No es posible, por tanto, continuar el tratamiento del problema en el

picture de Heisenberg sin antes truncar este sistema. Para hacer esto, seguiremos el

esquema de Thurn y Axt [78], desarrollado para DMS en el bulk. Este esquema nos

permite obtener un sistema de ecuaciones finito, cerrado y tratable numéricamente.

La propuesta de los autores consiste en observar que las matrices densidad pueden

expandirse exactamente en dos partes: una que proviene de aproximar las matrices

densidad de varias partículas por sus formas factorizadas («campo medio»); y otras

que provienen de las correlaciones inherentes a la interacción entre partículas. Estas

últimas son irreducibles a formas factorizadas, y son las que generan la jerarquía.

Ignorando juiciosa y apropiadamente ciertas correlaciones, es posible obtener una

aproximación tratable al sistema de ecuaciones original.

Comenzaremos en la §4.2 expresando el Hamiltoniano unidimensional efectivo

que contiene la interacción entre los electrones y las impurezas en términos de

operadores de segunda cuantización. Posteriormente, en la §4.3 derivaremos las

ecuaciones de Heisenberg y las expresaremos de modo que queden evidenciadas las

correlaciones que luego ignoraremos. Habiendo obtenido el conjunto aproximado,

estudiaremos, en la §4.4 sistemas sencillos, compuestos por un electrón y unas pocas

impurezas inicialmente en estados puros, cuyas dinámicas puedan ser calculadas

exactamente a través de la integración numérica de la ecuación de Schrödinger

dependiente del tiempo para la función de onda total. Compararemos estas solucio-
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nes con las obtenidas utilizando el sistema truncado. Este análisis nos servirá para

estimar la fiabilidad del esquema de truncamiento y su aplicabilidad a este sistema

en rangos temporales que son del orden de los hallados en la interacción entre

electrones (particularmente los excitados ópticamente) y el sistema de impurezas

en DMS [79-81].

4.2. Modelo efectivo en una dimensión

La interacción de intercambio entre electrones de conducción y el espín de los

electrones en la capa d de los manganesos es descrita por el Hamiltoniano

Hsd = J
NMn∑
I=1

Ne∑
i=1

SI · siδ(rI − ri). (4.1)

En esta expresión J es la constante volumétrica de acoplamiento, que depende

mayormente del material y no de la cantidad de impurezas en él [12]; NMn el número

de impurezas en el sistema, Ne el número de electrones, y SI el espín total de la

impureza I, ubicada en rI , que interactúa con el espín del electrón i, cuya posición

viene dada por ri, sólo cuando entra en contacto con él, como muestra la delta de

Dirac δ(rI − ri). Notemos que las impurezas en este modelo son distinguibles.

En la aproximación de anillo delgado, el confinamiento de los electrones reduce

los grados de libertad esencialmente al movimiento a lo largo del anillo. Si seguimos

el procedimiento expuesto en la §2.2 y tomamos el valor de expectación de Hsd sobre

los modos axial (paralelos al eje del anillo) y radial de menor energía, obtenemos el

siguiente Hamiltoniano efectivo:

⟨Hsd⟩rz = J

V

NMn∑
I=1

Ne∑
i=1

Si · siδ(φI − φi). (4.2)
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En esta expresión, ⟨·⟩rz significa tomar el valor de expectación del operador entre

corchetes sobre los estados radiales y axiales de menor energía. El efecto de confina-

miento en las direcciones radial y axial queda, entonces, subsumido en la constante

V , que es el volumen del sistema. Al conjunto de constantes {φI} que determinan

las posiciones (la distribución) de las impurezas lo llamaremos realización de Hsd.

Asimismo, al hacer la aproximación de anillo delgado, suponemos que cada impure-

za se halla aproximadamente centrada en las direcciones transversales. Podríamos

introducir un factor escalar por cada impureza, que dé cuenta de variaciones en

esta posición, dado que la ubicación de las impurezas es difícil de determinar

durante el proceso de fabricación. Esto introduce una complejidad que no debería

afectar notoriamente la dinámica en un anillo cuasi-unidimensional, por lo que

supondremos que estas pequeñas desviaciones transversales no son significativas.

El Hamiltoniano efectivo total resulta, entonces, de sumar ⟨Hsd⟩rz al Hamilto-

niano efectivo de la banda libre, que consiste en la energía cinética de los electrones

en la dirección longitudinal; esto es:

H =
Ne∑
i=0

〈
p2
i,φ

2m∗

〉
rz

+ ⟨Hsd⟩rz. (4.3)

A fin de simplificar la notación, en lo que sigue llamaremos simplemente Hsd a

⟨Hsd⟩rz.

Introducimos ahora, siguiendo a Thurn y Axt [78], las matrices densidad de las

impurezas a través de la igualdad:

SI .=
∑
nn′

⟨I, n|SI |I, n′⟩P I
nn′ . (4.4)

Los estados |I, n⟩, con n ∈ {−5/2,−3/2, . . . , 3/2, 5/2}, son autoestados del opera-

dor SI,z de espín 5/2, es decir, del operador Sz de la impureza I. Esta definición
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4.2. Modelo efectivo en una dimensión

de las P I permite subsumir en ellas toda dependencia temporal en el picture de

Heisenberg, y considerar, por tanto, los elementos de matriz ⟨I, n|SI |I, n′⟩ como

constantes e independientes de I para todo tiempo. El valor de expectación de SI

sobre cualquier estado inicial arbitrario queda, así, dado por: ⟨SI⟩(t) = tr
[
SP I(t)

]
,

con S el operador vector de espín 5/2.

Las matrices P I son todas hermitianas y satisfacen las relaciones de conmutación

[P I , P I′ ] = 0 si I ̸= I ′, pues en este caso cada una actúa sobre una impureza distinta,

y [P I
n1n2 , P

I
n3n4 ] = P I

n1n4δn2n3 − P I
n3n2δn1n4 . Estas propiedades pueden verificarse

manualmente a partir de la definición de las P I , esto es, P I
nn′

.= |I, n⟩⟨I, n′|. Por ser

matrices densidad, las P I(t) deben ser asimismo semidefinidas positivas y satisfacer

la condición trP I(t) = 1 para todo tiempo.

La expresión del Hamiltoniano efectivo de la ec. 4.3 en segunda cuantización es:

H = E0
∑
ℓσ

m2c†
ℓσcℓσ + J

V

∑
Inn′
ℓσ ℓ′σ′

Snn′ · sσσ′ρIℓℓ′c
†
ℓ′σ′cℓσP

I
nn′ . (4.5)

En esta expresión E0
.= ℏ2/2m∗a2, como en la ec. (2.7), c†

ℓσ es el operador que

crea un electrón en el estado |ℓ, σ⟩, ρIℓℓ′
.= e−i(ℓ−ℓ′)φI son fases que dan cuenta de la

transición del electrón entre estados de distinto OAM al interactuar con la impureza

I; y Snn′ y sσσ′ son los elementos de matriz de los operadores S y s, de espín 5/2 y

1/2, respectivamente. Los elementos Snn′ no refieren a ninguna impureza en especial,

sino que son comunes a todas ellas. La distinción entre impurezas queda subsumida

en el índice I de las fases ρIℓℓ′ y los operadores de dos partículas c†
ℓ′σ′cℓσP

I
nn′ .
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4. Interacción entre electrones e impurezas en el anillo sin SOI

4.3. Dinámica aproximada de un único electrón

y pocas impurezas

Consideremos un único electrón de conducción interactuando con las impurezas,

sobre cuya cantidad no haremos suposiciones por el momento, aunque recordamos

que su número está acotado por la hipótesis de dilución. Las ecuaciones de Heisen-

berg para las matrices densidad de las impurezas, ⟨P I⟩, y del electrón, ⟨c†
ℓ1σ1cℓ2σ2⟩,

tomando el valor de expectación sobre un estado inicial arbitrario, son:

iℏ
∂

∂t
⟨P I

n1n2⟩ = J

V

∑
nℓσ
ℓ′σ′

ρIℓℓ′sσσ′ · (Sn2n⟨c†
ℓσcℓ′σ′P I

n1n⟩−

Snn1⟨c†
ℓσcℓ′σ′P I

nn2⟩
) (4.6)

iℏ
∂

∂t
⟨c†
ℓ1σ1cℓ2σ2⟩ = E0(ℓ2

2 − ℓ2
1)⟨c†

ℓ1σ1cℓ2σ2⟩

+ J

V

∑
Inn′
ℓσ

Snn′ ·
(
ρIℓℓ1sσσ1⟨c†

ℓσcℓ2σ2P
I
nn′⟩

−ρIℓ2ℓsσ2σ⟨c†
ℓ1σ1cℓσP

I
nn′⟩

)
.

(4.7)

Observemos que la dinámica de estas matrices depende de ellas mismas y de la

matriz densidad del operador de dos partículas ⟨c†
ℓ′σ′cℓσP

I
nn′⟩. La jerarquía comienza

a desarrollarse a partir de aquí, y, como veremos, la ecuación para este última

matriz dependerá de operadores de tres partículas: unos que vinculan un electrón

con dos impurezas, y otros que vinculan dos electrones con una impureza. Puesto

que, por hipótesis, hemos supuesto que sólo hay un electrón presente en el sistema,

estos últimos términos no contribuirán a la jerarquía, a diferencia de los primeros,

que deberemos aproximar para obtener un conjunto de ecuaciones cerrado. La
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4.3. Dinámica aproximada de un único electrón y pocas impurezas

dinámica de la matriz ⟨c†
ℓ1σ1cℓ2σ2P

I
n1n2⟩ viene entonces dada por:

iℏ
∂

∂t
⟨c†
ℓ1σ1cℓ2σ2P

I
n1n2⟩ =E0(ℓ2

2 − ℓ2
1)⟨c†

ℓ1σ1cℓ2σ2P
I
n1n2⟩

+ J

V

∑
nℓσ

(
Sn2n · sσ2σρ

I
ℓℓ2⟨c†

ℓ1σ1cℓσP
I
n1n⟩

− Snn1 · sσσ1ρ
I
ℓℓ2⟨c†

ℓσcℓ2σ2P
I
nn2⟩

)
+QI ;

(4.8)

El término QI condensa las contribuciones de los operadores de tres partículas, y

resulta:
QI .= J

V

∑
I ̸=I′

nn′ℓσ

Snn′ · (sσ2σρ
I′

ℓℓ2⟨c†
ℓ1σ1cℓσP

I
n1n2P

I′

nn′⟩

−sσσ1ρ
I′

ℓℓ2⟨c†
ℓσcℓ2σ2P

I
n1n2P

I′

nn′⟩
)
.

