
ABSTRACT

Title of Dissertation: COLLECTIVE EXCITATIONS

AND EXCHANGE INSTABILITIES

IN SEMICONDUCTOR QUANTUM WELLS

Pablo Ignacio Tamborenea, Doctor of Philosophy, 1994

Dissertation directed by: Sankar Das Sarma, Professor of Physics

Department of Physics

Calculations of far-infrared optical absorption for AlxGa1−xAs perturbed parabolic

quantum wells (PQW) with a magnetic field in the plane of the electron slab are

presented within the linear response theory. We study two different types of

samples. The first type consists of PQWs with controlled δ-planar perturbations.

These samples were recently used in an experimental study aimed at measuring

the magneto-roton dispersion relation of a three dimensional electron gas. We

construct a magneto-plasmon dispersion relation and critically discuss whether

the experimental results are consistent with the bulk magneto-roton picture orig-

inally invoked to understand the data. The second system is an asymmetric

parabolic well; we study the absorption spectra as function of the areal density

and compare them with recent experimental results.



We also study, employing the time-dependent local-density approximation

(TDLDA), the elementary excitation energies and the associated inelastic light

scattering spectra of a strongly coupled two-component plasma in a double quan-

tum well system. We find, consistent with the results of a recent experimental

Raman scattering study, that the intersubband spin density excitations tend to

merge with the single particle excitations (i.e. the excitonic shift decreases mono-

tonically) as the Fermi energy increases beyond the symmetric-antisymmetric

energy gap. On the other hand, we predict that exchange-correlation induced

many-body excitonic vertex correction may lead to an instability in the normal

ground state of this system by suppressing the symmetric-antisymmetric gap at

low but accessible (∼ 0.7× 1011 cm−2) electron densities. We predict as a conse-

quence a novel electronic phase transition to, possibly, a new many-body triplet

excitonic liquid ground state.

Finally, we study the ferromagnetic transition in quasi-two-dimensional elec-

tron systems, employing the local-spin density (LSD) formalism. We conclude

that the intersubband spin-density instability reported before in this dissertation

does not correspond to the ferromagnetic transition. We also apply the LSD

formalism to single square quantum wells and determine the dependence of the

critical areal density on the well width.
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CHAPTER 1

Introduction

This chapter is divided into several short introductory sections. In Sections 1.1,

1.2, and 1.3 the systems studied in this dissertation are introduced, sometimes

in the form of brief reviews of the evolution of the subjects up to the point in

which our work started. In Section 1.4 the foundations of the main calcula-

tional method employed in this dissertation, i.e. the density-functional theory,

are briefly discussed. In Section 1.5 an outline of the dissertation is given.

1.1 Semiconductor microstructures

The quantum mechanical theory of the electron gas is one of the most inter-

esting and intricate subjects of modern physics. Even in the simplest situation

of an homogeneous electron gas, all the known theoretical and numerical treat-

ments lead only to approximate results for most of its basic properties. On the

experimental side, metals are good systems where electron-interaction effects can

be studied, but many of the interesting aspects of the electron gas, which oc-

cur at low densities, cannot be observed there. In doped bulk semiconductors

lower electron densities can be obtained, but the strong interactions between

the electrons and the positively charged donor impurities mask the effects com-

ing from electron-electron interactions. The advent of modulation doped semi-
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conductor microstructures, where a confined electron gas with greatly reduced

electron-impurity interactions can be realized, lead to an enormous progress in

our understanding of the consequences of electron-electron interactions and to

the discovery of unexpected quantum phenomena in the last two decades.

Semiconductor microstructures are artificially created systems in which an

electron gas can be confined within length scales of the order of tens or hundreds

of angstroms. These semiconductor systems are often called “mesoscopic” be-

cause the confinement length is in between the typical interatomic distances and

the macroscopic sizes of bulk materials. Depending on whether the confinement is

applied in one, two, or three dimensions, the resulting low-dimensional structures

are called, respectively, quantum wells (quasi-2D), quantum wires (quasi-1D), or

quantum dots (quasi-0D). The fabrication of such systems has become possible in

recent years thanks to the advances in crystal-growth techniques like molecular-

beam epitaxy (MBE) [1, 2]. These techniques allow the growth of semiconductor

crystals in a layer-by-layer manner, leading to virtually perfect crystal structures.

To produce a quasi-2D electron gas, a semiconductor quantum well is grown,

consisting of a slab of a given semiconducting material (for example, GaAs), sur-

rounded by slabs of another semiconducting material (for example, AlxGa1−xAs)

with a larger energy gap between its valence and conduction bands. A gas of free

electrons is added into this quantum well by doping the sample with negative

donors, for example Si atoms, in atomic layers placed outside the well region

occupied by electrons. This technique, called modulation doping, which was first

applied by Dingle et al. and Störmer to AlGaAs heterostructures [3], allowed

the achievement of very high electron mobilities by eliminating electron-impurity

scattering, and thereby opened the possibility to experimentally studying purely
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electron-electron interaction effects in low-dimensional systems.

1.2 Parabolic quantum wells

In 1987, Gossard and Halperin [4] indicated the possibility of constructing

a quasi-2D electron layer sufficiently thick and uniform that would permit the

observation of electron-electron interaction effects predicted to occur in the three-

dimensional jellium model. A simple harmonic potential V (z) = Az2 could be

used to that effect, since it mimics a uniform slab of positive charge with density

n0 = Aǫ/2πe2, as can be seen by solving the one-dimensional Poisson equation

V ′′(z) = 4πe2

ǫ
n0 (ǫ is the static dielectric constant of the host semiconductor. The

harmonic oscillator frequency in V (z) = 1
2
m∗ω2

0z
2 is given by ω0 =

√

4πe2n0/m∗ǫ,

where m∗ is the electron effective mass). An electron gas introduced in such

parabolic potential rearranges itself to acquire the uniform density n0 in order to

screen the fictitious positive charge. Those authors suggested that this idea could

be implemented employing a semiconductor alloy like AlxGa1−xAs, where the

conduction-band edge can be tailored by varying the concentration x of aluminum

during the layer-by-layer growth of the crystal with MBE. A quadratic variation

of x produces a parabolic confining potential in the effective mass approximation,

and, therefore, the desired one-dimensional parabolic well. Shortly after being

proposed, parabolic quantum well (PQW) structures were produced by Gossard

and co-workers [5], and by Shayegan and co-workers [6].

The long-wavelength optical and magneto-optical absorption properties of

parabolic quantum wells turned out to be unexpectedly simple. The single-

particle energy levels of independent electrons placed in a uniform magnetic field

B are given by Enk = (n + 1
2
)h̄ωc, where ωc = eB

mc
is the cyclotron frequency, and
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n = 0, 1, . . . labels the different Landau levels. Cyclotron resonance occurs when

a homogeneous radiation field of frequency ω = ωc is applied, inducing transi-

tions between Landau levels. In 1961, Kohn [7] showed that cyclotron resonance

in a translationally invariant system is not altered by electron-electron interac-

tions, and the resonant frequency is still the bare cyclotron frequency ωc. In 1989,

Brey, Johnson, and Halperin [8] proved the so-called generalized Kohn’s theorem,

which also states that electron-electron interactions do not affect long-wavelength

optical absorption, but, in this case, in an electron gas in a parabolic well in the

presence of an arbitrary uniform magnetic field. Their theorem has been ex-

tended to systems confined in two or three dimensions by parabolic potentials,

with arbitrary values of the harmonic oscillator frequencies in different directions

[9]. The generalized Kohn’s theorem and its extensions tell us that in paraboli-

cally confined electron systems in the presence of arbitrary magnetic fields, long

wavelength optical absorption frequencies are equal to those of a single electron

under the same external potential and magnetic field. Das Sarma explains this

rather surprising result [10]: “The essence of Kohn’s theorem is the separability

of the system Hamiltonian into two distinct parts, one depending purely on the

center of mass coordinates of the system and the other depending purely on the

relative (inter-electron) coordinates of the system. The electron-electron interac-

tion part of the Hamiltonian, by definition, depends on the relative coordinates

while any long wavelength electromagnetic radiation obviously couples only to

the center of mass part of the Hamiltonian. Therefore, the long wavelength opti-

cal absorption frequency is unaffected by electron-electron interaction effects. In

a translationally invariant system the separation of the Hamiltonian into a center

of mass and a relative coordinate part is obvious. It turns out that a parabolic
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potential is the only possible form for an external potential which preserves this

separability of the system Hamiltonian.”

After a complete understanding of the long wavelength excitations of electron

systems confined in parabolic potentials was obtained with the aid of the general-

ized Kohn’s theorem, interest shifted to confining potentials with quasi-parabolic

shapes. A simple and interesting example is that of an asymmetric parabolic

quantum well (APQW), that is, a well consisting in two half parabolas of differ-

ent curvature [11, 12, 13, 14, 15]. Since the parabolic potential mimics a uniform

positive background, an APQW can be thought of as a bimetallic jellium system,

where the electron gas adopts a nonuniform density. The focus of the study of

APQW has been mainly on the transition of collective properties from 2D to 3D

behavior. Ying et al. [11] studied experimentally collective cyclotron resonance

in the Voigt geometry (with a magnetic field in the plane of the confined electron

gas), as function of the electron slab width (or equivalently the electronic areal

density NS). Their far-infrared (FIR) optical spectra show a crossover from a

quantum regime for NS/n0 ≪ l0 to a classical regime for NS/n0 ≫ l0, where

l0 =
√

h̄c/eB is the magnetic length. The inhomogeneous electron gas is identi-

fied as three-dimensional when the absorption spectrum shows two resonances,

corresponding to the two “Kohn modes” of the parabolic half-potentials. This

condition is found to be satisfied when the electron slab is wide enough to accom-

modate a full second Landau orbit on each half of the well. Yuh et al. [12], on the

other hand, studied theoretically and experimentally the evolution of excitations

of this quasi-2D electron gas into surface plasmons as the system widens, in the

absence of external magnetic field.

The original idea that motivated the construction of parabolic quantum wells
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was to realize a quasi-three-dimensional electron gas as an approximation to the

ideal three-dimensional jellium model. The first concrete application of PQWs

to the study of a 3D phenomenon was the recent experimental measurement

of the bulk magneto-plasmon dispersion relation by Karrai et al. [16]. The bulk

magneto-plasmon dispersion calculated in the single-mode approximation [16] for

wavevector perpendicular to the magnetic field, exhibits a minimum or magneto-

roton feature at q ≃ 2/l0. This feature is analogous to the magneto-roton min-

imum found in both the inter- and intra-Landau-level collective excitations of

a two-dimensional fractional quantum-Hall system [17]. Since in perfect PQW

the only modes excited in FIR experiments are the center-of-mass Kohn modes,

which have q = 0, Karrai et al. employed PQWs with small superimposed per-

turbations to be able to excite modes with high values of q and thereby mea-

sure the magneto-plasmon dispersion curve. The perturbations to the underlying

parabolic potential were made by inserting thin layers of higher (or lower) con-

centration of Al during the growth of the parabolic well sample. Two types of

samples were studied: in one type a single narrow Al spike at the center of the

parabola was introduced, and the other type had a periodic array of such Al spikes

with period a. The FIR spectra measured with a magnetic field applied in the

plane of the electron gas (Voigt geometry) showed a resonance corresponding to

the usual Kohn mode with frequency ωK =
√

ω2
0 + ω2

c , and one or more satellite

resonances. The interpretation of these satellite resonances was made as follows

by Drew et al. [16]: “In the case of a single Al spike the satellites correspond to

the excitation of dimensional modes in which the thickness of the electron slab

corresponds to an integer number n of half wavelengths of the magneto-plasma

wave. Therefore, the wavevector of the excited magneto-plasmon depends on the
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well width as q = 2πn/W . This leads to a shifting of the frequency of these

satellite modes [. . .] For the case of symmetric filling of the well only even n

leads to a finite dipole moment and optical absorption. For the grating samples

magneto-plasmons of wave vector q = 2π/a are excited in addition to the di-

mensional modes.” Combining the data from different samples, magnetic fields

and densities NS, a magneto-plasmon dispersion relation was constructed which

shows a minimum at q ≃ 2/l0, in agreement with the 3D magneto-plasmon calcu-

lation. This experiment constitutes the first observation of the three-dimensional

magneto-roton minimum. However, as pointed out by the authors, there is a

quantitative discrepancy in the theoretical and experimental frequencies of the

resonances, which indicates that the applicability of the three-dimensional theory

to the quasi-3D experiment may not be complete.

1.3 Intersubband excitations in quasi-2D electron systems

The single-particle electronic energy levels in a quantum well are discretized

into subbands En(k) = εn + h̄2k2

2m∗
, where n is the subband index and k is the

momentum in the plane perpendicular to the confined dimension. It is often ad-

equate to describe the electronic properties of semiconductor quantum wells in

terms of an effective single-particle, for which the energy levels εn are not just the

bare-well eigenenergies but rather the levels of a potential well renormalized by

the many-body interactions. The subband structure taking into account many-

body effects of numerous semiconductor systems (like Si inversion and accumula-

tion layers, GaAs-based semiconductor heterojunctions and quantum wells, etc.)

has been extensively studied in the past two decades [18, 19]. We only mention

here that the density-functional theory (see Section 1.4) in its local-density ap-
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proximation (LDA) form has been a very successful tool to investigate subband

structures since it was applied for the first time to space-charge layers by Ando

[20]. The study of GaAs-based systems employing the LDA started with the work

of Stern and Das Sarma [21].

The subband structure gives rise to excitations of the electron that can be clas-

sified as intersubband and intrasubband transitions (this classification is strictly

valid only for symmetric quantum confinement [73]). As we will see in Chapter 2,

the excitation of an intersubband transitions in, for example, an optical absorption

experiment, requires a photon energy which is not equal to the energy difference

between the final and original subband. The many-body corrections that affect

the resonance energy of intersubband transitions can be classified into two types.

The first type is due to the dynamic screening of the external radiation field,

which is operative through the direct Coulomb interaction, and is known as the

depolarization shift [22, 23, 24]. This type of correction is included when the dy-

namic response is calculated in the random-phase approximation (RPA) [25, 26].

According to Ando, Fowler, and Stern [18]: “Physically the depolarization effect

arises because each electron feels a field which is different from the external field

by the mean Hartree field of other electrons polarized by the external field.” Since

the depolarization shift is due to an effective reduction of the external electric

field, it is always positive. The second type of correction is motivated by the

same authors in the following way: “As has frequently been mentioned, how-

ever, the Hartree approximation overestimates the Coulomb repulsive force of

other electrons, and the exchange-correlation effect greatly reduces the effective

repulsive potential. Therefore we expect that the exchange-correlation effect on

the depolarization effect greatly reduces the shift of the resonance energy.” This
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negative correction is usually referred to as the excitonic shift, because it reflects

the attractive interaction between the electron excited to the higher subband and

the hole left in the original subband. In diagrammatic perturbation theory this

effect is accounted for by the vertex corrections to the irreducible polarizability

function [27], when it is given by, for example, the ladder-bubble diagrams [25].

Resonant inelastic light-scattering spectroscopy is an ideal experimental tech-

nique to study many-body effects in confined electron systems since it can provide

detailed information on both the energy and wave-vector of the collective exci-

tations (see Chapter 5). Also, by changing the polarization configuration of the

experiment, it can measure the energy of charge-density or spin-density excita-

tions, from which the many-body corrections introduced above can be extracted.

In GaAs, where the electron effective mass is small and the dielectric constant

is large, the effective Bohr radius a∗ = h̄2ǫ/me2 ≈ 100Å is large (compared to

that of Si, for example), and therefore, the dimensionless inter-particle distance

parameter rs = r0/a
∗ is small for the usual electron densities of n ∼ 1016 cm3.

For this reason, the RPA is often a good approximation for GaAs systems, and

for many years exchange-correlation corrections where thought to be negligible

in this context [28, 29]. However, in recent years a number of interesting effects

associated to exchange-correlation corrections were discovered. We mention only

a few of these developments which are directly related to our work. In 1989,

Pinczuk et al. [30] reported the first observation of large exchange interactions

through inelastic light-scattering measurements in GaAs quantum wells. More

recently, Das Sarma and Marmorkos [27] predicted that in square and parabolic

wells there is a critical density below which the excitonic vertex corrections over-

come the Hartree depolarization shift, and therefore the charge-density-excitation

9



energy becomes lower than the single-particle-excitation energy (= εn′ − εn, if n

and n′ are the initial and final subbands, respectively). This effect was very

recently experimentally observed in inelastic light-scattering experiments [31].

Another recent experimental study [32] revealed that the excitonic vertex correc-

tions abruptly vanish in coupled double-quantum wells as NS increases beyond

occupancy of the two lowest subbands is attained [33]. In this dissertation we

predict a new interesting exchange-correlation effect in double-quantum wells,

namely, an enhancement of vertex corrections at low density NS, so strong that

it leads to the vanishing of the lowest intersubband spin-density excitation en-

ergy [34] (see Chapter 7). The softening of the spin-density mode indicates the

possibility of an instability in the electron gas in double quantum wells and the

existence of a phase transition to a novel ground-state. Inelastic light-scattering

experiments to observe this new phenomenon are currently under way [35].

1.4 Density-functional theory

There are several formulations of many-body quantum mechanics that can

be applied to the study of electronic properties of semiconductor microstruc-

tures. One alternative method to the powerful but often intractable Green’s

function technique [25] to study inhomogeneous many-particle systems is the

density-functional theory. The precursors of this theory are the early attempts of

Thomas and Fermi [36] to express the ground-state energy in terms of the den-

sity n(r) alone. This kind of approach, where the density plays the central role,

flourished after Hohenberg and Kohn [37] proved that an exact representation of

the ground-state properties in terms of the ground-state energy alone is possible,

at least in principle. They showed that for a collection of particles under the
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influence of an external potential v(r) and their mutual Coulomb interaction, the

functional

Ev[n] ≡
∫

d3r v(r) n(r) + F [n] (1.1)

(where F [n] = 〈Ψ|T + U |Ψ〉 is a universal functional, independent of v(r)) as-

sumes its minimum value for the correct ground-state density, and this value

equals the ground-state energy. Therefore, the problem reduces to finding the

universal functional F [n] characteristic of a system with Coulomb interparticle

interactions. Unfortunately, the functional F [n] is not known and one has to re-

sort to some approximation scheme. Kohn and Sham [38, 39] introduced a widely

used method, the local-density approximation (LDA), which applies to systems

with slowly varying density. They wrote the functional F [n] as

F [n] ≡ 1

2

∫

d3r′d3r
n(r)n(r′)

|r− r′| + T [n] + Exc[n], (1.2)

where T [n] is the kinetic energy of a noninteracting system with density n(r),

and Exc[n] is, by definition, the exchange-correlation energy of the interacting

system with density n(r). Next they assumed that for a system of slowly varying

density n(r), Exc[n] could be written (like for an uniform system) as

Exc[n] =
∫

d3r ǫxc(n(r))n(r), (1.3)

where ǫxc(n) is the exchange-correlation energy per electron of a uniform electron

gas of density n. By minimizing Ev[n] in Eq. (1.1) with respect to n(r), they

found that the interacting problem simplifies to one of noninteracting electrons,

subject to the effective potential

veff(r) = v(r) + ϕ(r) + µxc(n), (1.4)
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where

ϕ(r) =
∫

d3r′
n(r′)

|r− r′| (1.5)

and

µxc(n) =
d[n ǫxc(n)]

dn
. (1.6)

Therefore, in LDA one only needs to solve the one-particle Schrödinger equation

(the “Kohn-Sham” equation)

[

−1

2
∇2 + veff(r)

]

ϕi(r) = ǫiϕi(r) (1.7)

coupled to Eqs. (1.4,1.5,1.6) and n(r) =
∑N

i=1 |ϕi(r)|2, where N is the number of

electrons.

The LDA treatment was adapted by Ando [40] to time-dependent situations,

to calculate the optical absorption spectrum of the quasi-2D dimensional elec-

tron gas. This time-dependent local-density approximation (TDLDA) theory is

equivalent to including vertex corrections in the irreducible polarizability func-

tion, but assuming an energy and wave-vector independent proper vertex part

[40, 27]. This approximation for the vertex correction is consistent with the

exchange-correlation self-energy shift of the subbands when it is calculated self-

consistently in LDA. In this dissertation we adopt the density-functional approach

in the LDA to study the ground-state properties of the electron gas in semicon-

ductor microstructures, and the TDLDA to study the dynamic response functions

which describe the optical absorption and light-scattering spectra. The applica-

bility of the LDA to our problem and its limitations are discussed in Appendix

B. Finally, we mention that the density-functional theory has been extended to

many situations not considered in the original formulation of Hohenberg, Kohn

12



and Sham, like systems with degenerate ground-states, finite temperatures, rela-

tivistic systems, spin-polarized ground-states, etc. For further details and exten-

sions of the original formulation of density-functional theory, we refer the reader

to the vast literature on the subject. Recent reviews are given in Refs. [41, 42].

1.5 Outline of dissertation

In Chapter 2 we present the theory of intersubband optical absorption in

semiconductor microstructures. In Section 2.1 we describe in detail the LDA

calculation of energy subbands without magnetic fields and in Section 2.3 we

cover the Voigt geometry problem, in which a magnetic field is applied in the

plane of the electron slab. In Sections 2.2 and 2.4 the time-dependent local-

density approximation (TDLDA) theory is presented, in the cases of no applied

magnetic field and of the Voigt geometry, respectively.