(4.9)

Notemos que este término es no nulo sólo cuando existe más de una impureza en el

sistema. El índice I en el término QI refiere, como en todas las demás matrices en

que aparece, a una impureza determinada del sistema. La restricción I ̸= I ′ en la

sumatoria del miembro derecho indica que QI contiene todas las contribuciones a

la dinámica de ⟨c†
ℓ1σ1cℓ2σ2P

I
n1n2⟩ que provienen de la presencia de otras impurezas.

Los operadores de la forma c†
ℓ1σ1cℓσP

I
n1n2P

I′
nn′ , en efecto, modifican como mucho el

estado del electrón y de dos impurezas distintas. Esta interacción indirecta entre

impurezas es mediada por el electrón y genera la jerarquía infinita y acoplada, aun

cuando no haya más que un electrón de conducción. Resulta necesario, por tanto,

aproximarla para poder continuar.

Hacemos esta aproximación en dos pasos. Primero, escribimos las matrices

densidad de tres partículas en QI como suma de dos tipos de términos: los de tipo

«campo medio», que provienen de factorizar el valor de expectación ⟨c†
ℓ1σ1cℓ2σ2P

I
n1n2⟩

en productos de valores de expectación tomados sobre operadores de una y dos

partículas; y los de tipo «correlación», que son irreducibles a términos totalmente
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4. Interacción entre electrones e impurezas en el anillo sin SOI

factorizados. Al hacer esta expansión, seguimos la propuesta de Thurn y Axt de

utilizar la teoría de Kubo [82] para escribir el valor de expectación de productos de

variables estocásticas en general. Así, obtenemos:

⟨c†
ℓ1σ1cℓ2σ2P

IP I′⟩ =⟨P I⟩⟨c†
ℓ1σ1cℓ2σ2P

I′⟩ + ⟨P I′⟩⟨c†
ℓ1σ1cℓ2σ2P

I⟩

+ ⟨c†
ℓ1σ1cℓ2σ2⟩δ⟨P IP I′⟩ − ⟨c†

ℓ1σ1cℓ2σ2⟩⟨P I⟩⟨P I′⟩

+ δ⟨c†
ℓ1σ1cℓ2σ2P

IP I′⟩;

(4.10)

Por claridad, omitimos en esta expresión los subíndices de las matrices P I . El segun-

do paso consiste en observar que los términos irreducibles δ⟨P IP I′⟩ y δ⟨c†
ℓ1σ1cℓ2σ2P

IP I′⟩

pueden ignorarse. En efecto, el primero de estos, definido como δ⟨P IP I′⟩ .=

⟨P IP I′⟩ − ⟨P I⟩⟨P I′⟩ cuando I ̸= I ′, proviene de la interacción directa entre im-

purezas. En un sistema diluido y en ausencia de clusters, es esperable que este

término no sea significativo, debido a la gran distancia espacial que existe entre las

impurezas. Un argumento similar sirve para suponer que, a priori, el segundo de

estos términos, δ⟨c†
ℓ1σ1cℓ2σ2P

IP I′⟩, tampoco será relevante frente a los de «campo

medio». En el apéndice C mostramos que, para truncar la jerarquía, alcanza con

despreciar este último término, sin que sea necesario despreciar también δ⟨P IP I′⟩.

El conjunto de ecuaciones de Heisenberg obtenido siguiendo este procedimiento

queda, entonces, cerrado al nivel de operadores de tres partículas, e incluye las

matrices densidad de las impurezas, ⟨P I⟩, la electrónica, ⟨c†
ℓ1σ2cℓ2σ2⟩, la y de inter-

acción ⟨c†
ℓ1σ1cℓ2σ2P

I⟩. En lo que sigue, estudiaremos la precisión del esquema de

truncamiento para reproducir la dinámica en sistemas de pocas impurezas cuyos

estados iniciales factorizables en productos de un estado electrónico y NMn estados

de impureza individuales. Estos casos simples nos permitirán estudiar la viabili-

dad del esquema de truncamiento, pues para ellos es posible resolver la ecuación
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4.3. Dinámica aproximada de un único electrón y pocas impurezas

de Schrödinger dependiente del tiempo para el sistema total, sin recurrir a un

tratamiento en términos de matrices densidad.

Supondremos un QR delgado de Zn,MnxTe en el límite de alta dilución (x ≪ 1),

NMn/V ≈ 10−3 nm−3, con NMn = 2, 3 y V ≈ 777 nm3. Para calcular el volumen

del anillo supondremos una altura efectiva de 1.5 nm [77], un radio efectivo de

a = 14 nm [76], y un ancho efectivo de aproximadamente 8.4 nm. Este último

parámetro lo estimamos suponiendo, como es habitual en la literatura [49, 77, 83],

un potencial de confinamiento radial y parabólico. En el límite de alta dilución, la

constante de intercambio J para el (Zn, Mn)Te es J = 11 meV nm3, e independiente

del número de impurezas [12], como mencionamos anteriormente. Obtenemos, así,

el acoplamiento efectivo J/V ≈ 0.0142 meV. Supondremos, además, que la masa

efectiva de la banda de conducción para el (Zn, Mn)Te es aproximadamente aquella

del ZnTe en el límite de alta dilución, por lo que tomaremos m∗ = 0.2me. Esta

masa efectiva da una escala de energía E0 ≈ 0.972 meV, que es mucho mayor que

la del acoplamiento de intercambio J/V . Esta relación es importante puesto que,

siendo E0 ≫ J/V , esperamos que el electrón ocupe mayormente el modo radial

de más baja energía, y valga por tanto la aproximación fundamental de la que

partimos, aunque el ancho efectivo del anillo sea aproximadamente la mitad del

radio efectivo, y no mucho menor a este.

Integraremos el sistema de ecuaciones de Heisenberg truncado y la ecuación

de Schrödinger exacta suponiendo una base suficientemente amplia de estados

electrónicos que abarca energías hasta 25E0. Supondremos asimismo, a menos

que indiquemos lo contrario, que el sistema comienza en un estado de la forma

|ℓ, σ⟩ |Mn1⟩ . . . |MnNMn⟩, donde |ℓ, σ⟩ es un autoestado de electrón de OAM y SAM

definidos; y |MnI⟩ es el estado inicial de la impureza I. Para estados de esta forma,
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4. Interacción entre electrones e impurezas en el anillo sin SOI

es posible ver que, inicialmente, las matrices densidad de dos y tres partículas,

⟨P IP I′⟩ y ⟨c†
ℓ1σ1cℓ2σ2P

IP I′⟩, son iguales as sus formas factorizadas (esto es, a sus

contribuciones de «campo medio»), y sus partes de correlación son nulas.

Las condiciones sobre el electrón, como se ha dicho anteriormente, pueden

generarse en la práctica por excitación óptica a través del uso de haces de twisted-

light [2, 3, 5, 84]. Las condiciones sobre las impurezas pueden, en cambio, ser

más difíciles de reproducir. A fin de reducir juiciosamente el número de grados

de libertad en estos estados, supondremos que las impurezas están inicialmente

magnetizadas de forma que el espín de cada una se halla orientado sobre el plano

xz y forma un ángulo 0 ≤ β < π con el eje del anillo. Esto es, supondremos, a

menos que se indique lo contrario, que:

|MnI⟩ = d(5/2)(β) |Sz; 5/2⟩ ; (4.11)

donde d(5/2)(β) es la matriz d de Wigner de espín 5/2 [66], y |Sz; 5/2⟩ es el autoestado

del operador Sz de espín 5/2 de autovalor 5/2. Notemos que el Hamiltoniano efectivo

de la ec. (4.2) es un operador escalar respecto de rotaciones sobre el espín total,

por lo que obtendríamos la misma dinámica si, en lugar de elegir xz, eligiésemos

cualquier otro plano que contuviera al eje del anillo. Es posible deducir que el

truncamiento de la jerarquía no rompe esta simetría.

Finalmente, dado que trabajaremos con una cantidad pequeña de impurezas,

supondremos que las mismas están distribuidas en el anillo en los vértices de

un polígono regular de NMn lados cuando NMn > 2, o que se ubican en posición

diametralmente opuesta cuando NMn = 2. Si bien esta configuración es altamente

simétrica y difícil de obtener en la práctica, pues es imposible predecir la posición

de las impurezas durante el proceso de fabricación de la muestra, es, sin embargo,
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útil para garantizar la condición de alta dilución, ya que la máxima separación de

las impurezas en un anillo cuasi-unidimensional se alcanza precisamente con esta

distribución.

4.4. Estudio numérico del truncamiento

Supongamos que las impurezas están inicialmente magnetizadas sobre el eje x

(β = π/2) y que el electrón se encuentra en el estado |1, ↑⟩. En estas condiciones,

la proyección paralela al eje del anillo de la magnetización de una de las NMn

impurezas evoluciona en el tiempo como muestra la Fig. 4.1a. Notemos que no es

necesario especificar el índice de la impureza elegida, ya que todas evolucionan

acompasadamente debido a la alta simetría de su distribución espacial y de su

estado inicial (ver apéndice C). En la figura, la línea sólida representa la dinámica

de referencia (la solución exacta), mientras que las líneas de guiones (azul) y guiones

y puntos (verde) muestran, respectivamente, la dinámica aproximada tanto si se

desprecian las correlaciones de la interacción directa entre impurezas (δ⟨P IP I′⟩),

como si se incluyen en el sistema truncado.

Observamos que en el rango temporal elegido, la aproximación reproduce

con altísima precisión la magnetización exacta. La inclusión de las correlaciones

provenientes de la interacción directa entre impurezas no modifica significativamente

los resultados, como esperamos en el límite de alta dilución. Para el mismo número

de impurezas, esta correspondencia tan próxima entre la dinámica aproximada y la

exacta se observa asimismo cuando las impurezas comienzan polarizadas en otras

direcciones. En efecto, como se observa en la Fig. 4.1b, la diferencia relativa entre

la solución aproximada y la exacta no supera el 1 % cuando la separación entre ellas
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Figura 4.1: (a): Magnetización de las impurezas paralela al eje del anillo para una
polarización inicial de 5ℏ/2 paralela al eje x. La curva sólida muestra la solución exacta,
mientras que la curva de guiones y de guiones y puntos muestran, respectivamente, las
soluciones aproximadas despreciando o incluyendo las correlaciones de la interacción
directa entre impurezas (δ⟨P IP I′⟩). (b): Máxima diferencia relativa entre la solución
aproximada (sin δ⟨P IP I′⟩) y la exacta para distintos ángulos de orientación iniciales.
(c-d): Lo mismo que en (a) pero suponiendo orientaciones iniciales βI diferentes para
cada una de las NMn = 2 (c) o NMn = 3 (d) impurezas, ubicadas en φI . La magnetización
se muestra relativa a la inicial. El estado inicial del electrón es |1, ↑⟩ en todos los casos.
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4.4. Estudio numérico del truncamiento

alcanza el máximo global. Las Figs. 4.1c-d muestran un ejemplo de este caso cuando

el sistema contiene dos y tres impurezas, respectivamente. Mencionamos aquí que

las soluciones aproximadas reproducen con igual precisión la magnetización exacta

cuando las impurezas comienzan en estados puros elegidos de forma totalmente

aleatoria.