In Chapter 3 we study, employing the theories developed in Chapter 2, the

collective excitations and FIR optical absorption spectra of asymmetric parabolic

wells [14, 15]. We study FIR absorption spectra in the Voigt geometry as function

of the electron density NS, which in quasi-parabolic systems is equivalent to

saying as function of the width of the electron slab. We compare our results with

recent experimental measurements [11] and obtain good agreement in the limits

of low and high NS (thin and thick electron slabs), but quantitative disagreement

in the evolution of the spectra in the intermediate NS range. Possible reasons for

this disagreement are suggested. We also present introductory results for perfect

parabolic wells, which serve as a starting point for the study of imperfect or

quasi-parabolic wells.

In Chapter 4, a study of magneto-optical spectra of parabolic samples with Al-
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spike perturbations in the Voigt geometry is presented [15]. We study two types of

samples: one type has only one perturbation in the center and the other type has

a periodic array of perturbations, similar to a superlattice structure. The main

purpose of the study is to analyze the interpretation made of recent magneto-

optical absorption experiments [16], where the bulk magneto-plasmon dispersion

relation was measured employing wide parabolic quantum wells. It is found

that for the systems under study, confined intersubband plasmons can be related

to bulk collective modes following a well defined procedure, that generalizes an

earlier study of the relation between excitations in confined systems to excitations

in bulk systems in the absence of magnetic fields [43].

In Chapter 5 we give a brief review of the theory of resonant inelastic-light-

scattering experiments. We outline the calculation of the linear response functions

that describe the electron-electron interaction many-body effects operative in

electronic Raman scattering. This theory is applied to coupled double-quantum

wells in Chapters 6 and 7.

In Chapter 6, we study, within the TDLDA, the absence of the lowest in-

tersubband spin-density excitations at high density NS recently discovered in

coupled double-quantum well systems in resonant inelastic light-scattering exper-

iments [33]. Our calculations show that the excitonic vertex corrections mono-

tonically decrease with increasing NS, in agreement with the experimental re-

sults. However, the abrupt disappearance of vertex corrections at a finite value

of the subband occupancy parameter η ≡ ∆SAS/EF , where ∆SAS = ε2 − ε1

is the symmetric-antisymmetric energy gap and EF is the Fermi energy, is not

obtained. It is pointed out that the limitations of the theoretical approxima-

tion scheme are the possible reasons for this disagreement, although additional
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experimental evidence may also be needed to resolve this issue.

In Chapter 7 we predict a novel instability of the electron gas confined in

coupled double-quantum wells, due to the vanishing of the intersubband spin-

density excitation energy in an accessible range of NS [34]. The calculations that

indicate this instability are performed in the TDLDA. Resonant inelastic light-

scattering experiments are suggested to observe the approach to the instability

from the high NS side.

In Chapter 8 we introduce the generalization of LDA that takes into account

the possibility of electron spin polarization, namely, the local-spin-density (LSD)

approximation. LSD is applied to coupled double-quantum wells, and it is found

that the ground-state suffers a ferromagnetic transition, favoring a completely

spin-polarized state at low NS. The ferromagnetic critical density is at least an

order of magnitude smaller than the critical density of the spin-density instability

mentioned above, which rules out an identification between these two instabilities.

The same ferromagnetic transition is found in single square wells, and its well-

width versus NS phase diagram is calculated.

Appendix A contains a compendium of the exchange-correlation potentials

used in the dissertation, and Appendix B discusses the limitations and applica-

bility of the local-density approximation.
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CHAPTER 2

Theory of intersubband optical absorption

In this chapter we describe the theory of optical absorption due to intersubband

collective excitations in the quasi-two dimensional (2D) electron gas formed in

remotely doped semiconductor heterostructures. I will present the theory of op-

tical absorption in semiconductor wells both without an external magnetic field

and in the so-called Voigt geometry, that is, with a static external magnetic field

applied in the plane of the electron gas (perpendicular to the growth direction).

This theory will be applied in the next two chapters to imperfect parabolic wells,

where we will be interested mostly in the Voigt geometry. Our interest in the

Voigt geometry problem arises from recent experimental studies, which will be

explained in detail in the next chapters. However, for completeness, and to com-

pare with the Voigt geometry results, we will also study the imperfect parabolic

wells without any external magnetic field. Also, the electronic structure of quan-

tum wells (an intermediate result necessary in the optical absorption calculation)

without magnetic field will be employed throughout Chapters 6 and 7 in the cal-

culations of resonant inelastic light-scattering spectra and the dispersion relations

of the intersubband collective modes of coupled double-quantum wells.

The self-consistent framework of the Hohenberg-Kohn-Sham local-density-

approximation (LDA) that we describe in this chapter is the most widely used
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technique for calculating intersubband response in confined semiconductor struc-

tures. This method consists of two steps. First, the subband energies and wave-

functions are calculated self-consistently by solving the single-particle Schrodinger-

like Kohn-Sham equation. In this equation, the potential is separated into a

Hartree term due to the electrostatic potential of the total electron density

(which is just the solution of Poisson’s equation), and an exchange-correlation

term treated within the local-density approximation. Then, a linear response

calculation using the self-consistent LDA subband energies and wavefunctions

can be performed to obtain the intersubband response functions, whose poles

give the intersubband collective modes of the system. This self-consistently cou-

pled linear-response calculation that we will describe in detail in Section 2.2 and

2.4 is sometimes referred to as the time-dependent local-density approximation

(TDLDA) in the same spirit of the random-phase approximation (RPA) being

the time-dependent Hartree approximation.

The problems with no applied magnetic field and magnetic field applied in

the plane of the electron gas are similar to each other in the sense that the single

particle energies form subbands and are non-degenerate unlike the case of a 2D

electron gas in a perpendicular magnetic field (the geometry of the Quantum Hall

effect). However, they have important differences in terms of the theoretical de-

scription and their physical properties. The in-plane magnetic field considerably

complicates the theoretical treatment (especially its numerical implementation)

because the z-dependent part of the Kohn-Sham equation (the effective single

particle Schrödinger equation) depends in this case on a component of the in-

plane wavevector of the electron. Therefore, in the Voigt geometry, the electric

subbands acquire a non-parabolic dispersion. These technical differences will be
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described in this chapter, where we present the formalism for the zero magnetic

field and the in-plane magnetic field cases. There are two physical consequences of

the application of an in-plane magnetic field that are relevant to the experimental

systems that we study in the next two chapters with the formalism introduced

here. The first has to do with the fact that to induce intersubband transitions

the oscillating electric field must have a component along the confinement di-

rection. Therefore, in an absorption experiment in the absence of a magnetic

field it would be necessary to apply the incident radiation at an angle far from

normal incidence or to use an external grating. On the other hand, normal in-

cidence can be used to induce intersubband transition if an in-plane magnetic

field is applied, because it introduces a Lorentz force perpendicular to the layer

and therefore a non-zero component of the local oscillating electric field in the

confined dimension. Second, and perhaps more importantly, an in-plane applied

magnetic field allows control of the spatial extent of the electron wave function

in the direction of confinement, which is useful in studying the transition from

two- to three-dimensionality of the confined electron gas.

Throughout this dissertation we work in the effective mass approximation to

account for the presence of the underlying periodic lattice, and take the effective

mass to be a constant equal to the bare GaAs effective mass, 0.067 me. We also

assume the static dielectric constant across the semiconductor structure to be

constant.

2.1 Self-consistent electronic structure without magnetic field

In this section we begin the study of the electronic structure of quasi-2D

electron systems. Here we treat the case of no applied magnetic field and in
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Section 2.3 we cover the situation with a magnetic field perpendicular to the

growth direction. The goal is to calculate energy levels and wave functions of

electrons in modulation doped semiconductor quantum wells, taking into account

the interaction with other electrons in an average sense, and going beyond the

Hartree approximation to include additional many-body effects. As discussed in

Section 1.4, we achieve this by employing the self-consistent approach based on

the density functional theory of Hohenberg, Kohn and Sham, within the local-

density approximation [37, 38, 39, 41]. In most of this dissertation we perform

spin-unpolarized calculations, i.e., we use an exchange-correlation potential µxc

which has no explicit spin dependence. In Chapter 8 we remove this constraint

and perform spin-polarized calculations to study the ferromagnetic transition in

the confined electron gas. There we find that the quasi-2D electron gas could

become spin-polarized, but only at densities lower than the ones studied in the

rest of this dissertation, which justifies the usage of the unpolarized theory in

the rest of our work. A number of self-consistent electronic structure studies of

quasi-2D electron systems without magnetic field can be found in the literature.

For work on semiconductor inversion and accumulation layers see Ref. [18] and

references therein, for AlxGa1−xAs based heterostructures and quantum wells

see Refs. [28, 21, 19], and for an introduction to the subject, mostly within the

Hartree approximation, see Ref. [2].

Let us choose a coordinate system such that the z-axis is along the direction of

confinement of the electrons, or the growth direction. The effective single-particle

Schrödinger equation or Kohn-Sham equation for our system reads

(

− h̄2

2m∗
∇2 + VEFF (z)

)

Ψ(x) = EΨ(x), (2.1)

where we have assumed that the effective mass m∗ is constant across the well,
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which has been shown to be a good approximation in parabolic wells [6, 44]. The

self-consistent effective potential VEFF (z) is given below. The in-plane (x-y) and

z-dependences can be separated, and due to the assumed translational invariance

in the x-y plane (the localized donor charges are assumed to be smeared out in

the x-y plane), the eigenenergies and wavefunctions become

Enkxky
= εn +

h̄2k2

2m∗
, (2.2)

Ψnkxky
(x) =

1√
A

ei(kxx+kyy)ϕn(z). (2.3)

In this expression, A is the sample area, k = (kx, ky) is the in-plane wave vector

of the electron, and εn and ϕn(z) are the solution to the one-dimensional Kohn-

Sham equation

(

− h̄2

2m∗

d2

dz2
+ VEFF (z)

)

ϕn(z) = εnϕn(z). (2.4)

The effective single-particle potential

VEFF (z) = VCONF (z) + VH(z) + VXC(z) (2.5)

contains the confining potential of the bare quantum well VCONF (z), and the

self-consistent Hartree and exchange-correlation potentials, VH(z) and VXC(z),

respectively. The Hartree potential takes into account the average electrostatic

interaction due to the rest of the electrons and the positively charged donor ions,

and is given by the Poisson equation

d2VH(z)

dz2
= −4πe2

ǫ
[n(z) − ND(z)], (2.6)

where ǫ is the static dielectric constant of GaAs, n(z) is the electron density, and

ND(z) is the density of positive donor charge. We assume the positive donors

to be located far removed from the quantum well, so that they enter in the
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solution of the Poisson equation only through the boundary conditions (i.e., the

electrostatic force far from the well is zero due to the charge neutrality of the

system of electrons in the well plus the positive donor charges). If Eq. (2.6) is

integrated twice one obtains

VH(z) = −4πe2

ǫ

(
∫ z

0
dz′(z − z′)n(z′) + z

∫ 0

−∞
dz′n(z′) − NS

2
z
)

. (2.7)

As mentioned in Section 1.4 and earlier in this chapter, we include many-body

effects beyond the Hartree approximation by means of the density functional

theory in the local-density approximation. For the exchange-correlation potential,

we have used the parametrizations due to Hedin and Lundqvist [45], and to

Ceperley and Alder [46]. Hedin and Lundqvist’s expression is given by

VXC(z) = −
(

9π

4

)1/3 ( 2

πrs

)

Ry∗
(

1 + 0.0368 rs ln
(

1 +
21

rs

))

, (2.8)

where

rs = rs(z) ≡ r0/a
∗, and r0 ≡

(

4π

3
n(z)

)−1/3

, (2.9)

and the potential due to Ceperley and Alder is given by

VXC(z) =
−1.2145

rs
+ γ

(

1 + 7
6
β1
√

rs + 4
3
β2rs

)

(

1 + β1
√

rs + β2rs

)2 , (2.10)

where γ = −0.1471, β1 = 1.1581, and β2 = 0.3446. Once the subband energies

εn and wave functions ϕn(z) are known, the z-dependent electron density can be

calculated as

n(z) = gs

∑

n,k

f(Enkxky
)|Ψnkxky

(x)|2, (2.11)

where the factor gs accounts for the spin degeneracy and

f(E) =
1

e(E−µ)/kBT + 1
(2.12)
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is the Fermi-Dirac distribution function, and we introduced the Boltzmann con-

stant kB, the absolute temperature T , and the chemical potential µ. The density

can be rewritten as

n(z) =
∑

n

Nn|ϕn(z)|2, (2.13)

where the subband occupancy Nn is given by

Nn ≡ gs

(2π)2

∫

dkxdkyf(Enkxky
). (2.14)

The chemical potential is determined by the relation

Ns =
∫

dz n(z) =
∑

n

Nn. (2.15)

At zero temperature, Nn becomes

Nn = gs

∫

kdk

2π
Θ

(

εF − εn +
h̄2k2

2m∗

)

=
gsm

∗

2πh̄2 (εF − εn)Θ(εF − εn), (2.16)

where Θ is the step function and εF is the Fermi energy.

The self-consistent procedure to solve the single-electron Kohn-Sham equa-

tion, Eq. (2.4), proceeds as follows. First, we guess the initial density profile

n(z), typically taken from a previous solution for the same quantum well and

for a similar density, if such a solution is available. Then, Eqs. (2.7) and (2.8)

or (2.9) are used to calculate the Hartree and exchange-correlation potentials,

respectively, for the given density n(z). The Schrödinger equation, Eq. (2.4), is

then solved numerically, to obtain the subband energies and wave functions. The

numerical method that we use is based on the Runge-Kutta method for integra-

tion of ordinary differential equations [47]. Once εn and ϕn(z) are found, a new
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density is computed through Eq. (2.13). The new and old densities are compared

through

η ≡
∫

dz |nnew(z) − nold(z)|
∫

dz nold(z)
. (2.17)

If the convergence factor η is larger than a given tolerance (typically 10−4–10−6),

we redefine the new density as a weighted sum of nnew and nold, and repeat the

calculation described. This procedure is iterated until convergence is achieved.

In Section 2.3 we will introduce the modifications necessary to include in-plane

magnetic fields, and in Chapter 8, we will generalize the formalism to allow for

the possibility of spin-polarized ground states of the electron gas. In Appendix B

the applicability of the local-density approximation to our quantum well problem

is analyzed.

2.2 Intersubband optical absorption without magnetic field

In this section we present the theory of optical absorption due to intersub-

band excitations with no magnetic field applied in the semiconductor structure.

Ours is a linear response calculation, and was first introduced by Ando [40], who

applied it to accumulation and inversion layers on Si. The approximation scheme

employed is based on the local-density approximation to the density functional

theory, and was introduced to account for the exchange-correlation or exciton-like

effects in intersubband optical absorption. The TDLDA represents an alterna-

tive to more involved many-body techniques such as directly solving the so-called

Bethe-Salpeter equation [48], and has been employed in a number of studies of

intersubband collective modes and optical absorption [49, 29, 50, 27, 51].

The early experimental results of intersubband optical absorption in quasi-2D

electron systems where interpreted implicitly assuming that the resonance takes
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place when the energy of the incident infrared light equals the corresponding

subband separations [52]. Soon, it was realized that this is not the case. If the

dynamic Hartree screening of the resonance is included in the response calcula-

tion, the intersubband resonances are shifted by a positive amount—the so-called

depolarization shift [22, 23, 24]. The depolarization-shift-corrected energies ac-

tually give a poorer agreement with experiment than the self-consistent subband

separations. The agreement is substantially improved when the exciton-like or

vertex-correction effect is taken into account [40]. Strictly speaking, the absorp-

tion peaks correspond to the collective modes of the system, which are given

by the poles of the appropriate response function [53]. The calculation of this

response function within the TDLDA is the subject matter of this section.

Since the wavelength of infrared light (whose frequency is of the order of the

subband separations) is much larger than the width of typical semiconductor

quantum wells, our theory assumes the dipole approximation. We also neglect

retardation effects [24]. Let the z-axis label the growth or confinement direction

in the quantum well. Since we are interested in intersubband transitions, we

study the response to a radiation field d(ω) = De−iωtz applied in the z-direction.

The total electric field E, the current density j, and the polarization P are also

given expressions of the form:

E(z, ω, t) = E(z, ω)e−iωt,

j(z, ω, t) = j(z, ω)e−iωt,

P (z, ω, t) = P (z, ω)e−iωt, (2.18)

and are related by the equations

−iωP (z, ω) = j(z, ω), (2.19)
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E(z, ω) = D − 4π

ǫ
P (z, ω). (2.20)

The power absorbed by the electron gas per unit area is

P(ω) =
1

2

∫

dz Re [ j(z, ω)E∗(z, ω)] . (2.21)

Noting that

j(z, ω)E∗(z, ω) = j(z, ω)
[

D∗ − 4π

ǫ
P ∗(z, ω)

]

= j(z, ω)
[

D∗ +
4πi

ǫω
j∗(z, ω)

]

= j(z, ω)D∗ +
4πi

ǫω
|j(z, ω)|2, (2.22)

we obtain

P(ω) =
1

2

∫

dz Re [ j(z, ω)D∗] . (2.23)

The zz-component of the irreducible and reducible conductivity tensors σzz and

σ̃zz, which give the response of the system to the total and external probe, re-

spectively, are defined as

j(z, ω) ≡ σzz(z, ω)E(z, ω) ≡ σ̃zz(z, ω)D. (2.24)

Using this definition and Eq. (2.23) we obtain

P(ω) =
1

2

∫

dz Re
[

σ̃zz(z, ω)|D|2
]

,

=
1

2
|D|2Re

[

σ̃2D
zz (ω)

]

, (2.25)

where we have introduced the modified two-dimensional conductivity

σ̃2D
zz ≡

∫

dzσ̃zz(z, ω) =
1

D

∫

dzj(z, ω). (2.26)
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The external electric field induces a time-dependent change in the electronic

density, denoted by ∆n(z, ω)e−iωt. In turn, the density fluctuations create an

effective perturbing potential

H′e−iωt = [eDz + ∆VH(z) + ∆VXC ] e−iωt, (2.27)

with

∆VH(z) = −4πe2

ǫ

∫ z

−∞
dz′

∫ z′

−∞
dz′′∆n(z′′), (2.28)

∆VXC(z) =
∂VXC

∂n
∆n(z). (2.29)

As we will see below, ∆VH(z) gives rise to the depolarization shift and ∆VXC(z)

to the exciton-like effect. Using time-dependent perturbation theory, the density

variation is found to be

∆n(z, ω) =
∑

n n′

gnn′ϕn(z)ϕn′(z)
−2h̄ωn′n

(h̄2ω2
n′n − h̄2ω2)

〈n′|H′|n〉, (2.30)

where

gnn′ = gs

∑

k

fn(k) [1 − fn′(k)] , (2.31)

takes care of the occupation of the initial and final states in the intersubband

transition. The spin degeneracy is denoted by gs, fn(k) is the Fermi factor defined

in Eq. (2.12), ϕn(z) is the self-consistent wave function with eigenenergy εn (cf.

Eq. (2.4)), ωn′n ≡ εn′ − εn, and the summation is over n 6= n′. Note that Eq.

(2.30) is valid for any number of subbands occupied, and it allows transitions to

an arbitrary number of higher subbands. In particular, if only the lowest subband

(denoted by 1) is occupied in the ground state, we have gnn′ = Nsδn1, where Ns is

the electron concentration per unit area. The induced current density is obtained

using the equation of continuity:

j(z, ω) = −
∫ z

−∞
dz′(−e)(−iω)∆n(z′, ω)
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= 2iωe
∑

n n′

∫ z

−∞
dz′gnn′ϕn(z

′)ϕn′(z′)
h̄ωn′n

(h̄2ω2
n′n − h̄2ω2)

〈n′|H′|n〉, (2.32)

and, therefore

σ̃2D
zz (ω) =

1

D

∫ ∞

−∞
dzj(z, ω)

=
2iωe

D

∑

n n′

∫ ∞

−∞
dz
∫ z

−∞
dz′gnn′ϕn(z′)ϕn′(z′)

h̄ωn′n

(h̄2ω2
n′n − h̄2ω2)

〈n′|H′|n〉

= −2iωe

D

∑

n n′

znn′gnn′

h̄ωn′n

(h̄2ω2
n′n − h̄2ω2)

〈n′|H′|n〉, (2.33)

where znn′ =
∫∞
−∞ dzϕn(z)zϕn′(z). Taking a matrix element of Eq. (2.27) we

obtain

eDznn′ = 〈n′|H′|n〉 − 〈n′|∆VH |n〉 − 〈n′|∆VXC |n〉

= 〈n′|H′|n〉+
∑

mm′

gmm′(αnn′,mm′−βnn′,mm′)
h̄ωn′n

(h̄2ω2
n′n − h̄2ω2)

〈m′|H′|m〉,(2.34)

where

αnn′,mm′ = −2
4πe2

ǫ

∫ ∞

−∞
dzϕn′(z)ϕn(z)

∫ z

−∞
dz′

∫ z′

−∞
dz′′ϕm′(z′′)ϕm(z′′)(2.35)

βnn′,mm′ = −2
∫ ∞

−∞
dzϕn′(z)ϕn(z)

∂VXC

∂n
(z)ϕm′(z)ϕm(z). (2.36)

With the definitions

Ann′,mm′ ≡ δnmδn′m′(h̄ωm′m)2

+ g
1/2
mm′g

1/2
nn′(αnn′,mm′ − βnn′,mm′)(h̄ωm′mh̄ωn′n)1/2, (2.37)

umm′ ≡ (h̄ωm′m)1/2g
1/2
mm′〈m′|H′|m〉

(h̄2ω2
m′m − h̄2ω2)

, (2.38)

Eq. (2.34) becomes

eD(h̄ωn′n)1/2g
1/2
nn′zn′n =

∑

mm′

[

Ann′,mm′ − (h̄ω)2δnmδn′m′

]

umm′ (2.39)
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Using Eq. (2.38) and Eq. (2.39) we rewrite the last line of Eq. (2.33) as

σ̃2D
zz (ω) = −2iωe

D

∑

n n′

1

eD

[

eD(h̄ωn′n)1/2g
1/2
nn′zn′n

]

unn′

= −2iω

D2

∑

n n′

∑

m m′

unn′

[

Ann′,mm′ − (h̄ω)2δnmδn′m′

]

umm′ (2.40)

Defining the transformation matrix U such that Ã = U−1AU is diagonal, we get

unn′ = eD
∑

η n n′

Unn′,ηU
−1
η,mm′zmm′(h̄ωm′m)1/2

Ãηη − ω2
(2.41)

and,

σ̃2D
zz (ω) = −2iωe2

∑

ηnn′mm′

znn′Unn′,ηUmm′,ηzmm′(h̄ωn′n)1/2(h̄ωm′m)1/2

Ãηη − ω2
(2.42)

(The subindex η has a one-to-one correspondence to the double index (n, n′).)