De estos resultados concluimos, por un lado, que el esquema de truncamiento es

excelente para reproducir la magnetización de las impurezas en este rango temporal

y cuando estas y el electrón se encuentran en estados puros; y, por otro, que en

el límite de alta dilución es válido ignorar las correlaciones δ⟨P IP I′⟩. Notemos

que, por conservación del SAM total, una alta precisión en la reproducción de

la magnetización de las impurezas, cuando éstas son pocas, acota el error en la

aproximación del SAM electrónico.
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Figura 4.2: (a): Población de los estados |2, ↑⟩ y |2, ↓⟩ electrónicos adyacentes en
energía al estado inicial |1, ↑⟩. La línea sólida representa la solución de referencia (exacta)
calculada en el picture de Schrödinger, mientras que la de guiones representa la solución
aproximada (sin δ⟨P IP I′⟩). La polarización inicial de cada impureza es 5ℏ/2 y paralela
al eje x. (b): Población de los mismos estados cuando las impurezas están inicialmente
en el estado totalmente no polarizado. En ambos casos consideramos NMn = 3.
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4. Interacción entre electrones e impurezas en el anillo sin SOI

El esquema de truncamiento, sin embargo, no reproduce con la misma precisión

las ocupaciones de los estados electrónicos o de espín de las impurezas. Si suponemos

la misma configuración inicial que para la Fig. 4.1a, notamos que las primeras (los

elementos diagonales de la matriz densidad electrónica ⟨c†
ℓ1σ1cℓ2σ2⟩) toman valores

negativos dentro del rango temporal elegido, particularmente para los primeros

estados más próximos en energía al inicial, como muestra la 4.2a. La magnitud

de estos valores no afecta al cálculo de observables como la magnetización de

las impurezas, pero es, sin embargo, demasiado grande para asociarlo a errores

numéricos. El mismo comportamiento se observa para otras condiciones iniciales, e

incluso cuando las impurezas comienzan en el estado completamente no polarizado,

descrito por la matriz densidad ⟨P I
n1n2⟩(t = 0) = 1

6δn1n2 para todo I, como se

observa en la Fig. 4.2b. Para tratar este último caso, suponemos inicialmente nulos

los términos de correlación entre impurezas y electrones, δ⟨c†
ℓ1σ1cℓ2σ2P

I⟩, y entre

impurezas δ⟨P IP I′⟩, cuando estos últimos son incluidos en la dinámica. Al tomar

esta condición inicial seguimos nuevamente a Thurn y Axt, y suponemos que el

tiempo que tardan estas correlaciones en generarse es mucho mayor al tiempo de

excitación inicial del sistema [78]. Esto es razonable en nuestro caso, dado que

el tiempo de excitación del sistema es esencialmente el de excitación óptica del

electrón.

La hermiticidad de las matrices densidad aproximadas se conserva en todos

los casos estudiados. Los valores negativos para las poblaciones indican, por tanto,

que la condición de ser semidefinidas positivas no se respeta durante la evolución

temporal. Para la matriz densidad electrónica, el signo del menor autovalor muestra

que esto sucede en (casi) todos los casos y desde el primer paso de integración,

como se ve en la Fig. 4.3. Ratificamos que este comportamiento no es un efecto de

78



4.4. Estudio numérico del truncamiento

0 5 10 15
Time [ps]

−4

−3

−2

−1

0

Lo
we

st
Ei

ge
nv

al
ue

[1
0−

4 ]

(a)

0
π
8
π
4
3
8π
π
2
5
8π

3
2π

7
8π

π

0 5 10 15
Time [ps]

−12

−10

−8

−6

−4

−2

0
(b)

N = 2
N = 3

Figura 4.3: (a): Menor autovalor de la matriz densidad electrónica ⟨c†
ℓ1σ1

cℓ2σ2⟩ en
el tiempo cuando las impurezas están inicialmente polarizadas a distintos ángulos de
inclinación sobre el plano xz. (b): Lo mismo que en (a) pero suponiendo que las impurezas
se encuentran en el estado totalmente no polarizado. En ambos casos suponemos NMn = 3
y el electrón inicialmente en |1, ↑⟩.

error numérico (la reducción del paso de integración en un orden, por ejemplo, no

proporciona ninguna mejora), sino propio del esquema de truncamiento. La única

configuración en que no se observa este problema es aquella para la cual todas las

impurezas se encuentran inicialmente polarizadas paralelamente al eje del anillo

(β = 0). Si consideramos que el estado electrónico inicial también es el de máxima

proyección en la misma dirección, observamos que esta configuración corresponde

al estado de máxima proyección del SAM total. Es, por tanto, un autoestado de

SAM total con proyección máxima 5NMn/2 + 1/2. Puesto que el Hamiltoniano total

y el esquema de truncamiento conservan esta cantidad, es inmediato ver que ni el

espín del electrón ni los de las impurezas tienen, en este caso, otros estados a los

cuales transicionar sin romper la conservación del SAM total. Por tanto, no existe

variación en la magnetización. Sin embargo, el sistema sí evoluciona, pues el OAM
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4. Interacción entre electrones e impurezas en el anillo sin SOI

del electrón no se conserva. Es por tanto razonable que el truncamiento aplicado

sobre el término de interacción indirecta entre impurezas no tenga efecto neto sobre

la dinámica. Aproximar o no esta interacción es irrelevante en este caso, y esto

se refleja en la conservación de la semidefinitud positiva de la matriz densidad

electrónica.

Notemos que la conservación de la hermiticidad puede garantizarse directamente

en la ecuación de Heisenberg truncada, pues esta condición depende, como mucho,

de los valores de las matrices densidad en cada tiempo t. Sin embargo, la condición

de semidefinitud positiva es esencialmente una condición sobre la segunda derivada

temporal de la matriz densidad, pues sus elementos diagonales deben alcanzar

mínimos locales toda vez que se anulan. Por tanto, la misma depende fuertemente

de la aproximación sobre los QI . La diferencia entre estas propiedades se ve, en

otras palabras, en el hecho de que la hermiticidad sólo requiere que los elementos

diagonales sean reales, mientras que la semidefinitud positiva requiere, además, que

estos sean no negativos.

Lo discutido para la matriz densidad electrónica sucede también para las otras

matrices de dos y tres partículas. Y en todos los casos la adición de las correlaciones

δ⟨P IP I′⟩ sólo introduce pequeñas correcciones. Esto es indicativo de que el problema

se halla principalmente en el truncamiento de los QI .

Para estos rangos temporales, que exceden los típicos de teoría de perturbaciones

dependiente del tiempo, podemos concluir que la aproximación es útil para estimar

correctamente los observables como la magnetización de las impurezas, que no es

muy sensible a estos pequeños errores en las poblaciones. Sin embargo, tanto en

caso simples como en otros más complejos, en los que no se cuenta con soluciones

exactas de referencia, es necesario determinar las circunstancias en que estos errores
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4.4. Estudio numérico del truncamiento

en las poblaciones pueden ignorarse.
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Capítulo 5

Dinámica del intercambio de SAM

en presencia de SOI

5.1. Presentación

En este capítulo integraremos lo estudiado en los capítulos anteriores. Integra-

remos numéricamente las ecuaciones (4.6), (4.7) y (4.8), teniendo en consideración

las limitaciones de la aproximación descrita en el Cap. 4. Consideraremos, por

tanto, un único electrón de conducción.

Como mencionamos anteriormente, nuestro objetivo es comprender la generali-

dad de la transferencia de SAM electrónico a SAM de las impurezas en presencia de

interacción espín-órbita. A este respecto, consideraremos únicamente la interacción

de Dresselhaus, y omitiremos la de Rashba. La razón detrás es simple: ambas inter-

acciones generan dinámicas comparables en el sistema que estamos tratando, tal

como se mostró en el Cap. 3, pero sólo la de Dresselhaus es fundamentalmente una

propiedad tanto del semiconductor del QR, como del confinamiento. La interacción
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de Rashba, como vimos, puede ser ajustada o suprimida en algunas estructuras,

pero la de Dresselhaus es más difícil de modificar sin cambiar el semiconductor

considerado o el confinamiento (lo cual podría alejarnos de la condición de anillo

delgado, por ejemplo).

La inclusión de la interacciones SOI de Dresselhaus o Rashba puede hacerse

sin modificar sustancialmente las hipótesis que conducen al truncamiento descrito

en el Cap. 4, pues las SOI no incluyen términos directos de interacción con las

impurezas, sino que vinculan el OAM con el SAM del electrón. Por tanto, podemos

incluir las ecuaciones de Heisenberg que derivan de los Hamiltonianos de las ecs.

(3.2) sin modificar el truncamiento desarrollado en la §4.3. Cabe enfatizar que las

interacciones de intercambio y de espín-órbita son tratadas en pie de igualdad. En

otras palabras, las ecuaciones de Heisenberg derivadas de los Hamiltonianos de

espín-órbita son las mismas que las utilizadas para estudiar la dinámica en ausencia

de la interacción de intercambio, y son incluidas directamente y sin modificaciones

adicionales en el sistema de ecuaciones truncado. Destacamos este aspecto dado que

el tratamiento de la dinámica de electrones en presencia de ambas interacciones,

puede ser distinto en el bulk o en otras geometrías [85, 86].

Consideraremos un anillo delgado de Zn1−xMnxSe en el límite de alta dilución

(x ≪ 1), con una densidad de impurezas NMn/V = 1.52 × 10−2 nm−3 (NMn = 20),

un radio efectivo de a = 14 nm y un ancho efectivo de 7.3 nm, que corresponde a un

potencial parabólico confinante de intensidad ℏω = 15 meV. Supondremos, como en

la §4.3, que la masa efectiva del electrón en el borde de la banda de conducción es,

en el límite de alta dilución, la del ZnSe sin impurezas, esto es, m∗ = 0.16me. Estos

parámetros dan una escala de energía de la banda libre (sin SOI ni intercambio) de

E0 = 1.22 meV.
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El acoplamiento de intercambio para el (Zn, Mn)Se en las condiciones propuestas

es J = 11.8 meV nm3. La constante de Dresselhaus efectiva, β/a, para este (y otros)

materiales puede calcularse a partir de la constante de Dresselhaus en el bulk, que

para el ZnSe es γD = 14.3 meV nm3 [16, 85], y de la geometría del anillo. Suponiendo

que el confinamiento en dirección vertical es adecuadamente descrito por un pozo

cuadrado, en este caso de ancho h = 3 nm, y que el electrón siempre se halla

en el modo axial de menor energía, obtenemos β/a = (γD/a)(π/h)2 ≈ 1.12 meV.

Notemos que este valor es del orden de E0 y, por tanto, β/a ≫ J/V ≈ 9×10−3 meV.

Podríamos considerar otros materiales, pero a los fines de nuestro estudio esto

sólo modificaría ligeramente los parámetros efectivos que entran en las ecuaciones.

Esto es debido al hecho de que el orden de las constantes J y γD es compartido

por un gran número de materiales de estructura zincblenda (con excepción del

InSb, en el que γD es notoriamente superior [16]). Asimismo, podríamos variar

las características del anillo, pero esto, por lo anterior, no modificaría el orden de

los acoplamientos efectivos (β/a y J/V ) ni la relación entre ellos, a menos que

reduzcamos o aumentemos significativamente el confinamiento. En el primer caso,

incrementaríamos mucho el peso de la interacción SOI frente a la de intercambio, y

no observaríamos el efecto de esta última en el rango temporal en el que podemos

trabajar dadas las limitaciones metodológicas expuestas en el Cap. 4. En el segundo

caso, nos alejaríamos de la aproximación de anillo delgado que nos permitió reducir

la dinámica espacial a una dimensión.

Finalmente, para realizar la integración numérica de las ecuaciones de Heisen-

berg, supondremos que las impurezas se encuentran inicialmente no magnetizadas y

en un estado totalmente isótropo, descrito por la matriz densidad ⟨P I
n1n2⟩ = 1

6δn1n2 .

Dada la relación β/a ≈ E0 ≫ J/V , supondremos una base restringida de autoesta-

85



5. Dinámica del intercambio de SAM en presencia de SOI

dos electrónicos de H0 cuyas autoenergías no superan 9E0. Supondremos, como lo

hemos hecho en los capítulos anteriores, que el electrón comienza en un estado de

OAM determinado, esto es, en un autoestado de Lz. No haremos hipótesis sobre el

estado de espín del electrón a menos que sea necesario.

5.2. Dinámica en ausencia de SOI

Comencemos suponiendo que es posible omitir la interacción de Dresselhaus (β =

0). El Hamiltoniano en este caso es, como vimos, H0 +Hsd, y es un operador escalar

respecto de rotaciones que involucren únicamente al espín total S = ∑NMn
I=1 SI + s.

Esta simetría está ligada a la conservación del SAM total, como mencionamos

en el Cap. 3, y es de importancia porque permite estudiar la magnetización total

de las impurezas observando el comportamiento del SAM electrónico. Asimismo,

impone una restricción a la magnetización que pueden alcanzar las impurezas en

su conjunto y, por tanto, a la magnetización de cada una de ellas en particular.

Esta simetría, además, simplifica notoriamente el análisis de la dinámica de

intercambio cuando las impurezas se hallan inicialmente en un estado totalmente

isótropo, pues permite suponer que el espín del electrón se halla siempre polarizado

sobre el eje del anillo, sin por ello perder generalidad en el estudio. En otras

palabras, si la polarización inicial del espín del electrón se halla en una dirección

que no es el eje del anillo, podemos llevarla mediante rotaciones al eje, siempre que

compensemos estas rotaciones con rotaciones inversas aplicadas sobre los espines

de las impurezas. Sin embargo, estas últimas no modifican el estado inicial de las

mismas. La dinámica de intercambio para una polarización inicial está, por tanto,

vinculada a la dinámica para otra polarización a través de rotaciones que involucran
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únicamente al espín total.

De la naturaleza escalar del Hamiltoniano y de la simetría del estado inicial de

las impurezas se deduce, además, que la dinámica del impulso angular orbital no

depende de la polarización inicial del espín del electrón, independientemente de

que este comience o no en un autoestado de Lz. Esto es consecuencia directa del

hecho de que las rotaciones mencionadas anteriormente actúan solamente sobre el

espacio de espín.

Destacamos aquí que estas observaciones se deducen de la estructura del Hamil-

toniano y de las condiciones iniciales, y no dependen en absoluto de las hipótesis

subyacentes al truncamiento de las ecuaciones de Heisenberg.

En la Fig. 5.1a-b mostramos la dinámica del impulso angular electrónico y

la magnetización total de las impurezas, respectivamente, para una realización

particular y arbitraria de Hsd y un electrón inicialmente excitado en un estado |ℓ, ↑⟩.

Por «realización» de Hsd entendemos, como en §4.2, el conjunto de parámetros

{φI} que dan las posiciones de las impurezas en el anillo.

A pesar de ser relativamente pequeña respecto de la energía de la banda libre,

observamos una gran influencia de la interacción de intercambio sobre la dinámica

del OAM electrónico y la magnetización de las impurezas, especialmente cuando

ℓ ̸= 0. Por una parte, vemos que las curvas de OAM opuesto (esto es, de ℓ y −ℓ)

parecen ser una reflejo de la otra respecto del eje ⟨Lz⟩ = 0; y todas ellas parecen

cambiar de signo casi al mismo tiempo. Por otra parte, vemos que el intercambio de

SAM no depende significativamente del OAM inicial cuando éste es no nulo, y en

todos los casos esta transferencia es de tal magnitud que produce la inversión del

signo del SAM electrónico. Mencionamos aquí que, por simetría, la magnetización

de las impurezas se da en dirección del eje del anillo (es decir, en la dirección de
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Figura 5.1: (a): Evolución en el tiempo del OAM electrónico para una realización
particular y arbitraria de Hsd. El electrón se halla inicialmente en el autoestado |ℓ, ↑⟩ de H0

y las impurezas se encuentran en el estado totalmente mixto (isótropo) ⟨P In1n2⟩ = 1
6δn1n2 .

(b): SAM total de las impurezas. (c): Valor de expectación de la energía de exchange
en el tiempo ⟨Hsd⟩. (d): Probabilidad de ocupación de los autoestados de H0 de OAM
|ℓ| = 1 para un electrón inicialmente en |1, ↑⟩. Estos estados degenerados en ausencia de
la interacción de intercambio. En (b-d) la realización de Hsd es la misma. (e-h): Para cada
estado en (d), diferencia entre la probabilidad de ocupación en (d) y la que se obtiene
para otras cuatro realizaciones de Hsd distintas y tomadas al azar.

polarización inicial del espín del electrón) y no existe, por tanto, magnetización

sobre el plano. Hechas estas observaciones generales, profundicemos en cada una

de ellas.

La aparente relación entre las curvas de ⟨Lz⟩ para distintos OAM iniciales es

efectivamente confirmada por la dinámica de las ocupaciones de los autoestados

de H0 que serían degenerados en ausencia de Hsd. Como observamos en la Fig.

5.1d para el caso en que el electrón comienza en el estado |1, ↑⟩, la dinámica

electrónica se halla esencialmente reducida a cuatro niveles: el inicial y otros tres

que serían degenerados con este si la interacción de intercambio no estuviera, es
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decir, {|1, ↓⟩ , |−1, ↑⟩ , |−1, ↓⟩}. En el intervalo de tiempo estudiado, observamos

que la ocupación total se mantiene casi en la unidad, y fluctúa alrededor de esta

con amplitudes del orden de 10−3. En otras palabras, la dinámica electrónica queda

confinada a un sistema de cuatro niveles, o dos si no se explicita el espín. En el

régimen de alta dilución, la interacción de intercambio no es, pues, suficientemente

fuerte para inducir transiciones entre estados por fuera de este subespacio (lo que

requeriría una diferencia de energía al menos del orden de E0). Esto se refleja en la

Fig. 5.1c. El OAM electrónico se halla por tanto limitado a ℏ|ℓ| cuando ℓ ≠ 0 y

fluctúa alrededor de ⟨Lz⟩ = 0 cuando ℓ = 0.

Supongamos ahora que ℓ ̸= 0 (el caso ℓ = 0 lo analizaremos más adelante) y

restrinjamos, a modo de aproximación, el espacio de Hilbert de estados electrónicos

a estos cuatro niveles. Las transiciones entre estados de diferente OAM preservan o

invierten el signo de ℓ, como si el scattering fuese únicamente forward o backward.

Esto se refleja en los desfasajes ρI introducidos por los potenciales de contacto tipo

delta de Dirac (ver §4.2), que sólo pueden tomar los valores conjugados e±2iℓφI . Si

mantenemos la restricción de la base electrónica a cuatro niveles, definidos por

ℓ ̸= 0, cambiar ℓ a ℓ′ ̸= 0 es equivalente a mantener constante el valor de ℓ y cambiar,

en su lugar, la distribución de impurezas de {φI} a {φ′
I
.= (ℓ′/ℓ)φI}. Sin embargo,

esta modificación sólo introduce ligeras variaciones en las ocupaciones de los niveles

degenerados, como puede verse en la Fig. 5.1e-h para cuatro distribuciones tomadas

al azar. Más aún, estas variaciones parecen no afectar la ocupación total de los

estados de OAM |1⟩ y |−1⟩, esto es, las sumas de las ocupaciones de {|1, ↑⟩ , |1, ↓⟩} y

{|−1, ↑⟩ , |−1, ↓⟩}. Observamos esto en la Fig. 5.2. En otras palabras, las variaciones

en las ocupaciones de los niveles |±1, ↑⟩, producidas al cambiar la distribución

de impurezas, parecen ser exactamente compensadas por cambios opuestos en
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Figura 5.2: Ocupación total de los estados de OAM definido |ℓ| ≤ 2 en un rango temporal
extenso, cuando el electrón comienza en el estado de OAM definido |ℓ, ↑⟩ y las impurezas
en el estado isótropo ⟨P In1n2⟩ = 1

6δn1n2 . En este rango, las ocupaciones de los autoestados
de H0, de espín y OAM defindios, se vuelven negativas. Notemos que la ocupación
total de cada nivel de OAM definido son siempre positivas, a pesar de que la matriz
densidad electrónica ⟨c†

ℓ1σ1
cℓ2σ2⟩ no sea semidefinida positiva. Las ocupaciones excesivas

o deficientes de un estado de espín |ℓ, ↑⟩ y |ℓ, ↓⟩ son, entonces, compensadas por defecto
o exceso en la ocupación del estado complementario: |ℓ, ↓⟩ y |ℓ, ↑⟩, respectivamente.

las ocupaciones de |±1, ↓⟩, de forma que la ocupación total de cada nivel |±1⟩

permanece prácticamente invariante y débilmente dependiente de la realización

particular de Hsd. Puesto que ⟨Lz⟩/ℓ depende únicamente de la ocupación total

de cada nivel |±1⟩, este valor es también insensible a la distribución electrónica y,

por lo anterior, al valor de ℓ. Las curvas de ⟨Lz⟩ en la Fig. 5.1a están, por tanto,

relacionadas unas con otras pues pueden reducirse a una curva común ⟨Lz⟩/ℓ.