Finally, one gets

σ̃2D
zz (ω) = −iωe2Ns

m∗

∑

η

f̃η

ω̃2
η − ω2 − 2iω/τ

, (2.43)

where

f̃η =





(

2m∗

Nsh̄
2

)1/2
∑

nn′

(h̄ωn′ngn′n)1/2 zn′nUnn′,η





2

, (2.44)

and h̄ω̃η = (Ãηη)
1/2. In Eq. (2.43) we have introduced a phenomenological re-

laxation time τ . The resonances or intersubband collective modes of the system

occur at ω = ω̃η, and their strength is determined by the oscillator strength f̃η.

Let us consider the particular case where only one subband is populated, the fre-

quency ω is close to ω̃n1, and we can neglect coupling to transitions to subbands

other than the nth subband. In this case one gets

σ̃2D
zz = −iωe2Nsf̃n1

m∗

[

ω̃2
n1 − ω2 − 2iω/τ

]−1
, (2.45)

where

f̃n1 =
2m∗

h̄2Ns

h̄ωn1z
2
n1, (2.46)
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and the resonance energy is given by

h̄ω̃n1 =
[

h̄2ω2
n1 + NSh̄ωn1 (αn1,n1 − βn1,n1)

]1/2
. (2.47)

Since αnn′,mm′ > 0 and βnn′,mm′ > 0, we see that the depolarization shift (the

αnn′,mm′ term originated in the ∆VH of Eq. (2.27)) tends to increase the resonance

energy, and the exciton-like shift (the βnn′,mm′ term originated in the ∆VXC of

Eq. (2.27)) has the opposite effect.

The density fluctuations (Eq. (2.30)) associated with the collective modes of

the system give a very useful physical picture of the excitations which we will take

advantage of repeatedly in the next two chapters. For the fluctuations associated

with the resonant energy ω̃η one gets

∆nη(z) ∝
∑

n n′

ω
1/2
n′ng

1/2
nn′ϕn(z)ϕn′(z)Unn′,η. (2.48)

2.3 Self-consistent electronic structure with in-plane magnetic field

In this section we extend the electronic structure calculation (the calcula-

tion of self-consistent single-particle energies and wavefunctions, and ground-state

electron density) that we started in Section (2.1), to the case of a semiconductor

quasi-2D structure with a magnetic field applied in the plane of the electron gas,

that is, in the so-called Voigt geometry. Ando calculated electronic structure

in the Voigt geometry in accumulation layers within the Hartree approximation

[54], and later extended the treatment to include exchange-correlation effects

[55]. More recently, Stopa and Das Sarma [44] studied the electronic structure

of parabolic quantum wells in the in-plane magnetic field geometry within the

local-density approximation.

Again we consider an electron gas confined in the z-direction, and work in the

effective mass approximation, assuming a constant effective mass. The treatment
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is analogous to the case of no magnetic field applied, with the difference that an

in-plane magnetic field couples the z-motion with the in-plane momenta, say kx,

causing the quantum subbands to acquire a dispersion in kx. If a magnetic field

B = (0, B, 0) is applied, and working in the Landau gauge A = (Bz, 0, 0), the

single-particle Kohn-Sham equation reads, ignoring the Zeeman splitting,

[

(−ih̄∇ + e
c
A)2

2m∗
+ VEFF (z)

]

Ψnkxky
(x) = Enkxky

Ψnkxky
(x). (2.49)

The effective potential VEFF (z) has the same form as in the absence of a magnetic

field,

VEFF (z) = VCONF (z) + VH(z) + VXC(z) (2.50)

and VH(z) (see Eq. (2.7)) and VXC(z) (see Eq. (2.8)) depend on the magnetic field

only through the electron density n(z). We point out that the expression for the

exchange-correlation potential used does not take into account the presence of a

magnetic field, and therefore its use is not fully justified in this case. The most

appropriate treatment of this problem within LDA would be a spin-polarized

calculation, like the one applied in Chapter 8 to the B = 0 case, but we have not

attempted such approach in this dissertation. However, we expect the unpolarized

exchange-correlation potential not to give rise to serious errors, since the magnetic

fields considered here are only moderately high (< 6T ).

Factorizing the total eigenfunction as

Ψnkxky
(x) =

1
√

LxLy

ei(kxx+kyy)ϕnkx
(z), (2.51)

(Lx and Ly are the sample dimensions) Eq. (2.49) simplifies to the following

ordinary differential Kohn-Sham equation for the z-dependence

[

− h̄2

2m∗

d2

dz2
+

(h̄kx + m∗ωcz)2

2m∗
+ VEFF (z)

]

ϕnkx
(z) = εnkx

ϕnkx
(z), (2.52)
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where εnkx
= Enkxky

− h̄2k2
y

2m∗
, and ωc = eB

m∗c
is the cyclotron frequency. Following

the notation introduced in Section 2.1, we write the electronic density as

n(z) = gs

∑

n,k

f(Enkxky
)|Ψnkxky

(x)|2 (2.53)

=
∑

nkx

Nnkx
|ϕnkx

(z)|2 =
Lx

2π

∑

n

∫

Nnkx
|ϕnkx

(z)|2,

where the subband occupancies are given by

Nnkx
≡ gs

2πLx

∫

dkyf(Enkxky
) (2.54)

The chemical potential is fixed again by the requirement that the total number

of electrons equals the areal density Ns, and is obtained by solving numerically

the equation

Ns =
∑

nkx

Nnkx
=

Lx

2π

∑

n

∫

dkxNnkx
. (2.55)

At zero temperature, Nnkx
reduces to

Nnkx
=

gs

2πLx

(

2m∗

h̄2

)1/2 √
εF − εnkx

Θ(εF − εnkx
). (2.56)

The iterative scheme to solve for the self-consistent electronic states and en-

ergies is analogous to the zero-magnetic-field one described in Section 2.1. The

main difference is that the Kohn-Sham equation (Eq. (2.52)) now depends on

the quasi-continuous (after periodic boundary conditions are assumed) quantum

number kx. In practice, we discretize this variable into a grid and solve Eq. (2.52)

for each value of kx on the grid. This finite set of solutions (εnkx
, ϕnkx

) of the

Kohn-Sham equation are then used in the calculation of the subband occupan-

cies, the density and the chemical potential. Typically, 40 to 80 points in half of

the kx–grid (for asymmetric wells, like the asymmetric parabolic wells of Chapter

3, one needs twice as many points to cover separately negative and positive kx
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values) are enough to obtain the degree of convergence necessary in the response

calculations presented in the next section.

2.4 Intersubband optical absorption with in-plane magnetic fields

Now we proceed to generalize the theory of intersubband optical absorption

to the Voigt geometry problem, where a dc magnetic field is applied in the plane

of the confined electron gas, and the incident radiation propagates in the growth

direction, with polarization perpendicular to the magnetic field. The formalism

is analogous to the one employed in the case of intersubband optical absorption

without magnetic field (Section 2.2), and was also introduced by Ando to study

silicon-based quasi-two dimensional electron systems [55]. We keep the simplify-

ing assumptions stated in the previous section, and assume as well that there is an

external magnetic field B = (0, B, 0). In this geometry intersubband transition

are possible even if the polarization of the incident radiation is in the plane of the

electron slab, because the Lorentz force couples the motion of the carriers in the

x- and z-direction. If a radiation field of long wavelength is applied with normal

incidence, D(ω, t) = De−iωtx, the total electric field E, the current density j,

and the polarization P are also given by expressions of the form:

E(z, ω, t) = E(z, ω)e−iωt,

j(z, ω, t) = j(z, ω)e−iωt,

P (z, ω, t) = P (z, ω)e−iωt. (2.57)

The absorbed power per unit area by the electron gas is

P(ω) =
1

2

∫

dzRe [j(z, ω) · E∗(z, ω)] . (2.58)
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Taking into account that

j · E∗ = j ·
[

D∗ − 4π

ǫ
P ∗
]

= j ·
[

D∗ +
4πi

ǫ ω
j∗
]

= jx(z, ω)D∗ +
4πi

ǫ ω
|j(z, ω)|2, (2.59)

we can rewrite the absorbed power as

P(ω) =
1

2

∫

dzRe [jx(z, ω)D∗] . (2.60)

Therefore,

P(ω) =
1

2

∫

dzRe
[

σ̃2D
xx (ω)

]

(2.61)

where the xx-component of the conductivity tensor is related to the zz-component

at non-zero frequency through the expression [56]

Re
[

σ̃2D
xx (ω)

]

=
ω2

c

ω2
Re

[

σ̃2D
zz (ω)

]

. (2.62)

In what follows we will calculate the zz-component σ̃2D
zz (ω), similarly to what

was done in Section 2.2. The external electric field induces a time-dependent

change in the electronic density, denoted by ∆n(z, ω)e−iωt, and these density

fluctuations generate an effective perturbing potential which ought to be found

self-consistently:

H′e−iωt = [eDZ + ∆VH(z) + ∆VXC ] e−iωt, (2.63)

with

∆VH(z) = −4πe2

ǫ

∫ z

−∞
dz′

∫ z′

−∞
dz′′∆n(z′′), (2.64)

∆VXC(z) =
∂VXC

∂n
∆n(z). (2.65)
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Applying time-dependent perturbation theory to first order in the perturbing

Hamiltonian H′, we obtain for the density fluctuation field:

∆n(z, ω) =
gs

LxLy

∑

n n′kx

ϕnkx
(z)ϕn′kx

(z)
(−2h̄ωn′n(kx))

(h̄2ωn′n(kx)2 − h̄2ω2)

× f(En(k)) [1 − f(En′(k))] 〈n′kx|H′|nkx〉, (2.66)

where we have introduced the energy differences

h̄ωn′n(kx) = En′(k) − En(k) = εn′kx − εnkx, (2.67)

and En(k) are the self-consistent single-particle energies (see Eq. (2.49)). The

notation for other quantities in Eq. (2.66) has been introduced in the section on

electronic structure in the Voigt geometry, Section 2.3. The continuity equation

gives the current density

jz(z, ω) = −
∫ z

−∞
dz′(−e)(−iω)∆n(z′, ω), (2.68)

from which we obtain the modified two-dimensional conductivity

σ̃2D
zz (ω) ≡ 1

D

∫ ∞

−∞
dzjz(z, ω). (2.69)

For the values of the magnetic field studied in this Thesis (B ∼ 5T ), only one

subband is occupied at the usual areal electron densities in GaAs quantum wells

(Ns ∼ 1011cm−1), therefore we shall assume that only the lowest subband (de-

noted by 1) is occupied. Let ωn(kx) ≡ En(k) − E1(k). Substituting jz(z, ω) in

the definition of σ̃2D
zz (ω) we get

σ̃2D
zz (ω) = −2iωe

D

∑

nkx

zn(kx)gn(kx)
h̄ωn(kx)

(h̄2ωn(kx)2 − h̄2ω2)
〈nkx|H′|1kx〉, (2.70)

where

zn(kx)
∫ ∞

−∞
dzϕnkx

(z)ϕ1kx
(z), (2.71)
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g(kx) =
gs∆kx

(2π)2

∫

dkyf(E1(k)), (2.72)

and ∆kx is the step in the numerical integration over the kx variable. Next we

take a matrix element of Eq. (2.63) between the states |nkx〉 and |1kx〉:

eD〈nkx|z|1kx〉 =

∑

mk′

x

{δnmδkxk′

x
ωn(kx)

2 − δnmδkxk′

x
ω2

+g(k′
x)ωm(k′

x)ωn(kx)
3/2 [αnm(kx, k

′
x) − βnm(kx, k

′
x)]}

× 〈nkx|H′|1kx〉
(h̄2ωn(kx)2 − h̄2ω2)

, (2.73)

where

αnm(kx, k
′
x) = −8πe2

ǫ

Snm(kx, k
′
x)

[ωn(kx)ωm(k′
x)]

1/2
, (2.74)

βnm(kx, k
′
x) = −2

Xnm(kx, k
′
x)

[ωn(kx)ωm(k′
x)]

1/2
, (2.75)

and

Snm(kx, k
′
x) =

∫ ∞

−∞
dzϕnkx

(z)ϕ1kx

∫ z

−∞
dz′(z − z′)ϕ1k′

x
(z′)ϕmk′

x
(z′), (2.76)

Xnm(kx, k
′
x) =

∫ ∞

−∞
dzϕnkx

(z)ϕ1kx

∂Vxc

∂n
(z)ϕ1k′

x
(z)ϕmk′

x
(z). (2.77)

Introducing the following quantities

Anm(kx, k
′
x) = δnmδkxk′

x
ωn(kx)

2

+g(kx)
1/2ωn(kx)[αnm(kx, k

′
x) − βnm(kx, k

′
x)]ωm(k′

x)g(k′
x)

1/2, (2.78)

um(kx) =
g(kx)

1/2ωm(kx)
1/2〈mkx|H′|1kx〉

ωm(kx)2 − ω2
, (2.79)

Eq. (2.73) becomes

eDg(kx)
1/2ωn(kx)

1/2zn(kx) =
∑

mk′

x

[Anm(kx, k
′
x) − δnmδkxk′

x
ω2]um(k′

x). (2.80)
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Introducing U such that Ã = U−1AU is diagonal we can eliminate the unknown

matrix element 〈mk′
x|H′|1kx〉. Eq. (2.79) becomes

uα = eD
∑

β γ

UαβU−1
βγ g1/2

γ ω1/2
γ zγ

Ãββ − ω2
(2.81)

where the new index α is equivalent to the double index (n, kx), and, after some

additional manipulations we finally obtain

σ̃2D
zz (ω) = −2iωe

D

∑

α

f̃α

ω̃2
α − ω2 − 2iω/τ

, (2.82)

where

f̃α =
2m∗

Nsh̄
2

(

∑

α

(h̄ωα)1/2g1/2
α zα

)2

, (2.83)

and the resonant energies are given by h̄ω̃α = (Ãαα)1/2. Notice that the expression

for σ̃2D
zz (ω) is formally analogous to the expression obtained without magnetic

field in Section 2.2, provided the subindices are appropriately reinterpreted. In

Eq. (2.82) we have introduced a constant phenomenological relaxation time τ ,

although this is not strictly valid in the presence of a magnetic field, and may

have some influence in the lineshape of the resonances [55]. Before concluding

this section we write down the expression for the density fluctuations associated

with the resonant modes of the system, which will be employed in the study of

quasi-parabolic wells:

∆nα(z) ∝
∑

n,kx

ωn(kx)g(kx)
1/2ϕnkx

(z)ϕ1kx
(z)Unkx,α (2.84)
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CHAPTER 3

Perfect and asymmetric parabolic quantum wells

3.1 Introduction

Remotely doped AlxGa1−xAs parabolic quantum wells (PQW) are systems

where a wide, high mobility quasi-2D electron gas can be realized [10]. Such sys-

tems have been proposed as candidates for the observation of three dimensional

electron-electron interaction effects in an environment free of impurities [4]. The

generalized Kohn’s theorem [8], which states that an electron gas in a perfect

parabolic confinement with a magnetic field applied in an arbitrary direction ab-

sorbs long-wavelength light at the two frequencies that correspond to excitations

in the center of mass (CM) motion, fully explained the results of far-infrared

optical absorption experiments in perfect PQWs. It then became clear that this

type of experiments could reveal characteristics of the electron-electron interac-

tion only if slight imperfections were introduced in the parabolic confinement.

Thereafter, a number of imperfect parabolic well systems have been investigated

experimentally [57, 16, 11], and theoretically without magnetic fields [50], and

with tilted [58] and in-plane magnetic fields [56].

In this chapter we will first enunciate the generalized Kohn’s theorem for

PQWs [8] and present some preliminary results for perfect PQWs without any

perturbations, to demonstrate the basic properties of PQWs. Once the accuracy

37



of our numerical procedures is established in the case of perfect PQWs, we pro-

ceed to discuss our results for asymmetric parabolic wells [14, 15]. Although we

will give some results for asymmetric PQW without magnetic field, we will con-

centrate on the case of the Voigt geometry, i. e., with a magnetic field ~B applied

in the plane of the electron slab and radiation propagating perpendicular to that

plane with polarization ~ERAD ⊥ ~B. Our calculations will be compared in detail

with recent far-infrared (FIR) absorption experiments in asymmetric PQWs in

the Voigt geometry [11].

3.2 Perfect parabolic quantum wells

Before going into the main results of this chapter—the magneto-optical ab-

sorption spectra of asymmetric PQWs—in this section we enunciate the gen-

eralized Kohn’s theorem and present a representative set of results for perfect

parabolic wells without perturbations. Basically, our aim is to illustrate the two

main characteristics of PQWs: first, the fact that the ground-state electronic

density distribution is approximately constant throughout the electron slab, with

a constant value given by the curvature of the parabolic potential; and, second,

the validity of the generalized Kohn’s theorem, which fixes the frequencies at

which long-wavelength optical-absorption takes place, both with an without an

applied magnetic field. The generalized Kohn’s theorem provides a stringent test

on the accuracy of our numerical calculations, which, as we shall see, is passed

satisfactorily.

Let the confining potential have a quadratic dependence along the z-direction

Vconf(z) =
1

2
m∗ω2

0z
2, (3.1)

where m∗ is the electron effective mass and ω0 is the design harmonic frequency.
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By solving Poisson’s equation for a constant charge density n0

d2Vconf(z)

dz2
=

4πe2

ǫ
n0, (3.2)

one obtains

Vconf(z) =
2πe2n0

ǫ
z2, (3.3)

and using Eqs. (3.1) and (3.3) one gets

n0 =
m∗ǫω2

0

4πe2
. (3.4)

n0 is the density of a positive background that produces a parabolic potential

given by Eq. (3.1). The basic property of the parabolic confinement potential of

Eq. (3.1) is to emulate a positive background of density n0.

The generalized Kohn’s theorem states that the energies at which a paraboli-

cally confined electron gas absorbs long-wavelength radiation in the presence of an

arbitrary uniform magnetic field do not depend on the electron-electron interac-

tions, and therefore are the same as those of a single electron in the same potential

and magnetic field. For the parabolic confinement of Eq. (3.1) and a magnetic

field B = (Bsinθ, 0, Bcosθ) tilted an angle θ with respect to the z-direction, the

resonant frequencies are

ω1,2 =
[

1

2

(

ω2
c + ω2

0

)

± 1

2

(

ω4
c + ω4

0 − 2 ω2
0 ω2

c cos2θ
)1/2

]1/2

, (3.5)

where ωc = eB
m∗c

is the cyclotron frequency. In the Voigt geometry, that is, for an

in-plane magnetic field, θ = 900 and ω1,2 =
√

ω2
c + ω2

0, 0. In the absence of any

magnetic field, ωc = 0, and ω1,2 = ω0, 0. The solution ω2 = 0 has zero weight in

absorption experiments.

We start the presentation of numerical results by showing in Fig. 3.1 the LDA

self-consistently calculated wavefunctions, energy levels, and effective potentials
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for a cutoff parabolic potential, with a design density of n0 = 2.24×1016 cm−3, or

a characteristic energy ω0 =
√

4πe2n0/m∗ǫ = 6.1 meV . The calculational tech-

nique employed is described in detail in Section 2.1. The bare confining potential

is not perfectly parabolic because, by design, the parabolic region eventually ends

abruptly. The width of the parabolically varying potential region is 2000Å in this

particular sample. The abrupt end of the parabolicity has a negligible effect on

the basic issues considered in this section, as long as the electron slab does not

reach the edge of the parabolic region. As we can see in Fig. 3.1, the electronic

density is almost constant over the entire width of the electron slab, and the self-

consistent potential is remarkably constant over the same region. This illustrates

the virtually perfect screening of the parabolic potential—equivalent to a uniform

positive background—carried out by the electron gas, correctly described thanks

to the self-consistent nature of the calculation. In Fig. 3.2 we show how, for

the same sample, the density profile varies as the areal density NS is increased.

Once the design density n0 is reached inside the electron slab, further increase

in NS gives rise to a widening of the slab, but keeping the bulk density approx-

imately constant and equal to n0. The edge oscillation is very pronounced at

NS = 4.0× 1011 cm−2, because the electron gas is wide enough to see the abrupt

end of the parabolic region (at 1000Å). In Fig. 3.3 we compare the electron den-

sity profiles with and without an in-plane magnetic field (for another parabolic

well, with design density n0 = 2.4 × 1016 cm−3). Since the in-plane magnetic

field localizes the electron wavefunctions to roughly within a magnetic length

ℓc =
√

h̄c/eB in the z-direction, screening is more effective that in the absence

of a magnetic field. As a consequence, the electron density n(z) in the middle

region of the slab is more uniform and closer to n0 in the magnetic field case.
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Fig. 3.4 shows absorption spectra calculated within TDLDA (see Sections 2.2

and 2.4 for a description of the formalism), with and without magnetic field, for

a parabolic well with n0 = 2.4×1016 cm−3. The calculated spectra have only one

peak, in agreement with the generalized Kohn’s theorem, at ω0 and (ω2
0 +ω2

C)1/2,

in the absence and presence of an in-plane magnetic field, respectively. We have

verified that this result is independent of the areal electron density NS, also

in agreement with Kohn’s theorem. The resonant mode described by Kohn’s

theorem corresponds to a rigid motion of the electron slab in the confinement di-

rection. Thus, in linear response theory, the density fluctuations δn(z) (see Eqs.

(2.48) and (2.84) associated with this Kohn mode are proportional to the deriva-

tive of the equilibrium density distribution, dn
dz

(z). This relationship between

δn(z) and dn
dz

(z) is illustrated in Fig. 3.5, for the case of no applied magnetic

field. The good agreement between our numerical results and the known ana-

lytical predictions, seen in Figs. 3.4 and 3.5, constitute a reassuring sign of the

accuracy of our numerical procedures, before we apply them to more complex

situations where no exact analytical predictions are available.

3.3 Asymmetric parabolic quantum wells

A simple departure from perfect parabolicity is given by the case of an asym-

metric parabolic well consisting of two half-parabolas of slightly different curva-

tures. In such asymmetric PQW the generalized Kohn’s theorem is no longer

valid, and therefore the long-wavelength absorption spectra is expected to de-

pend on the areal density NS. This is indeed the case, as demonstrated by recent

far-infrared (FIR) optical absorption experiments [11]. Given the simplicity of

the non-parabolicity of the asymmetric PQW, the idea behind the experimental
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Figure 3.1: A cutoff parabolic quantum well structure, given by the bare confining

potential (thick line), and its zero-magnetic-field self-consistent LDA subband

energy levels En, eigenfunctions φn, electron density n(z), Fermi energy EF , and

effective potential VEFF (thin line). The parabolic region, which has a design

density of n0 = 2.24 × 1016 cm−3, is 2000Å wide. The areal density is Ns =

3.0 × 1011 cm−2; at this density, 4 subbands are populated.

42



Figure 3.2: Self-consistent LDA electronic densities n(z) for the parabolic well

shown in Fig. 3.1, for various areal densities NS, given in 1011 cm−2, and no

magnetic field applied. The design density n0 is marked for reference. The figure

shows that as the areal density is increased, the electron slab becomes wider, but

it conserves an approximately constant value in the middle region, equal to n0.
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Figure 3.3: Comparison of self-consistent density profiles with and without mag-

netic field for a parabolic quantum well. Solid line: no magnetic field, dashed line:

in-plane magnetic field B = 4T . The parabolic potential has a design density of

n0 = 2.4 × 1016 cm−3. The areal density is Ns = 2.5 × 1011 cm−2. The magnetic

field improves the screening ability of the electron gas by reducing the extent of

the electron wavefunctions in the z-direction.
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Figure 3.4: Optical absorption spectra for a parabolic quantum well, without

(solid line) magnetic field, and with an in-plane magnetic field of B = 4T (dashed

line). The frequencies ω0 (which gives the curvature of the well) and (ω2
0 +

ω2
C)1/2, are the resonant frequencies predicted by the generalized Kohn’s theorem,

without and with magnetic field, respectively. The figure shows the agreement

between the calculated spectra and the analytical result, both with and without

applied magnetic field.
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Figure 3.5: Density fluctuations δn(z) associated with the Kohn mode for the

parabolic well shown in Fig. 3.1 in the absence of magnetic field, calculated using

Eq. (2.48) (thick dashed line). Also shown is the derivative of the ground-state

density distribution dn
dz

(z) (thin solid line). The two curves fall on top of each

other (after including an appropriate proportionality factor), demonstrating that

the Kohn mode corresponds to a rigid oscillation of the electron slab as a whole

in the z-direction.

46



study was to determine the conditions for a quasi-two-dimensional electron gas

to crossover from two- to three-dimensional behavior. The FIR spectra showed

such a crossover when going from the low NS limit to the high NS limit, where

the electron slab is wide (or three-dimensional) enough to “see” the two different

curvatures of the well. The spectra evolve, as the areal density increases (and

with it, the width of the electron slab), from having one peak at the inter-Landau

level energy difference of the bare well to having two peaks located at the Kohn

frequencies of the half parabolas. The crossover region over which a unique res-

onance (at low Ns) splits into two “Kohn modes” (at high Ns) is roughly given

by the condition 2ℓ1 < Ns/n0 < 4ℓ1, where ℓ1 =
√

3 ℓc is the radius of the second

Landau orbit. The upper limit shows that to obtain two separate resonances at

the Kohn frequencies the slab has to be wide enough to accommodate one excited

Landau orbit in each half of the well. Here we calculate absorption spectra for an

asymmetric PQW modeled following the parameter values of the sample used in

Ref. [11], and compare our results with experiment in the relevant range of areal

densities.

We consider the model potential shown in Fig. 3.6(a) to describe the asym-

metric PQW sample studied in Ref. [11]. It consists of two half-parabolas with

curvatures α1 = 5.1× 10−5 meV/Å
2

and α2 = 6.2× 10−5 meV/Å
2
, and is 3000 Å

wide. We choose a magnetic field in the region of the observed resonances of

B = 5.8 T . In Fig. 3.6(a) we show the calculated self-consistent potentials for

some values of the sheet density Ns, which, as expected, become flattened over a

wider region in the center of the well, as the electron slab width increases with

Ns. Note, however, that the density profiles n(z) shown in Fig. 3.6(b) are not

flat as in the pure parabolic wells as might have been expected naively. For the
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values of Ns considered in the experiment, and in our calculations with magnetic

field, only the lowest subband is occupied at zero temperature. We checked that

the abrupt change in the curvature at z = 0 does not produce unphysical results

by using a similar potential with a graded change in curvature, and the density

profile was identical to the original one within our numerical precision.

The calculated optical absorption spectra for the asymmetric quantum well

and for several densities Ns in the range used in Ref. [11] are shown in Fig.

3.7. The frequencies associated with the half-parabolas of curvatures α1,2 are

ω1,2 = 2α1,2/m
∗. The frequencies wK1,K2 marked for reference on each panel of

Fig. 3.7 are the “Kohn” frequencies of each half-parabola, wK1,K2 = (ω2
1,2+ω2

C)1/2.

The phenomenological scattering time τ = 20×10−12s, taken to be a constant in

our calculations, was obtained from the linewidth of the narrower resonance in

the experiment [11]. For a perfect PQW the generalized Kohn’s theorem predicts

a unique resonance independent of the electron density. In our case, in contrast,

we obtain a strong dependence on Ns. For small Ns
<∼ 4.7 × 1010 cm−2 there

is one strong resonance (which, for example at Ns = 0.1 × 1010 cm−2, has en-

ergy ε̃ = 10.644 meV ), corresponding to the optical transition between the first

two energy levels of the bare confining potential in the presence of the in-plane

magnetic field, whose energy is ε1(kx = 0) − ε0(kx = 0) = 10.648 meV . (Res-

onances to higher subbands are also possible, but have much smaller oscillator

strength.) As Ns increases another resonance appears at an energy lower than

ωK1, and gradually moves to ωK1 while the other resonance also shifts to end

up at ωK2 for high Ns. At a sheet density Ns = 7.5 × 1010 cm−2 (the highest

Ns reported in the experiment) we obtain two resonances ωRES
1,2 very close to

the “Kohn” frequencies ωK1,K2. We note that a direct comparison of the the-
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Figure 3.6: (a) Model bare potential of the asymmetric parabolic well (solid

line), and calculated self-consistent potentials with an in-plane magnetic field

of B = 5.8T , for Ns = 2.4 (dash line), 4.7 (dotted line), and 7.5 × 1010 cm−2

(dash-dot line); (b) corresponding calculated self-consistent densities.
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oretical and calculated spectra is not possible because the experimental results

correspond to a magnetic field sweep at a constant resonance frequency whereas

the calculated optical spectra are given as a function of frequency at a fixed

magnetic field. In order to make a quantitative comparison with experiment, we

use the resonant frequencies ωRES
1,2 to compute the harmonic oscillator frequen-

cies of the well halves ωCALC
1,2 = ((ωRES

1,2 )2 − ω2
C)1/2, and obtain their difference

ωCALC
2 − ωCALC

1 = 0.378 meV . This shows an 8% discrepancy with the input

value ω2 − ω1 = 0.350 meV (ω1,2 are the values used in the definition of the

confining potential) which is comparable to the 4% discrepancy found in exper-

iment between the design parameters and the observed resonances, at the same

sheet density. The 8% theoretical discrepancy is expected to reduce further as

the density NS is increased and the electron gas covers to a larger extent the two

halfs of the asymmetric parablic well.

Therefore, we obtain a very good agreement with the experimental results of

Ref. [11] for low and high Ns. The agreement at high Ns also confirms the strong

magnetic field classical arguments based on the Magarill-Chaplik [59] theory given

in Ref. [11]. At intermediate Ns, however, the position of the weaker resonance

seems to evolve in different ways as a function of Ns in theory and experiment. In

the experiment, the two “Kohn” resonances found at high Ns appear to merge into

one absorption peak as Ns is reduced, in contrast to the separation and vanishing

of one of the resonances found in our calculation. Among the approximations

incurred in our calculation which may be responsible for this discrepancy are the

fact that spin effects are neglected, the temperature is assumed to be zero, and

the general limitations of LDA (discussed in Appendix B) are operative here, with

the aggravation that the exchange-correlation potential employed does not take
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Figure 3.7: Calculated absorption spectra for the asymmetric parabolic quantum

well with a magnetic field B = 5.8T in the Voigt geometry for various areal

densities Ns (given in units of 1010cm−2). ωK1 and ωK2 are the “Kohn” frequencies

associated with the curvatures of the two half-parabolas of the well.
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into account explicitly the presence of a strong static magnetic field. Another

possibility is that this discrepancy is only apparent and due to the differences in

lineshapes of the resonances. These differences in lineshapes may be the result

of the different type of spectra obtained in theory and experiment (frequency

versus magnetic field sweep) and then an improved fit to the experimental results

at intermediate Ns could be obtained if a magnetic field and density dependent

scattering time τ(B, Ns) is included in the calculation.

Now we comment on two aspects of the collective excitations of the electron

gas in the asymmetric parabolic well in the presence of an in-plane magnetic

field. The CM mode predicted by the generalized Kohn’s theorem for a per-

fect parabolic confinement is a rigid oscillatory motion of the electron slab. In

linear response, its density fluctuations δn(z) are proportional to dn(z)/dz, as

illustrated in Fig. 3.5 for a perfect parabolic well. In Fig. 3.8 we show the fluc-

tuation profiles δn(z) for the resonant modes at Ns = 7.5 × 1010 cm−2 together

with the derivative dn(z)/dz. We see that the resonant modes very accurately

describe rigid translations of the electron gas in the corresponding halves of the

well—right and left halves for the resonances with ωK1 and ωK2, respectively.

Finally, a notable difference between our results for the asymmetric PQW of Ref.

[11] and a previous study of an overfilled PQW in the Voigt geometry [56] is the

interplay between the main resonances or “Kohn modes” and the continuum of

inter-Landau-level transitions. For the overfilled PQW the CM mode is broad-

ened into a continuum, whereas for the asymmetric PQW the “Kohn modes” of

the two half parabolas are split off from the continuum of inter-Landau-levels at

high densities, and at lower densities one of them becomes a broad continuum

resonance while the other one remains an isolated resonance as in the case of
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perfect parabolic confinement. We mention that this interplay between the Kohn

resonances and the continuum of single-particle modes may help explain the dif-

ferences in linewidths between the two absorption peaks observed in experiment

[11], and should be kept in mind in future extensions of the work presented here.

Figure 3.9 shows the calculated IR optical spectra for the asymmetric PQW

without magnetic field for Ns in the range 0.1− 1.6× 1011 cm−2. The number of

occupied subbands goes from 1 to 4, and we keep 10 subbands in the calculation

of the optical spectra. Again, for low Ns there is only one resonance correspond-

ing to the lowest optical transition of the bare well, and at high Ns there are

two resonances close to the frequencies ω1 and ω2. A surprising feature is the

appearance of two resonances of similar weight at Ns = 0.6 × 1011 cm−2, when

the second subband is populated, which disappears at higher Ns.

3.4 Summary

In this chapter we first presented a set of numerical results that illustrate

the most salient features of quantum wells with a purely parabolic profile. Once

the properties of the perfect parabolic wells were established, we studied the

FIR optical absorption spectra of an asymmetric PQW with a magnetic field

in the Voigt geometry and without a magnetic field using the self-consistent

LDA approach. We compare our magnetic field results with recent experimental

spectra and find good quantitative agreement with experiment for low and high

Ns and quantitative differences in the spectra at intermediate Ns. The origin of

this disagreement remains an open question, but can probably be attributed to

the magnetic field sweep used in the experiment (rather than a frequency sweep),

which could be taken into account in the calculation through a magnetic field
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Figure 3.8: Density fluctuations δn(z) (dotted lines) associated with the two

absorption peaks at Ns = 7.5×1010 cm−2 shown in Fig. 3.7, and the derivative of

the ground-state electron density dn(z)/dz (solid lines). The partial agreements

between δn(z) and dn(z)/dz show that the density fluctuations of each mode

correspond to rigid oscillations of the electron slab on each half of the asymmetric

well, in analogy to the center-of-mass mode present in perfect parabolic wells.
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Figure 3.9: Calculated absorption spectra for the asymmetric parabolic quantum

well without magnetic field for various sheet densities Ns. At high Ns the reso-

nances agree with the curvatures of the well, ω1 = 3.41 meV and ω2 = 3.76 meV .

55



and density dependent scattering time, or through a laborious calculation on a

grid of magnetic field values. Also, a theory including finite temperatures and a

treatment of exchange-correlation that takes into account explicitly the presence

of the strong magnetic field may be necessary. From our calculations and the

experimental results of Ref. [11], we conclude that asymmetric parabolic quantum

wells are a simple but interesting departure from perfect parabolic quantum wells,

where many-body effects show up in the FIR optical absorption spectra in a non-

trivial way. Due to the simplicity of their spectra they constitute good systems to

test the validity of different theoretical approaches to the inhomogeneous electron

gas. At zero magnetic field, the general trends of the spectra are similar to those of

the Voigt geometry results. We propose experimental measurements of the optical

spectra at zero magnetic field, which would be useful to compare the accuracy of

the LDA approximation with and without magnetic field (a grating coupler should

be employed to induce intersubband transitions in the perpendicular incidence

geometry.)
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CHAPTER 4

Parabolic quantum wells with δ-planar perturbations

4.1 Introduction

An interesting application [16] of the idea of using a wide PQW to study

the properties of a 3D electron gas in a strong magnetic field is the recent mea-

surement of FIR spectra of samples with controlled δ-planar perturbations (thin

layers of AlxGa1−xAs with a different concentration of aluminum which produce

small spikes in the otherwise parabolic potential). Besides the expected Kohn

mode, additional peaks appeared in the spectra, which, interpreted as collec-

tive excitations with a certain transversal wavevector qz (to be suitably defined),

permitted the construction of a “three dimensional” magnetoplasmon dispersion

relation. The result showed a minimum around qz = 2/ℓc (ℓc ≡ magnetic length)

in agreement with the magneto-roton minimum predicted by the 3D calculation

in the single-mode approximation [16]. In this chapter we apply the insight pro-

vided by a microscopic quantum mechanical calculation that takes into account

the exact geometry of the experimental samples to test the validity of the as-

sumptions underlying the interpretation of the experimental data made in Ref.

[16] [15].

In that experimental study, the magneto-optical spectra of a quasi-2D electron

gas confined in wide PQWs with δ-planar perturbations were obtained [16]. The
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perturbations, deliberately grown in the PQW samples to “violate” the general-

ized Kohn theorem, allowed the coupling of long-wavelength radiation to the in-

ternal modes of oscillation of the electron gas. By assigning wavevectors qz = Nπ
W

,

or qz = 2π
a

(W = width of the electron slab, a = spikes separation in δ-arrays

samples), corresponding to dimensional resonances in the direction of confine-

ment, it was possible to construct a dispersion relation for the magnetoplasma

excitations in the electron gas. In this way, in Ref. [16] the experimental data

were interpreted as the observation of a 3D magneto-roton minimum in the mag-

netoplasmon dispersion of a quasi-2D electron gas. We emphasize the important

conceptual distinctions between our calculations and the theoretical interpreta-

tion used in the original work of Ref. [16]. We consider the actual experimental

system which is a PQW quasi-2D electron gas with only a few quantum subbands

occupied in the zero field (and only one magneto-subband populated under the

magnetic field values used in the experiment) whereas in Ref. [16] the system was

taken to be a purely 3D electron gas. We feel that the 3D approximation could

apply [43] only when many subbands are occupied, and more importantly, only

if our quasi-2D calculations support such a 3D picture. Our calculation is a fully

self-consistent quasi-2D time-dependent local-density-approximation (TDLDA)

which takes into account the detailed electronic structure of the system (includ-

ing the δ-function or the superlattice perturbations) whereas in Ref. [16] a 3D

single-mode-approximation was used. Finally, and this is a significant but subtle

difference, our calculation is in the quasi-2D long-wavelength limit (because the

wavevector associated with the incident far infrared radiation is effectively zero)

whereas in Ref. [16] the bulk collective mode is taken to be excited at a finite 3D

wavevector defined by the dimensional resonance qz = Nπ
W

, etc. Note that for the
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confined quasi-2D PQW system qz is not a well-defined concept for the collective

modes.

The purpose of our study, thus, is twofold. On one hand, we intend to compare

FIR absorption spectra calculated within the TDLDA with experimental results

for parabolic wells with controlled superimposed perturbations in the electrostatic

confining potential. This complements other theoretical studies of different types

of deviations from perfect parabolicity available in the literature [58, 56, 44]. On

the other hand, we examine the validity of constructing a 3D magnetoplasmon

dispersion relation from the information provided by the confined intersubband

excitations. We do so by calculating the microscopic density fluctuations associ-

ated with the various observable collective modes, and using them to introduce

a simple definition of the “fictitious” wavevectors qz. Ours is a generalization to

the magnetic field case of the method of Teich and Mahler [43], whose results

provided the heuristic basis for the analysis of the experimental data employed

in Ref. [16].

4.2 Magneto-optical absorption spectra

In Fig. 4.1(a) we show our model bare potential for the PQW sample with

a single δ-planar perturbation studied experimentally in Ref. [16]. The peak in

the middle of the well is taken to have a Gaussian shape, and its strength is

about six times larger than the value specified for the real sample. Also shown in

Fig. 4.1(a) are the self-consistent potentials for the minimum and maximum areal

densities used in the experiment, Ns = 1.64 × 1011cm−2, and 2.24 × 1011cm−2,

with an applied in-plane magnetic field of B = 5.4T . Given that the location

of the δ-peak is known in the experiment only within a 10% of the well width
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[60], we also consider a PQW with a slightly off-centered δ-planar perturbation.

The model PQW with a perturbation slightly displaced from the center of the

well is shown in Fig. 4.1(c). The displacement is 130Å, somewhat larger than

the magnetic length ℓc = ( h̄c
eB

)1/2 ≈ 110Å, but less than 10% of the well width.

The ground state self-consistent electronic densities corresponding to our two

model potentials are shown in Figs. 4.1(b) and (d). These self-consistent density

profiles and the self-consistent effective potentials are calculated following the

method described in Section 2.3.

The absorption spectra for the PQW with a centered spike, obtained em-

ploying the techniques described in Section 2.4, are shown in Fig. 4.2. At

both densities we observe a strong peak corresponding approximately to the

CM mode (Kohn mode) of frequency ωK characteristic of perfect PQWs, in

agreement with experiment. In our calculation the frequencies of these reso-

nances are shifted away from ωK , but the analogy with the CM mode is cor-

roborated by the shape of their density fluctuations, which are approximately

proportional to the derivative of the ground-state density dn
dz

(see Fig. 4.3(a))

as occurs in the center-of-mass motion. To decide whether the positions of the

secondary resonances agree with experiment we need to consider that while our

results are shown as functions of the resonant frequency, the transmission ex-

periments were performed sweeping the magnetic field at a constant radiation

frequency. Since the resonant frequencies increase monotonically with magnetic

field (approximately as ω ≈ (ω2
0 + ω2

c )
1/2), an absorption peak falling on the

low frequency side of the CM resonance in the calculated spectrum corresponds

to a transmission peak on the high magnetic field side of the CM resonance

in the experimental spectrum. We therefore verify that the relative positions
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Figure 4.1: Model bare potential of the parabolic well with (a) a centered and (c)

an off-centered δ-planar perturbation (bottom line), and calculated self-consistent

potentials with an in-plane magnetic field of B = 5.4T , for Ns = 1.64 (mid-

dle line), and 2.24 × 1011 cm−2 (top line); (b) and (d) show the calculated self-

consistent densities corresponding to the potentials of Figs. (a) and (c), respec-

tively, for Ns = 1.64 (dashed line) and 2.24 × 1011 cm−2 (dotted line).
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Figure 4.2: Calculated absorption spectra for the parabolic well with a centered

δ-planar perturbation, with a magnetic field B = 5.4T in the Voigt geometry

for two different areal densities Ns (given in units of 1011 cm−2). The “Kohn”

frequency ωK = (ω2
0 + ω2

c )
1/2 associated with the curvature of the well is shown

as a reference.
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of the secondary resonances in our calculation agree with those of the experi-

ment. There is also agreement in the fact that both in theory and experiment

the separation between the main and the secondary peaks decreases with in-

creasing Ns. However, the theoretical separations, △ωcalc = 1.32 and 1.0 meV

for Ns = 1.64 and 2.24 × 1011cm−2, respectively, are about a factor three larger

than the experimental values △ωexp = 0.48 and 0.32 meV. Another discrepancy

appears in the intensities of the secondary resonances: in the calculation, the sec-

ondary resonance at low Ns has less oscillator strength than the one at higher

Ns, contrary to the experimental finding. A better agreement on these points

will be found with the model potential with an off-centered spike.