Es interesante notar que lo mismo se observa también a tiempos más largos,

cuando las ocupaciones de los estados |1, ↑⟩ y |1, ↓⟩ se vuelven negativas. En este

punto destacamos un aspecto de la la Fig. 5.2 vinculado al problema metodológico
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5.2. Dinámica en ausencia de SOI

tratado en el Cap. 4. Si bien sabemos que el truncamiento no conserva la semi-

definitud positiva de las matrices densidad (es decir, no es una aproximación que

genera una evolución Hamiltoniana) vemos que, para tiempos más largos de los

que permiten confiar en los resultados del truncamiento, las ocupaciones de los

estados |±1⟩ se mantienen siempre positivas, aunque las ocupaciones individuales

de |1, ↑⟩ y |1, ↓⟩ se vuelvan negativas rápidamente. De aquí podemos ver que, para

cada realización de Hsd la ocupación «excedente» («deficiente») de un estado de

OAM y espín definidos es compensada por la ocupación «deficiente» («excedente»)

del estado de igual OAM y espín complementario.

La Fig. 5.2 nos revela que la dinámica del nivel |1⟩, para las condiciones iniciales

que estamos tratando, es oscilatoria y su periodo y amplitud están muy bien

definidos. Esto es esperable no sólo para ℓ = 1, sino para cualquier ℓ ̸= 0, pues sólo

dos niveles de OAM definido invervienen esencialmente en la dinámica (los de ±ℏℓ)

y sus ocupaciones deben conservar el número de electrones (en nuestro caso, uno).

En otras palabras, la dinámica en este subespacio se comporta como un sistema

de dos niveles. Podemos agregar esta observación a las mencionadas en el Cap.

4 y enfatizar nuevamente que, a pesar de no ser Hamiltoniano, el truncamiento

utilizado reproduce adecuadamente diversos aspectos físicos del sistema que estamos

estudiando.

Retomando el análisis de la Fig. 5.1b, destacamos que la dinámica de la mag-

netización total ⟨Sz⟩ depende de la distribución de impurezas. Podemos deducir

que esto será así atendiendo nuevamente a los gráficos de las Figs. 5.1e-h. Si la

suma de las ocupaciones de los estados |ℓ, ↑⟩ y |ℓ, ↓⟩ es insensible a la realización de

Hsd, la diferencia entre ellas no lo es y, por tanto, tampoco podrá serlo en general

el valor de expectación del espín del electrón, ⟨sz⟩, o la magnetización total ⟨Sz⟩,
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5. Dinámica del intercambio de SAM en presencia de SOI

que está ligada al primero por conservación del SAM total. Sin embargo, en el

rango temporal en el que estamos trabajando, el efecto de estas variaciones es tan

pequeño que no alcanza a percibirse en las curvas de ⟨Sz⟩.

Analicemos ahora la dinámica observada cuando el electrón comienza en el

autoestado |0⟩ de Lz. Como vemos en las Fig. 5.1a-b, la dinámica este caso

es notoriamente diferente, aún a tiempos muy cortos en los que los errores de

truncamiento no llegan a acumularse. Podemos comprender sus peculiaridades

si procedemos como antes, teniendo en cuenta que el OAM electrónico en este

caso oscila alrededor de ⟨Lz⟩ = 0, pues la intensidad efectiva de la interacción de

intercambio nuevamente limita las transiciones del electrón a otros estados de OAM

degenerados con el inicial.

Las transiciones más relevantes en este caso son entre los estados |0, ↑⟩ y

|0, ↓⟩. Si reducimos nuevamente el subespacio de estados electrónicos a estos dos,

observaríamos un comportamiento similar al de un sistema de dos niveles. Si

sumamos en espín observamos en cambio que el sistema se comporta como si

fuera esencialmente de un nivel, tal como muestra la Fig. 5.2. En otras palabras,

los estados de OAM ℏℓ ̸= 0 prácticamente no se ocupan en este caso. Al hacer

cualquiera de estas reducciones estamos efectivamente suprimiendo las transiciones

a otros estados de OAM definido y, por tanto, estamos suprimiendo el efecto de los

potenciales de contacto sobre la matriz densidad electrónica. La ubicación de cada

impureza en el anillo ya no es importante, pues los elementos de matriz diagonales

de estos potenciales no dependen de las {φI}, y los términos de interacción entre

los electrones y las impurezas pueden reducirse a un único término de interacción

entre el espín del electrón y el de un espín total y no localizado [78], dado por

92



5.3. Dinámica en presencia de SOI

S = ∑NMn
I=1 SI :

H = H0 + J

V

NMn∑
I=1

SI

 · s (5.1)

No obstante, esta reducción no elimina la interacción indirecta entre impurezas,

pues cada término s · SI no conmuta con s · SI′ para I ̸= I ′. La dinámica generada

por este Hamiltoniano de la ec. (5.1) no es, por tanto, equivalente a la de NMn

interacciones individuales entre el electrón y las impurezas.

Puesto que la distribución de las impurezas ya no entra en Hsd, cualquier

reordenamiento de las impurezas por intercambio de índices no tiene efecto alguno

sobre la dinámica. Esta nueva simetría trae como consecuencia que el electrón

transfiera en todo momento la misma cantidad de SAM a cada impureza. En

otras palabras, el SAM total se distribuye uniformemente en todas las impurezas

(como cuando estas forman un polígono regular), y las impurezas se magnetizan

(o desmagnetizan) de forma sincrónica si empiezan, como en nuestro caso, todas

en el mismo estado. A tiempos cortos, vemos que esta restricción ralentiza la

magnetización y la hace comparativamente menos efectiva que en los casos en los

que cada impureza intercambia SAM con el electrón a ritmos diferentes.

5.3. Dinámica en presencia de SOI

Incluyamos ahora la interacción de Dresselhaus fijando, como dijimos, β/a =

1.12 meV. El Hamiltoniano total ahora contiene tres términos: los dos con que

venimos trabajando, H0 y Hsd, y el de Dresselhaus, dado en la ec. (3.2).

En la §3.2 mencionamos que tanto los autoestados como las autoenergías

del Hamiltoniano H0 + HD pueden calcularse exactamente si se subdivide este

en bloques de 2 × 2 de autovalor de Lz − sz definido (cantidad conservada por
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5. Dinámica del intercambio de SAM en presencia de SOI

la interacción de Dresselhaus). Si reordenamos el espacio de Hilbert de estados

electrónicos y lo suponemos dividido en subespacios de la forma {|ℓ, ↑⟩ , |ℓ− 1, ↓⟩},

podemos trabajar con los autoestados de H ′
0
.= H0 +HD:

ψ+
ℓ (φ) = i√

2π
eiℓφ

 − sin θ
2

ie−iφ cos θ
2

 , ψ−
ℓ (φ) = i√

2π
eiℓφ

 cos θ
2

ie−iφ sin θ
2

 ; (5.2)

cuyas autoenergías asociadas son

E±
ℓ

E0
=
[(
ℓ− 1

2

)2
±
(
ℓ− 1

2

)√
1 + tan2 θ + 1

4

]
. (5.3)

El ángulo cenital θ queda enteramente determinado por tan θ = β/aE0, que, en

nuestro caso, resulta θ ≈ π/4. Si el electrón comienza en alguno de los autoestados

ψ±
ℓ (φ), su espín apuntará hacia el eje del anillo (ψ+

ℓ ) o en la dirección opuesta

(ψ−
ℓ ). En ambos casos, el espín describirá una «corona» alrededor del anillo. Si,

en cambio, el electrón comienza en un autoestado de H0, |ℓ, σ⟩, su estado inicial

involucrará únicamente el bloque de H ′
0 dado por {|ℓ, σ⟩ , |ℓ− 2σ, σ̄⟩}.

En ausencia de Hsd, los autoestados de H0 son doble (ℓ = 0) o cuádruplemente

degenerados (ℓ ̸= 0), pues H0 es independiente del espín y cuadrático en Lz.

Esta simetría axial se reduce en H ′
0 a rotaciones en π alrededor del eje del anillo

(ver §3.3). Sin embargo, persiste la simetría de inversión temporal (ver Cap. 2),

y la degeneración de Kramers. Los autoestados de H ′
0 son siempre doblemente

degenerados si β/a ≤ E0, como en nuestro caso (β/aE0 ≈ 0.92). A partir de la

forma matricial de cada bloque de H ′
0 en la base {|ℓ, ↑⟩ , |ℓ− 1, ↓⟩}, puede verse

que el autoestado degenerado de ψ±
ℓ (φ) es ψ∓

−ℓ+1(φ). Este estado pertenece a otro

bloque de H ′
0, y su orientación de espín es diametralmente opuesta a la de ψ±

ℓ (φ).

El reordenamiento del subespacio de estados electrónicos en bloques de 2 × 2 es

sumamente útil pues la intensidad de la interacción de Dresselhaus es similar a la
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5.3. Dinámica en presencia de SOI

escala de energía de la banda libre E0 y, por tanto, mucho mayor que la intensidad

de la interacción de intercambio. Aprovechando que podemos diagonalizar H ′
0

exactamente, podemos estudiar la dinámica conjunta en presencia de las dos

interacciones tomando la base de autoestados de H ′
0.

− E0
2

0

E0

(0, +) (1, −)

(−1, +) (2, −)

(0, −) (1, +)

Hsd

Figura 5.3: Autoestados de H ′
0 de menor energía y primeros excitados. Por claridad,

los estados ψ±
ℓ (φ) se notan como (ℓ,±), y sus energías se miden respecto de E0. Las

flechas curvadas marcan las transiciones de alta energía entre estados de Dresselhaus
pertenecientes a un mismo bloque (por ejemplo, para ℓ = 0, ∆E ≈

√
2β/a ≈ 1.58 meV).

Las flechas de guiones indican transiciones de mucha menor energía (∆E ≈ 0.4 meV)
entre estados degenerados perturbados por Hsd. Notemos que Hsd introduce transiciones
entre cualquier par de autoestados de H ′

0. Sin embargo, esperamos que los más relevantes
a la dinámica sean los que marcamos aquí.

En las condiciones de nuestro sistema, es esperable que la interacción de in-

tercambio induzca transiciones principalmente entre autoestados degenerados de

H ′
0 degenerados. En la Fig. 5.3 mostramos esquemáticamente las transiciones más

relevantes entre los autoestados de H ′
0 de más baja energía.

Para comparar con los resultados obtenidos en §5.2, analizaremos el caso en

que el electrón comienza en un estado de OAM definido |±1⟩ y de espín polarizado

sobre el plano xz a distintos ángulos 0 ≤ ϑ ≤ π respecto del eje del anillo.