Our calculations of the dynamical conductivity for the PQW with a cen-

tered δ-planar perturbation show a collective mode whose frequency lies between

the two resonances observed in the spectra of Fig. 4.2, but with zero oscillator

strength. This collective mode does not give rise to power absorption because

the density fluctuations associated with it are symmetric with respect to z = 0,

as shown in Fig. 4.3(b) (the density fluctuations shown in Fig. 4.3 are calculated

using Eq. 2.84), and therefore cannot couple to long-wavelength radiation. In the

model potential with an off-centered δ-planar perturbation the symmetry of the

Hamiltonian is broken, and therefore such collective modes become visible in the

absorption spectrum. The middle peaks in Fig. 4.4 correspond to the formerly

forbidden symmetric modes, as can be verified from the form of their density fluc-

tuation profiles (Fig. 4.3(b)). A comparison of the separations between the main

resonance and the secondary ones gives now a substantially better agreement than

with the centered perturbation. For Ns = 1.64× 1011cm−2, △ωcalc = 0.43 meV,

whereas △ωexp = 0.48 meV, and for Ns = 2.24×1011 cm−2, △ωcalc = 0.22 meV
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Figure 4.3: (a) Density fluctuations δn(z) (dotted line) associated with the shifted

“Kohn mode” for the potential with a centered δ-function perturbation, at Ns =

2.42×1011 cm−2, and the derivative of the equilibrium density dn
dz

(solid line). (b)

The symmetry disallowed mode of the centered δ-function potential (thick line)

and the corresponding resonant mode for the off-centered δ-function potential

(thin line).
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Figure 4.4: Calculated absorption spectra for the parabolic well with an off-

centered δ-planar perturbation, with a magnetic field B = 5.4T in the Voigt

geometry for two different areal densities Ns (given in units of 1011 cm−2). The

“Kohn” frequency ωK = (ω2
0 + ω2

c )
1/2 associated with the curvature of the well is

shown for reference.
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for the first peak and 0.86 meV for the second one, whereas △ωexp = 0.32 meV,

and 0.71 meV, respectively.

We have also performed calculations of optical absorption spectra for a parabolic

well with a periodic array of δ-planar perturbations with a distance between spikes

a = 300Å. Using spike strengths ten times larger than in the experiment, we ob-

tain a broad secondary peak whose energy is approximately equal to the cyclotron

energy for two different areal densities. Consequently, its separation to the Kohn

mode is independent of Ns, in qualitative agreement with the experimental spec-

tra. However, this resonance is weaker than the experimental one, and its energy

difference with the Kohn mode is somewhat larger than in the experiment. For

a parabolic well with a periodic array of δ-planar perturbations with a distance

between spikes a = 200Å, we also obtain a broad resonance around the cyclotron

frequency. It should be emphasized, however, that the precise form of the per-

turbations in the experimental samples are, in general, unknown and, under the

circumstances, our approximately quantitative agreement with experiment is all

we can hope for.

4.3 Construction of a magnetoplasmon dispersion relation

In this section we use the theoretical results presented in Section 4.2 to ex-

amine the basic assumption made in the interpretation of the experimental data

of Ref. [16], which made possible the construction of a “bulk” dispersion relation

out of the measured energies of the confined intersubband collective excitations.

This connection was established by assuming that the different resonances ob-

served experimentally correspond approximately to sinusoidal standing waves in

the electron density with wavevectors qz = Nπ
W

, or qz = 2π
a

, where W = Ns/n0
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is the approximate width of the electron slab (n0 is the design density of the

parabolic well), N is an even integer, and a is the periodicity of the array of

δ-spikes in the confining potential. This picture was motivated by the following

points: (i) the fact that for perfect parabolic wells the ground state density profile

is very uniform over most of the extent of the electron slab, and the assumption

that such a uniform equilibrium density would not be substantially altered by the

introduction of small perturbations; (ii) RPA calculations in square wells without

magnetic fields, which show a remarkable agreement between the bulk plasmon

dispersion relation and a dispersion relation constructed from intersubband ex-

citation energies in a similar fashion; (iii) a hydrodynamic model calculation for

perfect parabolic quantum wells in the presence of a magnetic field [61].

We employed the density fluctuations (see Eq. (2.84)) associated with the var-

ious secondary resonances described in the previous section, whose energies show

a semiquantitative agreement with experiment, to construct a dispersion relation

with two different definition of transverse wavevector qz. (An example of such

density fluctuations is shown in Fig. 4.3(b).) We introduce a simple definition of

the wavevector in the z-direction, qz = 2π/λ, where λ ≡ 2Wδn/(M + 1), Wδn is

the width of the density fluctuations and M is the number of nodes. The resulting

dispersion relation is shown as empty symbols in Fig. 4.5. We plot the same data

points with qz defined as in Ref. [16] as solid symbols. As a caveat we mention that

the four points with smaller qz have been shifted down in energy by an amount

equal to the displacement of the Kohn modes from their theoretical values. This

correction seems justified since we verified that the same potentials with smaller

spikes do not have their Kohn modes displaced from the expected values. The

solid line is the 3D RPA magnetoplasmon dispersion [62]. It can be seen that the
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two definitions of qz give a reasonable agreement with each other and with the

bulk RPA result. It should be mentioned that within our TDLDA calculation

we expect qualitative agreement with the RPA dispersion relation, and not with

the one obtained in the single-mode approximation [16], since the vertex correc-

tions included in TDLDA are q-independent, and therefore cannot change the

dispersion relation of the collective modes. For this reason, the roton-minimum

feature obtained in the single-mode approximation is not expected to appear in

our constructed dispersion relation. Rather, our main conclusion is that, in the

presence of a magnetic field, the intersubband collective modes can be interpreted

as bulk magnetoplasma modes by assigning to them suitable wavevectors, and

the dispersion relation obtained in this fashion agrees qualitatively with the bulk

result obtained if the same theoretical scheme (in our case, the RPA with local

vertex-corrections) is used in the bulk calculation. Our resuls can be taken as a

generalization of the work of Teich and Mahler [43] (which treats the connection

between intersubband plasmons and bulk plasmons without magnetic field) to

the magnetic field case, within the random-phase approximation. Therefore, our

analysis supports, at least qualitatively, the method used in Ref. [16] to relate the

FIR absorption data to the 3D single-mode approximation calculation. However,

we feel that this type of interpretation of the long wavelength quantum con-

fined quasi-2D collective intersubband charge density excitation modes, should

be taken with caution, due to the ambiguity in the definition of the transverse

wavevectors qz. At this stage we can say, at most, that such an interpretation

would be meaningful only if it is supported by a microscopic calculation that

takes into account the exact geometry of the problem, like the one presented

here.
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Figure 4.5: Magnetoplasmon dispersion relation constructed by assigning simply

defined transverse wavevectors qz to the intersubband charge density excitations

of various PQW with δ-planar perturbations. Open symbols correspond to the qz

extracted from the calculated density fluctuations, and solid symbols correspond

to the definitions of qz used in Ref. [16] (see text). The solid line gives the bulk

RPA magnetoplasmon dispersion at a 3D density equal to the design density of

the PQW.
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4.4 Summary

In this chapter we have studied theoretically within the TDLDA formalism the

properties of the collective modes of parabolic wells with δ–planar perturbations,

as manifested in long-wavelength magneto-optical absorption experiments. Our

TDLDA calculations of the spectra for parabolic PQW with a small perturbation

in the middle of the well are in good semi-quantitative agreement with experi-

ment. This agreement is considerably improved if the perturbation is placed

slightly off-centered, in which case formerly symmetry disallowed modes appear

in the spectra. This interpretation could be further investigated experimentally

if the position of the δ-planar perturbation is varied systematically around the

center of the well, thus controlling the strength of the symmetric mode. We con-

structed a magnetoplasmon dispersion relation by assigning transverse wavevec-

tors qz to the inter-Landau level resonances, which displays a reasonable qualita-

tive agreement with the bulk RPA result. This analysis provides some support for

the interpretation of experimental results as the observation of a magneto-roton

feature in the magneto-plasmon dispersion relation of a 3D electron gas predicted

by a single-mode approximation calculation [16].
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CHAPTER 5

Theory of resonant inelastic light-scattering in quasi-two dimensional

systems

In this chapter we introduce the theoretical description of inelastic-light-scatte-

ring experiments in semiconductor quantum wells. This theory will be applied

in Chapters 6 and 7 to coupled double-quantum-well systems. We will present

briefly the basic equations that describe light scattering by a free electron gas,

and the crucial band-structure effects in bulk systems. Once this background is

layed out, we will present the calculation of the appropriate response functions

which describe the many-body effects of electronic light scattering in quasi-two

dimensional systems. The latter is the part of the light scattering analysis that

contains the physics of electronic intersubband transitions we are interested in.

5.1 Light scattering by a free electron gas

First we consider the case of light scattering by a free electron gas. The

Hamiltonian of a free electron gas coupled to an electromagnetic field A is

HTOTAL =
∑

i

(

pi − e
c
Ai

)2

2m∗
+

1

2

∑

i6=j

e2

ǫ rij

≡ H − e

2m∗c

∑

i

pi · Ai −
e

2m∗c

∑

i

Ai · pi +
e2

2m∗c2

∑

i

A2
i , (5.1)
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where we have explicitly separated the electron-photon coupling terms. There

are linear coupling terms, of the form pi · Ai, and quadratic ones, of the form

A2
i . It can be shown that [63] for the free electron system the A2

i terms are the

dominant ones, because the p ·A terms cancel each other to order v/c, where v is

the electron velocity. Once the negligible terms in the perturbation Hamiltonian

are removed, one calculates the scattering cross section of light by applying time-

dependent perturbation theory, that is, the Fermi Golden Rule. In the case of

light scattering by a single free electron (non-relativistic Compton scattering),

keeping only the |A|2 term, the scattering cross section reduces to

dσ

dω
=
(

e

m∗c2

)2

(ǫ1 · ǫ2)
2, (5.2)

where ǫ1 and ǫ2 are the polarization vectors of the incident and scattered light

waves, of frequency ω1 and ω2, and momentum k1 and k2, respectively. This

expression is known as the Thompson formula, and can be derived in a number

of different ways. For the full many-body system, when the electron-electron

interactions are taken into account, the differential cross-section for scattering

into a solid angle dΩ and frequency interval dω becomes

d2σ

dΩ dω
=
(

e

m∗c2

)2 (ω2

ω1

)

(ǫ1 · ǫ2)
2 S(k, ω), (5.3)

where ω = ω1 − ω2 and k = k1 − k2 are the energy and momentum transferred

to the scatterers. The dynamic structure factor S(k, ω) carries the information

related to the interactions in the electron gas, and is defined as

S(k, ω) ≡ 1

2π

∫ ∞

−∞
dt eiωt 〈nk(t) n−k(0)〉, (5.4)

where the brackets indicate a thermal average over initial electron states,

nk ≡
∑

i

e−ik·ri =
∫ ∞

−∞
d3r e−ik·r n(r) =

∑

qα

c†q+kαcqα, (5.5)
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is the Fourier transform of the electron density operator, and

nk(t) ≡ exp(iHt) nk exp(−iHt) (5.6)

is the time-dependent version of nk. The dynamic structure factor is therefore the

space-time Fourier transform of the electron density-density correlation function:

S(k, ω) =
1

2π

∫ ∞

−∞
dt eiωt

∫ ∞

−∞
d3r d3r′e−ik·(r−r′) 〈n(r, t) n(r′, 0)〉. (5.7)

Eqs. (5.3) and (5.7) indicate that electron-density fluctuations are responsible

for the scattering of a light wave in a free electron gas; this is also the case in

electron-beam scattering experiments [63]. If the polarizability response function

Π̃(k, ω) is defined as the proportionality factor between an applied external po-

tential φext(k, ω) and the induced charge fluctuations ρind(k, ω), the fluctuation-

dissipation theorem establishes the following relation between S(k, ω) and Π̃(k, ω)

[63]:

e2S(k, ω) =
1

πe−βω − 1
Im

[

Π̃(k, ω)
]

, (5.8)

where β = 1/kBT . The polarizability Π̃(k, ω), which gives the response to an

external (as opposed to total = external + induced) potential, is called, in the

language of many body-quantum mechanics, a reducible response function.

5.2 Band-structure effects

The free electron gas treatment is valid when the energy of the light is smaller

than the energy gap of the semiconductor (EG < 2 eV ), because only in that case

virtual transitions between the valence and conduction bands can be ignored.

Also, the analysis based on the free electron gas misses two important features of

light scattering by electrons in a real solid: the resonant nature of the transitions
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and the possibility of spin-density fluctuations. In the following, we give high-

lights of the theory of light scattering including the crystal band structure, which

incorporates these effects. We begin by neglecting electron-electron interactions

and assume that the electrons in a crystal can be described by the single particle

Hamiltonian

H =
p2

2m∗
+ V (r) +

h̄

4m2c2
(∇V × p · σ) , (5.9)

where V (r) is the periodic crystal potential and the last term is the spin-orbit cou-

pling [64], which includes the Pauli spin operator σ = (σx, σy, σz). The solutions

of the Schrodinger equation

Hφp,µ = Eµ(p) φp,µ (5.10)

are the Bloch waves φp,µ, of crystal momentum p in band µ, with eigenenergies

Eµ(p). We couple the Bloch electrons to the light field A by replacing p → p− e
c
A

in Eq. (5.9). As in the free electron gas case, we have linear and quadratic

electron-photon interaction terms in the Hamiltonian. The p · A type of term

takes the form

− e

mc

[

p +
h

4mc2
σ × ∇V

]

· A ≡ −e

c
v · A (5.11)

where we introduced the velocity operator v, and the quadratic terms are e2A2

2mc2
,

as before. The cancellation of the v · A terms that occurred in the free electron

gas persists in the Bloch-electron problem in the intraband transitions, but not

in the interband matrix elements. The essential features we are interested in

can be found in a simplified two-band model, where the conduction band and

a lower-lying valence band, separated by the energy gap EG, are kept. Within

this two-band model, the total matrix element for light scattering, including the
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interband terms and the A2 terms is given by [63]

M ≃
(

e

c

)2 2πh̄c2

√
ω1 ω2

{

ǫ1 · ǫ2

m∗

[(

E2
G

E2
G − ω2

1

)

(

1

m∗
− 1

m

)

+
1

m

]

+
(

1 − ms

m

)

(

ω1EG

E2
G − ω2

1

)

σ · (ǫ1 × ǫ2)

ms

}

(5.12)

where an effective mass m∗ depending on the full band structure, and the spin

mass ms (related to the g factor by |g| = 2m
ms

) have been introduced. Equation

(5.12) has the two interesting features we are looking for: (i) the matrix element

is enhanced by the resonant factor E2
G/(E2

G−ω2
1) for incident light with frequency

ω1 ∼ EG. This enhancement is the key to the observability of light scattering from

semiconductor heterostructures, where the number of scatterers is much smaller

than in bulk semiconductors; (ii) the spin-dependent term in M that suggests

the possibility of spin-flip light scattering. The two terms of Eq. (5.12), being

proportional to ǫ1 · ǫ2 and ǫ1 × ǫ2, give rise to the two types of spectra that are

usually measured in inelastic light-scattering experiments. Polarized spectra are

obtained with the incident and scattered light polarizations parallel to each other,

and are interpreted as charge-density excitations. In depolarized spectra, the two

polarizations are perpendicular to each other, and were interpreted for the first

time as spin-density excitations by Hamilton and McWhorter [65, 66, 67, 68, 69].

So far, our discussion of light scattering in the presence of a crystal lattice

was restricted to noninteracting electrons. To understand the origin and to cal-

culate the spectrum of charge-density and spin-density excitations we need to

include electron-electron interactions. In our discussion of light scattering by a

free electron gas including interactions we saw that the scattering mechanism was

related to the coupling of light with the electron density operator nq =
∑

k c†k+qck.

When the semiconductor band structure is considered, one needs to generalize

the coupling mechanisms to describe light scattering due to |α〉 → |β〉 electronic
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transitions, where |α〉 and |β〉 are Bloch states. Momentum and spin are included

in α and β.

It is possible to combine the treatment of the p · A and |A|2 type of terms of

the Hamiltonian (see Eq. (5.1)) by defining a generalized density operator as [67]

N =
∑

αβ

γαβ c†β cα, (5.13)

γαβ = (ǫ1 · ǫ2) ξαβ +

+
1

m

∑

β′

〈α|ǫ2 · pe−k2·r|β ′〉〈β ′|ǫ1 · pe−k1·r|β〉
h̄ω1 + Eβ − Eβ′

+

+
1

m

∑

β′

〈α|ǫ1 · pe−k1·r|β ′〉〈β ′|ǫ2 · pe−k2·r|β〉
Eβ − Eβ′ − h̄ω2

, (5.14)

where |β ′〉 are intermediate states, Eβ and Eβ′ are one electron energies and

ξαβ = 〈α|exp(−iq · r)|β〉. The first term of γαβ is the only one we kept in the

analysis of light scattering by a free electron gas, and the remaining terms describe

the virtual transitions, both intra- and inter-band. As an aid for the visualization

of the resonant light scattering process we illustrate in Fig. 5.1 virtual interband

transitions that enter in the calculation of γαβ; note that, however, the complete

process illustrated amounts to an intra-(conduction)band transition. It is very

difficult to evaluate γαβ exactly because it depends on the details of the electron

energy level structure [70]. Hamilton and McWhorter [65] calculated it using the

electron wave functions of the Kane model, obtaining [67]

γαβ = ǫ1 · ǫ2 A ξαβ + i ǫ1 × ǫ2 · 〈sα|σ|sβ〉B ξαβ (5.15)

where sα and sβ are spin indices, and A and B are factors that contain the

momentum matrix elements and resonant denominators of the form (E2
G − ω2

1)

(A and B are scalars if the valence bands are isotropic. For brevity, we will not

write them down here [67]).
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Figure 5.1: Schematic diagram of interband and intraband transitions which

play a role in two-band Raman processes. The numbers indicate the order of the

electronic transitions. (From Ref. [71].)

In terms of N one can define an effective perturbation Hamiltonian

Heff =
e2

2m
A(ω1)A(ω2) N, (5.16)

where A(ω) = (h̄/ε(ω1)V ω1), V is the volume, and ε(ω) is the dielectric constant

at ω. Employing Heff the differential light-scattering cross section becomes

∂2σ

∂Ω∂ω
=

(

h̄

mc2

)

(

ω2

ω1

)

V 2 G(ω), (5.17)

G(ω) ≡ 1

2π

∫ ∞

−∞
dt eiωt 〈N(t) N †(0)〉. (5.18)

These two expressions are a generalization of Eqs. (5.3) and (5.4). The first term

of γαβ (Eq. (5.15)) gives rise to a component of the correlation function G, and

hence, of the cross section, which is associated with charge-density fluctuations.

This contribution is analogous to the cross section given in Eq. (5.3) for the

free electron gas case. Similarly, it is possible to apply to the present case the
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fluctuation-dissipation theorem to show that the cross section is proportional to

the imaginary part of the polarizability response function of the electron gas. The

second term of γαβ (Eq. (5.15)) is the one responsible for changes in the electron

spin and gives rise to spin-density excitations. For light incident with wavevec-

tor k1 ‖ ẑ (a common situation in experiments of scattering by 2-dimensional

systems), we have ǫ1 × ǫ2 ‖ ẑ, and therefore only σz appears in Eq. (5.15). The

effective Hamiltonian originating from the spin-dependent term of γαβ is in this

case [67]

H
spin
eff

= i
e2V

2m
(ǫ1 × ǫ2) · ẑ

(

N↑(q) − N↓(q)

2

)

A(ω1)A(ω2). (5.19)

The spin-density fluctuations operator 1
2
(N↑(q)−N↓(q)), where N↑(q) and N↓(q)

are the electron-density fluctuations operators for each value of spin, indicate that

H
spin
eff gives rise to light scattering by spin-density fluctuations. This can also be

seen by substituting the second term of Eq. (5.15) for γαβ in the definition of N

Eq. (5.13). We obtain

N = i B (ǫ1 × ǫ2) ·
∑

αβ

〈α|e−iq·r σ|β〉c†β cα. (5.20)

With this expression for N , the correlation function G is seen to be a Pauli

paramagnetic susceptibility, which, in many-body diagrammatic language can be

expressed as the irreducible polarization diagram [26].

5.3 Response functions

In the previous section we saw that the light-scattering intensity in the po-

larized and depolarized configurations are proportional to the reducible and irre-

ducible polarizability functions of the electron gas, respectively. In this disser-

tation, we calculate the response functions of the electron gas in the so-called
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time-dependent local-density approximation, which corresponds to calculating

the irreducible polarizability function including a static and q-independent ver-

tex correction in the ladder diagram approximation [27]. (Many-body diagrams

describing our calculational scheme are given in Appendix B.) Within this ap-

proximation, the vertex integral equation for the irreducible polarizability Π(q, ω)

can be solved exactly and gives

Π(q, ω) =
Π0(q, ω)

1 + Uxc Π0(q, ω)
, (5.21)

where Π0(q, ω) is the leading-order polarizability function and Uxc is the static

and q-independent vertex function (below we give expressions for these functions

in the subband representation). From Dyson’s equation for the effective Coulomb

interaction [25] one obtains the reducible polarizability function

Π̃(q, ω) =
Π(q, ω)

1 − Uc(q) Π(q, ω)
, (5.22)

where Uc(q) is the Fourier transform of the bare Coulomb interaction. Combining

Eqs. (5.21) and (5.22) we obtain

Π̃(q, ω) =
Π0(q, ω)

1 − (Uc(q) − Uxc) Π0(q, ω)
. (5.23)

In a confined electron gas system, where the confinement discretizes the sin-

gle particle energy levels, the collective excitations have to be calculated in the

generalized dielectric function formalism [72]. In this context, the functions Uxc

and Uc(q) are replaced by matrices where the indices label the different subbands.

Within TDLDA we have

UXC
ij,mn = −

∫

dz
∫

dz′φi(z) φj(z)
∂vxc

∂n
(z)δ(z − z′) φm(z′) φn(z′) (5.24)

and

UH
ij,mn(q) =

2πe2

ǫq

∫

dzdz′φi(z) φj(z) e−q|z−z′| φm(z′) φn(z
′). (5.25)
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UH
ij,mn is the matrix element of the Coulomb interaction in the subband represen-

tation, corresponding to Uc(q) in Eq. (5.22), and ǫ is the background dielectric

constant. The reducible polarizability function Π̃(q, qz, ω), whose imaginary part

is proportional to the spectrum of the charge-density excitations and the Raman

intensity in the polarized configuration is given by [73]:

Π̃(q, qz, ω) =
∫

dz
∫

dz′e−iqz(z−z′) Π̃(z, z′;q, ω), (5.26)

where

Π̃(z, z′;q, ω) =
∑

i,j,k,l

φi(z) φj(z) Π̃ij,kl(q, ω) φk(z
′) φl(z

′), (5.27)

Π̃ij,kl(q, ω) = Π0
ij(q, ω) δik δjl +

∑

m,n

Π0
ij(q, ω) Uij,mn(q) Π̃mn,kl(q, ω), (5.28)

Uij,mn(q) = UH
ij,mn(q) − UXC

ij,mn, (5.29)

and

Π0
ij(q, ω) = 2

∑

k

f(Ej(k + q)) − f(Ei(k))

Ej(k + q)) − Ei(k)) − h̄(ω + iγ)
. (5.30)

In these equations, subscripts are the subband indices, vectors q and k are two-

dimensional in-plane wavevectors, and φj and εj are the LDA-calculated subband

wavefunctions and energies. Π0
ij is the leading-order polarizability function for

the transition i → j, and Ej(k) = εj + h̄2k2

2m∗
, and f(E) is the Fermi factor. We

also introduced an inverse phenomenological scattering time γ. We note that the

random-phase approximation (RPA) is obtained in the subband representation

by removing the vertex correction UXC
ij,mn in Eq. (5.29). As mentioned earlier,

the imaginary part of the irreducible polarizability function Π is proportional to

the spin-density excitation spectrum and the Raman-scattering intensity in the

depolarized configuration. In the subband representation, the irreducible polar-

izability function Π is calculated exactly like Π̃ above, but setting UH
ij,mn = 0
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in Eq. (5.29), as can be seen by comparison with Eqs. (5.21) and (5.22). Set-

ting UH
ij,mn = 0 amounts to physically eliminating the dynamic screening which

originates in electron-density fluctuations, which are absent in the spin-density

excitations.

The CDE and SDE energies are given by the poles of Π̃ and Π, respectively,

which occur where the determinant |Π0
ijUij,mn − δij,mn| vanishes. Keeping only

subbands 1 and 2, the condition for intersubband transitions is

(Π0
12 + Π0

21)U12,12 = 1 (5.31)

For q → 0, this condition gives the resonance energies in the familiar form of

Ando [40] (derived in Section 2.1 and given in Eq. (2.47))

h̄2ω̃2
21 = ε2

21 + 2ε21U12,12(n1 − n2), (5.32)

where U12,12 contains the depolarization shift term and the excitonic vertex-

correction term in the case of the CDE, and only the excitonic vertex-correction

term in the case of the SDEs. To conclude, we mention that the formalism pre-

sented in this section employs the same approximations used in the theory of

optical absorption introduced in Section 2.2. The only important difference is

that in this section we calculate the response functions of the confined electron

gas for nonzero in-plane wavevector of the excitations, whereas the optical ab-

sorption theory described in Section 2.2 is valid only in the long-wavelength limit

q = 0.
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CHAPTER 6

Absence of spin-density excitations in coupled double-quantum-wells

at high electron densities

6.1 Introduction

In an interesting recent experimental Raman scattering study, Decca et al. re-

ported [32] the observation of the suppression of the collective intersubband spin

density excitation (SDE) in a coupled double quantum well (DQW) structure

in the high electron density (Ns) limit when the two low-lying DQW subbands,

the so-called symmetric (S) and antisymmetric (AS) levels with a single-particle

energy gap ∆SAS < EF (where EF is the two dimensional Fermi energy) sep-

arating them, are both densely occupied. In this section we provide a detailed

quantitative calculation of the elementary excitation spectra of the coupled DQW

system discussing in particular the recent inelastic light scattering experimental

observations [33]. We find excellent agreement between our theoretical results

and experimental data for both the charge density excitation (CDE) and the

SDE spectra except for the samples with highest Ns where the subband filling

parameter η ≡ ∆SAS/EF
<∼ 0.25. Our main interest in this section, following Ref.

[32], is to investigate the strong-coupling two-component situation η < 1 when

the S and AS subbands are both occupied by electrons. Around a small critical
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value of η (≈ 0.1), the experimental SDE abruptly merges with the single parti-

cle excitation (SPE) spectra, whereas our calculated SDE merges with the SPE

monotonically as a continuous function of η as η approaches zero without show-

ing any sudden collapse around η ≈ 0.1. Aside from this important qualitative

difference associated with the abrupt disappearance of the experimental vertex

correction (the energy difference between the SPE and the SDE arises from the

excitonic vertex correction) around η ≈ 0.1, our theoretical results agree very

well (within 0.5 meV) with the experimental measurements.

6.2 Results

A typical DQW structure used in our calculation is shown in Fig. 6.1, where

the electron gas is taken to be confined in the translationally invariant x-y plane

and the growth direction is the z-axis. We can see that the energy levels are

grouped in doublets, which become degenerate for infinite well separation. By

definition, ∆SAS = E2 − E1 is the energy difference between the lowest two

subbands of the DQW, the symmetric and antisymmetric levels. In this chapter

and the next, we concern ourselves with intersubband transitions between these

two subbands. Following the experimental work of Decca et al. [32] we have

used in our calculations several different DQW structures with varying NS and

well parameters so as to have many different values of ∆SAS and the occupancy

parameter η (≡ ∆SAS/EF ).

Our calculation, which was described in detail in Chapter 5, involves three

steps. First, we carry out a self-consistent local-density-approximation (LDA)

calculation (Section 2.1) of the DQW subband energy levels Ei and wavefunc-

tions φi(z) (a typical example being shown in Fig. 6.1). Then we calculate the

83



Figure 6.1: A typical double quantum well structure, given by the bare confin-

ing potential VCONF , used in the experimental study of Ref. [32], and its self-

consistent LDA subband energy levels Ei, eigenfunctions φi, electron density

n(z), Fermi energy EF , and effective, Hartree, and exchange-correlation poten-

tials VEFF , VH , and VXC . The areal density is Ns = 2.68 × 1011 cm−2.

84



irreducible (Π) and the reducible (Π̃) polarizability functions of the electron layer

confined in the DQW structure using the self-consistent LDA subband energies

and wavefunctions in a linear response theory (Chapter 5). The irreducible and

the reducible response functions are formally connected by the matrix relation

Π̃ = Πε−1 where ε = 1 − V Π is the tensor representing the subband dielectric

function with V as the direct Coulomb interaction. The irreducible response

function Π is connected to the bare LDA polarizability function Π0 (which is

just the two-dimensional Lindhard function using LDA energies and wavefunc-

tions) through the vertex correction Π = Π0(1 + UxcΠ)−1 where Uxc represents

the LDA exchange-correlation induced vertex correction. Thus Π0, Π, and Π̃ are

respectively the “bare” polarizability bubble (including, however, renormalized

LDA quasiparticle energies), the vertex corrected polarizability, and the screened

polarizability. Once Π0, Π, and Π̃ are calculated their respective poles (or, peaks)

immediately give us the SPE, the SDE, and the CDE energies. The third step

of our calculation involves directly obtaining the Raman scattering spectra for

the SDE and the CDE which are given respectively by the spectral strengths

Im Π and Im Π̃. For the purpose of comparison we also calculate the SPE

spectral strength given by Im Π0, which according to the simple linear response

theory, should not be accessible to Raman scattering experiments [32]. Some

typical calculated Raman spectra are shown in Fig. 6.2, and are discussed below.

The self-consistent linear response integral equations connecting the dynamical

polarizability functions Π0(z, z
′), Π(z, z′), Π̃(z, z′), are solved in the subband rep-

resentation. In the rest of this section we discuss our numerical results comparing

critically with the experimental data [32]. All our calculations assume the effec-

tive mass approximation for the GaAs − AlxGa1−xAs − GaAs DQW structures
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and we use GaAs conduction band parameters [21] in our LDA calculations. The

DQW well parameters and electron gas densities are taken from Ref. [32].

In Fig. 6.2 we show calculated results for the spectral weights of the SDE

and SPE modes for several values of the wavevector transfer q for a sample with

NS = 6.35×1011cm−2 and η = 0.12. When confronted with Fig. 2 of Ref. [32], this

figure shows that the collapsed SDE and SPE experimental peaks show a wave-

vector dependent lineshape that agrees better with the theoretical lineshape of

the SPE than with that of the SDE. Aside from the results shown in Fig. 6.2,

in this section we will only discuss results corresponding to the experimental

backscattering geometry with very small wavevector transfer in the plane of the

electron layer, q ≃ 0.1 × 104cm−1, as used in the experimental set-up [32]. (All

the elementary excitation energies presented in this section correspond essentially

to the long wavelength, i.e. q ≈ 0, limit for the mode wavevector in the x-y plane

because this is the situation reported in the work of Ref. [32]). The results of

this section correspond to intersubband elementary excitations (associated with

the quantized z-motion of the electron gas) arising from transitions between the

symmetric and the antisymmetric energy levels (i.e. the lowest two energy levels

shown in Fig. 6.2) — the elementary excitations associated with transitions to

the higher subbands are at considerably higher energies and were not studied in

Ref. [32]. Thus, the SPE peak corresponding to the pole in Π0 always occurs

at the energy E = ∆SAS corresponding to the (LDA-renormalized) symmetric-

antisymmetric gap between the lowest two levels. Note that in our calculations

of the spectral weight functions (Im Π0, Im Π, Im Π̃ corresponding respectively

to SPE, SDE, and CDE) we use a small collisional broadening Γ ≈ 0.1meV taken

from the experimental mobility values.
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Figure 6.2: Calculated Raman spectra for the spin-density excitation (SDE), and

the single particle excitation (SPE), given by Im Π and Im Π0, respectively, for

several values of the in-plane wavevector transfer q. The DQW sample has well

width dw = 139Å, barrier width db = 28Å, density NS = 6.35 × 1011cm−2 and

subband occupancy parameter η = 0.12.
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It is traditional to write the intersubband elementary excitation energies as

[40, 29, 27, 18, 30, 74]

E2
CDE = E2

SDE + 2ESPE(nS − nAS)α∗ (6.1)

E2
SDE = E2

SPE − 2ESPE(nS − nAS)β∗ (6.2)

where nS(AS) are the occupancies of the symmetric (antisymmetric) subbands

(i.e. NS = nS + nAS), ESPE ≡ ∆SAS, and α∗, β∗ are parameters (which depend

on Ei, φi(z), V , and Uxc) which determine the depolarization shift and the vertex

correction, respectively. Note that the definitions of the depolarization shift (α∗)

and the vertex correction (β∗) shifts as given in Eqs. (1) and (2) above explicitly

incorporate the occupancy factor dependence (i.e. the nS − nAS factor) arising

from the Pauli principle, thus eliminating the trivial dependence of both the

depolarization shift and the vertex correction on the occupancy difference as

both (S and AS) subbands are occupied. Following references [40, 29, 27, 18,

30, 74] one could define α = (nS − nAS)α∗ and β = (nS − nAS)β∗, which are

more appropriate in the extreme quantum limit (η > 1) when only the lowest

subband is occupied, making α = NSα∗ and β = NSβ∗. When both subbands are

occupied (η < 1) it is appropriate to eliminate the trivial Pauli principle-induced

occupancies factor from the definitions of α and β as was done in Ref. [32]. Any

dependence of the depolarization shift and the vertex correction parameters α∗

and β∗ on the subband occupancy factor η (where η < 1 means both subbands are

occupied) necessarily arises from nontrivial screening and exchange-correlation

corrections and not as a trivial manifestation of the Pauli principle. Following

the experimental procedure of Ref. [32], we calculate the α∗ and β∗ parameters

by obtaining ESPE (poles of Im Π0, i.e. the LDA energy levels), ESDE (poles of
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Im Π including vertex corrections), and ECDE (poles of Im Π̃) from our time-

dependent LDA-linear response calculations. (The occupancies nS and nAS are

known from our LDA calculations.)

In Figs. 6.3 and 6.4 we show a direct comparison between our theoretical

calculations and experimental measurements for β∗ and α∗ as functions of the

filling parameter η (Fig. 6.3) and the total electron density NS (Fig. 6.4) for all

seven samples employed by Decca et al. [32]. In general, β∗ goes down with

decrease (increase) in η (NS) both in experiment and theory, showing very good

agreement (better than 0.3 meV in absolute energies of ∆SAS − ESDE) except

for one qualitative difference, namely, in theory β∗ decreases monotonically with

decreasing (increasing) η (NS) whereas in experiment β∗ seems to go abruptly

to zero around η ≈ 0.1 (i.e. the vertex correction vanishes around η ≈ 0.1

making the SDE and SPE indistinguishable). Note that even around η ≈ 0.1,

the actual energetic difference between our theoretically predicted SDE peak and

the experimental “SDE” peak (≡ “SPE” with β∗ = 0) is typically small (∼ 0.2–

0.3 meV). For the depolarization shift (α∗) experiment and theory, in general,

agree very well (except again for η
<∼ 0.25 there is some quantitative difference

with the experimental CDE energies being typically 0.5 meV below the theoretical

calculations). The important point to note about the depolarization shift is that

α∗ is reasonably insensitive to variation in η (or, NS), changing little over an

almost order of magnitude change in electron density, both in experiment and

theory.

For obvious reasons (namely, that it is not possible to vary NS or η in a

single DQW sample—each sample comes with its fixed NS and η values) the

experimental results (and the corresponding theoretical results) are for seven
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Figure 6.3: Calculated and experimentally measured depolarization shift and

excitonic vertex correction parameters α∗ and β∗ as functions of the filling pa-

rameter η ≡ ∆SAS/EF , for the different DQW samples studied in the experiments

of Ref. [32].
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Figure 6.4: Calculated and experimentally measured depolarization shift and

excitonic vertex correction parameters α∗ and β∗ as functions of the total electron

density NS, for the different DQW samples studied in the experiments of Ref.

[32].
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different DQW samples corresponding to the seven different data points shown

in Figs. 6.3 and 6.4. Theoretically, of course, we can vary η continuously in a

fixed sample by changing NS continuously in our calculations. Results of such

a calculation for a fixed sample are shown in Fig. 6.5 as continuous functions

of NS (main figures) and η (insets). (For completeness, in Fig. 6.5 we show

β∗ calculated using both local-charge-density and local-spin-density exchange-

correlation potentials [74]. The difference between the two curves is less than the

experimental errors for the range of η under consideration.) These results clearly

demonstrate (without the necessary numerical scatter of Figs. 6.3 and 6.4 which

arise from using different samples) that: (i) The vertex correction β∗ decreases

monotonically with decreasing (increasing) η (NS), becoming very small as η

approaches zero; (ii) The calculated β∗ does not agree well with experiment for

η
<∼ 0.25, and most notably, it does not go abruptly to zero for a finite value of

η, as it does in the experiment for η ≈ 0.1; (iii) The depolarization shift α∗ is

essentially insensitive to η (or NS) remaining a constant over a broad range of

density and occupancy values.

6.3 Summary

In this chapter we calculated the lowest intersubband SDE and CDE energies

in a strongly-coupled two-component DQW structure where both the symmetric

and the antisymmetric subbands are occupied, finding, in good agreement with

a recent experiment [32], that the vertex correction β∗ decreases monotonically

with decreasing subband occupancy parameter η ≡ ∆SAS/EF or increasing the

electron density NS whereas the depolarization shift α∗ is insensitive to changing η

and NS. In contrast to the experimental finding that β∗ ≈ 0 abruptly around η ≈
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Figure 6.5: Calculated depolarization shift and excitonic vertex correction pa-

rameters α∗ and β∗ as functions of areal density NS, for a DQW structure of well

width 139Å and barrier width 40Å. Insets: α∗ and β∗ for the same DQW as func-

tions of the filling parameter η ≡ ∆SAS/EF . The solid and dashed lines give β∗

calculated using local-charge-density and local-spin-density exchange-correlation

potentials, respectively.
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0.1, β∗ decreases monotonically in our theory with decreasing (increasing) η (NS)

becoming very small for small η. Thus, while our time-dependent LDA theory

correctly describes the broad quantitative features of experiment quite well, the

abrupt collapse of the vertex correction must be arising from higher order vertex

diagrams (as discussed in Ref. [32]) not included in the ladder vertex corrections

[27] of our time-dependent-LDA theory. Our results for β∗ can be meaningfully

understood as the screening out of the excitonic correction in the high density

limit which makes the vertex correction vanish. While the excitonic correction

arising from exchange interaction is screened, the direct Coulomb interaction

leading to the depolarization shift is obviously unscreened, and, therefore, α∗

remains unchanged as NS increases.
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CHAPTER 7

Intersubband spin-density excitonic instability

7.1 Introduction

Two dimensional (2D) electron gas systems confined in semiconductor space

charge layers (e.g. Si inversion layers, GaAs heterojunctions, and quantum wells)

have provided for the last twenty years an ideal laboratory for studying various

electron-electron interaction induced many body exchange-correlation effects un-

der almost textbook conditions (albeit in two dimensions) of an effective mass

approximation jellium background. This is particularly true in the ultrapure

modulation-doped GaAs−AlxGa1−xAs structures where effects of impurity scat-

tering are substantially reduced by spatially separating the 2D electrons from

the dopant ions which produce them. In the presence of a strong external mag-

netic field which quenches the electronic kinetic energy, a 2D electron gas shows

[75, 76, 77, 78, 79, 80, 81, 82] a variety of strongly correlated quantum phases

(eg. the fractional quantum Hall liquid). When additional degrees of freedom

associated with spin, layer or subband index are introduced, the 2D electron gas

in the presence of a strong external magnetic field is known to have an extremely

rich quantum phase diagram [79]. This phase diagram consists of many different

compressible and incompressible phases, and quantum phase transitions between

some of them have been experimentally observed [80, 81]. In contrast to this
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strong-field situation, where the 2D electron system is generally considered to be

a strongly correlated many-body quantum liquid, the zero magnetic field situa-

tion has attracted relatively little attention from a many-body strong correlation

physics viewpoint. In this chapter we show that at low but experimentally acces-

sible electron density (∼ 0.7 × 1011 cm−2) there is a novel exchange-correlation

driven zero-field electronic phase transition in a double quantum well (DQW) sys-

tem where the intersubband spin density excitation (SDE) gap vanishes because

the excitonic vertex correction becomes larger than the single-particle symmetric-

antisymmetric energy gap (∆SAS) in the system, giving rise to the collapse of the

normal “metallic” Fermi liquid phase of the system as it becomes unstable to the

spontaneous formation of zero-energy SDEs, or, equivalently, many-body triplet

exciton pairs [34]. We emphasize that this electronic phase transition to a spin

density-triplet excitonic phase occurs spontaneously at zero magnetic fields as

the electron density (NS) of the DQW system is lowered to a critical density

(NC) with the SDE energy vanishing at NS = NC and the excitonic phase being

stable for NS < NC . Our predicted transition should be observable in depolarized

inelastic light scattering experiments where the vertex correction-driven suppres-

sion of ∆SAS should show up with the SDE energy becoming vanishingly small

at NS ≤ NC .