En la Fig. 5.4 mostramos la dinámica del OAM y de la magnetización de las

impurezas, suponiendo, como siempre, que estas comienzan en el estado isótropo
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Figura 5.4: Evolución temporal del OAM electrónico y de la magnetización total de
las impurezas. El electrón se supone inicialmente en un estado de OAM definido |±1⟩
y polarización de espín sobre el plano xz a un ángulo ϑ del eje del anillo. Por claridad,
sólo se muestran las curvas ⟨Sz⟩ para el caso |1⟩. Las impurezas están distribuidas como
en las Figs. 5.1a-d. El estado inicial de las impurezas se supone, como siempre, isótropo
y de mínima pureza: ⟨P In1n2⟩ = 1

6δn1n2 . Las curvas en gris y marcadas con cuadrados
corresponden a la dinámica para la misma realización de Hsd y configuración inicial, pero
sin SOI.

⟨P I
n1n2⟩ = 1

6δn1n2 . En la dinámica de ⟨Lz⟩ observamos que la SOI introduce oscilacio-

nes de alta frecuencia que perturban notoriamente la tendencia del OAM a cambiar

de signo (es decir, la tendencia de la corriente eléctrica ⟨jφ⟩ ∝ ⟨Lz⟩ a invertir su

sentido). Observamos que esta tendencia es similar al caso sin SOI, y proviene

mayormente del scattering en las impurezas. Estas oscilaciones de alta frecuencia

provienen (con un error del orden de 10−2) de los intercambios rápidos de OAM con

SAM electrónico dentro de un mismo subespacio de autoestados {ψ+
ℓ (φ), ψ−

ℓ (φ)}, y

por tanto dependen, como mostramos en la §3.2 (ver definición de ℏΩD ∝ |ℓ− σ|),

tanto del OAM como de la polarización de espín iniciales. Cuando la polarización
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5.3. Dinámica en presencia de SOI

de espín se halla sobre el eje del anillo (ϑ = 0, π), observamos que sólo intervienen

las transiciones dentro del bloque definido por el estado |±1, ↑⟩ (ϑ = 0) o |±1, ↓⟩

(ϑ = π). En cambio, cuando la polarización se halla fuera del eje (0 < ϑ < π),

intervienen las transiciones entre autoestados en cada subespacio. Esto último se

observa en las curvas en la Fig. 5.4 como superposición de oscilaciones de alta pero

distinta frecuencia. En términos generales, entonces, los bloques que intervienen

en la dinámica están esencialmente determinados por el estado inicial del electrón.

Esta observación es validada, como en el caso de la sección anterior, por el hecho

de que, en cada subespacio, la suma de las ocupaciones de los autoestados de H ′
0

oscila alrededor de un valor constante con una amplitud del orden de entre 10−4 y

10−2.

En las curvas de ⟨Sz⟩ estas transiciones de alta energía tienen una amplitud

menor, pues la evolución de esta cantidad está dominada por la interacción de

intercambio. Esto se observa especialmente en el caso ϑ = π/2, en el que la

magnetización oscila alrededor de ⟨Sz⟩ = 0 con una amplitud de 10−3ℏ debido

a la interacción de Dresselhaus que permite al espín del electrón adquirir una

polarización fuera del plano del anillo (y, por tanto, magnetizar las impurezas en

dirección perpendicular a este).

Tanto la interacción de intercambio como la de Dresselhaus modifican el SAM

del electrón, aunque en esta geometría y con este confinamiento, esta última lo

hace transfiriéndolo hacia y desde el OAM a un ritmo con el que la de intercambio

no puede competir. En definitiva, en el intervalo de tiempo estudiado, el proceso

de magnetización se ve obstaculizado por las constantes inversiones del espín,

producidas por la SOI, y el proceso de magnetización se ralentiza.
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Capítulo 6

Conclusiones

En este trabajo hemos estudiado la interacción de un electrón de conducción

con un conjunto de impurezas magnéticas en un anillo semiconductor delgado y

unidimensional, cuando en éste se halla presente la interacción de espín-órbita de

Dresselhaus. En lugar de concentrarnos directamente en este sistema, hemos optado

por estudiar primeramente diversos aspectos del sistema sin impurezas. Esto nos

permitió comprender mejor la dinámica de transferencia del espín de los electrones

a las impurezas, y entender cómo compiten la interacción de intercambio y la

interacción espín-órbita. Asimismo, el estudio previo del sistema sin impurezas nos

dio mayor seguridad al momento de argumentar las conclusiones sobre el sistema

con impurezas, que mencionamos en el último capítulo. Mencionamos aquí algunas

de las conclusiones principales a las que hemos llegado en cada parte de este estudio

«constructivo».

En el Cap. 2, estudiamos la ecuación de Schrödinger independiente del tiempo

de un electrón de conducción sujeto a las interacciones espín-órbita de Rashba

y Dresselhaus en un anillo semiconductor delgado. Dedujimos el Hamiltoniano
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6. Conclusiones

total de una dimensión utilizando el método de Meijer et al.. Observamos que este

problema podía estudiarse usando la teoría de Floquet, y pudimos obtener la forma

general de los autoestados y las autoenergías asociadas sin imponer condiciones

sobre la intensidad relativa de las constantes de acoplamiento α y β. Observamos

que para valores típicos y no tanto de estos acoplamientos efectivos (ver Tabla

2.1), es posible utilizar formas aproximadas tanto de los autoestados como de las

autoenergías, deducidas usando tratamientos perturbativos conocidos (ver §2.5).

En el Cap. 3 comenzamos con la dinámica. Primero, en la §3.2, estudiamos el caso

en que sólo una de las dos interacciones espín-órbita está presente y suponiendo que

el electrón se hallaba en un estado puro. Observamos que, debido a la conservación

del impulso angular total, Lz + sz, en el caso de Rashba, o de la cantidad Lz − sz

en el caso de Dresselhaus, estas interacciones conectan cíclicamente estados que

comparten el mismo autovalor de estos operadores. Esto nos permitió llevar la

forma matricial del Hamiltoniano a una forma diagonal por bloques de 2 × 2 y

obtener explícitamente el operador de evolución temporal en cada caso, lo que nos

permitió estimar el impulso angular transferido entre Lz y sz.

Luego, en la §3.3, agregamos el efecto de la interacción restante y notamos

que los Hamiltonianos reducidos (los bloques de 2 × 2) se enlazaban entre sí (ver

Fig. 3.3). A pesar de que las cantidades Lz ± sz ya no se conservan, observamos

que el Hamiltoniano total aún podía dividirse en dos bloques inconexos, debido a

la persistencia de una simetría de rotación en π alrededor del eje del anillo (C2).

Notamos que, para valores típicos de las constantes α y β, la probabilidad de que el

electrón ocupara estados adyacentes (en el sentido de la Fig. 3.3) a su estado inicial

era tanto más pequeña cuanto más alejados los primeros se hallaban de este último.

Vimos que, en efecto, para un electrón en un estado inicial puro, sólo los primeros
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tres o cuatro estados adyacentes tenían alguna probabilidad de ser ocupados a

tiempos que son del orden de la interacción entre el electrón y las impurezas [78-81,

87].

Finalmente, en la §3.4, relajamos la condición de anillo unidimensional y,

siguiendo a Shakouri et al., supusimos que el electrón podía transicionar entre los

dos primeros estados radiales de más baja energía. Notamos que las cadenas A y

B de la Fig. 3.3 en este caso se ampliaban, pero sin afectar la simetría C2 (ver Fig.

3.7). Vimos que, si bien la inclusión del primer nivel radial excitado proporciona una

descripción más precisa de la dinámica, esta introduce una complejidad innecesaria

para nuestros propósitos, pues la probabilidad de que el electrón ocupe el estado

radial excitado es muy pequeña (ver Fig. 3.8).

Habiendo estudiado en detalle el problema del electrón en el anillo sujeto a la

interacción espín-órbita, comenzamos, en el Cap. 4, estudiando las generalidades

del sistema conformado por el electrón de conducción y un conjunto de impurezas

magnéticas que actúan como centros de dispersión fijos con cuyos espines el espín del

electrón puede interactuar. Modelamos esta interacción como es usual en la literatura

(a través de un Hamiltoniano de contacto tipo Kondo, que conserva el impulso

angular total de espín) y dedujimos en la §4.2 el Hamiltoniano unidimensional

utilizando la aproximación de Meijer et al. a partir del Hamiltoniano en volumen.

En la §4.3 dedujimos las ecuaciones de movimiento de Heisenberg para las matrices

densidad electrónicas, de impurezas y de primer orden de interacción entre las

impurezas y el electrón. Adoptamos un tratamiento en el formalismo de segunda

cuantización, distinto al adoptado en los capítulos anteriores, pues este resulta, por

un lado, más apropiado para expresar las condiciones iniciales en las que pueden

hallarse las impurezas y, por otro, por razones numéricas que vuelven el tratamiento
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en otro formalismo numéricamente prohibitivo. El tratamiento en este formalismo

reveló, como observamos oportunamente, la existencia de una jerarquía infinita de

ecuaciones que, a primer orden fuera de la aproximación de campo medio, acoplan

las matrices densidad electrónicas de cada impureza a aquellas que describen

interacciones entre pares de impurezas y entre el electrón y dos impurezas distintas.

Siguiendo a Thurn y Axt, truncamos esta jerarquía a primer orden, suponiendo que

el sistema es diluido y que estas interacciones que involucran más de una impureza

no son apreciables. Nuestro análisis numérico de este truncamiento, expuesto en

la §4.4, reveló que el truncamiento a primer orden reproduce adecuadamente la

dinámica de observables como el impulso angular del electrón y la magnetización

de las impurezas en casos simples en que el tratamiento exacto de la ecuación de

Schrödinger es factible. Sin embargo, aún en estos casos, la dinámica del sistema

truncado no es Hamiltoniana, pues no preserva la semidefinitud positiva de las

matrices densidad. En efecto, observamos en la Fig. 4.3 que el menor autovalor de la

matriz electrónica se hace negativo tan pronto como se producen unos pocos pasos

de integración, excepto en un caso en el que el truncamiento reproduce exactamente

el resultado esperado. Esto restringe el rango temporal en que el truncamiento

es confiable en casos en que no existe (o no es posible hallar sencillamente) una

solución exacta con la cual comparar la aproximada. No obstante, es notable que,

aún con este inconveniente, el truncamiento reproduzca las simetrías del sistema y

sus efectos en los observables.