There has been substantial recent experimental and theoretical interest in

DQW structures because the extra (two coupled layers instead of a single 2D

layer) degree of freedom associated with intersubband transitions between the

symmetric and the antisymmetric levels introduces a new energy scale into the

problem which competes with the intrasubband (i.e. 2D) kinetic correlation ener-

gies [79]. In particular, competition among the symmetric-antisymmetric energy
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gap, the intralayer, and the interlayer Coulomb correlation effects leads to inter-

esting quantum phase transitions in the strong magnetic field limit including the

disappearance of odd-integer quantized Hall steps and the appearance of even-

integer denominator fractional quantized Hall steps. While correlation effects in

DQW structures have been extensively studied [79, 80, 81, 82] in the presence

of strong external magnetic fields (motivated by the physics of quantum Hall

effect), there have been only a few corresponding studies [83, 73, 84] of DQW

systems in the zero field limit. These few studies do indicate, however, that the

introduction of the second layer into the problem substantially enhances [84] the

importance of exchange-correlation many-body effects and, in particular, the el-

ementary excitation spectra of the DQW system could be substantially affected

by many-body effects. In a very recent experimental work, Decca et. al. [32]

showed that the excitonic shift or the vertex correction to the intersubband SDE

energy (the excitonic shift is roughly the difference between the intersubband

SDE and the intersubband uncorrelated electron-hole single-particle excitation,

SPE, energies) vanishes in a DQW system in the high density limit, making the

SDE and SPE indistinguishable when both the symmetric and the antisymmetric

levels are densely populated (See Chapter 6 and Ref. [33]). In this chapter, we

show that in a lower density regime, on the other hand, the vertex correction

induced excitonic shift is greatly enhanced in a DQW structure and, in fact, may

exceed the symmetric-antisymmetric single-particle gap ∆SAS at a critical den-

sity NS ≈ 0.7 × 1011 cm−2, leading to an instability of the usual Fermi liquid

ground state of the system for electron densities NS ≤ NC . We emphasize that

the work reported here is in the experimentally accessible intermediate density

regime (NS ∼ 0.7×1011 cm−2) in contrast to earlier works in the very low density
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regime (< 1010 cm−2) [84] and the high density regime (
>∼ 1011 cm−2) [32, 33].

7.2 Results

A typical GaAs − AlxGa1−xAs DQW structure considered in this chapter is

shown in Fig. 6.1— it is similar to the existing experimental samples [32]. We

are only concerned with the lowest intersubband gap, ∆SAS =| E2 − E1 |, where

E1,2 are the two lowest subband bottom energies as shown in Fig. 6.1, for motion

along the z-direction (the x-y plane being the plane of 2D confinement). The

lowest intersubband gap is the symmetric (S)-antisymmetric (AS) gap ∆SAS. As

we discussed in Chapter 5, there are three different types [66, 27] of possible in-

tersubband excitations in the system: the single particle excitations (SPE) which

are just the uncorrelated intersubband electron-hole pair excitations in the S and

AS levels, the SDE which are collective spin density excitations, and the collective

charge density excitations (CDE). The SDEs correspond to the poles (or peaks)

of the full irreducible polarizability function of the system whereas the CDEs are

given by the full reducible polarizability function. Since, by definition, the SPEs

are given by the poles of the zeroth order uncorrelated polarizability function

without any vertex corrections, the SDEs are shifted below the SPEs by the ex-

citonic vertex corrections. The CDE, which is just the intersubband collective

charge density plasma oscillation of the system, is dynamically screened by the

direct Coulomb interaction (through the usual series of bubble diagrams which

connect the reducible response function to the irreducible one) and is, therefore,

shifted above the SDE by the depolarization shift. The SDE is unaffected by

the depolarization shift because the Coulomb interaction, being spin conserving,

does not screen the spin-density fluctuations. We refer to the SDE collective
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mode as a triplet exciton (correspondingly, the CDE is a singlet exciton) with

the understanding that we are talking about an intersubband exciton rather than

the usual interband exciton — the word “exciton” signifies that the vertex cor-

rection or the final state interaction between the intersubband electron-hole pair

is included in our calculation. We calculate the renormalized energies of the

SDE, SPE, and the CDE modes for the S → AS transitions in DQW struc-

tures using the fully self-consistent time-dependent-local density-approximation

(TDLDA) (Chapter 5). The results given in this paper are for zero temperature

calculations, which suffice to establish the existence of the instability. Similar cal-

culations [27, 74, 30] have been extremely successful in describing quantitatively

the collective intersubband excitations in single quantum wells, heterojunctions,

and inversion layers. Our SDE calculation uses the spin-polarized LDA potential

whereas the SPE and the CDE calculations employs the usual spin unpolarized

LDA functional [46, 74].

In Fig. 7.1 we show our calculated long wavelength SAS intersubband collec-

tive mode energies as a function of NS. There are three striking features in this

figure: (1) ESDE goes to zero at a critical density NC ≈ 0.7 × 1011 cm−2; (2)

there is a re-entrant behavior with ESDE becoming finite again at a lower critical

density of about 0.1 × 1011 cm−2; (3) ECDE becomes less than ∆SAS ≡ ESPE

around NS ≈ 0.2× 1011 cm−2. The third prediction, originally made on Ref. [27]

and recently verified experimentally [31] in a single quantum well structure, will

not be further discussed here.

We concentrate in this chapter on the vanishing energy of the SDE mode

around NC ≈ 0.7 × 1011 cm−2. The normal system with a “metallic” Fermi

surface is clearly unstable at NC (or, below) because it can spontaneously create
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Figure 7.1: The calculated intersubband charge density excitation ECDE , spin

density excitation ESDE , and the single particle excitation ESPE ≡ ∆SAS energies

as a function of 2D electron density NS for a DQW structure with barrier width

dB = 40Å and well width dW = 139Å. The critical density for the instability

NC ≈ 0.69 × 1011 cm−2. The bottom figure shows an expanded density range

making obvious the re-entrant behavior of the instability.
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spin-reversed intersubband electron-hole pairs (i.e. triplet excitons) at no cost

of energy. We, therefore, surmise that at NC there is a phase transition from

the normal 2D electron liquid to a triplet intersubband exciton liquid with a

re-entrance of the normal phase at a still lower density. The electronic phase

transition at NC is driven purely by exchange-correlation effects which make the

vertex correction or the excitonic shift to be larger than the ∆SAS gap, causing

the collapse of the SAS gap. The re-entrance at a still lower density can be easily

understood as a manifestation of the fact that the vertex correction must vanish

as NS → 0, and, therefore, the normal Fermi liquid phase again becomes stable at

some lower densities. (There can be transitions [84, 85] to Wigner crystal phases

which occur at much lower NS values than those considered in this chapter.)

By carrying out our calculation for many different DQW samples with differ-

ent densities and barrier widths we can obtain an approximate phase diagram for

the DQW system which is shown in Fig. 7.2. (As an inset of Fig. 7.2, we show the

phase diagram in standard dimensionless units.) For very small barrier widths,

the ∆SAS gap is large and the excitonic vertex correction can never overcome

it (even at very low densities), making the normal phase the only stable phase.

At larger values of the barrier width we see the re-entrant behavior whereas for

very large barrier widths ∆SAS is exponentially small, and the low density normal

phase is pushed down to unphysically low NS values. Of course, for such expo-

nentially small ∆SAS (for large barrier widths), the critical temperature for our

predicted instability is exponentially low, making the phase transition physically

unobservable [86]. In Fig. 7.3 we show the calculated behavior of the Raman

scattering spectra in the cross-polarization geometry [32, 66, 74, 30] (which di-

rectly probes the SDE mode), approaching the spin density excitonic instability
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from above (NS > NC). As NS approaches NC , the spectral peak shifts towards

zero energy and the line narrows. We mention that for NS < NC , the theoret-

ical mean-field SDE energy is imaginary and there is no SDE mode until the

re-entrant point is reached. We suggest experiments to be carried out to directly

probe the behavior shown in Fig. 7.3.

As additional evidence supporting the predicted transition we show as an in-

set of Fig. 7.3 the usual mean-field vertex correction | Uxcχ
0
12 | where Uxc is the

(spin-polarized) exchange-correlation induced vertex correction and χ0
12 is the in-

tersubband SAS polarizability without the vertex correction (corresponding to

SPE peaks), as a function of 2D electron density. The vertex-corrected response

function, χ0
12[1 − Uxcχ

0
12]

−1, clearly has an instability in a finite range of density

where the ordinate exceeds unity. Remembering that the usual mean-field crite-

rion (the “Stoner” criterion) for an electronic phase transition is | Uxcχ
0
12 |≥ 1, we

conclude that, at least within the mean-field theory, there is an electronic phase

transition to a triplet excitonic phase in the intermediate density range where

| Uxcχ
0
12 | exceeds one.

The last aspect of the intersubband spin-density-excitation in coupled DQWs

that we will analyze is their dispersion relation, or dependence with in-plane mo-

mentum transfer. Employing the formalism described in Chapter 5 we calculated

such dispersion relation, which is shown in Fig. 7.4 for several sheet densities Ns.

The most important feature is that the SDE mode becomes soft at a finite value of

the in-plane momentum transfer, qc, at a critical density somewhat higher than

the critical density found at zero in-plane momentum transfer. This indicates

that the excitonic instability occurs first at a finite value of in-plane q, and this

fact should be taken into account in a future study of the new electronic phase.
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Figure 7.2: The calculated zero temperature quantum phase diagram for dW =

139Å. The normal (N) and the triplet excitonic (E) phases are shown. Inset:

phase diagram in terms of the two-dimensional rs parameter and the “dimen-

sionless” ∆SAS where dB (dW ) are barrier (well) widths. Solid circles correspond

to dW = 139Å and various dB, and crosses to dB = 40Å and various dW .
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Figure 7.3: Calculated SDE Raman scattering spectra in the cross-polarization

geometry showing the approach to the instability from above (dW = 139Å, dB =

40Å). Inset: mean-field vertex correction versus areal density; the electron gas is

unstable (the “Stoner” criterion) in the range of density where | Uxcχ
0
12 |≥ 1.
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For example, the new ground state could be characterized by a spin-density wave

where the critical qc sets a characteristic length in the problem. The approach to

the critical momentum transfer qc at a given density could be observed in inelas-

tic light-scattering experiments, by varying the angle of incidence of the light. In

Fig. 7.5 we present the calculated Raman spectra at NS = 0.7 × 1011cm−2, for

various values of q. Such experiments would constitute additional evidence of the

strong possibility of an electronic phase transition in coupled DQW systems.

Finally, we mention that the instability discussed here for DQWs can also

happen in wide single quantum wells, where the effective potential develops a

barrier in the center at moderate densities becoming analogous to a DQW [79].

This phenomenon can be seen in Fig. 7.6; notice that the electron density profile

is similar to the one characteristic of the DQW system (Fig. 6.1). In this effec-

tive double well system the separation between the two lowest lying subbands is

small (∼ 0.2meV ) as in the coupled DQWs, and the possibility of an excitonic

suppression of the intersubband gap arises. A calculation of the SDE energies

shows that this is indeed the case, as can be seen in Fig. 7.7. For the wide square

well considered, whose width is dW = 1000Å, the region of imaginary SDE en-

ergy is somewhat smaller than for our DQW of barrier width dB = 40Å, but it

is in the same density region ∼ 0.4 × 1011 cm−2. Hence, inelastic-light-scattering

experiments should be able to observe the approach to the instability in wide

square wells also.

7.3 Summary and final remarks

We have calculated spin-density and charge-density excitations in coupled

double-quantum-well systems within the TDLDA at densities below 1011 cm−2,
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Figure 7.4: Dispersion relation of the intersubband spin-density excitations for

a coupled double-quantum-well system, with dW = 139Å and dB = 40Å, for

decreasing densities approaching the critical density NC ≃ 0.686 × 1011 cm−2

(thick lines) (The densities NS are given in units of 1011 cm−2.) The thin lines

give the lower boundary of the particle-hole continuum, above which the collective

excitations are Landau damped.

106



Figure 7.5: Calculated SDE Raman scattering spectra in the cross-polarization

geometry showing the approach to the instability at constant density NS = 0.7×

1011cm−2 and increasing the wavevector transfer q (dW = 139Å, dB = 40Å).

107



Figure 7.6: A typical wide square quantum well structure, given by the bare

confining potential VCONF , and its self-consistent LDA subband-energy-levels En,

eigenfunctions φn, electron density n(z), Fermi energy EF , and effective, Hartree,

and exchange-correlation potentials VEFF , VH , and VXC . The areal density is

Ns = 0.9×1011 cm−2. The figure shows how the electronic density profile becomes

localized on the sides of the well and similar to the profile in a double quantum-

well system. Bottom: energies in expanded scale.
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Figure 7.7: The calculated intersubband charge density excitation ECDE , spin

density excitation ESDE , and the single particle excitation ESPE ≡ ∆SAS energies

as a function of 2D electron density NS for a wide square-well structure with well

width dW = 1000Å.
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and found that the lowest intersubband SDE energy vanishes within a window of

areal densities. Thus, our mean-field approach indicates that the normal Fermi

liquid ground state of a DQW system is unstable towards the formation of a

triplet (spin density) exciton liquid at a critical density of 0.7×1011 cm−2, which

at still lower density (∼ 0.1 × 1011 cm−2) may have a re-entrance back into the

normal phase. Raman scattering experiments should be able to detect this pre-

dicted electronic phase transition by observing the vanishing of the SDE energy

as NS approaches NC from above. The transition may also manifest itself in

intersubband transport properties as a metal-insulator transition (with the ex-

citonic phase expected to be an insulator), but a detailed investigation of the

properties of the excitonic phase is left for the future.

The quantitative validity of our spin-polarized TDLDA-based mean-field cal-

culation is difficult to assess because of inherent difficulties associated with es-

timating the validity of density functional calculations. The two-dimensional

rs–parameter (cf. Fig. 7.2 inset) at the predicted transition is in the range of 2-6

where our choice of exchange-correlation potential should be very good [27, 74].

In general, TDLDA calculations give very good quantitative agreement with ex-

periment for quantum well CDEs and SDEs [33, 74, 30, 48]. Similar mean-field

“Stoner” criteria calculations in other contexts have been extremely successful

[87] in predicting magnetic transitions in Fe, Co, and Ni, etc. Based on all of

this we believe that our calculated phase diagram should be at least qualitatively

valid, even though the exact density values for the transition may be 10-20% off.

Inclusion of higher order vertex corrections beyond TDLDA is a formidable task

which has not been attempted in a consistent manner in any problem.
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CHAPTER 8

Ferromagnetic instability in the quasi-two dimensional electron gas

8.1 Introduction

The phases of an electron gas have attracted a great deal of attention since

Wigner [88] suggested the possibility that the electron gas would crystallize at

sufficiently low density and temperature in order to minimize its potential energy.

On the other hand, at high density the kinetic energy dominates and the electron

gas becomes and ideal Fermi gas in order to minimize its kinetic energy. At inter-

mediate densities, Bloch [89] suggested that a polarized state with all the spins

aligned would have lower energy than the normal fluid. Other possible ground-

states, such as spin-density waves have also been proposed [90]. In Chapter 7 we

found that the electron gas confined in a coupled double-quantum-well structure

has an instability, as indicated by the vanishing of the energy of the intersubband

spin-density excitations. Our main goal in this chapter is to establish whether this

instability corresponds to a phase transition from the normal spin-unpolarized

(or paramagnetic) ground state to a spin-polarized (ferromagnetic) one. To this

end, we perform a calculation of the electronic ground-state in a coupled double-

quantum well employing the so-called local-spin-density (LSD) approximation.

This is a generalization of the local-density approximation (LDA) and was first

formally justified by von Barth and Hedin [91] and Pant and Rajagopal [92], and
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is suitable to study systems in the presence of an external magnetic field [42], as

well as spontaneous magnetization in the absence of a magnetic field. As we will

see later in this chapter, our LSD-based study of a coupled DQW system shows

that it is not possible to identify the excitonic instability with a ferromagnetic

transition, since their critical densities differ by at least an order of magnitude.

Our second goal in this chapter is to employ the LSD formalism to study

the ferromagnetic phase transition in single square quantum wells. In particular,

we are interested in the dependence of the critical density on the well width,

as it would reveal a new aspect (complementary to that explored in Chapter

3) of the crossover from two- to three-dimensional behavior of the electron gas.

We will find that as the electron gas is widened the transition density decreases

(the ferromagnetic phase becomes less favorable) which agrees with the fact that

the influence of the Coulomb interaction is stronger for lower dimensionality. A

similar problem to the spin polarization of the ground-state in quantum wells is

the problem of “valley condensation” in Si-SiO2 systems, where instead of spin

variables, the electrons can occupy different valleys of the Brillouin zone, and

which was studied in the past [93] with similar techniques to the ones employed

here.

In the following we summarize the theoretical and numerical evidence that

the uniform electron gas in two and three dimensions embedded in a uniform

positive background (jellium model) undergoes a ferromagnetic transition below

a certain critical density.

Let us consider a uniform polarized electron gas in which N± denotes the

number of electrons with spin up (+) and down (-). The ground-state energy can

be calculated exactly in the Hartree-Fock approximation, that is, to first order in
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the Coulomb interaction, as a function of N = N+ + N− and the magnetization

m = (N+ − N−)/N [25]. The result is

E3D
HF = E(0) + E(1)

=
∑

kλ

h̄2k2

2m
〈Ψ0|a†

kλakλ|Ψ0〉

+
e2

2V

∑

kpq

′
∑

λ1λ2

4π

q2
〈Ψ0|a†

k+qλ1
a†
p−qλ2

apλ2
akλ1

|Ψ0〉

=
Ne2

2a0

3

10

(

9π

2

)2/3 1

r2
s

[

(

1 + m

2

)5/3

+
(

1 − m

2

)5/3
]

−Ne2

2a0

3

4π

(

9π

2

)2/3 1

rs

[

(

1 + m

2

)4/3

+
(

1 − m

2

)4/3
]

, (8.1)

where |Ψ0〉 is the noninteracting many-body ground-state, a0 = h̄2/me2 is the

Bohr radius, and rs = (3V/4πN)1/3/a0. E(0) is the kinetic energy term. Notice

that in E(1), one has two possible nonvanishing terms

〈Ψ0|a†
k+qλ1

a†
p−qλ2

apλ2
akλ1

|Ψ0〉 = 〈Ψ0|a†
kλ1

a†
pλ2

apλ2
akλ1

|Ψ0〉

+〈Ψ0|a†
pλ1

a†
kλ2

apλ2
akλ1

|Ψ0〉.

(8.2)

The first term gives the direct Coulomb energy, which, since it corresponds to

q = 0, is not included in the summation—it has been already included in the total

energy and canceled out by the background-background and electron-background

interactions. Thus, to first order, we are left only with the kinetic and exchange

energies. Now we can compare the energies of the ferromagnetic state (m=1)

and the unpolarized state (m=0) to first order in the interaction, and we find

that the polarized state has the lowest energy if rs > 5.45. This means that

although the polarized state clearly has larger kinetic energy, the decrease in the

exchange energy associated with aligning all the spins offsets the kinetic energy
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gain as long as the density is low enough. An analogous Hartree-Fock analysis of

a two-dimensional electron gas gives the following ground-state energy:

E2D
HF = E(0) + E(1)

=
∑

kλ

h̄2k2

2m
〈Ψ0|a†

kλakλ|Ψ0〉

+
e2

2A

∑

kpq

′
∑

λ1λ2

2π

q
〈Ψ0|a†

k+qλ1
a†
p−qλ2

apλ2
akλ1

|Ψ0〉

=
Ne2

a0

{

1 + m2

r2
s

− 4
√

2

3πrs

[

(1 + m)3/2 + (1 − m)3/2
]

}

. (8.3)

In this case, the condition for a polarized ground-state, E2D
HF (rs, m = 1) <

E2D
HF (rs, m = 0), is satisfied if rs > 2.84. This shows that, within the Hartree-

Fock approximation, a polarized state is more favorable in two than in three

dimensions.

The correlation energy of the electron gas (the contributions to the ground

state energy beyond the exchange energy) can only be calculated approximately,

and therefore the critical ferromagnetic density cannot be found exactly. Ceper-

ley [46] calculated the ground-state energy of an electron gas in two and three

dimensions employing a variational Monte Carlo (VMC) technique. He found

that both in two and three dimensions there is an intermediate density regime

where a fully polarized state has the lowest energy compared to the unpolarized

quantum liquid and the Wigner crystal. In 3D, the polarized phase is stable for

26 < rs < 67, and, in 2D, for 13 < rs < 33. (Additional unpublished results

[94] seem to indicate that there is a transition to a partially polarized liquid at

rs ≈ 20 and to a fully polarized phase at rs ≈ 50). Eleven years later, Tanatar

and Ceperley [85] recalculated the ground-state properties of the electron gas

in two dimensions employing the VMC technique and the more accurate fixed-

node Green’s-function Monte Carlo (GFMC) technique. The VMC technique
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predicted again a transition from the unpolarized to the polarized liquid at rs be-

tween 10 and 20, consistent with Ceperley’s results. The more accurate GFMC

technique predicted a transition from the unpolarized liquid to the Wigner crystal

at rs = 37, without an intermediate polarized phase. However, the authors point

out that near the transition density the polarized phase has an energy very close

to the energy of the other phases, and due to finite size effects and errors associ-

ated with their approximation method, their conclusion should not be taken as

definite. This leaves open the possibility of a stable, fully-polarized phase in the

two-dimensional electron gas.

8.2 Local-spin-density theory

In this section we introduce the local-spin-density (LSD) formalism to calcu-

late the ground-state electronic structure of semiconductor quantum wells. The

LSD formalism is a generalization of the LDA scheme introduced in Section 2.1,

which allows different populations of the two possible spin orientations, or, in

other words, a finite spin polarization. The method is also based on the self-

consistent solution of the Schrodinger-like Kohn-Sham equation, coupled with

the Poisson equation, and the local exchange-correlation potential. The main

technical difference between LSD and LDA is that in LSD the effective exchange-

correlation potential depends on the local spin polarization as well as in the

electron density. Therefore, one has to solve two Kohn-Sham equations, which

contain spin dependent effective potentials, for the two components of the spinor

wavefunction. Recently, the LSD has been employed to study spin effects in wide

parabolic quantum wells in the presence of a perpendicular magnetic field [95].

After factorizing the complete single-electron wavefunction as was done in Eq.
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(2.3), we write down the z-dependent Kohn-Sham equation:

(

− h̄2

2m∗

d2

dz2
+ VC(z) + VH(z) + V σ

XC(z)

)

φσ
n(z) = εσ

nφ
σ
n(z), (8.4)

where n is the subband index, which takes the value 1 for the symmetric level (S),

and 2 for the antisymmetric level (AS); the symbol σ denotes the spin orientation,

which can be up(+) or down(-). Altogether we need to consider a maximum

of four components: φ+
1 , φ−

1 , φ+
2 , φ−

2 , and the corresponding energies (we are

assuming that no more than two subbands are populated). The density associated

to each subband and spin orientation is given by

nσ
n(z) = Nσ

n |φσ
n(z)|2, (8.5)

where Nσ
n is the occupancy of each level, which at zero temperature is given by

Nσ
n =

m∗

2πh̄2 (εF − εσ
n) Θ(εF − εσ

n). (8.6)

The total electron density is then

n(z) =
∑

n σ

nσ
n(z). (8.7)

We define the spin polarization of the electron gas as

m(z) ≡ n+
1 (z) + n+

2 (z) − n−
1 (z) − n−

2 (z)

n(z)
. (8.8)

In the LSD formalism, the exchange-correlation potential depends on both the

density n(z) and the spin polarization m(z). In our calculations we use the

expression for VXC obtained by Gunnarson and Lundqvist [96], slightly modified

by Das Sarma and Vinter [97] (see Appendix A):

V ±
XC(n(z), m(z)) = −

(

2

π

)(

9π

4

)1/3 1

rs

(

β(rs) ±
1

3
δ(rs)

m

1 ± 0.3m

)

, (8.9)
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where

β(rs) = 1 + 0.0862 rs ln
(

1 +
15.24

rs

)

, (8.10)

δ(rs) = 1 − 0.0125 rs −
0.404 rs

1 + 0.59 rs
, (8.11)

and rs is the dimensionless interparticle distance, rs = r0/a
∗, where a∗ is the

effective Bohr radius. In a quasi-2D system, two possible definitions of r0 may

be relevant. A 2D r0 can be defined as r0 = (πNS)−1/2, and, for a 3D definition,

we need to introduce a characteristic bulk density n0. Choosing n0 ≡ NS/dW ,

where dW is the width of the quantum well, we can use the usual definition

r0 ≡ (3/4πn0)
1/3. The Hartree potential VH(z) is calculated as in the unpolarized

formalism described in Section 2.1. It satisfies Poisson equation, Eq. (2.6), and

is given by Eq. (2.7). Finally, the Fermi level EF is implicitly determined by the

condition

EF =
∫ ∞

−∞
dz n(z) =

∑

n σ

Nσ
n . (8.12)

The self-consistent solution proceeds exactly like for the LDA case, with the differ-

ence that now, in each iteration, one has to solve two Kohn-Sham equations, Eq.

(8.4), for the two spinor components of the wavefunctions, φσ
n. This concludes the

self-consistent calculation of the electronic structure in the LSD approximation.

In the next section we apply this formalism to coupled double-quantum-wells,

and to single square quantum wells.

8.3 Results

The first goal of our study of spin-polarized systems within the local-spin-

density (LSD) formalism was to determine whether the excitonic instability stud-

ied in Chapter 7 could be explained in terms of a ferromagnetic transition, that
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is, a transition from the usual spin-unpolarized ground state to a partially or fully

polarized one. We concentrated on a coupled double-quantum-well system, where

each individual square well is 139Å wide, and the well separation is 40Å—this is

the main sample studied in Chapter 7. Like in the better-known 3D case, a fully

polarized phase is expected at low density, and a normal, unpolarized phase at

high density. To determine the spin polarization of the system at a given areal

density NS with the iterative self-consistent LSD method, it should be enough,

in principle, to introduce a sligth asymmetry in the initial choice of spin densi-

ties. If the correct ground state were unpolarized, the initial asymmetry would

rapidly disappear in the iteration process. One the other hand, if a polarized state

were expected, the initial small polarization would increase until convergence to

the fully polarized is achieved. However, since the solution of the self-consistent

set of equations of the LSD-approximation method is affected by numerical in-

accuracies, in practice our method is sensitive to the initial conditions (initial

guess of spin density profiles). Therefore, we employed the following method

to determine the ground-state polarization of the system. For a given density

NS (assuming, for example, that only one subband is occupied), we solved the

self-consistent algorithm starting with spin densities given by n+
1 (z) = η nu(z),

n−
1 (z) = (1 − η) nu(z), and we took two different values of η, η = 0.55 and 0.95.

Here nu(z) is the density in the unpolarized calculation, performed within the

LDA. With this method we searched the phase diagram of spin polarization as a

function of NS for the coupled DQW defined above. For small NS in the range

1–4 ×109 cm−2, the calculation converges to a fully polarized state, regardless

of the initial choice of spin densities. In the range NS = 5–7 ×109 cm−2, the

solution is polarized for the choice η = 0.95, and unpolarized for η = 0.55, and
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for NS > 7 × 109 cm−2 the solution is always unpolarized.

Therefore, our first conclusion is that, within the LSD approximation, there is

a ferromagnetic transition as a function of the electron density NS in a coupled

DQW system, and for our particular choice of parameters it happens around

NS = 6 × 109 cm−2 at zero temperature. On the other hand, this ferromagnetic

transition occurs at a density NS which is an order of magnitude smaller than

the critical density NC where the excitonic transition of Chapter 7 is predicted.

(a calculation with the Ceperley-Alder exchange-correlation potential introduced

later would give an even smaller critical density). Moreover, it does not seem to

show a re-entrant behavior at lower density like the excitonic transition. Based

on these differences, we conclude that the ferromagnetic transition cannot be

identified as the excitonic phase transition that we studied in Chapter 7.

Next we present our results for single square wells. Here the goal was to deter-

mine the ferromagnetic-transition critical density as a function of the well width,

and therefore make a first step in the study of the evolution of this transition as a

function of the dimensionality of the electron gas. The analytical results for two

and three dimensions summarized in Section 8.1 indicate that in two dimensions

the exchange energy is more important than in three dimensions, and therefore

the critical density is higher than in three dimensions. If this tendency is obeyed

in the case of quasi-2D systems as well, we expect that in our calculations the

ferromagnetic critical density should decrease as the well width is increased.

Employing the method described above, we searched for the ferromagnetic

transition in four single square wells of widths dW = 139Å, 318Å, 500Å, and

800Å. The resulting phase diagram is presented in Fig. 8.1 in terms of NS ver-

sus well width, and also in terms of the 2D and 3D rs and well width. As
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expected, we see that the critical density decreases with increasing well width.

However, the limiting values of rs for narrow and wide wells cannot be directly

compared with the pure two- and three-dimensional Hartree-Fock values for two

reasons. The first reason is that the analytical results are obtained in the jel-

lium model, whereas in our quantum well calculations the positive charges of the

ionized donors are located far away from the electron gas, which should produce

an important change in the direct coulomb energy, and therefore affect the fer-

romagnetic critical density as well. The second reason to expect differences is

that our calculation includes correlation effects which go beyond the exchange

interaction, even though they are treated in a local and static approximation.

Several authors have proposed different parametrizations of the exchange-

correlation potential, which are based on different calculations of the 3D-electron-

gas ground-state energy, and therefore differ somewhat from each other. Thus,

we have confirmed the existence of the ferromagnetic transition in single square

quantum wells by using the parametrization of the exchange-correlation poten-

tial proposed by Ceperley and Alder [46] (see Appendix A) which predicts weaker

exchange-correlation effects than the one by Das Sarma and Vinter. In Fig. 8.2

we compare several different self-consistent exchange-correlation potentials for a

given sample and a value of NS such that the ground-state is unpolarized. Since

the Das Sarma-Vinter potential is larger in absolute value than the Ceperley-

Alder one, we expect that using the latter would shift the ferromagnetic critical

density down, or possibly suppress the ferromagnetic phase altogether. We have

found that, for the square well of width dW = 139Å, the Ceperley-Alder po-

tential predicts a phase transition as well, although it gives a critical density of

NS = 2 × 109 cm−2, down from the NS = 1.2 × 1010 cm−2 value obtained with
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the Das Sarma-Vinter expression. Therefore, we can be fairly confident that a

ferromagnetic transition is indeed present in the confined electron gas. However,

the value of the critical transition density cannot be accurately determined with

the LSD technique, especially due to the uncertainty in the exchange-correlation

potential; the exchange-correlation potential is obtained from the ground-state

energy of a uniform electron gas, which necessarily needs to be calculated within

some approximation scheme.

8.4 Summary

In this chapter we introduced the local spin-density (LSD) formalism, which

generalizes the LDA by allowing the study of spin-polarized systems. We em-

ployed the LSD approximation to investigate the possibility of ferromagnetic

transitions in double-quantum-well and single-square-well systems. We found

that, for a coupled double-quantum-well that shows the excitonic instability stud-

ied in Chapter 7, there is also a ferromagnetic transition. An identification of

these two instabilities is ruled out on the basis that the ferromagnetic transition

occurs at a critical density which is at least an order magnitude smaller than the

excitonic critical density. The study of single square wells provides additional

evidence in favor of a spin-polarized phase of the electron gas, which would lie

between the Wigner crystal phase (at very low density) and the unpolarized quan-

tum liquid (at high density). The critical ferromagnetic density decreases with

increasing well width, showing that exchange-correlation effects are stronger in

lower dimensions, as expected from purely two- and three-dimensional results.
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Figure 8.1: Spin-polarization phase diagram of single square wells obtained in

the local-spin-density approximation.
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Figure 8.2: Comparison of several exchange-correlation potentials in a single

square well sample of width dW = 318Å. The top of the sample potential is shown

by thick solid lines. The exchange-correlation potentials are: Das Sarma-Vinter

(LSD) (thin solid line), Hedin-Lundqvist (LDA) (dashed line), Ceperley-Alder

(LSD) (dash-dotted line), and exchange only (dotted line). The areal density is

NS = 1010 cm−2.
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Appendix A

Exchange-correlation potentials

In this Appendix we collect the different parametrizations of the exchange-corre-

lation potentials that we have used in this thesis. We present both the unpolarized

potentials, used in the standard local-density-approximation (LDA) calculations,

as well as the polarized ones necessary in the local-spin-density (LSD) approxi-

mation. The only potentials that have not been given elsewhere in the text are

the polarized Gunnarson-Lundqvist (which we have not used but give it here for

completeness) and the polarized Ceperley-Alder ones. Ceperley and Alder have

used Monte Carlo techniques to calculate the energy of a uniform electron gas

over a wide range of densities [46]. The exchange and correlation contributions

to these energies have been parametrized by Ceperley [46], and we employ those

parametrizations to find the exchange-correlation contribution to the chemical

potential of the uniform electron gas, which appears as a potential energy term

in the Kohn-Sham equation (see Eqs. (2.4,2.5,8.4). Let us assume that n is the

density of a uniform electron gas. We define the interparticle distance rs and the

spin polarization m,

rs = (3/4πn)1/3/a0, (A.1)

m = (n+ − n−)/n. (A.2)
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In the following we present the different exchange-correlation potentials.

Unpolarized

(1) Hedin-Lundqvist [45]

VXC(z) = −
(

2

π

)(

9π

4

)1/3 1

rs

(

1 + 0.0368 rs ln
(

1 +
21

rs

))

(A.3)

(2) Ceperley and Ceperley-Alder [46]

VXC(z) =
−1.2145

rs

+ γ

(

1 + 7
6
β1
√

rs + 4
3
β2rs

)

(

1 + β1
√

rs + β2rs

)2 (A.4)

Ceperley: γ = −0.1471, β1 = 1.1581, and β2 = 0.3446

Ceperley-Alder: γ = −0.1423, β1 = 1.0529, and β2 = 0.3334

Polarized

(1) Gunnarsson-Lundqvist [96]

V ±
XC(n(z), m(z)) = −

(

2

π

)(

9π

4

)1/3 1

rs

(

β(rs) ±
1

3
δ(rs)

m

1 ± 0.297m

)

(A.5)

β(rs) = 1 + 0.0545 rs ln
(

1 +
11.4

rs

)

(A.6)

δ(rs) = 1 − 0.036 rs −
1.36 rs

1 + 10 rs
(A.7)

(2) Gunnarsson-Lundqvist modified by Das Sarma-Vinter [97]

V ±
XC(n(z), m(z)) = −

(

2

π

)(

9π

4

)1/3 1

rs

(

β(rs) ±
1

3
δ(rs)

m

1 ± 0.3m

)

(A.8)

β(rs) = 1 + 0.0862 rs ln
(

1 +
15.24

rs

)

(A.9)

δ(rs) = 1 − 0.0125 rs −
0.404 rs

1 + 0.59 rs
(A.10)
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(3) Ceperley-Alder [46]

ǫi
xc =

ci

rs
+

γi

1 + βi
1

√
rs + βi

2 rs
, (A.11)

where i = U (unpolarized, m = 0) or i = P (polarized, m = 1). The exchange-

correlation contribution to the chemical potential is

V i
xc = (1 − rs

3

d

drs
) ǫi

xc

=
di

rs

+ γi 1 + 7
6
βi

1

√
rs + 4

3
βi

2 rs

(1 + βi
1

√
rs + βi

2 rs)2
(A.12)

The parameters in the previous expressions, as obtained by Ceperley and Alder

[46] are, cU = −0.9163, cP = −1.1540, dU = −1.2218, dP = −1.5393, γU =

−0.1423, γP = −0.0843, βU
1 = 1.0529, βP

1 = 1.3981, βU
2 = 0.3334, and βP

2 =

0.2611. For intermediate polarization (i.e. 0 < m < 1) we use an interpolation

formula proposed by von Barth and Hedin [91], in which the correlation energy

has the same polarization dependence as the exchange energy:

ǫxc(rs, m) = ǫU
xc(rs) + f(m)

(

ǫP
xc(rs) − ǫU

xc(rs)
)

V σ
xc(rs, m) = V U

xc(rs) + f(m)
(

V P
xc(rs) − V U

xc(rs)
)

+

(

ǫP
xc(rs) − ǫU

xc(rs)
)

(sgn(σ) − m)
df

dm
(A.13)

where

f(m) =
(1 + m)4/3 + (1 − m)4/3 − 2

24/3 − 2
. (A.14)

In Figs. A.1 and A.2 we compare the various exchange-correlation potentials

in the unpolarized (m = 0) and polarized (m = 1) cases, respectively.
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Figure A.1: Comparison of several exchange-correlation potentials in the spin-

unpolarized case (m = 0).
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Figure A.2: Comparison of several exchange-correlation potentials in the spin-

polarized case (m = 1, all spins-up).
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Appendix B

Limitations of the Local-Density Approximation

In this Appendix we discuss the validity and limitations of the theoretical tech-

niques employed in this dissertation, i.e. the density-functional theory in the

local-density approximation (LDA) and the time-dependent local-density approx-

imation (TDLDA). The LDA is designed to calculate the ground-state of systems

with a slowly varying density. Therefore, even though it has been found to work

surprisingly well in systems beyond this limit, we first need to determine whether

this condition is met in our problem of an electron gas confined in a semiconduc-

tor quantum well. The application of density-functional theory to a system with

slowly varying density was first analyzed by Hohengerg and Kohn [37]. They

showed that an expansion of the energy in terms of the gradient of the electron

density n(r) is justified if the relative variations of n(r) over a distance of the

order of the inter-electron separation are small,

1

kF (n)

|∇n|
n

≪ 1. (B.1)

A more detailed analysis [98, 41] shows that the condition for the corrections to

LDA to be small is the weaker one

η ≡ 1

6kF (n)

|∇n|
n

≈ 1

18

|∇n|
n4/3

≪ 1. (B.2)
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As a test of the applicability of LDA to our problem we computed the quantity

η for the double quantum well shown in Fig. 6.1. The result is shown in Fig.

B.1. The condition η ≪ 1 is satisfied only in the centers of the individual wells,

where the density is maximun and its derivative goes to zero, and it is “weakly”

violated (η ≈ 2) near the edges of the wells. Outside the well, where the density

is exponentially decaying, and therefore η is exponentially growing (see the third

term of Eq. (B.2)) the condition η ≪ 1 is strongly violated. However, since

the density in this region is many orders of magnitude smaller than inside the

well, this violation of the LDA condition is not expected to give rise to serious

errors. Thus, from these considerations we conclude that the use of the LDA

to calculate the ground state properties of the electron gas in quantum wells

is not strictly justified, but reasonable results can be expected. It would be

interesting to employ in future work refined versions of LDA which take into

account the rapid variations in density by including higher order terms in the

density gradient expansion [98, 41]. However, we reiterate that even though the

LDA is not strictly justified in our problem, there is ample evidence that LDA

calculations in semiconductor quasi-2D systems, among others, give excellent

results when compared with experiment [18, 21]. Therefore, because of these

empirical evidence, we consider that our results based on the LDA can be trusted

beyond what the above test seems to indicate.

The local-density approximation discussed so far is used to calculate the

ground-state properties of inhomogeneous many-body systems. The second im-

portant approximation employed in this dissertation has to do with the appli-

cation of density-functional theory and the local-density approximation to the

study of the dynamical response of the electron gas to a time-dependent radi-
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Figure B.1: Top: density profile for the double quantum-well of Fig. 6.1; Bottom:

dimensionless parameter η ≡ 1
6kF (n)

|∇n|
n

which should be η ≪ 1 for the local-

density approximation to be justified. The dashed lines mark the edges of the

wells.
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ation field. The generalization of the local-density approximation to the time-

dependent problem in space-charge layers, the so-called time-dependent local-

density approximation (TDLDA), which we use throughout this dissertation was

introduced by Ando [40]. This theory, which was explained in detail in Section 2.2

and employed again in Section 5.3, can be expressed in many-body diagramatic

language (Fig. B.2), provided the many-body interactions are re-interpreted to

reflect the assumptions of the local-density approximation.

The Feynman diagrams associated with the TDLDA are shown in Fig. B.2,

and defined and briefly explained in the following quotation from Ref. [27]: “(a)

the intersubband leading-order polarizability (gives the quasiparticle continuum);

(b) the renormalized subband Green’s function with the thin line being the bare

Green’s function; (c) the self-energy with the leading contributions coming from

the Hatree “tadpole” diagram, the “GW” diagram, and the “GWΓ” diagram

including the first-order vertex correction; (d) the interacting irreducible inter-

subband polarizability (gives the collective spin-density excitations) and the lad-

der series of vertex corrections; (e) the ladder integral equation for the vertex

function; and (f) the reducible intersubband polarizability (gives the collective

charge-density excitations) as sum of the ring diagrams. The dashed and the

wiggly lines are the (unscreened) direct intersubband Coulomb interaction, and

the (dynamically screened) exchange-correlation interaction, respectively. (In the

TDLDA, one approximates the wiggly line as a static, local interaction.) In the

RPA, one neglects all vertex corrections (i.e., uses (a) for the irreducible polariz-

ability) and includes only the Hartree self-energy diagram (the first diagram, the

tadpole, in (c)).”
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Figure B.2: Many-body diagrams for the intersubband elementary excitations.

See the explanations of the different diagrams in the text. (From [27].)
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As mentioned in the previous quotation, the TDLDA is an approximate

scheme for calculating many-body response functions, which extends the random-

phase approximation by including vertex-corrections to the irreducible response

function. The TDLDA is equivalent to the ladder diagram approximation pro-

vided the exact Coulomb interaction in the vertex correction is replaced by an

energy- and momentum-independent interaction, which derives from the static

exchange-correlation potential employed in the subband structure determination

(see Eq. (5.24). The use of a static and q-independent interaction in not too

severe in the ground-state calculation, but it constitutes a more drastic approxi-

mation in the dynamic problem. However, it is found that the TDLDA compares

favorably with in principle more exact approximation schemes, like the explicit

solution of the Bethe-Salpeter equation (which gives the vertex-corrections in the

ladder-diagram approximation exactly) performed in the context of semiconduc-

tor quantum wells [48].

Our approximation of identifying the excited state energies of the Kohn-Sham

equation [38] with the actual quasiparticle energies of the quantum well structure

is of course a drastic and uncontrolled approximation which can only be justi-

fied if the corresponding many-body self-energy is essentially energy independent

[39]. For quasi-two-dimensional structures, in particular silicon inversion layers

[93] and GaAs quantum wells [99, 100], the many-body self-energy is found to be

very weakly energy dependent, and therefore it is expected that our calculated

excitation energies of the Kohn-Sham self-consistent equations approximately cor-

respond to the real excited energies of the system. Explicit comparison between

calculated Kohn-Sham excited energies and many-body quasiparticle energies for

silicon inversion layers shows this to be the case [93] and therefore we have some
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reason to trust this uncontrolled approximation. This situation for the quasi-

two-dimensional problem is different from the bulk band gap problem in semi-

conductors [42] and insulators where the existence of the gap in the excitation

spectrum makes things difficult. The fact that there is no gap in the excitation

spectrum and that the self-energy is only weakly energy dependent makes LDA

and TDLDA reasonable approximations for the excitation spectra in our system.

This is borne out by rather detailed agreement between the TDLDA theory and

experimental results in semiconductor quantum well structures.
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