Nos adentramos, finalmente, en nuestro objetivo inicial y agregamos al sistema

de electrón e impurezas la interacción espín-órbita de Dresselhaus. Optamos por

esta interacción, en lugar de la de Rashba, porque, de las dos, es la que depende úni-

camente de las propiedades del semiconductor, de la geometría y del confinamiento,
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y no es controlable externamente. Sin embargo, dada la similitud entre las formas

funcionales de ambos Hamiltonianos (ver §3.2), esperamos que los resultados con

una u otra interacción sean también cualitativamente similares.

Comenzamos, en la §5.2, analizando la dinámica sin interacción espín-órbita

cuando el número de impurezas es suficientemente grande para ser físicamente

interesante y, a la vez, numéricamente tratable sin recurrir a aproximaciones sobre

la ubicación de las impurezas. Estas últimas son necesarias cuando su número es tan

grande que resulta conveniente reemplazar la noción de distribución de impurezas

por una densidad (homogénea), como sucede en el bulk.

Para nuestro tratamiento elegimos un semiconductor particular, el ZnSe, y

valores típicos para un anillo delgado. Los parámetros para este material son

similares en otros materiales para nuestra geometría, por lo que es esperable que

los resultados obtenidos en este caso sean representativos de estos otros. Vimos que

la interacción de intercambio es comparativamente pequeña frente a la escala de

energía de los estados acimutales del electrón en el anillo, por lo que la dinámica de

éste (y, por tanto, la de transferencia de impulso angular de espín hacia y desde las

impurezas) queda concentrada en un subespacio de Hilbert compuesto por estados

electrónicos que, en ausencia de toda interacción, serían degenerados. Notamos,

además, que la distribución de impurezas no altera notoriamente la ocupación

total de los niveles de impulso angular orbital definido (y, por tanto, no afecta

notoriamente la dinámica de éste), pero sí impacta en la dinámica de transferencia

de impulso angular de espín, a pesar de que este impacto no se perciba en los

resultados, debido a las restricciones metodológicas antes mencionadas.

Finalmente, en la §5.3 agregamos la interacción de Dresselhaus y observamos

que, debido al confinamiento, esta era del orden de la escala de energía de los

103



6. Conclusiones

estados acimutales de la banda libre. Esto, y el conocimiento adquirido en el Cap.

3, nos permitió abordar el problema como lo hicimos en la §5.2. Observamos, como

esperábamos, que la interacción de intercambio sólo conecta estados de Dresselhaus

degenerados, y que la dinámica del electrón, como antes, queda confinada al

subespacio definido por éstos. Dedujimos, por tanto, que la dinámica en casos más

generales, cuando el espín del electrón comienza polarizado fuera del eje del anillo,

puede estudiarse teniendo en cuenta únicamente los bloques de Dresselhaus que

intervienen en la descomposición de este estado inicial. Notamos que la presencia

de la interacción de Dresselhaus obstaculiza notoriamente la transferencia de espín

de los electrones a las impurezas, debido a la preeminencia, en el caso estudiado, de

las transiciones entre estados de un mismo bloque, que provocan una inversión del

espín a una frecuencia mucho más alta de la asociada a la transferencia de impulso

angular entre el electrón y las impurezas. Si vemos al electrón como nuestra fuente

de impulso angular para magnetizar a las impurezas, notamos que la interacción

de Dresselhaus desvía, en cierta forma, este recurso. Creemos que incrementar el

número de impuerzas modificaría estos resultados, pues permitiría a la interacción

de intercambio competir con la de Dresselhaus. Sin embargo, enfatizamos que, esto

requeriría aplicar una aproximación adicional al esquema de truncamiento utilizado.

Incluir la interacción de Rashba es otro camino a explorar, pues la posibilidad

de controlarla externamente permitiría incluir una dependencia temporal en el

Hamiltoniano, o bien, como vimos en la §3.3, involucraría en la dinámica otros

bloques de Dresselhaus no presentes en la descomposición del estado electrónico

inicial. Esto, sin duda, volvería la dinámica más rica e interesante.

Dejamos estas opciones como caminos a explorar en trabajos futuros, como así

también estudiar la posibilidad de paliar, evitar o hallar una solución numéricamente
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viable al problema hallado en el método de truncamiento.
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Apéndice A

Anillo delgado

En este apéndice detallamos las justificaciones que sostienen algunos de los

resultados utilizados en el Capítulo 2. Las derivaciones completas y formales pueden

hallarse en las referencias ya citadas.

Inversión temporal del Hamiltoniano efectivo

La operación de inversión temporal usualmente se define a través de la acción

de un operador Θ sobre otros operadores (asociados a observables) del sistema [40].

Las que aquí necesitamos son las siguientes:

ΘpΘ−1 = −p

ΘsΘ−1 = −s.
(A.1)

La última de ellas se verifica para partículas de espín semientero, como el electrón

de nuestro caso. En particular, cuando se trata de fermiones de espín 1/2, esta

relación conduce a una forma explícita para Θ cuando este actúa sobre el observable
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A. Anillo delgado

s [40],

Θ = ησyC. (A.2)

En esta fórmula, η es una fase constante, |η| = 1, σy es la conocida matriz de

Pauli, y C el operador de conjugación, que actúa sobre un escalar, un vector o

una matriz conjugando sus componentes. De estas relaciones se observa que el

término de energía cinética en Hφ es invariante ante la acción de Θ, y que los

términos provenientes de p · s también lo son, pues los signos que ambos introducen

al conmutar con Θ se cancelan mutuamente.

Propiedades de U(φ, 0)

Por analogía con su par temporal de la ecuación de Schrödinger dependiente del

tiempo, el operador U(φ, 0) puede escribirse como una serie cuyos términos derivan

de integrar sucesivamente (esto es, «por partes») una propuesta de solución a la

ec. (2.14). Esta serie —conocida como serie de Dyson [40, 50]— habitualmente se

expresa de forma compacta a través del operador exponencial y de un operador T

que tiene en cuenta el orden en que debe realizarse la integración a fin de respetar

la relación (2.16) [40]:

U(φ, 0) = Tφ exp
( 1

2E0

∫ φ

0
F (φ) dφ

)
(A.3)

El operador T toma usualmente el nombre de operador de ordenamiento temporal y

aquí refiere a la variable angular φ. Notemos que esta expresión garantiza que U(0, 0)

sea el operador identidad. Puesto que la operación de conjugación hermitiana no

interfiere con el orden de integración (pues φ es siempre real), es posible observar a
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partir de esta serie, o de su expresión compacta, que U(φ, 0) es unitario si F (φ) es

antihermitiano.

El determinante de U(φ, 0) se obtiene a partir de la fórmula de Liouville [43]:

detU(φ, 0) = exp
∫ φ

0
trF (φ′) dφ′ = 1, (A.4)

y es independiente de φ, pues la traza de F (φ) es nula para todo φ. Nuevamente,

esto es consecuencia de las propiedades de las matrices de Pauli que componen este

operador, pues trσi = 0, (i = x, y, z).

Así, en todo el anillo U(φ, 0) es unitario y su determinante es la unidad, y

admite además una representación matricial de 2 × 2, pues opera sobre espinores

de espín 1/2. Estas tres propiedades convierten a este operador en un elemento del

grupo SU(2) [60]. Los autovalores de U(2π, 0) satisfacen, entonces,

detU(2π, 0) = ρ+ρ− = |ρ±| = 1; (A.5)

y sus autovectores asociados son ortonormales,

χ†
s(0)χs′(0) = δss′ (s, s′ = ±), (A.6)

pues, por ser unitaria, U(2π, 0) es diagonalizable. De aquí se deduce que los espinores

χ±(φ) son ortonormales punto a punto en el anillo, ya que

χ†
s(φ)χs′(φ) = χ†

s(0)U †(φ, 0)U(φ, 0)χs′(0) = δss′ . (A.7)

Ortonormalidad de las funciones de Mathieu

Las funciones de Mathieu de orden entero son ortogonales en el intervalo que

cubre el anillo [45]. Las de orden no entero también lo son en el mismo intervalo
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pero por extensión, ya que satisfacen, si ν es real [45],

∫ π

0
me∗

ν+2n(φ) meν+2m(φ) dφ = πδnm; (A.8)

siendo aquí n y m números enteros. En el intervalo 0 ≤ φ ≤ π, esta relación

requiere que la diferencia entre los órdenes de las funciones involucradas sea par. Si

extendemos el intervalo de φ a todo el anillo, se hace posible incluir las funciones

cuyos órdenes difieran en un número entero, independientemente de su paridad.

Para ver esto, notemos que

∫ 2π

0
me∗

ν+m(φ) meν+n(φ) dφ =∫ π

0
me∗

ν+m(φ) meν+n(φ) dφ+
∫ 2π

π
me∗

ν+m(φ) meν+n(φ) dφ =∫ π

0
me∗

ν+m(φ) meν+n(φ) dφ+
∫ π

0
me∗

ν+m(x+ π) meν+n(x+ π) dx =(
1 + ei(n−m)π

) ∫ π

0
me∗

ν+m(φ) meν+n(φ) dφ

(A.9)

En el último paso hemos utilizado la propiedad mencionada en la ec. (2.21). La

ortogonalidad entre las funciones propuestas depende, como antes, de la diferencia

n−m. Si esta es par, entonces estamos en el caso conocido (A.8). Si, en cambio,

la diferencia es impar, se anula el factor que acompaña a la integral, aunque esta

última pueda tomar un valor no nulo.

Convergencia de la serie de Magnus

La convergencia de la serie que describe perturbativamente al operador Ω(φ)

que consideramos en §2.5 depende, naturalmente, del «Hamiltoniano» iF (φ)/2E0

que rige la ec. (2.14). Blanes et al. [50] proveen el siguiente criterio para decidir
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sobre la convergencia de esta serie en el intervalo 0 ≤ φ ≤ φ′:

1
2E0

∫ φ′

0
||F (φ)||2 dφ < π. (A.10)

Si bien en la §2.4 no hemos impuesto restricciones sobre el intervalo en el cual toma

valores φ, para aplicar este criterio supondremos razonablemente que este cubre al

anillo sólo una vez; es decir, tomaremos 0 ≤ φ < 2π.

La norma espectral ||F (φ)||2 queda determinada por las constantes de aco-

plamiento α y β a través del radio espectral de F (φ), ρ[F (φ)] [88], que puede

acotarse:

||F (φ)||2 =
√
ρ [F †(φ)F (φ)] =

√
ρ [F 2(φ)] ≤ 1

a
|α + β|. (A.11)

Si consideramos que estos valores típicamente son los de la tabla (2.1), y tomamos

para uno de los parámetros el mayor de los que allí listamos (0.181 meV nm para

el InAs, en las condiciones dadas en el epígrafe de la tabla), observamos que

1
2E0

∫ 2π

0
||F (φ)||2 dφ ≤ 2π|ᾱ + β̄| ≤ 4πmáx{|ᾱ|, |β̄|} ≈ 0.724π < π. (A.12)
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Apéndice B

Dinámica en el anillo

En este apéndice detallamos las operaciones que dan lugar a algunas de las

conclusiones mencionadas en el Capítulo 3.

Conservación de Jz y Lz − sz

Nuestro objetivo es mostrar que [HR, Jz] = [HR, Lz + sz] = [HD, Lz − sz] = 0,

donde HR y HD son los Hamiltonianos de Rashba y Dresselhaus que presentamos

en la ec. 3.2.

Notemos que [Lz, sz] = [Lz, σ±] = 0. Para obtener las igualdades buscadas, basta,

entonces, con calcular [p±, Lz] y [σ±, sz], y mostrar que [HR, Lz] = −[HR, sz] y que

[HD, Lz] = [HD, sz]. No es difícil obtener la relación[σ±, sz] = ∓σ± manualmente,

por lo que sólo mostraremos en lo que sigue el cálculo de los conmutadores [p±, Lz].

Repetimos aquí, por claridad, la forma general de los primeros, que presentamos

en la ec. 2.3:

p± = −iℏe±iφ
(
∂r ± i

r
∂φ

)
. (B.1)
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B. Dinámica en el anillo

Puesto que Lz = −iℏ∂φ, los conmutadores [p±, ∂φ] = iℏ−1[p±, Lz] resultan:

[p±, ∂φ] = p±∂φ + iℏ
(
±ie±iφ + e±iφ∂φ

)(
∂r ± i

r
∂φ

)
= p±∂φ + ∓ℏe±iφ

(
∂r ± i

r
∂φ

)
+ iℏe±iφ

(
∂r ± i

r
∂φ

)
∂φ

= p±∂φ + ∓ℏe±iφ
(
∂r ± i

r
∂φ

)
− p±∂φ = ∓ip±.

(B.2)

De este resultado y del deducido para el conmutador [σ±, sz], observamos que:

[HR, Lz] = i
α

ℏ
([p−, Lz]σ+ − [p+, Lz]σ−) = iα(p−σ+ + p+σ−)

= −iα(p−(−σ+) − p+σ−) = −iα(p−[σ+, sz] − p+[σ−, sz])

= − [HR, sz] .

(B.3)

Y, de forma similar, obtenemos:

[HD, Lz] = β

ℏ
([p+, Lz]σ+ + [p−, Lz]σ−) = β(p−σ− − p+σ+)

= β(p−σ− + p+(−σ+)) = β(p−[σ−, sz] + p+[σ+, sz])

= [HR, sz] .

(B.4)

Independencia de ⟨sz(t)⟩ respecto de |ℓ|

Consideremos un estado arbitrario |ψ⟩ de la forma dada en la ec. (3.11) y

perteneciente a un sistema de dos niveles de autovalor Lz + sz constante. El mismo

argumento puede aplicarse para un estado del mismo tipo pero de autovalor Lz −sz

constante. El operador de evolución temporal es el correspondiente al caso de

Rashba, UR(t, t0), y su forma es la presentada en la ec. (3.9). El estado del electrón

a tiempo 0 ≤ t es |ψ(t)⟩ = UR(t, 0) |ψ⟩, y el valor de expectación del operador sz
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sobre este último es:

⟨ψ(t)|sz|ψ(t)⟩ = ⟨ψ|sz|ψ⟩ cos2(ΩRt)

+ ⟨ψ|iΩ−1
R [nR · σ⃗, sz]|ψ⟩ cos(ΩRt) sin(ΩRt)

+ Ω−2
R ⟨ψ|nR · σ⃗sznR · σ⃗|ψ⟩ sin2(ΩRt).

(B.5)

A partir de la ec. B.5 se deduce que ⟨ψ(t)|sz|ψ(t)⟩ alcanza sus extremos para

valores de ΩRt que satisfacen la condición:

tan(2ΩRt) = ⟨ψ|iΩ−1
R [nR · σ⃗, sz]|ψ⟩

⟨ψ|sz|ψ⟩ − Ω−2
R ⟨ψ|nR · σ⃗sznR · σ⃗|ψ⟩

=
⟨ψ|σy|ψ⟩ ℏ

√
ω2

0 + ω2
R

2ωR ⟨ψ|sz|ψ⟩ + ℏω0 ⟨ψ|σz|ψ⟩
ℓ+ 1/2
|ℓ+ 1/2|

(B.6)

Notemos que, si ℓ ̸= 0, el término del lado derecho depende únicamente del signo

de ℓ, que coincide con el de ℓ+ 1/2. Esta dependencia proviene del numerador, y

no se traslada al valor de ⟨ψ(t)|sz|ψ(t)⟩ cuando se insertan en la expresión de la

ec. (B.5) los valores de 2ΩRt obtenidos al invertir la relación (B.6). La elección de

un ℓ particular modifica la ubicación de los extremos, pues modifica la frecuencia

ΩR, pero no la amplitud que alcanza ⟨ψ(t)|sz|ψ(t)⟩ en ellos.
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Apéndice C

Interacción entre electrones e

impurezas sin SOI

En este apéndice desarrollaremos dos cálculos: el primero nos permitirá justificar

la posibilidad de incluir las correlaciones δ⟨P IP I′⟩ en el sistema de ecuaciones de

Heisenberg truncadas, sin que esto extienda la jerarquía más allá de matrices

densidad de dos y tres partículas. El segundo, en cambio, justifica el hecho de

que la dinámica de todas las impurezas es idéntica cuando se dan conjuntamente

las condiciones de que, primero, estas se distribuyen sobre el anillo formando un

polígono regular de NMn lados; segundo, adoptan el mismo estado puro inicial;

y tercero, el electrón comienza polarizado y en un autoestado de OAM definido:

|ℓ, σ⟩.
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C. Interacción entre electrones e impurezas sin SOI

Inclusión de las correlaciones δ⟨P IP I ′⟩

Las ecuaciones de Heisenberg para las cantidades δ⟨P IP I′⟩ solamente involu-

cran conmutadores de la forma [P IP I′
, P I′′ ]. Estos conmutadores generan términos

proporcionales a P IP I′ , como puede verse de la definición de las P I dada en la

ec. (4.4). La evolución temporal de cada ⟨P IP I′⟩ (I ̸= I ′), depende, en conse-

cuencia, únicamente de matrices densidad de tres partículas ⟨c†
ℓ1σ1cℓ2σ2P

IP I′⟩. Por

tanto, no es necesario despreciar el término δ⟨P IP I′⟩ (I ̸= I ′) en la expansión de

langlec†
ℓ1σ1cℓ2σ2P

IP I′⟩ dada en la ec. (4.10). En consecuencia, agregar la dinámica

de ⟨P IP I′⟩ al conjunto de ecuaciones truncadas no requiere expandir este a matrices

densidad de más de tres partículas. Dicho de otro modo, para truncar la jerarquía

en este caso sólo es necesario despreciar en QI las correlaciones δ⟨c†
ℓ1σ1cℓ2σ2P

IP I′⟩.

Notemos, finalmente, que los operadores P I conmutan con cualquier operador

electrónico cℓσ, por lo que la dinámica de los mismos es generada únicamente por

el Hamiltoniano de exchange Hsd.

Dinámica acompasada de las impurezas

Supongamos que las impurezas están ubicadas en los vértices de un polígono

regular de NMn lados y consideremos una rotación R del grupo de simetría de

este polígono regular. La operación RHR† sobre el Hamiltoniano total no afecta

los operadores escalares H0 y SI · s en H, pero sí traslada los argumentos de los

potenciales delta de Dirac en un múltiplo de 2π/NMn. Esta traslación sobre el

anillo es cíclica, y es equivalente a una permutación cíclica de las impurezas que

las reubica en distintos vértices del mismo polígono, pues la operación mueve los
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φI a otros φI′ (módulo 2π).

El Hamiltoniano rotado puede, obtenerse, por tanto, a través de esta permutación

equivalente, que modifique los índices de las impurezas en H, sin trasladar los

argumentos de los potenciales tipo delta. En otras palabras, la operación RHR† es

equivalente a ÔRHÔ
†
R para algún ÔR que cambie las «etiquetas» de SI sin afectar

los parámetros φI .

El operador de permutación ÔR puede expresarse como composición (producto)

de operaciones de permutación de a pares, que sólo intercambian dos impurezas.

Definimos estos operadores como:

ÔII′
.=
∑
n1n2

P I
n1n2P

I′

n2n1 . (C.1)

Notemos que ÔII′ = ÔI′I = Ô−1
II′ , como es requerido.

Con estas herramientas, descompongamos la rotación R en un producto de dos

rotaciones: R = ROAMRSAM. El primer factor a la izquierda actúa sobre el OAM

del electrón, y por tanto depende únicamente de Lz, mientras que el segundo actúa

solamente sobre el SAM total del espín y de las impurezas. Consideremos, ahora, el

estado |ψ⟩ = |ℓ, σ⟩ |Mn⟩ · · · |Mn⟩. En este, como siempre, |ℓ, σ⟩ es un autoestado de

los operadores electrónicos Lz y sz, con autovalores ℓ y σ, respectivamente; y |Mn⟩

es un estado de una impureza, repetido NMn veces en el producto. Observemos que

|ψ⟩ es un autoestado de ROAM y de ÔR para cualquier rotación R, pues intercambiar

cualquier par de |Mn⟩ en |ψ⟩ no modifica este último.

Llamemos U(t, t0) al operador de evolución temporal y SIz la componente z del
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C. Interacción entre electrones e impurezas sin SOI

operador SI en el picture de Schrödinger. Podemos escribir, entonces:

⟨ψ|U †SIzU |ψ⟩ = ⟨ψ|Ô†
RRU

†R†ÔRS
I
z Ô

†
RRUR

†ÔR|ψ⟩

= ⟨ψ|R†
SAMU

†SI
′

z URSAM|ψ⟩

= ⟨ψ|R†
SAMU

†SI
′

z URSAM|ψ⟩

= ⟨ψ|U †SI
′

z U |ψ⟩

(C.2)

En esta expresión hemos omitido, por simplicidad, la dependencia temporal de

U(t, t0). La segunda igualdad del miembro derecho es consecuencia, por un lado,

de que el operador SIz conmuta con cualquier rotación R paralela al eje del anillo:

[Sz, R] = 0; y, por otro, de que la operación ÔR modifica el índice de SIz , y por

tanto traduce este operador en otro SI′
z , para algún par (I, I ′) (I ̸= I ′), esto es:

Ô†
RS

I
z ÔR = SI

′
z . La cuarta igualdad, en cambio, se sigue del hecho de que el operador

H es un operador escalar frente a cualquier rotación que involucre al espín total,

por lo que [H,RSAM] = 0.
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